237 research outputs found

    Large-Scale Green Supplier Selection Approach under a Q-Rung Interval-Valued Orthopair Fuzzy Environment

    Get PDF
    As enterprises pay more and more attention to environmental issues, the green supply chain management (GSCM) mode has been extensively utilized to guarantee profit and sustainable development. Greensupplierselection(GSS),whichisakeysegmentofGSCM,hasbeeninvestigated to put forward plenty of GSS approaches

    RISK PRIORITY EVALUATION OF POWER TRANSFORMER PARTS BASED ON HYBRID FMEA FRAMEWORK UNDER HESITANT FUZZY ENVIRONMENT

    Get PDF
    The power transformer is one of the most critical facilities in the power system, and its running status directly impacts the power system's security. It is essential to research the risk priority evaluation of the power transformer parts. Failure mode and effects analysis (FMEA) is a methodology for analyzing the potential failure modes (FMs) within a system in various industrial devices. This study puts forward a hybrid FMEA framework integrating novel hesitant fuzzy aggregation tools and CRITIC (Criteria Importance Through Inter-criteria Correlation) method. In this framework, the hesitant fuzzy sets (HFSs) are used to depict the uncertainty in risk evaluation. Then, an improved HFWA (hesitant fuzzy weighted averaging) operator is adopted to fuse risk evaluation for FMEA experts. This aggregation manner can consider different lengths of HFSs and the support degrees among the FMEA experts. Next, the novel HFWGA (hesitant fuzzy weighted geometric averaging) operator with CRITIC weights is developed to determine the risk priority of each FM. This method can satisfy the multiplicative characteristic of the RPN (risk priority number) method of the conventional FMEA model and reflect the correlations between risk indicators. Finally, a real example of the risk priority evaluation of power transformer parts is given to show the applicability and feasibility of the proposed hybrid FMEA framework. Comparison and sensitivity studies are also offered to verify the effectiveness of the improved risk assessment approach

    Uncertain Multi-Criteria Optimization Problems

    Get PDF
    Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems

    Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights

    Full text link
    "This is an Accepted Manuscript of an article published by Taylor & Francis in Structure and Infrastructure Engineering on 02/07/2020, available online: https://doi.org/10.1080/15732479.2019.1676791."[EN] Essential infrastructures such as bridges are designed to provide a long-lasting and intergenerational functionality. In those cases, sustainability becomes of paramount importance when the infrastructure is exposed to aggressive environments, which can jeopardise their durability and lead to significant maintenance demands. The assessment of sustainability is however often complex and uncertain. The present study assesses the sustainability performance of 16 alternative designs of a concrete bridge deck in a coastal environment on the basis of a neutrosophic group analytic hierarchy process (AHP). The use of neutrosophic logic in the field of multi-criteria decision-making, as a generalisation of the widely used fuzzy logic, allows for a proper capture of the vagueness and uncertainties of the judgements emitted by the decision-makers. TOPSIS technique is then used to aggregate the different sustainability criteria. From the results, it is derived that only the simultaneous consideration of the economic, environmental and social life cycle impacts of a design shall lead to adequate sustainable designs. Choices made based on the optimality of a design in only some of the sustainability pillars will lead to erroneous conclusions. The use of concrete with silica fume has resulted in a sustainability performance of 46.3% better than conventional concrete designs.The authors acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (Project: BIA2017-85098-R).Navarro, I.; Yepes, V.; Martí, J. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering. 16(7):949-967. https://doi.org/10.1080/15732479.2019.1676791S949967167Abdel-Basset, M., Manogaran, G., Mohamed, M., & Chilamkurti, N. (2018). Three-way decisions based on neutrosophic sets and AHP-QFD framework for supplier selection problem. Future Generation Computer Systems, 89, 19-30. doi:10.1016/j.future.2018.06.024Abdullah, L., & Najib, L. (2014). Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: choosing energy technology in Malaysia. International Journal of Sustainable Energy, 35(4), 360-377. doi:10.1080/14786451.2014.907292Ali, M. S., Aslam, M. S., & Mirza, M. S. (2015). A sustainability assessment framework for bridges – a case study: Victoria and Champlain Bridges, Montreal. Structure and Infrastructure Engineering, 1-14. doi:10.1080/15732479.2015.1120754Allacker, K. (2012). Environmental and economic optimisation of the floor on grade in residential buildings. The International Journal of Life Cycle Assessment, 17(6), 813-827. doi:10.1007/s11367-012-0402-2Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96. doi:10.1016/s0165-0114(86)80034-3Barone, G., & Frangopol, D. M. (2014). Life-cycle maintenance of deteriorating structures by multi-objective optimization involving reliability, risk, availability, hazard and cost. Structural Safety, 48, 40-50. doi:10.1016/j.strusafe.2014.02.002Biswas, P., Pramanik, S., & Giri, B. C. (2015). TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Computing and Applications, 27(3), 727-737. doi:10.1007/s00521-015-1891-2Bolturk, E., & Kahraman, C. (2018). A novel interval-valued neutrosophic AHP with cosine similarity measure. Soft Computing, 22(15), 4941-4958. doi:10.1007/s00500-018-3140-yBuckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233-247. doi:10.1016/0165-0114(85)90090-9Büyüközkan, G., & Göçer, F. (2017). Application of a new combined intuitionistic fuzzy MCDM approach based on axiomatic design methodology for the supplier selection problem. Applied Soft Computing, 52, 1222-1238. doi:10.1016/j.asoc.2016.08.051Cebeci, U. (2009). Fuzzy AHP-based decision support system for selecting ERP systems in textile industry by using balanced scorecard. Expert Systems with Applications, 36(5), 8900-8909. doi:10.1016/j.eswa.2008.11.046Chen, C., Habert, G., Bouzidi, Y., Jullien, A., & Ventura, A. (2010). LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete. Resources, Conservation and Recycling, 54(12), 1231-1240. doi:10.1016/j.resconrec.2010.04.001Chu, T.-C., & Tsao, C.-T. (2002). Ranking fuzzy numbers with an area between the centroid point and original point. Computers & Mathematics with Applications, 43(1-2), 111-117. doi:10.1016/s0898-1221(01)00277-2Cope, A., Bai, Q., Samdariya, A., & Labi, S. (2013). Assessing the efficacy of stainless steel for bridge deck reinforcement under uncertainty using Monte Carlo simulation. Structure and Infrastructure Engineering, 9(7), 634-647. doi:10.1080/15732479.2011.602418De la Fuente, A., Pons, O., Josa, A., & Aguado, A. (2016). Multi-Criteria Decision Making in the sustainability assessment of sewerage pipe systems. Journal of Cleaner Production, 112, 4762-4770. doi:10.1016/j.jclepro.2015.07.002Deli, I., & Şubaş, Y. (2016). A ranking method of single valued neutrosophic numbers and its applications to multi-attribute decision making problems. International Journal of Machine Learning and Cybernetics, 8(4), 1309-1322. doi:10.1007/s13042-016-0505-3Dong, Y., Zhang, G., Hong, W.-C., & Xu, Y. (2010). Consensus models for AHP group decision making under row geometric mean prioritization method. Decision Support Systems, 49(3), 281-289. doi:10.1016/j.dss.2010.03.003Dubois, D. (2011). The role of fuzzy sets in decision sciences: Old techniques and new directions. Fuzzy Sets and Systems, 184(1), 3-28. doi:10.1016/j.fss.2011.06.003Eamon, C. D., Jensen, E. A., Grace, N. F., & Shi, X. (2012). Life-Cycle Cost Analysis of Alternative Reinforcement Materials for Bridge Superstructures Considering Cost and Maintenance Uncertainties. Journal of Materials in Civil Engineering, 24(4), 373-380. doi:10.1061/(asce)mt.1943-5533.0000398Enea, M., & Piazza, T. (2004). Project Selection by Constrained Fuzzy AHP. Fuzzy Optimization and Decision Making, 3(1), 39-62. doi:10.1023/b:fodm.0000013071.63614.3dGarcía-Segura, T., Penadés-Plà, V., & Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202, 904-915. doi:10.1016/j.jclepro.2018.08.177García-Segura, T., & Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325-336. doi:10.1016/j.engstruct.2016.07.012García-Segura, T., Yepes, V., Frangopol, D. M., & Yang, D. Y. (2017). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391. doi:10.1016/j.engstruct.2017.05.013Gervásio, H., & Simões da Silva, L. (2012). A probabilistic decision-making approach for the sustainable assessment of infrastructures. Expert Systems with Applications, 39(8), 7121-7131. doi:10.1016/j.eswa.2012.01.032Guzmán-Sánchez, S., Jato-Espino, D., Lombillo, I., & Diaz-Sarachaga, J. M. (2018). Assessment of the contributions of different flat roof types to achieving sustainable development. Building and Environment, 141, 182-192. doi:10.1016/j.buildenv.2018.05.063Heravi, G., Fathi, M., & Faeghi, S. (2017). Multi-criteria group decision-making method for optimal selection of sustainable industrial building options focused on petrochemical projects. Journal of Cleaner Production, 142, 2999-3013. doi:10.1016/j.jclepro.2016.10.168Invidiata, A., Lavagna, M., & Ghisi, E. (2018). Selecting design strategies using multi-criteria decision making to improve the sustainability of buildings. Building and Environment, 139, 58-68. doi:10.1016/j.buildenv.2018.04.041Jakiel, P., & Fabianowski, D. (2015). FAHP model used for assessment of highway RC bridge structural and technological arrangements. Expert Systems with Applications, 42(8), 4054-4061. doi:10.1016/j.eswa.2014.12.039Kahraman, C., Cebi, S., Onar, S. C., & Oztaysi, B. (2018). A novel trapezoidal intuitionistic fuzzy information axiom approach: An application to multicriteria landfill site selection. Engineering Applications of Artificial Intelligence, 67, 157-172. doi:10.1016/j.engappai.2017.09.009Kere, K. J., & Huang, Q. (2019). Life-Cycle Cost Comparison of Corrosion Management Strategies for Steel Bridges. Journal of Bridge Engineering, 24(4), 04019007. doi:10.1061/(asce)be.1943-5592.0001361Liang, R., Wang, J., & Zhang, H. (2017). A multi-criteria decision-making method based on single-valued trapezoidal neutrosophic preference relations with complete weight information. Neural Computing and Applications, 30(11), 3383-3398. doi:10.1007/s00521-017-2925-8Liu, P., & Liu, X. (2016). The neutrosophic number generalized weighted power averaging operator and its application in multiple attribute group decision making. International Journal of Machine Learning and Cybernetics, 9(2), 347-358. doi:10.1007/s13042-016-0508-0Martí, J. V., García-Segura, T., & Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231-240. doi:10.1016/j.jclepro.2016.02.024Martínez-Blanco, J., Lehmann, A., Muñoz, P., Antón, A., Traverso, M., Rieradevall, J., & Finkbeiner, M. (2014). Application challenges for the social Life Cycle Assessment of fertilizers within life cycle sustainability assessment. Journal of Cleaner Production, 69, 34-48. doi:10.1016/j.jclepro.2014.01.044Mistry, M., Koffler, C., & Wong, S. (2016). LCA and LCC of the world’s longest pier: a case study on nickel-containing stainless steel rebar. The International Journal of Life Cycle Assessment, 21(11), 1637-1644. doi:10.1007/s11367-016-1080-2Moazami, D., Behbahani, H., & Muniandy, R. (2011). Pavement rehabilitation and maintenance prioritization of urban roads using fuzzy logic. Expert Systems with Applications, 38(10), 12869-12879. doi:10.1016/j.eswa.2011.04.079Mosalam, K. M., Alibrandi, U., Lee, H., & Armengou, J. (2018). Performance-based engineering and multi-criteria decision analysis for sustainable and resilient building design. Structural Safety, 74, 1-13. doi:10.1016/j.strusafe.2018.03.005Navarro, I., Yepes, V., & Martí, J. (2018). Life Cycle Cost Assessment of Preventive Strategies Applied to Prestressed Concrete Bridges Exposed to Chlorides. Sustainability, 10(3), 845. doi:10.3390/su10030845Navarro, I. J., Martí, J. V., & Yepes, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74, 23-34. doi:10.1016/j.eiar.2018.10.001Navarro, I. J., Yepes, V., & Martí, J. V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72, 50-63. doi:10.1016/j.eiar.2018.05.003Navarro, I. J., Yepes, V., Martí, J. V., & González-Vidosa, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196, 698-713. doi:10.1016/j.jclepro.2018.06.110Nogueira, C. G., Leonel, E. D., & Coda, H. B. (2012). Reliability algorithms applied to reinforced concrete structures durability assessment. Revista IBRACON de Estruturas e Materiais, 5(4), 440-450. doi:10.1590/s1983-41952012000400003Pamučar, D., Badi, I., Sanja, K., & Obradović, R. (2018). A Novel Approach for the Selection of Power-Generation Technology Using a Linguistic Neutrosophic CODAS Method: A Case Study in Libya. Energies, 11(9), 2489. doi:10.3390/en11092489Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2016). A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability, 8(12), 1295. doi:10.3390/su8121295Peng, J., Wang, J., & Yang, W.-E. (2016). A multi-valued neutrosophic qualitative flexible approach based on likelihood for multi-criteria decision-making problems. International Journal of Systems Science, 48(2), 425-435. doi:10.1080/00207721.2016.1218975Petcherdchoo, A. (2015). Environmental Impacts of Combined Repairs on Marine Concrete Structures. Journal of Advanced Concrete Technology, 13(3), 205-213. doi:10.3151/jact.13.205PRASCEVIC, N., & PRASCEVIC, Z. (2017). APPLICATION OF FUZZY AHP FOR RANKING AND SELECTION OF ALTERNATIVES IN CONSTRUCTION PROJECT MANAGEMENT. Journal of Civil Engineering and Management, 23(8), 1123-1135. doi:10.3846/13923730.2017.1388278Pryn, M. R., Cornet, Y., & Salling, K. B. (2015). APPLYING SUSTAINABILITY THEORY TO TRANSPORT INFRASTRUCTURE ASSESSMENT USING A MULTIPLICATIVE AHP DECISION SUPPORT MODEL. TRANSPORT, 30(3), 330-341. doi:10.3846/16484142.2015.1081281Rashidi, M., Samali, B., & Sharafi, P. (2015). A new model for bridge management: Part B: decision support system for remediation planning. Australian Journal of Civil Engineering, 14(1), 46-53. doi:10.1080/14488353.2015.1092642Sabatino, S., Frangopol, D. M., & Dong, Y. (2015). Life cycle utility-informed maintenance planning based on lifetime functions: optimum balancing of cost, failure consequences and performance benefit. Structure and Infrastructure Engineering, 12(7), 830-847. doi:10.1080/15732479.2015.1064968Safi, M., Sundquist, H., & Karoumi, R. (2015). Cost-Efficient Procurement of Bridge Infrastructures by Incorporating Life-Cycle Cost Analysis with Bridge Management Systems. Journal of Bridge Engineering, 20(6), 04014083. doi:10.1061/(asce)be.1943-5592.0000673Sajedi, S., & Huang, Q. (2019). Reliability-based life-cycle-cost comparison of different corrosion management strategies. Engineering Structures, 186, 52-63. doi:10.1016/j.engstruct.2019.02.018Sierra, L. A., Pellicer, E., & Yepes, V. (2016). Social Sustainability in the Lifecycle of Chilean Public Infrastructure. Journal of Construction Engineering and Management, 142(5), 05015020. doi:10.1061/(asce)co.1943-7862.0001099Sierra, L. A., Yepes, V., García-Segura, T., & Pellicer, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176, 521-534. doi:10.1016/j.jclepro.2017.12.140Sodenkamp, M. A., Tavana, M., & Di Caprio, D. (2018). An aggregation method for solving group multi-criteria decision-making problems with single-valued neutrosophic sets. Applied Soft Computing, 71, 715-727. doi:10.1016/j.asoc.2018.07.020Stewart, M. G., Estes, A. C., & Frangopol, D. M. (2004). Bridge Deck Replacement for Minimum Expected Cost Under Multiple Reliability Constraints. Journal of Structural Engineering, 130(9), 1414-1419. doi:10.1061/(asce)0733-9445(2004)130:9(1414)Swarr, T. E., Hunkeler, D., Klöpffer, W., Pesonen, H.-L., Ciroth, A., Brent, A. C., & Pagan, R. (2011). Environmental life-cycle costing: a code of practice. The International Journal of Life Cycle Assessment, 16(5), 389-391. doi:10.1007/s11367-011-0287-5Tahmasebi Birgani, Y., & Yazdandoost, F. (2018). An Integrated Framework to Evaluate Resilient-Sustainable Urban Drainage Management Plans Using a Combined-adaptive MCDM Technique. Water Resources Management, 32(8), 2817-2835. doi:10.1007/s11269-018-1960-2Tesfamariam, S., & Sadiq, R. (2006). Risk-based environmental decision-making using fuzzy analytic hierarchy process (F-AHP). Stochastic Environmental Research and Risk Assessment, 21(1), 35-50. doi:10.1007/s00477-006-0042-9Wang, Y.-M., & Elhag, T. M. S. (2006). On the normalization of interval and fuzzy weights. Fuzzy Sets and Systems, 157(18), 2456-2471. doi:10.1016/j.fss.2006.06.008Yang, Z., Shi, X., Creighton, A. T., & Peterson, M. M. (2009). Effect of styrene–butadiene rubber latex on the chloride permeability and microstructure of Portland cement mortar. Construction and Building Materials, 23(6), 2283-2290. doi:10.1016/j.conbuildmat.2008.11.011Ye, J. (2013). Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. International Journal of General Systems, 42(4), 386-394. doi:10.1080/03081079.2012.761609Ye, J. (2017). Subtraction and Division Operations of Simplified Neutrosophic Sets. Information, 8(2), 51. doi:10.3390/info8020051Yepes, V., García-Segura, T., & Moreno-Jiménez, J. M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024-1036. doi:10.1016/j.acme.2015.05.001Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-xZadeh, L. A. (1973). Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(1), 28-44. doi:10.1109/tsmc.1973.5408575Zavadskas, E. K., Mardani, A., Turskis, Z., Jusoh, A., & Nor, K. M. (2016). Development of TOPSIS Method to Solve Complicated Decision-Making Problems — An Overview on Developments from 2000 to 2015. International Journal of Information Technology & Decision Making, 15(03), 645-682. doi:10.1142/s021962201630001

    Fuzzy Sets, Fuzzy Logic and Their Applications

    Get PDF
    The present book contains 20 articles collected from amongst the 53 total submitted manuscripts for the Special Issue “Fuzzy Sets, Fuzzy Loigic and Their Applications” of the MDPI journal Mathematics. The articles, which appear in the book in the series in which they were accepted, published in Volumes 7 (2019) and 8 (2020) of the journal, cover a wide range of topics connected to the theory and applications of fuzzy systems and their extensions and generalizations. This range includes, among others, management of the uncertainty in a fuzzy environment; fuzzy assessment methods of human-machine performance; fuzzy graphs; fuzzy topological and convergence spaces; bipolar fuzzy relations; type-2 fuzzy; and intuitionistic, interval-valued, complex, picture, and Pythagorean fuzzy sets, soft sets and algebras, etc. The applications presented are oriented to finance, fuzzy analytic hierarchy, green supply chain industries, smart health practice, and hotel selection. This wide range of topics makes the book interesting for all those working in the wider area of Fuzzy sets and systems and of fuzzy logic and for those who have the proper mathematical background who wish to become familiar with recent advances in fuzzy mathematics, which has entered to almost all sectors of human life and activity

    A review of applications of fuzzy sets to safety and reliability engineering

    Get PDF
    Safety and reliability are rigorously assessed during the design of dependable systems. Probabilistic risk assessment (PRA) processes are comprehensive, structured and logical methods widely used for this purpose. PRA approaches include, but not limited to Fault Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA), and Event Tree Analysis (ETA). In conventional PRA, failure data about components is required for the purposes of quantitative analysis. In practice, it is not always possible to fully obtain this data due to unavailability of primary observations and consequent scarcity of statistical data about the failure of components. To handle such situations, fuzzy set theory has been successfully used in novel PRA approaches for safety and reliability evaluation under conditions of uncertainty. This paper presents a review of fuzzy set theory based methodologies applied to safety and reliability engineering, which include fuzzy FTA, fuzzy FMEA, fuzzy ETA, fuzzy Bayesian networks, fuzzy Markov chains, and fuzzy Petri nets. Firstly, we describe relevant fundamentals of fuzzy set theory and then we review applications of fuzzy set theory to system safety and reliability analysis. The review shows the context in which each technique may be more appropriate and highlights the overall potential usefulness of fuzzy set theory in addressing uncertainty in safety and reliability engineering

    Fuzzy belief structure based VIKOR method: an application for ranking delay causes of Tehran metro system by FMEA criteria

    Get PDF
    Public transport is a critical part of civilization in this decade. The amount of money invested and the criticality of transferring people in an acceptable time and without any conflict made it a challenging problem for managers, especially in metropolises. Absolutely, making effective decisions in this area requires considering different aspects. Waiting time is a key criterion in apprising quality of public transport. In this paper, a real world case study of ranking causes of delay in Tehran (Iran) metro system is solved by developing multi attribute group decision-making VIšeKriterijumska Optimizacija I KOmpromisno Rešenje (in Serbian, VIKOR) method under uncertainty, where this uncertainty is captured by Fuzzy Belief Structures (FBS). The obtained results are then compared with a previously proposed Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method with FBSs. The results show that human related issues, along with the problems related to line and transportation system are the most important causes of delay. The obtained results of the problem seem acceptable for decision makers

    Classical Dynamic Consensus and Opinion Dynamics Models: A Survey of Recent Trends and Methodologies

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Consensus reaching is an iterative and dynamic process that supports group decision-making models by guiding decision-makers towards modifying their opinions through a feedback mechanism. Many attempts have been recently devoted to the design of efficient consensus reaching processes, especially when the dynamism is dependent on time, which aims to deal with opinion dynamics models. The emergence of novel methodologies in this field has been accelerated over recent years. In this regard, the present work is concerned with a systematic review of classical dynamic consensus and opinion dynamics models. The most recent trends of both models are identified and the developed methodologies are described in detail. Challenges of each model and open problems are discussed and worthwhile directions for future research are given. Our findings denote that due to technological advancements, a majority of recent literature works are concerned with the large-scale group decision-making models, where the interactions of decision-makers are enabled via social networks. Managing the behavior of decision-makers and consensus reaching with the minimum adjustment cost under social network analysis have been the top priorities for researchers in the design of classical consensus and opinion dynamics models

    Fuzzy Techniques for Decision Making 2018

    Get PDF
    Zadeh's fuzzy set theory incorporates the impreciseness of data and evaluations, by imputting the degrees by which each object belongs to a set. Its success fostered theories that codify the subjectivity, uncertainty, imprecision, or roughness of the evaluations. Their rationale is to produce new flexible methodologies in order to model a variety of concrete decision problems more realistically. This Special Issue garners contributions addressing novel tools, techniques and methodologies for decision making (inclusive of both individual and group, single- or multi-criteria decision making) in the context of these theories. It contains 38 research articles that contribute to a variety of setups that combine fuzziness, hesitancy, roughness, covering sets, and linguistic approaches. Their ranges vary from fundamental or technical to applied approaches
    corecore