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Preface to ”Fuzzy Sets, Fuzzy Logic and Their

Applications”

A few decades ago, probability theory used to be the unique tool in the hands of the experts for

handling situations of uncertainty appearing in problems of science, technology, and in everyday

life. Probability, which is based on the principles of traditional bivalent logic, is sufficient for

tackling problems of uncertainty connected to randomness, but not those connected with imprecise

or vague information. However, with the development of fuzzy set theory introduced by Zadeh

in 1965 and of fuzzy logic which is based on that theory, things have changed. These new

mathematical tools gave scientists the ability to model under conditions that are vague or not

precisely defined, thus succeeding to mathematically solve problems whose statements are expressed

in our natural language.

As a result, the spectrum of their applications has rapidly extended, covering all the

physical sciences; economics and management; expert systems like financial planners, diagnostic,

meteorological, information retrieval, control systems, etc.; industry; robotics; decision making;

programming; medicine; biology; humanities; education and almost all the other sectors of te human

activity, including human reasoning. The first major commercial application of fuzzy logic was

in cement kiln control (Zadeh, 1983), followed by a navigation system for automatic cars, a fuzzy

controller for automatic operation of trains, laboratory level controllers, controllers for robot vision,

graphics, controllers for automated police sketchers, and many others. Fuzzy mathematics has also

significantly developed at the theoretical level, providing important insights even into branches of

classical mathematics, like algebra, analysis, and geometry.

The present book contains 20 papers collected from amongst 53 manuscripts submitted for the

Special Issue “Fuzzy Sets, Fuzzy Logic and Their Applications” of the MDPI journal Mathematics.

These papers appear in the book in the series in which they were accepted, and published in Volumes

7 (2019) and 8 (2020) of the journal and cover a wide range of topics and applications of fuzzy

systems and fuzzy logic and their extensions and generalizations. This range includes, among others,

management of uncertainty in a fuzzy environment, fuzzy assessment methods of human–machine

performance, fuzzy graphs, fuzzy topological and convergence spaces, bipolar fuzzy relations, type-2

fuzzy sets, as well as intuitionistic, interval-valued, complex, picture and Pythagorean fuzzy sets,

soft sets, and algebras. The applications presented are oriented to finance, fuzzy analytic hierarchy,

green supply chain industries, smart health practice, and hotel selection. This wide range of topics

makes the book interesting for all those working in the wider area of fuzzy sets and systems and

of fuzzy logic, and for those with a mathematical background to familiarize themselves with recent

advances in fuzzy mathematics, which has entered almost all sectors of human life and activity.

As the Guest Editor of this Special Issue, I am grateful to the authors of the papers for their

quality contributions, to the reviewers for their valuable comments toward the improvement of the

submitted works ,and to the administrative staff of MDPI for their support to complete this project.

Special thanks are due to the Contact Editor of the Special Issue, Ms. Grace Du, for her excellent

ollaboration and kind assistance.

Michael Gr. Voskoglou

Special Issue Editor
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A Partial-Consensus Posterior-Aggregation FAHP
Method—Supplier Selection Problem as an Example
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Abstract: Existing fuzzy analytic hierarchy process (FAHP) methods usually aggregate the fuzzy
pairwise comparison results produced by multiple decision-makers (DMs) rather than the fuzzy
weights estimations. This is problematic because fuzzy pairwise comparison results are subject to
uncertainty and lack consensus. To address this problem, a partial-consensus posterior-aggregation
FAHP (PCPA-FAHP) approach is proposed in this study. The PCPA-FAHP approach seeks a partial
consensus among most DMs instead of an overall consensus among all DMs, thereby increasing the
possibility of reaching a consensus. Subsequently, the aggregation result is defuzzified using the
prevalent center-of-gravity method. The PCPA-FAHP approach was applied to a supplier selection
problem to validate its effectiveness. According to the experimental results, the PCPA-FAHP approach
not only successfully found out the partial consensus among the DMs, but also shrunk the widths of
the estimated fuzzy weights to enhance the precision of the FAHP analysis.

Keywords: fuzzy analytic hierarchy process; decision-making; partial consensus; posterior aggregation

1. Introduction

Analytic hierarchy process (AHP) has been widely applied to multi-criteria decision-making
problems in various fields [1–3]. However, AHP is based on pairwise comparison results that are
subjective. To solve this problem, AHP usually aggregates the pairwise comparison results by multiple
decision-makers (DMs) [4–6]. In most past studies, the number of DMs ranged from 3 [7,8] to up to
30 [9]. In addition, a DM may be uncertain whether the pairwise comparison results are reflective of
his/her beliefs or not. To consider such uncertainty, pairwise comparison results can be mapped to
fuzzy values. The two treatments give rise to the prevalent multi-DM fuzzy AHP (FAHP) methods.

According to Forman and Peniwati [10], there are two ways to aggregate multiple DMs’ judgments
in FAHP. The first way, the aggregating individual judgements (AIJ) way, aggregates the pairwise
comparison results. The other way, the aggregating individual priorities (AIP) way, aggregates the
estimated fuzzy weights/priorities. The AIJ way is an anterior aggregation, while the AIP way is a
posterior aggregation. The AIJ way considerably simplifies the required computation because the
fuzzy weights are estimated just once, and therefore is more prevalent [11]. However, since pairwise
comparison results are subjective and uncertain, the AIP way is problematic. In contrast, few studies
have implemented AIP-type FAHP methods. Pan [12] proposed an FAHP approach in which each
DM solved an individual FAHP problem using the fuzzy geometric mean (FGM) method. Then,
the fuzzy weights estimated by the DMs were aggregated using the max-min operator, i.e., fuzzy
intersection (FI) or the minimum T-norm. After that, the aggregation result was defuzzified using the
center-of-gravity (COG) method [13]. The same operator has been widely adopted to measure the
consensus among multiple DMs [14,15]. A different aggregation mechanism was proposed by [16,17]

Mathematics 2019, 7, 179; doi:10.3390/math7020179 www.mdpi.com/journal/mathematics1
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that minimized the sum of the squared deviations between each DM’s judgement and the aggregation
result. However, the aggregation mechanism assumed the existence of consensus, and derived the
aggregation result directly. It was possible that the values of a fuzzy weight estimated by the DMs
were very different, i.e., the values did not contain each other. Pan’s method did not address this
issue. To address this issue, several attempts have been made in the past. For example, Chen [18]
proposed the concept of partial consensus that sought for a consensus among some of the DMs rather
than all DMs. The method was applied to the problem of forecasting the foreign exchange rate in [19].
Recently, Chen [20] evaluated the entropy of the FI result. If the entropy was above a threshold, then
the consensus was insufficient, and the DMs needed to modify their forecasts. However, these attempts
were made for fuzzy collaborative forecasting or design rather than for FAHP. A fuzzy collaborative
forecasting problem is usually a supervised learning problem; there are actual values. However, there
are no actual values of fuzzy weights in an FAHP problem.

To address the problem of Pan’s FAHP method, in this study, a partial-consensus
posterior-aggregation FAHP (PCPA-FAHP) method is proposed. In the proposed PCPA-FAHP
approach, each DM applies the prevalent FGM approach to estimate the fuzzy weights. Then,
the partial-consensus FI (PCFI) method [18] is applied to aggregate the estimation results, so as
to derive the narrowest range of the fuzzy weight. The PCFI method finds out the partial consensus
among most DMs instead of the overall consensus among all DMs. The former is obviously easier than
the latter. After that, the COG method is applied to defuzzify the aggregation results, generating a
crisp/representative value. Compared to the existing methods, the proposed PCPA-FAHP approach
has the following novel characteristics:

(1) The proposed PCPA-FAHP approach adopts a posterior aggregation. Namely, the fuzzy weights
estimated by the DMs, rather than the fuzzy pairwise comparison results by them, are aggregated:
A multiple-DM FAHP method can be considered as a fuzzy collaborative forecasting (FCF)
approach. Most existing FCF approaches adopt a posterior aggregation, i.e., the forecasts by
multiple DMs, rather than their opinions, are aggregated [21,22]. If the forecasting performance
based on the aggregation result is not satisfactory, the DMs modify their opinions by referring to
others’ opinions [23,24]. However, existing FCF methods belong to supervised learning methods,
while the PCPA-FAHP approach does not because there is no actual value of the fuzzy weight.
In addition, it is not easy for the DMs to modify their pairwise comparison results by referring to
others’ because the relative importance levels of factors/attributes/criteria are correlated and
cannot be modified in an independent way.

(2) When a consensus among all DMs cannot be achieved, the partial consensus, i.e., the consensus
among most DMs, is to be sought.

The remainder of this paper is organized as follows. Section 2 introduces the PCPA-FAHP
approach. A real case is used in Section 3 to illustrate the applicability of the PCPA-FAHP approach.
Some existing methods are also applied to the case for a comparison in Section 4. Section 5 concludes
this study. Some possible topics are also provided for further investigation.

2. The Proposed Methodology

The PCPA-FAHP approach is proposed in this study for comparing the relative importance
levels or priorities of several factors/attributes-criteria. The PCPA-FAHP approach consists of the
following steps:

Step 1. Each DM applies the FGM approach to estimate the fuzzy weights.
Step 2. Apply FI to aggregate the estimation results, so as to derive the narrowest range of each

fuzzy weight.
Step 3. If the overall consensus among the DMs does not exist, go to Step 4; otherwise, go to Step 5.
Step 4. Apply PCFI to aggregate the estimation results, so as to derive the narrowest range of each

fuzzy weight.
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Step 5. Apply COG to defuzzify the aggregation result, so as to generate a crisp/representative value.

The procedure of the PCPA-FAHP approach is illustrated with a flowchart in Figure 1.

 

Figure 1. The procedure of the partial-consensus posterior-aggregation fuzzy analytic hierarchy process
(PCPA-FAHP) approach.

2.1. Applying the FGM Approach to Estimate the Fuzzy Weights

In the FGM approach, at first each DM expresses his/her opinion on the relative
importance/priority of a factor/attribute/criterion over that of another with linguistic terms such as
“as equal as”, “weakly more important than”, “strongly more important than”, “very strongly more
important than”, and “absolutely more important than”. Without loss of generality, these linguistic
terms can be mapped to triangular fuzzy numbers (TFNs) such as:

L1: “As equal as” = (1, 1, 3);
L2: “Weakly more important than” = (1, 3, 5);
L3: “Strongly more important than” = (3, 5, 7);
L4: “Very strongly more important than” = (5, 7, 9);
L5: “Absolutely more important than” = (7, 9, 9);

which are illustrated in Figure 2. It is a theoretically challenging task to find a set of TFNs for the
linguistic terms to increase the possibility of reaching a consensus.

Based on the pairwise comparison results by the m-th DM, a fuzzy pairwise comparison matrix is
constructed as:

Ãn×n(m) = [ãij(m)]; i, j = 1 ∼ n, (1)

where

ãij(m) =

⎧⎨⎩ 1 if i = j
1

ãji(m)
otherwise

; i, j = 1 ∼ n, (2)

ãij(m) is the fuzzy pairwise comparison result embodying the relative importance of
factor/attribute/criterion i over factor/attribute/criterion j. ãij(m) is chosen from the linguistic
terms in Figure 2. ãij(m) is a positive comparison if ãij(m) ≥ 1. The fuzzy eigenvalue and eigenvector
of Ã(m), indicated respectively with λ̃(m) and x̃(m), satisfy

det(Ã(m)(−)λ̃(m)I) = 0 (3)

3



Mathematics 2019, 7, 179

and
(Ã(m)(−)λ̃(m)I)(×)x̃(m) = 0 (4)

where (−) and (×) denote fuzzy subtraction and multiplication, respectively. The fuzzy maximal
eigenvalue and weight of each criterion are derived respectively as

λ̃max(m) = maxλ̃(m) (5)

w̃i(m) =
x̃i(m)

n
∑

j=1
x̃j(m)

. (6)

μ
x

x 

Figure 2. The triangular fuzzy numbers (TFNs) for the linguistic terms.

Based on λ̃max(m), the consistency among the fuzzy pairwise comparison results is evaluated as

Consistency index : C̃.I.(m) =
λ̃max(m)− n

n− 1
(7)

Consistency ratio : C̃.R.(m) =
C̃.I.(m)

R.I.
(8)

where R.I. is the random index [25]. The fuzzy pairwise comparison results are inconsistent if C̃.I.(m) <

0.1 or C̃.R.(m) < 0.1 [25], which can be relaxed to C̃.I.(m) < 0.3 or C̃.R.(m) < 0.3 if the matrix size is
large [26,27].

The FGM method estimates the values of fuzzy weights as

w̃(m) = [w̃i(m)]t = [

n

√
n
∏
j=1

ãij(m)

n
∑

i=1
n

√
n
∏
j=1

ãij(m)

]t. (9)

Based on (9), the fuzzy maximal eigenvalue can be estimated as

λ̃max(m) = Ã(m)(×)w̃(m)
w̃(m)

= 1
n

n
∑

i=1
(

n
∑

j=1
(ãij(m)(×)w̃i(m))

w̃i(m)
).

(10)

4
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Obviously, Equations (9) and (10) are fuzzy weighted average (FWA) problems. A variant of FGM
(a simplified yet more prevalent version), indicated with FGMi, is to ignore the dependency between
the dividend and divisor of either equation.

2.2. FI for Finding out the Overall Consensus

As mentioned previously, a multi-DM post-aggregation FAHP problem is analogous to an
unsupervised FCF problem to which a suitable consensus aggregator is critical. According to Kuncheva
and Krishnapuram [28], a consensus aggregator should meet three requirements: Symmetry, selective
monotonicity, and unanimity. They proposed three aggregation rules: The minimum aggregation rule,
the maximum aggregation rule, and the average aggregation rule, for which the degree of consensus
was measured in terms of the highest discrepancy. FI is the most prevalent consensus aggregator in
FCF methods [24,29]. FI finds out the values common to those estimated by all DMs. Therefore, it can
be used to find out the overall consensus among the DMs.

When the fuzzy weight estimated by each DM is approximated with a TFN, the FI result will be a
polygon-shaped fuzzy number (see Figure 3) [29] that embodies the DMs’ overall consensus of the
weight/priority of the factor/attribute/criterion:

μw̃i
(x) = min

m
(μw̃i(m)(x)). (11)

However, it is possible that the FI result is an empty set, which means there is no overall consensus
among the DMs.

wi

μ wi

Figure 3. The fuzzy intersection (FI) result.

2.3. PCFI for Finding out the Partial Consensus

When there is no overall consensus among all DMs, the partial consensus among them, i.e.,
the consensus among most DMs, can be sought instead.

Definition 1. (PCFI) [20] The H/M PCFI of the i-th fuzzy weight estimated by the M DMs, i.e., w̃i(1) ~
w̃i(M) is indicated with ĨH/M(w̃i(1), . . . , w̃i(M)) such that

μ ĨH/M(w̃i(1), ..., w̃i(M))(x) = max
all g

(min(μw̃1(g(1))(x), . . . , μw̃1(g(H))(x))) (12)

where g() ∈ Z+; 1 ≤ g() ≤ M; g(p) ∩ g(q) = ∅ ∀ p 
= q; H ≥ 2.

5
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For example, the 2/3 PCFI of w̃i(1) ~ w̃i(3) can be obtained as

μ Ĩ2/3(w̃i(1), ..., w̃i(3))
(x) = max(min(μw̃i(1)(x), μw̃i(2)(x)), min(μw̃i(1)(x), μw̃i(3)(x)),

min(μw̃i(2)(x), μw̃i(3)(x)))
(13)

which is illustrated in Figure 4.

wi

μ wi

Figure 4. The 2/3 partial consensus fuzzy intersection (PCFI) result.

The PCFI aggregator meets four requirements: Boundary, monotonicity, commutativity, and
associativity. In addition, the following properties hold for the H/M PCFI result:

(1) FI is equivalent to M/M PCFI.
(2) H − 1 membership functions are outside the H/M PCFI result. In contrast, M − 1 membership

functions are outside the FI result.
(3) The range of ĨH1/M(w̃i(1), . . . , w̃i(M)) is wider than that of ĨH2/M(w̃i(1), . . . , w̃i(M)) if H1 < H2.
(4) The range of any PCFI result is obviously wider than that of the FI result.
(5) For the training data, every PCFI result contains the actual values [20].
(6) For the testing data, the probability that actual values are contained is higher in a PCFI result

than in the FI result [20].

The PCFI result is also a polygon-shaped fuzzy number (see Figure 4). Compared with the
original TFNs, the PCFI result has a narrower range while still containing the actual value. Therefore,
the precision of estimating the fuzzy weight will be improved after applying the PCFI. In addition, it is
possible to find partial consensus among the DMs using the PCFI even if there is no overall consensus
when the FI is applied.

2.4. COG for Defuzzifying the Aggregation Result

The PCFI result in Figure 4 can be represented as the union of several non-normal trapezoidal
fuzzy numbers (TrFNs) (see Figure 5):

w̃i =
{
(xr, μw̃i

(xr))
∣∣r = 1 ∼ R} (14)

where (xr, μw̃i
(xr)) is the r-th endpoint of w̃i; xr ≤ xr+1. For any x value,

μw̃i
(x) =

⎧⎪⎨⎪⎩
0 i f x < x1

μw̃i
(xr) +

x−xr
xr+1−xr

(μw̃i
(xr+1)− μw̃i

(xr)) i f xr ≤ x < xr+1

0 i f xR ≤ x
. (15)

6
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COG is applied to defuzzify w̃i:

COG(w̃i) =

∫ 1
0 x·μw̃i

(x)dx∫ 1
0 μw̃i

(x)dx

=

R
∑

r=1

∫ xr
xr−1

x·μw̃i
(x)dx

R
∑

r=1

∫ xr
xr−1

μw̃i
(x)dx

(16)

to which the following theorems are helpful.

wi

μ wi

Figure 5. The PCFI result as a union of non-normal trapezoidal fuzzy numbers (TrFNs).

Theorem 1. Let Ã be a non-normal TrFN as shown in Figure 6. Then the integral of Ã is

∫ x2

x1

μÃ(x)(x)dx =
μ2x2

2 + μ1x2
2 − 2μ2x1x2 + μ1x2

1 − 2μ1x1x2 + μ2x2
1

2(x2 − x1)
. (17)

Proof. ∫ x2
x1

μÃ(x)(x)dx

=
∫ x2

x1
( x−x1

x2−x1
(μ2 − μ1) + μ1)dx

= ( μ2−μ1
2(x2−x1)

x2 + x2μ1−x1μ2
x2−x1

x + C)
∣∣∣x2

x1

= μ2−μ1
2(x2−x1)

x2
2 +

x2μ1−x1μ2
x2−x1

x2 − μ2−μ1
2(x2−x1)

x2
1 −

x2μ1−x1μ2
x2−x1

x1

=
μ2x2

2+μ1x2
2−2μ2x1x2+μ1x2

1−2μ1x1x2+μ2x2
1

2(x2−x1)

(18)

Theorem 1 is proved. �

x

μx

x x

μ

μ
A

Figure 6. A non-normal TrFN.
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Theorem 2. Let Ã be a non-normal TrFN as shown in Figure 6. Then the integral of xÃ is

∫ x2

x1

xμÃ(x)(x)dx =
2μ2x3

2 + μ1x3
2 − 3μ2x1x2

2 + μ2x3
1 + 2μ1x3

1 − 3μ1x2
1x2

6(x2 − x1)
. (19)

Proof. ∫ x2
x1

xμÃ(x)(x)dx

=
∫ x2

x1
x( x−x1

x2−x1
(μ2 − μ1) + μ1)dx

= ( μ2−μ1
3(x2−x1)

x3 + x2μ1−x1μ2
2(x2−x1)

x2 + C)
∣∣∣x2

x1

= μ2−μ1
3(x2−x1)

x3
2 +

x2μ1−x1μ2
2(x2−x1)

x2
2 −

μ2−μ1
3(x2−x1)

x3
1 −

x2μ1−x1μ2
2(x2−x1)

x2
1.

=
2μ2x3

2+μ1x3
2−3μ2x1x2

2+μ2x3
1+2μ1x3

1−3μ1x2
1x2

6(x2−x1)

(20)

Theorem 2 is proved. �

3. Application to a Supplier Selection Problem

The supplier selection problem discussed in Lima Junior et al. [7] was used to illustrate the
applicability of the proposed methodology. In the supplier selection problem, the performance of
a supplier was assessed along five dimensions including quality, price, delivery, supplier profile,
and supplier relationship. To aggregate the performances along the five dimensions, fuzzy weighted
average (FWA) was applicable, for which the weight of each dimension needed to be specified. To this
end, the PCFI-FAHP approach was applied.

Three DMs, including one industrial engineering manager, one production control manager, and
one procurement department manager, were involved in the supplier selection problem. At first,
each of them utilized the following linguistic terms [30] to express his/her belief about the relative
importance of a dimension over another:

L1: “As equal as” = (1, 1, 3);
L2: “Weakly more important than” = (1, 3, 5);
L3: “Strongly more important than” = (3, 5, 7);
L4: “Very strongly more important than” = (5, 7, 9);
L5: “Absolutely more important than” = (7, 9, 9).

Based on these inputs, the fuzzy pairwise comparison matrixes were constructed for the DMs in
Table 1.
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Table 1. The fuzzy pairwise comparison matrixes constructed for the decision-makers (DMs).

(DM #1)

(1, 1, 1) (7, 9, 9) (5, 7, 9) (7, 9, 9) (5, 7, 9)
- (1, 1, 1) - (1, 1, 3) (1, 3, 5)
- (3, 5, 7) (1, 1, 1) (1, 3, 5) (5, 7, 9)
- - - (1, 1, 1) (7, 9, 9)
- - - - (1, 1, 1)

(DM #2)

(1, 1, 1) (1, 3, 5) - (1, 3, 5) (5, 7, 9)
- (1, 1, 1) - (5, 7, 9) (3, 5, 7)

(1, 3, 5) (7, 9, 9) (1, 1, 1) (5, 7, 9) (3, 5, 7)
- - - (1, 1, 1) -
- - - (1, 3, 5) (1, 1, 1)

(DM #3)

(1, 1, 1) (3, 5, 7) (1, 3, 5) (1, 3, 5) (5, 7, 9)
- (1, 1, 1) - - -
- (1, 3, 5) (1, 1, 1) - -
- (7, 9, 9) (1, 3, 5) (1, 1, 1) (5, 7, 9)
- (5, 7, 9) (1, 1, 3) - (1, 1, 1)

Each DM applied FGM to estimate the fuzzy maximal eigenvalue and fuzzy weights from
the corresponding fuzzy pairwise comparison matrix. As a result, the estimated fuzzy maximal
eigenvalues were:

λ̃max(1) = (2.102, 5.778, 19.587),

λ̃max(2) = (1.630, 5.879, 27.473),

λ̃max(3) = (1.461, 5.672, 31.092).

The corresponding consistency indexes were

C̃.I.(1) = (−0.725, 0.194, 3.647),

C̃.I.(2) = (−0.843, 0.220, 5.618),

C̃.I.(3) = (−0.885, 0.168, 6.523),

showing certain levels of consistency since C̃.I.(1)~C̃.I.(3) ≤ 0.3. In addition, the estimated fuzzy
weights are summarized in Figure 7.

(a) 

μ
w i

wi

w
w
w
w
w

Figure 7. Cont.
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(b) 

(c) 

μ
w i

wi

w
w
w
w
w

μ
w i

wi

w
w
w
w
w

Figure 7. The estimated fuzzy weights: (a) by DM #1; (b) by DM #2; (c) by DM #3.

Subsequently, FI was applied to aggregate the fuzzy weights estimated by the DMs. However,
unfortunately the overall consensus did not exist. For example, the result of aggregating the values of
w̃3 estimated by the DMs is illustrated in Figure 8. The FI result was an empty set, showing a lack of
(overall) consensus. In addition, overall consensus was not achieved for the values of w̃1, w̃4, or w̃5.

Figure 8. The FI result.
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As a consequence, the partial consensus, rather than the overall consensus, was sought. It is
noteworthy that there were only two levels of PCFI in the supplier selection problem, 2/3 PCFI and
3/3 PCFI. Between them, 3/3 PCFI was equal to FI. The result of applying 2/3 PCFI to the values
of w̃3 estimated by the DMs is shown in Figure 9. There existed some partial consensus among the
DMs. In addition, the DMs also achieved some partial consensus concerning the values of the other
fuzzy weights.

Figure 9. The result of applying 2/3 PCFI to the values of w̃3 estimated by the DMs.

Based on the PCFI results, the minimums, maximums, and widths of the fuzzy weights are
summarized in Table 2. The minimal and average widths were 0.054 and 0.401, respectively.

Table 2. The minimums, maximums, and range widths of the fuzzy weights.

Fuzzy Weight Minimum Maximum Range Width

w̃1 0.219 0.620 0.401
w̃2 0.044 0.135 0.091
w̃3 0.120 0.258 0.138
w̃4 0.056 0.102 0.054
w̃5 0.029 0.124 0.095

COG was applied to defuzzify the fuzzy weights. The results are shown in Table 3.

Table 3. The defuzzification results.

Fuzzy Weight Center-Of-Gravity (COG)

w̃1 0.428
w̃2 0.083
w̃3 0.183
w̃4 0.090
w̃5 0.068

However, the sum of the defuzzified weights might not be 1 anymore, which required a
re-normalization. The results are shown in Table 4.
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Table 4. The re-normalization results.

Weight Re-Normalized Value

COG (w̃1) 0.502
COG (w̃2) 0.097
COG (w̃3) 0.215
COG (w̃4) 0.106
COG (w̃5) 0.080

4. A Comparison with Some Existing Methods

To make a comparison, in this section four existing methods including FGM [31], FGMi [32], fuzzy
extent analysis (FEA) [33], and FEAi [8,11,30] were also applied to the supplier selection problem:

(1) The results obtained using FGM and FGMi were fuzzy, while those obtained using FEA and FEAi
were crisp.

(2) All the existing methods assumed there was consensus among the DMs.

In the FGM method, the fuzzy pairwise comparison results by the DMs were aggregated using
FGM. Then, the fuzzy maximal eigenvalue and fuzzy weights were estimated from the aggregation
result using FGM as well. The FGMi method was basically identical to the FGM method, except for the
simplification of calculation by ignoring the dependence between the dividend and divisor. In both
methods, COG was applied to defuzzify the fuzzy weights. A re-normalization was also required
after defuzzification.

In the FEA method, the fuzzy pairwise comparison results by the DMs were also aggregated
using FGM. Then, the fuzzy synthetic extent of each criterion was derived using fuzzy arithmetic
mean. The weight of the criterion was set to its minimal degree of being the maximum. The only
difference between the FEAi method and the FEA method is the ignorance of the dependence between
the dividend and divisor. In both methods, defuzzification and re-normalization were not necessary.

The results obtained using the existing methods are summarized in Table 5. However, it was not
possible to say which method was the most accurate method, since there was no actual value of a
weight. Nevertheless, the weights obtained using the FGM were the closest to those obtained using
the proposed methodology. In contrast, the weights obtained using the FEAi method were the farthest.

Table 5. The weights estimated using various methods.

Weight
Fuzzy

Geometric
Mean (FGM)

FGMi Fuzzy Extent
Analysis (FEA)

FEAi

Partial Consensus
Posterior Aggregation

(PCPA)-Fuzzy Analytic
Hierarchy Process (FAHP)

w1 0.409 0.405 0.487 0.369 0.502
w2 0.107 0.101 0.064 0.111 0.097
w3 0.257 0.279 0.317 0.295 0.215
w4 0.140 0.135 0.132 0.162 0.106
w5 0.086 0.079 0.000 0.063 0.080

The average widths of the fuzzy weights obtained using various methods were compared and
the results are shown in Figure 10. Obviously, the proposed methodology achieved the highest
precision by minimizing the average width of the fuzzy weights, which was obviously due to the fuzzy
collaboration mechanism.
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Figure 10. The average widths of the fuzzy weights estimated using various methods.

Compared to the existing FAHP methods, the proposed methodology was distinctive in that
it excluded DM opinions that could not be included in the consensus. The proposed methodology
did not attempt to compromise opposing DM opinions into neutral results. A DM whose opinion
was excluded either accepted the consensus or modified his/her opinion to be included. In other
words, it was important for DMs to reach consensus before aggregating their opinions. In addition,
the overlap among the fuzzy weights estimated by the DMs seemed to be a very good tool for the
visualization of consensus.

5. Conclusions

Among existing multi-DM FAHP methods, most of them aggregate the fuzzy pairwise comparison
results by the DMs before deriving (or estimating) the fuzzy maximal eigenvalue and fuzzy weights.
This is problematic because the fuzzy pairwise comparison results are uncertain and inconsistent.
Instead, aggregating the fuzzy weights by the DMs, which are compromised results, in a posterior
way seems to be more reasonable. However, a problem facing such a way is that there may be no
consensus among the DMs, i.e., there was no intersection among the fuzzy weights specified by them.
One way to address this problem is to seek the partial consensus among most DMs instead of the
overall consensus among all DMs. From this point of view, the PCPA-FAHP approach is proposed in
this study.

The PCPA-FAHP approach was applied to a supplier selection problem to validate its effectiveness.
Some existing methods were also applied to the supplier selection problem to make a comparison.
According to the experimental results:

(1) Among the methods compared in the supplier selection problem, only the PCPA-FAHP approach
was able to check the existence of the consensus among the DMs.

(2) Although there was no overall consensus among all DMs in the supplier selection problem, some
partial consensus did exist among most DMs.

(3) The fuzzy collaboration mechanism employed in the PCPA-FAHP approach successfully shrunk
the widths of the estimated fuzzy weights, thereby enhancing the precision of the FAHP analysis.

(4) Among existing methods, the results obtained using FGM were the closest to those obtained
using the PCPA-FAHP approach. However, the estimation precision achieved using FGM was
much worse than that achieved using the PCPA-FAHP approach.

The PCPA-FAHP method needs to be applied to more real cases to further elaborate its
effectiveness. In addition, more advanced collaboration mechanisms can be designed in future
studies to further enhance the estimation precision. Furthermore, the uncertain pairwise comparison
results can be expressed with rough numbers instead of fuzzy numbers [15,16], which constitutes
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a rough AHP (RAHP) problem [34]. The proposed methodology should be extended to deal with
such problems.
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Abstract: In this paper, p-topologicalness (a relative topologicalness) in �-convergence spaces are
studied through two equivalent approaches. One approach generalizes the Fischer’s diagonal condition,
the other approach extends the Gähler’s neighborhood condition. Then the relationships between
p-topologicalness in �-convergence spaces and p-topologicalness in stratified L-generalized convergence
spaces are established. Furthermore, the lower and upper p-topological modifications in �-convergence
spaces are also defined and discussed. In particular, it is proved that the lower (resp., upper) p-topological
modification behaves reasonably well relative to final (resp., initial) structures.
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1. Introduction

The theory of convergence spaces [1] is natural extension of the theory of topological spaces.
The topologicalness is important in the theory of convergence spaces since it mainly researches the
condition of a convergence space to be a topological space. Generally, two equivalent approaches are
used to characterize the topologicalness in convergence spaces. One approach is stated by the well-known
Fischer’s diagonal condition [2], the other approach is stated by Gähler’s neighborhood condition [3].
In [4], by considering a pair of convergence spaces (X, p) and (X, q), Wilde and Kent investigated a kind
of relative topologicalness, called p-topologicalness. When p = q, p-topologicalness is equivalent to
topologicalness in convergence spaces. They also defined and discussed the lower and upper p-topological
modifications in convergence spaces. Precisely, for a pair of convergence spaces (X, p) and (X, q), the lower
(resp., upper) p-topological modification of (X, q) is defined as the finest (resp., coarsest) p-topological
convergence space which is coarser (resp., finer) than (X, q). Similarly, a topological modification of (X, q)
is defined as the finest topological convergence space which is coarser than (X, q).

Lattice-valued convergence spaces are common extension of convergence spaces and lattice-valued
topological spaces. It should be pined out that lattice-valued convergence spaces are established on the
basis of fuzzy sets. However, the lattice structure is used to replace the unit interval [0, 1] as the truth
table for membership degrees. In recent years, two kinds of lattice-valued convergence spaces received
much attention: (1) the theory of stratified L-generalized convergence spaces based on L-filters, which is
initiated by Jäger [5] and then developed by many researchers [6–25]; and (2) the theory of �-convergence
spaces based on �-filters, which is investigated by Fang [26] in 2017. The topologicalness in stratified
L-generalized convergence spaces was studied by Jäger [27–29] and Li [30,31], the p-topologicalness and
p-topological modifications in stratified L-generalized convergence spaces were discussed by Li [32,33].
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The topologicalness in �-convergence spaces was researched by Fang [26] and Li [34]. In this paper, we
shall consider the p-topologicalness and p-topological modifications in �-convergence spaces.

The contents are arranged as follows. Section 2 recalls some basic notions as preliminary. Section 3
discusses the p-topologicalness in �-convergence spaces by generalized Fischer’s diagonal condition
and generalized Gähler’s neighborhood condition, respectively. Then the relationships between
p-topologicalness in �-convergence spaces and p-topologicalness in stratified L-generalized convergence
spaces are established. Section 4 focuses on p-topological modifications in �-convergence spaces.
The lower and upper p-topological modifications in �-convergence spaces are defined and discussed.
Particularly, it is proved that the lower (resp., upper) p-topological modification behaves reasonably well
relative to final (resp., initial) structures.

2. Preliminaries

Let L be a complete lattice with the top element � and the bottom element ⊥. For a commutative
quantale, we mean a pair (L, ∗) such that ∗ is a commutative semigroup operation on L with the condition

∀a ∈ L, ∀{bj}j∈J ⊆ L, a ∗
∨
j∈J

bj =
∨
j∈J

(a ∗ bj).

(L, ∗) is called integral if the top element� is the unique unit, i.e., ∀a ∈ L,�∗ a = a. For any a ∈ L, each
function a ∗ (−) : L −→ L has a right adjoint a → (−) : L −→ L defined as a → b =

∨{c ∈ L : a ∗ c ≤ b}.
In the following, we list the usual properties of ∗ and →[35].

(1) a → b = � ⇔ a ≤ b;
(2) a ∗ b ≤ c ⇔ b ≤ a → c;
(3) a ∗ (a → b) ≤ b;
(4) a → (b → c) = (a ∗ b)→ c;
(5) (

∨
j∈J

aj)→ b =
∧
j∈J

(aj → b);

(6) a → (
∧
j∈J

bj) =
∧
j∈J

(a → bj).

We call (L, ∗) to be a meet continuous lattice if the complete lattice L is meet continuous [36], that is,
(L,≤) satisfies the distributive law: a ∧ (

∨
i∈I bi) =

∨
i∈I(a ∧ bi), for any a ∈ L and any directed subsets

{bi|i ∈ I} in L.
L is said to be continuous if (L,≤) is a continuous lattice [36], that is, for any nonempty family

{aj,k|j ∈ J, k ∈ K(j)} in L with {aj,k|k ∈ K(j)} is directed for all j ∈ J, the identity

(DD)
∧
j∈J

∨
k∈K(j)

aj,k =
∨

h∈N

∧
j∈J

aj,h(j)

holds, where N is the set of all choice functions on J with values h(j) ∈ K(j) for all j ∈ J. Obviously,
continuity implies meet-continuity for L.

In this article, unless otherwise stated, we always assume that L = (L, ∗) is a commutative, integral,
and meet continuous quantale.

A function μ : X → L is called an L-fuzzy set in X, and all L-fuzzy sets in X is denoted as LX.
The operations ∨,∧, ∗,→ on L can be translated pointwisely onto LX . Said precisely, for any μ, ν ∈ LX and
any {μt|t ∈ T} ⊆ LX ,

μ ≤ ν iff μ(x) ≤ ν(x) for any x ∈ X,
( ∨

i∈I
μt)(x) = ∨

t∈T
μt(x), ( ∧

t∈T
μt)(x) = ∧

t∈T
μt(x),

(μ ∗ ν)(x) = μ(x) ∗ ν(x), (μ → ν)(x) = μ(x)→ ν(x).
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We don’t distinguish between a constant function and its value because no confusion will occur.
Let f : X −→ Y be a function. We define f→ : LX −→ LY and f← : LY −→ LX [35] by f→(μ)(y) =∨

f (x)=y μ(x) for μ ∈ LX and y ∈ Y, and f←(ν)(x) = ν( f (x)) for ν ∈ LY and x ∈ X.
Let μ, ν be L-fuzzy sets in X. The subsethood degree [37–40] of μ, ν, denoted by SX(μ, ν), is defined by

SX(μ, ν) = ∧
x∈X

(μ(x)→ ν(x)).

2.1. �-Filters and Stratified L-Filters

A filter on a set X is an upper set of (2X ,⊆) (2X denotes the power set of X) wich is closed for finite
meets and does not contain the empty set. The conception of filter has been generalized to the fuzzy setting
in two methods; prefilters (or �-filters more general) and L-filters. Both prefilters (�-filters) and L-filters
play important roles in the theory of fuzzy topology, see [26,27,34,35,41–44].

Definition 1 ([35]). A nonempty subset F ⊆ LX is called a �-filter on the set X whenever:
(TF1)

∨
x∈X

λ(x) = � for all λ ∈ F, (TF2) λ ∧ μ ∈ F for all λ, μ ∈ F,

(TF3) if λ ∈ LX such that
∨

μ∈F
SX(μ, λ) = �, then λ ∈ F.

The set of all �-filters on X is denoted as F�L (X).

Definition 2 ([35]). A nonempty subset B ⊆ LX is called a �-filter base on the set X provided:
(TB1)

∨
x∈X

λ(x) = � for all λ ∈ B, (TB2) if λ, μ ∈ B, then
∨

ν∈B
SX(ν, λ ∧ μ) = �.

Each �-filter base generates a �-filter FB defined by

FB := {λ ∈ LX |
∨

μ∈B
SX(μ, λ) = �}.

Example 1 ([26,45]). Let f : X −→ Y be a function, F ∈ F�L (X) and G ∈ F�L (Y). Then
(1) The family { f→(λ)|λ ∈ F} forms a �-filter base on Y, and the �-filter f⇒(F) generated by it is called the

image of F under f . It is easily seen that μ ∈ f⇒(F)⇐⇒ f←(μ) ∈ F.
(2) The family { f←(μ)|μ ∈ G} forms a �-filter base on Y if and only if

∨
y∈ f (X)

μ(y) = � holds for all

μ ∈ G, and the �-filter f⇐(G) (if exists) generated by it is called the inverse image of G under f . Additionally,
G ⊆ f⇒( f⇐(G)) holds whenever f⇐(G) exists. Particularly, f⇐(G) always exists and G = f⇒( f⇐(G)) if f
is surjective.

(3) For any x ∈ X, the family [x]� =: {λ ∈ LX |λ(x) = �} is a �-filter on X, and f⇒([x]�) = [ f (x)]�.

A stratified L-filter [35] on a set X is a function F : LX −→ L such that: ∀λ, μ ∈ LX, ∀α ∈ L, (LF1)
F (⊥) = ⊥, F (�) = �; (LF2) F (λ) ∧ F (μ) = F (λ ∧ μ); (LFs) F (α ∗ λ) ≥ α ∗ F (λ).

The set of all stratified L-filters on X is denoted as F s
L(X). A stratified L-filter F is called tight if

F (α) = α for each α ∈ L.

Example 2 ([35]). Let f : X −→ Y be a function, F ∈ F s
L(X) and G ∈ F s

L(Y). Then
(1) The function f⇒(F ) : LY −→ L defined by μ �→ F (μ ◦ f ) is a stratified L-filter on Y called the image of

F under f .
(2) For any x ∈ X, the function [x] : LX −→ L, [x](λ) = λ(x) is a stratified L-filter on X, and f⇒([x]) = [ f (x)].
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For each F ∈ F�L (X), define Λ(F) : LX −→ L as

∀λ ∈ LX , Λ(F)(λ) =
∨

μ∈F
SX(μ, λ),

then Λ(F) is a tightly stratified L-filter on X [44].
Conversely, for each tightly stratified L-filter F on a set X, the family

Γ(F ) = {λ ∈ LX ,F (λ) = �}

is a �-filter on X [44]. Given F ∈ F�L (X), we have ΓΛ(F) = F.

Lemma 1. Let {Fj}j∈J ⊆ F�L (X). If L is continuous then Λ(
⋂

j∈J Fj) =
∧

j∈J Λ(Fj).

Proof. For any λ ∈ LX and any j ∈ J, note that {SX(μj, λ)|μj ∈ Fj} is a directed subset of L. Then

∧
j∈J

Λ(Fj)(λ) =
∧
j∈J

∨
μj∈Fj

SX(μj, λ)
(DD)
=

∨
h∈N

∧
j∈J

SX(h(j), λ)

=
∨

h∈N

SX(
∨
j∈J

h(j), λ), by
∨
j∈J

h(j) ∈
⋂
j∈J

Fj

≤
∨

ν∈⋂j∈J Fj

SX(ν, λ) ≤ Λ(
⋂
j∈J

Fj)(λ).

Thus Λ(
⋂

j∈J Fj)(λ) =
∧

j∈J Λ(Fj)(λ) since Λ(
⋂

j∈J Fj)(λ) ≤
∧

j∈J Λ(Fj)(λ) holds obviously.

2.2. �-Convergence Spaces and Stratified L-Generalized Convergence Spaces

Definition 3. A �-convergence structure [26] on a set X is a function q : F�L (X) −→ 2X satisfying

(TC1) [x]�
q−→ x for every x ∈ X; (TC2) if F

q−→ x and F ⊆ G, then G
q−→ x, where F

q−→ x is
shorthand for x ∈ q(F). The pair (X, q) is called a �-convergence space.

A function f : X −→ X′ between two �-convergence spaces (X, q), (X′, q′) is called continuous if

f⇒(F)
q′−→ f (x) whenever F

q−→ x.
The category whose objects are�-convergence spaces and whose morphisms are continuous functions

will be denoted by �-CS. This category is topological over SET [26,46].

For a given source (X
fi−→ (Xi, qi))i∈I , the initial structure [47], q on X is defined by

F
q−→ x ⇐⇒ ∀i ∈ I, f⇒i (F)

qi−→ fi(x).

For a given sink ((Xi, qi)
fi−→ X)i∈I , the final structure, q on X is defined as

F
q→ x ⇐⇒

{
F ⊇ [x]�, x 
∈ ∪i∈I fi(Xi);

F ⊇ f⇒i (Gi), ∃i ∈ I, xi ∈ Xi,Gi ∈ F�L (Xi) s.t f (xi) = x,Gi
qi→ xi.

Thus, when X = ∪i∈I fi(Xi), the final structure q can be simplified as

F
q→ x ⇐⇒ F ⊇ f⇒i (Gi) for some Gi

qi→ xi with f (xi) = x.
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For a nonempty set X, we use �(X) to denote all �-convergence structures on X. For p, q ∈ �(X), we
say that q is finer than p, or p is coarser than q, denoted by p ≤ q for short, if the identity idX : (X, q) −→
(X, p) is continuous, that is, F

q−→ x =⇒ F
p−→ x. It is easily observed from [26,47] that (�(X),≤) forms a

completed lattice, and the discrete (resp., indiscrete) structure δ (resp., ι) is the top (resp., bottom) element

of (T(X),≤), where δ is given by F δ−→ x iff F ⊇ [x]�; and ι is given by F ι−→ x for all F ∈ F�L (X), x ∈ X.

Definition 4. (Jäger [5] and Yao [25]) A stratified L-generalized convergence structure on a set X is a function
limq : F s

L(X) −→ LX satisfying
(LC1) limq[x](x) = 1 for every x ∈ X; (LC2) ∀F ,G ∈ F s

L(X), F ≤ G =⇒ limqF ≤ limqG.
The pair (X, limq) is called a stratified L-generalized convergence space.

Let (X, q) be a �-convergence space. We define limq : F s
L(X) −→ LX as

limqF (x) =

{
�, F ≥ Λ(F) for some F

q−→ x;
⊥, otherwise.

Note that [x] = Λ([x]�). It follows that (X, limq) is a stratified L-generalized convergence space.

Remark 1. When L = {⊥,�}, both �-convergence spaces and stratified L-generalized convergence spaces all
reduce to convergence spaces. Therefore, these two kinds of lattice-valued convergence spaces are all natural extensions
of convergence spaces.

3. p-Topologicalness in �-Convergence Spaces

In this section, we shall discuss the p-topologicalness in �-convergence spaces by generalized
Fischer’s diagonal condition and generalized Gähler’s neighborhood condition, respectively. We also try
to establish the relationships between p-topologicalness in �-convergence spaces and p-topologicalness in
stratified L-generalized convergence spaces.

3.1. p-Pretopologicalness in �-Convergence Spaces

Let (X, p) be a �-convergence space. Then for any x ∈ X, the �-filter

Up(x) = ∩{F ∈ F�L (X)|F p−→ x}

is called the �-neighborhood with respect to p at x. Then the family Up := {Up(x)}x∈X is called the
�-neighborhood system generated by (X, p) [26]. It is easily seen that if p, p′ ∈ T(X) and p ≤ p′ then
Up(x) ⊆ Up′(x) for any x ∈ X.

In the following, we shorten a pair of �-convergence spaces (X, p) and (X, q) as (X, p, q). It is easy to
check that the following conditions are equivalent:

p-(TP1): ∀{Fj}j∈J ⊆ F�L (X), ∀x ∈ X, ∀j ∈ J,Fj
p−→ x =⇒ ⋂

j∈J Fj
q−→ x.

p-(TP2): ∀F ∈ F�L (X), ∀x ∈ X, F ⊇ Up(x) =⇒ F
q−→ x.

p-(TP3): ∀x ∈ X, Up(x)
q−→ x.

Definition 5. Assume that (X, p, q) is a pair of �-convergence spaces. Then q is said to be p-pretopological if it
fulfills either of the above three conditions.
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Remark 2. When p = q, p-pretopologicalness is precise the pretopologicalness in [26]. In this case, it is observed
easily that the “=⇒" in p-(TP2) can be replaced with “⇐⇒". In the following, when p = q, we omit the prefix “p"
in symbols p-(TP1)–p-(TP3). This simplification is also used for the subsequent p-topological conditions.

Proposition 1. A �-convergence structure q on X is pretopological iff it is p-pretopological for any q ∈ �(X)

with q ≤ p.

Proof. Let (X, q) be pretopological and q ≤ p. Then by q ≤ p we have Up(x) ⊇ Uq(x) for any x ∈ X. By

pretopologicalness of q we get that Uq(x)
q−→ x. It follows that Up(x)

q−→ x. Thus q is p-pretopological.
The converse implication is obvious.

The following example shows there is no p-pretopologicalness implies pretopologicalness in general.

Example 3. Let L be the linearly ordered frame ({⊥, α,�},∧,�) with ⊥ < α < �, and X = {x, y}. For each
F ∈ F�L (X) and z ∈ X, let F

p−→ z ⇐⇒ F ⊇ [z]. In [26], it is proved that (X, p) is a �-convergence space and
for each z ∈ X,Up(z) = [z].

For x, y ∈ X, it is easily seen that the subsets Fx,Fy of LX defined by

Fx = {λ ∈ LX : λ(x) ≥ α, λ(y) = �}; Fy(λ) = {λ ∈ LX : λ(y) ≥ α, λ(x) = �}

are all �-filters on X. For each F ∈ F�L (X) and each z ∈ X, let F
q−→ z ⇐⇒ F ⊇ [z] or F ⊇ Fz. Then (X, q) is a

�-convergence space. For each z ∈ X, Uq(z) = [z] ∩ Fz = {�X} and so [z] ∩ Fz 
= [z],Fz.

Obviously, q satisfies p-(TP3). But q is not pretopological since we have no Uq(z)
q−→ z.

3.2. p-Topologicalness in �-Convergence Spaces

At first, we fix the notions of diagonal �-filter and neighborhood �-filter to state p-topologicalness.
Let J, X be any sets and φ : J −→ F�L (X) be any function. Then a function φ̂ : LX → LJ is defined as

∀λ ∈ LX , ∀j ∈ J, φ̂(λ)(j) = Λ(φ(j))(λ) =
∨

μ∈φ(j)

SX(μ, λ).

For all F ∈ F�L (J), it is proved that a subset of LX defined by

kφF := {λ ∈ LX |φ̂(λ) ∈ F}

is a �-filter, called diagonal �-filter of F under φ [26]. In addition, for any λ, μ ∈ LX , it was proved in [26]
that SX(λ, μ) ≤ SJ(φ̂(λ), φ̂(μ)).

Definition 6 ([34]). Let (X, p) be a �-convergence space and Up : X −→ F�L (X) be the �-neighborhood system
generated by (X, p). Then for each F ∈ F�L (X), the �-filter Up(F) := kUpF, is called neighborhood �-filter of F
w.r.t. p.

Let N be the set of natural numbers including 0. Let (X, p) be a �- convergence space and F ∈ F�L (X).
For any n ∈ N, we define U0

p(F) = F, and if Un
p(F) has been defined, then we define the n + 1 th iteration

of the neighborhood �-filter of F inductive by Un+1
p (F) = Up(Un

p(F)).

Proposition 2. Let (X, p) be a �- convergence space, n ∈ N and F,G ∈ F�L (X). Then
(1) Un

p(F) ⊆ F,
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(2) if F ⊆ G, then Un
p(F) ⊆ Un

p(G),
(3) if p′ ∈ T(X) and p ≤ p′, then Un

p(F) ⊆ Un
p′(F).

Proof. It is obvious.

Definition 7. Let f : (X, q) −→ (Y, p) be a function between �-convergence spaces. Then f is said to be an
interior function if f→(Ûq(λ)) ≤ Ûp( f→(λ)) for all λ ∈ LX.

Proposition 3. Let f : (X, q) −→ (Y, p) be a function between �- convergence spaces and F ∈ F�L (X).
(1) If f is continuous, then f⇒(Un

q (F)) ⊇ Un
p( f⇒(F)).

(2) If f is an interior function, then f⇒(Un
q (F)) ⊆ Un

p( f⇒(F)).

Proof. (1) We prove f⇒(Un
q (F)) ⊇ Un

p( f⇒(F)) inductively.

For each F
q−→ x and each λ ∈ Up( f (x)) we have λ ∈ f⇒(F), i.e., f←(λ) ∈ F and then

f←(λ) ∈ ∩{F|F q−→ x} = Uq(x),

i.e., λ ∈ f⇒(Uq(x)). Thus Up( f (x)) ⊆ f⇒(Uq(x)).
Fixing λ ∈ LY, we get

Ûp(λ)( f (x)) =
∨

μ∈Up( f (x)) SY(μ, λ) ≤ ∨
f←(μ)∈Uq(x) SX( f←(μ), f←(λ)) ≤∨

ν∈Uq(x) SX(ν, f←(λ)) = Ûq( f←(λ))(x).

It follows that f←(Ûp(λ)) = Ûq( f←(λ)). Thus

λ ∈ Up( f⇒(F)) =⇒ Ûp(λ) ∈ f⇒(F) =⇒ f←(Ûp(λ)) ∈ F =⇒ Ûq( f←(λ)) ∈ F

=⇒ f←(λ) ∈ Uq(F) =⇒ λ ∈ f⇒(Uq(F)).

So, f⇒(Un
q (F)) ⊇ Un

p( f⇒(F)) when n = 1.
We assume that f⇒(Un

q (F)) ⊇ Un
p( f⇒(F)) when n = k. Then we need to check that f⇒(Un

q (F)) ⊇
Un

p( f⇒(F)) when n = k + 1. Indeed,

f⇒(Uk+1
q (F)) = f⇒(Uq(Uk

q(F))) ⊇ Up( f⇒(Uk
q(F))) ⊇ Up(Uk

p( f⇒(F))) = Uk+1
p ( f⇒(F)).

(2) We check only the inequalities for n = 1.
Let f be an interior function. For each λ ∈ Uq(F), i.e., Ûq(λ) ∈ F we have f→(Ûq(λ)) ∈ f⇒(F)

and then Ûp( f→(λ)) ∈ f⇒(F) by f is an interior function. That means f←(λ) ∈ Up( f⇒(F)).
Thus f⇒(Uq(F)) ⊆ Up( f⇒(F)).

Now, we tend our attention to p-topologicalness.
We say a pair of �-convergence spaces (X, p, q) satisfy the Gähler �-neighborhood condition if

p-(TG): ∀F ∈ F�L (X), ∀x ∈ X,F
q−→ x =⇒ Up(F)

q−→ x.

Definition 8. Let (X, p, q) be a pair of �-convergence spaces. Then q is called p-topological if the condition p-(TG)
is satisfied.
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Remark 3. When L = {⊥,�}, the condition p-(TG) is precise the Gähler neighborhood condition in [4], which
is used to define p-topological convergence spaces. Therefore, our p-topologicalness is a natural extension of crisp
p-topologicalness.

We say a pair of �-convergence spaces (X, p, q) satisfy the Fischer �-diagonal condition if

p-(TF): Let J, X be any sets, ψ : J −→ X, and φ : J −→ F�L (X) such that φ(j)
p−→ ψ(j), for each j ∈ J.

Then for each F ∈ F�L (J) and each x ∈ X, ψ⇒(F)
q−→ x implies kφF

q−→ x.
Restricting J = X and ψ =id in p-(TF), we obtain a weaker condition p-(TK). When p = q, p-(TF) is

precise the Fischer �-diagonal condition (TF), and p-(TK) is precise the Kowalsky �-diagonal condition
(TK) in [26].

Proposition 4. Let (X, p, q) be a pair of �-convergence spaces. Then (1) p-(TF)=⇒p-(TP1)+p-(TK), and (2)
p-(TK)=⇒p-(TF) if p satisfies (TP1).

Proof. (1) Obviously, p-(TF)=⇒ p-(TK). Now, we check p-(TF)=⇒ p-(TP1). Let {Fj}j∈J ⊆ F�L (X) and x ∈
X satisfy ∀j ∈ J, Fj

p−→ x. Take ψ(j) ≡ x, φ(j) = Fj and F = F⊥ (i.e., F⊥ = {�J}, the smallest �-filter on

J) in p-(TF), then it is easily seen that ψ⇒(F⊥) = [x]� and kφF⊥ =
⋂

j∈J Fj. Because ψ⇒(F⊥) = [x]�
q−→ x

we have kφF⊥ =
⋂

j∈J Fj
q−→ x by p-(TF).

(2) Let J, X, ψ, φ satisfy the condition of p-(TF). Then we define a function φ̃ : X −→ F�L (X) as
φ̃(x) =

⋂{φ(j) : j ∈ J, ψ(j) = x} if there exists j ∈ J such that ψ(j) = x and φ̃(x) = [x]� if not so. For each

x ∈ X, if φ̃(x) = [x]� then φ̃(x)
p−→ x. If φ̃(x) =

⋂{φ(j) : j ∈ J, ψ(j) = x} then by φ(j)
p−→ x and (TP1)

we have φ̃(x)
p−→ x. Let F ∈ F�L (J) and ψ⇒(F)

q−→ x. Then by p-(TK) we obtain kφ̃ψ⇒(F)
q−→ x. One

can prove that kφF ⊇ kφ̃ψ⇒(F). Thus kφF
q−→ x.

Corollary 1. Let (X, p, q) be a pair of �-convergence spaces. If p satisfies (TP1) then p-(TF)⇔p-(TK)+p-(TP1).
In particular, when p = q we have (TF)⇐⇒(TK)+(TP1) [26].

Remark 4. Let L, X and Fz(z ∈ X) be defined as in Example 3. Let q be defined as F
q−→ z for any F ∈ F�L (X)

and any z ∈ X, and let p be defined as F
p−→ z ⇐⇒ F ⊃ F⊥. Then (X, p, q) is a pair of �-convergence spaces.

Obviously, the axiom p-(TF) is satisfied. But p does not fulfill the axiom (TP1) since Up(z) = F⊥
p

−→ z. Thus

this example shows that p-(TF) does not imply (TP1) of (X, p) generally. Therefore, we guess that the additional
condition (TP1) in the above corollary can not be removed.

The following theorem shows that if we restricting the lattice-context slightly, p-topologicalness can
be described by Fischer �-diagonal condition p-(TF).

Theorem 1. Let (X, p, q) be a pair of �-convergence spaces. Then p-(TG)=⇒p-(TF), and the converse inclusion
holds if L is continuous.
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Proof. p-(TG)=⇒p-(TF). Let J, X, φ, ψ satisfy the condition of p-(TF). For any F ∈ F�L (J), we prove below
that Up(ψ⇒(F)) ⊆ kφF. Let λ ∈ LX ,

∨
μ∈F

SX(ψ
→(μ), Ûp(λ)) =

∨
μ∈F

∧
x∈X

((
∨

ψ(j)=x

μ(j))→
∨

ν∈Up(x)

SX(ν, λ))

=
∨

μ∈F

∧
j∈J

(μ(j)→
∨

ν∈Up(ψ(j))

SX(ν, λ)), by φ(j)
p−→ ψ(j)

≤
∨

μ∈F

∧
j∈J

(μ(j)→
∨

ν∈φ(j)

SX(ν, λ))

=
∨

μ∈F

∧
j∈J

(μ(j)→ φ̂(λ)(j)) =
∨

μ∈F
SJ(μ, φ̂(λ)).

It follows that

λ ∈ Up(ψ
⇒(F)) =⇒

∨
μ∈F

SX(ψ
→(μ), Ûp(λ)) = � =⇒

∨
μ∈F

SJ(μ, φ̂(λ)) = � =⇒ λ ∈ kφF.

Thus Up(ψ⇒(F)) ⊆ kφF.

If ψ⇒(F)
q−→ x then it follows by p-(TG) that Up(ψ⇒(F))

q−→ x, and so kφF
q−→ x. That is, p-(TF)

is satisfied.
p-(TF)=⇒p-(TG). Note that Lemma 1 holds since L is continuous. Take

J = {(G, y) ∈ F�L (X)× X|G p−→ y}; ψ : J −→ X, (G, y) �→ y; φ : J −→ F�L (X), (G, y) �→ G.

Then ∀j ∈ J, φ(j)
p−→ ψ(j). Because [y]

p−→ y we have that ψ is a surjective function. Thus for each
F ∈ F�L (X), H = ψ⇐(F) ∈ F�L (J) exists and ψ⇒(H) = F.

We prove below that kφH = Up(F). For any y ∈ X, denote Iy = {G ∈ F�L (X)|G p−→ y}. Then for any
λ ∈ LX , ∨

μ∈F
SJ(ψ

←(μ), φ̂(λ)) =
∨

μ∈F

∧
(G,y)∈J

(ψ←(μ)(G, y)→ φ̂(λ)(G, y))

=
∨

μ∈F

∧
y∈X

∧
G∈Iy

(μ(y)→ Λ(G)(λ))

=
∨

μ∈F

∧
y∈X

(μ(y)→
∧

G∈Iy

Λ(G)(λ)), by Lemma1

=
∨

μ∈F

∧
y∈X

(μ(y)→ Λ(
⋂

G∈Iy

G)(λ))

=
∨

μ∈F

∧
y∈X

(μ(y)→ Λ(Up(y))(λ))

=
∨

μ∈F

∧
y∈X

(μ(y)→ Ûp(λ)(y)) =
∨

μ∈F
SX(μ, Ûp(λ)).

It follows that

λ ∈ kφH ⇐⇒ φ̂(λ) ∈ ψ⇐(F)⇐⇒
∨

μ∈F
SJ(ψ

←(μ), φ̂(λ)) = � ⇐⇒
∨

μ∈F
SX(μ, Ûp(λ)) = �

⇐⇒ Ûp(λ) ∈ F⇐⇒ λ ∈ Up(F).
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Thus kφH = Up(F).

Let F = ψ⇒(H)
q−→ x. Then by p-(TF) we have kφH = Up(F)

q−→ x. That is, p-(TG) holds.

The following theorem shows that for pretopological �-convergence spaces, p-topologicalness can be
described by Fischer �-diagonal condition p-(TF).

Theorem 2. Let (X, p, q) be a pair of �-convergence spaces and (X, p) be pretopological. Then p-(TF)⇐⇒p-(TG).

Proof. Most of the proof can copy that of Theorem 1. We only check that∨
μ∈F

SJ(ψ
←(μ), φ̂(λ)) =

∨
μ∈F

SX(μ, Ûp(λ)),

for any λ ∈ LX in p-(TF)=⇒p-(TG). Indeed, since p is pretopological then Up(y) ∈ Iy for any y ∈ X. Thus∨
μ∈F

SJ(ψ
←(μ), φ̂(λ)) =

∨
μ∈F

∧
(G,y)∈J

(ψ←(μ)(G, y)→ φ̂(λ)(G, y))

=
∨

μ∈F

∧
y∈X

∧
G∈Iy

(μ(y)→ Λ(G)(λ))

=
∨

μ∈F

∧
y∈X

(μ(y)→
∧

G∈Iy

Λ(G)(λ)), by Up(y) ∈ Iy

=
∨

μ∈F

∧
y∈X

(μ(y)→ Λ(Up(y))(λ))

=
∨

μ∈F
SX(μ, Ûp(λ)).

By Corollary 1 and Theorem 2 we get the following corollary.

Corollary 2. [34] Let (X, p) be a �-convergence space. Then (TF)⇐⇒(TG).

Remark 5. The above corollary is one of the main results in [34]. Based on this equivalence, it was proved that
�-convergence spaces with (TF) or (TG) characterize precisely the conical L-topological spaces in [44].

The following theorem shows that p-topologicalness is preserved under initial constructions.

Theorem 3. Let {(Xi, qi, pi)}i∈I be pairs of�-convergence spaces with each qi being pi-topological. If q (resp., p) is the

initial structure on X relative to the source (X
fi−→ (Xi, qi))i∈I (resp., (X

fi−→ (Xi, pi))i∈I), then (X, q) is p-topological.

Proof. Let F
q−→ x. Then by definition of q, we have f⇒i (F)

qi−→ fi(x) for any i ∈ I. Because qi

is pi-topological we have Upi ( f⇒i (F))
qi−→ fi(x). Then by Proposition 3 (1) we have f⇒i (Up(F)) ⊇

Upi ( f⇒i (F)) and so f⇒i (Up(F))
qi−→ fi(x) for all i ∈ I. That is, Up(F)

q−→ x. Thus q is p-topological.

The next theorem shows that p-topologicalness is preserved under final constructions with some
additional conditions.

Theorem 4. Let {(Xi, qi, pi)}i∈I be pairs of �- convergence spaces with each qi being pi-topological. Let q (resp.,

p) be the final structure on X w.r.t. The sink ((Xi, qi)
fi−→ X)i∈I (resp., ((Xi, pi)

fi−→ X)i∈I ). If X = ∪i∈I fi(Xi)

and each fi : (Xi, pi) −→ (X, p) is an interior function, then (X, q) is p-topological.
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Proof. Let F
q−→ x. Then by definition of q, there exists i ∈ I, xi ∈ Xi,Gi ∈ F�L (Xi) such that fi(xi) =

x, f⇒i (Gi) ⊆ F and Gi
qi−→ xi.

By f⇒i (Gi) ⊆ F and fi is a interior function we have f⇒i (Upi (Gi)) ⊆ Up( f⇒i (Gi)) ⊆ Up(F).

By Gi
qi−→ xi and qi is pi-topological we have Upi(Gi)

qi−→ xi, and then f⇒i (Upi(Gi))
q−→ fi(xi) = x.

Then it follows that Up(F)
q−→ x. By Theorem 1 we get that q is p-topological.

From Theorem 3 and Theorem 4, we conclude easily the following corollary. It will tell us that
p-topologicalness is preserved under supremum and infimum in the lattice �(X).

Corollary 3. Let {qi|i ∈ I} ⊆ �(X) and p ∈ �(X) such that each (X, qi) is p-topological. Then both
(X, inf{qi}i∈I) and (X, sup{qi}i∈I) are all p-topological.

3.3. On the Relationship between p-Topologicalness in �-Convergence Spaces and in Stratified L-Generalized
Convergence Spaces

Let J, X be any set and Φ : J −→ F s
L(X) be any function. Then a function Φ̂ : LX → LJ is defined as

∀λ ∈ LX, ∀j ∈ J, Φ̂(λ)(j) = Φ(j)(λ). For all F ∈ F s
L(J), it is proved that the function KΦF : LX −→ L

defined by ∀λ ∈ LX , KΦF (λ) = F (Φ̂(λ)) is a stratified L-filter, which is called the diagonal L-filter of F
under Φ [27,30].

Let (X, limp) be a stratified L-generalized convergence space. For any α ∈ L, x ∈ X, let U α
p (x) =∧{F : limp F (x) ≥ α}. Take Φ = U α

p : X −→ F s
L(X), then for each F ∈ F s

L(X), the stratified L-filter
U α

p (F ) := kU α
pF is called α-level neighborhood L-filter of F w.r.t. limp [29].

We say a pair of stratified L-generalized convergence spaces (X, limp, limq) satisfy the Fischer
L-diagonal condition if

p-(LF): Let J, X be any sets, Ψ : J −→ X and Φ : J −→ F s
L(X) be functions.

∀F ∈ F s
L(J), ∀x ∈ X, limqΨ⇒(F )(x) ∧

∧
j∈J

limpΦ(j)(Ψ(j)) ≤ limqKΦF (x).

We say a pair of stratified L-generalized convergence spaces (X, limp, limq) satisfy the Gähler
L-neighborhood condition if p-(LG): ∀α ∈ L, ∀F ∈ F s

L(X), α ∗ limq F ≤ limq U α
p (F ).

It was proved in [32] that p-(LF)⇐⇒ p-(LG).

Definition 9 ([32]). Let (X, limp, limq) be a pair of stratified L-generalized convergence spaces. Then limq is called
p-topological if the condition p-(LF) or p-(LG) is satisfied.

Lemma 2. Let φ : J −→ F�L (X) be any function and F ∈ F�L (J). Then
(1) Λ(kφF) ≤ K(Λ ◦ φ)Λ(F);
(2) kφF = Γ(K(Λ ◦ φ)Λ(F)).

Proof. (1) Let λ ∈ LX . Then for any j ∈ J, φ̂(λ)(j) = Λ(φ(j))(λ) = (Λ ◦ φ)(j)(λ) = Λ̂ ◦ φ(λ)(j). It follows

Λ(kφF)(λ) =
∨

μ∈kφF

SX(μ, λ) =
∨

φ̂(μ)∈F
SX(μ, λ)

≤
∨

φ̂(μ)∈F
SJ(φ̂(μ), φ̂(λ)) ≤

∨
ν∈F

SJ(ν, φ̂(λ))

=
∨

ν∈F
SJ(ν, Λ̂ ◦ φ(λ)) = Λ(F)(Λ̂ ◦ φ(λ)) = K(Λ ◦ φ)Λ(F)(λ).
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(2) Let λ ∈ LX . Then

λ ∈ kφF ⇐⇒ Λ̂ ◦ φ(λ) ∈ F⇐⇒ Λ̂ ◦ φ(λ) ∈ F⇐⇒ Λ(F)(Λ̂ ◦ φ(λ)) = �
⇐⇒ K(Λ ◦ φ)Λ(F)(λ) = � ⇐⇒ λ ∈ Γ(K(Λ ◦ φ)Λ(F)).

Theorem 5. Let (X, p, q) be pair of �-convergence spaces and L be continuous. Then limq is p-topological iff q
is p-topological.

Proof. Let q be p-topological. We check that (X, limp, limq) satisfies p-(LG). Obviously, we need only
prove that limq F (x) = � implies limq U α

p (F )(x) = � for any α 
= ⊥.
Note that for any α 
= ⊥ and any x ∈ X we have

U α
p (x) =

∧
{F|limpF (x) = �} =

∧
{F|F ≥ Λ(F),F

p−→ x}

=
∧
{Λ(F)|F p−→ x} Lemma1

= Λ(
⋂

F{|F p−→ x}) = Λ(Up(x)).

Let limq F (x) = � then F ≥ Λ(F) for some F
q−→ x. It follows by p-(TG) that Up(F)

q−→ x and

U α
p (F ) ≥ U α

p (Λ(F)) = KU α
p Λ(F) = K(Λ ◦Up)Λ(F)

Lemma2(1)
≥ Λ(kUpF) = Λ(Up(F)),

and so limq U α
p (F )(x) = � as desired.

Conversely, let limq be p-topological. We check that (X, p, q) satisfies p-(TG).

Assume that F
q−→ x. It follows by p-(LG) that

limqU�p (Λ(F))(x) = limqKU�p Λ(F) = limqK(Λ ◦Up)Λ(F) = �,

and then K(Λ ◦Up)Λ(F) ≥ Λ(G) for some G
q−→ x. By Lemma 2(2) we have

kUpF = Γ(K(Λ ◦Up)Λ(F)) ⊇ ΓΛ(G) = G.

So, Up(F) = kUpF
q−→ x as desired.

4. Lower and Upper p-Topological Modifications in �-Convergence Spaces

In this section, we shall discuss the p-topological modification in �-convergence spaces.
At first, we fix a lemma for later use. The proof is obvious, so we omit it.

Lemma 3. (1) If (X, q) is p-topological, then F
q−→ x implies Un

p(F)
q−→ x for any n ∈ N.

(2) If (X, q) is p-topological, then (X, q) is p′-topological for any p ≤ p′.
(3) (X, ι) is p-topological for any p ∈ �(X).

4.1. Lower p-Topological Modification

Corollary 3 shows that p-topologicalness is preserved under supremum in the lattice �(X).
Lemma 3(3) shows that the indiscrete space (X, ι) is p-topological for any p ∈ �(X). These two results
make the following definition available.

Definition 10. Let (X, p, q) be a pair of �-convergence spaces. Then there is a finest p-topological �-convergence
structure τpq on X which is coarser than q. The structure τpq is called the lower p-topological modification of q.
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The next theorem gives a direct characterization on lower p-topological modification.

Theorem 6. Let p, q ∈ �(X). Then F
τpq−→ x ⇐⇒ ∃n ∈ N,G

q−→ x s.t. F ⊇ Un
p(G).

Proof. Let q′ be defined as F
q′−→ x ⇐⇒ ∃n ∈ N,G

q−→ x s.t. F ⊇ Un
p(G). We need only check

that τpq = q′.

It is obvious that q′ ∈ �(X) and q′ ≤ q. We prove that q′ is p-topological. Indeed, let F
q′−→ x. Then

there exists n ∈ N,G
q−→ x such that F ⊇ Un

p(G). It follows that Up(F) ⊇ Up(Un
p(G)) = Un+1

p (G) and so

Up(F)
q′−→ x, as desired. Thus q′ is p-topological.

Let (X, r) be p-topological and r ≤ q. We prove below r ≤ q′. Indeed, let F
q′−→ x. Then there exists

n ∈ N,G
q−→ x such that F ⊇ Un

p(G), and then G r−→ x by q ≤ r. Since r is p-topological it follows by

Lemma 3(1) we have F ⊇ Un
p(G)

r−→ x. Thus r ≤ q′.

Theorem 7. Let f : (X, q) −→ (X′, q′) and f : (X, p) −→ (X′, p′) be continuous function between
�-convergence spaces. Then f : (X, τpq) −→ (X′, τp′q′) is also continuous.

Proof. For any F ∈ F�L (X) and x ∈ X.

F
τpq−→ x =⇒ ∃n ∈ N,G

q−→ x s.t. F ⊇ Un
p(G)

=⇒ ∃n ∈ N, f⇒(G)
q′−→ f (x) s.t. f⇒(F) ⊇ f⇒(Un

p(G))

=⇒ ∃n ∈ N, f⇒(G)
q′−→ f (x) s.t. f⇒(F) ⊇ Un

p′( f⇒(G))

=⇒ f⇒(F)
τp′ q

′

−→ ( f (x)),

where the second implication holds for f : (X, q) −→ (X′, q′) being continuous, and the third implication
holds by f : (X, p) −→ (X′, p′) being continuous and Proposition 3(1).

The next theorem shows that lower p-topological modification behaves reasonably well relative to
final structures.

Theorem 8. Let {(Xi, qi, pi)}i∈I be pairs of spaces in �-CS and let q be the final structure w.r.t. The sink

((Xi, qi)
fi−→ X)i∈I with X = ∪i∈I fi(Xi). If (X, p) is in �-CS such that each fi : (Xi, pi) −→ (X, p) is

a continuous interior function, then τpq is the final structure w.r.t. the sink ((Xi, τpi qi)
fi−→ X)i∈I .

Proof. Let s denote the final structure w.r.t. The sink ((Xi, τpi qi)
fi−→ X)i∈I . Let F ∈ F�L (X) and x ∈

X. Then

F s−→ x =⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x,Gi
τpi qi−→ xi s.t. f⇒i (Gi) ⊆ F, by Theorem 6

=⇒ ∃i ∈ I, xi ∈ Xi, n ∈ N, fi(xi) = x,Hi
qi−→ xi s.t. Un

pi
(Hi) ⊆ Gi, f⇒i (Gi) ⊆ F, Proposition 3(1)

=⇒ ∃i ∈ I, xi ∈ Xi, n ∈ N, f⇒i (Hi)
q−→ x s.t. Un

p( f⇒i (Hi)) ⊆ f⇒i (Un
pi
(Hi)) ⊆ f⇒i (Gi), f⇒i (Gi) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, n ∈ N, f⇒i (Hi)
q−→ x s.t. Un

p( f⇒i (Hi)) ⊆ F

=⇒ F
τpq−→ x.
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Conversely,

F
τpq−→ x =⇒ ∃n ∈ N,G

q−→ x s.t. Un
p(G) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x, n ∈ N,Hi
qi−→ xi s.t. f⇒i (Hi) ⊆ G,Un

p(G) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x, n ∈ N,Hi
qi−→ xi s.t. Un

p( f⇒i (Hi)) ⊆ Un
p(G),Un

p(G) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x, n ∈ N,Hi
qi−→ xi s.t. f⇒i (Un

pi
(Hi)) ⊆ Un

p( f⇒i (Hi)) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x, n ∈ N,Un
pi
(Hi)

τpi qi−→ xi s.t. f⇒i (Un
pi
(Hi)) ⊆ F

=⇒ F s−→ x,

where the fourth implication uses Proposition 3(2).

The following corollary shows that lower p-topological modification behaves reasonably well relative
to infimum in the lattice �(X).

Corollary 4. Let {qi|i ∈ I} ⊆ �(X), p ∈ �(X) and q = inf{qi|i ∈ I}. Then τpq = inf{τpqi|i ∈ I}.

At last, we give the notion of topological modification. By Corollary 3, it is observed that
topologicalness is preserved under supremum in the lattice �(X). Since the indiscrete space is topological,
the following notion is available.

Definition 11. Let (X, q) be a �-convergence space. Then there exists a finest topological �-convergence structure
τq which is coarser than q. The structure τq is called the topological modification of (X, q). Indeed, τq = sup{p|p ≤
q and p is topological}.

4.2. Upper p-Topological Modification

Note that for an arbitrary p ∈ �(X), the discrete space (X, δ) is generally not p-topological. Thus for
a given q ∈ �(X), there may not exist p-topological �-convergence structure on X which is finer than q.

Definition 12. Let (X, p, q) be a pair of�-convergence spaces. If there exists a coarsest p-topological�-convergence
structure τpq on X which is finer than q, then it is called the upper p-topological modification of q.

From Corollary 3 we easily conclude that the existence of τpq depends on the existence of
a p-topological �-convergence structure on X which is finer than q. Additionally, note that τpδ is the finest
p-topological �-convergence structure on X. Then it follows immediately that τpq exists if and only if
q ≤ τpδ. Using Theorem 6, this result can be stated as below.

Theorem 9. Let (X, p, q) be a pair of �-convergence spaces. Then τpq exists if and only if Un
p([x]�)

q−→ x for all
x ∈ X, n ∈ N.

Proof. For each F ∈ F�L (X) and each x ∈ X, by Theorem 6 we have

F
τpδ−→ x ⇐⇒ ∃n ∈ N,G δ−→ x s.t. Un

p(G) ⊆ F.

30



Mathematics 2019, 7, 228

Necessity. Let τpq exist. Then q ≤ τpδ. It follows that for all x ∈ X, n ∈ N

[x]�
δ−→ x =⇒ Un

p([x]�)
τpδ−→ x =⇒ Un

p([x]�)
q−→ x.

Sufficiency. Let Un
p([x]�)

q−→ x for all x ∈ X, n ∈ N. Then for all F ∈ F�L (X) we have

F
τpδ−→ x =⇒ ∃n ∈ N,G δ−→ x s.t. Un

p(G) ⊆ F

=⇒ ∃n ∈ N, [x]� ⊆ G s.t. Un
p(G) ⊆ F

Proposition2(2)
=⇒ ∃n ∈ N,Un

p(([x]�) ⊆ Un
p(G) s.t. Un

p(G) ⊆ F

=⇒ ∃n ∈ N s.t. Un
p(([x]�) ⊆ F

=⇒ F
q−→ x.

It follows that q ≤ τpδ, which means that τpq exists.

The next theorem gives a direct characterization on upper p-topological modification whenever
it exists.

Theorem 10. Let (X, p, q) be a pair of �-convergence spaces. If τpq exists, then F
τpq−→ x ⇐⇒ ∀n ∈

N,Un
p(F)

q−→ x.

Proof. Let q′ be defined as F
q′−→ x ⇐⇒ ∀n ∈ N,Un

p(F)
q−→ x.

(1) q′ ∈ �(X).

(TC1) Let x ∈ X. Then by Theorem 9 we have Un
p([x]�)

q−→ x for all n ∈ N, which means [x]�
q′−→ x.

(TC2) It is obvious.

(2) q ≤ q′. Indeed, let F
q′−→ x then F = U0

p(F)
q−→ x.

(3) (X, q′) is p-topological. Indeed, let F
q′−→ x. Then for any n ∈ N we have Un

p(Up(F)) =

Un+1
p (F)

q−→ x, which means Up(F)
q′−→ x. Thus (X, q′) is p-topological.

(4) Let (X, r) be p-topological and q ≤ r. Then q′ ≤ r. Indeed, let F r−→ x then for any n ∈ N,

by Proposition 3(1) we have Un
p(F)

r−→ x and so Un
p(F)

q−→ x by q ≤ r. That means F
q′−→ x.

(1)–(4) show that q′ is the coarsest p-topological �-convergence structure on X which is finer than q.
Thus τpq = q′.

Theorem 11. Let f : (X, q) −→ (X′, q′) be a continuous function, and f : (X, p) −→ (X′, p′) be an interior
function between �-convergence spaces. If τpq and τp′q′ exist then f : (X, τpq) −→ (X′, τp′q′) is also continuous.

Proof. Let F
τpq−→ x. Then ∀n ∈ N,Un

p(F)
q−→ x. Because f : (X, q) −→ (X′, q′) is a continuous function

and f : (X, p) −→ (X′, p′) is an interior function we have

∀n ∈ N,Un
p′( f⇒(F)) ⊇ f⇒(Un

p(F))
q′−→ f (x),

which means f⇒(F)
τp′ q′−→ f (x) as desired.
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The next theorem shows that the upper p-topological modification exhibits comparable behavior
relative to initial structures.

Theorem 12. Let {(Xi, qi, pi)}i∈I be pairs of spaces in �-CS and q be the initial structure w.r.t. The source

(X
fi−→ (Xi, qi))i∈I . Let (X, p) be in �-CS such that each fi : (X, p) −→ (Xi, pi) is continuous interior function.

If τpi qi exists for all i ∈ I, then τpq exists and is the initial structure w.r.t. The source (X
fi−→ (Xi, τpi qi))i∈I .

Proof. To prove τpq exists, it suffices, by Theorem 10, to show that Un
p([x]�)

q−→ x for any x ∈ X, n ∈ N.

Indeed, by the existence of τpi qi we have Un
pi
([ fi(x)])

qi−→ fi(x) for any i ∈ I, x ∈ X, n ∈ N. It follows by
that each fi : (X, p) −→ (Xi, pi) being a continuous interior function we get

f⇒i (Un
p([x]�) = Un

pi
( f⇒i ([x]�)) = Un

pi
([ fi(x)]�)

qi−→ fi(x),

which means Un
p([x]�)

q−→ x for any x ∈ X, n ∈ N, i.e., τpq exists.

Let s denote the initial structure on X relative the source (X
fi−→ (Xi, τpi qi))i∈I . Then.

F s−→ x ⇐⇒ ∀i ∈ I, f⇒i (F)
τpi qi−→ fi(x) Theorem10⇐⇒ ∀i ∈ I, ∀n ∈ N,Un

pi
( f⇒i (F))

qi−→ fi(x)
Proposition3⇐⇒ ∀i ∈ I, ∀n ∈ N, f⇒i (Un

p(F))
qi−→ fi(x)

⇐⇒ ∀n ∈ N,Un
p(F)

q−→ x Theorem10⇐⇒ F
τpq−→ x.

The following corollary shows that upper p-topological modification exhibits comparable behavior
relative to supremum in the lattice �(X).

Corollary 5. Let {qi|i ∈ I} ⊆ �(X), p ∈ �(X) and q = sup{qi|i ∈ I}. If τpqi exists for all i ∈ I, then τpq
exists and τpq = sup{τpqi|i ∈ I}.

5. Conclusions

In this paper, we discussed the p-topologicalness in �-convergence spaces by a Fischer �-diagonal
condition and a Gähler �-neighborhood condition, respectively. We proved that the p-topologicalness was
preserved under the initial and final structures in the category �-CS. As a straightforward conclusion, we
further obtained that p-topologicalness was naturally preserved under the infimum and supremum in the
lattice �(X). We also established the relationship between p-topologicalness in �-convergence spaces and
p-topologicalness in stratified L-generalized convergence spaces. Furthermore, we defined and studied
the lower and upper p-topological modifications in �-convergence spaces. In particular, we proved that
the lower (resp., upper) p-topological modification exhibited comparable behavior relative to final (resp.,
initial) structures.
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Abstract: The assessment of a system’s performance is a very important task, enabling its designer/
user to correct its weaknesses and make it more effective. Frequently, in practice, a system’s
assessment is performed under fuzzy conditions, e.g., using qualitative instead of numerical
grades, incomplete information about its function, etc. The present review summarizes the
author’s research on building assessment models for use in a fuzzy environment. Those models
include the measurement of a fuzzy system’s uncertainty, the application of the center of gravity
defuzzification technique, the use of triangular fuzzy or grey numbers as assessment tools, and the
application of the fuzzy relation equations. Examples are provided of assessing human (students
and athletes) and machine (case-based reasoning systems in computers) capacities, illustrating
our results. The outcomes of those examples are compared to the outcomes of the traditional
methods of calculating the mean value of scores assigned to the system’s components (system’s mean
performance) and of the grade point average index (quality performance) and useful conclusions are
obtained concerning their advantages and disadvantages. The present review forms a new basis for
further research on systems’ assessment in a fuzzy environment.

Keywords: fuzzy sets (FSs); uncertainty; center of gravity (COG) defuzzification technique; triangular
fuzzy numbers (TFNs); grey numbers (GNs); fuzzy relation equations (FRE); grade point average
(GPA) index

1. Introduction

In the language of management, a system is understood to be a set of interacting components
forming an integrated whole and working together for achieving a common target (e.g., maximum
profit, low cost of production, healthcare, student learning, etc.). One can distinguish among physical,
biological, social, economic, engineering, abstract knowledge, etc. systems. The evaluation of a
system’s performance constitutes an important topic of the system general theory [1], because it
enables the correction of its weaknesses, resulting in the improvement of its effectiveness in the
environment of a given situation.

A system assessment is frequently performed under fuzzy conditions, caused by incomplete
information about its function and characteristics, using qualitative (linguistic) assessment grades,
or various other reasons appearing in real life situations. Several efforts have been reported in the
literature for the assessment under fuzzy conditions (e.g., see [2–6]). The purpose of the present work
is to review its author’s research on building assessment models for use in a fuzzy environment.

The rest of the article is formulated as follows. Section 2 provides a brief account of the evolution
of fuzzy set theory and its generalizations and its connection to fuzzy logic. In Section 3, the use of
fuzzy system uncertainty is utilized as an assessment method of its effectiveness, whereas, in Section 4,
the same is done with the center of gravity defuzzification technique, the outcomes of which are
compared to those of the traditional method of calculating the grade point average index. In Sections 5
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and 6, assessment models using as tools triangular fuzzy numbers and grey numbers, respectively, are
developed and compared to each other. The use of fuzzy relation equations for assessing mathematical
modeling skills is the objective of Section 7 and the article closes with Section 8 containing the general
conclusions of the review and some hints for future research.

The present review provides a new framework for research on a system’s evaluation under
fuzzy conditions.

2. Fuzzy Sets and Generalizations

The “Laws of Thought” [7], of Aristotle (384–322 BC, Figure 1) that dominated for centuries the
human reasoning are the following:

• The principle of identity
• The law of the excluded middle
• The law of contradiction

The law of the excluded middle (i.e., yes or no) was the basis for the traditional bi-valued logic and
the precision of the classical mathematics owes undoubtedly a large part of its success to it. However,
there were also strong objections to this law. The Buddha Siddhartha Gautama, who lived in India a
century earlier, had already argued that almost every notion contains elements from its opposite one,
while Plato (427–377 BC, Figure 1) discussed the existence of a third area beyond “true” and “false”,
where these two opposite notions can exist together. Modern philosophers including Hegel, Marx,
and Engels adopted and further cultivated the above belief.

 

Figure 1. Plato (left) and Aristotle in a Raphael’s fresco (1509).

The Polish philosopher Jan Lukasiewicz (1878–1956) first proposed a systematic alternative of
the bi-valued logic introducing in the early 1900s a three-valued logic by adding the term “possible”
between “true” and “false” [8]. Eventually, he developed an entire notation and axiomatic system from
which he hoped to derive modern mathematics. Later, he also proposed four- and five-valued logics
and then finally arrived at the conclusion that, axiomatically, nothing could prevent the derivation of
an infinite valued Logic. Similar ideas were also expressed by the famous Polish-American logician
and mathematician Alfred Tarski (1901–1983) [9].

However, it was not until relatively recently that an infinite-valued logic was introduced, called
Fuzzy Logic (FL) [10], because it is based on the notion of Fuzzy Set (FS) initiated in 1965 by Lotfi
Aliasker Zadeh (1921–2017, Figure 2) [11], an electrical engineer of Iranian origin, born in Azerbaijan,
USSR and Professor at the University of Berkeley, California. A fuzzy subset A of the set of the discourse
U (or, for brevity, a FS in U) is defined by A = {(x, mA(x)): x ∈ U}, where mA: U → [0, 1] is its membership
function. The real number mA(x) is called the membership degree of x in A. The greater is mA(x), the more
x satisfies the characteristic property of A. Many authors, for reasons of simplicity, identify it with the
function mA.
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Figure 2. L.A. Zadeh (1921–2017).

A crisp subset B of U can be considered as a special case of a FS in U with membership function

mB(x) =

{
1, x ∈ B
0, x /∈ B

. Based on this, most notions and operations concerning the crisp sets, e.g.,

subset, complement, union, intersection, Cartesian product, binary and other relations, etc., can be
extended to FS. For information on FS, we refer to the book [12].

Through FL, the fuzzy terminology is translated by algorithmic procedures into numerical values,
operations are performed upon those values and the outcomes are returned into natural language
statements in a reliable manner. As expected, this far-reaching theory aroused some objections in
the scientific community. Haack [13] argued that it can be shown that FL is unnecessary in all cases.
Fox [14] responded to her objections claiming that FL is useful for handling real-world situations
that are inherently fuzzy, calculating the existence in such situations fuzzy data and describing the
operation of the corresponding fuzzy systems. He indicated that traditional and FL theories need not
be seen as competitive, but as complementary and that FL, despite the objections of classical logicians,
has proved very successful in practical applications in almost all sectors of human activity (e.g., see [12]
(Chapter 6), [15–19]).

It must be mentioned here that fuzzy mathematics has also been significantly developed on the
theoretical level, providing important contributions even in branches of classical mathematics, such as
algebra, analysis, geometry, etc. FL constitutes one of the three portals of computational intelligence,
which is a topic of the wide field of artificial intelligence. The other two portals of computational
intelligence are neural networks and the evolutionary computing.

Several efforts have been made to improve and generalize the FS theory. Atanassov introduced
in 1986, as a complement of Zadeh’s membership degree (M), the degree of non-membership (N) and
defined the intuitionistic FS [20]. Smarandache introduced in 1995 the degree of indeterminacy/neutrality
(I) and defined the neutrosophic set in three components (M, N, I), where M, N and I are subsets of the
interval [0, 1] [21]. Alternatives to the FS theory were proposed by Deng in 1982 (Grey Systems [22]),
Pawlak in 1991 (Rough Sets [23]), Molodtsov in 1999 (Soft Sets [24]) and others. Principles of the Grey
System (GS) theory are used in Section 6.

3. Types of Uncertainty in Fuzzy Systems

Uncertainty can be defined as the shortage of precise knowledge and complete information on data
that describe the state of the corresponding system. According to a fundamental principle of classical
information theory, a system’s uncertainty is connected to its ability to obtain new information. Therefore,
the measurement of the uncertainty could be used as a method for evaluating a system’s mean performance.

Shannon introduced in 1948 a formula for measuring the uncertainty and the information
connected to it, which is based on the laws of classical probability and it is widely known as Shannon’s
entropy [25]. This term comes from the mathematical definition of information when we have equally
probable cases for the evolution of the corresponding phenomenon: −Δ(log P)

log 2 , where P is the probability
of appearance of each case. This expression appears to be analogous to a well-known formula from
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physics: ΔS = ΔQ
T , where ΔS is the increase of a physical system’s entropy caused by an increase of the

heat ΔQ, when the absolute temperature T remains constant.
Let U denote the universal set of the discourse. For use in a fuzzy environment, Shannon’s

formula (probabilistic uncertainty) has been adapted [26] (p.20) to the form:

H = − 1
ln n

n

∑
s=1

ms ln ms. (1)

In Equation (1), ms = m(s) denotes the membership degree of the element s of U in the
corresponding fuzzy set and n denotes the total number of the elements of U. Dividing the sum
by ln n, one makes H take values in the interval [0, 1].

The fuzzy probability of an element s of U is defined by

Ps =
ms

∑
s∈U

ms
(2)

However, according to the British economist Shackle [27] and many other researchers after him,
human reasoning can be formulated more adequately by the possibility rather than by the probability
theory. The possibility, e.g., rs, of an element s of U is defined by

rs =
ms

max{ms}
(3)

In Equation (3), max{ms} denotes the maximal value of ms, for all s in U. In other words, the
possibility of s expresses the relative membership degree of s with respect to max {ms}.

In terms of possibility, the uncertainty is measured by the sum of strife (or discord) and non-specificity
(or imprecision). The former is connected to the conflict created among the membership degrees, whereas
the latter is connected to the conflict created among the cardinalities (sizes) of the various fuzzy subsets
of U [26] (p.28). Note that the cardinality of a fuzzy subset of U is defined sa the sum ∑

x∈U
m(x) of all

membership degrees of the elements of U with respect to it.
The following example illustrates this situation.

Example 1. Let U be the set of all mountains of a country and let H and L be its fuzzy subsets of the
high and low mountains with membership functions mH and mL, respectively. Assume further that a
mountain x in U has a height of 1000 m.

Then, strife is created by the existing conflict between the membership degrees mH(x) and mL(x).
In fact, if the country has high mountains in general, then mH(x) should take values near 0 and ml(x)
near 1. However, the opposite could happen, if the country has low mountains in general.

On the other hand, non-specificity is connected to the question of how many elements of U should
have zero membership degrees with respect to H and L.

Strife is measured [26] (p.28) by the function ST(r) on the ordered possibility distribution r: r1 = 1
≥ r2 ≥ . . . . . . ≥ rn ≥ rn+1 of a group of the elements of U defined by

ST(r) =
1

log 2
[

m

∑
i=2

(ri − ri+1) log
i

i
∑

j=1
rj

]. (4)

Under the same conditions non-specificity is measured [26] (p.28) by the function

N(r) =
1

log 2
[

m

∑
i=2

(ri − ri+1) log i]. (5)

The sum T(r) = ST(r) + N(r) measures the fuzzy system’s total possibilistic uncertainty.
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Example 2. Table 1 depicts the performance of two equivalent student groups in a common test
with respect to the linguistic grades, where A = excellent, B = very good, C = good, D = fair and F
= unsatisfactory:

Table 1. Student results.

Grade G1 G2

A 1 10
B 13 6
C 4 3
D 3 0
F 0 1

Total 21 20

It is asked to evaluate the performance of the two student groups by calculating the total
possibilistic and probabilistic uncertainty existing in them.

(i) Total possibilistic uncertainty: Defining the membership function in terms of the frequencies of
the student grades, one can represent the two student groups as fuzzy sets on the set U = {A, B, C, D.
F} in the form {(x, nx

n ): x ∈ U }, where nx is the number of students who received the grade x and n is
the total number of the students in each group. In other words, we can write

G1 = {(A, 1
21 ), (B, 13

21 ), (C, 4
21 ), (D, 3

21 ), (F, 0) }; and
G2 = {(A, 10

20 ), (B, 6
20 ), (C, 3

20 ), (D, 0), (F, 1
20 ) }.

The maximal membership degree in G1 is equal to 13
21 , hence the possibilities of the elements of U

in G1 are: r(A) = 1
13 , r(B) = 1, r(C) = 4

13 , r(D) = 3
13 , r(F) = 0. Therefore, the ordered possibility distribution

defined on G1 is

r : r1 = 1 > r2 =
4
13

> r3 =
3
13

> r4 =
1
13

> r5 = 0. (6)

Similarly, one finds that the ordered possibility distribution on G2 is:

r : r1 = 1 > r2 =
6
10

> r3 =
3
10

> r4 =
1
10

> r5 = 0. (7)

Equation (4) gives in our case that

ST(r) =
1

log 2
[(r2 − r3) log

2
r1 + r2

+ (r3 − r4) log
3

r1 + r2 + r3
+(r4 − r5) log

4
r1 + r2 + r3 + r4

]

Replacing the values of the possibility distribution r from Equation (6), one finds for G1 that

ST(r) =
1

log 2
[

1
13

log(
26
17

) +
2
13

log(
39
20

) +
1
13

log(
42
21

)] ≈ 0.27.

In addition, Equation (5) gives for G1 that

N(r) =
1

log 2
[

1
13

log 2 +
2
13

log 3 +
1
13

log 4] ≈ 0.48

Therefore, the total possibilistic uncertainty for G1 is T (r) ≈ 0.27 + 0.48 = 0.75.
In the same way, replacing the values of r from Equation (7), one finds that the total possibilistic

uncertainty for G2 is T (r) ≈ 0.33 + 0.82 = 1.15.
Since the two student groups have been chosen to be equivalent, they have the same existing

uncertainty before the test. Thus, the reduction of uncertainty is greater for Group G1, which therefore
demonstrates a better mean performance than Group G2.
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(ii) Probabilistic uncertainty: Substituting the membership degrees of G1 into Equation (1), one
finds that the probabilistic uncertainty for the experimental group is equal to:

H = − 1
ln 5

(
1

21
ln

1
21

+
13
21

ln
13
21

+
4
21

ln
4
21

+
3

21
ln

3
21

) ≈ 0.64.

Similarly, one finds that for G2 the probabilistic uncertainty is approximately equal to 0.71.
Therefore, Group G1 demonstrates again a better performance.

Remark 1. From the previous example, it becomes evident that the measurement of uncertainty can
be used for assessing the performance of the two groups only under the assumption that they are
equivalent, which means that they have the same existing uncertainty before the test.

4. The Center of Gravity Defuzzification Technique

The process of solving a problem with principles and methods of FL involves the following phases:

• Choose the suitable universal set.
• Fuzzify the given data by defining suitable membership functions for the FSs involved in

this procedure.
• Elaborate the fuzzy data with FL techniques for expressing the solution of the given problem in

the form of a unique FS.
• Defuzzify the above FS by representing it with a real numerical value to “translate” the problem’s

solution into the natural language.

There are more than 30 defuzzification methods in use, but two of them are the most popular.
In the Maximum method, the crisp value representing the solution’s output is one of the values at which
the corresponding FS has its maximum truth (e.g., [15] (Chapter 4, pp. 97–99)). On the other hand,
in the Center of Gravity (COG) technique, the representative crisp value is obtained by calculating the
coordinates of the COG of the level’s area S between the graph of the membership function of the
corresponding FS and the OX axis [28].

Voskoglou [29] developed in 1999 a fuzzy model for representing mathematically the process
of learning a subject matter in the classroom and later, considering the class as a fuzzy system, he
calculated its existing uncertainty (see Section 3) for assessing the student mean performance [30].
Subbotin et al. [31], based on the Voskoglou’s model, adapted properly the COG defuzzification
technique for use as an assessment method of student learning skills. Since then, Subbotin and
Voskoglou applied jointly or separately the COG method, termed as Rectangular Assessment Model
(RFAM), in many other types of assessment problems (e.g., see [15] (Chapter 6)). Here, we present the
headlines of RFAM and we compare it to the traditional assessment method of calculating the Grade
Point Average (GPA) index.

4.1. The Rectangular Fuzzy Assessment Model

We choose, exactly as in Example 2, for discourse the set of linguistic grades U = {A, B, C, D, F}
and we represent a student group G as a FS in U in the form G = {(x, nx

n ): x ∈ U }, where n is the total
number of the students of G and nx is the number of students of G whose performance is characterized
by the grade x in U.

To be able to design the graph of the membership function y = m(x), we replace U with a set of
real intervals as: F → [0, 1), D → [1, 2), C → [2, 3), B → [3, 4), A → [4, 5]. Consequently, we have that
y1 = m(x) = m(F) for all x in [0, 1), y2 = m(x) = m(D) for all x in [1, 2), y3 = m(x) = m(C) for all x in [2, 3),
y4 = m(x) = m(B) for all x in [3, 4) and y5 = m(x) = m(A) for all x in [4, 5). Since the membership values
of the elements of U in G have been defined in terms of the corresponding frequencies, we obviously

have that:
5
∑

i=1
yi = m(A) + m(B) + m(C) + m(D) + m(F) = 1.
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The graph of the membership function y = m(x) is shown in Figure 3, where the level’s area S
between the graph and the OX axis is equal to the sum of the areas of the five rectangles Si, i = 1, 2,
3, 4, 5, one side of which has length 1 and lies on the OX axis. That is why this method was termed
as RFAM.

 
Figure 3. The graph of the membership function.

The COG coordinates (xc, yc) are calculated by the well known from mechanics formulas:

xc =

�
S

xdxdy
�
S

dxdy
, yc =

�
S

ydxdy
�
S

dxdy
(8)

Here, we have that:
�
S

dxdy =
5
∑

i=1
yi = 1. In addition,

�
S

xdxdy =
5
∑

i=1

�
Fi

xdxdy =
5
∑

i=1

yi∫
0

dy
i∫

i−1
xdx

=
5
∑

i=1
yi

i∫
i−1

xdx = 1
2

5
∑

i=1
(2i− 1)yi and

�
S

ydxdy =
5
∑

i=1

�
Fi

ydxdy =
5
∑

i=1

yi∫
0

ydy
i∫

i−1
dx =

n
∑

i=1

yi∫
0

ydy = 1
2

n
∑

i=1
yi

2.

Substituting the above values of the double integrals into Equation (8), one finds that

xC = 1
2 (y1 + 3y2 + 5y3 + 7y4 + 9y5)

yC = 1
2 (y1

2 + y2
2 + y3

2 + y4
2 + y5

2)
(9)

However, (yi − yj)2 = yi
2 + yj

2 − 2 yij ≥ 0, or yi
2 + yj

2 ≥ 2 yij for i, j = 1, 2, . . . , 5, with the equality

holding if, and only if, y1 = y2 = y3 = y4 = y5. Therefore, 1 = (
5
∑

i=1
yi)

2 =
n
∑

i=1
yi

2 + 2(y1y2 + y1y3 + . . . +

y4y5) ≥ 5
n
∑

i=1
yi

2, or y1
2 + y2

2 + y3
2 + y4

2 + y5
2 ≤ 1

5 , with the equality holding if and only if y1 = y2 = y3

= y4 = y5 = 1
5 . Thus, Equation (9) shows that the unique minimum yc = 1

10 corresponds to the COG Fm

( 5
2 , 1

10 ).
The ideal case is when y1 = y2 = y3 = y4 = 0 and y5 = 1. Then, from Equation (9), one finds that

xc = 9
2 and yc = 1

2 . Therefore, the COG in this case is the point Fi ( 9
2 , 1

2 ).
On the other hand, the worst case is when y1 = 1 and y2 = y3 = y4 = y5 = 0. Therefore, from

Equation (9), one finds that the COG is the point FX ( 1
2 , 1

2 ).
Consequently, the area where COG Fc lies is the triangle FxFm Fi of Figure 4.
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Figure 4. The triangle where the COG lies.

By making elementary observation on Figure 4, one obtains the following criterion for comparing
the performance of two student groups:

• The group with the greater value of xc demonstrates the better performance.
• In the case of the same value of xc, if xc ≥ 2.5, then the group with the greater value of yc performs

better. On the contrary, if xc < 2.5, then the group with the lower value of yc demonstrates the
better performance.

Observe that a group’s performance depends mainly on the value of xc, while the first part of
Equation (9) shows that for the calculation of xc greater coefficients are assigned to the higher scores.
Therefore, the COG method focuses on the group’s quality performance.

In addition, since the ideal group’s performance corresponds to the value xc = 9
2 , values greater

than 9
2 : 2 = 2.25 could be considered as demonstrating a satisfactory performance.

4.2. Comparison of the RFAM with the GPA Index

Keeping the same notation as in Section 4.1, the GPA index [15] (Chapter 6, p.125) is calculated by
the formula

GPA =
0nF + 1nD + 2nC + 3nB + 4nA

n
(10)

In other words, since greater coefficients (weights) are assigned to the higher scores, GPA is a
weighted average connected to the group’s quality performance. In the case of the worst performance
(nF = n), Equation (10) gives that GPA = 0, while, in the case of the ideal performance (nA = n), it gives
that GPA = 4. Therefore, we have in general that 0 ≤ GPA ≤ 4. Consequently, values of GPA greater
than 2 could be considered as indicating a satisfactory performance.

Equation (10) can be also written with respect to the frequencies in the form

GPA = y2 + 2y3 + 3y4 + 4y5. (11)

Therefore, xc = 1
2 (y1 + 3y2 + 5y3 + 7y4 + 9y5) = 1

2 (2GPA + 1), or

xc = GPA + 0.5. (12)

As an immediate consequence of Equation (12) and the first case of the assessment criterion
in Section 4.1, if the values of the GPA index are different for two groups, then the GPA index and
the RFAM provide the same assessment outcomes for those groups. The following example, due to
Subbotin [32], shows that, in the case of the same GPA values, the application of the GPA index cannot
lead to logically-based conclusions. Therefore, in such situations, the criterion in Section 4.1 becomes
useful due to its logical nature.
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Example 3. The student grades of two classes with 60 students in each class are depicted in Table 2.

Table 2. Student Grades.

Grades Class I Class II

C 10 0
B 0 20
A 50 40

The GPA index for the two classes is equal to 2×10+4×50
60 = 3×20+4×40

60 ≈ 3.67, which means that
the two classes demonstrate the same performance. However, Equation (12) gives that xc = 4.17 for

both classes. However,
5
∑

i=1
yi

2 = ( 1
6 )

2
+ ( 5

6 )
2
= 26

36 for the first and
5
∑

i=1
yi

2 = ( 2
6 )

2
+ ( 4

6 )
2

= 20
36 for the

second class. Therefore, according to the second case of the assessment criterion in Section 4.1, the first
class demonstrates a better performance in terms of the RFAM.

Observe now that the ratio of the students receiving B or better to the total number of students
is equal to 5

6 for the first class and 1 for the second class, which means that Class II demonstrates a
better quality performance. However, many educators might prefer the situation in Class I having a
greater number of excellent students. Conclusively, in no case is it logical to accept that the two classes
demonstrate the same performance, as the equal values of the GPA index indicate.

5. Triangular Fuzzy Numbers

5.1. Preliminaries

Fuzzy Numbers (FNs), introduced by Zadeh [33], play an important role in fuzzy mathematics,
analogous to the role of ordinary numbers in classical mathematics. A FN, e.g., A, is defined to be a FS
on the set R of real numbers, such that:

• A is normal, i.e., there exists x in R such that mA(x) = 1.
• A is convex, i.e., all its a-cuts Aa = {x ∈ R: mA (x) ≥ a}, with a in [0, 1], are closed real intervals.
• Its membership function y = m(x) is a piecewise continuous function.

One can define the basic arithmetic operations on FNs in two, equivalent to each other, ways:
(i) With the help of their a-cuts and the representation–decomposition theorem of

Ralesscou-Negoita [34] (Theorem 2.1, p.16) stating that FS A can be completely and uniquely expressed
by the family of its a-cuts in the form A = ∑

a∈[0,1]
aAa.

(ii) By applying the Zadeh’s extension principle [12] (Section 1.4, p.20), which provides the means
for any function f mapping the crisp set X to the crisp set Y to be generalized to map fuzzy subsets of X
to fuzzy subsets of Y.

However, the above two general methods of the fuzzy arithmetic, requiring laborious calculations,
are rarely used in practical applications, where the utilization of simpler forms of FNs is preferred.

A Triangular Fuzzy Number (TFN) (a, b, c), with a, b, and c real numbers such that a < b < c is the
simplest form of a FN representing mathematically the fuzzy statement that “the value of b lies in the
interval [a, c]”. The membership function y = m(x) of (a, b, c) is zero outside the interval [a, c], whereas
its graph in [a, c] forms a triangle with the OX axis (Figure 5). Therefore, we have:

y = m(x) =

⎧⎪⎨⎪⎩
x−a
b−a , x ∈ [a, b]
c−x
c−b , x ∈ [b, c]

0, x < a or x > c
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Figure 5. Graph and COG of the TFN (a, b, c).

The coordinates (X, Y) of the Center of Gravity (COG) of the graph of the TFN A = (a, b, c), being
the intersection point G of the medians AN and BM of the triangle ABC (Figure 5), are calculated by
the formulas

X (A) =
a + b + c

3
, Y(A) =

1
3

. (13)

In fact, since M(, 0) and N( b+c
2 , 1

2 ), the proof is easily obtained by calculating the equations of the
medians AN and BM and by solving their linear system.

According to the COG technique the first part of Equation (6) can be used to defuzzify the TFN A.
The two general methods for defining arithmetic operations on FNs lead to the following simple

rules for the addition and subtraction of TFNs:
Let A = (a, b, c) and B = (a1, b1, c1) be two TFNs. Then:

• The sum A + B = (a+a1, b+b1, c+c1).
• The difference A – B = A + (–B) = (a – c1, b – b1, c – a1), where –B = (–c1, –b1, –a1) is defined to be

the opposite of B.

On the contrary, the product and the quotient of A and B are FNs, which are not TFNs in general,
apart from some special cases.

The following two scalar operations can also be defined:

• k + A = (k + a, k + b, k + c), k ∈ R.
• kA = (ka, kb, kc), if k > 0 and kA = (kc, kb, ka), if k < 0, k ∈ R.

Remark 2. Another simple form of FNs that we have used as assessment tools [17] (Chapter 7) are the
Trapezoidal Fuzzy Numbers (TpFNs). The membership function of a TpFN (a, b, c, d), with a, b, c, and
d in R such that a < b ≤ c < d, is zero outside the interval [a, d], whereas its graph in [a, d] forms a
trapezoid with the OX axis. The TFN (a, b, d) is a special case of the TpFN (a, b, c, d) with b = c, i.e.,
the TpFNs are actually generalizations of the TFNs.

For general information on FNs, we refer to the book [35].

5.2. The Assessment Method Using TFNs

In [36], we developed with the help of TFNs a method for assessing a system’s mean performance,
whose steps are the following:

• Define the mean value of a finite number of given TFNs A1, A2, . . . , n ≥ 2, to be the TFN A = 1
n (A1

+ A2 + . . . + An).
• Assign a scale of numerical scores from 1 to 100 to the linguistic grades A = excellent, B = very

good, C = good, D = fair and F = unsatisfactory as follows: A (85–100), B (75–84), C (60–74),
D (50–59) and F (0–49).
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• Use for simplicity the same letters to represent the above grades by the TFNs A = (85, 92.5, 100),
B = (75, 79.5, 84), C (60, 67, 74), D (50, 54.5, 59) and F (0, 24.5, 49), respectively, where the middle
entry of each of them is equal to the mean value of its other two entries.

• Assess the individual performance of the system components by the above five qualitative grades
and assign one of the TFNs A, B, C, D, F to each of those components. Then, if n is the total
number of the system’s components and nX denotes the number of the components corresponding
to the TFN X, with X = A, B, C, D, F, the mean value M of all those TFNs is equal to the TFN

M (a, b, c) =
1
n
(nA A + nB B + nCC + nDD + nFF). (14)

Using the TFN M (a, b, c) to evaluate the system’s mean performance, it straightforward
to check that its components a, b and c, respectively, are equal to 85nA+75nB+60nC+50nD+0nF

n
92.5nA+79.5nB+67nC+54.5nD+24.5nF

n and 100nA+84nB+74nC+59nD+49nF
n .

Then, Equation (13) gives that

X (M) =
a + b + c

3
92.5nA + 79.5nB + 67nC + 54.5nD + 24.5nF

n
=

a + c
2

= b. (15)

Therefore, for the defuzzification of M (a, b, c), one needs to calculate only its middle component
b. The value of X (M) provides a crisp representation of the TFN M evaluating the system’s mean
performance.

An analogous assessment method was also developed in [37] using TpFNs instead of TFNs.
Examples illustrating the above assessment method are presented in Section 6.3 to be compared with
the use of grey numbers.

6. Grey System Theory

Because many constantly changing factors are usually involved in large and complex systems,
approximate data are frequently used in many problems of everyday life, science and engineering.
Nowadays, the main tool in the hands of the specialists for handling such approximate data is FL
and its generalizations or alternative theories. Among those theories, the theory of Grey System (GS)
initiated by Deng [22] in 1982 is very important.

A system that lacks information, such as structure message, operation mechanism and behavior
document, is referred to as a GS. The GS theory has recently found important applications in many
fields of human activity [38].

6.1. Grey Numbers

A Grey Number (GN) is a number with known range but unknown position within its boundaries.
If R denotes the set of real numbers, a GN A can be expressed mathematically by

A ∈ [a, b] = {x ∈ R: a ≤ x ≤ b}.

If a = b, then A is called a white number and if A ∈ (−∞. + ∞), then A is called a black number.
A GN may enrich its uncertainty representation with respect to the interval [a, b] by a whitening
function g: [a, b] → [0, 1] defining a degree of greyness g(x) for each x in [a, b]. The closer is g(x) to 1, the
greater the probability for x to be the representative real value of the corresponding GN.

The well-known arithmetic of the real intervals [39] has been used to define the basic arithmetic
operations among the GNs. More explicitly, if A ∈ [a1, a2] and B ∈ [b1, b2] are given GNs and k is a
real number, one defines:

• Addition by A + B ∈ [a1 + b1, a2 + b2].
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• Subtraction by A − B = A + (−B) ∈ [a1 − b2, a2 – b1], where −B ∈ [−b2, −b1] is defined to be the
opposite of B.

• Multiplication by A × B [min{a1b1, a1b2, a2b1, a2b2}, max{a1b1, a1b2, a2b1, a2b2}].
• Division by A: B = A × B−1 ∈ [min{ a1

b1
, a1

b2

a2
b1

, a2
b2

}, max{ a1
b1

, a1
b2

a2
b1

, a2
b2

}]. with b1, b2 
= 0 and B−1 ∈
[ 1

b2
, 1

b1
] , which is defined to be the inverse of B.

• Scalar multiplication by kA ∈ [ka1, ka2], if k ≥ 0 and by kA ≥ [ka2, ka1], if k < 0.

The white number whose value represents the GN A ∈ [a, b] is denoted by W(A). The process of
determining w(A) is called whitening of A. When the distribution of A is unknown, i.e., no whitening
function has been defined for A, one usually utilizes the equally distant whitening by taking

W(A) =
a + b

2
. (16)

For general information on GNs, we refer to [40].

6.2. The Assessment Method with GNs

When using TFNs for the assessment of a system’s mean performance, we found that X(M) = b,
which means that only the middle component b is needed for the defuzzification of the mean value
M(a, b, c). This observation gives the hint to search for a “formal” assessment method that, analogous
to that with TFNs, possibly reduces the required computational burden. This idea led us to utilize
GNs [41] instead of TFNs for the system’s assessment. The steps of our new method are the following:

• Attach the numerical scores A (100–85), B (84–75), C (74–60), D (59–50), and F (49–0) to the
corresponding linguistic grades.

• Assign to each grade a GN as follows: A ∈ [85, 100], B ∈ [75, 84], C ∈ [60, 74], D ∈ [50, 59], and F
∈ [0, 49].

• Correspond to each of the system’s components one of the above GNs evaluating its performance.
• Using analogous notation with the case of TFNs, calculate the mean value

M∗ = 1
n
[nAA + nBB + nCC + nDD + nFF] (17)

• Since nAA ∈ [85nA, 100nA], nBB ∈ [75nB, 84nB], nCC ∈ [60nC, 74nC], nDD ∈ [50nD, 59nD], and nFF
∈ [0nF, 49nF], one obtains that M* ∈ [m1, m2], where

m1 =
85nA + 75nB + 60nC + 50nD + 0nF

n

m2 =
100nA + 84nB + 69nC + 59nD + 49nF

n

• Since the distribution of M* is unknown, take

W(M∗) = m1+m2

2
. (18)

The value of W(M*) provides a crisp representation of the GN M* evaluating the system’s
mean performance

Remarks 3.

(1) From Equations (15) and (18), one obtains that X(M) = W(M*). Therefore, one concludes that
the assessment methods with the TFNs and the GNs are equivalent to each other, because they
provide the same assessment outcomes.
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(2) It is straightforward to check that, if the maximal possible numerical score corresponds to
each system’s component for each grade, then the mean value of those scores is equal to c or
m2, respectively. In the same way, if the minimal possible score corresponds to each system’s
component for each grade, then the mean value of all scores is equal to a or m1, respectively.
Consequently, assessment methods with TFNs and GNs give a reliable approximation of the
system’s mean performance.

6.3. Applications of the Assessment Methods with TFNs and GNs

The first application in this section concerns the assessment of Case-Based Reasoning (CBR) systems.
CBR is the method of solving new problems based on the solution of analogous problems solved in
the past (past cases). A case collection can be a powerful resource to use when handling a new problem.
A CBR system, usually designed and functioned with the help of proper software, allows the collection
of cases to develop incrementally, while its maintenance is an easy task for domain experts. The CBR
approach has gained much attention and found many applications over the last 30–40 years, because,
as an intelligent systems method, it enables information managers to increase efficiency and reduce
cost by substantially automating processes.

The steps of the CBR process involve:

• R1: Retrieve the most suitable past case to the new problem.
• R2: Reuse the information of the retrieved case to solve the new problem.
• R3: Revise the solution.
• R4: Retain the part of the solution that could be useful for future problems.

Steps R1, R2 and R3 are not linear, characterized by a backward–forward flow. A simple flow
diagram of the CBR process is presented in Figure 6:

Figure 6. A simplified flow-chart of the CBR process.

More information and a detailed functional diagram illustrating the four steps of the CBR process
are presented in [42].

Example 4. Consider a couple of CBR systems with a collection of 105 and 90 past cases, respectively.
The designers have supplied both systems with a mechanism evaluating the degree of success of the
past cases for solving new analogous problems. Table 3 depicts the performance of the past cases in
the three first steps of the CBR process.

Table 3. Assessment of the past cases of the CBR systems.

First system

Steps F D C B A

R1 0 0 51 24 30
R2 18 18 48 21 0
R3 36 30 39 0 0

Second system

Steps F D C B A

R1 0 18 45 27 0
R2 18 24 48 0 0
R3 36 27 27 0 0
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Here, we compare the mean performance of the two systems by applying both methods with
TFNs and GNs.

(i) Use of TFNs: The data in Table 3 show that in Step R1 we have for the first system 51 TFNs equal
to C(60, 67, 74), 24 TFNs equal to B(75, 79.5, 85) and 30 TFNs equal to A(85, 92.5, 100). The calculation
of the mean value of those TFNs gives that R1 = 1

105 (51C + 24B + 30A) = 1
105 [(3060, 3417, 3774) + (1800,

1908, 2016) + (2550, 2775, 3000) = 1
105 (7410, 8100, 8790) ≈ (70.57, 77.14, 83.71).

Therefore, from Equation (15), one gets that X(R1) = 77.14, which shows that the first system
demonstrates a very good (B) performance at Step R1.

In the same way, one calculates for the first system the mean values R2 = 1
105 (18F + 18D+ 48C +

21B) ≈ (51, 60.07, 69.14) with X(R2) = 60.07 and R3 = 1
105 (36F + 30D + 39C) ≈ (36.57, 48.86, 61.14) with

X(R2) = 48.86, thus obtaining the analogous conclusions for the system’s performance at Steps R2 and
R3 of the CBR process.

The overall system’s performance can be assessed by the mean value R = 1
3 (R1 + R2 + R3) ≈

(52.71, 62.02, 71.33). Since X(R) = 62.02, the system demonstrates a good (C) mean performance.
A similar argument gives for the second system the values R1 = (62.5, 68.25, 74), R2 ≈ (45.33, 55.17,

65), R3 = (33, 46.25, 59.5) and R≈ (46.94, 56.56, 66.17). Therefore, analogous conclusions can be obtained
for its mean performance at each step of the CBR process and for its overall mean performance, which
is characterized as fair (D).

(ii) Use of GNs: Here, in Step R1, we have 51 GNs equal to C ∈ [60, 74], 24 GNs equal to B ∈ [75,
84] and 30 GNs equal to A ∈ [85, 100]. The mean value of those GNs is R1* = 1

105 (51C + 24B + 30A) ∈
[70.57, 83.71]. Therefore, W(R1*) = 70.57+83.71

2 = 77.14, etc.

Remarks 4.

(i) As we show in the previous section, the use of GNs provides in general the same assessment
outcomes with the use of TFNs. However, observe that, to obtain the mean value M* ∈ [m1, m2],
one needs to calculate two components only, in contrast to the mean value M (a, b, c) where the
calculation of three components is needed. Consequently, the method with GNs reduces the
required computational burden.

(ii) Another promising area for applying the above assessment methods is the fuzzy control systems
(e.g., see [43], [44] (Paragraph 5.3), [45]). Traditional controllers, often implemented as PID
(proportional–integral–derivative) controllers, are based on mathematical models in which the
control system is described using one or more differential equations that define the system
response to its inputs. They are the products of decades of development and theoretical analysis
and are highly effective in general. However, in certain cases, the mathematical model of the
control process may not exist, or may be too “expensive” in terms of computer processing power
and memory. In such cases, a system based on empirical rules may be more effective.

Fuzzy controllers consist of input, processing and output stages. The input stage maps sensors,
switches and other inputs to the appropriate membership functions (usually triangular, although
trapezoidal and bell curves are also used) and truth values. The processing stage is based on a collection
of logic rules in the form of IF–THEN statements. A result is generated from each rule and all these
results are properly combined. For example, such a rule for a thermostat is “IF the temperature is low,
THEN the heater is high”. Typical fuzzy controllers have dozens of rules. Finally, the output stage
converts the combined result back into a specific control output value. In many cases, fuzzy control
can be used to improve existing traditional control systems by adding an extra layer of intelligence to
the current control method.

Example 5. Six different trainers ranked with scores from 0 to 100 the performance of five athletes as
follows: A1 (Athlete 1): 43, 48, 49, 49, 50, and 52; A2: 81, 83, 85, 88, 91, and 95; A3: 76, 82, 89, 95, 95,
and 98; A4: 86, 86, 87, 87, 87, and 88; and A5: 35, 40, 44, 52, 59, and 62.
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The mean value of the 6 × 5 = 30 given numerical scores is approximately equal to 72.07,
demonstrating a good (C) mean performance of the athletes. For reasons of comparison of the
two methods, the system’s mean performance is also calculated using GNs.

The given numerical scores provide 14 GNs equal to A, 4 equal to B, 1 equal to C, 4 equal to D and
7 equal to F. Their mean value is M* = 1

30 (14A + 4B + C + 4D + 7F) ∈ [60.33, 79.63]. Therefore, Equation
(18) gives that W(M*) = 69.98, which shows that the five athletes demonstrate a good performance,
but the exact score corresponding to their mean performance is the mean value 72.02 of the given
numerical scores calculated in the traditional way.

In conclusion, the assessment methods using GNs and TFNs, although they give a satisfactory
approximation of the system’s mean performance, are practically useful only when the individual
performance is evaluated by qualitative grades and not by numerical scores, because, in this case,
the calculation of the mean value of those grades in the traditional way is not possible.

7. Application of Fuzzy Relation Equations to Mathematical Modeling

7.1. Mathematical Modeling

Until the mid-1970s, Mathematical Modeling (MM) was mainly a tool in the hands of scientists and
engineers for solving real world problems related to their disciplines (physics, industry, constructions,
economics, etc.). However, the failure to introduce “new mathematics” in school education brought the
attention of researchers and educators to problem-solving processes, and in particular to the process of
MM and its applications. As a result, MM appears today as a dynamic tool for teaching and learning
mathematics, because it connects mathematics with our everyday life, giving the possibility to students
to understand its usefulness in practice and therefore increasing their interest in it [46].

The steps of the MM process involve:

• S1: Analyze the given problem (understanding the statement and recognizing the restrictions and
requirements imposed by the corresponding real system).

• S2: Mathematize (formulation of the problem and construction of the mathematical model).
• S3: Solve the model.
• S4: Validate (control) the model, which is usually achieved by reproducing, through the model,

the behavior of the real system under the conditions existing before the solution of the model and
by comparing it to the existing from the previous “history” of the real system, i.e., data. In cases
of systems having no past history, an extra simulation model could be used for the validation of
the mathematical model.

• S5: Interpret the final mathematical results and implement them in the real system to give the
“answer” to the real-world problem.

7.2. Fuzzy Relation Equations

Fuzzy Relation Equations (FREs) are associated with the composition of Fuzzy Binary Relations
(FBRs). A FBR is defined as follows:

Definition 1. Let X and Y be two crisp sets. Then, a FBR R(X, Y) is a FS on the Cartesian product X × Y
of the form: R(X, Y) = {(r, mR(r): r = (x, y) ∈ X × Y}, where mR: X × Y → [0, 1] is the corresponding
membership function. When X = {x1, . . . . . . . . . , xn} and Y = {y1, . . . . . . , ym}, a FBR R(X, Y) can be
represented by a n X m matrix R = [rij], where rij = mR (xi, yj), with i = 1, . . . , n and j = 1, . . . , m.
The matrix R is called the membership matrix of the FBR R(X, Y).

The basic ideas of fuzzy relations, which were introduced by Zadeh [47] and further investigated
by other researchers, are extensively covered in the book [48].
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Definition 2. Consider two FBR P(X, Y) and Q(Y, Z) with a common set Y. Then, the standard
composition of these relations, denoted by P(X, Y) � Q(Y, Z) produces a FBR R(X, Z) with membership
function mR defined by:

mR(xi, zj) = max
y∈Y

min [mP(xi, y), mQ(y, zj)], i = 1, . . . , n, j = 1, . . . , m. (19)

This composition is usually referred to as max-min composition. Compositions of FBR are
conveniently performed in terms of their membership matrices. In fact, if P = [pik] and Q = [qkj]
are the membership matrices of the FBRs P(X, Y) and Q(Y, Z)m respectively, then by Equation (19)m
we get that the membership matrix of R(X, Y) = P(X, Y) � Q(Y, Z) is the matrix R = [rij], with

rij = max
k

min(pik, qkj). (20)

Note that the same elements of P and Q are used in the calculation of mR as would be used in the
regular multiplication of matrices, but the product and sum operations are here replaced with the min
and max operations, respectively.

Definition 3. Consider the FBRs P(X, Y), Q(Y, Z) and R(X, Z), defined on the sets X = {xi: i ∈ Nn}, Y =
{yj: j ∈ Nm }, Z = {zk: k ∈ Ns}, where Nt = {1,2, . . . ,t}, for t = n, m, k, and let P = [pij], Q = [qjk] and
R = [rik] be the membership matrices of P(X, Y), Q(Y, Z) and R(X, Z), respectively. Assume that the
above three relations constrain each other in such a way that P � Q = R, where � denotes the max-min
composition. This means that, for each i in Nn and each k in Ns,

rik = max
j∈J

min (pij, qjk). (21)

Therefore, the matrix equation P � Q = R encompasses nXs simultaneous equations of the form of
Equation (21). When two of the components in Equation (21) are given and one is unknown, these
equations are referred as FRE. The notion of FRE was first proposed by Sanchez [49] and later further
investigated by other researchers (e.g., [50–52]).

7.3. A Study of MM Skills Using FRE

Let us consider the crisp sets X = {M}, Y = {A, B, C, D, F} and Z = {S1, S2, S3, S4}, where M denotes
the imaginary notion of the average student of a class; A, B, C, D, and F are the linguistic grades used
for the assessment of the student performance; and S1, S2, S3, and S4 are the steps of the MM process.
Without loss of generality, the validation (S4) and the implementation (S5) of the model, which are
usually considered as two different steps, have been joined here in one step (S4) to make simpler the
development of our assessment method.

Let n be the total number of students of a class and let ni be the numbers of students of the class
who obtained the grade i assessing their performance, i ∈ Y. Then, one can represent the average
student of the class as a FS on Y in the form M = {(i, ni

n ): i ∈ Y}.
The FS M induces a FBR P(X, Y) with membership matrix P = [ nA

n , nB
n , nB

n , nC
n , nF

n ].
In an analogous way, the average student of a class can be represented as a FS on Z in the form

M′ = {(j, m(j): j ∈ Z}, where m: Z → [0, 1] is the corresponding membership function. In this case, the
FS M′ induces a FBR R(X, Z) with membership matrix R = [m(S1) m(S2) m(S3) m(S4)].

We consider also the FBR Q(Y, Z) with membership matrix the 5 × 4 matrix Q = [qij], where qij
= mQ(i, j) with i ∈ Y and j ∈ Z and the FRE encompassed by the matrix equation P � Q = R. When
the matrix Q is fixed and the row-matrix P is known, then the above equation always has a unique
solution with respect to R, which enables the representation of the average student of a class as a fuzzy
set on the set of the steps of the MM process. This is useful for the instructor for designing his/her
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future teaching plans. On the contrary, when the matrices Q and R are known, then the equation P �
Q = R may have no solution or it may have more than one solutions with respect to P, which makes the
corresponding situation more complicated.

Example 6. The following experiment took place at the Graduate Technological Educational Institute
of Western Greece, in the city of Patras, when I was teaching a group of 60 students of the School
of Technological Applications (future engineers) the use of the derivative for the maximization and
minimization of a function. A written test was performed after the end of the teaching process
involving two mathematical modeling problems about the construction of a channel to run water and
of a cylindrical tower (see the second section of [46]). The results of the test are depicted in Table 4.

Table 4. Student performance.

Grade No. of Students

A 20
B 15
C 7
D 10
F 8

Total 60

Therefore, the average student M of the class can be represented as a fuzzy set on Y = {A, B, C, D,
F} by M = {(A, 20

60 ), (B, 15
60 ), (C, 7

60 ), (D, 10
60 ), (F, 8

60 )} ≈ {(A, 0.33), (B, 0.25), (C, 0.12), (D, 0.17), (F, 0.13)}.
Thus, M induces a FBR P(X, Y), where X = {M}, with membership matrix P = [0.33 0.25 0.12 0.17 0.13].

In addition, using statistical data of the last five academic years concerning the MM skills of the
students of the School of Technological Applications, we fixed the membership matrix Q of the binary
fuzzy relation Q(Y, Z), where Z = {S1, S2, S3, S4}, in the form:

S1 S2 S3 S4

A
B
C
D
F

⎛⎜⎜⎜⎜⎜⎝
0.7 0.5 0.3 0
0.4 0.6 0.3 0.1
0.2 0.7 0.6 0.2
0.1 0.5 0.7 0.5
0 0.7 0.5 0.8

⎞⎟⎟⎟⎟⎟⎠
The statistical data were collected by the instructor who was inspecting the student reactions

during the solution of several MM problems in the classroom.
Next, using the max-min composition of FBR, one finds that the membership matrix of R(X, Z) =

P(X, Y) � Q (Y, Z) is equal to R = P � Q = [0.33 0.33 0.3 0.17]. Therefore, the average student of the
class can be expressed as a fuzzy set on Z by M = {(S1, 0.33), (S2, 0.33), (S3, 0.3), (S4, 0.17)}.

The conclusions obtained from the above expression of M are the following:

• Only 1
3 of the students of the class were ready to use contents of their memory (background

knowledge, etc.) to facilitate the solution of the given problems.
• All the above students were able to design the model and almost all of them were able to execute

the solutions of the given problems.
• On the contrary, half of the above students could not check the correctness of the solutions found

and therefore implement correctly the mathematical results to the real system.

The first conclusion was not surprising, since the majority of the students have the wrong habit to
start studying the material of their courses the last month before the final exams. On the other hand,
the second conclusion shows that the instructor’s teaching procedure was successful, enabling the
diligent students to plan and execute successfully the solutions of the given problems. Finally, the last
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conclusion is explained by the fact that students, when solving MM problems, frequently omit to check
if their solutions are compatible to the restrictions imposed by the real system. Therefore, the instructor
should emphasize during his/her lectures that the last two steps of the MM process (validation and
implementation) are not a formality, but have their own importance for preventing several mistakes.

Let us now consider the case where the membership matrices Q and R are known and we want
to determine the matrix P representing the average student of the class as a fuzzy set on Y. This is a
complicated case because we may have more than one solution or no solution at all. The following
two examples illustrate this situation.

Example 7. Consider the membership matrices Q and R of the previous example and set P = [p1 p2 p3

p4 p5]. Then, the matrix equation P o Q = R encompasses the following equations:

max {min (p1, 0.7), min (p2, 0.4), min (p3, 0.2), min (p4, 0.1), (p5, 0)}= 0.33
max {min (p1, 0.5), min (p2, 0.6), min (p3, 0.7), min (p4, 0.5), min (p5, 0.1)}= 0.33
max {min (p1, 0.3), min (p2, 0.3), min (p3, 0.6), min (p4, 0.7), (p5, 0.5)}= 0.3
max {min (p1, 0), min (p2, 0.1), min (p3, 0.2), min (p4, 0.5), min (p5, 0.8)}= 0.17

The first of the above equations is true if, and only if, p1 = 0.33 or p2 = 0.33, values that satisfy the
second and third equations as well. In addition, the fourth equation is true if, and only if, p3 = 0.17,
p4 = 0.17 or p5 = 0.17. Therefore, any combination of values of p1, p2, p3, p4, and p5 in [0, 1] such that
p1 = 0.33 or p2 = 0.33 and p3 = 0.17, p4 = 0.17 or p5 = 0.17 is a solution of P o Q = R.

Let S(Q, R) = {P: P � Q = R } be the set of all solutions of P o Q = R. Then, one can define a partial
ordering on S(Q, R) by P ≤ P′ ⇔ pi ≤ p′i, ∀ι = 1, 2, 3, 4, 5.

It is well established that, whenever S(Q, R) is a non-empty set, it always contains a unique
maximum solution and it may contain several minimal solutions [49]. It is further known that S(Q, R)
is fully characterized by the maximum and minimal solutions in the sense that all its other elements are
between the maximal and each of the minimal solutions [49]. A method of determining the maximal
and minimal solutions of P o Q = R with respect to P is developed in [52].

Example 8. Let Q = [qij], i = 1, 2, 3, 4, 5 and j = 1, 2, 3, 4 be as in Example 2 and let R = [1 0.33 0.3 0.17].
Then, the first equation encompassed by the matrix equation P o Q = R is max {min (p1 , 0.7), min (p2,
0.4), min (p3, 0.2), min (p4, 0.1), and min (p5, 0)}= 1. In this case, it is easy to observe that the above
equation has no solution with respect to p1, p2, p3, p4, and p5, therefore the matrix equation P o Q = R
has no solution with respect to P. In general, writing R = {r1 r2 r3 r4}, it becomes evident that we have
no solution if max

j
qij < ri.

8. Discussion and Conclusions

The enormous development of technology during the last years makes human life easier and
more comfortable. However, the technological progress creates in parallel more and more complicated
artificial systems, which are difficult to be managed by the traditional scientific methods. As a result,
while 50–60 years ago probability theory used to be a unique tool in the hands of scientists for dealing
with situations characterized by uncertainty and/or vagueness, today this is no loneger the rule. In fact,
the introduction of FL and its generalizations (intuitionistic FS, neutrosophic sets, etc.) and of other
relative theories (rough sets, soft sets, GS theory, etc.) provide new tools for dealing with such situations
in real life, science and technology and enable the solution of problems with fuzzy or approximate
data, which cannot be solved with traditional techniques of probability theory. The applications of
FL and its relevant theories have been rapidly expanded nowadays, covering almost all sectors of
human activities.

The objective of this review article is to present the author’s research on developing methods for
the assessment of human–machine capacities under fuzzy conditions. Those methods include:
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1. The measurement of the corresponding fuzzy system’s probabilistic uncertainty (generalized
Shannon’s entropy) or its total possibilistic uncertainty (the sum of strife and non-specificity)
for evaluating its mean performance. However, this method can be applied for comparing
the performance of two different systems with respect to a common activity only under the
assumption that the uncertainty in those systems is the same before the activity (equivalent
systems). Moreover, the method cannot provide an exact characterization of a system’s
performance and it involves laborious calculations.

2. The utilization of the COG defuzzification technique (rectangular fuzzy assessment model) for
assessing a fuzzy system’s quality performance. This method, initiated by Subbotin et al. [31],
is useful, due to its logical nature, when comparing the performance of two systems with equal
values of the traditional GPA index. In this case, the GPA index could lead to conclusions that are
not close to the reality. On the contrary, for different values of the GPA index, the two methods
provide the same assessment outcomes.

3. The use of TFNs as assessment tools, a method that is easy to apply in practice and gives an
exact characterization of the system’s mean performance. That method is useful when qualitative
grades and not numerical scores are used for the evaluation of the system’s performance, which
makes impossible the calculation of the mean value of those grades in a traditional way. However,
a disadvantage of the method is that its understanding requires knowledge of basic principles of
FS theory, which is not always easy for non-specialists.

4. The use of GNs, instead of TFNs, as assessment tools. These two methods are equivalent to
each other, providing the same assessment outcomes. However, GNs can be easily defined with
the help of closed real intervals, which makes the method more accessible to non-specialists.
Moreover, the use of GNs reduces significantly the required computational burden.

5. The application of FRE for assessing MM skills. This method enables the teacher to obtain useful
conclusions about student progress and was applied by the author, with the proper modifications
each time, to various other assessment situations (problem-solving, learning a subject matter,
human and machine reasoning, etc.) [53–55].

The above models provide an innovative framework for further research on human–machine
assessment. Our future plans involve improving and extending our fuzzy and grey assessment
methods and applying the principles of FL and GS theory to other fields of human activity as well. Note
that such efforts have already been started by the author on solving equations, systems of equations
and linear programming problems with fuzzy or grey data, connected to real life applications [56–59].
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Abstract: In this paper, we give the “generator” of int-soft filters and propose the notion of
t-int-soft filters on residuated lattices. We study the properties of t-int-soft filters and obtain some
commonalities (e.g., the extension property, quotient characteristics, and a triple of equivalent
characteristics). We also use involution-int-soft filters as an example and show some basic properties
of involution-int-soft filters. Finally, we investigate the relations among t-int-soft filters and give a
simple method for judging their relations.
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1. Introduction

Uncertainty widely exists in many practical problems. Compared with probability theory [1],
fuzzy sets [2], rough sets [3], intuitionistic fuzzy sets [4], and soft sets [5] have an unparalleled
advantage in solving uncertain problems. At present, many scholars are devoted to the study of
soft set theory and its applications. The theoretical work mainly focuses on some operations of soft
sets [6–8], soft and fuzzy soft relations [9], soft algebraic structures [10], and distance, similarity
measures, and equality of soft sets [11–13]. In applications, soft sets are extensively used in decision
making problems [14] and forecasting approaches [15].

Residuated lattices [16] originated from mathematical logic without contraction. They combine the
fundamental notions of multiplication, order, and residuation. In recent years, many logical algebras
have been introduced as the semantic systems of logical systems, for example, Boolean algebras,
MV-algebras, BL-algebras, R0-algebras, Heyting algebras, MTL-algebras, and so on. These logical
algebras are all special cases of residuated lattices.

Filters correspond to sets of formulae, closed with respect to Modus ponens. So, filters play an
important role in investigating the above logical algebras. At present, the filter theories of many fuzzy
logical algebras have been extensively studied. On residuated lattices, the relative literature is as
follows: [17–26]. In the literature, many concrete types of filters (implicative filters, fantastic filters,
Boolean filters, and so on) have been introduced, their equivalent characterizations studied, and the
relations among specific filters were investigated on residuated lattices. Notably, Víta [24] proposed
the notion of t-filters, in order to cover the great amount of special types of filters, and obtained some
basic properties of t-filters.

Recently, some scholars have applied soft sets to the filter theory of logical algebras. In [27,28],
Jun et al. proposed the (strong, implicative) intersection-soft (int-soft for short) filters, and established
their equivalent characterizations and the extension property of (strong) implicative int-soft filters on
R0-algebras. Lin and Ma [29] proved that all int-soft filters formed a bounded distributive lattice and
investigated the int-soft congruences, with respect to int-soft filters on residuated lattices. Jun et al. [30]
introduced the concepts of int-soft filters, MV-int-soft filters, int-soft G-filters, and regular int-soft
filters, explored their properties and characterizations, and provided the conditions for an int-soft filter
to be an int-soft G-filter on residuated lattices.

Mathematics 2019, 7, 236; doi:10.3390/math7030236 www.mdpi.com/journal/mathematics57
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T-filters provide a path toward the unifying of some types of filters. It is natural to ask whether
we can give a framework to cover as many int-soft filters as possible and obtain some of their basic
features. Based on this, we propose the notion of t-int-soft filters on residuated lattices, and show
how particular results about many kinds of int-soft filters are unified by our framework. In addition,
research about relations among kinds of int-soft filters is a hot topic. Is there a simple method to find
them? In order to answer this question, we particularly investigate the quotient structure of t-int-soft
filters, use it to study the relations among t-int-soft filters, and give a simple method for judging their
relations. The paper is organized as follows:

In Section 2, some preliminary definitions and theorems are recalled. In Section 3, the notion
of t-int-soft filters is proposed. Some characterizations of t-int-soft filters are derived. In Section 4,
a specific example of a t-int-soft filter is given. In Section 5, the general principles of investigating the
relations among t-int-soft filters are given.

2. Preliminaries

Definition 1. [16] A residuated lattice is an algebra (L,∧,∨,⊗,→, 0, 1), such that the following conditions hold:

R1 (L,∧,∨, 0, 1) is a bounded lattice,
R2 (L,⊗, 1) is a commutative monoid, and
R3 x⊗ y ≤ z if and only if x ≤ y → z for all x, y, z ∈ L.

For x ∈ L, we define x∗ = x → 0 and x∗∗ = (x∗)∗. For a natural number n, we define x0 = 1 and
xn = xn−1 ⊗ x for n ≥ 1.

Definition 2. [17,22,31,32] Let L be a residuated lattice. Then, L is called:

• An involutive (or regular) residuated lattice if x∗∗ = x for x ∈ L;
• a Heyting algebra if x⊗ y = x ∧ y for all x, y ∈ L, which is equivalent to x2 = x for all x ∈ L;
• a Rl-monoid if x ∧ y = x⊗ (x → y) for all x, y ∈ L (axiom of divisibility);
• an MTL-algebra if (x → y) ∨ (y → x) = 1 for all x, y ∈ L (axiom of prelinearity);
• a BL-algebra if it satisfies both axioms of prelinearity and divisibility;
• an MV-algebra if it is a regular Rl-monoid; and
• a Boolean algebra if it is an idempotent MV-algebra.

In what follows, L denotes a residuated lattice, unless otherwise specified.

We give some rules of calculus on L, which will be needed in the rest of study.

(1) 0∗ = 1, 1∗ = 0.
(2) x → y ≤ (y → z)→ (x → z).
(3) x⊗ y → z = x → (y → z).
(4) x ∨ y → y = x → y.
(5) x ≤ y if and only if x → y = 1.

Definition 3. [23] A nonempty subset F of L is called a filter if

(1) If x ∈ F and x ≤ y, then y ∈ F, and
(2) If x, y ∈ F, then x⊗ y ∈ F.

Theorem 1. [23] F is a filter if and only if

(1) 1 ∈ F, and
(2) If x, x → y ∈ F, then y ∈ F.
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It is clear that {1} and L are filters. In addition, given a filter F of L, we can define the relation ≡F
on L by x ≡F y if and only if x → y ∈ F and y → x ∈ F. We can also prove that ≡F is a congruence
relation. We use L/F to denote the set of the congruence classes of ≡F (i.e., L/F = {[x]F|x ∈ L}),
where [x]F := {y ∈ L|y ≡F x}. If we define the following operations on L/F: [x]F �′ [y]F = [x ∧ y]F,
[x]F  ′ [y]F = [x ∨ y]F, and [x]F !′ [y]F = [x ⊗ y]F, [x]F ⇀′ [y]F = [x → y]F, then, we have the
following lemma.

Lemma 1. [23,26] Let F be a filter of L. Then (L/F,�′, ′,!′,⇀′, [0]F, [1]F) is a residuated lattice, with
respect to F.

In what follows, we recall some basic concepts of soft sets.

Let U be an initial universe set, and E a set of parameters. Let P(U) denote the power set of U
and A, B, C · · · ⊆ E.

Definition 4. [5] A soft set ( f̃ , A) over U is defined to be the set of ordered pairs

( f̃ , A) := {(x, f̃ (x)) : x ∈ E, f̃ (x) ∈ P(U)},

where f̃ : E → P(U), such that f̃ (x) = ∅ if x /∈ A.

Now, we take a residuated lattice L as the set of parameters.

Definition 5. [30] A soft set ( f̃ , L) over U is called an int-soft filter of L if it satisfies

(1) f̃ (x) ∩ f̃ (y) ⊆ f̃ (x⊗ y), ∀x, y ∈ L, and
(2) If x ≤ y, then f̃ (x) ⊆ f̃ (y), ∀x, y ∈ L.

Lemma 2. [30] Every int-soft filter ( f̃ , L) of L satisfies

(1) f̃ (x) ⊆ f̃ (1), ∀x ∈ L, and
(2) f̃ (x) ∩ f̃ (x → y) ⊆ f̃ (y), ∀x, y ∈ L.

Theorem 2. [30] A soft set ( f̃ , L) over U is an int-soft filter of L if and only if the set

f̃τ := {x ∈ L | τ ⊆ f̃ (x)}

is a filter of L, for all τ ∈ P(U), with f̃τ 
= ∅.

Lemma 3. A soft set (T̃, L) is an int-soft filter of L, where T̃ has the following form

T̃(x) =

{
U, if x = 1,

∅, if x 
= 1.
(1)

Proof. ∀τ ∈ P(U),

T̃τ =

{
L, if τ = ∅,

{1}, if τ 
= ∅.
(2)

By Theorem 2, we know that (T̃, L) is an int-soft filter.

Lemma 4. Let ( f̃ , L) be a soft set. If ( f̃ , L) is an int-soft filter, then f̃ f̃ (1) is a filter.
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Proof. Let ( f̃ , L) be an int-soft filter. Since 1 ∈ f̃ f̃ (1), we have f̃ f̃ (1) 
= ∅. By Theorem 2, we have f̃ f̃ (1)
is a filter.

3. T-Filters and T-Int-Soft Filters

In this section, we use the symbol x̄ to indicate the abbreviation of x, y, . . .; that is, x̄ is a formal
listing of variables used in a given context. We use the term t to denote a term in the language of
residuated lattices. Given a variety B of residuated lattices, we denote its subvariety satisfying the
equation t = 1 by the symbol B[t], and we call this algebra the t-algebra.

Definition 6. [24] Let t be an arbitrary term on the language of residuated lattices. A filter F of L is a t-filter if
t(x̄) ∈ F for all x̄ ∈ L.

Example 1. [17,18,21,24–26] Let F be a filter of L. Then F is,

• an involution filter (or a regular filter) for t(x̄) = x∗∗ → x;
• a Heyting filter for t(x̄) = x → x2;
• a Rl-monoid filter (or a divisible filter) for t(x̄) = (x ∧ y)→ (x⊗ (x → y));
• a MTL-filter for t(x̄) = (x → y) ∨ (y → x);
• a BL-filters for t(x̄) = ((x → y)→ (x → z))→ ((x → z) ∨ (y → z));
• a MV-filter for t(x̄) = ((x → y)→ y)→ ((y → x)→ x); and
• a Boolean filter for t(x̄) = x ∨ x∗.

Remark 1. Many of the filters in Example 1 have different names. To avoid confusion, Buşneag and Piciu [18]
proposed a new approach for classifying filters and renamed some filters.

Theorem 3. [24] Let B be a variety of residuated lattices and L ∈ B. Then, the following statements
are equivalent:

(1) Every filter of L is a t-filter.
(2) {1} is a t-filter.
(3) L ∈ B(t).

Theorem 4. [24] Let B be a variety of residuated lattices, L ∈ B, and F a filter of L. Then, F is a t-filter if and
only if L/F ∈ B(t).

Definition 7. Let ( f̃ , L) be an int-soft filter of L. ( f̃ , L) is called a t-int-soft filter if, for all τ ∈ P(U), f̃τ is
either empty or a t-filter.

Remark 2. According to Definition 7, we can define involution-int-soft filters, MTL-int-soft filters, and
BL-int-soft filters.

Theorem 5. Let ( f̃ , L) be an int-soft filter of L. Then, ( f̃ , L) is a t-int-soft filter if and only if f̃ f̃ (1) is a t-filter.

Proof. Let ( f̃ , L) be a t-int-soft filter. Since 1 ∈ f̃ f̃ (1), then f̃ f̃ (1) 
= ∅. By Definition 7, we have that

f̃ f̃ (1) is a t-filter.

Conversely, suppose ( f̃ , L) is an int-soft filter of L. Then, by Theorem 2, ∀τ ∈ P(U), we have
if f̃τ 
= ∅, then f̃τ is a filter. Let f̃ f̃ (1) be a t-filter, then t(x̄) ∈ f̃ f̃ (1). For all τ ∈ P(U), there exist
two cases:

(i) τ ⊆ f̃ (1):
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Suppose x ∈ f̃ f̃ (1), then f̃ (x) ⊇ f̃ (1) ⊇ τ. This shows that x ∈ f̃τ . Thus, f̃ f̃ (1) ⊆ f̃τ . Hence,

t(x̄) ∈ f̃τ . By Definition 6, we have that f̃τ is a t-filter.

(ii) τ ⊃ f̃ (1):

Since ( f̃ , L) is an int-soft filter, then ∀x ∈ L, τ ⊃ f̃ (1) ⊇ f̃ (x). Thus, f̃τ = ∅.

By Definition 7, we know that ( f̃ , L) is a t-int-soft filter.

Theorem 6. (Extension property) Let f̃ , g̃ be int-soft filters of L, f̃ (x) ⊆ g̃(x) for all x ∈ L, and, moreover,
f̃ (1) ⊇ g̃(1). If ( f̃ , L) is a t-int-soft filter, then (g̃, L) is a t-int-soft filter.

Proof. Let ( f̃ , L) be a t-int-soft filter and f̃ (1) ⊇ g̃(1). Then, f̃ f̃ (1) is a t-filter. Thus, t(x̄) ∈ f̃ f̃ (1).

Suppose x ∈ f̃ f̃ (1), then f̃ (x) ⊇ f̃ (1). Also, g̃(x) ⊇ f̃ (x), and thus g̃(x) ⊇ f̃ (x) ⊇ f̃ (1) ⊇ g̃(1).
This shows that x ∈ g̃g̃(1). That is, f̃ f̃ (1) ⊆ g̃g̃(1). Thus, t(x̄) ∈ g̃g̃(1). We have that g̃g̃(1) is a t-filter.
Hence, g̃ is a t-int-soft filter.

The next part concerns the quotient structure.

Lemma 5. If ( f̃ , L) is an int-soft filter, then f̃ (x → z) ⊇ f̃ (x → y) ∩ f̃ (y → z) for all x, y, z ∈ L.

Proof. Assume that ( f̃ , L) is an int-soft filter. Since x → y ≤ (y → z) → (x → z), it follows,
from Definition 5 (2), that f̃ ((y → z) → (x → z)) ⊇ f̃ (x → y). From Lemma 2 (2), we have
f̃ (x → z) ⊇ f̃ (y → z) ∩ f̃ ((y → z)→ (x → z)). Thus, f̃ (x → z) ⊇ f̃ (x → y) ∩ f̃ (y → z).

Lemma 6. Let ( f̃ , L) be an int-soft filter of L and x, y ∈ L. For any z ∈ L, we define f̃ x : L → P(U),
f̃ x(z) = f̃ (x → z) ∩ f̃ (z → x). Then, f̃ x = f̃ y if and only if f̃ (x → y) ⊇ f̃ (1) and f̃ (y → x) ⊇ f̃ (1).

Proof. Suppose f̃ x = f̃ y, then f̃ x(x) = f̃ y(x). Also, f̃ x(x) = f̃ (1), f̃ y(x) = f̃ (y → x) ∩ f̃ (x → y).
Thus, f̃ (x → y) ⊇ f̃ (1) and f̃ (y → x) ⊇ f̃ (1).

Conversely, suppose f̃ (x → y) ⊇ f̃ (1) and f̃ (y → x) ⊇ f̃ (1). For any z ∈ L, f̃ x(z) = f̃ (x →
z) ∩ f̃ (z → x), f̃ y(z) = f̃ (y → z) ∩ f̃ (z → y). By Lemma 5, f̃ (x → z) ⊇ f̃ (x → y) ∩ f̃ (y → z) ⊇
f̃ (1) ∩ f̃ (y → z) ⊇ f̃ (y → z). We have f̃ (z → x) ⊇ f̃ (z → y) ∩ f̃ (y → x) ⊇ f̃ (z → y) ∩ f̃ (1) ⊇
f̃ (z → y). Thus, f̃ (x → z) ∩ f̃ (z → x) ⊇ f̃ (z → y) ∩ f̃ (y → z). Similarly, f̃ (y → z) ∩ f̃ (z → y) ⊇
f̃ (x → z) ∩ f̃ (z → x). Therefore, f̃ (x → z) ∩ f̃ (z → x) = f̃ (y → z) ∩ f̃ (z → y). This shows that
f̃ x(z) = f̃ y(z). By the arbitrariness of z, we have f̃ x = f̃ y.

Theorem 7. Let ( f̃ , L) be an int-soft filter of L. Then, f̃ x = f̃ y if and only if x → y ∈ f̃ f̃ (1) and y → x ∈ f̃ f̃ (1)
if and only if x ≡ f̃ f̃ (1)

y.

Proof.

f̃ x = f̃ y ⇐⇒ f̃ (x → y) ⊇ f̃ (1), f̃ (y → x) ⊇ f̃ (1)

⇐⇒ x → y ∈ f̃ f̃ (1), y → x ∈ f̃ f̃ (1)

⇐⇒ x ≡ f̃ f̃ (1)
y.

Theorem 8. Let ( f̃ , L) be an int-soft filter of L, L/ f̃ := { f̃ x|x ∈ L}. For any f̃ x, f̃ y ∈ L/ f̃ , if we define
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f̃ x � f̃ y = f̃ x∧y, f̃ x  f̃ y = f̃ x∨y , f̃ x ! f̃ y = f̃ x⊗y, f̃ x ⇀ f̃ y = f̃ x→y , then L/ f̃ = (L/ f̃ ,�, ,!,⇀
, f̃ 0, f̃ 1) is a residuated lattice.

Proof. Suppose f̃ x = f̃ s, f̃ y = f̃ t. By Theorem 7, we have x ≡ f̃ f̃ (1)
s, y ≡ f̃ f̃ (1)

t. Since ≡ f̃ f̃ (1)
is

a congruence relation on L, we have x ∨ y ≡ f̃ f̃ (1)
s ∨ t, and so f̃ x∨y = f̃ s∨t. Similarly, we have

f̃ x∧y = f̃ s∧t, f̃ x⊗y = f̃ s⊗t, f̃ x→y = f̃ s→t. This shows that the operators on L/ f̃ are well defined.

Clearly, L/ f̃ satisfies (R1) and (R2). We only need to prove that (!,⇀) is an adjoint pair. We note
that the lattice order f̃ x " f̃ y if and only if f̃ x  f̃ y = f̃ y and

f̃ x " f̃ y ⇐⇒ f̃ x  f̃ y = f̃ y

⇐⇒ f̃ x∨y = f̃ y

⇐⇒ f̃ (x ∨ y → y) ⊇ f̃ (1)

⇐⇒ f̃ (x → y) ⊇ f̃ (1).

Suppose f̃ x, f̃ y, f̃ z ∈ L/ f̃ , then

f̃ x ! f̃ y " f̃ z ⇐⇒ f̃ x⊗y " f̃ z

⇐⇒ f̃ (x⊗ y → z) ⊇ f̃ (1)

⇐⇒ f̃ (x → (y → z)) ⊇ f̃ (1)

⇐⇒ f̃ x " f̃ y→z

⇐⇒ f̃ x " f̃ y ⇀ f̃ z.

Therefore, (R3) holds. This shows that L/ f̃ is a residuated lattice.

Theorem 9. Let ( f̃ , L) be an int-soft filter. Then, the residuated lattice L/ f̃ ∼= L/ f̃ f̃ (1).

Proof. Define a mapping ϕ : L −→ L/ f̃ by ϕ(x) = f̃ x. Then,

x ∈ ker(ϕ)⇐⇒ ϕ(x) = f̃ 1

⇐⇒ f̃ x = f̃ 1

⇐⇒ f̃ (x) ⊇ f̃ (1)

⇐⇒ x ∈ f̃ f̃ (1).

Therefore, ker(ϕ) = f̃ f̃ (1). Clearly, ϕ is surjective. It is easy to verify that ϕ is a homomorphism.

Thus, L/ f̃ ∼= L/ f̃ f̃ (1).

Theorem 10. (Quotient characteristics) Let ( f̃ , L) be an int-soft filter of L. Then, ( f̃ , L) is a t-int-soft filter if
and only if L/ f̃ ∈ B(t).

Proof. ( f̃ , L) is a t-int-soft filter if and only if f̃ f̃ (1) is a t-filter if and only if L/ f̃ f̃ (1) ∈ B(t) if and only if

L/ f̃ ∈ B(t) .

Theorem 11. (Triple of equivalent characteristics) Let L be a residuated lattice. Then, the following statements
are equivalent:

(1) Every int-soft filter of L is a t-int-soft filter.
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(2) (T̃, L) is a t-int-soft filter.
(3) L ∈ B(t).

Proof. (1)=⇒(2)

Since (T̃, L) is an int-soft filter, the result is obvious.

(2)=⇒(3)

Suppose (T̃, L) is a t-int-soft filter, then T̃T̃(1) is a t-filter. Thus, L/T̃T̃(1) ∈ B(t). Also, T̃T̃(1) = {1}
and L/{1} ≈ L. Thus, L ∈ B(t).

(3)=⇒(1)

Suppose ( f̃ , L) is an int-soft filter of L, then f̃ f̃ (1) is a filter. Also, L ∈ B(t), and thus f̃ f̃ (1) is a t-filter.

Hence, ( f̃ , L) is a t-int-soft filter.

4. A Specific Example

In this section, we use involution-int-soft filters as an example.

Definition 8. Let ( f̃ , L) be an int-soft filter of L. Then, ( f̃ , L) is called an involution-int-soft filter if, for all
τ ∈ P(U), f̃τ is either empty or an involution filter.

Lemma 7. Let ( f̃ , L) be an int-soft filter of L. Then, ( f̃ , L) is an involution-int-soft filter if and only if
f̃ (x∗∗ → x) ⊇ f̃ (1), for all x ∈ L.

Proof. Suppose ( f̃ , L) is an involution-int-soft filter, then, by Theorem 5, we have that f̃ f̃ (1) is an

involution filter. By Example 1, we have x∗∗ → x ∈ f̃ f̃ (1). This shows that f̃ (x∗∗ → x) ⊇ f̃ (1).

Conversely, since ( f̃ , L) is an int-soft filter, then f̃ f̃ (1) is a filter. Suppose f̃ (x∗∗ → x) ⊇ f̃ (1),
then x∗∗ → x ∈ f̃ f̃ (1). By Example 1, we know that f̃ f̃ (1) is an involution filter. Thus, ( f̃ , L) is an
involution-int-soft filter. �

Theorem 12. (Extension property) Let f̃ , g̃ be int-soft filters of L, f̃ (x) ⊆ g̃(x) for all x ∈ L, and, moreover,
f̃ (1) ⊇ g̃(1). If ( f̃ , L) is an involution-int-soft filter, then (g̃, L) is an involution-int-soft filter.

Theorem 13. (Quotient characteristics) Let ( f̃ , L) be an int-soft filter of L. Then, ( f̃ , L) is an involution-int-soft
filter if and only if L/ f̃ is an involutive residuated lattice.

Theorem 14. (Triple of equivalent characteristics) Let L be a residuated lattice. Then, the following statements
are equivalent:

(1) Every int-soft filter of L is an involution-int-soft filter.
(2) (T̃, L) is an involution-int-soft filter.
(3) L is an involutive residuated lattice.

5. The Relations among T-Int-Soft Filters on Residuated Lattices

Lemma 8. [21] Let L be a residuated lattice. Every Heyting algebra is a Rl-monoid.

Lemma 9. [33] Let L be a residuated lattice. Then, the following statements are equivalent:

(1) L is a Boolean algebra.
(2) L is involutive and idempotent.
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Lemma 10. [31,32] Let L be a residuated lattice. Then, L is an MV-algebra if and only if L is an involutive
BL-algebra.

In what follows, let ( f̃ , L) be an int-soft filter of L.

Theorem 15. If ( f̃ , L) is a t1-int-soft filter and B(t1) ⊆ B(t2), then ( f̃ , L) is a t2-int-soft filter.

Proof. ( f̃ , L) is a t1-int-soft filter =⇒ L/ f̃ ∈ B(t1) =⇒ L/ f̃ ∈ B(t2) =⇒ ( f̃ , L) is a t2-int-soft filter.

Theorem 16. If B(t1) ⊆ B(t2) and B(t2) ⊆ B(t1), then ( f̃ , L) is a t1-int-soft filter if and only if ( f̃ , L) is a
t2-int-soft filter.

Proof. ( f̃ , L) is a t1-int-soft filter⇐⇒ L/ f̃ ∈ B(t1)⇐⇒ L/ f̃ ∈ B(t2)⇐⇒ ( f̃ , L) is a t2-int-soft filter.

Remark 3. The above results reveal the general principles concerning the relations among t-int-soft filters.
Their relations are consistent with those among the corresponding quotient algebras. Since we are familiar
with the relations among these algebras, we can easily obtain the relations among t-int-soft filters. We have the
following results.

Theorem 17. Let L be a residuated lattice. If ( f̃ , L) is a Boolean-int-soft filter, then ( f̃ , L) is a MV-int-soft
filter, an involution-int-soft filter, a Heyting-int-soft filter, a Rl-monoid-int-soft filter, a MTL-int-soft filter, and a
BL-int-soft filter.

Theorem 18. Let L be a residuated lattice. If ( f̃ , L) is a MV-int-soft filter, then ( f̃ , L) is a MTL-int-soft filter,
an involution-int-soft filter, a Rl-monoid-int-soft filter, and a BL-int-soft filter.

Theorem 19. Let L be a residuated lattice. If ( f̃ , L) is a Heyting-int-soft filter filter, then ( f̃ , L) is a
Rl-monoid-int-soft filter.

Theorem 20. Let L be a residuated lattice. Then, ( f̃ , L) is a Boolean-int-soft filter if and only if ( f̃ , L) is a
MV-int-soft filter and a Heyting-int-soft filter.

Theorem 21. Let L be a residuated lattice. Then, ( f̃ , L) is a MV-int-soft filter if and only if ( f̃ , L) is an
involution-int-soft filter and a Rl-monoid-int-soft filter.

Theorem 22. Let L be a residuated lattice. Then, ( f̃ , L) is a BL-int-soft filter if and only if ( f̃ , L) is a
MTL-int-soft filter and a Rl-monoid-int-soft filter.

6. Conclusions and Future Work

In this paper, we proposed the notion of t-int-soft filters on residuated lattices. In our framework,
the “generator” of t-int-soft filters was given. As long as there are t-filters, we can obtain the
corresponding t-int-soft filters. The characterizations of t-int-soft filters were derived. The general
principles of investigating the relations among t-int-soft filters were derived. The research embodies
the relationship between t-filters and t-int-soft filters. The thoughts and methods in this paper can be
completely applied to special cases of residuated lattices, and the corresponding int-soft filters can be
introduced and their characterizations can be obtained on these logical algebras.

Additionally, in [34–36], Chishty and Jun et al., respectively, discussed the properties of uni-soft
filters on residuated lattices and MTL-algebras. In our future work, we will characterize the common
features of uni-soft filters on residuated lattices.
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17. Buşneag, D.; Piciu, D. Semi-G-filters, Stonean filters, MTL-filters, divisible filters, BL-filters and regular filters

in residuated lattices. Iran. J. Fuzzy Syst. 2016, 13, 145–160.
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Abstract: Molodtsov originated soft set theory, which followed a general mathematical framework
for handling uncertainties, in which we encounter the data by affixing the parameterized factor
during the information analysis. The aim of this paper is to establish a bridge to connect a soft set
and the union operations on sets, then applying it to BCK/BCI-algebras. Firstly, we introduce the
notion of the (α, β)-Union-Soft ((α, β)-US) set, with some supporting examples. Then, we discuss
the soft BCK/BCI-algebras, which are called (α, β)-US algebras, (α, β)-US ideals, (α, β)-US closed
ideals, and (α, β)-US commutative ideals. In particular, some related properties and relationships of
the above algebraic structures are investigated. We also provide the condition of an (α, β)-US ideal to
be an (α, β)-US closed ideal. Some conditions for a Union-Soft (US) ideal to be a US commutative
ideal are given by means of (α, β)-unions. Moreover, several characterization theorems of (closed) US
ideals and US commutative ideals are given in terms of (α, β)-unions. Finally, the extension property
for an (α, β)-US commutative ideal is established.

Keywords: BCK/BCI-algebra; (α, β)-US set; (α, β)-US subalgebra; (α, β)-US (closed) ideal; (α, β)-US
commutative ideal

MSC: 06F35; 03G25; 06D72

1. Introduction

Most of the real-world problems in social sciences, the environment, engineering, medical
sciences, economics, etc., involve data that contain uncertainties. To overcome these uncertainties,
researchers are motivated to introduce some classical theories like the theories of fuzzy sets [1],
rough sets [2], intuitionistic fuzzy sets [3], vague sets [4], and interval mathematics [5], i.e., by which
we can have a mathematical tool to deal with uncertainties. Even though sets are very powerful to
model the problems containing uncertainties, in some cases, these sets are not enough to overcome
the serious types of uncertainties experienced in real-world problems. In that situation, in 1999,
Molodtsov [6] posited the novel concept of soft set theory, which is a completely new approach for
modeling vagueness and uncertainties. Some tremendous developments based on soft sets [7] have
been recently drawn the attention of many scholars: in particular, Aktas and Çagman [8] used soft
groups; Acar et al. [9] provided soft rings; and Ali et al. [10] defined new working rules on soft sets.
Çagman et al. [11] studied soft-intgroups. Feng et al. [12] described soft semi-rings. Sezgin et al. [13]
described soft intersection near-rings. Now, the above results have been applied to the disciplines
of information sciences, decision support systems, knowledge systems, decision-making, and so
on, reviewed in [14–20]. Recently, researchers have drawn attention to modeling covering-based
problems on rough and soft sets with their applications to MADMproblems [21–23]. Additionally,
there is a huge scope of application to develop covering-based algebraic structures in different
kinds of algebras. Zhan et al. [24–26] introduced a new notion called (M, N)-SI-h-bi-ideals and
(M, N)-SI-h-quasi-ideals in the environment of hemirings. At the same time, different soft algebraic
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structures have been developed on BCK/BCI-algebras, which was proposed by Imai and Iśeki [27,28].
Here, we briefly review some results of soft sets in the existing literature of BCK/BCI-algebras. Jana
et al. [29–31], Ma and Zhan [32–34], and Senapati et al. [35,36] performed detailed investigations on
BCK/BCI-algebras and related algebraic systems. In [37], Jun first constructed soft algebraic structure
of BCK/BCI-algebras. Jun and Park [38] also pointed out applications of soft sets in the ideal theory
of BCK/BCI-algebras. Jun et al. [39] also studied the soft p-ideal of soft BCI-algebras. Acar and
Özürk [40] analytically studied maximal, irreducible, and prime soft ideals of BCK/BCI-algebras
with supporting examples. First, Jun et al. [41,42] proposed a novel concept, namely union-soft
sets and int-soft sets, and then implemented it to develop union-soft BCK/BCI-algebras and int-soft
BCK/BCI-algebras. Sezgin [43] considered studying soft union interior ideals, quasi-ideals, and
generalized bi-ideals of rings and gave their interrelationship. She also studied regular, intra-regular,
regular-duo, and strongly-regular properties of rings in terms of soft-union ideals. Sezgin et al. [44]
introduced a new soft classical ring theory, namely soft intersection rings, ideals, bi-ideals, interior
ideals, and quasi-ideals. Furthermore, they defined their soft-union intersection product and their
corresponding relationships. Jana and Pal [45] defined the concept of (α, β)-soft intersection sets and
then introduced this ideal to develop (α, β)-soft intersectional groups structures and their various
properties. Jana and Pal [46] also motivated using the same concept for the development of (α, β)-soft
intersectional BCK/BCI algebraic structures. Again, Jana et al. [47] proposed providing (α, β)-soft
intersectional rings, (α, β)-soft intersectional ideals, and their relationships. In this environment,
different union-soft algebras and (α, β)-soft intersectional algebras in different uncertain fuzzy
environments under soft operations are considered by us as enough motivation to develop our
proposal. There is an important issue in defining new (α, β)-US sets based on soft operations and their
application to develop different kinds of US algebraic structures. Therefore, based on the (α, β)-US
operation, how to develop (α, β)-US BCK/BCI-algebras is a tremendous topic. To solve this problems,
in this paper, we shall develop (α, β)-US BCK/BCI-algebras introducing the concept of (α, β)-US
sets and their application to subalgebras, ideals, and commutative ideals in BCK/BCI-algebras on
the basis of traditional union-soft algebras [24,25,41,42] and the results of [26,48]. We discuss the
relationship between (α, β)-US subalgebras, (α, β)-US ideals, and (α, β)-US commutative ideals in
detail. We provide the condition that an (α, β)-US ideal is an (α, β)-US commutative ideal.

The remainder of this article is structured as follows: Section 2 proceeds with a recapitulation of
all required definitions of BCK/BCI-algebras, basic definitions of soft sets, and subsequent discussions.
In Section 3, the concepts of (α, β)-US sets are proposed and illustrated by some examples. In Section 4,
the notion of (α, β)-US subalgebras of BCK/BCI-algebras is introduced and their properties discussed
in detail.In Section 5, some interesting properties of (α, β)-US ideals in BCK/BCI-algebras are
introduced. Some characterization theorems of the (α, β)-US commutative ideals in BCK/BCI-algebras
are established in Section 6. Finally, in Section 7, conclusions and the scope for future research are
given.

2. BCK/BCI-Algebras and Soft Sets

In this section, we introduce some elementary aspects that are necessary for this paper. For more
information regarding BCK/BCI-algebras, the reader is referred to the monograph [49]. By a
BCI-algebra, we mean an algebra (X, ∗, 0) of the type (2, 0) satisfying the following axioms for all
x, y, z ∈ X:

(C1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0
(C2) (x ∗ (x ∗ y)) ∗ y = 0
(C3) x ∗ x = 0
(C4) x ∗ y = 0 and y ∗ x = 0 imply x = y.
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If a BCI-algebra X satisfies the following identity:

(C5) 0 ∗ x = 0,

then X is called a BCK-algebra. Any BCK/BCI-algebra satisfies the following axioms: for all
x, y, z ∈ X

(C6) x ∗ 0 = x
(C7) x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x
(C8) (x ∗ y) ∗ z = (x ∗ z) ∗ y
(C9) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y

The partial ordering is defined as x ≤ y if and only if x ∗ y = 0. In a BCI-algebra X, the following
hold:

(C10) (x ∗ (x ∗ (x ∗ y))) = x ∗ y
(C11) (0 ∗ (x ∗ y)) = (0 ∗ x) ∗ (0 ∗ y).

A non-empty subset S of a BCK/BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S for
all x, y ∈ X. A BCK-algebra X is said to be commutative x ∧ y = y ∧ x for all x, y ∈ X, where
y ∧ x = y ∗ (y ∗ x). A subset I of a BCK/BCI-algebra X is called an ideal of X if for all x, y ∈ X,

(C12) 0 ∈ A
(C13) y ∈ A and x ∗ y ∈ A ⇒ x ∈ A.

A subset I of a BCK-algebra X is called a commutative ideal if it satisfies (C12) and for z ∈ I
(C14) ((x ∗ y) ∗ z ∈ I ⇒ (x ∗ (y ∗ (y ∗ x))) ∈ I.

An ideal I of a BCK-algebra X is called commutative if it satisfies the implication x ∗ y ∈ I ⇒
x ∗ (y ∗ (y ∗ x)) ∈ I.

U refers to an initial universal set, and E is the set of parameters. Let P(U) be the power set of U
and A ⊂ E. Molodtsov [6] introduced soft sets in the following manner:

Definition 1 ([6]). A pair (F , E) is called a soft set over U if F is a function given by:

F : E → P(U).

In other words, a soft set in the universe U is a parameterized family of subsets of the universal set U. For
ε ∈ A, F (ε) may be considered as the set of ε-elements of the soft (F , A) or as the set of ε-approximate elements
of the soft set.

The following example illustrates the above idea.

Example 1. Let (X, τ) be a topological space, i.e., τ is a family of subsets of the set X called the open sets of X.
Then, the family of open neighborhoods N(x) of point x, where N(x) = {V ∈ τ|x ∈ V}, may be considered as
the soft set (N(x), τ).

Definition 2 ([6,14]). For a non-empty subset A of E, a soft set (F , E) over U satisfying the condition:

F (x) = ∅ f or all x 
∈ A
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is called the A-soft set over U and is denoted by FA, so an A-soft set FA over U is a function FA : E → P(U)

such that FA(x) = ∅ for all x 
∈ A. A soft set over U can be followed by the set of ordered pairs:

FA = {(x,FA(x)) : x ∈ E,FA(x) ∈ P(U)}.

We remark that a soft set is a parameterized family of subsets of the set U. A soft set FA(x) may be an
arbitrary, empty, and nonempty intersection. The set of all soft sets over U is denoted by S(U).

Definition 3 ([14]). Let FA ∈ S(U). For all x ∈ E, If FA(x) = ∅, then FA is said to be an empty soft set
and symbolized by ΦA. If FA(x) = U, then FA is said to be an A-universal soft set and symbolized as FÃ. If
FA(x) = U and A = E, then FÃ is said to be a universal soft set and is denoted by FẼ.

Proposition 1 ([14]). Let FA ∈ S(U). Then,
(i) FA

⋃̃FA = FA, FA
⋂̃FA = FA.

(ii) FA
⋃̃

ΦA = FA, FA
⋂̃

ΦA = ΦA.
(iii) FA

⋃̃FE = FE, FA
⋂̃FE = FA.

(iv) FA
⋃̃F c

A = FE, F c
Ã
⋃̃F c

A = ΦA, where ΦA is an empty set.

Definition 4 ([37]). Let E be a BCK/BCI-algebra and (F , A) be a soft set over BCK/BCI-algebra E. Then,
(F , A) is called a soft BCK/BCI-algebra over E if F (x) is a subalgebra of E for all x ∈ E.

Definition 5 ([42]). Let E be a BCK/BCI-algebra. Let FA ∈ S(U) for a given subalgebra A of E. Then, FA
is called a US algebra of A over U if, for all x, y ∈ A, it satisfies the following condition:

FA(x ∗ y) ⊆ FA(x) ∪ FA(y).

Definition 6 ([42]). Let E be a BCK/BCI-algebra and A be a subalgebra of E. Let FA ∈ S(U). Then, FA is
called a US ideal over U if, for all x, y ∈ A, it satisfies the following conditions:
(1) FA(0) ⊆ FA(x)
(2) FA(x) ⊆ FA(x ∗ y) ∪ FA(y).

Definition 7 ([42]). Let E be a BCK/BCI-algebra. For a given subalgebra A of E, let FA ∈ S(U), then the
US ideal FA is said to be closed if, for all x ∈ A, it satisfies the following condition:

FA(0 ∗ x) ⊆ FA(x).

Definition 8 ([42]). Let E be a BCK-algebra. For a given subalgebras A of E, let FA ∈ S(U). Then, FA is
called a US commutative ideal over U if, for all x, y, z ∈ A, it satisfies the following conditions:
(1) FA(0) ⊆ FA(x)
(2) FA(x ∗ (y ∗ (y ∗ x))) ⊆ FA((x ∗ y) ∗ z) ∪ FA(z).

Definition 9 ([42]). Let FA ∈ S(U) and δ ⊆ U. Then, the δ-exclusion set of FA, denoted by F δ
A, is defined

by F δ
A(x) = {x ∈ A|FA(x) ⊆ δ}.

3. (α, β)-US Sets

In this section, U is the initial universe, E is the set of parameters, and “ �′′ is a binary operation.
Now, we let S(U) be the set of all soft sets. We introduce the notion of (α, β)-US sets and illustrate
them by some examples. From now on, we let ∅ ⊆ α ⊂ β ⊆ U.
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Definition 10. For any non-empty subset A of E, consider the soft set FA ∈ S(U). Then, for all x, y ∈ A, the
soft set FA is called an (α, β)-US set over U if it satisfies the following condition:

FA(x � y) ∩ β ⊆ FA(x) ∪ FA(y) ∪ α.

Example 2. We consider five houses in the initial universe set U, which is given by

U = {h1, h2, h3, h4, h5}.

Let the set of parameters E = {ξ1, ξ2, ξ3, ξ4} be the status of the set of houses, which follows for the parameters
“cheap”, “expensive:, “in the flooded area:, and “in the urban area”, respectively, with the following binary
operation:

� ξ1 ξ2 ξ3 ξ4

ξ1 ξ1 ξ1 ξ1 ξ1

ξ2 ξ2 ξ1 ξ1 ξ2

ξ3 ξ3 ξ3 ξ1 ξ3

ξ4 ξ4 ξ4 ξ4 ξ1

We consider a soft set FE over U, which is given as FE(ξ1) = {h3, h5}, FE(ξ2) = {h3, h4, h5}, FE(ξ3) =

{h2, h3, h4, h5}, and FE(ξ4) = {h1, h3, h5}. Fix β = {h1, h2, h3, h5} and α = {h2, h3}. Then, it can be easily
verified that FE is an (α, β)-US set over U.

Theorem 1. Let FA,FB ∈ S(U) be soft sets such that FA is a soft subset of FB. If FB is an (α, β)-US set
over U, then the same holds for FA.

Proof. Let x, y ∈ A such that x � y ∈ A. Then, x � y ∈ B since A ⊆ B. Thus, FA(x � y) ∩ β ⊆
FB(x � y) ∩ β ⊆ FB(x) ∪ FB(y) ∪ α = FA(x) ∪ FA(y) ∪ α. Therefore, FA is an (α, β)-US set
over U.

The converse of Theorem 1 is not true in general, as can be seen in the following example.

Example 3. We consider five houses in the initial universe set U, which is given by:

U = {h1, h2, h3, h4, h5}.

Let the set of parameters E = {ξ1, ξ2, ξ3, ξ4} be the status of the set of houses, which follows for the parameters
“beautiful”, “cheap”, “in a good location”, and “in green surroundings”, respectively, with the following binary
operation:

� ξ1 ξ2 ξ3 ξ4

ξ1 ξ1 ξ2 ξ3 ξ4

ξ2 ξ2 ξ1 ξ3 ξ2

ξ3 ξ3 ξ4 ξ1 ξ2

ξ4 ξ4 ξ3 ξ2 ξ1

Let A = {ξ1, ξ2} ⊂ E. Consider a soft set FE over U as FA(ξ1) = {h1, h3}, FA(ξ2) = {h1, h3, h4},
FA(ξ3) = ∅, FA(ξ4) = ∅, β = {h1, h3, h4, h5}, and α = {h3, h4}. Then, it can be easily verified that FA is
an (α, β)-US set over U.

Consider another soft set FB as FB(ξ1) = {h1, h3}, FB(ξ2) = {h1, h3, h4}, FB(ξ3) = {h2, h4}, and
FB(ξ4) = {h4, h5}. Then, FA is a soft subset of FB. However, for β = {h1, h3, h4, h5} and α = {h3, h4}, FB
is not an (α, β)-union soft set over U, because:

FB(ξ3 � ξ4) ∩ β = {h1, h3, h4} � {h2, h3, h4, h5} = FB(ξ3) ∪ FB(ξ4) ∪ α.
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4. (α, β)-US Subalgebras in BCK/BCI-Algebras

In this section, we introduce the concept of the (α, β)-US subalgebra of BCK/BCI-algebras and
investigate some of its characterization. Throughout this section, E = X is always a BCK/BCI-algebra
without any specification.

Definition 11. Let E be a BCK/BCI-algebra. Let FA ∈ S(U) for a given subalgebra A of E. Then, FA is
called an (α, β)-US algebra of A over U if, for all x, y ∈ A, it satisfies the condition:

FA(x ∗ y) ∩ β ⊆ FA(x) ∪ FA(y) ∪ α.

We consider the pre-order relation “⊆′′(α,β) on S(U) as: for anyFE,GE ∈ S(U) and ∅ ⊆ α ⊂ β ⊆ U,
we define FE ∩ β ⊆ GE ∪ α ⇔ FE(x) ∩ β⊆GE(x) ∪ α for any x ∈ E. We define a relation “ =′′

(α,β) such
as ⇔ FE ∩ β ⊆ GE ∪ α and GE ∩ β ⊆ FE ∪ α. Using the above notion, the (α, β)-US BCK/BCI-algebra
is defined as follows:

Definition 12. Let E be a BCK/BCI-algebra. Let FA ∈ S(U) for a given subalgebra A of E. Then, FA is
called an (α, β)-US algebra of A over U if, for all x, y ∈ A, it satisfies the condition:

FA(x ∗ y) ∩ β ⊆ FA(x) ∪ FA(y) ∪ α.

Example 4. Let X = {0, a, b, c, d} be a BCK-algebra with the following Cayley table:

∗ 0 a b c d
0 0 0 0 0 0
a a 0 0 0 0
b b b 0 0 0
c c c c 0 0
d d c c a 0

Let (FA, A) be a soft set over U = X, where E = A = X and FA : A → P(U) is a set-valued function defined
by FA(x) = {y ∈ X|y ∗ x = 0} for all x ∈ A. Then, FA(0) = {0}, FA(a) = {0, a}, FA(b) = {0, a, b},
FA(c) = {0, a, b, c}, and FA(d) = {0, a, b, c, d}. It can be easily verified that FA is an (α, β)-US algebra of A
over U, where β = {0, a, c, d} and α = {0, a, d}.

Theorem 2. Let E be a BCK/BCI-algebra, FA ∈ S(U) be a given subalgebra A of E, and β ⊆ U. For δ ∈ U,
FA is an (α, β)-US subalgebra of A over U if and only if each non-empty subset B(FA : δ), which is defined by:

B(FA : δ) = {x ∈ A|FA(x) ⊆ δ ∪ α}

where δ ⊆ β, is a subalgebra of A.

Proof. Let FA be an (α, β)-US algebra of A over U such that FA(x) ⊆ β for every x ∈ A, and let x, y ∈
B(FA : δ). Then, FA(x ∗ y) ∩ β ⊆ FA(x) ∪ FA(y) ∪ α ⊆ δ ∪ α, which implies that x ∗ y ∈ B(FA : δ).
Hence, B(FA : δ) is a subalgebra of A.

Conversely, let each non-empty subset B(FA : δ) be a subalgebra of A. Then, according to our
assumption on FA, for x, y ∈ A, there are δ1, δ2 ⊆ β such that FA(x) = δ1 and FA(y) = δ2. Thus,
FA(x) ⊆ δ andFA(y) ⊆ δ for δ = δ1 ∪ δ2 ⊆ β. Hence, x, y ∈ B(FA : δ). Since B(FA : δ) is a subalgebra
of A, so x ∗ y ∈ B(FA : δ). Thus, FA(x ∗ y) ∩ β ⊆ δ and FA(x) ∪ FA(y) ∪ α = δ1 ∪ δ2 ∪ α = δ ∪ α,
which implies FA(x ∗ y) ∩ β ⊆ FA(x) ∪ FA(y) ∪ α. Hence, the proof of the theorem is completed.
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Theorem 3. Let E be a BCK/BCI-algebra and FA ∈ S(U) be such that A ⊆ E. Then, FA is an (α, β)-US
algebra of A over U if, for all x ∈ A, it satisfies the condition:

FA(0) ∩ β ⊆ FA(x) ∪ α.

Proof. If 0 
∈ A, thenFA(0)∩ β = ∅∩ β ⊆ FA(x)∪ α for all x ∈ A. If 0 ∈ A, thenFA(0)∩ β = FA(x ∗
x) ∩ β ⊆ FA(x) ∪ FA(x) ∪ α = FA(x) ∪ α for all x ∈ A. Therefore, FA(0) ∩ β ⊆ FA(x) ∪ α holds.

Theorem 4. If a soft FA over U is an (α, β)-US algebra of A, then:

(FA(0) ∩ β) ∪ α ⊆ (FA(x) ∩ β) ∪ α, for all x ∈ A.

Proof. Let FA ∈ S(U), and by using Theorem 3, we get:

(FA(0) ∩ β) ∪ α = (FA(x ∗ x) ∩ β) ∪ α

⊆ ((FA(x) ∪ FA(x) ∪ α) ∩ β) ∪ α

= ((FA(x) ∩ β) ∪ α) ∪ ((FA(x) ∩ β) ∪ α)

⊆ (FA(x) ∩ β) ∪ α.

The proof of the theorem is complete.

Theorem 5. Let E be a BCI-algebra and FA ∈ S(U) for a given subalgebra A of E. Then, FA is an (α, β)-US
algebra of A over U if, for all x ∈ A, it satisfies the condition:

FA(x ∗ (0 ∗ y) ∩ β ⊆ FA(x) ∪ FA(y) ∪ α.

Proof. By using Theorem 3, we have:

FA(x ∗ (0 ∗ y) ∩ β ⊆ FA(x) ∪ FA(0 ∗ y) ∪ α

⊆ FA(x) ∪ FA(0) ∪ FA(y) ∪ α = FA(x) ∪ FA(y) ∪ α.

Therefore, FA(x ∗ (0 ∗ y) ∩ β ⊆ FA(x) ∪ FA(y) ∪ α holds for all x, y ∈ A.

Proposition 2. Let E be a BCK/BCI-algebra and FA ∈ S(U) for a given subalgebra A of E. Then, FA is a
(α, β)-US algebra of A over U if for all x ∈ A, it satisfies the condition:

FA(x ∗ y) ∩ β ⊆ FA(y) ∪ α ⇔ FA(x) ∩ β = FA(y) ∪ α.

Proof. We assume that FA(x ∗ y) ∩ β ⊆ FA(y) ∪ α for all x, y ∈ A. Take y = 0, and use (C6), which
induces FA(x) ∩ β = FA(x ∗ 0) ∩ β ⊆ FA(0) ∪ α. It follows from Theorem 3 that FA(x) ∩ β =

FA(0) ∪ α for all x ∈ A.
Conversely, suppose that FA(x) ∩ β = FA(0) ∪ α for all x ∈ A. Then,

FA(x ∗ y) ∩ β ⊆ FA(x) ∪ FA(y) ∪ α = FA(0) ∪ FA(y) ∪ α = FA(y) ∪ α

for all x, y ∈ A.

For a soft set (FA, A) over E, we consider the set:

X0 = {x ∈ A|FA(x) = FA(0)}.

Theorem 6. Let E be a BCK/BCI-algebra and A a subalgebra of E. Let (FA, A) be an (α, β)-US algebra over
E. Then, the set X∗

0 = {x ∈ A|(FA(x) ∩ β) ∪ α = (FA(0) ∩ β) ∪ α} is a subalgebra of E.
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Proof. If FA is an (α, β)-US algebra of A over U, then x, y ∈ X∗
0 ; we have (FA(x)∩ β)∪ α = (FA(0)∩

β) ∪ α = (FA(y) ∩ β) ∪ α. Then, from Theorem 3, we have (FA(0) ∩ β) ∪ α ⊆ (FA(x ∗ y) ∩ β) ∪ α for
all x, y ∈ A. This also takes the following form, (FA(x ∗ y)∩ β)∪ α ⊆ ((FA(x)∪FA(y)∪ α)∩ β)∪ α =

((FA(x)∩ β)∪ α)∪ (FA(y)∩ β)∪ α) ⊆ (FA(0)∩ β)∪ α. Hence, (FA(x ∗ y)∩ β)∪ α = (FA(0)∩ β)∪ α,
and so, x ∗ y ∈ X∗

0 . Thus, X∗
0 is a subalgebra of A.

Theorem 7. Let E be a BCK-algebra and FA ∈ S(U). Define a soft set F∗
A over U by F∗

A : E → P(U),

x �−→
{
FA(x) if x ∈ B(FA : δ)

U otherwise.
If FA is an (α, β)-US algebra over U, then so is F∗

A.

Proof. If FA is an (α, β)-US algebra over U, then B(FA : δ) is a subalgebra of A by Theorem 2. Let
x, y ∈ A. If x, y ∈ B(FA : δ), then x ∗ y ∈ B(FA : δ), and so,

F∗
A(x ∗ y) ∩ β = FA(x ∗ y) ∩ β ⊆ FA(x) ∪ FA(y) ∪ α = F∗

A(x) ∪ F∗
A(y) ∪ α.

If x 
∈ B(FA : δ) or y 
∈ B(FA : δ), then F∗
A(x) = U or F∗

A(y) = U. Thus, we have:

F∗
A(x ∗ y) ∩ β ⊆ U = F∗

A(x) ∪ F∗
A(y) ∪ α.

Therefore, F∗
A is an (α, β)-US algebra of A over U.

5. (α, β)-US Ideals in BCK/BCI-Algebras

In this section, we define the (α, β)-US ideal and (α, β)-US closed ideal and characterize their
properties in detail.

Definition 13. Let E be a BCK/BCI-algebra and A be a subalgebra of E. Let FA ∈ S(U), then FA is called
an (α, β)-US ideal over U if, for all x, y ∈ A, it satisfies Theorem 3 and the following condition:
FA(x) ∩ β ⊆ FA(x ∗ y) ∪ FA(y) ∪ α.

Example 5. Let U = Z (set of positive integers) be the universal set and E = {0, a, b, c, d} be a BCK-algebra
with the following Cayley table:

∗ 0 a b c d
0 0 0 0 0 0
a a 0 a 0 a
b b b 0 0 0
c c c c 0 c
d d d b b 0

For a subalgebra A = {0, b, c, d} of E, define the soft set (FA, A) over U as FA(0) = {1, 3, 4, 5, 7,
9, 11, 12}, FA(b) = {1, 2, 4, 5, 6, 7, 8, 10, 13}, FA(c) = {2, 3, 5, 6, 8, 9, 13}, and FA(d) = {1, 2, 3, 5,
8, 10, 13}. Then, FA is an (α, β)-US ideal of A over U where β = {1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13} and
α = {1, 3, 6, 7, 9, 10, 11, 12}.

Example 6. Let U = N (set of natural numbers) be the universal set and E = {0, a, b, c, d} be a BCK-algebra
with the following Cayley table:
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∗ 0 a b c d
0 0 0 0 0 0
a a 0 0 0 0
b b b 0 0 0
c c c c 0 0
d d c c a 0

Define the soft set FA over U as follows FA(0) = N, FA(a) = 2N, FA(b) = 4N, FA(c) = 6N, and
FA(d) = 8N. Then, FA is not an (α, β)-US ideal over U, where β = 12N and α = 24N, because:

FA(0) ∩ β = 12N � 8N = FA(d) ∪ α.

Lemma 1 ([42]). Let E be a BCK/BCI-algebra and A be a subalgebra of E. Let FA ∈ S(U), if FA is a US
ideal over U, then for all x, y ∈ A:

x ≤ y ⇒ FA(x) ⊆ FA(y).

Proof. Let x, y ∈ A be such that x ≤ y. Then, x ∗ y = 0, from which, by Definition 13 and Theorem 3,
we get FA(x) ⊆ FA(x ∗ y) ∪ FA(y) = FA(0) ∪ FA(y) = FA(y). Hence, FA(x) ⊆ FA(y).

Lemma 2. Let E be a BCK/BCI-algebra and A be a subalgebra of E. Let FA ∈ S(U). If FA is an (α, β)-US
ideal over U, then for all x, y ∈ A:

x ≤ y ⇒ FA(x) ∩ β ⊆ FA(y) ∪ α.

Proof. Let x, y ∈ A be such that x ≤ y. Then, x ∗ y = 0, from which, by Definition 13 and Theorem 3,
we get FA(x) ∩ β ⊆ FA(x ∗ y) ∪ FA(y) ∪ α = FA(0) ∪ FA(y) ∪ α = FA(y) ∪ α. Hence, FA(x) ∩ β ⊆
FA(y) ∪ α.

Proposition 3. Let E be a BCK/BCI-algebra. For a given subalgebra A of E, let FA ∈ S(U). If FA is an
(α, β)-US ideal over U, then for all x, y, z ∈ A, FA satisfies the following conditions:
(1) FA(x ∗ y) ∩ β ⊆ FA(x ∗ z) ∪ FA(z ∗ y) ∪ α

(2) FA(x ∗ y) = FA(0)⇒ FA(x) ∩ β ⊆ FA(y) ∪ α.

Proof. (1) Since (x ∗ y) ∗ (x ∗ z) ≤ z ∗ y, then from Lemma 2, FA((x ∗ y) ∗ (x ∗ z)) ⊆ FA(z ∗ y). Hence,

FA(x ∗ y) ∩ β ⊆ FA((x ∗ y) ∗ (x ∗ z)) ∪ FA(x ∗ z) ∪ α ⊆ FA(x ∗ z) ∪ FA(z ∗ y) ∪ α.

(2) If FA(x ∗ y) = FA(0), then for all x, y ∈ A,

FA(x) ∩ β ⊆ FA(x ∗ y) ∪ FA(y) ∪ α = FA(0) ∪ FA(y) ∪ α = FA(y) ∪ α.

Proposition 4. Let E be a BCK/BCI-algebra and A be a subalgebra of E. If FA is an (α, β)-US ideal over U,
then for all x, y, z ∈ A, the following conditions are equivalent:
(1) FA(x ∗ y) ∩ β ⊆ FA((x ∗ y) ∗ y) ∪ α.
(2) FA((x ∗ z) ∗ (y ∗ z)) ∩ β ⊆ FA((x ∗ y) ∗ z) ∪ α.

Proof. Assume that (1) holds and x, y, z ∈ A. Since ((x ∗ (y ∗ z)) ∗ z) ∗ z = ((x ∗ z) ∗ (y ∗ z)) ∗ z ≤
(x ∗ y) ∗ z by (1), (C8), and Lemma 2, we obtain the following equality: FA((x ∗ z) ∗ (y ∗ z)) ∩ β =

FA((x ∗ (y ∗ z)) ∗ z) ∩ β ⊆ FA(((x ∗ (y ∗ z)) ∗ z) ∗ z) ∪ α ⊆ FA((x ∗ y) ∗ z) ∪ α.
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Again, assume that (2) holds. If we put y = z in (2), then by (C3) and (C6), we get FA((x ∗
z) ∗ z) ∪ α ⊇ FA((x ∗ z) ∗ (z ∗ z)) ∩ β = FA((x ∗ z) ∗ 0) ∩ β = FA(x ∗ z) ∩ β, which implies that (1)
holds.

Theorem 8. Let E be a BCK/BCI-algebra and A be a given subalgebra of E. Then, every A-soft set is an
(α, β)-US ideal over U, and an A-soft set is an(α, β)-US BCK/BCI-algebra over U.

Proof. Let FA be an (α, β)-US ideal over U and A a subalgebra of E. From [42], we get x ∗ y ≤ x for all
x, y ∈ A. Then, it follows from Lemma 2 that FA(x ∗ y) ∩ β ⊆ FA(x) ∪ α ⊆ FA(x ∗ y) ∪ FA(y) ∪ α ⊆
FA(x) ∪ FA(y) ∪ α. Hence, FA is an (α, β)-US BCK/BCI-algebra over U.

The converse of Theorem 8 is not true. This is justified by the following example.

Example 7. Let U = N be the initial universal set. Let E = N be the set of natural numbers, and define a
binary operation ∗ on E such that:

x ∗ y =
x

(x, y)

for all x, y ∈ X, where (x, y) is the greatest common divisor of x and y. Then, (X; ∗, 1) is a BCK-algebra. For a
subalgebra A = {1, 2, 3, 4, 5} of E, define the soft set (FA, A) over U as follows: FA(1) = N, FA(2) = 4N,
FA(3) = 2N, FA(4) = 3N, and FA(5) = 8N. Then, FA is an (α, β)-US algebra of A over U, but it is not
an (α, β)-US ideal of A over U, where β = 6N and α = 12N, because:

FA(4) ∩ β = 18N � 4N = FA(4 ∗ 2) ∪ FA(2) ∪ α

Theorem 9. Let E be a BCK/BCI-algebra. Let FA ∈ S(U) and A be a subalgebra of E. If FA is an (α, β)-US
ideal over U, then for all x, y, z ∈ A, FA satisfies the following condition:

x ∗ y ≤ z ⇒ FA(x) ∩ β ⊆ FA(y) ∪ FA(z) ∪ α.

Proof. Let x, y ∈ A be such that x ∗ y ≤ z, then (x ∗ y) ∗ z = 0 ⇒

FA(x ∗ y) ∩ β ⊆ FA((x ∗ y) ∗ z) ∪ FA(z) ∪ α = FA(0) ∪ FA(z) ∪ α = F (z) ∪ α.

Also, from which by using Definition 13 and Theorem 3, follows as FA(x) ∩ β ⊆ FA(x ∗ y) ∪FA(y) ⊆
FA(y) ∪ FA(z) ∪ α.

The following results can be proven by induction.

Corollary 1. Let E be a BCK/BCI-algebra and A be a subalgebra of E. Let FA ∈ S(U), which satisfies the
hypothesis of Theorem 3. Then, FA is an (α, β)-US ideal over U if and only if for all x, a1, a2, . . . , an ∈ A, it
satisfies the following condition:

x ∗
n

∏
i=1

ai = 0 ⇒ FA(x) ∩ β ⊆
⋃

i=1,2,...,n
FA(ai) ∪ α.

We establish the following lemmas.

Lemma 3. Let E be a BCK-algebra such that for all x, a, b, a1, a2, . . . , an, b1, b2, . . . , bm ∈ E, the three

conditions (x ∗ a) ∗ b = 0, a ∗
n
∏
i=1

ai = 0 and b ∗
m
∏
j=1

bj = 0 are satisfied. Then, (x ∗
n
∏
i=1

ai) ∗
m
∏
j=1

bj = 0.

Proof. From (x ∗ a) ∗ b = 0, it follows that x ∗ a ≤ b.
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Successively ∗-multiplying the above inequality on the right-hand side by a1, a2, . . . , an gives

(x ∗
n
∏
i=1

ai) ∗ b = 0; thus, x ∗
n
∏
i=1

ai ≤ b.

Then, successively multiplying the right-hand side of the above inequality by b1, b2, . . . , bm gives

(x ∗
n
∏
i=1

ai) ∗
m
∏
j=1

bj ≤ b ∗
m
∏
j=1

bj = 0.

Thus, (x ∗
n
∏
i=1

ai) ∗
m
∏
j=1

bj = 0. This completes the proof.

Lemma 4. Let E be a BCK-algebra satisfying the three conditions of Lemma 3. If FA is an (α, β)-US ideal over
U, then:

FA(x) ∩ β ⊆
⋃

i=1,2,...,n,j=1,2,...,m
(FA(ai) ∪ FA(bj)) ∪ α.

Proof. This follows from Lemma 3 and Corollary 1.

Theorem 10. Let E be a BCK/BCI-algebra. Given a subalgebra A of E, let FA ∈ S(U) and β ⊆ U. Then,
FA is an (α, β)-US ideal over U if and only if the non-empty set B(FA : δ) is an ideal of A.

Proof. The proof of the theorem is the same as Theorem 2.

Definition 14. Let E be a BCK/BCI-algebra. For a given subalgebra A of E, let FA ∈ S(U). An (α, β)-US
ideal FA is said to be closed if for all x ∈ A, it satisfies the condition:

FA(0 ∗ x) ∩ β ⊆ FA(x) ∪ α.

Example 8. Let U = Z (set of positive integers) be the universal set and E = {0, 1, 2, a, b} be a BCI-algebra
with the following Cayley table:

∗ 0 1 2 a b
0 0 0 0 a a
1 1 0 1 b a
2 2 2 0 a a
a a a a 0 0
b b a b 1 0

For a subalgebra A = {0, 1, 2, a, b} of E, define the soft set (FA, A) over U as FA(0) = {1, 3, 4, 5, 7, 9},
FA(1) = {1, 2, 4, 5, 6, 7, 8, 10}, FA(2) = {1, 2, 4, 5, 6, 8, 12, 13} , FA(a) = {2, 3, 5, 6, 8, 9, 12, 13}, FA(b) =
{1, 2, 3, 5, 7, 10, 12, 13}, β = {1, 2, 3, 5, 7, 9, 10, 11, 12, 13}, and α = {1, 3, 5, 6, 7, 8, 9, 11}. Then, FA is an
(α, β)-US closed ideal of A over U.

Theorem 11. Let E be a BCI-algebra. Then, an (α, β)-US ideal over U is closed if and only if it is an (α, β)-US
algebra over U.

Proof. Let FA be an (α, β)-US ideal over U. If FA is closed, then FA(0 ∗ x) ∩ β ⊆ FA(x) ∪ α, for all
x ∈ A. It follows from Definition 13 that:

FA(x ∗ y) ∩ β ⊆ FA((x ∗ y) ∗ x) ∪ FA(x) ∪ α = FA(0 ∗ y) ∪ FA(x) ∪ α ⊆ FA(x) ∪ FA(y) ∪ α

for all x, y ∈ A. Hence, FA is an (α, β)-US algebra of A over U.
Conversely, if FA is an (α, β)-US algebra over U, then,

FA(0 ∗ x) ∩ β ⊆ FA(0) ∪ FA(x) ∪ α = FA(x) ∪ α.
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for all x ∈ A. Thus, FA is an (α, β)-US closed ideal over U.

Let E be a BCI-algebra and B(E) = {x ∈ E|0 ≤ x}. For any x ∈ E and n ∈ N (N is the set of
natural numbers), define xn by:

x1 = x, xn+1 = x ∗ (0 ∗ x).

If there exists an n ∈ N such that xn ∈ B(E), then we say that x is finite periodic (see [50]), and its
period is denoted by |x| and defined by:

|x| = min{n ∈ N|xn ∈ B(E)}.

Otherwise, x is infinite ordered and denoted by |x| = in f inite.

Theorem 12. Let E be a BCI-algebra in which every element is of finite period. Then, every (α, β)-US ideal
over U is closed.

Proof. LetFE be an (α, β)-US ideal over U. Then, for any x ∈ E, suppose that |x| = n. Then, xn ∈ B(X).
We get (0 ∗ xn−1) ∗ x = (0 ∗ (0 ∗ (0 ∗ xn−1))) ∗ x = (0 ∗ x) ∗ (0 ∗ (0 ∗ xn−1)) = 0 ∗ (x ∗ (0 ∗ xn−1)) =

0 ∗ xn = 0, and so, FE((0 ∗ xn−1) ∗ x) = FE(0) ⊆ FE(x) by using Theorem 3. Then, from Definition
13, it follows that:

FE((0 ∗ xn−1) ∗ x) ∩ β ⊆ FE(0 ∗ xn−1) ∪ FE(x) ∪ α = FE(0) ∪ FE(x) ∪ α = FE(x) ∪ α.

Furthermore, it is noted that (0 ∗ xn−2) ∗ x = (0 ∗ (0 ∗ (0 ∗ xn−2))) ∗ x = (0 ∗ x) ∗ (0 ∗ (0 ∗ xn−2)) =

0 ∗ (x ∗ (0 ∗ xn−2)) = 0 ∗ xn−1, which implies from above that:

FE((0 ∗ xn−2) ∗ x) = FE(0 ∗ xn−1) ⊆ FE(x).

Again, by Definition 13, we have:

FE((0 ∗ xn−2) ∗ x) ∩ β ⊆ FE(0 ∗ xn−2) ∪ FE(x) ∪ α = FE(0) ∪ FE(x) ⊆ FE(x) ∪ α.

By continuation of the above process, we get FE(0 ∗ x) ∩ β ⊆ FE(x) ∪ α for all x ∈ E. Hence, FE is an
(α, β)-US closed ideal over U.

6. (α, β)-US Commutative Ideals in BCK/BCI-Algebras

Definition 15. Let E be a BCK-algebra. For a given subalgebras A of E, let FA ∈ S(U). Then, FA is called
an (α, β)-US commutative ideal over U if for all x, y, z ∈ A, it satisfies Theorem 3 and the following condition:

FA(x ∗ (y ∗ (y ∗ x))) ∩ β ⊆ FA((x ∗ y) ∗ z) ∪ FA(z) ∪ α.

Example 9. Let E = {0, 1, 2, 3, 4} be a BCK-algebra with the following Cayley table:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 1 0
2 2 2 0 2 0
3 3 3 3 0 0
4 4 4 4 4 0

Let (FA, A) be a soft set over U = X, where A = {1, 2, 3, 4} and FA : A → P(X) is a set valued function
defined by FA(x) = {y ∈ X|y ∗ x ∈ {0, 2, 3}}. Then,

FA(0) = ∅,
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FA(1) = {y ∈ X | y ∗ 1 ∈ {0, 2, 3}} = {0, 1, 2, 3},

FA(2) = {y ∈ X | y ∗ 2 ∈ {0, 2, 3}} = {0, 2, 3},

FA(3) = {y ∈ X | y ∗ 3 ∈ {0, 2, 3}} = {0, 2, 3},

FA(4) = {y ∈ X | y ∗ 4 ∈ {0, 2, 3}} = {0, 1, 2, 3, 4}.

Then, FA is an (α, β)-US commutative ideal of A over U, where β = {0, 1, 3, 4} and α = {0, 1, 3}.

Theorem 13. Let E be a BCK-algebra. Then, any (α, β)-US commutative ideal over U is an (α, β)-US ideal
over U.

Proof. Let A be a subalgebra of E and FA be an (α, β)-US commutative ideal over U. Now, we put
y = 0 in Definition 15 and use (C5) and (C6), then we have FA(x) ∩ β = FA(x ∗ (0 ∗ (0 ∗ x))) ∩ β ⊆
FA((x ∗ 0) ∗ z) ∪ FA(z) ∪ α = FA(x ∗ z) ∪ FA(z) ∪ α for all x, z ∈ A. Thus, FA is an (α, β)-US ideal
over U.

In view of the following example, we can also establish Theorem 13.

Example 10. Let U = N (set of natural numbers) be the universal set and E = {0, a, b, c, d} be a BCK-algebra
with the following Cayley table:

∗ 0 a b c d
0 0 0 0 0 0
a a 0 a 0 0
b b b 0 0 0
c c c c 0 0
d d d d c 0

The soft set (FA, A) is defined over U as follows FA(0) = N, FA(a) = 3N, FA(b) = FA(d) = 2N, and
FA(c) = ∅. Then, FA is an (α, β)-US commutative ideal over U, as well as an (α, β)-US ideal over U, where
β = 6N and α = 12N.

The following theorem provides the condition that an (α, β)-US ideal over U is an (α, β)-US
commutative ideal over U.

Theorem 14. Let E be a BCK-algebra and A be a subalgebra of E. Let FA ∈ S(U), then FA is an (α, β)-US
commutative ideal over U if and only if, for all x, y, z ∈ A, FA is an (α, β)-US ideal over U satisfying the
following condition:

FA(x ∗ (y ∗ (y ∗ x))) ⊆ FA(x ∗ y).

Proof. Assume that FA is an (α, β)-US ideal commutative ideal over U. Then, FA is an (α, β)-US soft
ideal over U by Theorem 13. Now, if we take z = 0 in Definition 15 and use (C5), then we deduce the
condition given in Theorem 14.

Conversely, if FA is an (α, β)-US ideal over U satisfying the condition of Theorem 14, then for
all x, y, z ∈ A, we have FA(x ∗ y) ∩ β ⊆ FA((x ∗ y) ∗ z) ∪ FA(z) ∪ α by Definition 13. Hence, from
Definition 15, we conclude that FA is an (α, β)-US commutative ideal over U.

Corollary 2. Let E be a BCK-algebra and FE ∈ S(U). Then, FE is an (α, β)-US commutative ideal over U if
and only if FE is an (α, β)-US ideal over U satisfying the following condition for all x, y ∈ A:

FE(x ∗ (y ∗ (y ∗ x))) ∩ β ⊆ FA(x ∗ y) ∪ α.
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Theorem 15. Let E be a commutative BCK-algebra. Then, every (α, β)-US ideal over U is an (α, β)-US
commutative ideal over U.

Proof. Let FA be an (α, β)-US ideal over U, where A is a subalgebra of E. Then, for all x, y, z ∈ A, we
notice that:

(((x ∗ (y ∗ (y ∗ x))) ∗ ((x ∗ y) ∗ z))) ∗ z = ((x ∗ (y ∗ (y ∗ x))) ∗ z) ∗ ((x ∗ y) ∗ z)

≤ ((x ∗ (y ∗ (y ∗ x))) ∗ (x ∗ y)

= (x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ x)) = 0

Thus, (x ∗ (y ∗ (y ∗ x))) ∗ ((x ∗ y) ∗ z)) ≤ z. Then, from Theorem 9, we get FA(x ∗ (y ∗ (y ∗ x))) ∩ β ⊆
FA((x ∗ y) ∗ z) ∪ FA(z) ∪ α. Hence, FA is an (α, β)-US commutative ideal over U.

Theorem 16. Let E be a BCK-algebra and A be a subalgebra of E. Let FA ∈ S(U). If FA satisfies the
following conditions:
(1) x ∗ (x ∗ y) ≤ y ∗ (y ∗ x) for all x, y ∈ A;
(2) FA is an (α, β)-US ideal over U;
then FA is an (α, β)-US commutative ideal over U.

Proof. For any x, y ∈ A, we have:

FA(x ∗ (y ∗ (y ∗ x))) ∗ (x ∗ y) = (x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ x)) = 0

by (C8) and (1). Therefore, x ∗ (y ∗ (y ∗ x)) ≤ x ∗ y for all x, y ∈ A, which indicates from Lemma 2 that
FA(x ∗ (y ∗ (y ∗ x))) ∩ β ⊆ FA(x ∗ y) ∪ α. Now, it follows from Theorem 14 that FA is an (α, β)-US
commutative ideal of A over U.

Theorem 17. Let E be a BCK/BCI-algebra and A be a subalgebra of E. Consider FA ∈ S(U) and δ ⊆ β ⊆ U.
Then, FA is an (α, β)-US commutative ideal over U if and only if the non-empty set B(FA : δ) is a commutative
ideal of A.

Proof. The proof of the theorem is the same as Theorem 2.

Theorem 18. Let E be a BCK-algebra and FA ∈ S(U). Define a soft set F∗
A over U by F∗

A : E → P(U),

x �−→
{
FA(x) if x ∈ B(FA : δ)

U otherwise.
If FA is an (α, β)-US commutative ideal over U, then so is F∗

A.

Proof. If FA is an (α, β)-US commutative ideal over U, then B(FA : δ) is a commutative ideal over
U by Theorem 17. Hence, 0 ∈ B(FA : δ), and so, we have F∗

A(0) ∩ β = FA(0) ∩ β ⊆ FA(x) ∪ α ⊆
F∗

A(x) ∪ α for all x ∈ A. Let x, y, z ∈ A. Then, (x ∗ y) ∗ z ∈ B(FA : δ) and z ∈ B(FA : δ); hence,
x ∗ (y ∗ (y ∗ x)) ∈ B(FA : δ), and so, we deduce the following equality:

F∗
A(x ∗ (y ∗ (y ∗ x))) ∩ β = FA(x ∗ (y ∗ (y ∗ x))) ∩ β

⊆ FA((x ∗ y) ∗ z) ∪ FA(z) ∪ α

= F∗
A((x ∗ y) ∗ z) ∪ F∗

A(z) ∪ α.

If (x ∗ y) ∗ z 
∈ B(FA : δ) and z 
∈ B(FA : δ), then F∗
A(x ∗ (y ∗ (y ∗ x))) or F∗

A(z) = U. Thus, we
have F∗

A(x ∗ (y ∗ (y ∗ x))) ∩ β ⊆ U = F∗
A((x ∗ y) ∗ z) ∪ F∗

A(z) ∪ α. This shows that F∗
A is an (α, β)-US

commutative ideal of A over U.
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Theorem 19. Let E be a BCK-algebra and A be a subset of E, which is a commutative ideal of E if and only if
the soft subset FA defined by:

FA(x) =

{
Ω if x ∈ A
Γ if x 
∈ A,

where α ⊆ Ω ⊆ Γ ⊆ β ⊆ U, is an (α, β)-US commutative ideal of A over U.

Proof. Let A be a commutative ideal of E and if x ∈ A, then 0 ∈ A. Therefore, FA(0) = FA(x) = Ω,
and so, FA(0) ∩ β = Ω ∩ β = Ω and FA(x) ∪ α = Ω ∪ α = Ω. Thus, FA(0) ∩ β ⊆ FA(x) ∪ α. Let for
any x, y, z ∈ A and if (x ∗ y) ∗ z ∈ A, z ∈ A, then (x ∗ (y ∗ (y ∗ x))) ∈ A, and thus, FA((x ∗ y) ∗ z) =
FA(z) = FA(x ∗ (y ∗ (y ∗ x))) = Ω. Then, FA(x ∗ (y ∗ (y ∗ x)))∩ β = Ω∩ β = Ω and FA((x ∗ y) ∗ z)∪
FA(z) ∪ α = Ω ∪ α = Ω, which indicates that FA(x ∗ (y ∗ (y ∗ x))) ∩ β ⊆ FA(x ∗ y) ∗ z) ∪ FA(z) ∪ α.
Now, if x 
∈ A, then 0 ∈ A or 0 
∈ A, and so, FA(0) ∩ β = Ω ∩ β = Ω or FA(0) ∩ β = Γ ∩ β = Γ, but
FA(x) ∪ α = Γ ∪ α = Γ, which implies that FA(0) ∩ β ⊆ FA(x) ∪ α. Now, if (x ∗ y) ∗ z 
∈ A or z 
∈ A,
then (x ∗ (y ∗ (y ∗ x))) ∈ A or (x ∗ (y ∗ (y ∗ x))) 
∈ A, and so, FA(x ∗ (y ∗ (y ∗ x))) ∩ β = Ω ∩ β = Ω
or FA(x ∗ (y ∗ (y ∗ x))) ∩ β = Γ ∩ β = Γ, but FA((x ∗ y) ∗ z) ∪ FA(z) ∪ α = Γ ∪ α = Γ, which implies
that FA(x ∗ (y ∗ (y ∗ x))) ∩ β ⊆ FA((x ∗ y) ∗ z) ∪ FA(z) ∪ α. Hence, FA is an (α, β)-US commutative
ideal of A over U.

Conversely, assume that FA is an (α, β)-US commutative ideal of A over U. If x ∈ A, then
FA(0) ∩ β ⊆ FA(x) ∪ α = Ω ∪ α = Ω. However, α ⊆ Ω ⊆ Γ ⊆ β; hence, FA(0) = Ω, and so, 0 ∈ A.
Again, if (x ∗ y) ∗ z ∈ A and z ∈ A, then FA(x ∗ (y ∗ (y ∗ x))) ∩ β ⊆ FA((x ∗ y) ∗ z) ∪ FA(z) ∪ α =

Ω ∪ α = Ω, and thus, FA(x ∗ (y ∗ (y ∗ x))) = Ω, which implies that (x ∗ (y ∗ (y ∗ x))) ∈ A. Therefore,
A is a commutative ideal of E.

Theorem 20 (Extension property). Let E be a BCK-algebra. For two given subalgebras A and B of E, let
FA,FB ∈ S(U) such that
(i) FA ⊆ FB,
(ii) FB is an (α, β)-US ideal over U.
If FA is an (α, β)-US commutative ideal over U, then FB is also an (α, β)-US commutative ideal over U.

Proof. Let δ ∈ U be such that B(FA : δ) 
= ∅. By Condition (ii) and Theorem 10, we see that
B(FA : δ) is an ideal. We now consider FA to be an (α, β)-US commutative ideal of A over U,
then B(FA : δ) is a commutative ideal of A. Let x, y ∈ A and δ ⊆ β be such that x ∗ y ∈ B(FA :
δ). Since (x ∗ (x ∗ y)) ∗ y = (x ∗ y) ∗ (x ∗ y) = 0 ∈ B(FA : δ), it follows from (C8) and (i) that
(x ∗ (y ∗ (y ∗ (x ∗ (x ∗ y))))) ∗ (x ∗ y) = (x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ (x ∗ (x ∗ y))))) ∈ B(FA : δ) ⊆ B(FB : δ).
We see that:

x ∗ (y ∗ (y ∗ (x ∗ (x ∗ y))))) ∈ B(FB : δ) (1)

as B(FB : δ) is an ideal and x ∗ y ∈ B(FB : δ). Furthermore, it is noted that x ∗ (x ∗ y) ≤ x, and so, we
have y ∗ (y ∗ (x ∗ (x ∗ y))))) ≤ y ∗ (y ∗ x) by (C7). Thus,

x ∗ (y ∗ (y ∗ x)) ≤ x ∗ (y ∗ (y ∗ (x ∗ (x ∗ y)))) (2)

Hence, by using (1) and (2), we get x ∗ (y ∗ (y ∗ x)) ∈ B(FB : δ). Therefore, B(FB : δ) is a commutative
ideal, and so, FB is an (α, β)-US commutative ideal over U by Theorem 17.

7. Conclusions

Soft set theory is an important mathematical notion, which easily handles uncertainties and
has applications in real-life problems. In this paper, we introduce the notions of (α, β)-US sets in
BCK/BCI-algebras and (α, β)-US ideals and (α, β)-US commutative ideals of BCK-algebras. We also
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investigate some of their characterizations in detail. We hope that the results given in this paper will
have an impact on the upcoming research in this area and other aspects of soft algebraic structures
so that this leads to new horizons of interest and innovations. Our results can also be applied to
other algebraic structures, such as an (α, β)-US hemiring, an (α, β)-US topology, (α, β)-US B-algebras,
(α, β)-US KUS-algebras, (α, β)-US Vector algebras, and (α, β)-US lattices, and can be applied to other
branches of pure mathematics. In addition, the recent development of fuzzy soft-covering-based
[19,21,51] problems and β-covering-based rough fuzzy covering [23,52,53] problems have a huge scope
of application to develop fuzzy soft covering BCK/BCI-algebras, fuzzy soft β-covering-based rough
fuzzy BCK/BCI-algebras, as well as the construction of other fuzzy covering algebras.
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Abstract: Fuzzy convergence spaces are extensions of convergence spaces. �-convergence
spaces are important fuzzy convergence spaces. In this paper, p-regularity (a relative regularity)
in �-convergence spaces is discussed by two equivalent approaches. In addition, lower and upper
p-regular modifications in �-convergence spaces are further investigated and studied. Particularly,
it is shown that lower (resp., upper) p-regular modification and final (resp., initial) structures have
good compatibility.
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1. Introduction

Convergence spaces [1] are generalizations of topological spaces. Regularity is an important
property in convergence spaces. In general, there are two equivalent approaches to characterize
regularity. One approach is stated through a diagonal condition of filters [2,3], the other approach is
represented through a closure condition of filters [4]. In [5,6], for a pair of convergence structures p, q on
the same underlying set, Wilde-Kent-Richardson considered a relative regularity (called p-regularity)
both from two equivalent approaches. When p = q, p-regularity is nothing but regularity.
Wilde-Kent [6] further presented a theory of lower and upper p-regular modifications in convergence
spaces. Said precisely, for convergence structures p, q on a set X, the lower (resp., upper) p-regular
modification of q is defined as the finest (resp., coarsest) p-regular convergence structure coarser
(resp., finer) than q.

Fuzzy convergence spaces are natural extensions of convergence spaces. Quite recently, two types
of fuzzy convergence spaces received wide attention: (1) stratified L-generalized convergence spaces
(resp., stratified L-convergence spaces) initiated by Jäger [7] (resp., Flores [8]) and then developed by
many scholars [8–30]; and (2) �-convergence spaces introduced by Fang [31] and then discussed by
many researchers [32–36]. Regularity in stratified L-generalized convergence spaces (resp., stratified
L-convergence spaces) was studied by Jäger [37] (resp., Boustique-Richardson [38,39]), p-regularity
and p-regular modifications in stratified L-generalized convergence spaces and that in stratified
L-convergence spaces were discussed by Li [40,41]. Regularity in �-convergence spaces by different
diagonal conditions of �-filters were researched by Fang [31] and Li [42], respectively. Regularity in
�-convergence spaces by closure condition of �-filters were studied by Reid and Richardson [36].
In this paper, we shall discuss p-regularity and p-regular modifications in �-convergence spaces.

The contents are arranged as follows. Section 2 recalls some notions and notations for later use.
Section 3 presents p-regularity in �-convergence spaces by a diagonal condition of �-filters and a
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closure condition of �-filters, respectively. Section 4 mainly discusses p-regular modifications in
�-convergence spaces. The lower and upper p-regular modifications in �-convergence spaces are
investigated and researched. Especially, it is shown that lower (resp., upper) p-regular modification
and final (resp., initial) structures have good compatibility.

2. Preliminaries

In this paper, if not otherwise stated, L = (L,≤) is always a complete lattice with a top element �
and a bottom element ⊥, which satisfies the distributive law α ∧ (

∨
i∈I βi) =

∨
i∈I(α ∧ βi). A lattice

with these conditions is called a complete Heyting algebra. The operation →: L× L −→ L given by

α → β =
∨
{γ ∈ L : α ∧ γ ≤ β}.

is called the residuation with respect to∧. We collect here some basic properties of the binary operations
∧ and → [43].

(1) a → b = � ⇔ a ≤ b;
(2) a ∧ b ≤ c ⇔ b ≤ a → c;
(3) a ∧ (a → b) ≤ b;
(4) a → (b → c) = (a ∧ b)→ c;
(5) (

∨
j∈J aj)→ b =

∧
j∈J(aj → b); (6) a → (

∧
j∈J bj) =

∧
j∈J(a → bj).

A function μ : X → L is said to be an L-fuzzy set in X, and all L-fuzzy sets in X are denoted as
LX. The operators ∨,∧,→ on L can be translated onto LX pointwisely. Precisely, for any μ, ν, μt(t ∈
T) ∈ LX ,

(
∨
t∈T

μt)(x) =
∨
t∈T

μt(x), (
∧
t∈T

μt)(x) =
∧
t∈T

μt(x), (μ → ν)(x) = μ(x)→ ν(x).

Let f : X −→ Y be a function. We define f→ : LX −→ LY by f→(μ)(y) =
∨

f (x)=y μ(x) for μ ∈ LX

and y ∈ Y, and define f← : LY −→ LX by f←(ν)(x) = ν( f (x)) for ν ∈ LY and x ∈ X [43].
Let μ, ν be L-fuzzy sets in X. The subsethood degree of μ, ν, denoted as SX(μ, ν), is defined by

SX(μ, ν) = ∧
x∈X

(μ(x)→ ν(x)) [44–46]

Lemma 1. [31,42,47] Let f : X −→ Y be a function and μ1, μ2 ∈ LX, λ1, λ2 ∈ LY. Then

(1) SX(μ1, μ2) ≤ SY( f→(μ1), f→(μ2)),
(2) SY(λ1, λ2) ≤ SX( f←(λ1), f←(λ2)),
(3) SY( f→(μ1), λ1) = SX(μ1, f←(λ1)).

2.1. �-Filters and �-Convergence Spaces

Definition 1. [43,48] A nonempty subset F ⊆ LX is said to be a �-filter on the set X if it satisfies the following
three conditions:

(TF1) ∀λ ∈ F,
∨

x∈X
λ(x) = �,

(TF2) ∀λ, μ ∈ F, λ ∧ μ ∈ F,
(TF3) if

∨
μ∈F

SX(μ, λ) = �, then λ ∈ F.

The set of all �-filters on X is denoted by F�L (X).

Definition 2. [43] A nonempty subset B ⊆ LX is referred to be a �-filter base on the set X if it holds that:

(TB1) ∀λ ∈ B,
∨

x∈X
λ(x) = �,

(TB2) if λ, μ ∈ B, then
∨

ν∈B
SX(ν, λ ∧ μ) = �.
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Each �-filter base generates a �-filter FB by

FB := {λ ∈ LX |
∨

μ∈B
SX(μ, λ) = �}.

Example 1. [31,43] Let f : X −→ Y be a function.

(1) For any F ∈ F�L (X), the family { f→(λ)|λ ∈ F} forms a �-filter base on Y. The generated �-filter is
denoted as f⇒(F), called the image of F under f . It is known that μ ∈ f⇒(F)⇐⇒ f←(μ) ∈ F.

(2) For any G ∈ F�L (Y), the family { f←(μ)|μ ∈ G} forms a �-filter base on Y iff
∨

y∈ f (X)
μ(y) = � holds

for all μ ∈ G. The generated �-filter (if exists) is denoted as f⇐(G), called the inverse image of G under
f . It is known that G ⊆ f⇒( f⇐(G)) holds whenever f⇐(G) exists. Furthermore, f⇐(G) always exists
and G = f⇒( f⇐(G)) whenever f is surjective.

(3) For any x ∈ X, the family [x]� =: {λ ∈ LX |λ(x) = �} is a �-filter on X, and f⇒([x]�) = [ f (x)]�.

Lemma 2. Let f : X −→ Y be a function.

(1) If B is a �-filter base of F ∈ F�L (X), then { f→(λ)|λ ∈ B} is a �-filter base of f⇒(F), see Example 2.9
(1) in [31].

(2) If B is a �-filter base of G ∈ F�L (Y) and f⇐(G) exists, then { f←(μ)|μ ∈ B} is a �-filter base of f⇐(G),
see Example 2.9 (2) in [31].

(3) Let F,G ∈ F�L (X) and B be a �-filter base of F. Then B ⊆ G implies that F ⊆ G, see Lemma 2.5 (1)
in [42].

(4) Let F ∈ F�L (X) and B be a �-filter base of F. Then
∨

μ∈B
SX(μ, λ) =

∨
μ∈F

SX(μ, λ), see Lemma 3.1 in [36].

For each F ∈ F�L (X), we define Λ(F) : LX −→ L as

∀λ ∈ LX , Λ(F)(λ) =
∨

μ∈F
SX(μ, λ),

then Λ(F) is a tightly stratified L-filter on X [47].
In the following, we recall some notions and notations collected in [29].

Definition 3. [31] Let X be a nonempty set. Then a function q : F�L (X) −→ 2X is said to be a �-convergence
structure on X if it satisfies the following two conditions:

(TC1) ∀x ∈ X, [x]�
q−→ x;

(TC1) if F
q−→ x and F ⊆ G, then G

q−→ x.

where F
q−→ x is short for x ∈ q(F). The pair (X, q) is said to be a �-convergence space.

A function f : X −→ X′ between �-convergence spaces (X, q), (X′, q′) is said to be continuous if

f⇒(F)
q′−→ f (x) for any F

q−→ x.
We denote the category consisting of �-convergence spaces and continuous functions as �-CS .

It has been known that �-CS is topological over SET [31].

For a source (X
fi−→ (Xi, qi))i∈I , the initial structure, q on X is defined by

F
q−→ x ⇐⇒ ∀i ∈ I, f⇒i (F)

qi−→ fi(x) [35,49].

For a sink ((Xi, qi)
fi−→ X)i∈I , the final structure, q on X is defined as

F
q→ x ⇐⇒

{
F ⊇ [x]�, x 
∈ ∪i∈I fi(Xi);

F ⊇ f⇒i (Gi), ∃i ∈ I, xi ∈ Xi,Gi ∈ F�L (Xi) s.t f (xi) = x,Gi
qi→ xi.
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When X = ∪i∈I fi(Xi), the final structure q can be characterized as

F
q→ x ⇐⇒ F ⊇ f⇒i (Gi) for some Gi

qi→ xi with f (xi) = x.

Let �(X) denote the set of all �-convergence structures on a set X. For p, q ∈ �(X), we say that q
is finer than p (or p is coarser than q), denoted as p ≤ q for short, if the identity idX : (X, q) −→ (X, p) is
continuous. It has been known that (�(X),≤) forms a completed lattice. The discrete (resp., indiscrete)

structure δ (resp., ι) is the top (resp., bottom) element of (T(X),≤), where δ is defined as F δ−→ x iff
F ⊇ [x]�; and ι is defined as F ι−→ x for all F ∈ F�L (X), x ∈ X [42].

Remark 1. When L = {⊥,�}, �-convergence spaces degenerate into convergence spaces. Therefore,
�-convergence spaces are natural generalizations of convergence spaces.

3. p-Regularity in �-Convergence Spaces

In this section, we shall discuss the p-regularity in �-convergence spaces. Two equivalent
approaches are considered, one approach using diagonal �-filter and the other approach using closure
of �-filter. Moreover, it will be proved that p-regularity is preserved under the initial and final
structures in the category �-CS.

At first, we recall the notions of diagonal �-filter and closure of �-filter to define p-regularity.
Let J, X be any sets and φ : J −→ F�L (X) be any function. Then we define a function

φ̂ : LX → LJ as
∀λ ∈ LX , ∀j ∈ J, φ̂(λ)(j) = Λ(φ(j))(λ) =

∨
μ∈φ(j)

SX(μ, λ).

For any F ∈ F�L (J), it is known that the subset of LX defined by

kφF := {λ ∈ LX |φ̂(λ) ∈ F}

forms a �-filter on X, called diagonal �-filter of F under φ [31]. It was shown that SX(λ, μ) ≤
SJ(φ̂(λ), φ̂(μ)) for any λ, μ ∈ LX .

Lemma 3. Let f : X −→ Y and φ : J −→ F�L (X) be functions. Then for any F ∈ F�L (J) we have
f⇒(kφF) = k( f⇒ ◦ φ)F.

Proof. f⇒(kφF) ⊆ k( f⇒ ◦ φ)F. By Lemma 2 (3) we need only check that f→(λ) ∈ k( f⇒ ◦ φ)F for any
λ ∈ kφF. Take λ ∈ kφF then φ̂(λ) ∈ F. Please note that ∀j ∈ J,

φ̂(λ)(j) =
∨

μ∈φ(j)

SX(μ, λ) ≤
∨

μ∈φ(j)

SY( f→(μ), f→(λ)) ≤
∨

ν∈ f⇒(φ(j))

SY(ν, f→(λ)) = f̂⇒ ◦ φ( f→(λ))(j),

i.e., φ̂(λ) ≤ f̂⇒ ◦ φ( f→(λ)), and so f̂⇒ ◦ φ( f→(λ)) ∈ F, i.e., f→(λ) ∈ k( f⇒ ◦ φ)F.
k( f⇒ ◦ φ)F ⊆ f⇒(kφF). For any λ ∈ k( f⇒ ◦ φ)F we have f̂⇒ ◦ φ(λ) ∈ F. By Lemma 2 (4), ∀j ∈ J,

f̂⇒ ◦ φ(λ)(j) =
∨

ν∈ f⇒(φ(j))

SY(ν, λ) =
∨

μ∈φ(j)

SY( f→(μ), λ) ≤
∨

μ∈φ(j)

SX(μ, f←(λ)) = φ̂( f←(λ))(j),

i.e., f̂⇒ ◦ φ(λ) ≤ φ̂( f←(λ)), and so φ̂( f←(λ)) ∈ F, i.e., f←(λ) ∈ kφF then λ ∈ f⇒(kφF).

Definition 4. [36] Let (X, p) be a �-convergence space. For each λ ∈ LX, the L-set λp ∈ LX defined by

∀x ∈ X, λp(x) =
∨

F
p−→x

Λ(F)(λ) =
∨

F
p−→x

∨
μ∈F

SX(μ, λ)
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is called closure of λ w.r.t p.
For any F ∈ F�L (X), the closure of F regarding p, denoted as clp(F), is defined to be the �-filter generated

by {λp|λ ∈ F} as a �-filter base.

Lemma 4. [36] Let (X, p) be a �-convergence space. Then for all λ, μ ∈ LX we get

(1) λ ≤ λp;
(2) λ ≤ μ implies λp ≤ μp;
(3) SX(λ, μ) ≤ SX(λ, μ).

Let N be the set of natural numbers containing 0 and let (X, p) be a �-convergence space. For any
F ∈ F�L (X), we define cl0

p(F) = F. Furthermore, for any n ∈ N, we define the n + 1 th iteration of the
closure �-filter of F as cln+1

p (F) = clp(cln
p(F)) if cln

p(F) has been defined.
The next proposition collects the properties of closure of �-filters. We omit the obvious proofs.

Proposition 1. Let (X, p) be a �-convergence space and F,G ∈ F�L (X). Then for any n ∈ N,

(1) cln
p(F) ⊆ F,

(2) if F ⊆ G, then cln
p(F) ⊆ cln

p(G),
(3) if p′ ∈ T(X) and p ≤ p′, then cln

p(F) ⊆ cln
p′(F).

Definition 5. A function f : (X, q) −→ (Y, p) between �-convergence spaces is said to be a closure function
if f→(λ)p ≤ f→(λq) for any λ ∈ LX.

Proposition 2. Suppose that f : (X, q) −→ (Y, p) is a function between �-convergence spaces and
F ∈ F�L (X), n ∈ N.

(1) If f is a continuous function, then f⇒(cln
q (F)) ⊇ cln

p( f⇒(F)).
(2) If f is a closure function, then f⇒(cln

q (F)) ⊆ cln
p( f⇒(F)).

Proof. (1) Let’s prove it by mathematical induction.
Firstly, we check f←(λ)q ≤ f←(λp) for any λ ∈ LY. In fact, for any x ∈ X, by continuity of f

we obtain

f←(λ)q(x) =
∨

G
q−→x

∨
μ∈G

SX(μ, f←(λ)) =
∨

G
q−→x

∨
μ∈G

SY( f→(μ), λ)

≤
∨

f⇒(G)
p−→ f (x)

∨
f→(μ)∈ f⇒(G)

SY( f→(μ), λ) ≤
∨

H
p−→ f (x)

∨
ν∈H

SY(ν, λ) = f←(λp)(x).

Secondly, we prove f⇒(cln
q (F)) ⊇ cln

p( f⇒(F)) when n = 1. Let λ ∈ f⇒(F), i.e., f←(λ) ∈ F.

Then by f←(λ)q ≤ f←(λp) we have f←(λp) ∈ clq(F), i.e., λp ∈ f⇒(clq(F)). It follows by Lemma 2 (3)
that f⇒(clq(F)) ⊇ clp( f⇒(F)).

Thirdly, we assume that f⇒(cln
q (F)) ⊇ cln

p( f⇒(F)) when n = k. Then we prove f⇒(cln
q (F)) ⊇

cln
p( f⇒(F)) when n = k + 1. In fact,

f⇒(clk+1
q (F)) = f⇒(clq(clk

q(F))) ⊇ clp( f⇒(clk
q(F))) ⊇ clp(clk

p( f⇒(F))) = clk+1
p ( f⇒(F)).

(2) We prove only that the inequality holds for n = 1, and the rest of the proof is similar to (1).
For any λ ∈ F, we have λq ∈ clq(F) and then f→(λ) ∈ f⇒(F). From f is a closure function, we

conclude that f→(λq) ≥ f→(λ)p ∈ clp( f⇒(F)) and so f→(λq) ∈ clp( f⇒(F)). By Lemma 2 (1), (3) we
obtain f⇒(clq(F)) ⊆ clp( f⇒(F)).

Now, we tend our attention to p-regularity and its equivalent characterization. In the following,
we shorten a pair of �-convergence spaces (X, p) and (X, q) as (X, p, q).
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Definition 6. Let (X, p, q) be a pair of �-convergence spaces. Then q is said to be p-regular if the following
condition p-(TC) is fulfilled.

p-(TC): ∀F ∈ F�L (X), ∀x ∈ X,F
q−→ x =⇒ clp(F)

q−→ x.

Remark 2. When L = {⊥,�}, a �-convergence space degenerates into a convergence space, and the condition
p-(TC) degenerates into the crisp p-regularity condition in [5]. When p = q, the condition p-(TC) is precisely
the regular characterization in [36].

We say a pair of �-convergence spaces (X, p, q) fulfill the Fischer �-diagonal condition whenever

p-(TR): Let J, X be any sets, ψ : J −→ X, and φ : J −→ F�L (X) such that φ(j)
p−→ ψ(j), for each

j ∈ J. Then for each F ∈ F�L (J) and each x ∈ X, kφF
q−→ x implies ψ⇒(F)

q−→ x.

Remark 3. When L = {⊥,�}, a �-convergence space degenerates into a convergence space, and the condition
p-(TC) degenerates into the Fischer diagonal condition Rp,q in [6]. When p = q, the condition p-(TR) is
precisely the diagonal condition (TR) in [31].

In the following, we shall show that p-regularity can be described by Fischer�-diagonal condition
p-(TR).

Lemma 5. Let (X, p, q) be a pair of �-convergence spaces and let J, X, φ, ψ be defined as in p-(TR).
Then SX(μp, λ) ≤ SJ(φ̂(μ), ψ←(λ)) for all λ, μ ∈ LX.

Proof. Let λ, μ ∈ LX .

SX(μp, λ) =
∧

x∈X
([

∨
G

p−→x

Λ(G)(μ)]→ λ(x)), by ψ(j) ∈ X, φ(j)
p−→ ψ(j)

≤
∧
j∈J

(Λ(φ(j))(μ)→ λ(ψ(j))) =
∧
j∈J

(φ̂(μ)(j)→ ψ←(λ)(j))

= SJ(φ̂(μ), ψ←(λ)).

Theorem 1. (Theorem 4.8 in [36] for p = q) Let (X, p, q) be a pair of �-convergence spaces.
Then p-(TC)⇐⇒p-(TR).

Proof. p-(TC)=⇒p-(TR). Let J, X, φ, ψ be defined as in p-(TR). Assume that F ∈ F�L (J) and kφF
q−→ x.

Then it follows by p-(TC) that clp(kφF)
q−→ x.

Next we prove that clp(kφF) ⊆ ψ⇒(F). Indeed, for any λ ∈ clp(kφF), we have

� =
∨

μ∈kφF

SX(μp, λ)
Lemma 5
≤

∨
μ∈kφF

SJ(φ̂(μ), ψ←(λ)) =
∨

φ̂(μ)∈F
SJ(φ̂(μ), ψ←(λ)) ≤

∨
ν∈F

SJ(ν, ψ←(λ)),

which means ψ←(λ) ∈ F, i.e., λ ∈ ψ⇒(F).

Now we have known that clp(kφF)
q−→ x and clp(kφF) ⊆ ψ⇒(F). Therefore, ψ⇒(F)

q−→ x,
as desired.

p-(TR)=⇒p-(TC). Let

J = {(G, y) ∈ F�L (X)× X|G p−→ y}; ψ : J −→ X, (G, y) �→ y; φ : J −→ F�L (X), (G, y) �→ G.

Then ∀j ∈ J, φ(j)
p−→ ψ(j). Please note that j = (G, y) ∈ J ⇐⇒ G = φ(j), y = ψ(j).

90



Mathematics 2019, 7, 370

(1) For any λ, μ ∈ LX , SX(μp, λ) = SJ(φ̂(μ), ψ←(λ)). Indeed,

SX(μp, λ) =
∧

y∈X
([

∨
G

p−→y

Λ(G)(μ)]→ λ(y)) =
∧

y∈X

∧
(G,y)∈J

(Λ(G)(μ)→ λ(y))

=
∧

j=(G,y)∈J

(Λ(φ(j))(μ)→ λ(ψ(j))) =
∧
j∈J

(φ̂(μ)(j)→ ψ←(λ)(j))

= SJ(φ̂(μ), ψ←(λ)).

(2) For each F ∈ F�L (X), the family {φ̂(λ)|λ ∈ F} forms a �-filter base on J. Indeed,

(TB1): For any λ ∈ F, by [y]�
p−→ y for any y ∈ X, we have∨

j∈J
φ̂(λ)(j) =

∨
j∈J

Λ(φ(j))(λ) =
∨

y∈X

∨
G

p−→y

Λ(G)(λ) ≥
∨

y∈X
Λ([y]�)(λ) =

∨
y∈X

λ(y) = �.

(TB2): For any λ, μ ∈ F, note that for any j ∈ J,

φ̂(λ)(j) ∧ φ̂(μ)(j) =
∨

λ1∈φ(j)

SX(λ1, λ) ∧
∨

μ1∈φ(j)

SX(μ1, μ)

≤
∨

λ1,μ1∈φ(j)

SX(λ1 ∧ μ1, λ ∧ μ)

≤
∨

ν∈φ(j)

SX(ν, λ ∧ μ) = φ̂(λ ∧ μ)(j),

i.e., φ̂(λ) ∧ φ̂(μ) ≤ φ̂(λ ∧ μ). It follows easily that (TB2) is satisfied. We denote the �-filter generated
by {φ̂(λ)|λ ∈ F} as Fφ.

(3) For each F ∈ F�L (X), kφFφ ⊇ F. Indeed, for any λ ∈ F, we have φ̂(λ) ∈ Fφ, i.e., λ ∈ kφFφ.
(4) For each F ∈ F�L (X), ψ⇒(Fφ) = clp(F). Indeed,

λ ∈ ψ⇒(Fφ) ⇐⇒ ψ←(λ) ∈ Fφ ⇐⇒
∨

μ∈F
SJ(φ̂(μ), ψ←(λ)) = � (1)⇐⇒

∨
μ∈F

SX(μp, λ) = � ⇐⇒ λ ∈ clp(F).

Assume that F
q−→ x, then by (3), we have kφFφ ⊇ F , and so kφFφ q−→ x. From p-(TR) and (4),

we get that clp(F) = ψ⇒(Fφ)
q−→ x. Therefore, the condition p-(TC) is satisfied.

The next theorem shows that p-regularity is preserved under initial structures.

Theorem 2. Let {(Xi, qi, pi)}i∈I be pairs of �-convergence spaces such that each qi is pi-regular. If q (resp., p)

is the initial structure on X regarding the source (X
fi−→ (Xi, qi))i∈I (resp., (X

fi−→ (Xi, pi))i∈I ), then q is
also p-regular.

Proof. Let ψ : J −→ X and φ : J −→ F�L (X) be any function such that φ(j)
p−→ ψ(j) for any j ∈ J.

Then
∀i ∈ I, ∀j ∈ J, ( f⇒i ◦ φ)(j) = f⇒i (φ(j))

pi−→ fi(ψ(j)) = ( fi ◦ ψ)(j).

Let F ∈ F�L (J) satisfy kφF
q−→ x. Then by definition of q and Lemma 3 we have

∀i ∈ I, k( f⇒i ◦ φ)F = f⇒i (kφF)
qi−→ fi(x).

Since qi is pi-regular we have f⇒i ψ⇒(F) = ( fi ◦ ψ)⇒(F)
qi−→ fi(x). By definition of q we have

ψ⇒(F)
q−→ x. Thus q is p-regular.
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The next theorem shows that p-regularity is preserved under final structures with some additional
assumptions.

Theorem 3. Let {(Xi, qi, pi)}i∈I be pairs of �-convergence spaces such that each qi is pi-regular. Let q

(resp., p) be the final structure on X relative to the sink ((Xi, qi)
fi−→ X)i∈I (resp., ((Xi, pi)

fi−→ X)i∈I ).
If X = ∪i∈I fi(Xi) and each fi : (Xi, pi) −→ (X, p) is a closure function, then q is also p-regular.

Proof. Let F ∈ F�L (X)
q−→ x. Then by definition of q, there exists i ∈ I, xi ∈ Xi,Gi ∈ F�L (Xi), fi(xi) =

x such that Gi
qi−→ xi and f⇒i (Gi) ⊆ F. Because qi is pi-regular we get clpi (Gi)

qi−→ xi and then

f⇒i (clpi (Gi))
q−→ x. By fi is a closure function and Proposition 2 (2) it follows that clp( f⇒i (Gi))

q−→ x.

Hence clp(F)
q−→ x from clp( f⇒i (Gi)) ⊆ clp(F). Thus q is p-regular.

For any {qi}i∈I ⊆ �(X), note that the supremum (resp., infimum) of {qi}i∈I in the lattice �(X),
denoted as sup{qi|i ∈ I} (resp., inf{qi|i ∈ I}), is precisely the initial structure (resp., final structure)

regarding the source (X
idX−→ (X, qi))i∈I (resp., the sink ((X, qi)

idX−→ X)i∈I). By Theorems 2 and 3,
we obtain easily the following corollary. It will show us that p-regularity is preserved under supremum
and infimum in the lattice �(X).

Corollary 1. Let {qi|i ∈ I} ⊆ �(X) and p ∈ �(X) with each (X, qi) being p-regular. Then both inf{qi}i∈I
and sup{qi}i∈I are all p-regular.

4. Lower (Upper) p-Regular Modifications in �-Convergence Spaces

In this section, we shall consider the p-regular modifications in �-convergence spaces.

Lemma 6. Let p, q be �-convergence structures on X.

(1) If q is p-regular, then F
q−→ x implies cln

p(F)
q−→ x for any n ∈ N.

(2) If q is p-regular, then q is p′-regular for any p ≤ p′.
(3) The indiscrete structure ι is p-regular for any p ∈ �(X).

Proof. It is obvious.

4.1. Lower p-Regular Modification

It has been known that p-regularity is preserved under supremum in the lattice �(X)

(see Corollary 1), and the indiscrete structure ι is p-regular for any p ∈ �(X) (see Lemma 6 (3)).
So, it follows easily that for a pair of �-convergence spaces (X, p, q), there is a finest p-regular
�-convergence structure γpq on X which is coarser than q.

Definition 7. Let (X, p, q) be a pair of �-convergence spaces. Then the �-convergence structure γpq on X is
said to be the lower p-regular modification of q.

The following theorem gives a characterization on lower p-regular modification.

Theorem 4. For any p, q ∈ �(X), F
γpq−→ x ⇐⇒ ∃n ∈ N,G

q−→ x s.t. F ⊇ cln
p(G).

Proof. We define q′ as F
q′−→ x ⇐⇒ ∃n ∈ N,G

q−→ x s.t. F ⊇ cln
p(G), then we prove γpq = q′.

Obviously, q′ ∈ �(X) and q′ ≤ q. We check that q′ is p-regular. In fact, let F
q′−→ x. Then

there exists n ∈ N,G
q−→ x such that F ⊇ cln

p(G). It follows that clp(F) ⊇ clp(cln
p(G)) = cln+1

p (G),

so clp(F)
q′−→ x. Now, we have proved that q′ is p-regular.
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Let r be p-regular with r ≤ q. We prove below r ≤ q′. In fact, let F
q′−→ x. Then there exists

n ∈ N,G
q−→ x such that F ⊇ cln

p(G), so G r−→ x by q ≤ r. Because r is p-regular it follows by

Lemma 6 (1) that F ⊇ cln
p(G)

r−→ x. Therefore, r ≤ q′.

Theorem 5. If f : (X, q) −→ (X′, q′) and f : (X, p) −→ (X′, p′) are both continuous function between
�-convergence spaces then so is f : (X, γpq) −→ (X′, γp′q′).

Proof. For any F ∈ F�L (X) and x ∈ X.

F
γpq−→ x =⇒ ∃n ∈ N,G

q−→ x s.t. F ⊇ cln
p(G)

=⇒ ∃n ∈ N, f⇒(G)
q′−→ f (x) s.t. f⇒(F) ⊇ f⇒(cln

p(G))

=⇒ ∃n ∈ N, f⇒(G)
q′−→ f (x) s.t. f⇒(F) ⊇ cln

p′( f⇒(G))

=⇒ f⇒(F)
γp′ q

′

−→ ( f (x)),

where the second implication uses the continuity of f : (X, q) −→ (X′, q′), and the third implication
uses the continuity of f : (X, p) −→ (X′, p′) and Proposition 2(1).

The following theorem exhibits us that lower p-regular modification and final structures have
good compatibility.

Theorem 6. Let {(Xi, qi, pi)}i∈I be pairs of spaces in �-CS and let q be the final structure relative to the

sink ((Xi, qi)
fi−→ X)i∈I with X = ∪i∈I fi(Xi). If p ∈ �(X) such that each fi : (Xi, pi) −→ (X, p) is a

continuous closure function, then γpq is the final structure relative to the sink ((Xi, γpi qi)
fi−→ X)i∈I .

Proof. Let s denote the final structure relative to the sink ((Xi, γpi qi)
fi−→ X)i∈I . Then for any

F ∈ F�L (X) and x ∈ X

F s−→ x =⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x,Gi
γpi qi−→ xi s.t. f⇒i (Gi) ⊆ F, by Theorem 4

=⇒ ∃i ∈ I, xi ∈ Xi, n ∈ N, fi(xi) = x,Hi
qi−→ xi s.t. cln

pi
(Hi) ⊆ Gi, f⇒i (Gi) ⊆ F, by Proposition 2 (1)

=⇒ ∃i ∈ I, xi ∈ Xi, n ∈ N, f⇒i (Hi)
q−→ x s.t. cln

p( f⇒i (Hi)) ⊆ f⇒i (cln
pi
(Hi)) ⊆ f⇒i (Gi), f⇒i (Gi) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, n ∈ N, f⇒i (Hi)
q−→ x s.t. cln

p( f⇒i (Hi)) ⊆ F

=⇒ F
γpq−→ x.

Conversely,

F
γpq−→ x =⇒ ∃n ∈ N,G

q−→ x s.t. cln
p(G) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x, n ∈ N,Hi
qi−→ xi s.t. f⇒i (Hi) ⊆ G, cln

p(G) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x, n ∈ N,Hi
qi−→ xi s.t. cln

p( f⇒i (Hi)) ⊆ cln
p(G), cln

p(G) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x, n ∈ N,Hi
qi−→ xi s.t. f⇒i (cln

pi
(Hi)) ⊆ cln

p( f⇒i (Hi)) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x, n ∈ N, cln
pi
(Hi)

γpi qi−→ xi s.t. f⇒i (cln
pi
(Hi)) ⊆ F

=⇒ F s−→ x,

where the fourth implication follows by Proposition 2(2).
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The following corollary tells us that lower p-regular modification has good compatibility with
infimum in the lattice �(X).

Corollary 2. Assume that {qi|i ∈ I} ⊆ �(X), p ∈ �(X) and q = inf{qi|i ∈ I}. Then
γpq = inf{γpqi|i ∈ I}.

4.2. Upper p-Regular Modification

Similar to the crisp case, the discrete structure δ is not always p-regular for any p ∈ �(X).
This shows that for a given q ∈ �(X), there may not exist p-regular �-convergence structure on X
finer than q.

Definition 8. Let (X, p, q) be a pair of�-convergence spaces. If there exists a coarsest p-regular�-convergence
structure γpq on X finer than q, then it is said to be the upper p-regular modification of q.

It has been known that the existence of γpq depends on the existence of a p-regular�-convergence
structure finer than q (see Corollary 1), and γpδ is the finest p-regular �-convergence structure. So,
it follows easily that γpq exists if and only if q ≤ γpδ. By Theorem 4, we obtain the following result.

Theorem 7. Let (X, p, q) be a pair of �-convergence spaces. Then
γpq exists ⇐⇒ ∀x ∈ X, ∀n ∈ N, cln

p([x]�)
q−→ x.

Proof. For any F ∈ F�L (X) and any x ∈ X, from Theorem 4 we obtain

F
γpδ−→ x ⇐⇒ ∃n ∈ N,G δ−→ x s.t. cln

p(G) ⊆ F.

Necessity. Let γpq exist. Then q ≤ γpδ. So, for any x ∈ X, n ∈ N

[x]�
δ−→ x =⇒ cln

p([x]�)
γpδ−→ x =⇒ cln

p([x]�)
q−→ x.

Sufficiency. Let cln
p([x]�)

q−→ x for any x ∈ X, n ∈ N. Then

F
γpδ−→ x =⇒ ∃n ∈ N,G δ−→ x s.t. cln

p(G) ⊆ F

=⇒ ∃n ∈ N, [x]� ⊆ G s.t. cln
p(G) ⊆ F

Proposition 1 (2)
=⇒ ∃n ∈ N, cln

p([x]�) ⊆ cln
p(G) s.t. cln

p(G) ⊆ F

=⇒ ∃n ∈ N s.t. cln
p([x]�) ⊆ F

=⇒ F
q−→ x.

It follows that q ≤ γpδ, so γpq exists.

The following theorem gives a characterization on upper p-regular modification if it exists.

Theorem 8. Let (X, p, q) be a pair of �-convergence spaces and γpq exists. Then

F
γpq−→ x ⇐⇒ ∀n ∈ N, cln

p(F)
q−→ x.

Proof. We define q′ as F
q′−→ x ⇐⇒ ∀n ∈ N, cln

p(F)
q−→ x.

(1) q′ ∈ �(X). It is obvious.

(2) q ≤ q′. In fact, let F
q′−→ x then F = cl0

p(F)
q−→ x.
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(3) q′ is p-regular. In fact, let F
q′−→ x. Then for any n ∈ N it holds that cln

p(clp(F)) = cln+1
p (F)

q−→ x,

which means clp(F)
q′−→ x. So, q′ is p-regular.

(4) Let r be p-regular with q ≤ r. Then q′ ≤ r. In fact, let F r−→ x then for any n ∈ N, by

Proposition 6 (1) it holds that cln
p(F)

r−→ x and so cln
p(F)

q−→ x by q ≤ r. That means F
q′−→ x.

By (1)–(4) we get that q′ is the coarsest p-regular �-convergence structure finer than q. Therefore,
γpq = q′.

Theorem 9. Let f : (X, q) −→ (X′, q′) be a continuous function, and f : (X, p) −→ (X′, p′) be a closure
function between �-convergence spaces. If γpq and γp′q′ exist then f : (X, γpq) −→ (X′, γp′q′) is continuous.

Proof. Let F
γpq−→ x. Then ∀n ∈ N, cln

p(F)
q−→ x. Since f : (X, q) −→ (X′, q′) is a continuous function

and f : (X, p) −→ (X′, p′) is a closure function it holds that

∀n ∈ N, cln
p′( f⇒(F)) ⊇ f⇒(cln

p(F))
q′−→ f (x),

so f⇒(F)
γp′ q′−→ f (x), as desired.

The following theorem exhibits us that the upper p-regular modification has good compatibility
with initial structures.

Theorem 10. Let {(Xi, qi, pi)}i∈I be pairs of spaces in�-CS and q be the initial structure relative to the source

(X
fi−→ (Xi, qi))i∈I . Let p ∈ �(X) such that each fi : (X, p) −→ (Xi, pi) is continuous closure function.

If γpi qi exists for all i ∈ I then so does γpq, and γpq is precisely the initial structure relative to the source

(X
fi−→ (Xi, γpi qi))i∈I .

Proof. At first, we show the existence of γpq. By Theorem 7, it suffices to check that cln
p([x]�)

q−→ x

for any x ∈ X, n ∈ N. In fact, by the existence of γpi qi we have cln
pi
([ fi(x)])

qi−→ fi(x) for any
i ∈ I, x ∈ X, n ∈ N. Then by each fi : (X, p) −→ (Xi, pi) being a continuous closure function it
holds that

f⇒i (cln
p([x]�) = cln

pi
( f⇒i ([x]�)) = cln

pi
([ fi(x)]�)

qi−→ fi(x),

so cln
p([x]�)

q−→ x for any x ∈ X, n ∈ N, i.e., γpq exists.

Let s denote the initial structure relative to the source (X
fi−→ (Xi, γpi qi))i∈I . Then

F s−→ x ⇐⇒ ∀i ∈ I, f⇒i (F)
γpi qi−→ fi(x) Theorem 8⇐⇒ ∀i ∈ I, ∀n ∈ N, cln

pi
( f⇒i (F))

qi−→ fi(x)
Proposition 2⇐⇒ ∀i ∈ I, ∀n ∈ N, f⇒i (cln

p(F))
qi−→ fi(x)

⇐⇒ ∀n ∈ N, cln
p(F)

q−→ x Theorem 8⇐⇒ F
γpq−→ x.

The following corollary tells us that upper p-regular modification has good compatibility with
supremum in the lattice �(X).

Corollary 3. Assume that {qi|i ∈ I} ⊆ �(X), p ∈ �(X) and q = sup{qi|i ∈ I}. If γpqi exists for all i ∈ I
then so does γpq and γpq = sup{γpqi|i ∈ I}.
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5. Conclusions

In this paper, we studied p-regularity in �-convergence spaces by a diagonal condition and a
closure condition about �-filter, respectively. We proved that p-regularity was preserved under the
initial and final constructions in the category �-CS. We then followed as a conclusion that p-regularity
was preserved under the infimum and supremum in the lattice �(X). Furthermore, we defined and
discussed lower (upper) p-regular modifications in �-convergence spaces. In particular, we showed
that lower (resp., upper) p-regular modification has good compatibility with final (resp., initial)
construction.
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Abstract: This paper analyzes the counterintuitive behaviors of adopted twelve distance-based
similarity measures between intuitionistic fuzzy sets. Among these distance-based similarity
measures, the largest number of components of the distance in the similarity measure is four.
We propose six general counterintuitive test problems to analyze their counterintuitive behaviors.
The results indicate that all the distance-based similarity measures have some counterintuitive test
problems. Furthermore, for the largest number of components of the distance-based similarity
measure, four types of counterintuitive examples exist. Therefore, the counterintuitive behaviors are
inevitable for the distance-based similarity measures between intuitionistic fuzzy sets.

Keywords: intuitionistic fuzzy set; similarity; counterintuitive

1. Introduction

Fuzzy sets (FSs) theory, proposed by Zadeh [1], has successfully been applied in various fields.
As a generalization of FSs, intuitionistic fuzzy sets (IFSs) proposed by Atanassov [2] is characterized
by a membership function and a non-membership function. IFSs have been widely applied in cluster
analysis [3–5], decision-making [6–11], medical diagnosis [12,13] and pattern recognition [14–19].

A similarity measure between two IFSs represents the alignment of the two sets. There are a large
number of papers discussing various similarity measures between two IFSs [20–30]. A comprehensive and
accurate survey of state-of-the-art research on IFSs and similarity measures are given by Atanassov [31]
and Pedrycz and Chen [9]. The degree of similarity measure is an important tool for cluster analysis [3],
decision-making [6,9,11], medical diagnosis [13] and pattern recognition [14–19,22]. One of the typical
definitions of a similarity measure is the one-minus distance between two vectors [17,21–30]. The first
distances over intuitionistic fuzzy sets are introduced by Atanassov [32]. Szmidt and Kacprzyk [33]
adopted the normalized Hamming distance and the normalized Euclidean distance to present the similarity
measures for IFSs. Furthermore, Szmidt and Kacprzyk [33] used hesitancy along with the membership
and non-membership values of the elements in the sets being compared. The components of Chen’s [21]
similarity measure and Dengfeng and Chuntian’s [23] similarity measure are concerned with the difference
between degrees of support. The components of the Hong and Kim’s [26] similarity measure, Mitchell’s [17]
similarity measure, the first Liang and Shi’s [30] similarity measure, Hung and Yang’s [27] three similarity
measures and Li, Zhongxian and Degin’s [29] similarity measure are the combination of the difference
between membership degrees and the difference between non-membership degrees. The components of
the Li and Xu’s [24] similarity measure are the combination of the difference between membership degrees,
the difference between non-membership degrees and the difference between degrees of support. The second
Liang and Shi’s [30] similarity measure is concerned with the combination of the difference between the
first quartiles of intervals of membership degree and the difference between the third quartiles of intervals
of membership degree. The third Liang and Shi’s [31] similarity measure considers the combination of the
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difference between membership degrees, the difference between non-membership degrees, the difference
between degrees of support and the difference between hesitant degrees. Therefore, the components
of the distance can be the combination of the difference between membership degrees, the difference
between non-membership degrees, the difference between hesitant degrees, the difference between degrees
of support, the difference between the first quartiles of intervals of the membership degree and the
difference between the third quartiles of intervals of the membership degree. Then we apply Minkowski
distance to calculate the similarity degree between two IFSs. This paper focuses on these distance-based
similarity measures.

In the literature, many varied approaches for the similarity measures between two IFSs are
inconsistent with our intuition [14–30]. Two typical counterintuitive examples are (1) quite distinct IFSs
having high similarity to each other and (2) two very distinct IFSs appearing to have equal similarity
to a third IFS. However, these two typical counterintuitive ones are simple examples in the literature.
This paper proposes six general counterintuitive test problems to analyze the counterintuitive behaviors
of the distance-based similarity measures. As Li et al. [28] indicates, third Liang and Shi’s [30] similarity
measure has “ . . . no counterintuitive cases”. We further present four types of counterintuitive test
problems for the third Liang and Shi’s [30] similarity measure.

The main contribution of this paper is to propose six general counterintuitive test problems. To the best
of our knowledge, the general test problems have not been yet presented to analyze the counterintuitive
behaviors of the distance-based similarity measures. Moreover, the proposed general counterintuitive test
problems can be used to analyze the counterintuitive behaviors of any similarity measures.

The organization of this paper is as follows. Section 2 briefly reviews the FSs and IFSs and
presents the distance-based similarity measures. Section 3 presents six general counterintuitive test
problems and analyzes the counterintuitive behaviors of distance-based similarity measures. Section 4
further presents the counterintuitive behaviors of the third Liang and Shi’s [31] similarity measure.
Finally, some concluding remarks and future research are presented.

2. IFSs and Similarity Measures

We firstly review the basic notations of FSs and IFSs. Let X = {x1, x2, . . . , xn} be a non-empty
universal set of real numbers R.

Definition 1. An FS A over X is defined by a membership function

μA : X→ [0, 1] for 1 ≤ i ≤ n.

Then the fuzzy set A over X is the set

A =
{
(xi, μA(xi))

∣∣∣1 ≤ i ≤ n
}
. (1)

We denote the set of all FSs over X by FS(X).

Definition 2. An IFS A over X is defined as

A =
{
(xi, μA(xi), vA(xi))

∣∣∣1 ≤ i ≤ n
}
, (2)

where the membership function μA : X→ [0, 1] and non-membership function vA : X→ [0, 1] of the xi to the
set A satisfy

μA(xi) + vA(xi) ≤ 1.

The set of all IFSs over X is denoted by IFS(X). The degree of hesitancy associated with each xi is defined as

πA(xi) = 1− μA(xi) − vA(xi) (3)
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measuring the lack of information or certitude.
We now briefly review some operations involving IFSs.

Definition 3. Let A =
{
(xi, μA(xi), vA(xi))

∣∣∣1 ≤ i ≤ n
}

and B =
{
(xi, μB(xi), vB(xi))

∣∣∣1 ≤ i ≤ n
}

be two
IFSs. Then,

1. A ⊆ B if and only if μA(xi) ≤ μB(xi) and vA(xi) ≥ vB(xi) for 1 ≤ i ≤ n.
2. A = B if and only if μA(xi) = μB(xi) and vA(xi) = vB(xi) for 1 ≤ i ≤ n.
3. The complement of A is defined as Ac =

{
(xi, vA(xi), μA(xi))

∣∣∣1 ≤ i ≤ n
}
.

4. We denote the pure intuitionistic fuzzy set by PI =
{
(xi, 0, 0)

∣∣∣1 ≤ i ≤ n
}
.

For the fuzzy set A ∈ FS(X), πA(xi) = 0 for every xi ∈ X, and for the pure intuitionistic fuzzy set,
πPI(xi) = 1 for every xi ∈ X.

We now recall the definition of similarity measures between two IFSs.

Definition 4. A similarity measure S : IFS(X)2 → [0, 1] should satisfy the following properties:

1. S(A, B) ∈ [0, 1].
2. S(A, B) = 1 if and only if A = B.
3. S(A, B) = S(B, A).
4. If A ⊆ B ⊆ C, then S(A, C) ≤ S(A, B) and S(A, C) ≤ S(B, C).

So far, in the literature, many papers have been dedicated to problems connected with the
similarity measures between two IFSs and research on this area is still carried on. Let A ={
(xi, μA(xi), vA(xi))

∣∣∣1 ≤ i ≤ n
}

and B =
{
(xi, μB(xi), vB(xi))

∣∣∣1 ≤ i ≤ n
}

be two IFSs. The existing
distance-based similarity measures S(A, B) between two IFSs A and B are defined as follows:

Chen [21]:

SC(A, B) = 1− 1
2n

n∑
i=1

∣∣∣μA(xi) − vA(xi) − (μB(xi) − vB(xi))
∣∣∣

Hong and Kim [26]:

SHK(A, B) = 1− 1
2n

n∑
i=1

∣∣∣μA(xi) − μB(xi)
∣∣∣+ ∣∣∣vA(xi) − vB(xi)

∣∣∣
Li and Xu [24]:

SLX(A, B) = 1− 1
4n

n∑
i=1
{
∣∣∣μA(xi) − μB(xi)

∣∣∣+ ∣∣∣vA(xi) − vB(xi)
∣∣∣

+
∣∣∣μA(xi) − vA(xi) − (μB(xi) − vB(xi))

∣∣∣}
Dengfeng and Chuntian [23]:

SDC(A, B) = 1− p

√√
1

2n

n∑
i=1

∣∣∣μA(xi) − vA(xi) − (μB(xi) − vB(xi))
∣∣∣p

Mitchell [17]:

SM(A, B) = 1− 1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩ p

√√
1
n

n∑
i=1

∣∣∣μA(xi) − μB(xi)
∣∣∣p + p

√√
1
n

n∑
i=1

∣∣∣vA(xi) − vB(xi)
∣∣∣p
⎫⎪⎪⎪⎬⎪⎪⎪⎭
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Liang and Shi [30]:

SLS1(A, B) = 1− 1
2

p

√
1
n

∑n

i=1
(
∣∣∣μA(xi) − μB(xi)

∣∣∣+ ∣∣∣vA(xi) − vB(xi)
∣∣∣)p

SLS2(A, B) = 1− 1
8 (

1
n
∑n

i=1(
∣∣∣3(μA(xi) − μB(xi)) − (vA(xi) − vB(xi))

∣∣∣+∣∣∣(μA(xi)−
μB(xi)) − 3(vA(xi) − vB(xi))

∣∣∣) p
)

1/p

SLS3(A, B) = 1− 1
2 (

1
3n

∑n
i=1 (

∣∣∣μA(xi) − μB(xi)
∣∣∣+ ∣∣∣vA(xi) − vB(xi)

∣∣∣+ ∣∣∣μA(xi) − vA(xi)−
(μB(xi) − vB(xi))

∣∣∣+ ∣∣∣μA(xi) + vA(xi) − (μB(xi) + vB(xi))
∣∣∣)p

)
1/p

Hung and Yang [27]:

SHY1(A, B) = 1− 1
n

n∑
i=1

max{
∣∣∣μA(xi) − μB(xi)

∣∣∣, ∣∣∣vA(xi) − vB(xi)
∣∣∣}

SHY2(A, B) =
e− 1

n
∑n

i=1 max{|μA(xi)−μB(xi)|,|vA(xi)−vB(xi)|} − e−1

1− e−1

SHY3(A, B) =
1− 1

n
∑n

i=1 max
{∣∣∣μA(xi) − μB(xi)

∣∣∣, ∣∣∣vA(xi) − vB(xi)
∣∣∣}

1 + 1
n
∑n

i=1 max
{∣∣∣μA(xi) − μB(xi)

∣∣∣, ∣∣∣vA(xi) − vB(xi)
∣∣∣}

Li, Zhongxian and Degin [29]:

SLZD(A, B) = 1−
√

1
2n

∑n

i=1
(μA(xi) − μB(xi))

2 + (vA(xi) − vB(xi))
2.

Therefore, we adopt twelve distance-based similarity measures. When p = 1, we have

SDC(A, B) = SC(A, B)

SM(A, B) = 1− 1
2n

n∑
i=1

∣∣∣μA(xi) − μB(xi)
∣∣∣+ ∣∣∣vA(xi) − vB(xi)

∣∣∣ = SHK(A, B)

and

SLS1(A, B) = 1− 1
2n

n∑
i=1

∣∣∣μA(xi) − μB(xi)
∣∣∣+ ∣∣∣vA(xi) − vB(xi)

∣∣∣ = SHK(A, B).

Among these distance-based similarity measures, four types of components of distance are
distinguished: (I) the combination of difference between membership degrees and difference between
non-membership degrees; (II) the difference between hesitant degrees; (III) the difference between
degrees of support and (IV) the combination of difference between the first quartiles of intervals of
membership degree and the difference between the third quartiles of intervals of membership degree.
Detailed results are presented in Table 1. The similarity measures SHK(A, B), SM(A, B), SLS1(A, B),
SHY1(A, B), SHY2(A, B), SHY3(A, B) and SLZD(A, B) are dependent on type I. The similarity measures
SC(A, B) and SDC(A, B) are concerned with type III. SLX(A, B) is dependent on the combination of
types I and III. SLS2(A, B) is concerned with type IV. SLS3(A, B) is concerned with the combination of
types I, II and III. The largest number of components of the distance in the similarity measure is four
for the similarity measure SLS3(A, B). Therefore, we anticipate that the intuitive behavior of SLS3(A, B)
is superior to those of other similarity measures.
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Table 1. The four types of components of distance-based similarity measures.

Similarity I II III IV

SC(A, B)
√

SHK(A, B)
√

SLX(A, B)
√ √

SDC(A, B)
√

SM(A, B)
√

SLS1(A, B)
√

SLS2(A, B)
√

SLS3(A, B)
√ √ √

SHY1(A, B)
√

SHY2(A, B)
√

SHY3(A, B)
√

SLZD(A, B)
√

3. General Counterintuitive Test Problems

Much literature has been written on the counterintuitive examples for the similarity measures
between two IFSs. Two typical counterintuitive examples are (I) S(A, B) = 1 for A � B, A, B ∈ IFS(X)

and (II) S(P1, Q) = S(P2, Q) for P1 � P2, P1, P2, Q ∈ IFS(X). This paper proposes six general
counterintuitive test problems presented in Table 2. From Definition 4, a similarity measure which fails
type I is not a similarity measure.

Table 2. The six general counterintuitive test problems.

# Test Problem

T1 A(a, a), B(b, b), a � b, 0 ≤ a, b ≤ 1/2 satisfying S(A, B) = 1.
T2 A(a, a), B(b, b), C(a, b), D(b, a), a � b, 0 ≤ a, b ≤ 1/2 satisfying S(A, B) = S(C, D).
T3 P1(a, b), P2(

a+b
2 , a+b

2 ), Q(b, b), a � b, 0 ≤ a, b, a + b ≤ 1, b ≤ 1/2 satisfying S(P1, Q) = S(P2, Q).
T4 P1(1, 0), P2(a, 1− a), Q(0, 0), 0 ≤ a ≤ 1 satisfying S(P1, Q) = S(P2, Q).

T5 P1(b, b− α), P2(b, a− α), Q(a, a− α), a � b, α ≤ a, b, a + b− α ≤ 1, 2a− α ≤ 1, 2b− α ≤ 1
satisfying S(P1, Q) = S(P2, Q).

T6 P1
{
(a + α, b), (a, b + α)

}
, P2

{
(a + α, b + α), (a + α, b + α)

}
, Q

{
(a, b), (a + α, b)

}
, a � b, 0 ≤

a, b, α, a + b + 2α ≤ 1 satisfying S(P1, Q) = S(P2, Q).

Test problem T1 is a type I counterintuitive one. So, a similarity measure which fails test
problem T1 is not a similarity measure. Test problem T2 is to distinguish the positive difference and
negative difference. Test problems T3, T4, T5 and T6 can be considered pattern recognition problems.
Consider two known patterns P1 and P2. We want to classify an unknown pattern represented by Q
into one of the patterns P1 and P2. For test problem T3, the membership degree and non-membership
degree of P2 is the average of those of P1 and Q. For S(P1, Q) = S(P2, Q), it implies that T3 is a
counterintuitive test problem. For test problem T4 with S(P1, Q) = S(P2, Q), a crisp set P1 is as similar
to PI Q as any FS P2. So T4 is a counterintuitive test problem. For test problem T5, although∣∣∣μP1 − μQ

∣∣∣ � ∣∣∣μP2 − μQ
∣∣∣ or

∣∣∣vP1 − vQ
∣∣∣ �∣∣∣vP2 − vQ

and ∣∣∣μP1 − μQ
∣∣∣+ ∣∣∣vP1 − vQ

∣∣∣ � ∣∣∣μP2 − μQ
∣∣∣+ ∣∣∣vP2 − vQ

∣∣∣,
but∣∣∣μP1 − μQ

∣∣∣+ ∣∣∣vP1 − vQ
∣∣∣+ ∣∣∣μP1 − vP1 − (μQ − vQ)

∣∣∣ = ∣∣∣μP2 − μQ
∣∣∣+ ∣∣∣vP2 − vQ|+|μP2 − vP2 − (μQ − vQ)

∣∣∣, (4)
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then S(P1, Q) = S(P2, Q). It follows that T5 is a counterintuitive test problem. For test problem T6, if

2∑
i=1

(
∣∣∣μP1(xi) − μQ(xi)

∣∣∣+ ∣∣∣vP1(xi) − vQ(xi)
∣∣∣+ ∣∣∣μP1(xi) − vP1(xi) − (μQ(xi) − vQ(xi))

∣∣∣
+

∣∣∣μP1(xi) + vP1(xi) − (μQ(xi) + vQ(xi))
∣∣∣)

=
2∑

i=1
(
∣∣∣μP2(xi) − μQ(xi)

∣∣∣+ ∣∣∣vP2(xi) − vQ(xi)
∣∣∣+ |μP2(xi) − vP2(xi)

−(μQ(xi) − vQ(xi))|+|μP2(xi) + vP2(xi) − (μQ(xi) + vQ(xi))
∣∣∣)

(5)

then S(P1, Q) = S(P2, Q). So T6 is a counterintuitive test problem.
For each distance-based similarity measure, we analyze the counterintuitive behaviors of the six

general counterintuitive test problems as follows.
For similarity measure SC(A, B), since SC(A, B) = 1 for test problem T1, it implies that T1 is the

counterintuitive test problem for the similarity measure SC(A, B).
For similarity measure SHK(A, B), we have

SHK(A, B) = SHK(C, D) = 1− |a− b| (6)

SHK(P1, Q) = SHK(P2, Q) = 1− |a− b|
2

(7)

and
SHK(P1, Q) = SHK(P2, Q) = 0.5 (8)

for test problems T2, T3 and T4, respectively. So the counterintuitive test problems for the similarity
measure SHK(A, B) are T2, T3 and T4.

The counterintuitive test problem for the similarity measure SLX(A, B) is T5, because

SLX(P1, Q) = SLX(P2, Q) = 1− |a− b|
2

(9)

A similar argument shows that the counterintuitive test problems for the similarity measures
SDC(A, B) and SM(A, B) are test problem T1 and test problems T2, T3, T4, respectively.
The counterintuitive test problems for the three Liang and Shi’s similarity measures SLS1(A, B),
SLS2(A, B) and SLS3(A, B) are test problems T2, T3, T4, test problem T5, and test problem T6,
respectively. The counterintuitive test problems are T2 and T5 for the three Hung and Yang’s
similarity measures SHY1(A, B), SHY2(A, B) and SHY3(A, B), and T2 for SLZD(A, B). Detailed results
are displayed in Table 3. SC(A, B) and SDC(A, B) are not similarity measures. The smallest number of
counterintuitive test problems is one. These counterintuitive test problems are T2 for SLZD(A, B), T5 for
SLX(A, B), SLS2(A, B), and T6 for SLS3(A, B). Therefore, the counterintuitive test problem is T1 for
SC(A, B) and SDC(A, B), T2 for SHK(A, B), SM(A, B), SLS1(A, B), SHY1(A, B), SHY2(A, B), SHY3(A, B)
and SLZD(A, B), T3 and T4 for SHK(A, B), SM(A, B) and SLS1(A, B), T5 for SLX(A, B), SLS2(A, B),
SHY1(A, B), SHY2(A, B) and SHY3(A, B), and T6 for SLS3(A, B).
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Table 3. The counterintuitive test problems of distance-based similarity measures.

Similarity Counterintuitive Test Problems

SC(A, B) T1
SHK(A, B) T2, T3, T4
SLX(A, B) T5
SDC(A, B) T1
SM(A, B) T2, T3, T4

SLS1(A, B) T2, T3, T4
SLS2(A, B) T5
SLS3(A, B) T6
SHY1(A, B) T2, T5
SHY2(A, B) T2, T5
SHY3(A, B) T2, T5
SLZD(A, B) T2

4. Counterintuitive Test Problem for SLS3(A,B)

From the analysis of counterintuitive test problems in the previous section and those of Li et al. [28],
the third Liang and Shi’s similarity measure SLS3(A, B) outperforms other similarity measures.
This section further analyzes the counterintuitive behaviors of the third Liang and Shi’s similarity
measure SLS3(A, B).

Consider the four types of three IFSs A, B and C as follows.
(I) A(a1, a2), B(a1, a2 + α) and C(c1, a2 + α−β) for c1 ≥ a1.
(II) A(a1, a2), B(a1, a2 + α) and C(c1, a2 + α−β) for a1 ≥ c1.
(III) A(a1, a2), B(a1, a2 −α) and C(c1, a2 −α+ β) for c1 ≥ a1.
(IV) A(a1, a2), B(a1, a2 −α) and C(c1, a2 −α+ β) for a1 ≥ c1.
By fixing A(a1, a2) and B(a1, a2 ±α), we will present the explicit form of IFS C(c1, a2 ±α∓β)

satisfying SLS3(A, B) = SLS3(A, C). This implies that
{
A(a1, a2), B(a1, a2 ±α), C(c1, a2 ±α∓β)} is a

counterintuitive example for the similarity measure SLS3(A, B).
We now analyze type I. From A(a1, a2), B(a1, a2 + α), C(c1, a2 + α−β), and c1 ≥ a1, it follows that

SLS3(A, B) = 3α (10)

and
SLS3(A, C) = c1 − a1 + |α−β|+

∣∣∣c1 − a1 − (α−β)
∣∣∣+ |c1 − a1 + α−β| (11)

Four cases are considered as follows.
Case I1: α−β ≥ 0, c1 − a1 − (α−β) ≤ 0 and c1 − a1 + α−β ≥ 0.
We get that

SLS3(A, C) = −a1 + c1 + 3α− 3β.

In order to SLS3(A, B) = SLS3(A, C), we have that c1 = a1 + 3β, implying

C(a1 + 3β, a2 + α−β). (12)

The following conditions should be satisfied for A, B, C ∈ IFS(X) and c1 ≥ a1,

a1 − c1 + α−β = α− 4β ≥ 0, a1 + a2 + α ≤ 1, a1 + a2 + α+ 2β ≤ 1, a1, a2,α, β ≥ 0.

Therefore, if α ≥ 4β, a1 + a2 + α + 2β ≤ 1, a1, a2,α, β ≥ 0, then A(a1, a2), B(a1, a2 + α) and
C(a1 + 3β, a2 + α−β) satisfying SLS3(A, B) = SLS3(A, C).

A similar argument shows the other three cases as follows. Detailed results of C(c1, a2 + α−β)
and conditions for c1 ≥ a1 are summarized in Table 4.

Case I2: α−β ≥ 0, c1 − a1 − (α−β) ≥ 0 and c1 − a1 + α−β ≥ 0.
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If β ≤ α ≤ 4β, a1 + a2 +
5α−2β

3 ≤ 1 and a1, a2,α, β ≥ 0, then A(a1, a2), B(a1, a2 + α) and
C(a1 +

2α+β
3 , a2 + α−β) satisfying SLS3(A, B) = SLS3(A, C).

Case I3: α−β ≤ 0, c1 − a1 − (α−β) ≥ 0 and c1 − a1 + α−β ≥ 0.
If 4β/7 ≤ α ≤ β, a1 + a2 + α ≤ 1 and a1, a2,α, β ≥ 0, then A(a1, a2), B(a1, a2 + α) and

C(a1 +
4α−β

3 , a2 + α−β) satisfying SLS3(A, B) = SLS3(A, C).
Case I4: α−β ≤ 0, c1 − a1 − (α−β) ≥ 0 and c1 − a1 + α−β ≤ 0.
If β/2 ≤ α ≤ 4β/7, a1 + a2 + α ≤ 1 and a1, a2,α, β ≥ 0, then A(a1, a2), B(a1, a2 + α) and

C(a1 + 6α− 3β, a2 + α−β) satisfying SLS3(A, B) = SLS3(A, C).

Table 4. A(a1, a2), B(a1, a2 + α) and C satisfying SLS3(A, B) = SLS3(A, C), a1, a2,α, β ≥ 0.

C(c1, a2+α−β) Conditions

I1 C(a1 + 3β, a2 + α− β) c1 ≥ a1, α ≥ 4β, a1 + a2 + α+ 2β ≤ 1
I2 C(a1 +

2α+β
3 , a2 + α− β) c1 ≥ a1, β ≤ α ≤ 4β, a1 + a2 +

5α−2β
3 ≤ 1

I3 C(a1 +
4α−β

3 , a2 + α− β) c1 ≥ a1, 4/7β ≤ α ≤ β, a1 + a2 + α ≤ 1
I4 C(a1 + 6α− 3β, a2 + α− β) c1 ≥ a1, 0.5β ≤ α ≤ 4/7β, a1 + a2 + α ≤ 1
II1 C(a1 − 3β, a2 + α− β) a1 ≥ c1, α ≥ 4β, a1 + a2 + α ≤ 1
II2 C(a1 − 2α+β

3 , a2 + α− β) a1 ≥ c1, β ≤ α ≤ 4β, a1 + a2 + α ≤ 1
II3 C(a1 − 4α−β

3 , a2 + α− β) a1 ≥ c1, 4/7β ≤ α ≤ β, a1 + a2 + α ≤ 1
II4 C(a1 − 6α+ 3β, a2 + α− β) a1 ≥ c1, 0.5β ≤ α ≤ 4/7β, a1 + a2 + α ≤ 1

For type II, from A(a1, a2), B(a1, a2 + α), C(c1, a2 + α−β) and a1 ≥ c1, it follows that
Equation (10) and

SLS3(A, C) = a1 − c1 + |α−β|+ |a1 − c1 + α−β|+ |a1 − c1 −α+ β| (13)

Four cases are considered as follows.
Case II1: α− β ≥ 0, a1 − c1 + α− β ≥ 0 and a1 − c1 − α+ β ≤ 0.
Case II2: α− β ≥ 0, a1 − c1 + α− β ≥ 0 and a1 − c1 − α+ β ≥ 0.
Case II3: α− β ≤ 0, a1 − c1 + α− β ≥ 0 and a1 − c1 − α+ β ≥ 0.
Case II4: α− β ≤ 0, a1 − c1 + α− β ≤ 0 and a1 − c1 − α+ β ≥ 0.
A similar argument presents the explicit form of C(c1, a2 + α− β) and conditions for a1 ≥ c1

shown in Table 4. Given A(a1, a2) and B(a1, a2 + α), from c1 ≥ a1 of type I to a1 ≥ c1 of type II, the form
of C from C(a1 + γi, a2 + α− β) of type I case Ii to C(a1 − γi, a2 + α− β) of type II case IIi, for each case,
where γi is the ith component of

[
3β, 2α+β

3 , 4α−β
3 , 6α− 3β

]
.

By symmetric argument, the form of C(c1, a2 − α+ β) and conditions for types III and IV are
presented in Table 5. From Table 5, given A(a1, a2) and B(a1, a2 − α), from c1 ≥ a1 of type III to a1 ≥ c1

of type IV, the form of C from C(a1 + γi, a2 − α+ β) of type III case IIIi to C(a1 − γi, a2 − α+ β) of type
IV case IVi, for each case, where γi is the ith component of

[
3β, 2α+β

3 , 4α−β
3 , 6α− 3β

]
.

Table 5. A(a1, a2), B(a1, a2 − α) and C satisfying SLS3(A, B) = SLS3(A, C), a1, a2,α, β ≥ 0.

C(c1, a2−α+β) Conditions

III1 C(a1 + 3β, a2 − α+ β) c1 ≥ a1, α ≥ 4β, a1 + a2 − α+ 4β ≤ 1
III2 C(a1 +

2α+β
3 , a2 − α+ β) c1 ≥ a1, β ≤ α ≤ 4β, a1 + a2 +

−α+4β
3 ≤ 1

III3 C(a1 +
4α−β

3 , a2 − α+ β) c1 ≥ a1, 4/7β ≤ α ≤ β, a1 + a2 +
α+2β

3 ≤ 1
III4 C(a1 + 6α− 3β, a2 − α+ β) c1 ≥ a1, 0.5β ≤ α ≤ 4/7β, a1 + a2 + 5α− 2β ≤ 1
IV1 C(a1 − 3β, a2 − α+ β) a1 ≥ c1, α ≥ 4β, a1 + a2 − α ≤ 1
IV2 C(a1 − 2α+β

3 , a2 − α+ β) a1 ≥ c1, β ≤ α ≤ 4β, a1 + a2 − α ≤ 1
IV3 C(a1 − 4α−β

3 , a2 − α+ β) a1 ≥ c1, 4/7β ≤ α ≤ β, a1 + a2 − 7α−4β
3 ≤ 1

IV4 C(a1 − 6α+ 3β, a2 − α+ β) a1 ≥ c1, 0.5β ≤ α ≤ 4/7β, a1 + a2 − 7α+ 4β ≤ 1
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From Tables 4 and 5, we observe that there are 1-1 correspondences between the explicit forms
of C of four types. More precisely, for each case i, C(a1 + γi, a2 + α− β) of type I case Ii corresponds
to C(a1 − γi, a2 + α− β) of type II case IIi, which, in turn, to C(a1 + γi, a2 − α+ β) of type III case
IIIi, which in turn to C(a1 − γi, a2 − α+ β) of type IV case IVi, where γi is the ith component of[
3β, 2α+β

3 , 4α−β
3 , 6α− 3β

]
.

5. Conclusions and Future Research

This paper considers twelve distance-based similarity measures. Among which the largest number
of components of the distance in the similarity measure is four for SLS3(A, B). Therefore, we anticipate
that the intuitive behaviors of SLS3(A, B) is superior to those of other similarity measures.
Much literature has been written on the counterintuitive examples for the similarity measures between
two IFSs. This paper proposes six general counterintuitive test problems T1–T6. The counterintuitive
test problem is T1 for SC(A, B) and SDC(A, B), T2 for SHK(A, B), SM(A, B), SLS1(A, B), SHY1(A, B),
SHY2(A, B), SHY3(A, B) and SLZD(A, B), T3 and T4 for SHK(A, B), SM(A, B) and SLS1(A, B), T5 for
SLX(A, B), SLS2(A, B), SHY1(A, B), SHY2(A, B) and SHY3(A, B), and T6 for SLS3(A, B). For SLS3(A, B),
four types of counterintuitive example

{
A(a1, a2), B(a1, a2 ± α), C(c1, a2 ±α∓ β)} exist. There are

1-1 correspondences between the explicit forms of C of four types.
Worthy of future research is when the counterintuitive analysis is extended to other types of

similarity measures. In particular, the analysis can be extended to the similarity measures based
on the transformation techniques or based on the centroid points of transformation techniques.
Thus, the counterintuitive analyses of the transformation techniques based or centroid points based
similarity measures is a subject of considerable ongoing research.

Author Contributions: H.-C.T. analyzed the method and wrote the paper. S.-T.Y. performed the experiments.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare that they have no competing interests.

References

1. Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–356. [CrossRef]
2. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
3. Hwang, C.M.; Yang, M.S.; Hung, W.L. New similarity measures of intuitionistic fuzzy sets based on the

Jaccard index with its application to clustering. Int. J. Intell. Syst. 2018, 33, 1672–1688. [CrossRef]
4. Wang, Z.; Xu, Z.; Liu, S.; Yao, Z. Direct clustering analysis based on intuitionistic fuzzy implication.

Appl. Soft Comput. 2014, 23, 1–8. [CrossRef]
5. Xu, D.; Xu, Z.; Liu, S.; Zhao, H. A spectral clustering algorithm based on intuitionistic fuzzy information.

Knowl. Based Syst. 2013, 53, 20–26. [CrossRef]
6. Garg, H.; Kumar, K. An advanced study on the similarity measures of intuitionistic fuzzy, sets based on

the set pair analysis theory and their application in decision making. Soft Comput. 2018, 22, 4959–4970.
[CrossRef]

7. He, Y.; Chen, H.; Zhou, L.; Liu, J.; Tao, Z. Intuitionistic fuzzy geometric interaction averaging operators and
their application to multi-criteria decision making. Inf. Sci. 2014, 269, 142–159. [CrossRef]

8. Liu, F.; Aiwu, G.; Lukovac, V.; Vukic, M. A multicriteria model for the selection of the transport service
provider: A single valued neutrosophic DEMATEL multicriteria model. Dec. Mak. Appl. Manag. Eng. 2018,
1, 121–130. [CrossRef]

9. Pedrycz, W.; Chen, S.M. Granular Computing and Decision-Making: Interactive and Iterative Approaches; Springer:
Berlin, Germany, 2015.
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Abstract: The picture fuzzy set is an efficient mathematical model to deal with uncertain real life
problems, in which a intuitionistic fuzzy set may fail to reveal satisfactory results. Picture fuzzy set
is an extension of the classical fuzzy set and intuitionistic fuzzy set. It can work very efficiently in
uncertain scenarios which involve more answers to these type: yes, no, abstain and refusal. In this
paper, we introduce the idea of the picture fuzzy graph based on the picture fuzzy relation. Some types
of picture fuzzy graph such as a regular picture fuzzy graph, strong picture fuzzy graph, complete
picture fuzzy graph, and complement picture fuzzy graph are introduced and some properties are
also described. The idea of an isomorphic picture fuzzy graph is also introduced in this paper. We also
define six operations such as Cartesian product, composition, join, direct product, lexicographic and
strong product on picture fuzzy graph. Finally, we describe the utility of the picture fuzzy graph and
its application in a social network.

Keywords: fuzzy graph; picture fuzzy graph; social network; direct product; lexicographic product;
strong product

PACS: J0101

1. Introduction

In 1965, L. A. Zadeh [1] introduced the idea of fuzzy sets which has been successfully applied to
solve the various real life decision problems, which are often uncertain. Fuzzy set is a generalization
of crisp set, where the elements of the set have varying degrees of membership. Since the crisp set
consists of two truth values ( 0 (‘false’) and 1 (‘true’)) which is unable to work with uncertain real life
problem. Fuzzy set permits its member to have the value of membership degree between 0 and 1 for
better outcome, instead of considering only 0 or 1. The membership degree of a member is not same
as probability, rather it indicates the belongingness degree of the element to the fuzzy set, which is
a single value within the interval [0, 1]. However, those single values of membership degree cannot
handle the uncertainties due to lack of knowledge of the problem. Atanassov [2] has proposed the
intuitionistic fuzzy set to manage this kind of uncertain situation using an additional membership
degree, defined as hesitation margin. Intuitionistic fuzzy set is as an extension of Zadeh’s fuzzy
set. The fuzzy set can consider only the membership degree of a member in a given set and sum
of the membership degree and non membership is always equal to 1, while intuitionistic fuzzy set
can consider independent membership degree and non membership degree, the only requirement
is that sum of membership degree and non membership degree is not greater than 1. It is more
flexible and efficient compared to classical fuzzy set to work with uncertainty due to the presence
of hesitation margin. The intuitionistic fuzzy set is used significantly in those real life scenarios,
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where human perception and knowledge are required, which are generally imprecise and not fully
reliable. Over the last few decades, the intuitionistic fuzzy set has been obtaining lots of attention
from researchers and scientists. Intuitionistic fuzzy set is used in successfully in different field
including image processing [3], decision making [4], social network [5], logic programming [6], market
prediction [7], machine learning [8], medical diagnosis recognition [9], robotic systems [10], etc.
The concept of neutrality degree cannot be considered in intuitionistic fuzzy set theory. However,
neutrality degree needs to consider in many real life scenarios, such as democratic election station.
Human beings generally give opinions having more answers of the type: yes, no, abstain and refusal.
For example, in a democratic voting system, 1000 people participated in the election. The election
commission issues 1000 ballot paper and one person can take only one ballot for giving his/her vote
and α is only one candidate. The results of the election are generally divided into four groups came
with the number of ballot papers namely “vote for the candidate (500)”, “abstain in vote (200)”, “vote
against candidate (200)” and “refusal of voting (100)”. The “abstain in vote” describes that ballot
paper is white which contradicts both “vote for the candidate” and “vote against candidate” but it
considers the vote. However, “refusal of voting” means bypassing the vote. This type of real life
scenarios cannot be handled by intuitionistic fuzzy set. If we use intuitionistic fuzzy sets to describe
the above voting system, the information of voting for non-candidates may be ignored. To solve this
problem, Cuong and Kreinovich [11] proposed the concept of picture fuzzy set which is a modified
version of fuzzy set and Intuitionistic fuzzy set. Picture fuzzy set (PFS) allows the idea degree of
positive membership, degree of neutral membership and degree of negative membership of an element.
Numerous papers [12–21] have been published on the picture fuzzy set. Cuong [22] described several
properties of PFS and also studied a ranking method based on distance measurement between two
PFSs. Phong et al. [23] have proposed several compositions of picture fuzzy relations. Then, Cuong and
Hai [24] have extended some fuzzy logic operators such as conjunctions, complements, disjunctions
and implications for PFSs. They proposed fuzzy inference processes for picture fuzzy systems. Peng
and Dai [19] have proposed an algorithmic approach for PFS and used it in a decision making problem.
Garg [20] have introduced some aggregation operations of PFS and their applications in multi-criteria
decision making.

The basic idea of fuzzy graph was proposed by Rosenfeld [25], 10 years after Zadeh’s significant
paper on fuzzy sets. Fuzzy graphs have numerous applications in modern engineering, science and
medicine especially in the areas of telecommunication, information theory, logistics, neural networks,
transportation, expert systems, manufacturing, cluster analysis, social network, medical diagnosis,
control theory etc. Fuzzy graph is used as an essential tool to model those problems and it gives
more efficient, flexibility and compatibility to model any real world problem when compared to the
classic graph. The concept of a complement fuzzy graph was introduced by Mordeson and Nair [26]
and further described by Sunitha and Kumar [27]. Shannon and Atanassov [28] have proposed
the definition of intuitionistic fuzzy relation and intuitionistic fuzzy graphs and described several
proprieties in [28]. Parvathi et al. [29–31] described different operations on intuitionistic fuzzy graphs.
Rashmanlou et al. [32] introduced several operations such as direct product, lexicographic product and
strong product on intuitionistic fuzzy graphs. They have also described the join, union, composition,
and Cartesian production between two intuitionistic fuzzy graphs. For more details on intuitionistic
fuzzy graphs, please refer to [33–36].

Fuzzy graph has used to model many decision making problem in uncertain environment.
A number of generalizations of fuzzy graphs have been introduced to deal the uncertainty of the
complex real life problems. As uncertainties are well expressed using picture fuzzy set, picture fuzzy
graph would be prominent research direction for modeling the uncertain optimization problems.
This motivated us to introduce the idea picture fuzzy graph its related operations. In this study, we
propose the definition of picture fuzzy graph based on picture fuzzy relation. We also introduce several
types of picture fuzzy graph such as regular picture fuzzy graph, strong picture fuzzy graph, complete
picture fuzzy graph, connected picture fuzzy graph and complement picture fuzzy graph. The idea of
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isomorphism of picture fuzzy graph is introduced in this paper. We describe the weak and co weak
isomorphic picture fuzzy graph. We describe the degree, size and order of a picture fuzzy graph. Busy
and free nodes of picture fuzzy graph are also defined in this paper. Six operations on picture fuzzy
graphs, viz. Cartesian product, composition, join, direct product, lexicographic and strong product are
introduced in this paper. Finally, we describe the utility of picture fuzzy graph and its application in
social network.

2. Preliminaries

Definition 1. A fuzzy set A, on the universe of discourse of X can also be described a set of ordered pairs as:

A = {x, μA (x) |x ∈ X}. (1)

In classical set theory, μA(x) has only the two membership values 0 (‘false’) and 1 (‘true’). Instead of
considering only those two truth values, fuzzy set can assign the value of μA (x) within the interval between 0
(‘false’) and 1 (‘true’) for better outcome.

Definition 2. Let A be a intuitionistic fuzzy set. A in X is defined by

A = {x, μA (x) , νA (x) |x ∈ X}, (2)

where μA(x) ∈ [0, 1] and νA(x) ∈ [0, 1] follows with the condition 0 ≤ μA(x) + νA(x) ≤ 1. The μA(x)
is used to represent the degree of membership and νA(x) represents the degree of non-membership of the
element x in the set A. For each intuitionistic fuzzy set A in X, the intuitionistic fuzzy index is described as
πA(x) = 1− (μA(x) + νA(x)).

Definition 3. Let A be a picture fuzzy set. A in X is defined by

A = {x, μA (x) , ηA (x) , νA (x) |x ∈ X}, (3)

where μA(x), ηA(x) and νA(x) follow the condition 0 ≤ μA(x) + ηA(x) + νA(x) ≤ 1.
The μA(x), ηA(x), νA(x) ∈ [0, 1], denote respectively the positive membership degree, neutral membership
degree and negative membership degree of the element x in the set A. For each picture fuzzy set A in X,
the refusal membership degree is described as πA(x) = 1− (μA(x) + ηA(x) + νA(x)).

Definition 4. A picture fuzzy relation R is a picture fuzzy subset of X ×Y described by

R = {(x, y) , μR (x, y) , ηR (x, y) , νR (x, y) |x ∈ X, y ∈ Y}. (4)

Here, μR : X × Y → [0, 1], ηR : X × Y → [0, 1] and νR : X × Y → [0, 1] must satisfy the condition
0 ≤ μR(x, y) + ηR(x, y) + νR(x, y) ≤ 1 for every (x, y) ∈ X ×Y.

Definition 5. Let A and B be two picture fuzzy sets. The union, intersection and complement are described
as follows.

1. A ∪ B = {x, max (μA (x) , μB (x)) , min (ηA (x) , ηB (x)) , min (νA (x) , νB (x)) |x ∈ X, y ∈ Y}
2. A ∩ B = {x, min (μA (x) , μB (x)) , min (ηA (x) , ηB (x)) , max (νA (x) , νB (x)) |x ∈ X, y ∈ Y}
3. Ac = {νA (x) , ηA (x) , μA (x) |x ∈ X}

Definition 6. Let A and B be two picture fuzzy sets on two universes X1 and X2. The Cartesian product of A
and B is described as follows.

A× B = {(x, y) , μA (x) ∧ μB (y) , ηA (x) ∧ ηB (y) , νA (x) ∨ νB (y) |x ∈ X1, y ∈ X2}. (5)
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Definition 7. Let V be a finite nonempty set of vertices. A fuzzy graph G is described by an order pair of
functions σ and μ, G = (σ, μ). σ represents a fuzzy subset of V and μ represents a symmetric fuzzy relation on
σ, i.e., σ: V −→ [0, 1] and μ: V ×V −→ [0, 1] such that

μ (u, v) ≤ (σ (u) ∩ σ (v)) , ∀u, ∀v ∈ V. (6)

Definition 8. A fuzzy graph G = (σ, μ) is called complete fuzzy graph if

μ (x, y) = (σ (u) ∩ σ (v)) , ∀u, ∀v ∈ σ. (7)

Definition 9. A fuzzy graph G = (σ, μ) is called strong fuzzy graph if

μ (x, y) = (σ (u) ∩ σ (v)) , ∀u, v ∈ μ. (8)

Definition 10. The complement of a fuzzy graph G = (σ, μ) is a fuzzy graph and it is represented as Gc =

(σc, μc), where σc = σ and
μc(u, v) = σ(u) ∧ σ(v)− μ(u, v). (9)

Definition 11. Let V be a finite nonempty set of vertices. An intuitionistic fuzzy graph is described by an order
pair G = (A, B), where A is an intuitionistic fuzzy set on V and B is an intuitionistic fuzzy set on V2. A and
B satisfy μB(x, y) ≤ μA(x) ∧ μB(x) νB(x, y) ≤ νA(x) ∧ νB(x), ∀(x, y) ∈ V2 and μB(x, y) = νB(x, y) = 0
∀(x, y) ∈ V2 − E. Here, μA(x) and νA(x) are used to denote the degree of membership and non membership of
the node x and μB(x, y) and νB(x, y) are used to denote the degree of membership and non membership of the
arcs (x, y).

Definition 12. Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be two classical (crisp) graph. The Cartesian product of
two graph G∗

1 and G∗
2 is an another graph G∗

3
(
written as G∗

3 = G∗
1 × G∗

2 = (V3, E3)
)
, where V3 = V1 ×V2

and E3 = {(x, x2) , (x, y2) |x ∈ V1, x2y2 ∈ E2} ∪ {(x1, z) , (y1, z) |z ∈ V2, x1y1 ∈ E1}.

Definition 13. Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be two classical (crisp) graph. The direct product of two
graph G∗

1 and G∗
2 is an another graph G∗

3
(
written as G∗

3 = G∗
1 × G∗

2 = (V3, E3)
)
, where V3 = V1 ×V2 and

E3 = {(x1, x2) , (y1, y2) |x1y1 ∈ E1, x2y2 ∈ E2}.

Definition 14. Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be two classical (crisp) graph. The lexicographic product
of two graph G∗

1 and G∗
2 is an another graph G∗

3
(
written as G∗

3 = G∗
1 · G∗

2 = (V3, E3)
)
, where V3 = V1 ×V2

and E3 = {(x, x2) , (x, y2) |x ∈ V1, x2y2 ∈ E2} ∪ {(x1, x2) , (y1, y2) |x1y1 ∈ E1, x2y2 ∈ E2}.

Definition 15. Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be two classical (crisp) graph. The strong
product of two graph G∗

1 and G∗
2 is an another graph G∗

3
(
written as G∗

3 = G∗
1 · G∗

2 = (V3, E3)
)
, where

V3 = V1 × V2 and E3 = {(x, x2) , (x, y2) |x ∈ V1, x2y2 ∈ E2} ∪ {(x1, z) , (y1, z) |z ∈ V2, x1y1 ∈
E1 ∪ (x1, x2) , (y1, y2) |x1y1 ∈ E1, x2y2 ∈ E2}}.

Definition 16. Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be two classical (crisp) graph. The union of two
graphs G∗

1 and G∗
2 is an another graph G∗

3
(
written as G∗

3 = G∗
1 ∪ G∗

2 = (V3, E3)
)
, where V3 = V1 ∪V2 and

E3 = E1 ∪ E2.

Definition 17. Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be two classical (crisp) graph. The joining of two
graphs G∗

1 and G∗
2 is an another graph G∗

3
(
written as G∗

3 = G∗
1 ∪ G∗

2 = (V3, E3)
)
, where V3 = V1 ∪V2 and

E3 = E1 ∪ E2 ∪ E
′
, where E

′
represents the set of all arcs joining the nodes V1 and V2.
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3. Picture Fuzzy Graph

In this section, we define the picture fuzzy graph and introduce different types of regular picture
fuzzy graphs, strong picture fuzzy graphs, complete picture fuzzy graphs, and complement picture
fuzzy graph.

Definition 18. Let G∗ = (V, E) be a graph. A pair G = (A, B) is called a picture fuzzy graph on G∗ where
A = (μA, ηA, νA) is a picture fuzzy set on V and B = (μB, ηB, νB) is a picture fuzzy set on E ⊆ V ×V such
that for each arc uv ∈ E.

μB (u, v) ≤ min (μA (u) , μA (v)) , ηB (u, v) ≤ min (ηA (u) , ηA (v)) , νB (u, v) ≥ max (νA (u) , νA (v)) (10)

An example of picture fuzzy graph is shown in Figure 1.

Figure 1. A picture fuzzy graph.

Definition 19. A picture fuzzy graph G = (A, B) is said to be regular picture fuzzy graph if

∑
u

u 
=v

μB (u, v) = constant, ∑
u

u 
=v

ηB (u, v) = constant, ∑
u

u 
=v

νB (u, v) = constant, ∀u, v ∈ E (11)

Figure 1 is also an example of regular picture fuzzy graph.

Definition 20. A picture fuzzy graph G = (A, B) is defined as strong picture fuzzy graph if

μB (u, v) = μA (u) ∧ μA (v) , ηB (u, v) = ηA (u) ∧ ηA (v) , νB (u, v) = νA (u) ∨ νA (v) ∀u, v ∈ E. (12)

An example of a strong picture fuzzy graph is shown in Figure 2.

Figure 2. A strong picture fuzzy graph.
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Definition 21. A picture fuzzy graph G = (A, B) is defined as complete picture fuzzy graph if

μB (u, v) = μA (u) ∧ μA (v) , ηB (u, v) = ηA (u) ∧ ηA (v) , νB (u, v) = νA (u) ∨ νA (v) ∀u, v ∈ V. (13)

An example of a complete picture fuzzy graph is shown in Figure 3. Note that every complete
picture fuzzy graph is a strong picture fuzzy graph but not conversely.

Figure 3. A complete picture fuzzy graph.

Definition 22. A path p in a picture fuzzy graph G = (A, B) is a sequence of different vertices v0, v1, v2, ..., vk
such that

(μB (vi−1vi) ηB (vi−1vi) νB (vi−1vi)) > 0, i = 1, 2, ..., k. (14)

Here, k represents the length of path.

Definition 23. Let G = (A, B) be a picture fuzzy graph. If two nodes u and v are connected by a path of length
k in G such as p: u0, u1, u2, ...uk−1, uk then μB (u, v), ηB (u, v) and νB (u, v) are described as follows.

μk
B(u, v) = μB(u, u1) ∧ μB(u1, u2) ∧ ...∧ μB(uk−1, v)

ηk
B(u, v) = ηB(u, u1) ∧ ηB(u1, u2) ∧ ...∧ ηB(uk−1, v)

νk
B(u, v) = νB(u, u1) ∨ νB(u1, u2) ∨ ...∨ νB(uk−1, v).

Let (μ∞
B (u, v)), η∞

B (u, v) , ν∞
B (u, v)) be the strength of connectedness between the two nodes u and v of a

picture fuzzy graph G. Then μ∞
B (u, v), η∞

B (u, v), and ν∞
B (u, v) are defined as follows.

μ∞
B (u, v) = sup{μk

B(u, v)|k = 1, 2, ...},
η∞

B (u, v) = sup{ηk
B(u, v)|k = 1, 2, ...}

ν∞
B (u, v)=inf{νk

B(u, v)|k = 1, 2, ...}),

where inf is used to find the minimum and sup is used to find maximum membership value. Consider a connected
picture fuzzy graph as shown in the Figure 3 and the x− u paths are

P1 : x− u with membership value (0.4,0.3,0.2),
P2 : x− w− u with membership value (0.3,0.3,0.2),
P3 : x− v− u with membership value (0.4,0.3,0.3),
P4 : x− w− v− u with membership value (0.3,0.3,0.3),
P5 : x− v− w− u with membership value (0.3,0.3,0.3).

By routine computation, we have

μ∞
B (x, u) = sup{0.4, 0.3, 0.4, 0.3, 0.3} = 0.4,

η∞
B (x, u) = sup{0.3, 0.3, 0.3, 0.3, 0.3} = 0.3,

ν∞
B (x, u)=inf{0.2, 0.2, 0.3, 0.3, 0.3} = 0.2.

The strength of connectedness between the two nodes x and u of a picture fuzzy graph G (Figure 3)
is (0.4,0.3,0.2).
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Definition 24. Let G = (A, B) be a picture fuzzy graph. Then, G is said to be connected picture fuzzy graph if
for every vertices u, v ∈ V, μ∞

B (u, v) > 0 or η∞
B (u, v) > 0 or ν∞

B (u, v) < 1.

Figure 3 is an example of connected picture fuzzy graph.

Definition 25. The complement of a picture fuzzy graph G = (A, B) is a picture fuzzy graph Gc = (Ac, Bc) if
and only if follows the (15).

μc
A = μA, ηc

A = ηA, νc
A = νA, μc

B (u, v) = μA (u) ∧ μA (v)− μB (u, v) ,

ηc
B (u, v) = ηA (u) ∧ ηA (v)− ηB (u, v) , νc

B (u, v) = νA (u) ∨ νA (v)− νB (u, v) ∀u, v ∈ V. (15)

An example of complement picture fuzzy graph is shown in Figure 4.

Figure 4. A picture fuzzy graph and its complement picture fuzzy graph.

We have
μcc

A = μc
A = μA, ηcc

A = ηc
A = ηA, νcc

A = νc
A = νA (16)

μcc

1 (u, v) = σc
1 (u) ∧ σc

1 (v)− μc
1 (u, v) = σA (u) ∧ σA (v)− μc

1 (u, v) . (17)

Similarly, we can prove that μcc

2 (u, v) = μ2 (u, v) and μcc

3 (u, v) = μ2 (u, v) ∀u, v ∈ V. Hence,
Gcc

= G.

Definition 26. Let G1 = (A1, B1) and G2 = (A2, B2) be two picture fuzzy graphs.

1. A homomorphism h from picture fuzzy graph G1 to G2 is a mapping function h : V1 → V2 which always
satisfy followings:

(i) ∀x1 ∈ V1, x1y1 ∈ E1

(a) μA1 (x1) ≤ μA2 (h (x1)) , ηA1 (x1) ≤ ηA2 (h (x1)) , νA1 (x1) ≥ νA2 (h (x1)),

(b) μB1 (x1y1) ≤ μB2 (h (x1) h (x2)) , ηB1 (x1y1) ≤ ηB2 (h (x1) h (x2)) ,
νB1 (x1y1) ≥ νB2 (h (x1) h (x2)).

A isomorphism h from a picture fuzzy graph G1 to G2 is a bijective mapping function h : V1 → V2 which
always satisfy followings:

2. (i) ∀x1 ∈ V1, x1y1 ∈ E1

(c) μA1 (x1) = μA2 (h (x1)) , ηA1 (x1) = ηA2 (h (x1)) , νA1 (x1) = νA2 (h (x1)),

(d) μB1 (x1y1) = μB2 (h (x1) h (x2)) , ηB1 (x1y1) = ηB2 (h (x1) h (x2)) ,
νB1 (x1y1) = νB2 (h (x1) h (x2)).

115



Mathematics 2019, 7, 470

A weak isomorphism h from picture fuzzy graph G1 to G2 is a bijective mapping function h : V1 → V2

which always satisfy followings:

3. (i) ∀x1 ∈ V1

(e) h is homomorphism.

( f ) μA1 (x1) = μA2 (h (x1)) , ηA1 (x1) = ηA2 (h (x1)) , νA1 (x1) = νA2 (h (x1)). Thus, a weak
isomorphism maintains the costs of the vertices but not necessarily the costs of the edges.

4. A co weak isomorphism h from picture fuzzy graph G1 to G2 is a bijective mapping function h : V1 → V2

which always satisfy followings:

(i) ∀x1y1 ∈ E1

(g) h is homomorphism.

(h) μA1 (x1y1) = μA2 (h (x1y1)) , ηA1 (x1y1) = ηA2 (h (x1y1)) , νA1 (x1y1) = νA2 (h (x1y1)).

Definition 27. A picture fuzzy graph G is said to be

1. Self complementary picture fuzzy graph if and only if G = Gc.
2. Self weak complement picture fuzzy graph if G is weak isomorphic to Gc.

4. Busy and Free Nodes on Picture Fuzzy Graphs

In this section, we propose open degree, busy values, free node, busy node in a picture
fuzzy graph.

Definition 28. Let G = (A, B) be picture fuzzy graph on G∗. The open degree of a vertex u is defined as
deg(u) =

(
dμ (u) , dη (u) , dν (u)

)
dμ (u) = ∑

v∈V
u 
=v

μB (u, v) , dη (u) = ∑
v∈V
u 
=v

ηB (u, v) , dν (u) = ∑
v∈V
u 
=v

νB (u, v) , ∀u, v ∈ E. (18)

The order of G is defined and denoted as

O (G) = ∑
v∈V

μB (u) , ∑
v∈V

ηB (u) , ∑
v∈V

νB (u) . (19)

The size of picture fuzzy graph is defined as S(G) =
(
Sμ (G) , Sη (G) , Sν (G)

)
where

Sμ (G) = ∑
v∈V
u 
=v

μB (u, v) , Sη (G) = ∑
v∈V
u 
=v

ηB (u, v) , Sν (G) = ∑
v∈V
u 
=v

νB (u, v) . (20)

Definition 29. Let G = (A, B) be a picture fuzzy graph. Then the busy value of a node v is defined by
D(v) =

(
Dμ (v) , Dη (v) , Dν (v)

)
, where

Dμ (v) = ∑ μA (v) ∧ μA (vi), Dη (v) = ∑ ηA (v) ∧ ηA (vi), Dν (v) = ∑ νA (v) ∨ νA (vi) .

Here, vi are adjacent vertices of v. The busy value of picture fuzzy graph G is the sum of all busy values of
vertices of G.

Definition 30. Let G = (A, B) be a picture fuzzy graph. A vertex v of G is said to be busy vertex if

μA(v) ≤ dμ (u) , ηA(u) ≤ dη (u) , νA(u) ≥ dν (u) . (21)

Otherwise, it is said to be a free vertex.
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Definition 31. Let G = (A, B) be a picture fuzzy graph. Then an edge u, v is defined as an effective edge if
and only if

μB (u, v) = μA (u) ∧ μA (v), ηB (u, v) = ηA (u) ∧ ηA (v), νB (u, v) = νA (u) ∨ νA (v).

Definition 32. A connected picture fuzzy graph G is said to be a highly irregular picture fuzzy graph if and
only if every node of G is adjacent to nodes with different degrees.

5. Operations on Picture Fuzzy Graph

In this section, we introduce six operations on picture fuzzy graph, viz., Cartesian product,
composition, join, direct product, lexicographic and strong product.

Definition 33. Let G1 = (A1, B1) and G2 = (A2, B2) are two picture fuzzy graph of G∗
1 = (V1, E1) and

G∗
2 = (V2, E2) respectively. The Cartesian product G1 × G2 of picture fuzzy graph G1 and G2 is defined

by (A, B), where A = (μA, ηA, νA) and B = (μB, ηB, νB) are two picture fuzzy sets on V=(V1 ×V2),
and E = {(x, x2) , (x, y2) |x ∈ V1, x2y2 ∈ E2} ∪ {(x1, z) , (y1, z) |z ∈ V2, x1y1 ∈ E1} respectively which
satisfies the followings:

(i) ∀(x1, x2) ∈ V1 ×V2,

(a) μA((x1, x2)) = μA1(x1) ∧ μA2(x2),

(b) ηA((x1, x2)) = ηA1(x1) ∧ ηA2(x2)

(c) νA((x1, x2)) = νA1(x1) ∨ νA2(x2),

(ii) ∀x ∈ V1 and ∀(x2, y2) ∈ E2,

(a) μB((x, x2)(x, y2)) = μA1(x1) ∧ μB2(x2y2),

(b) ηB((x, x2)(x, y2)) = ηA1(x1) ∧ ηB2(x2y2),

(c) νB((x, x2)(x, y2)) = νA1(x1) ∨ νB2(x2y2).

(iii) ∀z ∈ V2 and ∀(x1, x2) ∈ E1,

(a) μB((x1, z)(y1, z)) = μB1(x1y1) ∧ μA2(z),

(b) ηB((x1, z)(y1, z) = ηB1(x1y1) ∧ ηA2(z),

(c) νB((x1, z)(y1, z)) = νB1(x1y1) ∨ νA2(z).

Definition 34. The composition G1G2 of two picture fuzzy graph G1 = (A1, B1) and G2 = (A2, B2)

defined as a pair (A, B), where A = (μA, ηA, νA) and B = (μB, ηB, νB) are two picture fuzzy sets
on V=(V1 ×V2), and E = {(x, x2) , (x, y2) |x ∈ V1, x2y2 ∈ E2} ∪ {(x1, z) , (y1, z) |z ∈ V2, x1y1 ∈
E1} ∪ {(x1, x2) , (y1, y2) |x2y2 ∈ V2 
= y2, x1y1 ∈ E1} respectively, which satisfies the followings:

(i) ∀(x1, x2) ∈ V1 ×V2,

(a) μA((x1, x2)) = μA1(x1) ∧ μA2(x2),

(b) ηA((x1, x2)) = ηA1(x1) ∧ ηA2(x2),

(c) νA((x1, x2)) = νA1(x1) ∨ νA2(x2).

(ii) ∀x ∈ V1 and ∀(x2, y2) ∈ E2,

(a) μB((x, x2)(x, y2)) = μA1(x1) ∧ μB2(x2y2),
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(b) ηB((x, x2)(x, y2)) = ηA1(x1) ∧ ηB2(x2y2),

(c) νB((x, x2)(x, y2)) = νA1(x1) ∨ νB2(x2y2).

(iii) ∀z ∈ V2 and ∀(x1, x2) ∈ E1,

(a) μB((x1, z)(y1, z)) = μB1(x1y1) ∧ μA2(z),

(b) ηB((x1, z)(y1, z) = ηB1(x1y1) ∧ ηA2(z),

(c) νB((x1, z)(y1, z)) = νB1(x1y1) ∨ νA2(z).

(iv) ∀x2y2 ∈ V2, x2 
= y2 and ∀(x1y1) ∈ E1,

(a) μB((x1, x2)(y1, y2)) = μA2(x2) ∧ μA2(y2) ∧ μB1(x1y1),

(b) ηB((x1, x2)(y1, y2)) = ηA2(x2) ∧ ηA2(y2) ∧ ηB1(x1y1),

(c) νB((x1, x2)(y1, y2)) = νA2(x2) ∧ νA2(y2) ∧ νB1(x1y1).

Definition 35. The union G1 ∪ G2 of two picture fuzzy graph G1 = (A1, B1) and G2 = (A2, B2) is defined
as (A, B), where A = (μA, ηA, νA) is a picture fuzzy set on V = V1 ∪V2 and B = (μB, ηB, νB) is an another
picture fuzzy set on E = E1 ∪ E2, which satisfies the following:

(i) (a) μA(x) = μA1(x) if x ∈ V1 and x /∈ V2,

(b) μA(x) = μA2(x) if x ∈ V2 and x /∈ V1,

(c) μA(x) = μA1(x) ∧ μA2(x) if x ∈ V1 ∩V2,

(ii) (a) ηA(x) = ηA1(x) if x ∈ V1 and x /∈ V2,

(b) ηA(x) = ηA2(x) if x ∈ V2 and x /∈ V1,

(c) ηA(x) = ηA1(x) ∧ ηA2(x) if x ∈ V1 ∩V2,

(iii) (a) νA(x) = νA1(x) if x ∈ V1 and x /∈ V2,

(b) νA(x) = νA2(x) if x ∈ V2 and x /∈ V1,

(c) νA(x) = νA1(x) ∧ ηA2(x) if x ∈ V1 ∩V2,

(iv) (a) μB(xy) = μB1(xy) if xy ∈ E1 and xy /∈ E2,

(b) μB(xy) = μB2(xy) if xy ∈ E2 and xy /∈ E1,

(c) μB(xy) = μB1(xy) ∧ μB2(xy) if xy ∈ E1 ∩ E2,

(v) (a) ηB(xy) = ηB1(xy) if xy ∈ E1 and xy /∈ E2,

(b) ηB(xy) = ηB2(xy) if xy ∈ E2 and xy /∈ E1,

(c) ηB(xy) = ηB1(xy) ∧ ηB2(xy) if xy ∈ E1 ∩ E2,

(vi) (a) νB(xy) = νB1(xy) if xy ∈ E1 and xy /∈ E2,

(b) νB(xy) = νB2(xy) if xy ∈ E2 and xy /∈ E1,
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(c) νB(xy) = νB1(xy) ∧ νB2(xy) if xy ∈ E1 ∩ E2.

Definition 36. The join G1 + G2 of two picture fuzzy graph G1 = (A1, B1) and G2 = (A2, B2) is defined as
(A, B), where A = (μA, ηA, νA) is a picture fuzzy set on V = V1 ∪ V2 and B = (μB, ηB, νB) is an another
picture fuzzy set on E = E1 ∪ E2 ∪ E

′
((E

′
represents all edges joining the vertex of V1 and V2 ), which satisfies

the following:

(i) (a) μA(x) = μA1(x) if x ∈ V1 and x /∈ V2

(b) μA(x) = μA2(x) if x ∈ V2 and x /∈ V1

(c) μA(x) = μA1(x) ∧ μA2(x) if x ∈ V1 ∩V2

(ii) (a) ηA(x) = ηA1(x) if x ∈ V1 and x /∈ V2

(b) ηA(x) = ηA2(x) if x ∈ V2 and x /∈ V1

(c) ηA(x) = ηA1(x) ∧ ηA2(x) if x ∈ V1 ∩V2

(iii) (a) νA(x) = νA1(x) if x ∈ V1 and x /∈ V2

(b) νA(x) = νA2(x) if x ∈ V2 and x /∈ V1

(c) νA(x) = νA1(x) ∧ ηA2(x) if x ∈ V1 ∩V2

(iv) (a) μB(xy) = μB1(xy) if xy ∈ E1 and xy /∈ E2

(b) μB(xy) = μB2(xy) if xy ∈ E2 and xy /∈ E1

(c) μB(xy) = μB1(xy) ∧ μB2(xy) if xy ∈ E1 ∩ E2

(v) (a) ηB(xy) = ηB1(xy) if xy ∈ E1 and xy /∈ E2

(b) ηB(xy) = ηB2(xy) if xy ∈ E2 and xy /∈ E1

(c) ηB(xy) = ηB1(xy) ∧ ηB2(xy) if xy ∈ E1 ∩ E2

(vi) (a) νB(xy) = νB1(xy) if xy ∈ E1 and xy /∈ E2

(b) νB(xy) = νB2(xy) if xy ∈ E2 and xy /∈ E1

(c) νB(xy) = νB1(xy) ∧ νB2(xy) if xy ∈ E1 ∩ E2

(vii) (a) μB(xy) = μB1(x) ∨ μB2(y) if xy ∈ E
′

(b) ηB(xy) = ηB1(x) ∨ ηB2(y) if xy ∈ E
′

(c) νB(xy) = νB1(x) ∧ νB2(y) if xy ∈ E
′

Definition 37. The direct product G1 ∗ G2 of two picture fuzzy graph G1 and G2 is defined as a pair (A, B),
where A = (μA, ηA, νA) is a picture fuzzy set on V = V1 × V2 and B = (μB, ηB, νB) is an another picture
fuzzy set on E = {(x1, x2) (y1, y2) |x1y1 ∈ E1, x2y2 ∈ E2}, which satisfies the followings:

(i) ∀(x1, x2) ∈ V1 ×V2
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(a) μA(x1, x2) = μA1(x1) ∨ μA2(x2)
(b) ηA(x1, x2) = ηA1(x1) ∨ ηA2(x2)
(c) νA(x1, x2) = νA1(x1) ∧ νA2(x2)

(ii) ∀(x1y1) ∈ E1, ∀(x2y2) ∈ E2

(a) μB(x1, x2)(y1, y2) = μB1(x1y1) ∨ μB2(x2y2)
(b) ηB(x1, x2)(y1, y2) = ηB1(x1y1) ∨ ηB2(x2y2)
(c) νB(x1, x2)(y1, y2) = νB1(x1y1) ∧ μB2(x2y2).

Definition 38. The lexicographic product G1 · G2 of two picture fuzzy graph G1 = (A1, B1) and G2 =

(A2, B2) is defined as a pair (A, B), where A = (μA, ηA, νA) is a picture fuzzy set on V = V1 × V2

and B = (μB, ηB, νB) is an another picture fuzzy set on E = {(x, x2) (x, y2) |x ∈ V1, x2y2 ∈ E2} ∪
{(x1, x2) (y1, y2) |x1y1 ∈ E1, x2y2 ∈ E2} which satisfies the followings:

(i) ∀(x1, x2)

(a) μA(x1, x2) = μA1(x1) ∨ μA2(x2) = ηA1(x1) ∨ ηA2(x2) = νA1(x1) ∧ νA2(x2)

(ii) ∀x ∈ V1, ∀(x2y2) ∈ E2

(a) μB(x, x2)(x, y2) = μA1(x) ∨ μB2(x2y2)
(b) ηB(x, x2)(x, y2) = ηA1(x) ∨ ηB2(x2y2)
(c) νB(x, x2)(x, y2) = νA1(x) ∧ νB2(x2y2)

(iii) ∀x1y1 ∈ E1, ∀(x2y2) ∈ E2

(a) μB(x1, x2)(y1, y2) = μB1(x1y1) ∨ μB2(x2y2)
(b) ηB(x1, x2)(y1, y2) = ηB1(x1y1) ∨ ηB2(x2y2)
(c) νB(x1, x2)(y1, y2) = νB1(x1y1) ∧ νB2(x2y2)

Definition 39. The strong product G1G2 of two picture fuzzy graph G1 = (A1, B1) and G2 = (A2, B2) is
defined as a pair (A, B), where A = (μA, ηA, νA) is a picture fuzzy set on V = V1 ×V2 and B = (μB, ηB, νB)

is an another picture fuzzy set on E = {(x, x2) (x, y2) |x ∈ V1, x2y2 ∈ E2} ∪ {(x1, z) (y1, z) |z ∈ V2, x1y1 ∈
E1} ∪ {(x1, x2) (y1, y2) |x1y1 ∈ E1, x2y2 ∈ E2} which satisfies the followings:

(i) ∀(x1, x2) ∈ V1 ×V2

(a) μA(x1, x2) = μA1(x1) ∨ μA2(x2)
(b) ηA(x1, x2) = ηA1(x1) ∨ ηA2(x2)
(c) νA(x1, x2) = νA1(x1) ∧ νA2(x2)

(ii) ∀x ∈ V1, ∀(x2y2) ∈ E2

(a) μB(x, x2)(x, y2) = μA1(x) ∨ μB2(x2y2)
(b) ηB(x, x2)(x, y2) = ηA1(x) ∨ ηB2(x2y2)
(c) νB(x, x2)(x, y2) = νA1(x) ∧ νB2(x2y2)

(iii) ∀x1y1 ∈ E1, ∀(x2y2) ∈ E2

(a) μB(x1, x2)(y1, y2) = μB1(x1y1) ∨ μB2(x2y2)
(b) ηB(x1, x2)(y1, y2) = ηB1(x1y1) ∨ ηB2(x2y2)
(c) νB(x1, x2)(y1, y2) = νB1(x1y1) ∧ νB2(x2y2)

(iv) ∀x1y1 ∈ E1, z ∈ V2

(a) μB(x1, z)(y1, z) = μB1(x1y1) ∨ μA2(z)
(b) ηB(x1, z)(y1, z) = ηB1(x1y1) ∨ ηA2(z)
(c) νB(x1, z)(y1, z) = νB1(x1y1) ∧ νA2(z)
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6. Application of Picture Fuzzy Graph in Social Network

The popularity of social networks like Facebook, Twitter, WhatsApp, ResearchGate, Instagram,
and LinkedIn is increasing day by day. They are well known platforms for connecting hung number of
people in everywhere in the world. We generally exchange various types of information and issues
in social network. It helps us in online marketing (e-commerce and e-business), efficient social and
political campaigns, future events, connecting to clients. Social networks are also used as important
tools for public awareness by sending information quickly to a wide audience about any natural
disaster and terrorist/criminal attack.

A social network is a collection of nodes and links. The nodes are used to represent individual,
groups, country, organizations, places, enterprises, etc., and links are used to describe the relationships
between nodes. We generally use classical graph to represent the social network where actors are
represented by vertices and the relations/flows between vertices are represented as edges. Several
manuscripts have been published on the social networks. However, social network cannot be modeled
properly by classical graph. Since, in a classical graph, all vertices have equal importance. Due to
this reason, all social units (individual or organization) in present social networks are considered of
equal importance. But in real life, all social units do not have same the importance. Similarly, all edges
(relationships) have equal strength in classical graph. In all existing social networks, it is considered
that the strength of relationship between two social units are equal, but in real life it may not be true.
Samanta and Pal [37] have introduced an idea to model the social network using a type 1 fuzzy graph.
Many researchers [38–40] believed that these uncertainties phenomena can be modeled by a fuzzy
graph. But type 1 fuzzy graph are unable to capture more complex relational states between nodes.
Since the membership degree of node and edges are determined by human perception. This motivate
us to introduce a new social network model using picture fuzzy graph. We define this social network
as a picture fuzzy social network.

In a picture fuzzy social network, an account of a person or organization, i.e., a social unit is
represented by node and if there is a relationship or flow between two social units then they are
connected by one arc. In reality, each node, i.e., a social unit (person or individual) has some good,
neutral and bad activities. We represent the good, neutral and bad activities using the good, neutral
and bad membership values of the node and similarity the good, neutral and bad membership degree
of the edge can be used to describe the strength of relationship between two nodes. For example,
three persons have good knowledge of some activities such as educational activity and teaching
methodology. However, they have no knowledge in some activities such administration and finance
and they also have very bad knowledge in some activities such as health condition and food habit.
We can easily represent this three types of node and edge membership degree using picture fuzzy
set which consists each element has three membership values. This type of social network is a real
life example of a picture fuzzy graph. Centrality is one of the most key ideas in social networking
which finds the node effect on the social network. The centrality of a node is more central from other
node. Central person is more close than other person and he can send or access more information.
Freeman [41] introduced three different type of measures: degree, closeness, and betweenness of any
node centrality. The degree of centrality finds the linkage of a social unit between the others social
units. It basically determines the involvement of the social unit (person) in the social network. We can
find this degree value any picture node as defined (28). The betweenness determines the number of
paths of communication between any two social units though a unit and closeness of any node is as
the inverse sum of shortest path length [42,43] to all other social nodes from a specified node. Let I(i, j)
represents the shortest path length from node i to j. The diameter of a social network is defined as the
longest distance between two nodes in the network. It is described as follows.

diameter = max
i,j

I(i, j). (22)
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In this study, we use picture fuzzy set to represent the arc length of a social network. The problem
of finding shortest path between two social units is a fundamental and important criteria to find the
closeness, betweenness and diameter of a social network. This picture social network model is more
flexible and efficient than classical social network model.

The online social network can be represented by a directed or undirected weighted picture fuzzy
graph. Let G̃un =

(
V, Ẽun

)
be an undirected picture fuzzy graph. We can define an undirected picture

fuzzy social network as a picture fuzzy relational structure G̃un =
(
V, Ẽun

)
, where V = {v1, v2, ..., vn}

represents a non-empty set of picture vertices or actors or nodes, and Ẽun =

⎛⎜⎝ ẽ11 · · · ẽ1n
...

. . .
...

ẽn1 . . . ẽnn

⎞⎟⎠
represents an undirected picture fuzzy relation on V. A small example of undirected picture fuzzy
social network is shown in Figure 5. For undirected picture fuzzy social network where arcs are simply
an absent or present undirected picture fuzzy relation with no other information attached.

Let G̃dn =
(
V, Ẽdn

)
be a directed picture fuzzy graph. We can describe a directed picture fuzzy

social network as a picture fuzzy relational structure G̃dn =
(
V, Ẽdn

)
, where V = {v1, v2, ..., vn}

denotes a non-empty set of picture fuzzy nodes, and Ẽdn =

⎛⎜⎝ ẽ11 · · · ẽ1n
...

. . .
...

ẽn1 . . . ẽnn

⎞⎟⎠ denotes an undirected

picture fuzzy relation on V.
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Figure 5. Undirected picture fuzzy social network.

The directed picture fuzzy relation is considered in directed picture fuzzy social network. Directed
picture fuzzy graph is more efficient to model the social network, because where arcs are considered
with directed picture fuzzy relation would contain more information. The values of ẽij and ẽji are
equal in undirected picture fuzzy social network. However, ẽij and ẽji are not equal in directed picture
fuzzy social network. A small example of a directed picture fuzzy social network is shown in Figure 6.
Let G̃dn =

(
V, Ẽdn

)
be a directed picture fuzzy social network and the picture fuzzy sets are used to

describe the arc lengths of G̃dn. The sum of the lengths of the arcs that are adjacent to a social node vi
is called the picture fuzzy in degree centrality of the node vi. The picture in degree centrality of node
vi, d̃I (vi), is described as follows.

d̃I (vi) =
n

∑
j=1,j 
=i

ẽji. (23)
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The sum of the lengths of the arcs that that are adjacent from social node vi is called the picture
out degree centrality of vi. The picture out degree centrality of node vi, d̃o (vi), is described as follows.

d̃o (vi) =
n

∑
j=1,j 
=i

ẽji. (24)

Here, the symbol ∑ is an addition operation of picture fuzzy set and ẽji is a picture fuzzy set
associated with the arc (i, j). The sum of picture in degree centrality and picture out of degree centrality
of node vi is called picture degree centrality (PDC) of vi.

d̃ (vi) = d̃I (vi)⊕ d̃o (vi) , (25)

⊕ is an addition operation of picture fuzzy set.
Let G̃d7 =

(
V, Ẽd7

)
be a directed picture fuzzy social network of the a research Team, where

V = {v1, v2, ..., v7} represents a collection of seven researchers, Ẽd8 represents directed picture fuzzy
relation between the seven researchers. This social network is shown in Figure 6. We determine the
picture fuzzy in degree, picture fuzzy in degree and picture fuzzy degree centrality of the research
term using (23)–(25). This three degree values are shown in Table 1. We use the raking method [44,45]
of picture fuzzy set to compare the different degree values. Based on the ranking of picture fuzzy
set, research (node) 4 has got highest score value of picture fuzzy in degree centrality. It means that
researcher 4 has higher acceptance and good interpersonal relationship in network. The research 2 has
got the highest score value of picture fuzzy out degree centrality. It describes that node 2 can nominate
many other researchers.

Table 1. The picture fuzzy degree centrality of research team.

Researchers
Picture Fuzzy in Picture Fuzzy out Picture Fuzzy

Degree Centrality Degree Centrality Degree Centrality

1 (0,0,0) (0.3,0.2,0.3) (0.3,0.2,0.3)
2 (0.3,0.2,0.3) (0.3,0.3,0.3) (0.3,0.3,0.3)
3 (0.3,0.1,0.1) (0.3,0.4,0.3) (0.3,0.4,0.3)
4 (0.3,0.2,0.3) (0,0,0) (0.3,0.2,0.3)
5 (0.3,0.4,0.3) (0.4,0.2,0.3) (0.3,0.4,0.3)
6 (0,0,0) (0.4,0.2,0.2) (0.4,0.2,0.2)
7 (0.3,0.3,0.3) (0,0,0) (0.3,0.3,0.3)
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2 3

4 56
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0.3,0.2,0.3 0.3,0.1,0.1

0.3,0.2,0.25 0.3,0.2,0.2 0.3,0.4,0.3

0.4,0.2,0.2

0.3,0.3,0.3

0.4,0.2,0.3

Figure 6. Directed picture fuzzy social network.
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In this study, we have provided one simple numerical examples of picture fuzzy graph to
represent one small social network. The small sized examples are very much helpful to understand
the advantage of our proposed model. Social networks are based on millions of users and big data
paradigm. Therefore, as future work, we need to model a large scale practical social network using the
picture fuzzy graph and to compute the closeness, betweenness and diameter of the social network.
Furthermore, we wish to introduce some heuristic algorithms to find those measurements of any large
scale practical social network. Despite the need for future study, the proposed model discussed in this
study is an important initial contributions to picture fuzzy graph and social network analysis under
uncertain environment.

7. Conclusions

Fuzzy graph is an important tool for modeling many uncertain real world decision making problems
in different field, e.g., operations research, computer science, optimization problems, number theory,
algebra, geometry, etc. To deal with the complex real life problems, a number of generalizations of fuzzy
graph have been studied. The picture fuzzy set is a direct extension of fuzzy set and intuitonistic fuzzy
set. The main objective of this paper is to introduce the idea of picture fuzzy graph and its different
operation. In this paper, first we propose the definition of a picture fuzzy graph based on the picture
fuzzy relation. We also describe some different types of picture fuzzy graphs such as regular picture
fuzzy graph, strong picture fuzzy graph, complete picture fuzzy graph, and complement picture fuzzy
graph. We describe some different types of isomorphic picture fuzzy graph. Six different operations on
picture fuzzy graph, viz. Cartesian product, composition, join, direct product, lexicographic and strong
product are described in this paper. The picture fuzzy graph can increase flexibility, efficiency, precision
and comparability to model the complex real life scenarios system compared to the classical fuzzy graph
models. We have also described a model to represent the social network using picture fuzzy graph and
we also introduce some centrality measure called picture fuzzy in degree centrality, picture fuzzy out
degree centrality and picture fuzzy out degree centrality which are applicable to the picture fuzzy social
network. The idea of picture fuzzy graph can be applied in several areas of database system, computer
network, social network, transportation network and image processing.
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Abstract: Complex fuzzy set (CFS) is a recent development in the field of fuzzy set (FS) theory.
The significance of CFS lies in the fact that CFS assigned membership grades from a unit circle in
the complex plane, i.e., in the form of a complex number whose amplitude term belongs to a [0, 1] interval.
The interval-valued complex fuzzy set (IVCFS) is one of the extensions of the CFS in which the amplitude
term is extended from the real numbers to the interval-valued numbers. The novelty of IVCFS lies in
its larger range comparative to CFS. We often use fuzzy distance measures to solve some problems in
our daily life. Hence, this paper develops some series of distance measures between IVCFSs by using
Hamming and Euclidean metrics. The boundaries of these distance measures for IVCFSs are obtained.
Finally, we study two geometric properties include rotational invariance and reflectional invariance of
these distance measures.

Keywords: Interval-valued complex fuzzy sets; distance measures; rotational invariance;
reflectional invariance

1. Introduction

Complex fuzzy set [1] and some extensions of complex fuzzy set such as complex intuitionistic
fuzzy sets [2], complex neutrosophic set [3], interval complex neutrosophic set [4], complex multi-fuzzy
soft set [5], complex interval-valued intuitionistic fuzzy sets [6], complex vague soft sets [7] and
interval-valued complex fuzzy sets [8,9] have been introduced and used in a variety of fields such as signal
processing [10–12], decision-making [6,13–16], time series prediction [17–20] and image restoration [21].

The concept of distance measure can be defined as a numerical description of the difference between
two objects. There are many distance measures introduced by numerous scholars to solve some problems in
many fields to solve some problems and discover several applications. Among these distances, Euclidean
distance and Hamming distance are widely used in several fields. It is well known that distance measure is
also an important issue on fuzzy set and its extensions [22–29]. As defined in [1], each complex membership
grade includes an amplitude term and a phase term. Hence, many researchers defined distances of CFSs
by combining the difference between the phase terms and the difference between the amplitude terms.
In this way, Zhang et al. [11] defined a distance measure of CFSs. Hu et al. [30] and Alkouri et al. [31] also
introduced some distances for CFSs. These distance measures in [30,31] are defined by using Hamming and
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Euclidean metrics. Recently, several concepts including the parallelity [32,33] and entropy measures [34] of
complex fuzzy sets and distances of complex intuitionistic fuzzy sets [35], complex vague soft sets [7,36,37]
and complex multi-fuzzy soft set [5] have been developed. Since Greenfield et al. [8,9] introduced the
concept of an interval-valued complex fuzzy sets (IVCFSs), which is a generalization of the complex fuzzy
set introduced by Ramot et al. [1], some progress has been made in various subjects related to the IVCFS.
How to measure the difference between IVCFSs is an interesting subject that may be used as a useful tool
for decision-making, predictions and pattern recognition in the form of IVCFSs. This paper considers the
distance measures between interval-valued complex fuzzy sets.

In [38], Dick proposed the concept of rotational invariance for complex fuzzy operations, which is an
intuitive and desirable feature. Then, this feature is examined for interval-valued complex fuzzy operations
in [9], complex fuzzy aggregation operators in [15] and entropy measures of CFSs in [34]. Moreover,
Bi et al. [15] proposed a novel feature called reflectional invariance for complex fuzzy aggregation
operators. These two feature criteria serve as two criteria for choices of complex fuzzy operations and
complex fuzzy aggregation operators in some real applications. After giving the distance measures for
IVCFSs, we then examine the rotational invariance and reflectional invariance for distance measures of
IVCFSs. In addition, the results proposed in this paper might serve as criteria for choices of distance
measures of CFSs and IVCFSs.

The rest of the chapter is organized in the following way: In Section 2, we review the basic concepts
relates to interval-valued complex fuzzy sets. In Section 3, we develop some distance measures of
interval-valued complex fuzzy sets based on the Hamming distance and Euclidean distance. In Section 4,
we study rotational invariance and reflectional invariance of these distance measures. In Section 5,
we apply these distance measures to solve a decision-making problem with interval-valued complex fuzzy
information. Conclusions are given in Section 6.

2. Preliminaries

Firstly, let us review the basic concepts relates to interval-valued complex fuzzy sets [8,9].
Let D be the set of values on complex unit disk, i.e., D =

{
a ∈ C

∣∣ |a| ≤ 1
}

. Suppose U =

{x1, x2, ..., xn} is a fixed universe. A mapping A : U → D is called a complex fuzzy set on U.
Let I[0,1] be the set of all closed subintervals of [0, 1] and Ḋ be the boundary set of D i.e., Ḋ =

{
a ∈

C
∣∣|a| = 1

}
. Suppose X, Y are two classical sets, and their dot product set X ·Y is denoted as:

X ·Y =
{

α · β | α ∈ X ∧ β ∈ Y
}

. (1)

A mapping A : U → I[0,1] · Ḋ is called an interval-valued complex fuzzy set [8,9] on U. For any
x ∈ U, the membership function A(x) is

μA(x) =
[
rA(x), rA(x)

]
· ejνA(x), (2)

where j =
√
−1,

[
rA(x), rA(x)

]
∈ I[0,1] is the interval-valued amplitude part and νA(x) ∈ [0, 2π) is the

phase part. We use the notation IVCF(U) to denote the set of all IVCFSs of U.

3. Distance Measures between IVCFSs

In this section, we introduce several distances in interval-valued complex fuzzy sets case. First,
we give the definition of distance between interval-valued complex fuzzy sets as follows:
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Definition 1. A distance of interval-valued complex fuzzy sets is a function d : (IVCF(U) × IVCF(U)) →
R+ ∪ {0}, which satisfies the following conditions: for any A, B, C ∈ IVCF(U):

(i) d(A, B) ≥ 0 and d(A, B) = 0 if and only if A = B,
(ii) d(A, B) = d(B, A),
(iii) d(A, B) + d(A, C) ≥ d(B, C).

Now, we define the Hamming, Euclidean, Normalized Hamming, and Normalized Euclidean
distances in interval-valued complex fuzzy sets case as follows: for any A, B ∈ IVCF(U),

• The Hamming distance:

dH(A, B) =
1
2

n

∑
i=1

(1
2
|rA(xi)− rB(xi)|+

1
2
|rA(xi)− rB(xi)|+

1
2π
|νA(xi)− νB(xi)|

)
; (3)

• The Euclidean distance:

dE(A, B) =

√
1
2

n

∑
i=1

(1
2
|rA(xi)− rB(xi)|2 +

1
2
|rA(xi)− rB(xi)|2 +

1
4π2 |νA(xi)− νB(xi)|2

)
; (4)

• The normalized Hamming distance:

dnH(A, B) =
1

2n

n

∑
i=1

(1
2
|rA(xi)− rB(xi)|+

1
2
|rA(xi)− rB(xi)|+

1
2π
|νA(xi)− νB(xi)|

)
; (5)

• The normalized Euclidean distance:

dnE(A, B) =

√
1

2n

n

∑
i=1

(1
2
|rA(xi)− rB(xi)|2 +

1
2
|rA(xi)− rB(xi)|2 +

1
4π2 |νA(xi)− νB(xi)|2

)
. (6)

Clearly, it is easy to notice that the above Equations (3)–(6) have the following results:

0 ≤ dH(A, B) ≤ n, 0 ≤ dnH(A, B) ≤ 1,

0 ≤ dE(A, B) ≤
√

n, 0 ≤ dnE(A, B) ≤ 1.

Theorem 1. All functions defined in Equations (3)–(6) are distance measures of IVCFSs.

Proof. It is easy to see that all the distance Equations (3)–(6) satisfy conditions (i) and (ii).
Thus, we just go to prove the condition number (iii), i.e., the triangular inequality for
dH(A, B), dE(A, B), dnH(A, B), dnE(A, B).
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Let A, B, C ∈ IVCF(U); for the Hamming distance, we have

dH(A, C) + dH(C, B)

=
1
2

n

∑
i=1

(1
2
|rA(xi)− rC(xi)|+

1
2
|rA(xi)− rC(xi)|+

1
2π
|νA(xi)− νC(xi)|

)
+

1
2

n

∑
i=1

(1
2
|rC(xi)− rB(xi)|+

1
2
|rC(xi)− rB(xi)|+

1
2π
|νC(xi)− νB(xi)|

)
=

1
2

n

∑
i=1

(1
2
(
|rA(xi)− rC(xi)|+ |rC(xi)− rB(xi)|

)
+

1
2
(
|rA(xi)− rC(xi)|+ |rC(xi)− rB(xi)|

)
+

1
2π

(
|νA(xi)− νC(xi)|+ |νC(xi)− νB(xi)|

))
≥ 1

2

n

∑
i=1

(1
2
(
|rA(xi)− rB(xi)|

)
+

1
2
(
|rA(xi)− rB(xi)|

)
+

1
2π

(
|νA(xi)− νB(xi)|

))
= dH(A, B).

For the Euclidean distance, we have

dE(A, C) + dE(C, B)

=

√
1
2

n

∑
i=1

(1
2
|rA(xi)− rC(xi)|2 +

1
2
|rA(xi)− rC(xi)|2 +

1
4π2 |νA(xi)− νC(xi)|2

)
+

√
1
2

n

∑
i=1

(1
2
|rC(xi)− rB(xi)|2 +

1
2
|rC(xi)− rB(xi)|2 +

1
4π2 |νC(xi)− νB(xi)|2

)
≥

(
1
2

n

∑
i=1

(1
2
|rA(xi)− rC(xi) + rC(xi)− rB(xi)|2 +

1
2
|rA(xi)− rC(xi) + rC(xi)− rB(xi)|2

+
1

4π2 |νA(xi)− νC(xi) + νC(xi)− νB(xi)|2
)) 1

2

(Using Minkowski inequality)

=

√
1
2

n

∑
i=1

(1
2
|rA(xi)− rB(xi)|2 +

1
2
|rA(xi)− rB(xi)|2 +

1
4π2 |νA(xi)− νB(xi)|2

)
= dE(A, B),

analogously, for the proof of the normalized Hamming dnH(A, B) and the normalized Euclidean
dnE(A, B) distances.

Example 1. Let A and B be two IVCFSs on X = {x1, x2, x3, x4, x5}, which are given as follows:

A =
[0.4, 0.5]ej0.3π

x1
+

[0.6, 0.9]ej0.5π

x2
+

[0.6, 0.9]ej0.1π

x3
+

[0.7, 0.9]ej0.2π

x4
+

[0.4, 0.7]ej0.5π

x5
,

B =
[0.3, 0.4]ej1.3π

x1
+

[0.2, 0.4]ej0.4π

x2
+

[0.5, 0.8]ej0.5π

x3
+

[0.4, 0.6]ej0.1π

x4
+

[0.8, 0.9]ej0.7π

x5
.
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Using Equations (3)–(6), we have the following results:

dH(A, B) =
1
2

(1
2
|0.4− 0.3|+ 1

2
|0.5− 0.4|+ 1

2π
|0.3π − 1.3π|

)
+

1
2

(1
2
|0.6− 0.2|+ 1

2
|0.9− 0.4|+ 1

2π
|0.5π − 0.4π|

)
+

1
2

(1
2
|0.6− 0.5|+ 1

2
|0.9− 0.8|+ 1

2π
|0.1π − 0.5π|

)
+

1
2

(1
2
|0.7− 0.4|+ 1

2
|0.9− 0.6|+ 1

2π
|0.2π − 0.1π|

)
+

1
2

(1
2
|0.4− 0.8|+ 1

2
|0.7− 0.9|+ 1

2π
|0.5π − 0.7π|

)
= 0.3 + 0.25 + 0.15 + 0.175 + 0.2

= 1.075,

dE(A, B) =

(
1
2

(1
2
|0.4− 0.3|2 + 1

2
|0.5− 0.4|2 + 1

4π2 |0.3π − 1.3π|2
)

+
1
2

(1
2
|0.6− 0.2|2 + 1

2
|0.9− 0.4|2 + 1

4π2 |0.5π − 0.4π|2
)

+
1
2

(1
2
|0.6− 0.5|2 + 1

2
|0.9− 0.8|2 + 1

4π2 |0.1π − 0.5π|2
)

+
1
2

(1
2
|0.7− 0.4|2 + 1

2
|0.9− 0.6|2 + 1

4π2 |0.2π − 0.1π|2
)

+
1
2

(1
2
|0.4− 0.8|2 + 1

2
|0.7− 0.9|2 + 1

4π2 |0.5π − 0.7π|2
))1/2

= (0.13 + 0.10375 + 0.025 + 0.0925 + 0.055)1/2

≈ 0.6374,

and

dnH(A, B) = 0.215, dnE(A, B) ≈ 0.285.

However, in practice, the different sets may have taken different weights i.e., wi ≥ 0, i = 1, 2, ..., n,

and
n
∑

i=1
wi = 1, for each element xi ∈ U. Thus, we introduce the normalized weighted Hamming and

Euclidean distance measures for IVCFSs.

• The normalized weighted Hamming distance:

dnwH(A, B) =
1
2

n

∑
i=1

wi

(1
2
|rA(xi)− rB(xi)|+

1
2
|rA(xi)− rB(xi)|+

1
2π
|νA(xi)− νB(xi)|

)
; (7)

• The normalized weighted Euclidean distance:

dnwE(A, B) =

√
1
2

n

∑
i=1

wi

(1
2
|rA(xi)− rB(xi)|2 +

1
2
|rA(xi)− rB(xi)|2 +

1
4π2 |νA(xi)− νB(xi)|2

)
. (8)

Theorem 2. All functions defined in Equations (7) and (8) are distance measures of IVCFSs.
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Proof. The proof is similar to that of Theorem 1.

Obviously, when wi = 1/n for all i = 1, 2, ..., n, then Equations (7) and (8) reduce to Equations (5) and
(6), respectively. In addition, the above distance Equations (7) and (8) have the following results:

0 ≤ dnwH(A, B) ≤ 1,

0 ≤ dnwE(A, B) ≤ 1.

Example 2. Let A and B be two IVCFSs defined in Example 1 and the weight of x1, x2, ..., x5 is w =

(0.1, 0.1, 0.2, 0.2, 0.4).
Using Equations (7) and (8), we have the following results:

dnwH(A, B) =
0.1
2

(1
2
|0.4− 0.3|+ 1

2
|0.5− 0.4|+ 1

2π
|0.3π − 1.3π|

)
+

0.1
2

(1
2
|0.6− 0.2|+ 1

2
|0.9− 0.4|+ 1

2π
|0.5π − 0.4π|

)
+

0.2
2

(1
2
|0.6− 0.5|+ 1

2
|0.9− 0.8|+ 1

2π
|0.1π − 0.5π|

)
+

0.2
2

(1
2
|0.7− 0.4|+ 1

2
|0.9− 0.6|+ 1

2π
|0.2π − 0.1π|

)
+

0.4
2

(1
2
|0.4− 0.8|+ 1

2
|0.7− 0.9|+ 1

2π
|0.5π − 0.7π|

)
= 0.03 + 0.025 + 0.03 + 0.035 + 0.08

= 0.2,

dnwE(A, B) =

(
0.1
2

(1
2
|0.4− 0.3|2 + 1

2
|0.5− 0.4|2 + 1

4π2 |0.3π − 1.3π|2
)

+
0.1
2

(1
2
|0.6− 0.2|2 + 1

2
|0.9− 0.4|2 + 1

4π2 |0.5π − 0.4π|2
)

+
0.2
2

(1
2
|0.6− 0.5|2 + 1

2
|0.9− 0.8|2 + 1

4π2 |0.1π − 0.5π|2
)

+
0.2
2

(1
2
|0.7− 0.4|2 + 1

2
|0.9− 0.6|2 + 1

4π2 |0.2π − 0.1π|2
)

+
0.4
2

(1
2
|0.4− 0.8|2 + 1

2
|0.7− 0.9|2 + 1

4π2 |0.5π − 0.7π|2
))1/2

= (0.013 + 0.010375 + 0.005 + 0.0185 + 0.022)1/2

≈ 0.2624.

By the relations among IVCFS, CFS, interval-valued fuzzy sets (IVFS) and FS, we established the
comparison of the proposed distance measures of IVCFSs with CFS, IVFS and FS. It is proposed that these
distance measures reduce the environments of CFS, IVFS and FS. The comparison is demonstrated in
Remarks 1–3.

Remark 1. The distance measures proposed in Equations (3)–(6) for IVCFSs reduce to the environment of CFSs as
defined in [31].
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Remark 2. The distance measures proposed in Equations (3)–(6) for IVCFSs reduce to the environment of IVFSs if
we considered the phase term as zero as defined in [24].

Remark 3. The distance measures proposed in Equations (7) and (8) for IVCFSs reduce to the environment of CFSs
as defined in Equations (9) and (10):

DnwH(A, B) =
1
2

n

∑
i=1

wi

(
|rA(xi)− rB(xi)|+

1
2π
|νA(xi)− νB(xi)|

)
, (9)

DnwE(A, B) =

√
1
2

n

∑
i=1

wi

(
|rA(xi)− rB(xi)|2 +

1
4π2 |νA(xi)− νB(xi)|2

)
. (10)

Here, we demonstrate the advantages of the proposed distance measures of IVCFSs. Firstly, the
distance measures of CFSs, IVFSs, and FS could not handle the information provided in the form of IVCFSs.
On the other hand, from Remarks 1 and 2, the proposed distance measures in Equations (3)–(6) can solve
some problem that lies in the region of CFSs, IVFSs, and FS. Moreover, the distance measures proposed in
Remark 3 for CFSs are two new distance Equations for CFSs.

4. Rotational Invariance and Reflectional Invariance

Let A be a IVCFS on U with membership function
[
rA(x), rA(x)

]
· ejνA(x), and then we define the

following two set operations for IVCFSs:
The rotation of an IVCFS A by θ radians, denoted Rotθ(A) is defined as

Rotθ

(
μA(x)

)
=
[
rA(x), rA(x)

]
· ej

(
vA(x)+θ

)
. (11)

The reflection of an IVCFS A , denoted Re f (A) is defined as

Re f
(
μA(x)

)
=
[
rA(x), rA(x)

]
· ej(2π−vA(x)). (12)

Moreover, we define the following:

Definition 2. A distance d on IVCFS is rotationally invariant if

d(Rotθ(A), Rotθ(B)) = d(A, B) (13)

for any θ and A, B ∈ IVCF(U).

Definition 3. A distance d on IVCFS is reflectionally invariant if

d(Re f (A), Re f (B)) = d(A, B) (14)

for any A, B ∈ IVCF(U).

Definitions 2 and 3 give two intuitive properties of distance measures of IVCFSs, named rotational
invariance and reflectional invariance, respectively. They mean that the distance measure is invariant
under a rotation or a reflection. More specifically, if two IVCFSs are rotated by a fixed value, rotational
invariance states that the distance between two new IVCFSs will not change. If two IVCFSs are reflected,
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reflectional invariance states that the distance between two new IVCFSs will not change as well, which are
respectively shown in Figure 1, d(A′, B′) is equal to d(A, B) after reflecting or rotating.

Rotate ,

′

′′, ′

(a)

2

Real

Reflection

′
′

′, ′

,

(b)

Figure 1. (a) reflectional invariance and (b) rotational invariance.

Theorem 3. All functions defined in Equations (3)–(8) are reflectionally invariant.

Proof. It is easy from that |(2π − νA(xi))− (2π − νB(xi))| = |νA(xi)− νB(xi)| for any xi ∈ U.

Theorem 4. All functions defined in Equations (3)–(8) are not rotationally invariant.

Proof. Since the domain of the phase term is νA(x) ∈ [0, 2π), so the above rotation operation is addition
modulo 2π. Consider two IVCFSs on the set U = {x1, x2}; let μA(x) ≡ 1 · ej π

4 and μB(x) ≡ 1 · ej 7π
4 for any

x ∈ U. Then, Rot π
2
(A) ≡ 1 · ej 3π

4 and Rot π
2
(B) ≡ 1 · ej π

4 . By using Equations (3)–(8), we have

dH(A, B) =
3
4

, dH(Rot π
2
(A), Rot π

2
(B)) =

1
4

,

dE(A, B) =
3
4

, dH(Rot π
2
(A), Rot π

2
(B)) =

1
4

,

dnH(A, B) =
3
8

, dnH(Rot π
2
(A), Rot π

2
(B)) =

1
8

,

dnE(A, B) =
3
√

2
8

, dH(Rot π
2
(A), Rot π

2
(B)) =

√
2

8
,

dnwH(A, B) =
3
8

, dnwH(Rot π
2
(A), Rot π

2
(B)) =

1
8

,

dnwE(A, B) =
3
√

2
8

, dnwH(Rot π
2
(A), Rot π

2
(B)) =

√
2

8
.

Thus, the distance functions defined in Equations (3)–(8) are not rotationally invariant.
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Obviously, the concepts of rotational invariance and reflectional invariance can be examined for
distance measures of CFSs when IVCFSs are reduced to CFSs. Then, we can study the rotational invariance
and reflectional invariance of distance measures of CFSs.

Remark 4. The concepts of rotational invariance and reflectional invariance proposed respectively in Definitions 2
and 3 for distance measures of IVCFSs reduce to the environment of CFSs.

With the combination of Remark 1, we have the following results for the distance measures of CFSs.

Corollary 1. Distance measures of CFSs defined in [31] are reflectionally invariant.

Corollary 2. Distance measures of CFSs defined in [31] are not rotationally invariant.

With the combination of Remark 3, we have the following results for the distance measures of CFSs.

Corollary 3. Distance functions of CFSs defined in Equations (9) and (10) are reflectionally invariant.

Corollary 4. Distance functions of CFSs defined in Equations (9) and (10) are not rotationally invariant.

5. Numerical Example for Decision-Making

In this section, we consider a decision-making problem under an interval-valued complex
fuzzy environment.

Assume that a customer decides to purchase a new computer for his own private use. There are
four alternatives (A1, A2, A3, A4) with different production dates. The customer considers five attributes,
namely C1: Performance, C2: Appearance, C3: Service, C4: Experience and C5: Price with the weight
vectors w = (0.2, 0.2, 0.1, 0.1, 0.4) for selecting computer. The corresponding rating values of attributes
of alternatives are interval-valued complex fuzzy values as shown in Table 1. For instance, the rating
value of the alternative A1 under C1 attribute is the interval-valued complex fuzzy value [0.8, 0.9] · ej2π(0.8),
which means that the performance of the computer A1 at C1 is marked by an interval value [0.8, 0.9],
and the customer satisfied 80% with the suitability of production date of the computer A1 at C1; this
explanation of the phase part is referred to Garg et al.’s works on complex intuitionistic fuzzy aggregation
operators [13,14]. The customer wants to select a computer among the four alternatives above. Here, we
use the principle of minimum degree of difference between IVCFSs to solve the given problem.

Table 1. Feature values of the facial expressions.

C1 C2 C3 C4 C5

A1 [0.8, 0.9] · ej2π(0.8) [0.7, 0.8] · ej2π(0.8) [0.8, 0.9] · ej2π(0.9) [0.7, 0.9] · ej2π(0.9) [0.8, 0.9] · ej2π(0.6)

A2 [0.8, 0.9] · ej2π(0.7) [0.7, 0.8] · ej2π(0.9) [0.7, 0.8] · ej2π(0.7) [0.7, 0.8] · ej2π(0.7) [0.6, 0.7] · ej2π(0.8)

A3 [0.6, 0.7] · ej2π(0.7) [0.8, 0.9] · ej2π(0.7) [0.7, 0.8] · ej2π(0.7) [0.6, 0.7] · ej2π(0.8) [0.7, 0.8] · ej2π(0.8)

A4 [0.8, 0.9] · ej2π(0.8) [0.7, 0.8] · ej2π(0.9) [0.6, 0.7] · ej2π(0.9) [0.8, 0.9] · ej2π(0.8) [0.8, 0.9] · ej2π(0.9)

Now, we calculate the distance between the ideal choice (each rating value is 1 · ej2π(1)) and Ai
(i = 1, 2, 3, 4) with the weighting vector w. We consider the distances as defined in Equations (3)–(8) and
obtain the results as shown in Table 2.
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Table 2. Distance results.

dH dE dnH dnE dnwH dnwE

A1 0.95 0.4743 0.19 0.2121 0.2175 0.2424
A2 1.225 0.5766 0.245 0.2579 0.245 0.2598
A3 1.325 0.6144 0.265 0.2748 0.255 0.2646
A4 0.875 0.433 0.175 0.1937 0.16 0.1761

From Table 2, we get an ordering of the choices for each case as shown in Table 3. Clearly, the best
alternative is A4, which is the one with the lowest distance to the ideal choice.

Table 3. Ordering of the alternatives.

Ordering

dH A4 & A1 & A2 & A3
dE A4 & A1 & A2 & A3

dnH A4 & A1 & A2 & A3
dnE A4 & A1 & A2 & A3

dnwH A4 & A1 & A2 & A3
dnwE A4 & A1 & A2 & A3

6. Conclusions

In this paper, we have presented several distance measures in the case of the interval-valued complex
fuzzy sets, which are very useful to deal with the decision information represented in interval-valued
complex fuzzy values under uncertain situations. These distance measures include a family of Hamming
and Euclidean distances such as the Hamming distance, the normalized Hamming distance, the normalized
weighted Hamming distance, the Euclidean distance, the normalized Euclidean distance and the
normalized weighted Euclidean distance. Furthermore, these distance measures are reflectionally invariant
but not rotationally invariant. Finally, based on these measures, we presented an illustrative example for
decision-making under interval-valued complex fuzzy information.

As future work, we can consider distance measures for interval-valued complex fuzzy sets that are
both reflectionally invariant and rotationally invariant.

Author Contributions: Conceptualization, S.D.; Funding acquisition, L.B. and B.H.; Writing—original draft, S.D.;
Writing—review and editing, L.B. and B.H.

Funding: This research was funded by the Opening Foundation of Guangxi Colleges and Universities Key Laboratory
of Complex System Optimization and Big Data Processing OF FUNDER Grant No. 2017CSOBDP0103.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ramot, D.; Milo, R.; Friedman, M.; Kandel, A. Complex fuzzy sets. IEEE Trans. Fuzzy Syst. 2002, 10, 171–186.
[CrossRef]

2. Alkouri, A.M.J.S.; Salleh, A.R. Complex intuitionistic fuzzy sets. In Proceedings of the International Conference
on Fundamental and Applied Sciences (ICFAS 2012), Kuala Lumpur, Malaysia, 12–14 June, 2012; pp. 464–470.

3. Ali, M.; Smarandache, F. Complex neutrosophic set. Neural Comput. Appl. 2017, 28, 1–18. [CrossRef]
4. Ali, M.; Dat, L.Q.; Smarandache, F. Interval complex neutrosophic set: Formulation and applications in

decision-making. Int. J. Fuzzy Syst. 2018, 20, 986–999. [CrossRef]

136



Mathematics 2019, 7, 549

5. Al-Qudah, Y.; Hassan, N. Complex multi-fuzzy soft set: Its entropy and similarity measure. IEEE Access 2018,
6, 65002–65017. [CrossRef]

6. Garg, H.; Rani, D. Complex interval-valued intuitionistic fuzzy sets and their aggregation operators.
Fundam. Inform. 2019, 164, 61–101. [CrossRef]

7. Selvachandran, G.; Maji, P.K.,; Abed, I.E.; Salleh, A.R. Complex vague soft sets and its distance measures. J. Intell.
Fuzzy Syst. 2016, 31, 55–68. [CrossRef]

8. Greenfield, S.; Chiclana, F.; Dick S. Interval-valued complex fuzzy logic. In Proceedings of the 2016 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC, Canada, 24–29 July 2016; pp. 2014–2019.

9. Greenfield, S.; Chiclana, F.; Dick S. Join and meet operations for interval-valued complex fuzzy logic. In
Proceedings of the 2016 Annual Conference of the North American Fuzzy Information Processing Society
(NAFIPS), El Paso, TX, USA, 31 October–4 November 2016; pp. 1–5.

10. Ramot, D.; Friedman, M.; Langholz, G.; Kandel, A. Complex fuzzy logic. IEEE Trans. Fuzzy Syst. 2003, 11, 450–461.
[CrossRef]

11. Zhang, G.; Dillon, T.S.; Cai, K.-Y.; Ma, J.; Lu, J. Operation properties and delta-equalities of complex fuzzy sets.
Int. J. Approx. Reason. 2009, 50, 1227–1249. [CrossRef]

12. Hu, B.; Bi, L.; Dai, S. The Orthogonality between Complex Fuzzy Sets and Its Application to Signal Detection.
Symmetry 2017, 9, 175. [CrossRef]

13. Rani, D.; Garg, H. Complex intuitionistic fuzzy power aggregation operators and their applications in
multicriteria decision-making. Expert Syst. 2018, e12325. [CrossRef]

14. Garg, H.; Rani, D. Some Generalized Complex Intuitionistic Fuzzy Aggregation Operators and Their Application
to Multicriteria Decision-Making Process. Arab. J. Sci. Eng. 2019, 44, 2679–2698. [CrossRef]

15. Bi, L.; Dai, S.; Hu, B. Complex fuzzy geometric aggregation operators. Symmetry 2018, 10, 251. [CrossRef]
16. Bi, L.; Dai, S.; Hu, B.; Li, S. Complex fuzzy arithmetic aggregation operators. J. Intell. Fuzzy Syst. 2019,

26, 2765–2771. [CrossRef]
17. Chen, Z.; Aghakhani, S.; Man, J.; Dick, S. ANCFIS: A Neuro-Fuzzy Architecture Employing Complex Fuzzy Sets.

IEEE Trans. Fuzzy Syst. 2011, 19, 305–322. [CrossRef]
18. Li, C. Complex Neuro-Fuzzy ARIMA Forecasting. A New Approach Using Complex Fuzzy Sets. IEEE Trans.

Fuzzy Syst. 2013, 21, 567–584. [CrossRef]
19. Li, C.; Chiang, T.-W.; Yeh, L.-C. A novel self-organizing complex neuro-fuzzy approach to the problem of time

series forecasting. Neurocomputing 2013, 99, 467–476. [CrossRef]
20. Ma, J.; Zhang, G.; Lu, J. A method for multiple periodic factor prediction problems using complex fuzzy sets.

IEEE Trans. Fuzzy Syst. 2012, 20, 32–45.
21. Li, C.; Wu, T.; Chan, F.-T. Self-learning complex neuro-fuzzy system with complex fuzzy sets and its application

to adaptive image noise canceling. Neurocomputing 2012, 94, 121–139. [CrossRef]
22. Liu, X. Entropy, distance measure and similarity measure of fuzzy sets and their relations. Fuzzy Sets Syst. 1992,

52, 305–318.
23. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
24. Szmidt, E.; Kacprzyk, J. Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 2000, 114, 505–518. [CrossRef]
25. Zhang, H.; Yu, L. New distance measures between intuitionistic fuzzy sets and interval-valued fuzzy sets. Inf. Sci.

2013, 245, 181–196. [CrossRef]
26. Wang, W.Q.; Xin, X.L. Distance measure between intuitionistic fuzzy sets. Pattern Recognit. Lett. 2005,

26, 2063–2069. [CrossRef]
27. Grzegorzewski, P. Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the

Hausdorff metric. Fuzzy Sets Syst. 2004, 148, 319–328. [CrossRef]
28. Xu, Z.S.; Chen, J. An overview of distance and similarity measures of intuitionistic fuzzy sets. Int. J. Uncertain.

Fuzz. Knowl.-Based Syst. 2008, 16, 529–555 [CrossRef]
29. Zeng, W.Y.; Guo, P. Normalized distance, similarity measure, inclusion measure and entropy of interval-valued

fuzzy sets and their relationship. Inf. Sci. 2008, 178, 1334–1342. [CrossRef]

137



Mathematics 2019, 7, 549

30. Hu, B.; Bi, L.; Dai, S.; Li, S. Distances of Complex Fuzzy Sets and Continuity of Complex Fuzzy Operations.
J. Intell. Fuzzy Syst. 2018, 35, 2247–2255. [CrossRef]

31. Alkouri, A.U.M.; Salleh, A.R. Linguistic variables, hedges and several distances on complex fuzzy sets. J. Intell.
Fuzzy Syst. 2014, 26, 2527–2535.

32. Bi, L.; Hu, B.; Li S.; Dai, S. The Parallelity of Complex Fuzzy sets and Parallelity Preserving Operators. J. Intell.
Fuzzy Syst. 2018, 34, 4173–4180. [CrossRef]

33. Hu, B.; Bi, L.; Dai, S.; Li, S. The approximate parallelity of complex fuzzy sets. J. Intell. Fuzzy Syst. 2018,
35, 6343–6351. [CrossRef]

34. Bi, L.; Zeng, Z.; Hu, B.; Dai, S. Two Classes of Entropy Measures for Complex Fuzzy Sets. Mathematics 2019, 7, 96.
[CrossRef]

35. Rani, D.; Garg, H. Distance measures between the complex intuitionistic fuzzy sets and its applications to the
decision-making process. Int. J. Uncertain. Quantif. 2017, 7, 423–439. [CrossRef]

36. Selvachandran, G.; Garg, H.; Alaroud, M.H.; Salleh, A.R. Similarity measure of complex vague soft sets and its
application to pattern recognition. Int. J. Fuzzy Syst. 2018, 20, 1901–1914. [CrossRef]

37. Selvachandran, G.; Garg, H.; Quek, S. Vague entropy measure for complex vague soft sets. Entropy 2018, 20, 403.
[CrossRef]

38. Dick, S. Towards Complex Fuzzy Logic. IEEE Trans. Fuzzy Syst. 2005, 13, 405–414. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

138



mathematics

Article

An Interactive Data-Driven (Dynamic) Multiple
Attribute Decision Making Model via Interval
Type-2 Fuzzy Functions
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Abstract: A new multiple attribute decision making (MADM) model was proposed in this paper in
order to cope with the temporal performance of alternatives during different time periods. Although
dynamic MADM problems are enjoying a more visible position in the literature, majority of the
applications deal with combining past and present data by means of aggregation operators. There is
a research gap in developing data-driven methodologies to capture the patterns and trends in the
historical data. In parallel with the fact that style of decision making evolving from intuition-based
to data-driven, the present study proposes a new interval type-2 fuzzy (IT2F) functions model in
order to predict current performance of alternatives based on the historical decision matrices. As the
availability of accurate historical data with desired quality cannot always be obtained and the data
usually involves imprecision and uncertainty, predictions regarding the performance of alternatives
are modeled as IT2F sets. These estimated outputs are transformed into interpretable forms by
utilizing the vocabulary matching procedures. Then the interactive procedures are employed to
allow decision makers to modify the predicted decision matrix based on their perceptions and
subjective judgments. Finally, ranking of alternatives are performed based on past and current
performance scores.

Keywords: dynamic multiple attribute decision making; fuzzy regression; interval type-2 fuzzy sets

1. Introduction

Managers are continuously engaged in a process of making decisions in a rapidly changing business
environment. Making right decisions is crucial in order to attain organizational goals and effective use of
resources. Quality of decisions relies heavily on the information processing capabilities by considering
multiple and conflicting criteria. With the dramatic increase in the availability of information obtained
from diverse set of resources, decision making becomes much more complicated and difficult. Multiple
attribute decision making (MADM) offers a set of sophisticated techniques to help decision makers in
selecting the best alternative by considering multiple, conflicting, and incommensurate criteria.

The field of MADM is rapidly expanding with the continuing proliferation of new techniques
and applications. Many state of the art methods have been proposed such as multi-attribute utility
theory (MAUT) [1–3], analytic hierarchy process (AHP) [4], analytic network process (ANP) [5],
technique for order preference by similarity to ideal solution (TOPSIS) [6], elimination and choice
translating reality (ELECTRE) [7], VlseKriterijumska Optimizacija I Kompromisno Resenje technique
(VIKOR) [8], and decision-making trial and evaluation laboratory (DEMATEL) [9]. Despite many
successful applications of the MADM methods currently available in the literature, the salient deficiency
of these methods is their incapability to handle temporal profiles of alternatives. Unfortunately, static
MADM methods cannot deal with the temporal profiles of alternatives, that is, past performance
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scores are not taken into consideration. In order to overcome this deficiency, data-driven, and dynamic
MADM methods have been developing along with diverse applications.

In the dynamic MADM, at least two-period decision making information is considered. In addition
to the alternative and criteria dimensions, time is considered as a third dimension in the dynamic
MADM. With the recent advances in the information technologies, data is becoming an indispensable
part of the decision making practices, which forces the pace of a paradigm shift towards data-driven
decision making. As ever-more data pour through the networks of organizations, collecting, and storing
performance scores of alternatives with time stamps are not cumbersome procedures anymore. As the
style of decision making evolving from intuition based to data-driven, the decision makers should be
supported with relevant methodologies and tools to fully capitalize the available data. However, it is
evident that the field of dynamic MADM is in its infancy and the current literature is far from meeting
the requirements of a fully-fledged data-driven methodology.

In one of the earliest works on the dynamic MADM, Kornbluth [10] discussed the problem of
time dependence of the criteria weights, and empirical laboratory findings were used for the analysis.
Decision making teams were monitored for 12 sequential decisions and the time-dependent weights
were analyzed based on different scenarios. Dong et al. [11] proposed a dynamic MADM method
based on relative differences between the performance scores of the subsequent time-periods. In the
study, disadvantages of using absolute differences were discussed and a numerical example was
provided. Lou et al. [12] proposed a dynamic MADM model to evaluate and rank country risks based
on historical data. The proposed model was aimed at predicting possible credit crises in advance.
The proposed model was applied to the world economy development indicators data of 32 countries.
The utilités additives discriminantes (UTADIS) method was used to rank country risk scores.

Despite many new developments, the literature of the dynamic MADM field is dominated by
the aggregation-operator based models. Campanella and Ribeiro [13] proposed a framework for
dynamic MADM where the aggregation operators were the main computation tools, and majority of
the studies in the literature employ this framework. Xu and Yager [14] proposed dynamic intuitionistic
fuzzy weighted averaging and uncertain dynamic intuitionistic fuzzy weighted averaging operators.
According to their model, decision matrices of the past periods are aggregated into a decision
matrix, and classical MADM techniques were implemented afterwards. Park et al. [15] proposed
dynamic intuitionistic fuzzy weighted geometric and uncertain dynamic intuitionistic fuzzy weighted
geometric operators for dynamic MADM problems. The past decision matrices were aggregated
and then the VIKOR method was used to rank the alternatives. Zhou et al. [16] hybridized dynamic
triangular fuzzy weighting average operators with fuzzy VIKOR method for quality improvement
pilot program selection. Dynamic feedbacks of the customers were also incorporated into the proposed
model. Bali et al. [17] employed dynamic intuitionistic fuzzy weighted averaging method with
TOPSIS for multi-period third-party logistics provider selection problem. Chen and Li [18] proposed
a new distance measure for triangular intuitionistic fuzzy sets with an application in dynamic
MADM. The weighted arithmetic averaging operator for triangular intuitionistic fuzzy numbers was
used to aggregate the decision matrices of the past periods. The ranking orders were obtained by
using closeness coefficients. An investment decision making was used to illustrate the proposed
method. Liang et al. [19] employed evidential reasoning approach to aggregate decision matrices with
incomplete information. The enterprise evaluation in a technological zone was used to illustrate the
model. Bali et al. [20] proposed an integrated model based on AHP and dynamic intuitionistic fuzzy
weighted averaging operator under an intuitionistic fuzzy environment. The proposed model was
implemented in a personnel promotion problem.

In some of the studies, the aggregation operators were not used to aggregate the decision matrices
of the past periods at the very beginning. Xu [21] proposed dynamic weighted geometric aggregation
operator along with an illustrative three-period investment decision making model. Rather than
aggregating the decision matrices of the past periods, aggregation was conducted based on the
closeness coefficients of the different periods. Zulueta et al. [22] proposed discrete time variable index
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by admitting bipolar values in the aggregation. A five-period supplier selection problem was used to
illustrate the proposed aggregation operator. Lin et al. [23] used grey numbers and Minkowski distance
in dealing with dynamic subcontractor selection problem. The proposed method calculated the period
weighted distances to the ideal and anti-ideal solutions. Similar aggregation operator-based studies in
the literature, which utilize intuitionistic fuzzy numbers [24,25], 2-tuple linguistic representation [26–30],
grey numbers [31,32], etc. can be found. For more information about dynamic aggregation operators,
we refer to a review paper [33]. On the other hand, non-aggregation operator based studies can
be summarized as follows: Saaty [34] studied time-dependent eigenvectors and approximating
functional forms of relative priorities in dynamic MADM. Hashemkhani Zolfani et al. [35] emphasized
the relevance and necessity of future studies in MADM problems. In the paper, scenario-based MADM
papers were reviewed and analyzed. Possible changes in the experts’ evaluations were expressed
by using probabilities. Orji and Wei [36] integrated fuzzy logic and system dynamics simulation to
sustainable supplier selection problem. Very recently, Baykasoğlu and Gölcük [37] proposed a dynamic
MADM model by learning of fuzzy cognitive maps. In the study, fuzzy cognitive maps were trained
by using a metaheuristic algorithm in order to capture patterns and trends in the past data. Then,
the trained model was used to generate short-, medium-, and long-term future decision matrices.
Finally, past, current and future decision matrices were used to rank the alternatives. The proposed
model was realized in a real-life supplier selection problem.

Although a wide range of applications have been provided in the context of dynamic MADM,
the literature still lacks the following considerations:

• Decision makers are expected to fill out tedious questionnaires to articulate their preferences over
alternatives at each period. This is especially very time consuming and demanding when the
number of criteria and alternatives are high, and the decision points are frequent, i.e., performance
evaluation, risk assessment, etc.

• The models do not provide any mechanism to help decision makers making use of past decision
making matrices when articulating their preferences at the current period. An interactive
mechanism is needed to facilitate preference elicitation in the light of historical performance
of alternatives.

Due to the availability of accurate historical data with high quality and quantity cannot always
be assured and the data is usually affected by imprecision and noise, the predictions regarding the
performance of alternatives should handle uncertainty properly. Interval type-2 fuzzy (IT2F) sets
are very suitable tools for manipulating and reasoning with uncertain information. For that reason,
the present study makes use of IT2F regression [38] to predict the current decision matrix. In order to
enhance the prediction capability of the IT2F regression, a new hybrid IT2F model is proposed on the
basis of highly practical method of so called “fuzzy functions” [39]. The proposed model is able to
capture nonlinearities more successfully than the traditional fuzzy regression models, due to its unique
and intelligent way of integrating membership grades of data points into the prediction problem.

The proposed dynamic MADM model contributes to the literature with its following features:

• A dynamic MADM model is proposed based on a new IT2F functions approach.
• An interactive procedure is provided that the current decision making matrix is predicted in

forms of IT2F sets. Moreover, vocabulary matching procedure is developed so that the predicted
performance scores of alternatives are recommended to the decision makers through linguistic
terms such as low, medium, high, etc.

• The proposed model interacts with decision makers whose subjective judgments are combined
with the notion of “let the data speak for itself”. By providing decision makers with data-driven
suggestions regarding the performance of alternatives, preference elicitation effort at each period
is considerably reduced.
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• The proposed model does not require any technical knowledge such as fuzzy sets, t-norms,
t-conorms, implication functions, etc. The proposed model can be easily integrated into the legacy
systems of the firms, since the crisp values are processed when providing IT2F outputs.

• A real-life personnel promotion problem is used to demonstrate the applicability of the proposed
model. Rankings of employees are calculated based on past and current performance matrices
with appropriate time series weights.

This paper is organized as follows: Theoretical background on the methodologies used within the
scope of this paper is given in Section 2. The proposed model is provided in Section 3. The real life
application of the proposed dynamic MADM model is illustrated in Section 4. Discussions are given in
Section 5. Concluding remarks are given in Section 6.

2. Theoretical Background

2.1. Traditional Dynamic Multiple Attribute Decision Making

A dynamic MADM problem under study can be described as follows. Let A = {A1, A2, . . . , AM} be
a discrete set of M feasible alternatives and C = {C1, C2, . . . , CN} be a finite set of all attributes. The set
of all periods is denoted by t = {t1, t2, . . . , tH}. Each alternative is evaluated in terms of N attributes
and H periods. Each period is associated with weights that these time series weights are denoted by
ξ(t) = [ξ(t1), ξ(t2), . . . , ξ(tH)]

T where ξ(tH) ≥ 0 and
∑H

k=1 ξ(tk) = 1. The weight vector of attributes
are given by [w1(tk), w2(tk), . . .wN(tk)]

T where wi(tk) ≥ 0 and
∑N

i=1 wi(tk) = 1. The decision matrix at
the period tk is denoted by A(tk) =

(
aij(tk)

)
N×M

where aij(tk) is the value of alternative Aj with respect
to attribute Ci at period tk. Let Ωb and Ωc be the set of benefit and cost attributes, respectively. Due to
the immensurability of the different attributes, decision matrix A(tk) is normalized to corresponding
dimensionless decision matrix R(tk) =

(
rij(tk)

)
N×M

by using the following formulas:

rij(tk) =
aij(tk)

max j
{
aij(tk)

} , j = 1, 2, . . . , M; k = 1, 2, . . . , H; i ∈ Ωb, (1)

rij(tk) =
min j

{
aij(tk)

}
aij(tk)

, j = 1, 2, . . . , M; k = 1, 2, . . . , H; i ∈ Ωc, (2)

Hence, the normalized decision matrix is obtained as:

R(tk) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
r11(tk) r12(tk) · · · r1M(tk)

r21(tk) r22(tk) · · · r2M(tk)
...

...
. . .

...
rN1(tk) rN2(tk) · · · rNM(tk)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3)

The overall assessment value of the jth alternative is calculated by:

yj =
H∑

k=1

N∑
i=1

ξ(tk)wi(tk)rij(tk), j = 1, 2, . . . , M. (4)

Therefore, alternatives are ranked based on yj in which the best alternative is with the highest
overall assessment value.

2.2. Possibilistic Fuzzy Regression

In this section, possibilistic fuzzy regression analysis with asymmetric fuzzy numbers is
overviewed based on [38]. Although there are a variety of fuzzy regression approaches developed
during the last two decades, regression models relying on possibility and necessity concepts have
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pivotal role in the current literature. Possibilistic models strive to minimize sum of spreads in such
a way that the estimated outputs must include the given targets. It is indeed advantageous to have
asymmetric fuzzy numbers in possibilistic models as the lower and upper bounds of the estimated
model are not necessarily equidistant from the center, which implies superior capability to capture
central tendency. A fuzzy regression model can be formalized as:

Y(x) = β̃0 + β̃1x1 + · · ·+ β̃nvxnv = β̃x, (5)

where the input vector is represented by x = (1, x1, . . . , xnv)
t and β̃ =

(
β̃0, β̃1, . . . , β̃nv

)
is a vector of fuzzy

coefficients, and Y(x) is the estimated fuzzy output. The coefficients β̃i are denoted as β̃i = (ai, ci, di)

can be defined by:

μAi(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1− (ai − x)/ci, if ai − ci ≤ x ≤ ai

1− (x− ai)/di, if ai ≤ x ≤ ai + di

0, otherwise

, (6)

where ai represents center, and ci and di left- and right-spreads, respectively.
Given the input-output data as

(
x j, yj

)
=

(
1, xj,1, . . . , xj,nv; yj

)
, j = 1, 2, . . . , nd, where xj,nv being

value of the variable nv of the j-th data-point among the total of nd data-points, the estimated output
Y(x j) can be calculated by using fuzzy arithmetic. Representing regression coefficients as β̃i = (ai, ci, di),
(i = 0, 1, . . . , nv), fuzzy regression model can be expressed as:

Y(x j) = (a0, c0, d0) + (a1, c1, d1)xj,1 + · · ·+ (an, cn, dn)xj,nv. (7)

Equation (7) can be written in a more compact form as given in Equation (8).

Y(x j) =
(
θC

(
x j

)
,θL

(
x j

)
,θR

(
x j

))
, (8)

where the terms θC
(
x j

)
,θL

(
x j

)
,θR

(
x j

)
, are calculated as given in Equation (9).

θC
(
x j

)
=

n∑
i=0

aixji

θL
(
x j

)
=

n∑
xji≥0

cixji−
n∑

xji<0
dixji

θR
(
x j

)
=

n∑
xji≥0

dixji−
n∑

xji<0
cixji

. (9)

Finally, the possibilistic fuzzy regression model can be written as:

J =
nd∑
j=1

(
yj − atx j

)2
+ (1− h)

nd∑
j=1

(
ct
∣∣∣x j

∣∣∣+ dt
∣∣∣x j

∣∣∣)+ ξ(ctc + dtd
)

subject to θC(x j) + (1− h)θR(x j) ≥ yj
θC(x j) − (1− h)θL(x j) ≤ yj
ci ≥ 0, di ≥ 0, i = 0, 1, . . . , nv

, (10)

where ξ is a small positive number. The term ξ
(
ctc + dtd

)
is added to objective function so that

the objective function becomes a quadratic function with respect to decision variables a, c, and d.
The resulting optimization problem is a quadratic optimization problem, which involves minimizing a
quadratic objective function subject to linear constrains. The possibilistic fuzzy regression analysis will
be detailed in the subsequent sections.
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2.3. Turksen’s Fuzzy Functions Approach

Turksen [39] proposed a new fuzzy modeling technique as an alternative to classical fuzzy rule
bases (FRB). Fuzzy rule bases (FRB) have been effectively used as a facilitator to decision makers’
problem solving activities. FRBs are the one of the best currently available means to codify human
knowledge. This knowledge is represented by “IF . . . THEN” rule structures. The “IF” part represents
the antecedents and “THEN” part represents consequents. In the literature, there are different FRB
system modeling strategies with unique antecedent and consequent parameter formation approaches.
In these systems, membership values have also different interpretations such as “degree of fire”, “degree
of compatibility”, “degree of belongingness”, or “weight or strength of local functions”. The fuzzy
functions approach adds a new means of membership degrees to the list by exploiting the predictor
power of membership grades [40].

The representation of each unique rule of an FRB system by means of fuzzy functions is the
governing idea of the fuzzy functions approach. In the fuzzy functions approach, the membership
degree of each sample vector directly affects the local fuzzy functions. One of the advantages of the
fuzzy functions approach is that even non-experts can build fuzzy models as there are lower steps and
parameters. It is quite practical to identify and reason with the fuzzy functions approach that some
technical information regarding constructing fuzzy system models is not required such as fuzzification,
t-norms and t-conorms, modus ponens, etc.

A vast array of fuzzy modeling approaches has been developed in the literature where the
expert knowledge is encoded to define linguistic variables characterized by fuzzy sets. However,
majority of the approaches suffers from a major drawback of being subjective and not generalizable.
In order to reduce expert intervention into fuzzy system modeling, more objective methods have
been developed [41–45]. In these systems, membership grades are not defined by decision makers,
on the contrary, they are extracted from the dataset. There are also some approaches where some
sophisticated techniques are integrated into fuzzy models so that the hybrid fuzzy system models
are built. The prominent examples of these methods are neuro-fuzzy systems [46] and genetic-fuzzy
systems [47].

There are still enduring challenges in the mentioned fuzzy system modeling approaches. Main
disadvantages of the classical fuzzy system modeling approaches can be listed as follows:

• Membership functions pertaining to antecedent and consequent parts of the fuzzy rules should
be identified.

• Aggregation of antecedents requires selection of suitable conjunction and disjunction operators
(t-norms, t-conorms).

• Proper implication operators should be identified for representation of the rules, which can be a
challenging issue.

• A suitable defuzzification method should be identified.

The fuzzy functions approach mainly reduces the number of fuzzy operators by taking advantage
of data-driven modeling. For instance, fuzzy operators in determination of the membership functions in
antecedents and consequents, fuzzification, aggregation of antecedents, implication, and in aggregation
of consequents. It can be said that the fuzzy functions are more practical than their counterpart FRB
models. Fuzzy function can be simply described as follows:

The training dataset is partitioned into c overlapping clusters where each cluster center is
represented by vi, i = 1, 2, . . . , c.

For each one of the clusters, a local fuzzy model fi : vi →	 is built and one output is produced
for each cluster. Here, memberships and their several transformations are added into the input space
and the augmented input matrix is generated. Membership grades and their transformations are
considered as new variables in the regression matrix. Practically, least square estimation is used to
derive regression coefficients. Then, degree of belongingness of each given input vector is used to
aggregate the local model outputs and the estimated values are produced.
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General steps of the fuzzy functions approach can be given as:
Step 1: Matrix Z comprises of inputs and output of the system. Inputs and output of the system

are clustered by using the fuzzy c-means clustering algorithm. Fuzzy c-means clustering method can
be applied by using the formulas given as:

vi =

nd∑
j=1
μm

ij z j

nd∑
j=1
μm

ij

, i = 1, 2, . . . , c, (11)

μi j =
1

c∑
h=1

( ‖vi−z j‖
‖vh−z j‖

) 2
m−1

, i = 1, 2, . . . , c; j = 1, 2, . . . , nd, (12)

where ‖.‖ represents the Euclidean distance between data point z j to cluster center vi.
Step 2: In the second step, membership values of the input space are calculated. Here, the cluster

centers identified in the previous step are used to calculate membership grades of the input data.
Membership construction from the identified cluster centers is performed based on Equation (13).

μi j =
1

c∑
h=1

( ‖vi−x j‖
‖vh−x j‖

) 2
m−1

, i = 1, 2, . . . , c; j = 1, 2, . . . , nd. (13)

Step 3: For each cluster i, membership values of each input data sample, μi j and original inputs
are gathered together, and i-th local fuzzy function is obtained by predicting Y(i) = X(i)β(i) + ε(i) based
on least squares estimation. When the number of inputs is nv, X(i), and Y(i) matrices are as follows:

X(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
μi,1 x1,1 · · · xnv,1

μi,2 x1,2 · · · xnv,2
...

...
. . .

...
μi,nd x1,nd · · · xnv,nd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Y(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y1

y2
...

ynd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (14)

Step 4: Output values are calculated by aggregating the results of the local fuzzy functions
as follows:

ŷ j =

∑c
i=1 ŷi jμi j∑c

i=1 μi j
, j = 1, 2, . . . , nd. (15)

3. Developed IT2F Model

In this section, the developed IT2F model for dynamic MADM problems is given. First, the basics
of the IT2F sets and necessary equations are overviewed. Afterwards, the IT2F regression model is
revisited based on [38]. Then, the procedural steps of the proposed dynamic MADM model are given.

3.1. Interval Type-2 Fuzzy Sets

Definition 1 ([48,49]). A type-2 fuzzy set ˜̃A in the universe of discourse X can be represented by a type-2
membership function μ ˜̃A as:

˜̃A =
{
((x, u), μ ˜̃A(x, u))|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1], 0 ≤ μ ˜̃A(x, u) ≤ 1

}
, (16)
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where Jx denotes an interval in [0,1]. Moreover, type-2 fuzzy set ˜̃A can also be represented as:

˜̃A =

∫
x∈X

∫
u∈Jx

μ ˜̃A(x, u)/(x, u), (17)

where Jx ⊆ [0, 1] and
∫ ∫

denotes union over all admissible x and u.

Definition 2 ([48,49]). Let ˜̃A be a type-2 fuzzy set in the universe of discourse X represented by the type-2
membership function μ ˜̃A. If all μ ˜̃A(x, u) = 1, then ˜̃A is called an IT2F set. An IT2F set ˜̃A, which can be regarded
as a special case of a type-2 fuzzy set, is represented as follows:

˜̃A =

∫
x∈X

∫
u∈Jx

1/(x, u), (18)

where Jx ⊆ [0, 1].
The footprint of uncertainty (FOU) is represented by the lower and upper membership functions:

FOU( ˜̃A) =

∫
x∈X

[
μ

Ã
(x),μÃ(x)

]
, (19)

where μ
Ã
(x) and μÃ(x) represent lower and upper membership functions, respectively.

Definition 3 ([50]). An IT2F set ˜̃A is said to be normal if supμÃ(x) = 1 and supμ
Ã
(x) = h < 1, where

h represents the height of the lower membership function. An IT2F set ˜̃A is said to be perfectly normal if
supμÃ(x) = supμ

Ã
(x) = 1.

In this study, perfectly normal IT2F sets were employed so that the basic definitions and operational
laws regarding perfectly normal triangular IT2F sets were overviewed.

Considering perfectly normal triangular IT2F numbers ˜̃A =
(
A, A

)
=

(
(a1, a2, a3; 1)

(
a1, a2, a3; 1

))
and ˜̃B =

(
b, b

)
=

((
b1, b2, b3; 1

)(
b1, b2, b3; 1

))
, their operational laws are as follows [51]:

˜̃A⊕ ˜̃B =

⎛⎜⎜⎜⎜⎝
(
a1 + b1, a2 + b2, a3 + b3; 1

)
,(

a1 + b1, a2 + b2, a3 + b3; 1
) ⎞⎟⎟⎟⎟⎠, (20)

˜̃A ˜̃B =

⎛⎜⎜⎜⎜⎝
(
a1 − b3, a2 − b2, a3 − b1; 1

)
,(

a1 − b3, a2 − b2, a3 − b1; 1
) ⎞⎟⎟⎟⎟⎠, (21)

˜̃A⊗ ˜̃B =

⎛⎜⎜⎜⎜⎝
(
a1 × b1, a2 × b2, a3 × b3; 1

)
,(

a1 × b1, a2 × b2, a3 × b3; 1
) ⎞⎟⎟⎟⎟⎠, (22)

˜̃A� ˜̃B =

⎛⎜⎜⎜⎜⎝
(
a1/b3, a2/b2, a3/b1; 1

)
,(

a1/b3, a2/b2, a3/b1; 1
) ⎞⎟⎟⎟⎟⎠, (23)

k× ˜̃A =

⎧⎪⎪⎨⎪⎪⎩
(
(k× a1, k× a2, k× a3; 1)

(
k× a1, k× a2, k× a3; 1

))
, k ≥ 0(

(k× a3, k× a2, k× a1; 1)
(
k× a3, k× a2, k× a1; 1

))
, k ≤ 0

. (24)
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Definition 4. The ranking value Rank( ˜̃A) of a IT2F set ˜̃A =
(
A, A

)
can be defined via the concept of centroid

as [52]:

CL
˜̃A
= min
ξ∈[a,b]

∫ ξ
a xμA(x)dx +

∫ b
ξ

xμ
A
(x)dx∫ ξ

a μA(x)dx +
∫ b
ξ
μ

A
(x)dx

, (25)

CR
˜̃A
= max
ξ∈[a,b]

∫ ξ
a xμ

A
(x)dx +

∫ b
ξ

xμA(x)dx∫ ξ
a μA

(x)dx +
∫ b
ξ
μA(x)dx

, (26)

where CL
˜̃A

and CR
˜̃A

are the endpoints of the centroid. The ranking value of the IT2F set ˜̃A is calculated as:

Rank( ˜̃A) =
CL

˜̃A
+ CR

˜̃A
2

, (27)

where Rank( ˜̃A) is the centroid-based ranking value of ˜̃A.

Definition 5 ([53]). The Jaccard similarity measure for fuzzy sets ˜̃A and ˜̃B is defined by

SM
( ˜̃A, ˜̃B

)
=

∫
X min

(
μA(x),μB(x)

)
dx +

∫
X min

(
μ

A
(x),μ

B
(x)

)
dx∫

X max
(
μA(x),μB(x)

)
dx +

∫
X max

(
μ

A
(x),μ

B
(x)

)
dx

, (28)

where SM represent similarity degree of fuzzy sets with respect to Jaccard measure.

3.2. IT2F Regression Model

In this section, IT2F regression model is revisited based on [38]. IT2F regression model will be
utilized within the fuzzy functions approach [39] in order to increase its performance in the next section.
In this section, the necessary equations are derived for IT2F regression in a step-by-step approach.
IT2F regression models can be constructed based on the concepts of possibility and necessity. Here,
possibility and necessity concepts are used to build an upper approximation model (UAM) and lower
approximation model (LAM), respectively [54]. Building an integrated model, UAM and LAM are
used to form upper and lower membership functions of the IT2F coefficients, respectively.

In mathematical terms, LAM and UAM models can be written as:

LAM : Ỹ∗(x j) = β̃∗0 + β̃∗1xj1 + · · ·+ β̃∗nxj,nv = β̃∗x j, j = 1, . . . , nd
UAM : Ỹ∗(x j) = β̃

∗
0 + β̃

∗
1xj1 + · · ·+ β̃∗nxj,nv = β̃∗x j, j = 1, . . . , nd

, (29)

where coefficients β̃∗ j and β̃∗j are non-symmetric triangular fuzzy numbers. The regression coefficients

β̃∗ j and β̃∗j are shown in Figure 1.

As shown in Figure 1, β̃∗i and β̃∗i can be defined as:

β̃∗i = (bi − fi, bi, bi + gi; 1)

β̃∗i = (bi − fi − pi, bi, bi + gi + qi; 1)
, (30)

where the condition β̃∗i ⊇ β̃∗i, is satisfied for i = 0, . . . , nv.
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β

β

 
Figure 1. Representation of regression coefficients.

In order to increase readability of the formulations, conventional representation of the literature is
adopted here, where (center, left_spread, right_spread) is used to show the LAM and UAM as given
by β̃∗i = (bi, fi, gi) and β̃∗i = (bi, fi + pi, gi + qi), respectively.

The inclusion relation between β̃∗i and β̃∗i can be extended to Ỹ∗(x j) and Ỹ∗(x j), that is:

Ỹ∗(x) ⊇ Ỹ∗(x) for any x = (1, x1, . . . , xnv)
t if β̃∗i ⊇ β̃∗i. (31)

Using the coefficients of the LAM model Ã∗i = (bi, fi, gi), Ỹ∗(x j) can be expressed as:

Ỹ∗(xj) = (b0, f0, g0) + (b1, f1, g1)xj1 + · · ·+ (bnv, fnv, gnv)xj,nv

=

⎛⎜⎜⎜⎜⎜⎝ n∑
i=0

bixji,
∑

xji≥0
fixji − ∑

xji≤0
gixji,

∑
xji≥0

gixji − ∑
xji≤0

fixji,

⎞⎟⎟⎟⎟⎟⎠
=

(
btx j,θ∗L(x j),θ∗R(x j)

) , (32)

where b = (b0, b1, . . . , bnv)
t.

Similarly, Ỹ∗(x j) can be expressed as:

Ỹ∗(xj) = (b0, f0, g0) + (b1, f1 + p1, g1 + q1)xj1 + · · ·+ (bnv, fnv + pnv, gnv + qnv)xjnv

=

⎛⎜⎜⎜⎜⎜⎝ nv∑
i=0

bixji,
∑

xji≥0
fixji +

∑
xji≥0

pixji − ∑
xji≤0

gixji − ∑
xji≤0

qixji,
∑

xji≥0
gixji +

∑
xji≥0

qixji − ∑
xji≤0

fixji − ∑
xji≤0

pixji,

⎞⎟⎟⎟⎟⎟⎠
=

(
btx j,θ∗L(x j),θ∗R(x j)

) . (33)

As the possibility and necessity concepts were employed, observed outputs were transformed
into granular constructs by admitting a tolerance level for the left- and right-spreads. A user-defined
tolerance_level was set, thereby possibilistic relationships between observed and estimated outputs
could be defined. Generally, tolerance_level is a percentage type, i.e., assigning 20% of each output yj
as the corresponding spread. In this study, left- and right-spreads of the observed outputs were called
tolerance levels. The tolerance level for the jth data-point is denoted by ej.

The possibilistic model states that the resulting output from the UAM should cover all of the
observed data-points within the given tolerance- and h-level. In other words,

[
Ỹ∗(x j)

]
h

should approach
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to
[
Yj

]
h

from the upper side; i.e.,
[
Ỹ∗(x j)

]
h

should be the least interval among all feasible solutions.
This brings up the following constraints:

[
Ỹ∗(x j)

]
h
⊇

[
Yj

]
h
⇔

{
btx j + (1− h)θ∗R(x j) ≥ yj + (1− h)ej
btx j − (1− h)θ∗L(x j) ≤ yj − (1− h)ej

}
, j = 1, . . . , nd

f ≥ 0, g ≥ 0, p ≥ 0, q ≥ 0,
, (34)

where x j =
(
1, xj,1, xj,2, . . . , xj,nv

)
, j = 1, . . . , nd and the term xj,nv denotes the value of the variable nv of

the jth data point.
On the other hand, according to necessity model, the h-level set of the Ỹ∗(xj) should be included

in the h-level set of the given output Yj. In other words,
[
Ỹ∗(x j)

]
should approach to

[
Yj

]
h

from the

lower side, i.e.,
[
Ỹ∗(x j)

]
should be the greatest interval among all feasible solutions. This can be written

in a constraint form as:[
Ỹ∗(x j)

]
h
⊆

[
Yj

]
h
⇔

{
btx j + (1− h)θ∗R(x j) ≤ yj + (1− h)ej
btx j − (1− h)θ∗L(x j) ≥ yj − (1− h)ej

}
, j = 1, . . . , nd

f ≥ 0, g ≥ 0, i = 0, . . . , n
. (35)

Integrating the possibility and necessity models by taking into account the inclusion relation[
Ỹ∗(x j)

]
h
⊆

[
Ỹ∗(x j)

]
h

a quadratic programming formulation of the IT2F regression model is
formulated as:

min
b,f,g,p, q

J =
nd∑
j=1

(
yj − btx j

)2
+ (1− h)

nd∑
j=1

(
pt|x j|+ qt|x j|

)
+ ξ

(
ftf + gtg + ptp + qtq

)

Subject to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
btx j + (1− h)θ∗R(x j) ≥ yj + (1− h)ej
btx j − (1− h)θ∗L(x j) ≤ yj − (1− h)ej
btx j + (1− h)θ∗R(x j) ≤ yj + (1− h)ej
btx j − (1− h)θ∗L(x j) ≥ yj − (1− h)ej

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
f ≥ 0, g ≥ 0, p ≥ 0, q ≥ 0

, j = 1, . . . , nd
, (36)

where ξ is a small positive number. The term ξ
(
ftf + gtg + ptp + qtq

)
is inserted into the objective

function so that the objective function becomes a quadratic function with respect to decision variables
b, f, g, p, and q. The obtained UAM and LAM by solving the above integrated quadratic programming
model always satisfy inclusion relation Y∗(x) ⊆ Y∗(x) at the h-level.

3.3. Dynamic MADM Model via Proposed IT2F Functions

In this section, the proposed IT2F functions approach was given in a step-by-step manner.
The flowchart of the proposed model is illustrated in Figure 2.
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Figure 2. Flowchart of the proposed model.

3.3.1. Phase-I: Problem Structuring

Step 1: Problem-framing: In this step, a group of experts decided on the objective of the study,
and the attributes and alternatives were identified. Here, expert opinions and the literature surveys
helped to arrive at problem-framing.

Step 2: Obtaining historical data: Historical records were identified and the past data were fetched
from the databases. Past data contained performance values of alternatives with respect to attributes
at different periods as given in Equation (37).

A(t1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11(t1) a12(t1) · · · a1M(t1)

a21(t1) a22(t1) · · · a2M(t1)
...

...
. . .

...
aN1(t1) aN2(t1) · · · aNM(t1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, . . . , A(tH) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11(tH) a12(tH) · · · a1M(tH)

a21(tH) a22(tH) · · · a2M(tH)
...

...
. . .

...
aN1(tH) aN2(tH) · · · aNM(tH)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (37)

where A(t1) and A(tH) are the decision matrices at the first and last period of the historical
data, respectively.

This data can be unstructured so that the preprocessing is required.
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Step 3: Preprocessing of historical data: In order to ensure accurate and meaningful analysis,
data cleaning and preprocessing techniques are implemented in this step. Bad or missing data are
eliminated by removing or replacing. Abrupt changes and local optima values are also identified.
Smoothing or de-trending methods can be applied to remove noise.

Moreover, the historical decision making matrices are arranged as time series data. Here, for each
alternative and attribute pair, time series data are formed. Mathematically speaking, the performance
scores for a particular alternative and attribute

(
aij(t1), aij(t2), . . . , aij(tH)

)
are collected from each period

and the time series y = (y1, y2, . . . , yH)
t is formed, where the number of points is equal to number of

periods H.
Then, the lagged matrices are constructed where number of lagged periods is denoted by p.

Note that jth data point in the input matrix x j =
(
xt−1, j, xt−2, j, . . . , xt−p, j

)t
will be used to estimate yj,

j = 1, 2, . . . , nd, where nd is equal to H − p. The inputs and the outputs of the system are given as:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
xt−1,1 xt−2,1 · · · xt−p,1

xt−1,2 xt−2,2 · · · xt−p,2
...

...
. . .

...
xt−1,nd xt−2,nd · · · xt−p,nd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y1

y2
...

ynd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (38)

where xt−p,nd represents the value of variable t− p of the data point nd.
Let the number of past decision matrices are four, and the lagged periods are determined as

two. Suppose that decision makers are concerned with the past performance of the second alternative
with respect to the first attribute. The corresponding time series data, input and output matrices are
illustrated in Table 1.

Table 1. Illustration of the four-period example.

Period Past Decision Matrices
Corresponding

Time Series
Input Matrix Output Matrix

t1
A1 A2 A3

C1
[ · · · a12(t1) = 5 · · · ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y1 = 5
y2 = 3
y3 = 6
y4 = 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
X =

[
y1 y2
y2 y3

]
=

[
5 3
3 6

] Y =

[
y3
y4

]
=

[
6
8

]t2
A1 A2 A3

C1
[ · · · a12(t2) = 3 · · · ]

t3
A1 A2 A3

C1
[ · · · a12(t3) = 6 · · · ]

t4
A1 A2 A3

C1
[ · · · a12(t4) = 8 · · · ]

Note that because the lagged periods are two, number of data points is H − p = 4− 2 = 2.

3.3.2. Phase-II: Training of Fuzzy Functions Approach

Step 4: Determining parameters of the IT2F functions model: In this step, parameters of the fuzzy
c-means clustering algorithm were determined. The number of clusters c, fuzzification coefficient m,
lagged_periods, and tolerance_level for calculating possibility- and necessity-based constraints in IT2F
regression were defined.

Step 5: Performing fuzzy c-means clustering to input-output model: In this step, inputs and
outputs of the system were used to carry out fuzzy c-means clustering. Having the inputs of the system
in the form of lagged variables, the next step was to form the input–output matrix Z. The matrix
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Z = (X, Y) is composed of the input matrix X and output matrix Y. Then, elements of the Z matrix z j
were clustered by using the FCM algorithm. FCM was applied by using the following formulas:

vi =

nd∑
k=1
μm

ij z j

nd∑
j=1
μm

ij

, i = 1, 2, . . . , c, (39)

μi j =
1

c∑
h=1

( ‖vi−z j‖
‖vh−z j‖

) 2
m−1

, i = 1, 2, . . . , c; j = 1, 2, . . . , nd, (40)

where ‖.‖ represents the Euclidian distance.
Step 6: Generating augmented input matrices: The augmented input matrix is obtained by adding

memberships and their transformations into the original input matrix. Based on the cluster centers
found in the Step 5, membership values of the input space are calculated as:

μi j =
1

c∑
h=1

( ‖vi−x j‖
‖vh−x j‖

) 2
m−1

, i = 1, 2, . . . , c; j = 1, 2, . . . , nd, (41)

where x denotes the input matrix.
Membership values of each input data sample,μi j and their transformations are augmented to the

original input matrix for the ith cluster as:

φi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 μi,1 exp(μi,1) (μi,1)
p xt−1,1 · · · xt−p,1

1
...
1

μi,2
...
μi, j

exp(μi,2)
...

exp(μi, j)

(μi,2)
p

...
(μi, j)

p

xt−1,2
...

xt−1, j

· · ·
...
· · ·

xt−p,2
...

xt−p, j
...

...
...

...
...

. . .
...

1 μi,nd exp(μi,nd) (μi,nd)
p xt−1,nd · · · xt−p,nd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (42)

where j-th data point is represented by φi, j =
(
1,μi, j, exp(μi, j),μ2

i, j, xt−1, j, . . . , xt−p, j

)t
.

The schematic representation of the proposed IT2F functions is given in Figure 3.

φ φ φ

φ φ
φ φ
φ φ
φ φ

β

Figure 3. Proposed IT2F functions approach.
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Step 7: Solving quadratic programming model for each cluster: Fuzzy regression coefficients are
calculated for each cluster by solving a quadratic programming model:

min
b,f,g,p, q

J =
nd∑
j=1

(
yj − btφi, j

)2
+ (1− h)

nd∑
j=1

(
pt|φi, j|+ qt|φi, j|

)
+ ξ

(
ftf + gtg + ptp + qtq

)

Subject to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
btφi, j + (1− h)θ∗R(φi, j) ≥ yj + (1− h)ej
btφi, j − (1− h)θ∗L(φi, j) ≤ yj − (1− h)ej
btφi, j + (1− h)θ∗R(φi, j) ≤ yj + (1− h)ej
btφi, j − (1− h)θ∗L(φi, j) ≥ yj − (1− h)ej

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
f ≥ 0, g ≥ 0, p ≥ 0, q ≥ 0

, j = 1, . . . , nd
, (43)

where regression coefficients are IT2F numbers represented by ˜̃β = ((b, f + p, g + q), (b, f, g)),
Step 8: Collecting predictions of local fuzzy functions: Predicted output values are calculated as:

˜̃yi = φi ⊗ ˜̃βi, (44)

where ˜̃yi =
(

˜̃yi,1, ˜̃yi,2, . . . , ˜̃yi, j, . . . , ˜̃yi,nd

)t
, ˜̃βi is the regression coefficients of the ith local fuzzy function

and ⊗ denotes the fuzzy matrix multiplication.
Step 9: Aggregating local IT2F functions: Finally, outputs of the local fuzzy functions ˜̃yi are

weighted by the corresponding membership values and predicted IT2F output is calculated:

˜̃Y j =

∑c
i

˜̃yi, jμi, j∑c
i=1 μi, j

, j = 1, 2, . . . , nd, (45)

where ˜̃Y j is the predicted value of the jth data point.

3.3.3. Phase-III: Ranking of Alternatives

Step 10: Performing vocabulary matching: The resulting values of the IT2F functions were
inherently IT2F sets. Since experts often linguistically evaluate the objects in the decision making
applications and it is difficult to analytically interpret the obtained numerical values, there was a
need for transforming IT2F functions results into the linguistic terms. For that aim, similarity-based
vocabulary matching was implemented in this step.

Let V ∈ {V1, V2, . . . , VU} represents the vocabulary of the linguistic terms, i.e., VU denotes the
linguistic term very good, VU−1 denotes the term good, etc. The linguistic outputs of the IT2F functions
approach can be given as:

˜̃A
′
(tC) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
˜̃a′11(tC) ˜̃a′12(tC) · · · ˜̃a′1M(tC)
˜̃a′21(tC) ˜̃a′22(tC) · · · ˜̃a′2M(tC)

...
...

. . .
...

˜̃a′N1(tC) ˜̃a′N2(tC) · · · ˜̃a′NM(tC)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (46)

The ˜̃a′i j values are calculated as:

˜̃a′i j = argmax
l∈{1,2,...,U}

SM
(
˜̃a′i j, Vl

)
, (47)

where SM represents the Jaccard similarity measure given earlier, and Vl is the lth linguistic term in
the vocabulary.

Step 11: Modifying solutions if necessary: In this step, the results of IT2F functions in the form of
linguistic variables were presented to the decision makers. In other words, the current decision matrix
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was automatically generated based on the past data. The decision makers evaluated the results and
made necessary modifications if needed. The illustration of this process is given in Figure 4. Here,
the decision makers’ perceptions had a pivotal role. For example, decision makers might decide on the
fact that the performance of the first alternative with respect to the first and second attributes needs to
be modified. Then the decision matrix takes the form as given in Equation (48).

˜̃A
′′
(tC) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
˜̃a′′11(tC) ˜̃a′12(tC) · · · ˜̃a′1M(tC)
˜̃a′′21(tC) ˜̃a′22(tC) · · · ˜̃a′2M(tC)

...
...

. . .
...

˜̃a′N1(tC) ˜̃a′N2(tC) · · · ˜̃a′NM(tC)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (48)

where ˜̃a′′i j(tC) represents the subjective judgments of the decision makers and ˜̃a′i j(tC) denotes the IT2F
function result.

Figure 4. Interactive process of the proposed model.

Step 12: Generating time series weights: In this step, time series weights were generated.
A basic unit-interval monotonic (BUM) function was used to generate weights. Yager [55] defined the
BUM function as Q : [0, 1]→ [0, 1] , where the weights are considered as quantifiers underlying the
information fusion process.

• Q(0) = 0,
• Q(1) = 1,
• Q(x) ≥ Q(y), if x > y, where Q(x) is a monotonically non-decreasing function defined in the unit

interval [0, 1].

Based on the BUM function, the time series weights are generated as:

ξ(tk) = Q
(

k
p

)
−Q

(
k− 1

p

)
, k = 1, 2, . . . , p, (49)

where Q(x) = eαx−1
eα−1 , α > 0.

According to the BUM function, the more the period is closer to the current period, the higher the
weight of that period, which is a desired behavior for real-world applications.
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Step 13: Evaluating performance of alternatives at each period: Performance of each alternative is
calculated for different periods separately. In this step, variety of MADM methods can be employed to
obtain a performance indicator. For the sake of simplicity, well-known closeness coefficient measures
are used to evaluate performance of alternatives at each period. As the current decision matrix
comprises of IT2F evaluations, computational steps for the IT2FSs are given in this section in order
to avoid repetition. Note that the required computations for the past data are the same, except the
fact that numerical values are crisp. First, the decision matrices related to past periods are normalized
as given earlier in Equations (1) and (2). As the current decision matrix consists of IT2F evaluations,
normalization is conducted based on the Equations (50) and (51).

˜̃rij(tk) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝ aij1(tk)

max
j

{
aij3(tk)

} ,
aij2(tk)

max
j

{
aij3(tk)

} ,
aij3(tk)

max
j

{
aij3(tk)

} ; 1

⎞⎟⎟⎟⎟⎟⎠,⎛⎜⎜⎜⎜⎜⎝ aij1(tk)

max
j

{
aij3(tk)

} ,
aij2(tk)

max
j

{
aij3(tk)

} ,
aij3(tk)

max
j

{
aij3(tk)

} ; 1

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, if i ∈ Ωb, (50)

˜̃rij(tk) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝min
j

{
aij1(tk)

}
aij3(tk)

,
min

j

{
aij1(tk)

}
aij2(tk)

,
min

j

{
aij1(tk)

}
aij1(tk)

; 1

⎞⎟⎟⎟⎟⎟⎠,⎛⎜⎜⎜⎜⎜⎝min
j

{
aij1(tk)

}
aij3(tk)

,
min

j

{
aij1(tk)

}
aij2(tk)

,
min

j

{
aij1(tk)

}
aij1(tk)

; 1

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, if i ∈ Ωc. (51)

Then, the weighted normalized decision matrices are calculated as:

˜̃νi j(tk) = ˜̃rij(tk) ×wi, i = 1, 2, . . . , N, j = 1, 2, . . . , M, k = 1, 2, . . . , H. (52)

When the weighted normalized decision matrices are constructed, the next step is to calculate the
positive ideal solutions (PIS) and negative ideal solutions (NIS) as:

PIS =
(
ν+1 , ν+2 , . . . , ν+N

)
=

{(
max j

{
Rank

(
˜̃νi j(tk)

)})∣∣∣∣i ∈ Ωb,
(
min j

{
Rank

(
˜̃νi j(tk)

)})∣∣∣∣i ∈ Ωc

}
, k = 1, 2, . . . , H

(53)

NIS =
(
ν−1 , ν−2 , . . . , ν−N

)
=

{(
min j

{
Rank

(
˜̃νi j(tk)

)})∣∣∣∣i ∈ Ωb,
(
max j

{
Rank

(
˜̃νi j(tk)

)})∣∣∣∣i ∈ Ωc

}
, k = 1, 2, . . . , H

(54)

Then, separation measures are calculated by using the Euclidean distance as:

D+
j (tk) =

√√√ N∑
i=1

(
Rank

(
˜̃νi j(tk)

)
− ν+i (tk)

)2
, (55)

D−j (tk) =

√√√ N∑
i=1

(
Rank

(
˜̃νi j(tk)

)
− ν−i (tk)

)2
. (56)

Finally, closeness coefficients are calculated as:

CCj(tk) =
D−j (tk)(

D+
j (tk) + D−j (tk)

) , (57)

where CCj(tk) represents the closeness coefficient of the jth alternative at period tk.
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Step 14: Aggregating past and current performance of alternatives: Finally, a dynamic weighted
averaging (DWA) operator was utilized to obtain final ranking values of alternatives.

DWAξ(t)
(
CCj(t1), CCj(t2), . . . , CCj(tH)

)
=

H∑
k=1

ξ(tk)CCj(tk). (58)

Step 15: Rank the alternatives: When the past and current performance scores of alternatives were
aggregated, alternatives were ranked based on their ranking values. Higher ranking value implies
superiority of an alternative.

4. Case Study

One of the most important assets of a company is undoubtedly the human resources (HRs).
Regardless of how the other resources are managed in an organization, inadequacies in the management
of HRs result in poor performance of many operations. Therefore, firms have steadily recognized the
importance of HRs and have been taking necessary actions to increase overall performance.

Personnel promotion is a significant task in HR management that aims to select the right person for
the right job. Despite its similarity with the personnel selection problem, personnel promotion problem
deals with selecting appropriate personnel for higher positions within the firms’ current personnel
rather than evaluating the applicants from outside the firm. Personnel promotion problem can be
defined as selecting the most qualified employee among the available candidates for a vacant position
by considering their performance during their employment at the firm. Hence, the personnel promotion
problem is an inherently dynamic MADM problem as the temporal performance of employees are taken
into consideration with respect to predetermined attributes. Unfortunately, many enterprises are not
aware of the methodologies and tools to utilize historical records in their HR practices. As evaluating
personnel with respect to their performance on a diverse set of criteria during their employment is
cognitively demanding, firms should be supported with relevant data-driven tools.

In this study, a real-life personnel promotion problem is considered and the proposed model is
implemented. The company, which was contacted within the scope of this study, was a medium sized
firm involved in automobile subsidiary industry. Due to the firm policy, it was named as company
A. Company A had hired three students as a part-time employee for their continuous improvement
project. Upon graduation, at most two students with qualified skills will be offered to full-time job
so that the supervisors have been evaluating students’ performance in a monthly basis. Therefore,
performance data was used to demonstrate the procedural steps of the proposed model.

4.1. Structering Personnel Promotion Problem

Step 1: In this step, the experts were identified based on their professional backgrounds.
The heterogeneity of the experts was assured and three experts were identified. The experts were the
directors of HR and production and quality control departments. After identification of the experts,
participants were elucidated about the scope and details of the study. The evaluation criteria determined
by the experts were employed within the scope of this study. The evaluation criteria consisted of
content-specific knowledge (C1), communication skills (C2), job involvement (C3), organizational
commitment (C4), and problem solving skills (C5). The decision hierarchy is given in Figure 5.

Step 2: Historical performance data of the employees with respect to predefined attributes were
obtained. The company had a performance evaluation system that assigned performance scores
between 0–10, 0 and 10 represented the worst and the best values, respectively. In the scope of this
study, performance values of the past 1.5 years (18 months) were directly used. The historical data
of the performance scores of the employee 1 with respect to decision attributes is given in Table 2.
Similarly, the historical records for the employee 2 and employee 3 were obtained.

Step 3: Historical data was organized in tables, and missing values were sought for. No missing
values were identified within the 18-month data period. On the other hand, it was decided not to
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implement normalization techniques as the proposed model could handle numeric values in the range
0–10. The historical decision matrices were also transformed into time series vectors so that the IT2F
functions method could be implemented.

Afterwards, the data set was divided into training and test sets. The training set consisted of the
first 80% part of the historical data and the rest of the data points were allocated to the test set.

 
Figure 5. Decision hierarchy.

Table 2. Historical data of employee 1.

Period C1 C2 C3 C4 C5

1 6 7 3 3 7
2 6 7 2 2 6
3 7 8 3 3 5
4 6 9 4 5 5
5 6 8 3 6 5
6 6 9 4 8 4
7 7 8 4 8 4
8 6 7 5 7 4
9 6 6 6 8 5
10 6 5 6 8 5
11 7 4 7 9 6
12 6 3 6 10 6
13 5 4 6 10 6
14 5 4 8 8 6
15 4 4 6 7 8
16 4 3 6 7 7
17 4 3 6 7 8
18 4 2 6 9 8

4.2. Estimating the Current Decision Matrix

Having obtained the historical data, the next step was to employ the proposed IT2F functions
approach to estimate the current decision matrix based on past data.

Step 4: In this step, parameters of the model were identified. The model parameters were
the number of lagged_periods, tolerance_levels, number of cluster, and the degree of fuzzification.
Instead of using cluster validity indices in order to select the optimum c and m parameters, the model
parameters were selected by using a grid search for each parameter based on Root Mean Square
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Error (RMSE) performance metric. The tolerance_levels were set to 30% for being able to find feasible
solutions for every combination of parameters when solving quadratic programming models.

The identified parameters are given in Table 3.

Table 3. Parameters of the model.

Alternative Criteria
Parameters

c m Lagged_Periods

1

1 2 1.6 5
2 5 1.6 5
3 4 2.1 4
4 5 2.1 5
5 4 1.6 4

2

1 4 1.6 5
2 5 2.1 5
3 2 1.1 5
4 5 2.1 5
5 5 1.6 5

3

1 2 2.1 5
2 2 1.6 5
3 3 1.6 5
4 5 2.1 5
5 5 1.6 5

Step 5: In this step, the input and output matrices were combined and the FCM clustering
algorithm was performed based on the parameters identified in the previous step. By utilizing FCM
clustering algorithm, cluster centers were identified. These cluster centers had a key role in the
Turksen’s fuzzy system model in which the clusters were used as a fuzzification engine of the classical
FRB systems.

Step 6: Having identified cluster centers, the next step was to find membership grades of the
input data and to form the augmented input matrices by integrating membership transformations
as explanatory variables. In this study, integration of membership degrees, exponentials of the
memberships, and the square of the memberships were found to exhibit good performance so that
these transformations were used to augment the input space.

Step 7: When the input and output matrices were formed by means of membership grades,
quadratic programming model was solved in order to obtain fuzzy regression coefficients. The models
were written in MATLAB 9.5.0 and quadratic programming models were solved via quadratic
programming solver function cplexqp of the Cplex Optimization Studio 12.8. As the regression
coefficients were defined as the distance to the center (b) earlier, their corresponding IT2F number
representations are given in Tables 4 and 5 for the case of first alternative and first criteria.

Similarly, the same computations were performed for all of the alternative and criteria pairs. Note
that number of clusters was based on the Table 3.

Step 8: When all of the IT2F regression coefficients were calculated, the output was predicted by
using the obtained regression coefficients for each cluster. For the time series data of the alternative 1
and criteria 1, 2 local fuzzy functions were calculated. Since there were five clusters in the time series
data of the alternative 1 and criteria 2, the total of five local fuzzy function results were obtained.

Step 9: In this step, the local fuzzy functions were aggregated and the estimated outputs were
calculated. Performance of the proposed IT2F functions approach was compared with the IT2F
regression model by means of RMSE and Mean Absolute Percentage Error (MAPE) metrics. Table 6
shows the performance comparison of the proposed IT2F functions approach.
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Table 4. Cluster 1 results for the 1st alternative and 1st criteria.

Variable
IT2F Regression Coefficients

IT2F Coefficients
b f g p q

1 10.572 8.65 × 10−9 0.031 9.30 × 10−11 9.13 × 10−11 ((10.572, 10.572, 10.603;1),
(10.572, 10.572, 10.603;1))

μ −8.524 3.39 × 10−9 0.070 6.45 × 10−11 6.44 × 10−11 ((−8.524, −8.524, −8.454;1),
(−8.524, −8.524, −8.454;1))

exp(μ) −4.550 2.04 × 10−9 0.016 2.79 × 10−11 2.78 × 10−11 ((−4.55, −4.55, −4.534;1),
(−4.55, −4.55, −4.534;1))

μ2 13.466 7.27 × 10−9 0.085 7.34 × 10−11 7.34 × 10−11 ((13.466, 13.466, 13.551;1),
(13.466, 13.466, 13.551;1))

xt−1 0.017 0.146043 0.010 2.67 × 10−11 2.59 × 10−11 ((−0.129, 0.017, 0.027;1),
(−0.129, 0.017, 0.027;1))

xt−2 −0.613 1.24 × 10−9 0.005 0.1 0.185714 ((−0.713, −0.613, −0.423;1),
(−0.613, −0.613, −0.609;1))

xt−3 −0.211 1.44 × 10−9 0.004 1.67 × 10−11 1.63 × 10−11 ((−0.211, −0.211, −0.207;1),
(−0.211, −0.211, −0.207;1))

xt−4 0.822 0.078111 0.126 1.48 × 10−11 1.42 × 10−11 ((0.744, 0.822, 0.948;1),
(0.744, 0.822, 0.948;1))

xt−5 0.038 1.44 × 10−9 0.006 1.36 × 10−11 1.34 × 10−11 ((0.038, 0.038, 0.044;1),
(0.038, 0.038, 0.044;1))

Table 5. Cluster-2 results for the 1st alternative and 1st criteria.

Variable
IT2F Regression Coefficients

IT2F Coefficients
b f g p q

1 −10.907 1.28 1.018 4.25 × 10−9 4.59 × 10−9 ((−12.184, −10.907, −9.889;1),
(−12.184, −10.907, −9.889;1))

μ −18.964 3.03 × 10−9 0.000 1.44 × 10−8 1.44 × 10−8 ((−18.964, −18.964, −18.964;1),
(−18.964, −18.964, −18.964;1))

exp(μ) 15.077 1.79 × 10−9 0.000 3.39 × 10−9 3.61 × 10−9 ((15.077, 15.077, 15.077;1),
(15.077, 15.077, 15.077;1))

μ2 −3.447 3.12 × 10−9 0.000 7.20 × 10−1 1.16 ((−4.167, −3.447, −2.289;1),
(−3.447, −3.447, −3.447;1))

xt−1 −0.107 1.50 × 10−9 0.000 8.08 × 10−10 8.56 × 10−10 ((−0.107, −0.107, −0.107;1),
(−0.107, −0.107, −0.107;1))

xt−2 −0.725 9.06 × 10−10 0.000 3.64 × 10−7 0.024974 ((−0.725, −0.725, −0.7;1),
(−0.725, −0.725, −0.725;1))

xt−3 −0.262 3.18 × 10−9 0.000 6.04 × 10−10 6.37 × 10−10 ((−0.262, −0.262, −0.262;1),
(−0.262, −0.262, −0.262;1))

xt−4 0.735 3.18 × 10−9 0.000 5.26 × 10−10 5.27 × 10−10 ((0.735, 0.735, 0.735;1),
(0.735, 0.735, 0.735;1))

xt−5 0.150 1.16 × 10−5 0.001 5.74 × 10−10 6.10 × 10−10 ((0.15, 0.15, 0.151;1),
(0.15, 0.15, 0.151;1))

Despite its practicality, IT2F regression, which does not make use of FCM clustering and augmented
input matrix as in the case of the proposed IT2F functions, cannot capture the trends and patterns in
the historical dataset to the desired extent. Hence, both of the performance metrics were quite high.
On the other hand, the proposed IT2F functions approach had successfully captured the patterns in the
data thanks to its membership processing mechanisms. Figure 6 shows the estimated performance
scores of the alternative 1 with respect to five criteria by means of the IT2F functions approach.
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Table 6. Performance comparison of the proposed method and IT2F regression.

Alternative Criteria
Proposed IT2F Functions IT2F Regression

RMSE MAPE RMSE MAPE

1

1 0.2307 2.3883 0.6974 11.4445
2 0.1948 3.3149 0.7844 15.1122
3 0.2519 4.0679 0.9828 14.0217
4 0.375 3.4459 0.6952 7.2826
5 0.3606 5.6463 0.8976 16.7376

2

1 0.2894 6.0687 0.4449 13.6456
2 0.2392 2.4306 0.6793 7.5079
3 0.3733 4.2811 0.9343 11.083
4 0.4283 5.1677 0.5934 7.8132
5 0.3035 4.0027 0.5657 7.9788

3

1 0.1457 1.722 0.7285 8.0463
2 0.1686 3.9912 0.5833 17.4631
3 0.2417 2.6302 0.6196 6.6876
4 0.2142 2.135 0.3221 3.4379
5 0.2205 2.7494 0.5567 7.9517

Note that the produced results were IT2F numbers. Another critical point is about whether the
produced results satisfy the imposed constraints by possibility and necessity relationships. Figure 7
digs into the first data points of the predictions, which are illustrated in Figure 6. Note that the lower
and upper tolerances covered the lower membership function, which was the property of the necessity
constraints in the mathematical model. Furthermore, the lower and upper tolerances were covered by
the upper membership function, which was due to the possibility constraints. It can be seen that both
of the lower and upper tolerances lied within the FOU of the IT2F outputs. The estimated outputs
were also inside the FOU and the centers of the IT2F outputs were quite close to the target values,
which indicates the predictive power of the IT2F functions.

Based on the trained IT2F functions model, the current decision matrix was predicted. The resulting
decision matrix is shown in Table 7.

As it is difficult for experts to interpret the produced results, they were transformed into linguistic
terms in the next section.

Table 7. Resulting decision matrix of the IT2F functions.

Criteria
Alternatives

A1 A2 A3

C1
((1.694, 2.99, 4.515;1), ((2.163, 3.73, 5.516;1), ((5.223, 7.902, 11.27;1),
(2.064, 2.99, 3.822;1)) (2.864, 3.73, 4.204;1)) (5.601, 7.902, 10.396;1))

C2
((1.354, 2.255, 3.33;1), ((4.992, 8.419, 12.522;1), ((2.662, 3.919, 5.449;1),
(1.891, 2.255, 2.623;1)) (5.964, 8.419, 10.802;1)) (3.204, 3.919, 4.596;1))

C3
((2.986, 5.358, 8.46;1), ((2.194, 4.143, 5.991;1), ((6.016, 9.229, 12.788;1),
(4.13, 5.358, 6.362;1)) (3.144, 4.143, 5.238;1)) (6.68, 9.229, 11.589;1))

C4
((7.187, 10.353, 14.08;1), ((0.469, 1.617, 3.242;1), ((5.678, 8.415, 11.417;1),
(8.084, 10.353, 12.123;1)) (0.933, 1.617, 2.178;1)) (6.071, 8.415, 10.508;1))

C5
((2.409, 5.252, 9.04;1), ((4.427, 6.446, 9.052;1), ((3.715, 6.246, 8.94;1),
(3.372, 5.252, 7.208;1)) (5.168, 6.446, 7.487;1)) (4.566, 6.246, 7.472;1))

160



Mathematics 2019, 7, 584

 
(a) (b) 

 
(c) (d) 

 
(e) 

Figure 6. Estimations for the 1st alternative. (a) 1st criterion; (b) 2nd criterion; (c) 3rd criterion; (d) 4th
criterion and (e) 5th criterion.

 
(a) (b) 

Figure 7. Cont.
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(e) 

Figure 7. Details of the predictions for the 1st alternative. (a) 6th data point w.r.t. 1st criterion; (b) 6th
data point w.r.t. 2nd criterion; (c) 5th data point w.r.t. 3rd criterion; (d) 6th data point w.r.t. 4th criterion
and (e) 5th data point w.r.t. 5th criterion.

4.3. Ranking of Employees

Step 10: In this step, a similarity-based vocabulary matching was performed. First, the linguistic
terms and their corresponding IT2F number were determined. Table 8 shows the linguistic terms of
the vocabulary.

Based on the linguistic terms given in Table 8, similarity-based vocabulary matching was carried
out. As a result, the linguistic decision matrix is given in Table 9.

Step 11: When the linguistic decision matrix was formed, the results were presented to the decision
makers. Then, the decision makers were asked to change the performance values of the alternatives
based on their perceptions. The decision makers might accept the decision matrix as it is or alter the
whole performance values depending on their judgments. In this study, decision makers decided
to change the performance values of the second and third alternatives with respect to first, fourth,
and fifth criteria. The modified decision matrix is represented in Table 10. The modified linguistic
terms are highlighted by gray shading.

Table 8. Vocabulary of linguistic terms.

Linguistic Terms
IT2F Number

Symbol Explanation

VL Very Low ((0, 0, 1;1), (0, 0, 0.5;1))
L Low ((0, 1, 3;1), (0.5, 1, 2;1))

ML Medium Low ((1, 3, 5;1), (2, 3, 4;1))
M Medium ((3, 5, 7;1), (4, 5, 6;1))

MH Medium High ((5, 7, 9;1), (6, 7, 8;1))
H High ((7, 9, 10;1), (8, 9, 9.5;1))

VH Very High ((9, 10, 10;1), (9.5, 10, 10;1))
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Table 9. Linguistic decision matrix.

Criteria
Alternatives

A1 A2 A3

C1 ML ML MH
C2 ML H ML
C3 M M H
C4 H L H
C5 M MH MH

Table 10. Modified decision matrix.

Criteria
Alternatives

A1 A2 A3

C1 ML MH MH
C2 ML H ML
C3 M M H
C4 H L MH
C5 M H MH

The decision makers accepted the linguistic terms produced by the IT2F functions model for
the rest of the evaluations. By this way, required expert judgments were decreased by 80%, which
dramatically increased the speed of decision making.

Step 12: In this step, time series weights were generated based on the BUM function. The only
parameter required by BUM function was α. Figure 8 illustrates the time series weights for different
α values. In this study, α was selected as 0.5. Furthermore, results for the different α values were
examined as well.

Figure 8. Time series weights.

Step 13: In this step, performance of each employee was evaluated at each period. Here, past
and current decision matrices were evaluated one-by-one separately. As mentioned earlier, closeness
coefficient is very practical to use so that for each period distance to positive and negative ideal
solutions were calculated. The weights of criteria were assumed to be fixed throughout the periods
and given as 0.10, 0.10, 0.15, 0.25, and 0.35, respectively. The separation measures are given in Tables 11
and 12.
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Table 11. Distances between the performance of employees and the positive ideal solution.

Periods
Distance to Positive Ideal Solution

Employee 1 Employee 2 Employee 3

t1 0.1458 0.1101 0.1111
t2 0.2259 0.1569 0.1084
t3 0.2155 0.1546 0.1161
t4 0.1604 0.1203 0.0850
t5 0.1730 0.1313 0.0938
t6 0.1700 0.0919 0.0833
t7 0.1700 0.0977 0.0750
t8 0.1714 0.0709 0.0643
t9 0.1256 0.0872 0.0750
t10 0.1303 0.0874 0.0750
t11 0.0960 0.0797 0.1086
t12 0.1146 0.0901 0.1397
t13 0.1204 0.0961 0.1393
t14 0.1004 0.0914 0.1050
t15 0.1226 0.1401 0.0797
t16 0.1264 0.1330 0.0972
t17 0.1422 0.1873 0.1001
t18 0.1404 0.2335 0.0981
tC 0.1725 0.1955 0.1143

Table 12. Distances between the performance of employees and the negative ideal solution.

Periods
Distance to Negative Ideal Solution

Employee 1 Employee 2 Employee 3

t1 0.1409 0.1556 0.1541
t2 0.1169 0.1524 0.2462
t3 0.1161 0.1334 0.2155
t4 0.0898 0.0698 0.1613
t5 0.0995 0.0805 0.1762
t6 0.1011 0.1636 0.1836
t7 0.0983 0.1278 0.1857
t8 0.0744 0.1697 0.1807
t9 0.0684 0.1259 0.1385
t10 0.0563 0.0950 0.1336
t11 0.0811 0.1102 0.0717
t12 0.0997 0.1397 0.0750
t13 0.0817 0.1311 0.0750
t14 0.0680 0.1050 0.0914
t15 0.0927 0.0850 0.1247
t16 0.0810 0.1000 0.1244
t17 0.1218 0.1050 0.1719
t18 0.2143 0.1173 0.1966
tC 0.1873 0.1631 0.1751

Based on the distances from positive and negative ideal solutions, closeness coefficients were
calculated as given in Table 13.

Step 14: In this step, closeness coefficients pertaining to the past and current performance scores
of employees were aggregated by taking into account the time series weights. As there were numerous
aggregation operators, the most practical one, namely the DWA operator, was used in this study.
As a result of the DWA operator, rankings of employees were obtained. Moreover, for the purpose
of comparison, different model components were activated and the results were examined. Table 14
summarizes the computational setting with different model components.
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The proposed model integrates all of the model components. Different from the proposed model,
the predicted decision matrix was not modified in model 1. In model 2, neither the linguistic decision
matrix was generated nor the decision makers were allowed to change the decision matrix. Finally,
model 3 made use of the IT2F functions, vocabulary matching, and modified preferences, but only the
decision matrix of the current period was considered for ranking of alternatives, which corresponded
to the conventional MADM approach.

Step 15: The employees were ranked and the results were interpreted in this step. As can be seen
from the Table 15, employee 3 dominated the other candidates regardless of the model configurations.
However, the performance of employee 1 needed more attention here as the ranking order differed by
the static or dynamic MADM aspects. The performance of employee 1 has been visualized in Figure 9.

It was observed that the performance of employee 2 was better than employee 1 for all of the
dynamic MADM models. However, considering only the current decision matrix in model 3, static
MADM ranked employee 1 as second and employee 2 as third.

Although the performance of the employee 1 was higher than the employee 2 in the current period,
considering historical performance values changed the overall rankings. Therefore, the present study
provided policy makers with a broader view regarding performance of employees by considering
different modeling aspects.

Table 13. Closeness coefficients of employees.

Periods
Closeness Coefficients

Employee 1 Employee 2 Employee 3

t1 0.4915 0.5856 0.5811
t2 0.3411 0.4928 0.6942
t3 0.3501 0.4633 0.6499
t4 0.3588 0.3671 0.6549
t5 0.3652 0.3801 0.6527
t6 0.3729 0.6405 0.6878
t7 0.3664 0.5666 0.7123
t8 0.3028 0.7053 0.7376
t9 0.3525 0.5907 0.6487
t10 0.3016 0.5208 0.6404
t11 0.4580 0.5802 0.3978
t12 0.4652 0.6078 0.3493
t13 0.4043 0.5769 0.3500
t14 0.4039 0.5347 0.4653
t15 0.4304 0.3776 0.6099
t16 0.3906 0.4291 0.5614
t17 0.4613 0.3593 0.6321
t18 0.6041 0.3345 0.6671
tC 0.5206 0.4547 0.6051

Table 14. Different model configurations.

Model Components
Models

Proposed Model Model 1 Model 2 Model 3

IT2F Functions Yes Yes Yes Yes
Vocabulary Matching Yes Yes No Yes
Modified preferences

(interactive) Yes No No Yes

DWA Operator Yes Yes Yes No
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Table 15. Overall results.

Model

Overall Assessment

Employee 1 Employee 2 Employee 3

CC Rank CC Rank CC Rank

Proposed Model 0.4138 3 0.4984 2 0.5895 1
Model 1 0.4176 3 0.4926 2 0.5967 1
Model 2 0.4185 3 0.4905 2 0.5951 1
Model 3 0.5206 2 0.4547 3 0.6051 1

Figure 9. Changes in the ranking of employee 1.

5. Discussion

According to proposed dynamic MADM model, past performance values of employees were
used to form current decision matrix. Hence, the current decision matrix was automatically generated
based on the proposed IT2F functions model and the decision makers modified three performance
scores out of 15. Therefore, preference elicitation procedures were dramatically improved.

The results of the case study had also shown that employee 3 had ranked first according to all
of the dynamic MADM models. Although employee 1 had better performance than employee 2
in terms of current period performance, consideration of the past data made employee 1 the worst
candidate for the full-time position among other employees. Although employee 2 had the worst
performance without considering the past performance, with the dynamic character of the proposed
model, employee 2 had become the second ranked alternative. As a result, taking into account the past
and current decision matrices together provides more information to the decision makers and leads to
more accurate rankings.
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6. Conclusions

In this study, a new interactive dynamic MADM model, which combines IT2F regression and
fuzzy functions approaches, was proposed. The proposed model exhibited desirable properties that
helped overcome the drawbacks of the traditional dynamic MADM approaches. The proposed model
was realized in a real-life personnel promotion problem. The proposed IT2F functions approach had
improved the performance of IT2F regression by successfully capturing the trends and patterns in the
historical records.

The advantage of the proposed model lies in its data-driven character, that is to say, the past data is
used to guide preference elicitation processes. In classical MADM approaches, the decision makers are
asked to fill out the entire decision matrix, which can be time consuming and cognitively demanding.
On the other hand, the proposed model generates an IT2F decision matrix based on past data and
allows decision makers to alter automatically generated decision matrix by using linguistic terms.
Fuzziness in both the linguistic expressions and the past data were modeled by the proposed approach.

The main limitation of the presented study was that the results produced by the proposed model
were highly dependent on the data obtained from the case company. Accordingly, results were difficult
to be generalized. Secondly, prediction performance highly depends on available data. Nevertheless,
the presented study can be improved in terms of many aspects. Hyper-parameter optimization can
be used to tune the parameters of the model automatically. Different strategies can also be imposed
to generate time series weights, and results can be compared. Last but not least, different MADM
approaches can be used to rank the alternatives. In future studies, these considerations will be at the
top of our agenda.
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Abstract: Fischer diagonal condition plays an important role in convergence space since it
precisely ensures a convergence space to be a topological space. Generally, Fischer diagonal
condition can be represented equivalently both by Kowalsky compression operator and Gähler
compression operator. �-convergence spaces are fundamental fuzzy extensions of convergence
spaces. Quite recently, by extending Gähler compression operator to fuzzy case, Fang and Yue
proposed a fuzzy counterpart of Fischer diagonal condition, and proved that �-convergence
space with their Fischer diagonal condition just characterizes strong L-topology—a type of
fuzzy topology. In this paper, by extending the Kowalsky compression operator, we present a
fuzzy counterpart of Fischer diagonal condition, and verify that a �-convergence space with
our Fischer diagonal condition precisely characterizes topological generated L-topology—a
type of fuzzy topology. Hence, although the crisp Fischer diagonal conditions based on the
Kowalsky compression operator and the on Gähler compression operator are equivalent, their
fuzzy counterparts are not equivalent since they describe different types of fuzzy topologies.
This indicates that the fuzzy topology (convergence) is more complex and varied than the crisp
topology (convergence).

Keywords: fuzzy topology; fuzzy convergence; �-convergence; diagonal condition

1. Introduction

The notion of convergence space is investigated by generalizing the convergence in
topological space [1]. For a set X, let P(X) (respectively, F(X)) denote the power set (respectively,
filters set) on X. A convergence space is defined by a pair (X, c), where c ⊆ F(X)× X fulfills:

(C1) For every x ∈ X, (ẋ, x) ∈ c, ẋ = {A ∈ P(X)|x ∈ A}.
(C2) For all F, G ∈ F(X), F ⊆ G, (F, x) ∈ c =⇒ (G, x) ∈ c.

If (F, x) ∈ c, we also denote F c−→ x, and say that F converges to x.
A convergence space (X, c) is called pretopological if it satisfies either of the following three

equivalent conditions:

(P1) For {Ft}t∈T ⊆ F(X) and x ∈ X, ∀t ∈ T, Ft
c−→ x =⇒ ⋂

t∈T
Ft

c−→ x.

(P2) For x ∈ X, Uc(x) =
⋂{F ∈ F(X)|F c−→ x} converges to x. Generally, Uc = {Uc(x)}x∈X

is called the neighborhood system associated with c.
(P3) For x ∈ X and F ∈ F(X), F c−→ x ⇔ F ⊇ Uc(x).

A pretopological convergence space is called topological if it fulfills the next condition:
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(U) For any x ∈ X, if A ∈ Uc(x) then there exists a B ∈ Uc(x) such that A ∈ Uc(y) for any
y ∈ B.

Topological convergence spaces can also be characterized by Kowalsky diagonal condition
and Fischer diagonal condition [1,2].

Let T be any set and Φ : T −→ F(X) be a mapping, called a choice mapping of filters. For
F ∈ F(T), let Φ⇒(F) denote the image of F under the mapping Φ, i.e., the filter on F(X) generated
by {Φ(A)|A ∈ F} as a filter base. Then, the Kowalsky compression operator on Φ⇒(F) ∈ F(F(X)) is
defined as

KΦF ∈ F(X) :=
⋃

A∈F

⋂
y∈A

Φ(y).

There is an equivalent statement for KΦF proposed by Gähler [3] (please also see the Remark
in Jäger [4]):

A ∈ KΦF ⇐⇒ {t ∈ T|A ∈ Φ(t)} ∈ F,

which is here called Gähler compression operator to distinguish the two descriptions.
For a convergence space (X, c), the Fischer diagonal condition is given as below:

(FD) Let T be any set, ψ : T −→ X and Φ : T −→ F(X) with Φ(t) c−→ ψ(t) for every t ∈ T.
For any F ∈ F(X), ψ⇒(F) c−→ x =⇒ KΦF c−→ x.

Taking T = X and ψ = idX in (FD), we give the Kowalsky diagonal condition (KD).
By using the Kowalsky compression operator, the condition (U) can be restated as:

(U) For any x ∈ X, Uc(x) ⊆ KUcUc(x), where Uc : X −→ F(X) is the selection mapping of
filters determined by neighborhood system.

It is verified that a pretopological convergence space is topological iff it fulfills (KD), and a
convergence space is topological iff it fulfills (FD).

It is known that a topological space (X, δ) corresponds uniquely to a topological convergence
space (X, c) by taking that for each x ∈ X,

Uc(x) = Uδ(x) := {A ⊆ X|∃B ∈ δ s.t. x ∈ B ⊆ A}.

Then, we obtain a bijection between topological convergence spaces and topological spaces.
In this case, we say that topological convergence spaces characterize topological spaces, or, in
other words, that it establishes the convergence theory associated with topological spaces.

In (FD), change the statement

ψ⇒(F) c−→ x =⇒ KΦF c−→ x as KΦF c−→ x =⇒ ψ⇒(F) c−→ x,

then the resulted condition is denoted as (DFD), called the dual Fischer diagonal condition.
Interestingly, the condition (DFD) precisely characterizes the regularity of convergence space [1,2].

To sum up, both Fischer diagonal condition (FD) and its dual condition (DFD) are based on
Kowalsky (or equivalent, Gähler) compression operator, and (FD) describes topologicalness while
(DFD) characterizes regularity of convergence spaces.

Fuzzy set theory, proposed by Zadeh [5], is a fundamental mathematical tool to deal with
uncertain information. Fuzzy set theory has been widely used in many regards such as medical
diagnosis, data mining, decision-making, machine learning and so on [6–9]. In addition, that fuzzy
set combines traditional mathematics produces many new mathematical branches such as fuzzy
algebra, fuzzy topology, fuzzy order, fuzzy logic, etc. In this paper, we focus on the convergence
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theory associated with lattice-valued topology (i.e., fuzzy topology with the membership values
in a complete lattice L).

Lattice-valued convergence spaces are fuzzy extensions of convergence spaces. Compared
with the classical convergence spaces, the lattice-value convergence spaces are more complex and
varied. L-filters and �-filter are basic tools to study lattice-valued convergence spaces. Based on
L-filters, Jäger [10], Flores [11], Fang [12] and Li [13] defined types of L-convergence spaces. Based
on �-filters, Fang and Yue [14] introduced �-convergence spaces. Nowadays, these spaces have
been widely discussed and developed [4,15–42].

Many interesting lattice-valued versions of Fischer diagonal condition and dual Fischer
diagonal condition were proposed to study the topologicalnesses and regularities of many kinds
of lattice-valued convergence spaces. Precisely,

Under the background of L-filter:

(1) The Gähler compression operator was presented by Jäger [4]. Then, some types of
lattice-valued Fischer diagonal conditions were proposed to discuss the topologicalnesses
of different L-convergence spaces [13,18,28]. Particularly, it was proved in [28] that
stratified L-convergence space with the considered Fischer diagonal condition precisely
characterizes stratified L-topological space. Meanwhile, some lattice-valued dual Fischer
diagonal conditions were introduced to study the regularities of different L-convergence
spaces [19,27,31].

(2) The Kowalsky compression operator was presented by Flores [15]. Then, he introduced a
lattice-valued Fischer diagonal condition and proved that stratified L-convergence space
with his diagonal condition can characterize a tower of stratified L-topological spaces. Later,
Richardson and his co-author used the dual condition of Flores’s diagonal condition to
describe the regularity of stratified L-convergence spaces [15,16].

Under the background of �-filter:

(1) The Gähler compression operator was presented by Fang and Yue in �-convergence space
[14]. Then, they introduced a lattice-valued Fischer diagonal condition and proved that
condition can characterize strong L-topological spaces. They also proposed a lattice-valued
dual Fischer diagonal to describe a regularity of �-convergence spaces. Quite recently, the
author extended Fang and Yue’s diagonal conditions and used them to study the relative
topologicalness and the relative regularity in �-convergence spaces [22,26].

(2) The Kowalsky compression operator was presented by the author in �-convergence space
[30]. Then, we proposed a lattice-valued version of dual Fischer diagonal condition to
discuss the regularity of �-convergence spaces. In preparing the paper [30], we also tried
to consider a lattice-valued version of Fischer diagonal condition such that �-convergence
spaces with the diagonal condition can characterize a kind of lattice-valued topological
spaces. However, we failed to do that.

In this paper, we resolve the above mentioned question. Precisely, we present a lattice-valued
Fischer diagonal condition based on Kowalsky compression operator and prove that there is a
bijection between �-convergence spaces with our diagonal condition and topological generated
L-topological spaces. Thus, our Fischer diagonal condition characterizes precisely topological
generated L-topological spaces. Therefore, we establish the convergence theory associated with
topological generated L-topological spaces. This is the main contribution of the paper.

This paper is organized as follows. In Section 2, we review some notions and notations
as preliminary. In Section 3, we give a lattice-valued Fischer diagonal condition and use it
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to describe a subclass of �-convergence spaces, called topological generated �-convergence
spaces. In Section 4, we establish the relationships between our diagonal condition and Fang
and Yue’s diagonal condition. Then, we further verify that there is a one-to-one correspondence
between topological generated �-convergence spaces and topological generated L-topological
spaces. Hence, we establish the convergence theory associated with the topological generated
L-topological spaces.

2. Preliminaries

In this section, we recall some notions and conclusions about L-fuzzy sets, �-convergence
spaces and L-topological spaces for later use.

By an integral, commutative quantale we mean a pair L = (L, ∗) such that:

(i) (L,≤) is a complete lattice, and its top (respectively, bottom) element is denoted as �
(respectively, ⊥).

(ii) ∗ is a commutative semigroup operation on L satisfying

∀α ∈ L, ∀{βi}i∈I ⊆ L, α ∗
∨
i∈I

βi =
∨
i∈I

(α ∗ βi).

(iii) For every α ∈ L,� ∗ α = α.

For any α, β ∈ L, we define

α → β =
∨
{γ ∈ L : α ∗ γ ≤ β}.

The properties of the binary operations ∗ and → can be referred to [43–45]. We list some of
them used in the sequel.

(1) α ∗ β ≤ γ ⇔ β ≤ α → γ.
(2) α ∗ (α → β) ≤ β.
(3) α → (β → γ) = (α ∗ β)→ γ.
(4) (

∨
i∈I

αi)→ β =
∧
i∈I

(αi → β).

(5) α → (
∧
i∈I

βi) =
∧
i∈I

(α → βi).

For α, β ∈ L, we define α ' β iff for every directed subsets D ⊆ L, β ≤ ∨D always implies
the existence of γ ∈ D such that α ≤ γ. Note that α ' β implies α ≤ β. When L = [0, 1],
α ' β ⇐⇒ α < β.

A complete lattice (L,≤) is called meet continuous if, for α ∈ L and {βi}i∈I being directed in
L, it holds that α ∧ ∨

i∈I
βi =

∨
i∈I

(α ∧ βi). A complete lattice (L,≤) is called continuous if α = ∨{β ∈
L|β ' α} for each α ∈ L. A continuous lattice is a natural meet continuous lattice [44].

In this paper, if not otherwise stated, we always let L = (L, ∗) be an integral, commutative
quantale with the underlying lattice (L,≤) being meet continuous.

A mapping A : X −→ L is called an L-fuzzy set on X, and the family of L-fuzzy sets on X is
denoted as LX. For A ∈ P(X), let �A denote its characteristic mapping. The operations

∨
,
∧

, ∗
and → on L can translate onto LX pointwisely. Precisely, for A, B, Ai(i ∈ I) ∈ LX ,

(
∨
i∈I

Ai)(x) =
∨
i∈I

Ai(x), (
∧
i∈I

Ai)(x) =
∧
i∈I

Ai(x),
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(A ∗ B)(x) = A(x) ∗ B(x), (A → B)(x) = A(x)→ B(x).

Let f : X −→ Y be a mapping. Then, define f→ : LX −→ LY and f← : LY −→ LX as
follows [45]:

∀A ∈ LX , ∀y ∈ Y, f→(A)(y) =
∨

f (x)=y

A(x), ∀B ∈ LY, ∀x ∈ X, f←(B)(x) = B( f (x)).

For A, B ∈ LX , the degree of A in B is defined as follows [46–48]:

SX(A, B) =
∧

x∈X
(A(x)→ B(x)).

Definition 1 ([45,49]). A nonempty subset F ⊆ LX is called a �-filter on X if it holds that:

(1) A ∈ F =⇒ ∨
x∈X

A(x) = �.

(2) A, B ∈ F =⇒ A ∧ B ∈ F.
(3)

∨
B∈F

SX(B, A) = � =⇒ A ∈ F.

The family of �-filters on X is denoted as F�L (X).

Definition 2 ([45]). A nonempty subset B ⊆ LX is called a �-filter base on X if it satisfies:

(1) A ∈ B =⇒ ∨
x∈X

A(x) = �.

(2) A, B ∈ B =⇒ ∨
C∈B

SX(C, A ∧ B) = �.

Each �-filter base B generates a �-filter FB := {A ∈ LX | ∨
B∈B

SX(B, A) = �}. In [38], it is proved that

for any A ∈ LX,
∨

B∈B
SX(B, A) =

∨
B∈FB

SX(B, A).

We collect some fundamental facts about �-filters in the following proposition.

Proposition 1 ([14,45]).

(1) For every x ∈ X, [x]� =: {A ∈ LX |A(x) = �} is a �-filter.
(2) {Fi}i∈I ⊆ F�L (X) =⇒ ⋂

i∈I
Fi ∈ F�L (X).

(3) Let f : X −→ Y be a mapping and F ∈ F�L (X). Then, define f⇒(F) as the �-filter on Y generated
by the �-filter base { f→(A)|A ∈ F}. Furthermore, B ∈ f⇒(F) iff f←(B) ∈ F.

Given F ∈ F�L (X), then the set η(F) = {A ⊆ X|�A ∈ F} is a filter on X. Conversely, given
F ∈ F(X), then the set {�A|A ∈ F} forms a �-filter base and the associated �-filter is denoted
as �(F).

Lemma 1 (Lemma 2.6 in [30]). Let f : X −→ Y, F ∈ F(X) and F ∈ F�L (X). Then,

(1) η�(F) = F.
(2) �η(F) ⊆ F.
(3) For every x ∈ X, �(ẋ) = [x]�.
(4) For every x ∈ X, η([x]�) = ẋ.
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(5) η( f⇒(F)) = f⇒(η(F)).

Definition 3 ([14]). A �-convergence space is a pair (X, q), where q ⊆ F�L (X)× X satisfies:

(TC1) For every x ∈ X, ([x]�, x) ∈ q.
(TC2) (F, x) ∈ q, F ⊆ G =⇒ (G, x) ∈ q.

If (F, x) ∈ q, we also denote F
q−→ x and say that F converges to x.

Obviously, a �-convergence space reduces to a convergence space whenever L = {⊥,�}.

Let T be any set, φ : T −→ F�L (X) and F ∈ F�L (T). In [26], the author defined an extending
Kowalsky compression operator on φ⇒(F) ∈ F�L (F

�
L (X)) by

kφF :=
⋃

A∈η(F)

⋂
y∈A

φ(y) ∈ F�L (X).

Lemma 2 (Lemma 3.2 in [30]). Let f : X −→ Y, φ : T −→ F�L (X) and Φ : T −→ F(X). Then, for
every F ∈ F�L (T) and every F ∈ F(T),

(1) f⇒(kφF) = k( f⇒ ◦ φ)F.
(2) put Φ1 = η ◦ φ, then η(kφF) = KΦ1η(F).
(3) put φ1 = � ◦Φ, then η(kφ1�(F)) = KΦF.
(4) taking σ : T −→ F�L (X) with σ(t) ⊆ φ(t) for every t ∈ T, then kσF ⊆ kφF.

Definition 4 ([45,47]). A subset τ ⊆ LX is called an L-topology (L-Top) on X if it contains �X ,�∅ and
is closed with respect to finite meets and arbitrary joins. The pair (X, τ) is called an L-topological space.
Furthermore, τ is called stratified (SL-Top) if α ∗ A ∈ τ for each α ∈ L and each A ∈ τ. A stratified
L-topology τ is called strong (STrL-Top) if α → A ∈ τ for each α ∈ L and each A ∈ τ.

Definition 5 ([25,45]). Assume that L to be a continuous lattice. For a topological space (X, δ), all L-fuzzy
sets A ∈ LX with

Aα = {x ∈ X|α ' A(x)} ∈ δ for each α ∈ L

form an L-topology on X. Such space is called a topological generated L-topological space (TGL-Top).
The L-topological space generated by (X, δ) is denoted as (X, �(δ)). When ∗ = ∧, �(δ) is precisely the
L-topology generated by {�A|A ∈ δ} and all constant value L-fuzzy sets on X as a subbase.

In [25], Lai and Zhang introduced a kind of L-topological space, called conical neighborhood
space (CNS). We do not give the definition of CNS here; please see Definition 5.1 in [25]. Lai and
Zhang proved that the mentioned L-topological spaces have the following inclusive relation:

STrL-Top⊆ CNS ⊆ SL-Top⊆ L-Top and TGL-Top⊆ CNS.
By suitable lattice-valued Fischer diagonal condition:

(1) The convergence theory associated with SL-Top is presented in [28].
(2) The convergence theory associated with STrL-Top is given in [14].
(3) The convergence theory associated with CNS is developed in [29].

In the following, we establish the convergence theory associated with TGL-Top by appropriate
lattice-valued Fischer diagonal condition.
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3. Topological Generated �-Convergence Spaces vs. Fischer Diagonal Condition Based on
Extending Kowalsky Compression Operator

In this section, we present a lattice-valued Fischer diagonal condition based on extending
Kowalsky compression operator. We also prove that �-convergence spaces with our diagonal
condition precisely characterize those spaces generated by topological convergence spaces.

First, we consider the pretopological conditions for a �-convergence space (X, q). It is not
difficult to verify that the following three conditions are equivalent.

(TP1) For every i ∈ I, Fi
q−→ x =⇒ ⋂

i∈I
Fi

q−→ x.

(TP2) For every x ∈ X, Uq(x) =
⋂{F ∈ F�L (X)|F q−→ x} converges to x. Usually, Uq =

{Uq(x)}x∈X is called the �-neighborhood system associated with q.

(TP3) For every x ∈ X, F
q−→ x ⇔ F ⊇ Uq(x).

Definition 6. A �-convergence space (X, q) is called pretopological if it fulfills any of (TP1)–(TP3).

Second, we consider the topological condition for �-convergence space both by extending
Fischer diagonal condition and extending Kowalsky diagonal condition.

We define a lattice-valued extension of Fischer diagonal condition as below:

(TFD) Let T be any set, ψ : T −→ X and φ : T −→ F�L (X) satisfying φ(t)
q−→ ψ(t) for every

t ∈ T. Then, for any F ∈ F�L (X), ψ⇒(F)
q−→ x =⇒ kφF

q−→ x.

Taking T = X and ψ = idX in (TFD), then we get the Lattice-valued Kowalsky diagonal
condition (TKD).

Moreover, a lattice-valued version of neighborhood condition (U) is given as follows:

(TU) For any x ∈ X, kUqUq(x) ⊇ Uq(x).

The theorem below presents the relationships between lattice-valued versions of Fischer
diagonal condition, Kowalsky diagonal condition and pretopological condition.

Theorem 1. A �-convergence space (X, q) satisfies (TFD) iff it is pretopological and satisfies (TKD) iff
it is pretopological and satisfies (TU).

Proof. (TFD)⇒(TP1). Let {Ft|t ∈ T} be all �-filters on X converge to x. Then, define

ψ : T −→ X, φ : T −→ F�L (X) as ψ(t) ≡ x, φ(t) = Ft for each t ∈ T.

Take F⊥ := {{�T}} as the least member of F�L (T). Then, we observe easily that ψ⇒(F⊥) =

[x]� and kφF⊥ =
⋂

t∈T
φ(t) =

⋂
t∈T

Ft. By [x]�
q−→ x and (TFD), we have that kφF⊥ =

⋂
t∈T

Ft
q−→ x,

i.e., (TP1) holds.
(TFD)⇒(TKD). It is obvious.
(TP3)+(TKD)⇒(TU). By (TP3), we have that Uq(y)

q−→ y for any y ∈ X. Then, by Uq(x)
q−→

x and (TKD), we get that kUqUq(x)
q−→ x, i.e., kUqUq(x) ⊇ Uq(x).

(TP3)+(TU)⇒(TFD). Let T be any set, ψ : T −→ X and φ : T −→ F�L (X) with φ(t)
q−→ ψ(t)

for every t ∈ T. It follows by (TP3) that φ(t) ⊇ Uq(ψ(t)) for any t ∈ T.

Let F ∈ F�L (X) and ψ⇒(F)
q−→ x, then it holds by (TP3) that ψ⇒(F) ⊇ Uq(x).
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Next, we prove that kUqψ⇒(F) ⊆ k(Uq ◦ ψ)F. Indeed, let A ∈ kUqψ⇒(F); then, there exists
an A ∈ η(ψ⇒(F)) such that A ∈ Uq(y) for any y ∈ A. By Lemma 1(5), it holds that A ∈ ψ⇒(η(F)),
i.e., ψ←(A) ∈ η(F). Then, we get that, for every z ∈ ψ←(A), A ∈ Uq(ψ(z)) = (Uq ◦ ψ)(z). Thus,
A ∈ k(Uq ◦ ψ)F.

Combinaing the above statements, it follows by Lemma 2 (4) and (TU) that

kφF ⊇ k(Uq ◦ ψ)F ⊇ kUqψ⇒(F) ⊇ kUqUq(x) ⊇ Uq(x).

That means kφF
q−→ x, as desired.

For a convergence space (X, c), it is easy to verify that the pair π(X, c) = (X, π(c)) defined by

∀F ∈ F�L (X), ∀x ∈ X, F
π(c)−→ x ⇔ η(F)

c−→ x,

is a �-convergence space.

Definition 7. A �-convergence space (X, q) is called topological generated if (X, q) = π(X, c) for some
topological convergence space (X, c).

The next theorem shows that�-convergence spaces generated by convergence spaces connect
diagonal condition (FD) and lattice-valued diagonal condition (TFD) well.

Theorem 2. Convergence space (X, c) fulfills (FD) iff (X, π(c)) fulfills (TFD).

Proof. =⇒. Let ψ : T −→ X and φ : T −→ F�L (X) with ∀t ∈ T, φ(t)
π(c)−→ ψ(t). Putting Φ = η ◦ φ,

then, from φ(t)
π(c)−→ ψ(t) we get

Φ(t) = η(φ(t)) c−→ ψ(t), ∀t ∈ T.

Taking any ψ⇒(F)
π(c)−→ x, then from Lemma 1(5) we obtain

ψ⇒(η(F)) = η(ψ⇒(F))
c−→ x.

It follows from (FD) and Lemma 2 (2) that η(kφF) = KΦη(F)
c−→ x, that is, kφF

π(c)−→ x. We
verify that (TFD) is fulfilled.

⇐=. Let ψ : T −→ X and Φ : T −→ F(X) with ∀t ∈ T, Φ(t) c−→ ψ(t). Putting φ = � ◦Φ,
then, from Lemma 1(1), we conclude

∀t ∈ T, η ◦ φ(t) = η ◦� ◦Φ(t) = Φ(t) c−→ ψ(t), i.e., φ(t)
π(c)−→ ψ(t).

Taking any ψ⇒(F) c−→ x, then, from Lemma 1(5), we get

ηψ⇒(�(F)) = ψ⇒((η ◦�)(F)) = ψ⇒(F) c−→ x, that is, ψ⇒(�(F))
π(c)−→ x.

It holds from (TFD) that kφ�(F)
π(c)−→ x. Further, from Lemma 2 (3), we obtain η(kφ�(F)) =

KΦF c−→ x. This shows that the condition (FD) is fulfilled.
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The following theorem shows that the lattice-valued Fischer diagonal condition (TFD)
precisely characterizes topological generated �-convergence spaces.

Theorem 3. A �-convergence space (X, q) is topological generated iff it satisfies (TFD).

Proof. The necessity can be concluded from Theorem 2. We prove the sufficiency below. Assume
that (X, q) satisfies (TFD). Then, define θ(X, q) = (X, θ(q)) as

∀x ∈ X, ∀F ∈ F(X), F
θ(q)−→ x ⇔ F ⊇ η(Uq(x)).

Obviously, (X, θ(q)) is a convergence space. Next, we verify (X, q) = πθ(X, q).

(1) q ⊆ πθ(q). It follows by

F
q−→ x

(TP3)⇒ F ⊇ Uq(x)⇒ η(F) ⊇ η(Uq(x))

⇒ η(F)
θ(q)−→ x ⇒ F

πθ(q)−→ x.

(2) πθ(q) ⊆ q. Letting F
πθ(q)−→ x, we check below that:

(i) F ⊇ kUqF. Take A ∈ kUqF, then ∃B ∈ η(F) such that A ∈ Uq(y) ⊆ [y]� for any
y ∈ B. It follows that A(y) = � for any y ∈ B, and then �B ≤ A, which means that
A ∈ F.

(ii) kUqF ⊇ kUqUq(x). By F
πθ(q)−→ x, we have η(F)

θ(q)−→ x, i.e., η(F) ⊇ η(Uq(x)). Then,

kUqUq(x) =
⋃

B∈η(Uq(x))

⋂
y∈B

Uq(y)

⊆
⋃

B∈η(F)

⋂
y∈B

Uq(y) = kUqF.

(iii) kUqUq(x) ⊇ Uq(x). It follow by (TU).

Combining (i)–(iii), we get that F ⊇ Uq(x), thus it follows by (TP3) that F
q−→ x.

From Theorem 2 and that (X, q) = πθ(X, q) satisfies (TFD), we get that (X, θ(q))

is topological.

In the following, we give two examples of topological generated �-convergence spaces.

Example 1. For a set X, the discrete �-convergence structure qd is defined as F
qd−→ x ⇐⇒ F ⊇ [x]�

for any F ∈ F�L (X) and any x ∈ X; and the indiscrete �-convergence structure qind is defined by F
qind−→ x

for every F ∈ F�L (X) and every x ∈ X, see [14].
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(1) (X, qd) is topological generated. Indeed, for any x ∈ X, note that Uqd(x) = [x]�
qd−→ x and

kUqd
Uqd

(x) =
⋃

B∈η(Uqd
(x))

⋂
y∈B

Uqd
(y), by Lemma 1(4)

=
⋃

B∈ẋ

⋂
y∈B

[y]�

= [x]� ⊇ Uqd
(x).

Hence, (X, qd) satisfies (TP2) and (TU). It follows by Theorems 1 and 3 that (X, qd) is topological
generated.

(2) (X, qind) is topological generated. Since any �-filter converge to any point, then it follows
immediately that (X, qind) satisfies (TFD). Hence, (X, qd) is topological generated.

Finally, we consider the categoric properties of topological generated �-convergence spaces.
A mapping f : (X, q) −→ (X′, q′) between �-convergence spaces is called continuous if

f⇒(F)
q′−→ f (x) for any F

q−→ x.
We denote the category consisting of �-convergence spaces and continuous mappings as

�-CON. �-CON is a topological category in the sense that each source (X
fi−→ (Xi, qi))i∈I has

initial structure q on X defined as follows [14,37]:
F

q−→ x ⇐⇒ ∀i ∈ I, f⇒i (F)
qi−→ fi(x).

Let �(X) denote all �-convergence structures on X. For p, q ∈ �(X), we say q is finer than
p, denoted as p ≤ q, if idX : (X, q) −→ (X, p) is continuous. It is known that (�(X),≤) forms a
completed lattice [30].

We denote TTG-CON as the full subcategory of T-CON consisting of topological generated
�-convergence spaces.

Theorem 4. TTG-CON is a topological category.

Proof. We verify that TTG-CON has initial structure. Given a source (X
fi−→ (Xi, qi))i∈I in

TTG-CON, take q as the initial structure in T-CON, i.e.,

F
q−→ x ⇔ ∀i ∈ I, f⇒i (F)

qi−→ fi(x).

Next, we show (X, q) ∈TTG-CON. Let ψ : T −→ X, φ : T −→ F�L (X) such that for every

t ∈ T, φ(t)
q−→ ψ(t). Then, for any i ∈ I, f⇒i (φ(t))

qi−→ fi(ψ(t)). Putting φi = f⇒i ◦ φ and

ψi = fi ◦ ψ, we obtain φi(t)
qi−→ ψi(t).

Take any ψ⇒(F)
q−→ x. We have

ψ⇒i (F) = ( fi ◦ ψ)⇒(F) = f⇒i ψ⇒(F)
qi−→ fi(x).

Since (Xi, qi) satisfies (TFD), we obtain that kφiF
qi−→ x. From Lemma 2(1), we further get

for every i ∈ I,
f⇒i (kφF) = k( f⇒i ◦ φ)F = kφiF

qi−→ fi(x).

It follows that kφF
q−→ x. Hence, (X, q) satisfies (TFD), as desired.
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Remark 1. Let �TG(X) denote all topological generated �-convergence structures on X. Then, from
Theorem 4, we conclude that (�TG(X),≤) forms a complete lattice.

Theorem 5. TTG-CON is a reflective subcategory of T-CON.

Proof. Given (X, q) ∈T-CON, put

rq =
∨
{p′ ≤ q|p′ ∈ �TG(X)}.

Then, rq ≤ q and so idX : (X, q) −→ (X, rq) is continuous. Moreover, from Remark 1, we
get rq ∈ �TG(X).

Let (X, p) ∈ TTG-CON and f : (X, q) −→ (Y, p) be a continuous mapping. Take s as the
initial structure of f : X −→ (Y, p) in TTG-CON. Then, (X, s) ∈ TTG-CON and

s ≤ q =⇒ s ≤ rq =⇒ idX : (X, rq) −→ (X, s) is continuous,

f : (X, s) −→ (Y, p) is continuous.

It follows that f = f ◦ idX : (X, rq) −→ (Y, p) is continuous. This shows that the following
diagram commutes in Figure 1.

(X, q)

(Y, p)

f

��

(X, q) (X, rq)
idX ��

(Y, p)

(X, rq)

��
f

Figure 1. Reflective diagram.

Hence, TTG-CON is reflective in T-CON.

4. Topological Generated �-Convergence Spaces vs. Topological Generated
L-Topological Spaces

In [14], Fang and Yue proposed a lattice-valued Fischer diagonal condition based on Gähler
compression operator and proved that there is a bijection between�-convergence spaces with their
diagonal condition and strong L-topological spaces. In this section, we establish the relationships
between our diagonal condition and Fang and Yue’s diagonal condition. Then, analogizing Fang
and Yue’s result, we further verify that there is a one-to-one correspondence between topological
generated �-convergence spaces and topological generated L-topological spaces. Hence, we
establish the convergence theory associated with the topological generated L-topological spaces.

Let T be any set and φ : T −→ F�L (X). Take F ∈ F�L (T) and A ∈ LX , and define φ̂(A) ∈ LT as

∀t ∈ T, φ̂(A)(t) =
∨

B∈φ(t)

SX(B, A).

The Gähler compression operator on φ⇒(F) ∈ F�L (F
�
L (X)) is defined by

gφF := {A ∈ LX |φ̂(A) ∈ F} ∈ F�L (X).

For a �-convergence space (X, q), an extension of diagonal condition (FD) is presented
in [14]:
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(TFDW) Let T be any set, ψ : T −→ X and φ : T −→ F�L (X) with φ(t)
q−→ ψ(t) for every

t ∈ T. For any F ∈ F�L (X), ψ⇒(F)
q−→ x =⇒ gφF

q−→ x.
The next theorem shows that (TFDW) is weaker than (TFD) generally, but they are equivalent

when L = {⊥,�}.

Theorem 6. Let T be any set, φ : T −→ F�L (X) and F ∈ F�L (T). Then,

(1) kφF ⊆ gφF.
(2) kφF = gφF when L = {⊥,�}.

Proof. (1) Taking A ∈ kφF, then ∃B ∈ η(F) such that A ∈ φ(y) for any y ∈ B. It follows that

∀y ∈ B, φ̂(A)(y) =
∨

C∈φ(y)

SX(C, A) ≥ SX(A, A) = �,

i.e., �B ≤ φ̂(A). By �B ∈ F, we have φ̂(A) ∈ F and so A ∈ gφF.
(2) We verify that A ∈ gφF =⇒ A ∈ kφF. In fact, A ∈ gφF means φ̂(A) ∈ F. Taking

B = {y ∈ T|φ̂(A)(y) =
∨

C∈φ(y)

SX(C, A) = �},

it follows that A ∈ φ(y) for any y ∈ B. Note that, when L = {⊥,�}, �B = φ̂(A) ∈ F, i.e.,
B ∈ η(F). We get that A ∈ kφF.

In the following, we further verify that (TFD)⇐⇒(TFDW) for �-convergence spaces
generated by convergence spaces.

Lemma 3. Let φ : T −→ F�L (X) and Φ : T −→ F(X).

(1) Taking Φ1 = η ◦ φ, then for every F ∈ F�L (T), η(gφF) ⊇ KΦ1η(F).
(2) Taking φ1 = � ◦Φ, then for every F ∈ F(T), η(gφ1�(F)) = KΦF.

Proof. (1) It follows by

A ∈ KΦ1η(F) =⇒ ∃B ∈ η(F), s.t. ∀y ∈ B, A ∈ Φ1(y) = (η ◦ φ)(y)

=⇒ ∃�B ∈ F s.t. ∀y ∈ B,�A ∈ φ(y)

=⇒ ∃�B ∈ F s.t. ∀y ∈ B, φ̂(�A)(y) = �
=⇒ ∃�B ∈ F s.t. �B ≤ φ̂(�A)

=⇒ φ̂(�A) ∈ F

=⇒ �A ∈ gφF

=⇒ A ∈ η(gφF).
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(2) Let A ∈ η(gφ1�(F)). Then, �A ∈ gφ1�(F) and so φ̂1(�A) ∈ �(F). Note that, for every
t ∈ T,

φ̂1(�A)(t) =
∨

B∈φ1(t)

SX(B,�A)

=
∨

B∈�(Φ(t))

SX(B,�A) =
∨

C∈Φ(t)

SX(�C,�A)

=

{
�, ∃C ∈ Φ(t), s.t. C ⊆ A, i.e., A ∈ Φ(t);
⊥, otherwise.

Putting C = {t ∈ T|φ̂1(�A)(t) = �}, then �C = φ̂1(�A) ∈ �(F), i.e., C ∈ F and A ∈ Φ(y)
for any y ∈ C; it follows that A ∈ KΦF. Therefore, η(gφ1�(F)) ⊆ KΦF.

Conversely, let A ∈ KΦF. Then, there exists B ∈ F such that A ∈ Φ(y), i.e., �A ∈ �(Φ(y)) =
φ1(y) for any y ∈ B. That means φ̂1(�A)(y) = � for any y ∈ B, and so �B ≤ φ̂1(�A). Then,
we get φ̂1(�A) ∈ �(F), and hence �A ∈ gφ1�(F), i.e., A ∈ η(gφ1�(F)). Therefore, KΦF ⊆
η(gφ1�(F)).

Theorem 7. Convergence space (X, c) fulfills (FD) iff (X, π(c)) fulfills (TFDW).

Proof. =⇒. Let ψ : T −→ X, φ : T −→ F�L (X) with φ(t)
π(c)−→ ψ(t) for every t ∈ T. Put Φ = η ◦ φ;

from φ(t)
π(c)−→ ψ(t), we conclude

Φ(t) = η(φ(t)) c−→ ψ(t).

Take any ψ⇒(F)
π(c)−→ x; from Lemma 1(5), we obtain

ψ⇒(η(F)) = η(ψ⇒(F))
c−→ x.

It follows by (FD) and Lemma 3(1) that η(gφF) ⊇ KΦη(F)
c−→ x, i.e., gφF

π(c)−→ x. Thus, the
condition (TFDW) is satisfied.

⇐=. Let ψ : T −→ X, Φ : T −→ F(X) with Φ(t) c−→ ψ(t) for every t ∈ T. Putting φ = � ◦Φ,
then, from Lemma 1(1), we have

η ◦ φ(t) = η ◦� ◦Φ(t) = Φ(t) c−→ ψ(t), i.e., φ(t)
π(c)−→ ψ(t).

Taking any ψ⇒(F) c−→ x, from Lemma 1(5), we conclude

ηψ⇒(�(F)) = ψ⇒((η ◦�)(F)) = ψ⇒(F) c−→ x, i.e., ψ⇒(�(F))
π(c)−→ x.

Thus, gφ�(F)
π(c)−→ x by (TFDW). From Lemma 3(2), we further get η(gφ�(F)) = KΦF c−→ x.

Hence, the condition (FD) is satisfied.

From Theorems 2 and 7, we get that for �-convergence spaces generated by convergence
spaces, conditions (TFD) and (TFDW) are equivalent.

The following example shows that there is no (TFD)⇔(TFDW) for general
�-convergence space.
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Example 2. Let X = {x, y} and L = ([0, 1],∧). Define Ax, Ay ∈ LX as

Ax(z) =

{
1, z = x;
1
2 , z = y.

; Ay(z) =

{
1
2 , z = x;
1, z = y.

,

and take
Fx = {A ∈ LX |A ≥ Ax}; Fy = {A ∈ LX |A ≥ Ay}.

Then, it is easily seen that Fx, Fy ∈ F�L (X). We define

∀F ∈ F�L (X), ∀z ∈ X, F
q−→ z ⇔ F ⊇ Fz,

then (X, q) is a �-convergence space with � = 1 and Uq(z) = Fz.
(1) (X, q) satisfies (TFDW). First, it is easily seen that (X, q) satisfies (TP3).
Second, let ψ : T −→ X and φ : T −→ F�L (X) with φ(t)

q−→ ψ(t) for every t ∈ T. From (TP3),
we get that φ(t) ⊇ Fψ(t) for any t ∈ T.

Take any ψ⇒(F)
q−→ x; then, by (TP3), we have Fx ⊆ ψ⇒(F), and so Ax ∈ ψ⇒(F), i.e.,

ψ←(Ax) ∈ F. Hence,

φ̂(Ax)(t) =
∨

B∈φ(t)

SX(B, Ax)

≥
∨

B∈Fψ(t)

SX(B, Ax)

= SX(Aψ(t), Ax)

= Aψ(t)(y)→
1
2

=

{
1, ψ(t) = x;
1
2 , ψ(t) = y.

= ψ←(Ax)(t),

which means that φ̂(Ax) ≥ ψ←(Ax) ∈ F, i.e., Ax ∈ gφF and so Fx ⊆ gφF. Thus, gφF
q−→ x.

(2) (X, q) does not satisfy (TU), and thus does not satisfy (TFD). Indeed, it is easily observed
that η(Uq(z)) = {{X}} for any z ∈ X and so

kUqUq(z) =
⋃

A∈η(Uq(z))

⋂
z∈A

Uq(z)

=
⋂

z∈X
Uq(z) = {{�X}}.

Obviously, Uq(z) 
⊆ kUqUq(z). Thus, (TU) is not satisfied.

In ([14], Remark 3.3), Fang and Yue proved that a strong L-topological space (X, τ)

corresponds uniquely to a �-convergence space (X, q) with the condition (TFDW) by taking
that for each x ∈ X,

Uq(x) = Uτ(x) := {A ∈ LX |
∨

B∈τ,B(x)=�
SX(B, A) = �}.
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Then, they constructed a bijection between strong L-topological spaces and �-convergence
spaces with (TFDW).

Let L be a continuous lattice and (X, δ) be a topological space. We prove below that, for any
x ∈ X,

Uπ(δ)(x) = U�(δ)(x).

That is, the �-neighborhood system {Uπ(δ)(x)}x∈X associated with topological generated
�-convergence space (X, π(δ)) is equal to the �-neighborhood system {U�(δ)(x)}x∈X associated
with topological generated L-topological space (X, �(δ)).

Lemma 4. Let L be a continuous lattice. Then, for a topological space (X, δ),

A ∈ �(δ)⇐⇒ ∀x ∈ X, A(x) ≤
∨

x∈B∈δ

SX(�B, A).

Proof. Let A ∈ �(δ) and x ∈ X. Taking any α ∈ L with α ' A(x), then x ∈ Aα ∈ δ. It follows that

α ≤
∧

y∈Aα

A(y) = SX(�Aα
, A) ≤

∨
x∈B∈δ

SX(�B, A).

By the continuity of L and the arbitrariness of α, we obtain

A(x) ≤
∨

x∈B∈δ

SX(�B, A).

Conversely, let A(x) ≤ ∨
x∈B∈δ

SX(�B, A) for each x ∈ X. For each α ∈ L, we prove below that

Aα ∈ δ. Indeed, if Aα 
= ∅, then taking any x ∈ Aα we have

α ' A(x) ≤
∨

x∈B∈δ

SX(�B, A) =
∨

x∈B∈δ

∧
y∈B

A(y).

Hence, there exists B ∈ δ such that x ∈ B and α ' A(y) for all y ∈ B, i.e., B ⊆ Aα. Then, it
follows that Aα ∈ δ for any α ∈ L. Therefore, A ∈ �(δ).

Theorem 8. Let L be a continuous lattice. Then, for a topological space (X, δ), Uπ(δ)(x) = U�(δ)(x) for
any x ∈ X.

Proof. By the definition of π(δ), it is easily seen that F
π(δ)−→ x ⇔ F ⊇ �(Uδ(x)), and so

Uπ(δ)(x) = �(Uδ(x))

= {A ∈ LX |
∨

B∈Uδ(x)

SX(�B, A) = �}

= {A ∈ LX |
∨

x∈B∈δ

SX(�B, A) = �}.

U�(δ)(x) = {A ∈ LX |
∨

B∈�(δ),B(x)=�
SX(B, A) = �}.
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Let A ∈ Uπ(δ)(x). Then,

� =
∨

x∈B∈δ

SX(�B, A), by �B ∈ �(δ),�B(x) = �

≤
∨

C∈�(δ),C(x)=�
SX(C, A),

i.e., A ∈ U�(δ)(x). Conversely, let A ∈ U�(δ)(x). Note that, by Lemma 4, we get that, for each
B ∈ �(δ), B(x) = �,

� = B(x) =
∨

x∈C∈δ

SX(�C, B).

Hence, from A ∈ U�(δ)(x) it follows that

� =
∨

B∈�(δ),B(x)=�
SX(B, A)

=
∨

B∈�(δ),B(x)=�
(� ∗ SX(B, A))

=
∨

B∈�(δ),B(x)=�
(

∨
x∈C∈δ

SX(�C, B) ∗ SX(B, A))

≤
∨

x∈C∈δ

SX(�C, A),

i.e., A ∈ Uπ(δ)(x).

Remark 2. Similar to ([14], Remark 3.3), we get from Theorem 8 that there is a bijection between topological
generated �-convergence spaces and topological generated L-topological spaces. Thus, �-convergence
spaces with our Fischer diagonal condition precisely characterizes topological generated L-topological spaces.
Therefore, we establish the convergence theory associated with topological generated L-topological spaces.

5. Conclusions

In this paper, we present a lattice-valued Fischer diagonal condition (TFD) through extending
Kowalsky compression operator, and verify that there is a one-to-one correspondence between
�-convergence spaces with (TFD) and topological generated L-topological spaces. This shows that
(TFD) can characterize topological generated L-topological spaces. That is to say, we establish the
convergence theory associated with topological generated L-topological spaces. It is well-known
that Fischer diagonal condition also plays an important role in uniform convergence spaces [1].
In the further work, we shall consider the fuzzy version of Fischer diagonal condition in�-uniform
convergence spaces defined in [39].
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Abstract: By means of the residual implication on a frame L, a degree approach to L-continuity
and L-closedness for mappings between L-cotopological spaces are defined and their properties
are investigated systematically. In addition, in the situation of L-topological spaces, degrees of
L-continuity and of L-openness for mappings are proposed and their connections are studied.
Moreover, if L is a frame with an order-reversing involution ′, where b′ = b → ⊥ for b ∈ L, then
degrees of L-continuity for mappings between L-cotopological spaces and degrees of L-continuity
for mappings between L-topological spaces are equivalent.

Keywords: L-cotopological space; L-topological space; degree of L-continuity; degree of
L-closedness; degree of L-openness

1. Introduction

Since Chang [1] introduced fuzzy set theory to topology, fuzzy topology and its related
theories have been widely investigated such as [1–18]. The degree approach that equips fuzzy
topology and its related structures with some degree description is also an essential character of
fuzzy set theory. This approach has been developed extensively in the theory of fuzzy topology,
fuzzy convergence and fuzzy convex structure. Yue and Fang [19] introduced a degree approach
to T1 and T2 separation properties in (L, M)-fuzzy topological spaces. Shi [20,21] defined the
degrees of separation axioms which are compatible with (L, M)-fuzzy metric spaces. Li and
Shi [22] introduced the degree of compactness in L-fuzzy topological spaces. Pang defined
the compact degree of (L, M)-fuzzy convergence spaces [23] and degrees of Ti (i = 0, 1, 2)
separation property as well as the regular property of stratified L-generalized convergence
spaces [24]. All of the above-mentioned research mainly equipped spatial properties with some of
the degree descriptions.

Actually, special mappings between structured spaces and the structured space itself can also
be endowed with some degrees. Xiu and his co-authors [25,26] defined degrees of fuzzy convex
structures, fuzzy closure systems and fuzzy Alexandrov topologies and discussed their properties.
Xiu and Pang [27] gave a degree approach to special mappings between M-fuzzifying convex
spaces. In [28], Pang defined degrees of continuous mappings and open mappings between
L-fuzzifying topological spaces to describe how a mapping between L-fuzzifying topological
spaces becomes a continuous mapping or an open mapping in a degree sense. Liang and
Shi [29] further defined the degrees of continuous mappings and open mappings between L-fuzzy
topological spaces and investigated their relationship. Li [30] defined the degrees of special

Mathematics 2019, 7, 1013; doi:10.3390/math7111013 www.mdpi.com/journal/mathematics
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mappings in the theory of L-convex spaces and investigated their properties. Xiu and Pang [27]
developed the degree approach to M-fuzzifying convex spaces to define the degrees of M-CP
mappings and M-CC mappings.

Following this direction, we will focus on the case of L-cotopological spaces and L-topological
spaces in this paper. By means of L-closure operators and L-interior operators, we will consider
degrees of L-continuity and L-closedness for mappings between L-cotopological spaces as well
as degrees of L-continuity and L-openness for mappings between L-topological spaces and will
investigate their properties systematically.

2. Preliminaries

In this paper, let L be a frame, X be a nonempty set and LX be the set of all L-subsets on X.
The bottom element and the top element of L are denoted by ⊥ and �, respectively. A residual
implication can be defined by a → b =

∨{λ ∈ L | a∧ λ � b}. The operators on L can be translated
onto LX in a pointwise way. In this case, LX is also a complete lattice. Let ⊥ and � denote the
smallest element and the largest element in LX , respectively

Let f : X −→ Y be a mapping. Define f→L : LX −→ LY and f←L : LY −→ LX by f→L (B)(y) =∨
f (x)=y B(x) for B ∈ LX and y ∈ Y, and f←L (A)(x) = A( f (x)) for A ∈ LY and x ∈ X, respectively.

Using the residual implication, the concept of fuzzy inclusion order of L-subsets is introduced.

Definition 1 ([2,31]). The fuzzy inclusion order of L-subsets is a mapping SX(−,−) : LX × LX −→ L
which satisfying for each C, D ∈ LX,

SX(C, D) =
∧

x∈X

(
C(x)→ D(x)

)
Lemma 1 ([2,31]). Let f : X −→ Y be a mapping. Then, for each C, D, E ∈ LX and A, B ∈ LY,
the following statements hold:

(1) SX(D, E) = � if and only if D � E.
(2) D � E implies SX(D, C) � SX(E, C).
(3) D � E implies SX(C, D) � SX(C, E).
(4) SX(D, E) ∧ SX(E, C) � SX(D, C).
(5) SX(D, E) � SX( f→L (D), f→L (E)).
(6) SY(A, B) � SY( f←L (A), f←L (B)).

In the following, we will only use S to represent the fuzzy inclusion order of L-subsets on
both LX and LY, not SX or SY. This will not lead to ambiguity in the paper.

Definition 2 ([1,18,32,33]). Let C be a subset of LX. C is called an L-cotopology on X if it satisfies:
(LCT1) ⊥,� ∈ C;
(LCT2) if A, B ∈ C, then A ∨ B ∈ C;
(LCT3) if {Aj | j ∈ J} ⊆ C, then

∧
j∈J Aj ∈ C.

For an L-cotopology C on X, the pair (X, C) is called an L-cotopological space.
If C also satisfies:
(SLCT) for each a ∈ L, a ∈ C,

then it is called a stratified L-cotopology and the pair (X, C) is called a stratified L-cotopological space.
A mapping f : (X, CX) → (Y, CY) is called L-continuous provided that, for each B ∈ LY, B ∈ CY

implies f←L (B) ∈ CX.
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A mapping f : (X, CX)→ (Y, CY) is called L-closed provided that, for each A ∈ LY, A ∈ CX implies
f→L (B) ∈ CY.

Definition 3 ([18,32,33]). An L-closure operator on X is a mapping Cl : LX −→ LX which satisfies:
(LCL1) Cl(⊥) = ⊥;
(LCL2) A � Cl(A);
(LCL3) Cl(Cl(A)) = Cl(A);
(LCL4) Cl(A ∨ B) = Cl(A) ∨ Cl(B).

For an L-closure operator Cl on X, the pair (X, Cl) is called an L-closure space.

A mapping f : (X, ClX) −→ (Y, ClY) is called L-continuous provided that

∀A ∈ LX , f→L (ClX(A)) � ClY( f→L (A)).

It was proved in [18,32,33] that L-cotopologies and L-closure operators are conceptually
equivalent with transferring process ClC(A) =

∧{B ∈ LX | A � B ∈ C} for each A ∈ LX and
CCl = {A ∈ LX | Cl(A) = A}. Correspondingly, L-continuous mappings between L-cotopological
spaces and L-continuous mappings between L-closure spaces are compatible. In the sequel, we
treat L-cotopological spaces with their L-continuous mappings and L-closure spaces with their
L-continuous mappings equivalently. We will use Cl to represent ClC tacitly.

Definition 4 ([1,18,32,33]). An L-topology on X is a subset T ⊆ LX which satisfies:
(LT1) ⊥,� ∈ T ;
(LT2) if A, B ∈ T , then A ∧ B ∈ T ;
(LT3) if {Aj | j ∈ J} ⊆ T , then

∨
j∈J Aj ∈ T .

For an L-topology T on X, the pair (X, T ) is called an L-topological space.
A mapping f : (X, TX) → (Y, TY) is called L-continuous provided that for each B ∈ LY, B ∈ TY

implies f←L (B) ∈ TX.
A mapping f : (X, TX)→ (Y, TY) is called L-open provided that for each A ∈ LX , A ∈ TX implies

f→L (B) ∈ TY.

Definition 5 ([18,33]). An L-interior operator on X is a mapping N : LX −→ LX which satisfies:
(LN1) N (�) = �;
(LN2) N (C) � C;
(LN3) N (N (C)) = N (C);
(LN4) N (C ∧ D) = N (C) ∧N (D).

For an L-interior operator N on X, the pair (X,N ) is called an L-interior space.

A mapping f : (X,NX) −→ (Y,NY) is called L-continuous provided that

∀A ∈ LX , f→L (NX(A)) � NY( f→L (A)).

It was proved in [18,33] that L-topologies and L-interior operators are conceptually equivalent
with transferring process NT (A) =

∨{B ∈ LX | B � A, B ∈ T } for each A ∈ LX and
T N = {A ∈ LX | N (A) = A}. Correspondingly, L-continuous mappings between L-topological
spaces and L-continuous mappings between L-interior spaces are compatible. In the sequel, we
treat L-topological spaces with their L-continuous mappings and L-interior spaces with their
L-continuous mappings equivalently. We will use N to represent NT tacitly.
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Definition 6 ([3,32]). An L-filter on X is a mapping � : LX −→ L which satisfies:
(F1) �(⊥) = ⊥, �(�) = �;
(F2) �(C ∧ D) = �(C) ∧�(D) for each C, D ∈ LX.

Let Fs
L(X) denote the family of all L-filters on X.

Definition 7 ([3]). An L-fuzzy convergence on X is a mapping Lim : Fs
L(X) −→ LX which satisfies:

(L1) ∀x ∈ X, Lim[x](x) = � ;
(L2) �1 � �2 implies Lim(�1) � Lim(�2).

For an L-fuzzy convergence Lim on X, the pair (X, Lim) is called an L-fuzzy convergence space.

Theorem 1 ([3]). For an L-topological space (X, T ), let N be its interior operator and U x be the
L-neighborhood filter defined by U x(A) = N (A)(x) for each x ∈ X. Then, the mapping Lim : Fs

L(X) −→
LX defined by

Lim(�)(x) =
∧

A∈LX

(U x(A)→ �(A))

is an L-fuzzy convergence on X.

3. Degrees of L-Continuity and L-Closedness for Mappings between L-Cotopological Spaces

In this section, we mainly define degrees of L-continuity of mappings and L-closedness
of mappings to equip each mapping between L-cotopological spaces with some degree to be
an L-continuous mapping and an L-closed mapping, respectively. Then, we will study their
connections in a degree sense. Moreover, f always denotes a mapping from X to Y and g always
denotes a mapping from Y to Z in the following sections.

Definition 8. Let (X, CX) and (Y, CY) be L-cotopological spaces. Then,
(1) Dc1( f ) defined by

Dc1( f ) =
∧

B∈LX

S
(

f→L (ClX(B)), ClY( f→L (B))
)

is called the degree of L-continuity for f .

(2) Db( f ) defined by

Db( f ) =
∧

A∈LX

S
(

ClY( f→L (A)), f→L (ClX(A))
)

is called the degree of L-closedness for f .

Remark 1. (1) If Dc1( f ) = �, then f→L (ClX(A)) � ClY( f→L (A)) for all A ∈ LX, which is exactly the
definition of L-continuous mappings between L-closure spaces. As we claimed that L-continuous mappings
between L-cotopological spaces and L-continuous mappings between L-closure spaces are compatible, we
don’t distinguish them. Therefore, we defined the degree of L-continuity of mappings between L-cotopological
spaces by using L-continuous mappings between their induced L-closure spaces.

(2) If Db( f ) = �, then ClY( f→L (A)) � f→L (ClX(A)) for all A ∈ LX. This is exactly the equivalent
form of L-closed mappings between L-cotopological spaces by means of the corresponding L-closure operators.

Lemma 2. Let f : X −→ Y and g : Y −→ Z be mappings. Then, for each A ∈ LX, B ∈ LY and C ∈ LZ,
the following statements hold:
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(1) A � f←L ( f→L (A)). If f is injective, then the equality holds.
(2) f→L ( f←L (B)) � B. If f is surjective, then the equality holds.
(3) (g ◦ f )→L (A) = g→L ( f→L (A)).
(4) (g ◦ f )←L (C) = f←L (g←L (C)).

Proof. The proofs are routine and are omitted.

Theorem 2. Let (X, CX) and (Y, CY) be L-cotopological spaces. Then,

Dc1( f ) =
∧

B∈LY

S
(

f→L (ClX( f←L (B))), ClY(B)
)

.

Proof. It follows from the definition of Dc1( f ) that

Dc1( f ) =
∧

A∈LX

S
(

f→L (ClX(A)), ClY( f→L (A))
)

�
∧

B∈LY

S
(

f→L (ClX( f←L (B))), ClY( f→L ( f←L (B)))
)

�
∧

B∈LY

S
(

f→L (ClX( f←L (B))), ClY(B)
)

�
∧

A∈LX

S
(

f→L (ClX( f←L ( f→L (A)))), ClY( f→L (A))
)

�
∧

A∈LX

S
(

f→L (ClX(A)), ClY( f→L (A))
)

= Dc1( f ).

This implies

Dc1( f ) =
∧

B∈LY

S
(

f→L (ClX( f←(B))), ClY(B)
)

,

as desired.

Theorem 3. (1) If id : (X, CX) −→ (X, CX) is the identity mapping, then Dc1(id) = � and Db(id) = �.
(2) If y0 : (X, CX) −→ (Y, CY) is a constant mapping between stratified L-cotopological spaces with

the constant y0 ∈ Y, then Dc1(y0) = �.

Proof. (1) Straightforward,
(2) It follows immediately from the definition of Dc1(y0) that

Dc1(y0) =
∧

A∈LX

S
(

ClX(A), (y0)
←
L (ClY((y0)

→
L (A)))

)
=

∧
A∈LX

∧
x∈X

(
ClX(A)(x)→ ClY((y0)

→
L (A))(y0)

)
.

Since (X, CX) is stratified, we know
∨

z∈X A(z) ∈ CX. Then, for each A ∈ LX and x ∈ X, it follows that

ClX(A)(x) =
∧
{B ∈ LX | A � B ∈ CX} �

∨
z∈X

A(z).
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Furthermore, we have

ClY((y0)
→
L (A))(y0) � (y0)

→
L (A)(y0) =

∨
y0(z)=y0

A(z) =
∨

z∈X
A(z) � ClX(A)(x).

This implies that ClX(A)(x) � ClY((y0)
→
L (A))(y0) for each A ∈ LX and x ∈ X. Therefore,

we have Dc1(y0) = �.

Next, we give another characterizations of degrees of L-continuty for mappings between
L-cotopological spaces.

Theorem 4. Let (X, CX) and (Y, CY) be L-cotopological spaces. Then,

Dc1( f ) =
∧

A∈LX

S
(

ClX(A), f←L (ClY( f→L (A)))
)

.

Proof. By the definition of S, it follows that

S
(

f→L (ClX(A)), ClY( f→L (A))
)

=
∧

y∈Y

(
f→L (ClX(A))(y)→ ClY( f→L (A))(y)

)
=

∧
y∈Y

( ∨
f (x)=y

ClX(A)(x)→ ClY( f→L (A))(y)
)

=
∧

y∈Y

∧
f (x)=y

(
ClX(A)(x)→ ClY( f→L (A))( f (x))

)
=

∧
y∈Y

∧
f (x)=y

(
ClX(A)(x)→ f←L (ClY( f→L (A)))(x)

)
=

∧
x∈X

(
ClX(A)(x)→ f←L (ClY( f→L (A)))(x)

)
= S

(
ClX(A), f←L (ClY( f→L (A)))

)
.

This means

Dc1( f ) =
∧

A∈LX

S
(

f→L (ClX(A)), ClY( f→L (A))
)

=
∧

A∈LX

S
(

ClX(A), f←L (ClY( f→L (A)))
)

,

as desired.

Theorem 5. Let (X, CX) and (Y, CY) be L-cotopological spaces. Then,

Dc1( f ) =
∧

B∈LY

S
(

ClX( f←L (B)), f←L (ClY(B))
)

.
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Proof. ∧
B∈LY

S
(

ClX( f←L (B)), f←L (ClY(B))
)

�
∧

A∈LX

S
(

ClX( f←L ( f→L (A))), f←L (ClY( f→L (A)))
)

�
∧

A∈LX

S
(

ClX(A), f←L (ClY( f→L (A)))
)

= Dc1( f ).

By the definition of S, it follows that

S
(

ClX( f←L (B)), f←L (ClY(B))
)

=
∧

x∈X

(
ClX( f←L (B))(x)→ f←L (ClY(B))(x)

)
=

∧
x∈X

(
ClX( f←L (B))(x)→ (ClY(B))( f (x))

)
�

∧
y∈Y

(
ClX( f←L (B))( f−1(y))→ (ClY(B))(y)

)
�

∧
y∈Y

( ∨
f (x)=y

ClX( f←L (B))(x)→ (ClY(B))(y)
)

=
∧

y∈Y

(
f→L (ClX( f←L (B)))(y)→ (ClY(B))(y)

)
= Dc1( f ).

This implies

Dc1( f ) =
∧

B∈LY

S
(

ClX( f←L (B)), f←L (ClY(B))
)

,

as desired.

In L-cotopological spaces, compositions of L-continuous mappings (resp. L-closed mappings)
are still L-continuous mappings (resp. L-closed mappings). Now, let us give a degree
representation of this result.

Theorem 6. For L-cotopological spaces (X, CX), (Y, CY) and (Z, CZ), the following inequalities hold:
(1) Dc1( f ) ∧ Dc1(g) � Dc1(g ◦ f ).
(2) Db( f ) ∧ Db(g) � Db(g ◦ f ).
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Proof. (1) By Theorem 4, we have

Dc1( f ) ∧ Dc1(g)

=
∧

A∈LX

S
(

f→L (ClX(A)), ClY( f→L (A))
)
∧

∧
B∈LY

S
(

g→L (ClY(B)), ClZ(g→L (B))
)

�
∧

A∈LX

S
(

f→L (ClX(A)), ClY( f→L (A))
)
∧

∧
B∈LY

S
(

ClY(B), g←L (ClZ(g→L (B)))
)

�
∧

A∈LX

(
S
(

f→L (ClX(A)), ClY( f→L (A))
)
∧ S

(
ClY( f→L (A)), g←L (ClZ(g→L ( f→L (A))))

))
�

∧
A∈LX

S
(

f→L (ClX(A)), g←L (ClZ((g ◦ f )→L (A)))
)

=
∧

A∈LX

S
(
(g ◦ f )→L (ClX(A)), ClZ((g ◦ f )→L (A))

)
= Dc1(g ◦ f ).

(2) Adopting the proof of (1), it can be verified directly.

Next, we investigate the connections between degrees of L-continuity and that of
L-closedness.

Theorem 7. For L-cotopological spaces (X, CX), (Y, CY) and (Z, CZ), if g is injective, then the following
inequality holds:

Db(g ◦ f ) ∧ Dc1(g) � Db( f ).

Proof. If g is an injective mapping, then we have g←L (g→L (B)) = B for all B ∈ LY. Then, it follows that

Db(g ◦ f ) ∧ Dc1(g) =
∧

A∈LX

S
(

ClZ((g ◦ f )→L (A)), (g ◦ f )→L (ClX(A))
)

∧
∧

B∈LY

S
(

g→L (ClY(B)), ClZ(g→L (B))
)

�
∧

A∈LX

S
(

ClZ((g ◦ f )→L (A)), (g ◦ f )→L (ClX(A))
)

∧
∧

A∈LX

S
(

g→L (ClY( f→L (A))), ClZ(g→L ( f→L (A)))
)

�
∧

A∈LX

S
(

ClZ((g ◦ f )→L (A)), (g ◦ f )→L (ClX(A))
)

∧
∧

A∈LX

S
(

g→L (ClY( f→L (A))), ClZ((g ◦ f )→L (A))
)

�
∧

A∈LX

S
(

g→L (ClY( f→L (A))), (g ◦ f )→L (ClX(A))
)

=
∧

A∈LX

S
(

ClY( f→L (A)), g←L ((g ◦ f )→L (ClX(A)))
)

=
∧

A∈LX

S
(

ClY( f→L (A)), f→L (ClX(A))
)

= Db( f ).
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Theorem 8. For L-cotopological spaces (X, CX), (Y, CY) and (Z, CZ), if g is surjective, then the following
inequality holds:

Db(g ◦ f ) ∧ Dc1( f ) � Db(g).

Proof. If f is a surjective mapping, then f→L ( f←L (A)) = A for all A ∈ LY. Then, it follows that

∧
B∈LY

S
(

ClZ(g→L (B)), g→L (ClY(B))
)

=
∧

B∈LY

S
(

ClZ(g→L ( f→L ( f←L (B)))), g→L (ClY( f→L ( f←L (B))))
)

�
∧

A∈LX

S
(

ClZ((g ◦ f )→L (A)), g→L (ClY( f→L (A)))
)

�
∧

B∈LY

S
(

ClZ(g→L (B)), g→L (ClY(B))
)

.

This shows∧
B∈LY

S
(

ClZ(g→L (B)), g→L (ClY(B))
)
=

∧
A∈LX

S
(

ClZ((g ◦ f )→L (A)), g→L (ClY( f→L (A)))
)

.

Then, we have

Db(g ◦ f ) ∧ Dc1( f )

=
∧

A∈LX

S
(

ClZ((g ◦ f )→L (A)), (g ◦ f )→L (ClX(A))
)

∧
∧

A∈LX

S
(

f→L (ClX(A)), ClY( f→L (A))
)

�
∧

A∈LX

S
(

ClZ((g ◦ f )→L (A)), (g ◦ f )→L (ClX(A))
)

∧
∧

A∈LX

S
(
(g ◦ f )→L (ClX(A)), g→L (ClY( f→L (A)))

)
�

∧
A∈LX

S
(

ClZ((g ◦ f )→L (A)), g→L (ClY( f→L (A)))
)

=
∧

B∈LY

S
(

ClZ(g→L (B)), g→L (ClY(B))
)

= Db(g).

4. Degrees of L-Continuity and L-Openness for Mappings between L-Topological Spaces

In this section, we mainly define degrees of L-continuity and L-openness to equip each
mapping between L-topological spaces with some degree to be an L-continuous mapping and an
L-open mapping, respectively. Then, we will study their connections in a degree sense.

Definition 9. Let (X, TX) and (X, TY) be L-topological spaces.
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(1) Dc2( f ) defined by

Dc2( f ) =
∧

B∈LY

S
(

f←L (NY(B)),NX( f←L (B))
)

is called the degree of L-continuity for f .

(2) Dk( f ) defined by

Dk( f ) =
∧

A∈LX

S
(

f→L (NX(A)),NY( f→L (A))
)

is called the degree of L-openness for f .

Remark 2. (1) If Dc2( f ) = �, then f←L (NX(B)) � NY( f←L (B)) for all B ∈ LY, which is exactly the
definition of L-continuous mappings between L-interior spaces.

(2) If Dk( f ) = �, then f→L (NX(A)) � NY( f→L (A)) for all A ∈ LX. This is exactly the equivalent
form of L-open mappings between L-topological spaces by means of the corresponding L-interior operators.

Theorem 9. Let (X, TX) and (X, TY) be L-topological spaces. Then,

Dc2( f ) =
∧

x∈X

∧
C∈LY

(
U f (x)

Y (C)→ f (U x
X)(C)

)
.

Proof. ∧
x∈X

∧
C∈LY

(
U f (x)

Y (C)→ f (U x
X)(C)

)
=

∧
x∈X

∧
C∈LY

(
U f (x)

Y (C)→ (U x
X)( f←L (C))

)
=

∧
x∈X

∧
C∈LY

(
NY(C)( f (x))→ NX( f←L (C))(x)

)
=

∧
x∈X

∧
C∈LY

(
f←L (NY(C))(x)→ NX( f←L (C))(x)

)
=

∧
C∈LY

∧
x∈X

(
f←L (NY(C))(x)→ NX( f←L (C))(x)

)
=

∧
C∈LY

S
(

f←L (NY(C)),NX( f←L (C))
)

= Dc2( f ).

Theorem 10. Let (X, TX) and (X, TY) be L-topological spaces. Then,

Dc2( f ) =
∧

�∈FS
L (X)

S
(

LimX�, f←L (LimY f (�))
)

.

198



Mathematics 2019, 7, 1013

Proof. On one hand,∧
�∈FS

L(X)

S
(

LimX�, f←L (LimY f (�))
)

=
∧

�∈FS
L(X)

∧
x∈X

(
LimX�(x)→ f←L (LimY f (�))(x)

)
=

∧
�∈FS

L(X)

∧
x∈X

(
LimX�(x)→ LimY f (�)( f (x))

)
=

∧
�∈FS

L(X)

∧
x∈X

( ∧
A∈LX

(U x
X(A)→ �(A))→

∧
B∈LY

(U f (x)
Y (B)→ f (�)(B))

)
�

∧
�∈FS

L(X)

∧
x∈X

( ∧
B∈LY

(U x
X( f←L (B))→ �( f←L (B)))→

∧
B∈LY

(U f (x)
Y (B)→ f (�)(B))

)
=

∧
�∈FS

L(X)

∧
x∈X

( ∧
B∈LY

(U x
X( f←L (B))→ f (�)(B))→

∧
B∈LY

(U f (x)
Y (B)→ f (�)(B))

)
�

∧
x∈X

∧
B∈LY

(
U f (x)

Y (B)→ U x
X( f←L (B))

)
=

∧
x∈X

∧
B∈LY

(
U f (x)

Y (B)→ f (U x
X)(B)

)
= Dc2( f ).

On the other hand, ∧
�∈FS

L(X)

S
(

LimX�, f←L (LimY f (F))
)

=
∧

�∈FS
L(X)

∧
x∈X

(
LimX�(x)→ f←L (LimY f (�))(x)

)
=

∧
�∈FS

L(X)

∧
x∈X

(
LimX�(x)→ LimY f (�)( f (x))

)
=

∧
�∈FS

L(X)

∧
x∈X

( ∧
A∈LX

(U x
X(A)→ �(A))→

∧
B∈LY

(U f (x)
Y (B)→ f (�)(B))

)
�

∧
x∈X

( ∧
A∈LX

(U x
X(A)→ U x

X(A))→
∧

B∈LY

(U f (x)
Y (B)→ f (U x

X)(B))
)

=
∧

x∈X

∧
B∈LY

(
U f (x)

Y (B)→ f (U x
X)(B)

)
= Dc2( f ).

Therefore, Dc2( f ) =
∧

x∈X
∧

B∈LY

(
U f (x)

Y (B)→ f (U x
X)(B)

)
.

In L-topological spaces, compositions of L-continuous mappings (resp. L-open mappings)
are still L-continuous mappings (resp. L-open mappings). Now, let us give a degree representation
of this result.

Theorem 11. For L-topological spaces (X, TX),(Y, TY) and (Z, TZ), the following inequalities hold:
(1) Dc2( f ) ∧ Dc2(g) � Dc2(g ◦ f ).
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(2) Dk( f ) ∧ Dk(g) � Dk(g ◦ f ).

Proof. (1) By Definition 9, we have

Dc2( f ) ∧ Dc2(g)

=
∧

A∈LY

S
(

f←L (NY(A)),NX( f←L (A))
)

∧
∧

B∈LZ

S
(

g←L (NZ(B)),NY(g←L (B))
)

�
∧

C∈LZ

S
(

f←L (NX(g←L (C))),NY( f←L (g←L (C))))
)

∧
∧

B∈LZ

S
(

g←L (NZ(B)),NY(g←L (B))
)

�
∧

C∈LZ

S
(

f←L (NX(g←L (C))),NY( f←L (g←L (C))))
)

∧
∧

B∈LZ

S
(

f←L (g←L (NZ(B))), f←L (NY(g←L (B)))
)

�
∧

B∈LZ

S
(

f←L (NX(g←L (B))),NY( f←L (g←L (B))))
)

∧S
(

f←L (g←L (NZ(B))), f←L (NY(g←L (B)))
)

�
∧

B∈LZ

S
(

f←L (g←L (NZ(B))),NY( f←L (g←L (B))))
)

=
∧

B∈LZ

S
(
(g ◦ f )←L (NZ(B)),NX((g ◦ f )←L (B))

)
= Dc2(g ◦ f ).

(2) Adopting the proof of (1), it can be verified directly.

Next, we investigate the connections between degrees of L-continuity and that of L-openness.

Theorem 12. For L-topological spaces (X, TX),(Y, TY) and (Z, TZ), if f is surjective, then the following
inequality holds:

Dk(g ◦ f ) ∧ Dc2( f ) � Dk(g).

Proof. Since f is surjective, we have f→L ( f←L (C)) = C for all C ∈ LY. Then, it follows that

∧
B∈LY

S
(

g→L (NY(B)),NZ(g→L (B))
)

=
∧

B∈LY

S
(

g→L (NY( f→L ( f←L (B)))),NZ(g→L ( f→L ( f←L (B))))
)

�
∧

A∈LX

S
(

g→L (NY( f→L (A))),NZ((g ◦ f )→L (A))
)

�
∧

B∈LY

S
(

g→L (NY(B)),NZ(g→L (B))
)

.
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This shows∧
B∈LY

S
(

g→L (NY(B)),NZ(g→L (B))
)
=

∧
A∈LX

S
(

g→L (NY( f→L (A))),NZ((g ◦ f )→L (A))
)

.

Then, we have

Dk(g ◦ f ) ∧ Dc2( f )

=
∧

A∈LX

S
(
(g ◦ f )→L (NX(A)),NZ((g ◦ f )→L (A))

)
∧

∧
B∈LY

S
(

f←L (NY(B)),NX( f←L (B))
)

�
∧

A∈LX

S
(
(g ◦ f )→L (NX(A)),NZ((g ◦ f )→L (A))

)
∧

∧
A∈LX

S
(

g→L (NY( f→L (A))), (g ◦ f )→L (NX(A))
)

�
∧

A∈LX

S
(

g→L (NY( f→L (A))),NZ((g ◦ f )→L (A))
)

=
∧

B∈LY

S
(
NZ(g→L (NY(B)), g→L (B))

)
= Dk(g).

Theorem 13. For L-topological spaces (X, TX),(Y, TY) and (Z, TZ), if f is injective, then the following
inequality holds:

Dk(g ◦ f ) ∧ Dc2(g) � Dk( f ).

Proof. Since g is injective, we have g←L (g→L (C)) = C for all C ∈ LY. Then, it follows that

Dk(g ◦ f ) ∧ Dc2(g)

=
∧

B∈LX

S
(
(g ◦ f )→L (NX(B)),NZ((g ◦ f )→L (B))

)
∧

∧
C∈LZ

S
(

g←L (NZ(C)),NY(g←L (C))
)

�
∧

B∈LX

S
(

g→L ((g ◦ f )→L (NX(B))), g→L (NZ((g ◦ f )→L (B)))
)

∧
∧

B∈LX

S
(

g←L (NZ((g ◦ f )→L (B))),NY(g←L ((g ◦ f )→L (B)))
)

=
∧

B∈LX

S
(

f→L (NX(B),NY( f→L (B)))
)

= Dk( f ).

Theorem 14. Suppose that L is a frame with an order-reversing involution ′, where a′ = a → ⊥ for
a ∈ L. For an L-topological space (X, T ), C = {B|B′ ∈ T } is an L-cotopology and Cl(B) = (N (B′))′.
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Proof. It is easy to verify that C is an L-cotopology and Cl(A) = (N (A′))′.

Theorem 15. Suppose that L is a frame with an order-reversing involution ′, where a′ = a → ⊥ for
a ∈ L. For L-topological spaces (X, TX) and (Y, TY), Dc1( f ) = Dc2( f ).

Proof. By Theorems 5 and 14,

Dc1( f ) =
∧

B∈LY

S
(

ClX( f←L (B)), f←L (ClY(B))
)

=
∧

B∈LY

S
(
(NX( f←L (B′)))′, f←L ((NY(B′))′)

)
=

∧
B∈LY

S
(

f←L (NY(B′)),NX( f←L (B′))
)

=
∧

B∈LY

S
(

f←L (NY(B)),NX( f←L (B))
)

= Dc2( f ).

5. Conclusions

In this paper, we equip each mapping between L-cotopological spaces with some degree
to be an L-continuous mapping and an L-closed mapping, and equip each mapping between
L-topological spaces with some degree to be an L-continuous mapping and an L-open mapping.
From this aspect, we could consider the degrees of L-continuity, L-closedness and L-openness
for a mapping even if the mapping is not a continuous mapping, a closed mapping or an open
mapping. By means of these definitions, we proved that the degrees of L-continuity, L-closedness
and L-openness for mappings naturally suggest lattice-valued logical extensions of properties
related to continuous mappings, closed mappings and open mappings in classical topological
spaces to fuzzy topological spaces. Moreover, if L is a frame with an order-reversing involution ′,
where b′ = b → ⊥ for b ∈ L, then degrees of L-continuity for mappings between L-cotopological
spaces and degrees of L-continuity for mappings between L-topological spaces are equivalent.

As future research, we will consider the following two problems:
(1) By means of the degree method, we can also define the degrees of some topological

properties. For example, we can use the convergence degree of a fuzzy ultrafilter to define the
compactness degree of an L-topological space.

(2) Based on the degrees of L-continuity, L-openness and L-closedness for mappings, we can
further define the degrees of L-homeomorphism in a degree. We only need to equip a bijective
mapping with the degrees of L-continuity and L-openness.
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Abstract: Nowadays, along with increasing companies’ activities, one of the main environmental
protective tools is green supply chain management (GSCM). Since fast-moving consumer goods
(FMCG) companies are manufacturing materials that usually require special warehousing as well
as different distribution systems, and since companies of food products tend to fall into this area,
the safety of their manufactured materials is a vital global challenge. For this reason, organizations in
addition to governments have realized the importance of the green supply chain in these industries.
Therefore, the present study examines the key performance indicators (KPIs) of the green supply chain
in the FMCG industry. There are several performance indicators for the green supply chain. In this
study, the KPIs were extracted based on the literatures as well as the opinions of experts through
which key indicators in FMCG industries were identified. Using the fuzzy decision -making trial and
evaluation laboratory (DEMATEL) method, the relationships and interactions of these key indices
were determined. Moreover, a fuzzy nonlinear mathematical modeling was used to investigate the
significance of these indicators. It is revealed that the organizational environmental management
factor has the highest priority.

Keywords: performance management; green supply chain; decision making; nonlinear mathematical
modeling; FMCG industries; fuzzy DEMATEL

1. Introduction

Recently, due to growing consumers’ demands for green products without harming the
environment, the concept of green supply chain has emerged. The green supply chain not only
includes environmental consciousness in business, it also guarantees the sustainable development of
industries. To this end, various measures have been taken by governments and organizations to address
this issue [1]. These include enforcing green laws and using eco-friendly raw materials, reducing
the use of fossil and petroleum resources, recycling papers, reusing waste, etc. in organizations.
The successful adoption as well as accomplishment of green ideas in supply chain business activities
is such that its prospects are not easily visible. Therefore, the activities and products of the green
supply chain are at different risks [2]. For this reason, accurate management and understanding of the
green supply chain is of paramount importance and it will be necessary to focus on developing useful
responsibilities and strategies that are effective in successfully implementing the green supply chain.
Organizations help to control green supply chain risks by reducing waste, evaluating suppliers based
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on environmental performance, increasing production of environmentally friendly products, and other
performance parameters related to green activities [3]. Optimizing the amount of energy used in
the product life cycle has also become a very important issue for organizations [4]. Because of the
importance of the subject as well as raising the general awareness of technologies applied in production
and distribution of products in addition to the importance of goods produced in the FMCG, it seems a
fundamental need to use green methods in the supply chain. It is widely recognized that the FMCG
represents a key industry to provide an enormous volume of human daily demanding in which all
individuals not considering the age, gender and boundaries are involved. The FMCG industry mainly
consists of processed foods, prepared meals, beverages, fresh or frozen and dry foods, medicines,
cosmetic products, and other non-durable products. Due to the size of this industry, its greener supply
chain can lead to sustainable development and meeting the environmental standards. For this reason,
green supply chain managers at leading companies in the FMCG industry strive to utilize green
logistics and improve their environmental performance throughout the supply chain as a strategic
weapon to gain competitive advantage [5]. Therefore, understanding the types and evaluation of KPI
to improve the performance of the green supply chain can be extremely important research on this area.
However, always exploring green solutions in different industries individually can be an effective way
to make the industry more successful. It may be noted that there is little research that focus on KPIs for
the implementation of green supply chain and no work has been done in foods and pharmaceutical
parts of FMCG industries as the main sectors of these industries. Moreover, the concept of KPIs in
green supply chain of the FMCG industries in Iran has not been academically investigated yet and as
one the most important supply chains, it should be considered to be a major concern.

In this regard, the current study has attempted to evaluate key indicators of performance for
green supply chain in FMCG industries (here are exclusively food and pharmaceutical industries).
To this end, first, literature on the subject is briefly reviewed and then the key indicators affecting
the green supply chain in these companies is extracted based on the literature as well as utilizing the
views of experts. Afterwards, using the fuzzy decision method, the internal effects of these indicators
are investigated and finally, these indicators are prioritized by using nonlinear fuzzy modeling, as a
fuzzy analytic hierarchy process (AHP)-based method that was easy to use, despite the complexity
and nonlinearity of the constraints. The rest of the paper is organized as follows. Section 2 presents a
review of the literature in terms of FMCG industries and green supply chains. Section 3 presents the
green supply chain KPIs. Section 4 illustrates the MCDM and non-linear fuzzy mathematical modeling
to analyze the KPI. The obtained findings will be discussed in Section 5, and lastly, the conclusions are
presented in Section 6.

2. Literature Review

In order to assess KPIs of green supply chain systems in foods and pharmaceutical industries
of FMCG sectors, a brief review regarding FMCG industries as well as green supply chain have
been presented.

2.1. FMCG Industries

FMCG refer to those products that are sold rapidly at a rather low cost case of low margin–high
volume [6,7]. The FMCG industry trades in commodities that are classified as essential products [8].
Typically, FMCG consist of non-durable products that are not limited to general groceries, beverages
and beauty, skin care, and cosmetics. However, we focus on the FMCG supply chain in foods and
pharmaceutical components as an application example.

The FMCG industry comprises a big part of budget of consumers in all countries [9]. The level
of involvement can further be considered as how serious a consumer is in purchasing a product and
how much information they require during their decision-making process. Therefore, a functioning
retail sector is crucial for daily provision of essential products at high quality and low cost [10].
Thus, since many people are frequently buying these products, the cost that households pay for
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FMCG product categories is very significant, in light of the fact that products in the FMCG industry
are short-lived and highly manufactured in terms of volume and variety. Therefore, there is an
increasing pressure on retailers to simultaneously control cost and improve customer service [11] while
reducing the environmental impact of their activities [12]. The FMCG industry primarily focuses on
manufacturing, packaging goods, distributing, and some of fundamental activities including sales and
marketing, financing, and purchasing [13] and it is found that the share of the FMCG industries in
gross domestic product (GDP) is significant [14]. In the last few decades, the FMCG supply chain has
faced more challenges due to increasing a tendency towards more demanding service level leading to
higher delivery frequencies with smaller shipments sizes and consequent fragmentation of flows [11].
In addition, the FMCG environment is unpredictable and known as the most difficult part of the boom
because commodities look similar without real competitive advantage and consumers tend to place a
lot of values on different brands. In this industry, competition between competitors is always fierce,
and the battle for market share continues [15]. Therefore, efforts for increasing the efficiency level of
the FMCG supply chain have been undertaken with alternative transport solutions such as intermodal
transport [16]. Colicchia et al. [9] investigated how intermodal transport in the Italian FMCG can be
adopted for managing a lean and green supply chain by proposing a scenario-based estimation tool
of the potential demand for intermodal transport. Singh and Acharya [17] identified supply chain
flexibility dimensions from literature and field survey and they applied DEMATEL method to evaluate
the flexibility dimension in Indian FMCG sector. Craggs [18] studied the impact of GSCM in the South
African FMCG sector by presenting a “green supply chain maturity assessment questionnaire” as a
potential answer to this need. Schoeman and Sanchez [19] investigated status quo concerning the
environment and the human impact on its sustainability emphasizing on the green supply chain in
FMCG industries in South Africa.

The green supply chain approach seems particularly relevant to the FMCG sector where identifying
the performance indicators can potentially ensure significant benefits. Therefore, it is necessary
to investigate the challenges factors and KPIs of foods and pharmaceutical companies with the
consideration of green supply chain perspective.

2.2. Green Supply Chain

The rise of government regulations to meet environmental standards and growing consumer
demand for green products has led to the emergence of the concept of GSCM, which encompasses
the product life cycle from design to recycling. In recent years, GSCM as a significant approach for
enterprises to be environmentally sustainable has attracted lots of attentions within both academia and
industry. Among these industries, FMCG ones especially those related to foods and pharmaceutical,
involves some crucial functions such as procurement, production, processing, and storage in the
intermediate and final phases. In order to improve the competitiveness and profit, it was proved
that supply chain management integrates internal operational activities with external customer
demands [20]. Additionally, it was revealed that GSCM is the process of incorporating environmental
criteria into business activities and the main point in supply chain greening is that it starts with
establishing demand for greener products [21]. It was also indicated that the success of GSCM
initiatives depends on proactivity and communion among supply chain members to ensure that
environmental impact of the manufacturing and delivery of products and services is minimized [22].
Acevedo [23] examined contributions of interdisciplinary research to understanding interactions
between environmental quality, food production, and food security. It was perceived that linking the
geospatial, biotechnological, and precision agriculture technologies with the implemented models
leads to achieving sustainable food production increases that maintain environmental quality. Dharni
and Sharma [24] studied the status of supply chain management in food processing industry of Punjab
state of India. It was revealed that logistics and supply chain management is still in its infancy in
food processing sector in addition to not considering as a separate area of management. Gardas
et al. [25] applied an interpretive structural modeling approach to establish the causal factors of the
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post-harvesting losses in the Indian context. They found that the lack of linkages between industry,
government, and institution is the most significant factor. Liang et al. [26] indicated that it is crucial
to evaluate the performance of GSCM in the entire supply chain. Akkerman et al. [27] reviewed
quantitative operations management approaches to food distribution management, and relate this to
challenges faced by the industry.

The main activities in GSCM are considered as green design, green purchasing, green
manufacturing, and green transportation, which have attracted lots of attention in studies. Green
design aims to design the products with enhanced biological quality that minimizes the harmful
effects on the ecosystem [28,29], green purchasing presents procurement of environmentally preferable
products and services [30–32], green manufacturing is introduced as a manufacturing process leading
to lessening environmental impact [33–35], and green transportation refers to those ones that do
not depend on diminishing natural resources [36]. Lin [37] investigated the criteria that affect
GSCM practices—namely practices, performances, and external pressures—to raise awareness of
environmental protection through green design, green purchasing, etc. Moreover, von Malmborg [38]
argued that an environmental management system can be understood not only as a technical tool
for analytical management but also as a tool for communicative action and organizational learning.
Carpitella et al. [39] discussed organizational risk assessment in industrial environments by employing
decision-making trial and evaluation laboratory method. Zhu and Sarkis [40] declared that GSCM
tended to have win-win relationships in terms of environmental and economic performances in
addition to providing an insight into the growing field of the relationship between environmental and
operational practices and performance. They applied modified hierarchical regression methodology
to test the various hypotheses. Chung et al. [41] examined the relationships between internal green
practices, external green integration, green performance, and firm competitiveness in container shipping.
Zhu et al. [42] investigated the correlation of major factors including organizational learning and
management support for adopting GSCM. In order to compare organization characteristics of the two
groups of respondent manufacturer, they employed Chi-Square test. Chung and Wee [43] developed
an integrated inventory model with green component life cycle value design and remanufacturing
considering the relevant price once implementing JIT delivery. Moreover, they implemented sensitivity
analysis on the proposed time-weighted inventory deteriorating model. Yeh and Chuang [44]
introduced some green criteria and developed an optimal arithmetical designing model for green partner
selection including value, time, merchandise quality, and green appraisal score. Saif and Elhedhli [45]
modeled the cold supply chain design problem as a mixed-integer concave minimization problem
with dual objectives of minimizing the total cost—including capacity, transportation, and inventory
costs—and the global warming impact through the use of a hybrid simulation-optimization approach.
Bhateja et al. [46] discussed various environmental factors affecting in the manufacturing sectors and
help them assess green future by considering GSCM including 17 indicators and 33 sub-indicators in
which survey based on questionnaire has been utilized to collect data. Toke et al. [47] examined the
measurement model of GSCM practices implementations focusing on 19 performance measure factors
and applied AHP for determining relative importance and selecting appropriate approach in GSCM
practice. Sharma et al. [48] suggested 13 indicators and 79 sub-indicators for implementation of GSCM
in agro industry in which the quantitative phase was carried out through a survey using standard
questionnaire with various agro based companies. Considering mentioned researches, it may be noted
that there are still a few number of investigations that concentrate on KPIs for the implementation of
GSCM and no work has been done in foods and pharmaceutical parts of FMCG industries.

3. Green Supply Chain KPI in FMCG’s

The KPIs were explored within reviewing the literature on GSCM as well as in-depth interviews
with FMCG industry experts. The expert team consisted of 18 specialists of supply chain FMCG
considering foods and pharmaceutical companies in Iran and 7 university professors of supply chain
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management department. Then, through reviewing the literature and after discussion with experts,
12 KPIs have been identified and expressed as follows:

• Green purchasing; Since customer demands for environment-friendly or green products is
increasing, green purchasing concentrates on cooperation from the suppliers to develop these
eco-friendly products. Green purchasing is concerned with using eco-friendly raw materials,
reuse of materials, recovery of waste, green management practices, green production processes,
etc. to integrate their environmental goals. Moreover, some sub-indicators in green purchasing
can be considered such as supplier’s environmental management system, eco-labeling products
as well as enough eco-labeling information for consumers and collaboration with suppliers and
vendors for environmental targets. In addition, increasing recyclable packaging by suppliers in
order to meet the desired health and environmental objectives.

• Green manufacturing; It focuses on environmental friendly procedures alongside energy
efficient technologies through manufacturing stage of products. So, some certain environmental
consciousness, for instance decreasing the energy consumption, employing efficient environmental
management plans, etc. is considered in green manufacturing. Furthermore, some sub-indicators
can be included such as system for waste minimization, impact of green manufacturing on brand
image, following 3Rs—i.e., Recycle, Re-manufacture, Reuse—in addition to reduction in material
cost after performing green procedures.

• Green design; It refers to design issues considering the choice of raw material, pollution prevention,
design of packaging as well as redesign, conservation of resource and waste management.
Additionally, life-cycle analysis is significant in view of green design concept. So, it is considered
to minimize the material and energy consumption, recycle the components in addition to decreasing
the usage of hazardous and toxic materials. Moreover, product designing for storage area during
the transportation is should be taken into account.

• Green transportation; it refers to strategies for reducing transportation and warehousing cost
as well as improving the environmental performance, considering various aspects such as
sources of pollution in addition to diminishing level of fossil fuel and dependency on oil energy.
Considering the effect of material, shape, and size of packaging in transportation, reducing
packaging material and standardizing packaging which leading to transportation cost reduction
are some of sub-indicators that can be considered in this level.

• Organizational environmental management; The engagement of greatest management supporting
by other employees are really important to effectively implement the GSCM. There can be some
sub-indicators in this category such as considering systems to track environmental laws and
directives, documented procedure to implement curative action plan in addition to top and middle
level management commitment for GSCM.

• Collaboration between customers and suppliers; A cooperation between suppliers and customers
in addition to involving vendors in design phase of GSCM is an essential factor to improve the
quality of the products. Furthermore, sharing of GSCM objectives with suppliers and vendors as
well as having a structure of information sharing with suppliers and consumers can be considered
in this indicator category in addition to taking collaboration from customer for greener production
as well as green purchasing into account.

• Environmental performance; It refers to the capability of an organization to minimize various
types of pollution and reduce the consumption of toxic substances. As sub-indicators, ability of
GSCM to diminish emissions, effectiveness of the system to reduce water and solid pollutants, in
addition to the extent to which GSCM reduces harmful material can be considered.

• Economic performance; It correlates to the economic improvement reflecting through the cost
reduction in material purchasing, cost reduction connected with penalties for environmental
accidents, energy consumption by GSCM as well as waste treatment and discharge. Furthermore,
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it should be noticed that whether GSCM create quest for innovation and has GSCM increased
income for the company?

• Operational performance; It refers to the enterprise’s ability in order to efficiently produce and
deliver the products to the customers, considering the number of products that timely delivered,
decreasing scrap rate and inventory levels. Improvements in capacity utilization after GSCM
implementation in addition to increased brand loyalty by consumers are some sub-dedicators that
should be taken into account. Moreover, it should be noticed that up to what extent GSCM can
enhance public relations.

• Competitive pressure; In light of the competitive marketplace, it is essential for organizations
to grab the particular product’s environmental impact through the implementation of the green
practices. Some subsets including extent to which brand image is a major concern, effect of
green schemes of competitors to implement GSCM and increase in interest of top managers by
competitive green practices can be taken into account in this KPI.

• Regulatory pressure; The pressure from the government, customers and the stockholders is needed
for the adoption and accomplishment of GSCM. Therefore, policies of the state government play a
significant role in organizations to start up with green commencements.

• Cold storage; Regards the use of eco-friendly refrigerants in the cold storage rooms and warehouses
as well as transportation vehicles in order to provide cold chain services as a crucial part in
newly developing markets of foods and pharmaceutical industries. Due to the high energy waste
and refrigerant gas leakages, green cold supply chains can be considered as a crucial factor in
minimization of environmental problems.

The mentioned indicators, according to experts’ opinions and based on the essence of the individual
indicators, are decided to classify into three main branches. These main categories of indicators consist
of environmental, executive, and strategic indicators, as given by Table 1.

Table 1. Performance indicators.

C11 Organizational environmental management
Environmental Indicators

C1
C12 Competitive pressure
C13 Regulatory pressure

C21 Green design

Executive Indicators
C2

C22 Green purchasing
C23 Green manufacturing
C24 Cold storages
C25 Green transportation

C31 Operational performance
Strategic Indicators

C3

C32 Economic performance
C33 Environmental performance

C34
Collaboration between customers and

suppliers

4. Research Methodology

The research method applied in the current study is a survey research. In terms of purpose,
this study is applied because it seeks to introduce and apply fuzzy nonlinear mathematical modeling
to rank the KPIs of the GSCM in FMCG industries. Solutions are also provided to understand the
internal effects of these key performances. The research data were collected through library studies
as well as the opinions of active experts in the field under study. The analysis in this study was
carried out using questionnaires sent to specialists active in the supply chain of FMCG companies.
The main categories and KPIs have been validated using the opinion of the academic professors. In this
regard, according to experts’ opinion, fuzzy logic is considered as one the best approaches to increase
the accuracy of the questionnaires and due to using linguistic variables, the close indicators can be
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distinguished and therefore they can be clearly assessed. The scope of this research is the supply chain
of FMCG companies (three pharmaceutical and seven food companies) in Iran. The solution methods
are conceptual modeling and fuzzy decision making method in order to investigate the internal effect
of indicators. In addition, a group fuzzy preference programming method is applied to understand
the importance of indicators and their ranking. In order to converge the answers for the reliability of
the questionnaires, we tried to monitor the dispersion of the experts’ answers visually. In summary,
the evaluation framework of this research consists of four stages as follows:

Step 1: Identifying and evaluating KPI in the green supply chain. In the present study, firstly,
by using the literature review of the subject and related articles in the scientific databases of the world,
an attempt was made to extract KPIs in the supply chain. Then, employing the views of supply
chain experts (in pharmaceutical and food companies), three categories (environmental, executive,
and strategic) were selected as key performance categories in the green supply chain and KPI were
also identified.

Step 2: Creation of hierarchical structure of decision making. At this stage, hierarchical structure
of the decision was determined using objective, criteria, and option levels (Table 1).

Step 3: Determination of internal relationships between indicators. In order to understanding
how various indicators affect each other, the fuzzy DEMATEL is used.

Step 4: Calculating weight of indicators using group fuzzy preference programming method.
In this study, a fuzzy nonlinear mathematical model will be used to rank the indicators based on
pairwise comparisons in the AHP method. Therefore, consensus matrices of fuzzy judgments are
formed based on decision makers’ views. It is therefore necessary to use fuzzy numbers in explaining
people’s preferences and opinions.

In the following, we describe the decision making methods used in this study.

4.1. DEMATEL Method

DEMATEL method was first created at Science and Human Affairs Program of the Battelle
Memorial Institute of Geneva. Since then, it has been widely used in many fields of studies such
as evaluating core competencies, decision-making, knowledge management, operations research,
and technology research [49]. The most important feature of the DEMATEL method that has been
used in MCDM is the possibility of specifying the interrelationships between criteria. The DEMATEL
method structure and the relevant calculation procedures can be expressed as follows:

Step 1: Constructing the direct-relation matrix. In order to evaluate the relationship between
factors i and j, the comparison scale is needed to define as an integer in the range of 0 to 4 in which
0 refers to no influence, 1 refers to low influence, 2 defines the average one, 3 describes the high
influence, and 4 represents the very high influence. The integer score xi

i j is given by the kth expert
where 1 ≤ k ≤ H and H refers the number of experts. It shows the degree to which the criterion i affects
the criterion j. Thus, the n× n matrix A can be computed by averaging individual expert’s scores as
written by

aij =
1
H

H∑
k=1

xk
ij (1)

Step 2: Normalization of the direct-relation matrix. Based on the direct-relation matrix A,
the normalized direct-relation matrix D can be calculated as given by

s = max

⎛⎜⎜⎜⎜⎜⎜⎝max
1≤i≤n

n∑
j=1

aij, max
1≤j≤n

n∑
i=1

aij

⎞⎟⎟⎟⎟⎟⎟⎠ (2)

D =
A
s

(3)
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It should be noted that the sum of each rows of matrix A such as I (I is the identity matrix) indicate

the direct effect of whole factor i applied to other factors. Therefore, max
1≤i≤n

n∑
j=1

aij indicates the direct

effects of total factor with the most direct effect on other factors and max
1≤j≤n

n∑
i=1

aij shows the most direct

effect of total factors received from other factors. Matrix D is obtained by dividing each elements of the
matrix A by the s and each element of which is between 0 to 1.

Step 3: Calculating the total-relation matrix. After obtaining the normalized direct-relation D,
the total-relation matrix T can be written as

T = D(I −D)−1 (4)

T = [ti j]n×n i, j = 1, 2, 3, . . . , n (5)

Step 4: constructing a cause and effect diagram. Sum of the rows is represented by vector r and
sum of columns is denoted by vector c. The horizontal axis of vector (r + c), known as ‘prominence’,
describes the importance of the criterion and similarly, the vertical axis (r − c), known as ‘relation’,
divides criteria into a causal group and an effect group. According to the previous statements, a factor
can be considered as causal if (r − c) is positive, and the factor is effect when (r − c) is negative. Thus,
the cause and effect diagram can be achieved by mapping the dataset of (r + c, r − c). Vectors r and c
can be expressed by

r =

⎡⎢⎢⎢⎢⎢⎢⎣ n∑
j=1

ti j

⎤⎥⎥⎥⎥⎥⎥⎦
n×1

= [ti]n×1 (6)

c =

⎡⎢⎢⎢⎢⎢⎢⎣ n∑
j=1

ti j

⎤⎥⎥⎥⎥⎥⎥⎦
′

1×n =
[
tj
]
n×1

(7)

Step 5: Determining the threshold value. In many studies, in order to illustrate the structural
relationship between the factors, while maintaining the complexity of the system at the manageable
level, it is necessary to determine the threshold value of α in order to filter out only the negligible
effects on T matrix. Threshold value α is determined by experts to set up the minimum value of
influence level. When the correlative value in the matrix T is smaller than α, an influence relationship
between two elements will be excluded from the map.

4.2. Fuzzy Logic

Most decisions in the real world are inaccurate due to the inaccuracy of understanding the goals,
constraints, and possible actions. In light of a fuzzy environment, when a decision is made the results
are highly influenced by personal judgments that can be ambiguous and inaccurate. Inaccurate sources
can include non-quantifiable information, incomplete information, inaccessible information, and partial
ignorance [50]. In order to find out a way to solve the problem of this inaccuracy, fuzzy set theory as a
mathematical tool was proposed by Zadeh [51] in 1965 to deal with information uncertainty in decision
making process. Since then, this theory has been well developed and has found many successful
applications. In fuzzy logic, any number between 0 and 1 represents a part of truth, while in definite
sets working with binary logic only two values of 0 and 1 are available.

Thus, fuzzy logic can express inaccurate and imprecise judgments and act mathematically with
them [52]. Utilizing the conventional quantification make it difficult to express reasonably the
very complicated situations, so using the linguistic variable concept is necessary in such situations.
A linguistic variable is a variable whose value has the form of a phrase or sentence in natural language.
Linguistic variables are also very functional in dealing with situations described in quantitative terms
because these variables’ values are linguistic expressions instead of numbers. In practice, linguistic
values can be represented using fuzzy numbers, the most common of which are triangular fuzzy
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numbers (TFN). A triangular fuzzy number Ã is defined by [(L, M, U)] where L and U are respectively
top and bottom boundary of Ã as shown in Figure 1. In addition, the fuzzy linguistic scale is shown
in Table 2. The fuzzy number A on R is a triangular fuzzy number when the membership function
μÃ(x) : R→ [0, 1] is given by

μÃ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x− L)/(M− L), L ≤ x ≤M
(U − x)/(U −M) M ≤ x ≤ U

0 otherwise
(8)

Figure 1. Membership function of triangular fuzzy numbers.

Table 2. Fuzzy linguistic scale.

Linguistic Terms Triangular Fuzzy Numbers

Very high influence (VH) (0.75, 1.0, 1.0)
High influence (H) (0.5, 0.75, 1.0)
Low influence (L) (0.25, 0.5, 0.75)

Very low influence (VL) (0, 0.25, 0.5)
No influence (No) (0, 0, 0.25)

4.3. Application of Fuzzy Logic in DEMATEL Method

One of the issues with using the DEMATEL method is to obtain the direct effect size between the
two factors. The size of these concessions is always obtained by using expert surveys; but in many
cases people’s judgment in decision making is unclear and cannot be measured using precise numerical
values; therefore, it is necessary to use fuzzy logic in dealing with issues that are ambiguous and
inaccurate. To employ fuzzy logic in DEMATEL method, experts should first be asked to respond on
the basis of defined linguistic variables (presented in Table 2) as pairwise comparisons to determine the
effect of factors on each other. To overcome the ambiguities of human evaluations, the linguistic variable
of ‘influence’ is used through the five expressions of very high, high, low, very low, and none, described
as positive triangular fuzzy numbers (li j, mij, rij). After obtaining expert opinions, we calculate the
fuzzy mean matrix using fuzzy averaging. Then using the existing equations to convert the fuzzy
values into the non-fuzzy numbers, matrix of the final mean values is calculated.

Therefore, if we have p responders, we will have fuzzy matrices as much as respondents. Now we
calculate the fuzzy mean matrix, so we will have

z̃ =
(̃z1 + z̃2 + . . .+ z̃p)

p
(9)

The z̃ matrix is called the fuzzy primary relation matrix or the intermediate fuzzy matrix, which is
represented as

z̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 z̃12 · · · z̃1n

z̃21 0 · · · z̃1n
...

...
. . .

...
z̃n2 z̃n2 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)
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Now by using a deffuzication method, initial direct-relation matrix can be achieved. In order
to transform TFN numbers to crisp values, we use converting fuzzy data into crisp scores (CFCS)
defuzzication method [52]. In this method the final value is defined as average weight in accordance
with the membership function. If (li j, mij, rij) indicates the effect of criterion i on the criterion j in the
fuzzy matrix of the direct relation, then the CFCS method can be summarized in the following steps:

The first step is normalization

xlij = (li j −min li j)/Δmax
min (11)

xmij = (mij −min li j)/Δmax
min (12)

xrij = (rij −min li j)/Δmax
min (13)

where
Δmax

min = max rij −min li j (14)

In the second step, we calculate the values on the right and left

xlsij = xmij/(1 + xmij − xlij) (15)

xrsij = xrij/(1 + xrij − xmij) (16)

In the third step, we calculate the total normalized definite value

xij = [xlsij(1− xlsij) + xrsij]/[1− xlsij + xrsij
}

(17)

In the last step we calculate the final definitive value

zij = min li j + xijΔmax
min (18)

4.4. Non-Linear Fuzzy Prioritization

In this section, a non-linear method for KPI prioritization is proposed in order to find directly
crisp values of priorities from a set of comparison judgments, represented as triangular fuzzy numbers
(as shown in Figure 1) [53]. We want to find a crisp priority vector so that the ratios almost satisfy the
fuzzy initial judgments of ãi j = (li j, mij, uij) or

li j≤̃wi
wj
≤̃uij (19)

where the symbol ≤̃ refers to the statement of fuzzy less or equal to.
In order to handle the above inequalities easily, they can be defined as a set of single-side fuzzy

constraints as follows
wi −wjuij≤̃0
−wi + wjli j≤̃0

(20)

The set of 2m fuzzy constraints can be written in a matrix form as

Rw≤̃0 (21)

in which the matrix R ∈ 	2m×n.
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Then for each fuzzy judgment, a membership function can be constructed that is linear with
respect to wi/wj and can be given by

μi j

(
wi
wj

)
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(

wi
wj
−li j

)
mij−li j

wi
wj
≤ mij

uij−
(

wi
wj

)
uij−mij

wi
wj
≤ mij

(22)

Function (22) is linearly increasing over the interval (−∞, mij) and linearly decreasing over the
interval (mij,∞). It takes negative values when wi/wj < li j or wi/wj > uij and has a maximum value
μi j = 1 at wi/wj = mij. Over the range (li j, uij) the membership function (22) coincides with the fuzzy
triangular judgment ãi j = (li j, mij, uij).

Function (22) is non-linear with respect to the decision variables, but provides a fuzzy feasible
area, linear in these ratios. We can define a fuzzy feasible area on (n − 1)-dimensional simplex (23)
as the intersection of all membership functions (22) and apply a max–min-approach for finding the
maximizing solution.

Qn−1 =
{
(w1, . . . , wn)|wi > 0, w1 + . . .+ wn = 1

}
(23)

This leads to the following non-linear optimization problem

max λ
s.t : (mij − li j)λwj −wi + li jwj ≤ 0

(uij −mij)λwj + wi − uijwj ≤ 0
n∑

k=1
wk = 1

wk > 0 , k = 1, 2, . . . , n ; i = 1, 2, . . . , n− 1 ; j = 2, 3, . . . , n ,
j > i

(24)

The solution of the above non-linear problem (24) needs some appropriate numerical method for
non-linear optimization to be employed.

To use the function (24), the pairwise comparisons matrix will be obtained by using AHP
method [54] and by integrating expert opinions. Fuzzy linguistic scales will be used to obtain expert
opinions. These linguistic scales for the matrix of pairwise comparisons and their fuzzy equations are
shown in Table 3. The optimum positive value of the indicator in this function (24) reveals that all
weight ratios are completely true to the original judgment. However, if the indicator is negative, it can
be seen that fuzzy judgments were strongly incompatible.

Table 3. Linguistic scales for pairwise comparisons and their fuzzy equivalents.

Triangular Fuzzy Scales Linguistic Values for Pairwise Comparisons

Verylow (1,2,3)
Low (2,3,4)

Medium (3,4,5)
High (4,5,6)

Very high (5,6,7)

5. Research Findings

5.1. Internal Relationship and Severity of Impact between Performance Indicators

In this study, in order to investigate the internal effects of performance indicators, fuzzy DEMATEL
method was employed. To this end, 50 questionnaires were sent to specialists working in the FMCG
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industry, among which 40 questionnaires were completed and came to us. To examine effective internal
relationships, experts were asked to state their theories about the impact of each performance indicator
on the other ones, based on linguistic options and triangular fuzzy positive numbers (as shown by
Table 2) through paired comparisons between the factors obtained from the research. The fuzzy direct
relation matrix was formed for the performance indicators as presented in Tables 4 and 5.

Table 4. Fuzzy direct relation matrix between the main categories.

C1 C2 C3

L M U L M U L M U

C1 0 0 0 0.8 0.6 0.4 0.85 0.75 0.25
C2 0.8 0.75 0.35 0 0 0 0.85 0.75 0.55
C3 0.5 0.2 0.15 0.5 0.25 0 0 0 0

Table 5. Fuzzy direct relationship matrix between performance indicators.

C11 C12 C . . . 1 C33 C34

L M U L M U . . . L M U L M U

C11 0 0 0 0.8 0.45 0.3 . . . 0.65 0.35 0.1 0.95 0.45 0.15
C12 0.9 0.95 0.45 0 0 0 . . . 0.85 0.6 0.35 0.7 0.35 0.25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C33 0.75 0.85 0.45 0.9 085 0.3 . . . 0 0 0 0.9 0.85 0.50
C34 0.7 0.65 0.35 0.9 0.6 0.45 . . . 0.2 0.85 0.45 0 0 0

1 The table is summarized.

In Tables 6 and 7, the general fuzzy relationship matrix for the main categories and performance
indicators are demonstrated, respectively.

Table 6. Total fuzzy relation matrix for the main categories.

C1 C2 C3

L M U L M U L M U

C1 0.9 0.5 0.13 1.2 0.44 0.23 1.2 0.55 0.34
C2 1.35 0.6 0.43 1.1 0.45 0.1 1.3 0.77 0.45
C3 1.13 0.24 0.11 0.45 0.23 0.04 0.65 0.22 0.07

Table 7. Total fuzzy relation matrix for performance indicators.

C11 C12 C . . . 1 C33 C34

L M U L M U . . . L M U L M U

C11 0.11 0.1 0.06 0.23 0.2 0.07 . . . 0.2 0.11 0.09 0.21 0.11 0.08
C12 0.25 0.13 0.05 0.2 0.1 0.04 . . . 0.2 0.13 0.07 0.22 0.13 0.07

C
. . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C33 0.25 0.14 0.1 0.2 0.14 0.12 . . . 0.15 0.12 0.04 0.18 0.2 0.07
C34 0.26 0.16 0.1 0.24 0.13 0.1 . . . 0.2 0.18 0.12 0.17 0.2 0.07

1 The table is summarized.

To compile the relationship map, the sum of the elements of the columns and rows of total matrix
for the main categories as well as the KPIs were calculated. These values are nominated as effective (R)
and Influential (D) vectors. The results are shown in Table 8.
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Table 8. Results of the calculations of the effect of performance indicators

KPI D R D + R D − R

Environmental Indicators 3.651 2.234 5.885 1.417
Organizational environmental management 0.857 0.611 1.468 0.246

Competitive pressure 0.872 0.66 1.532 0.212
Regulatory pressure 0.245 0.235 0.48 0.01

Executive Indicators 3.547 2.783 6.33 0.764
Green design 0.376 0.42 0.796 −0.044

Green purchasing 0.387 0.444 0.831 −0.057
Green manufacturing 0.387 0.413 0.8 −0.026

Cold storages 0.523 0.397 0.92 0.126
Green transportation 0.293 0.28 0.573 0.013

Strategic Indicators 3.287 2.98 6.267 0.307
Operational performance 0.217 0.234 0.451 −0.017

Economic performance 0.225 0.235 0.46 −0.01
Environmental performance 0.251 0.254 0.505 −0.003

Collaboration between customers and suppliers 0.341 0.333 0.674 0.008

Then, based on Table 8, the network relations map of the performance indicators will be obtained.
This is illustrated in Figure 2. As can be seen, Figure 2a demonstrates the internal effects of main category
of performance indicators. Additionally, Figure 2b–d describes the internal effects of KPIs in respectively
environmental, executive and strategic categories. As can be seen in Figure 2, environmental indicators
have the greatest effect on the strategic and executive indicators. At the same time, the most influential
indicators among the presented categories can be clearly seen in this figure.
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Figure 2. The network of influential relationships: (a) demonstrates the internal effects of main category
of performance indicators. (b–d) describes the internal effects of KPIs in respectively environmental,
executive, and strategic categories.
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5.2. Evaluating and Ranking Performance Indicators Using Non-Linear Fuzzy Prioritization Method

In this study, a non-linear fuzzy prioritization method based on AHP was used to evaluate
and rank the indicators obtained by using field and study methods. For this purpose, 35 specialists
including 25 experts of the food industry and 10 specialists in the pharmaceutical industry, among the
top supply chain managers and senior supervisors of supply chain of the FMCG industries with more
than 10 years’ work experience were selected and questionnaires were sent to them. Then, experts
were asked to use paired comparisons using linguistic criteria (Table 3) to analyze KPIs in green supply
chain and we received the answers of all experts. Therefore, evaluation and ranking of green supply
chain’s KPI in FMCG companies are divided into two parts.

(1) Fuzzy pairwise comparison matrix determination based on integration of expert opinions that is
expressed according to linguistic criteria presented in Table 3.

(2) Solving the proposed nonlinear mathematical model (function 24) using pairwise comparisons
matrices and finally gaining the weight of KPI.

The pairwise comparisons matrix for green supply chain KPI, based on the integration of expert
opinion, is shown in Tables 9–12. We will use these paired comparisons for our calculations in the
mathematical model.

Table 9. Paired comparison matrix of KPIs in the FMCG industry green supply chain, based on
integration of experts.

Environmental Executive Strategic

W1 W2 W3

W1 - - - - - - - - -
W2 2.7 2.9 6.7 - - - - - -
W3 2.5 2.6 3.2 1.1 1.3 3.1 - - -

Table 10. Paired comparison matrix of KPIs in the FMCG industry green supply chain, based on
integration of experts in environmental section.

Regulatory Pressure Organizational Environmental Management Competitive Pressure

W1 W2 W3

W1 - - - - - - - - -
W2 2.3 3.4 5.7 - - - - - -
W3 2.3 2.87 4.3 1 1.98 4 - - -

Table 11. Paired comparison matrix of KPIs in the FMCG industry green supply chain, based on
integration of experts in executive section.

Green
Purchasing

Green Design Cold Storages
Green

Manufacturing
Green

Transportation

W1 W2 W3 W4 W5

W1 - - - - - - - - - - - - - - -
W2 1.12 1.56 2 - - - - - - - - - - - -
W3 1.54 2.65 4 1.64 2.69 7.3 - - - - - - - - -
W4 1.16 1.76 2.7 1 1.3 5.49 0.5 1 1 - - - - - -
W5 1.13 1.29 2.51 1.21 1.25 4 0.8 1 1.1 1.2 1.1 1.6 - -
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Table 12. Paired comparison matrix of KPIs in the FMCG industry green supply chain, based on
integration of experts in strategic section.

Economic
Performance

Operational
Performance

Environmental
Performance

Collaboration between
Customers and Suppliers

W1 W2 W3 W4

W1 - - - - - - - - - - - -
W2 5 4 5.5 - - - - - - - - -
W3 3.7 4 5.5 5 2 5.2 - - - - - -
W4 2.4 3.65 5 2.5 6 3.2 1.07 2 2.5 - - -

After performing pairwise comparisons of expert opinions on different sections, we will use
the data from these matrices in mathematical modeling to ranking. We put fuzzy values in the
mathematical model. Since the model is nonlinear, we use GAMS software to solve the model. Thus,
the weight and rank of the criteria and sub-criteria will be obtained, which is visible in Tables 13–16.

Table 13. Weight and ranking of KPIs in main category (taken from fuzzy nonlinear model).

KPI Code Weight Rank

Environmental W1 0.4183452 1
Executive W2 0.2959360 2
Strategic W3 0.2857188 3

Table 14. Weight and ranking of KPIs in environmental indicators category (taken from fuzzy nonlinear
model).

KPI Code Weight Rank

Regulatory pressure W1 0.2583772 2
Organizational environmental management W2 0.5032456 1

Competitive pressure W3 0.2383772 3

Table 15. Weight and ranking of KPIs in executive indicators category (taken from fuzzy nonlinear
model).

KPI Code Weight Rank

Green purchasing W1 0.1243567 5
Green design W2 0.1434582 4
Cold storages W3 0.3193412 1

Green manufacturing W4 0.1900213 3
Green transportation W5 0.2228236 2

Table 16. Weight and ranking of KPIs in strategic indicators category (taken from fuzzy nonlinear
model).

KPI Code Weight Rank

Economic performance W1 0.2911781 2
Operational performance W2 0.2151470 3

Environmental performance W3 0.3213857 1
Collaboration between customers and suppliers W4 0.1722892 4

After calculating the weights of each KPI, we can normalize the weights using the information
in Tables 13–16. The normalized weight for the green supply chain’s KPI is shown in Table 17.
The normalized weight represents the overall rank of the KPI. In addition, Figure 3 shows that the
organizational environmental management and regulatory pressure are more important than the
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other indicators because they have a higher weight than others. Therefore, GSCM can be successfully
implemented when the top level management considers green practices as their company policies
in view of the systems to track environmental laws as well as documented procedure to implement
corrective action plan. Regulatory pressure gets the next highest weightage which obviously shows
that the government, customers, and stockholders can play a significant role in implementation of
GSCM. Furthermore, the third place represents effect of competitor’s green strategies to successfully
implement GSCM. Cold storage achieved the fourth weightage, which shows that green cold supply
chains are a major concern in minimization of environmental problems. Other KPIs occupied the
resting ranks, as presented by Table 17 and Figure 3.

Table 17. Normalized weight and ranking of KPIs in the green supply chain (FMCG industries).

KPI
Category

Weight KPI Weight
Normal
Weight

Rank

Environmental
indicators

0.418345
Organizational environmental management 0.5032456 0.210530381 1

Competitive pressure 0.2383772 0.099723957 3
Regulatory pressure 0.2583772 0.108090861 2

Executive
indicators

0.295936

Green design 0.1434582 0.042454446 11
Green purchasing 0.1243567 0.036801624 12

Green manufacturing 0.1900213 0.056234143 9
Cold storages 0.3193412 0.094504557 4

Green transportation 0.2228236 0.065941525 7

Strategic
indicators

0.285719

Operational performance 0.215147 0.061471543 8
Economic performance 0.2911781 0.083195057 6

Environmental performance 0.3213857 0.091825937 5
Collaboration between customers and suppliers 0.1722892 0.049226263 10
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Figure 3. Importance of KPIs of the green supply chain in the FMCG industry.

6. Conclusions

Recently, many industries are moving towards being greener in their supply chain processes
due to customers’ needs as well as the scarce resources and policies of governments for different
industries. In other world, GSCM accomplishment has become a significant issue for industries
in the present competitive market that may be successfully implemented in any company through
which every employee works such as a link of a chain. Therefore, reviewing the performance and
explaining KPIs for the green supply chain play a great important role in many industries. Prioritizing
these functions can lead to effective management of green supply chain processes in the organization.
The FMCG industries are highly regarded due to the type of production of their products that are very
fast consuming (the food and pharmaceutical industries fall within this range) and given the specific
distribution dimensions and delivery schedules. Therefore, due to the importance of the subject,
this study has attempted to identify KPIs in the FMCG green supply chain based on the literature review
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as well as the views of experts in the FMCG industry. In accordance with experts’ opinions and based
on the essence of the individual indicators, they were classified into three main categories, including 12
KIPs. Subsequently, by using fuzzy decision making approach and by distributing the questionnaire
among the supply chain experts in the FMCG industry, the relationships of internal effects on the
indicators were determined. Then a fuzzy nonlinear mathematical model by innovatively applying
the AHP method was used to evaluate and prioritize KPIs. The results indicated that organizational
environmental management is the highest priority among the KPIs in the green supply chain of FMCG
industries, limited to food and pharmaceutical industries. In addition, it was found that indicators
of regulatory pressures as well as competitive pressures are in the next rank and all of the first three
ranks occupied by the main category of environmental indicators. Moreover, it was revealed that
cold storage as an executive indicator, and afterwards the environmental performance as a strategic
indicator acquired the next ranks. Therefore, it seems that FMCG industry executives and decision
makers need to give more weight to these indicators to improve organizational performance in the
green supply chain.
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1. Introduction

In 1965, Zadeh [1] introduced the concept of a fuzzy set as the generalization of a crisp set. In 1971,
he [2] defined the notions of similarity relations and fuzzy orderings as the generalizations of crisp
equivalence relations and partial orderings playing basic roles in many fields of pure and applied
science. After that time, many researchers [3–11] studied fuzzy relations. Dib and Youssef [7] defined
the fuzzy Cartesian product of two ordinary sets X and Y as the collection of all L-fuzzy sets of X ×Y,
where L = I × I and I denotes the unit closed interval. In particular, Lee [10] obtained many results by
using the notion of fuzzy relations introduced by Dib and Youssef.

In 1994, Zhang [12] introduced the notion of a bipolar fuzzy set (refer to [13–15]). After then,
Jun and Park [16], Jun et al. [17], and Lee [18] applied bipolar fuzzy sets to BCK/BCI-algebras.
Moreover, Akram and Dudek [19] studied bipolar fuzzy graph, and Majumder [20] introduced the
bipolar fuzzy Γ-semigroup. Moreover, Talebi et al. [21] investigated operations on a bipolar fuzzy
graph. Azhagappan and Kamaraj [22] dealt with some properties of rw-closed sets and rw-open
sets in bipolar fuzzy topological spaces. Recently, Kim et al. [23] constructed the category consisting
of bipolar fuzzy set and preserving mappings between them and studied this in the sense of a
topological universe. Lee et al. [24] found some properties of bases, neighborhoods, and continuities
in bipolar fuzzy topological spaces. In particular, Dudziak and Pekala [25] referred to an intuitionistic
fuzzy relation as a bipolar fuzzy relation and investigated some properties of equivalent bipolar
fuzzy relations.

In this paper, first, we introduce a bipolar fuzzy relation from a set X to Y and the composition
of two bipolar fuzzy relations. Furthermore, we introduce some operations between bipolar fuzzy
relations and obtain some of their properties. Second, we define a bipolar fuzzy reflexive, symmetric,
and transitive relation and find bipolar fuzzy analogues of many results concerning relationships
between ordinary reflexive, symmetric, and transitive relations. Third, we define the concepts of a
bipolar fuzzy equivalence class and a bipolar fuzzy partition, and we prove that the set of all bipolar
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fuzzy equivalence classes is a bipolar fuzzy partition and that the bipolar fuzzy equivalence relation is
induced by a bipolar fuzzy partition. Finally, we define an (a, b)-level set of a bipolar fuzzy relation
and investigate some relationships between bipolar fuzzy relations and their (a, b)-level sets.

2. Preliminaries

In this section, we introduce the concept of the bipolar fuzzy set, the complement of a bipolar
fuzzy set, the inclusion between two bipolar fuzzy sets, and the union and the intersection of two
bipolar fuzzy sets. Furthermore, we introduce the intersection and union of arbitrary bipolar fuzzy
sets and list some properties.

Definition 1. ([13]). Let X be a nonempty set. Then, a pair A = (A−, A+) is called a bipolar-valued fuzzy set
(or bipolar fuzzy set) in X, if A+ : X → [0, 1] and A− : X → [−1, 0] are mappings.

In particular, the empty fuzzy empty set (resp. the bipolar fuzzy whole set) (see [22]), denoted by 0bp =

(0−bp, 0+bp) (resp. 1bp = (1−bp, 1+bp)), is a bipolar fuzzy set in X defined by: for each x ∈ X,

0+bp(x) = 0 = 0−bp(x) (resp. 1+bp(x) = 1 and 1−bp(x) = −1).

We will denote the set of all bipolar fuzzy sets in X as BPF(X).
For each x ∈ X, we use the positive membership degree A+(x) to denote the satisfaction degree of the

element x to the property corresponding to the bipolar fuzzy set A and the negative membership degree A−(x)
to denote the satisfaction degree of the element x to some implicit counter-property corresponding to the bipolar
fuzzy set A.

If A+(x) 
= 0 and A−(x) = 0, then it is the situation that x is regarded as having only positive satisfaction
for A. If A+(x) = 0 and A−(x) 
= 0, then it is the situation that x does not satisfy the property of A, but
somewhat satisfies the counter-property of A. It is possible for some x ∈ X to be such that A+(x) 
= 0 and
A−(x) 
= 0 when the membership function of the property overlaps that of its counter-property over some
portion of X.

It is obvious that for each A ∈ BPF(X) and x ∈ X, if 0 ≤ A+(x) − A−(x) ≤ 1, then A is an
intuitionistic fuzzy set introduced by Atanassov [26]. In fact, A+(x) (resp. −A−(x)) denotes the membership
degree (resp. non-membership degree) of x to A.

Definition 2. ([13]). Let X be a nonempty set, and let A, B ∈ BPF(X).

(i) We say that A is a subset of B, denoted by A ⊂ B, if for each x ∈ X,

A+(x) ≤ B+(x) and A−(x) ≥ B−(x).

(ii) The complement of A, denoted by Ac = ((Ac)−, (Ac)+), is a bipolar fuzzy set in X defined as: for each
x ∈ X, Ac(x) = (−1− A+(x), 1− A+(x)), i.e.,

(Ac)+(x) = 1− A−(x), (Ac)−(x) = −1− A−(x).

(iii) The intersection of A and B, denoted by A ∩ B, is a bipolar fuzzy set in X defined as: for each x ∈ X,

(A ∩ B)(x) = (A−(x) ∨ B−(x), A+(x) ∧ B+(x)).

(iv) The union of A and B, denoted by A ∪ B, is a bipolar fuzzy set in X defined as: for each x ∈ X,

(A ∪ B)(x) = (A−(x) ∧ B−(x), A+(x) ∨ B+(x)).

Definition 3. (see [13,22]). Let X be a nonempty set, and let A, B ∈ BPF(X). We say that A is equal to B,
denoted by A = B, if A ⊂ B and B ⊂ A.
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Result 1. ([23], Proposition 3.5). Let A, B, C ∈ BPF(X). Then:

(1) (Idempotent laws): A ∪ A = A, A ∩ A = A,
(2) (Commutative laws): A ∪ B = B ∪ A, A ∩ B = B ∩ A,
(3) (Associative laws): A ∪ (B ∪ C) = (A ∪ B) ∪ C, A ∩ (B ∩ C) = (A ∩ B) ∩ C,
(4) (Distributive laws): A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),
(5) (Absorption laws): A ∪ (A ∩ B) = A, A ∩ (A ∪ B) = A.
(6) (De Morgan’s laws): (A ∪ B)c = Ac ∩ Bc, (A ∩ B)c = Ac ∪ Bc,
(7) (Ac)c = A,
(8) A ∩ B ⊂ A and A ∩ B ⊂ B,
(9) A ⊂ A ∪ B and B ⊂ A ∪ B,

(10) if A ⊂ B and B ⊂ C, then A ⊂ C,
(11) if A ⊂ B, then A ∩ C ⊂ B ∩ C and A ∪ C ⊂ B ∪ C.

Definition 4. ([23]). Let X be a nonempty set, and let (Aj)j∈J ⊂ BPF(X).

(i) The intersection of (Aj)j∈J , denoted by
⋂

j∈J Aj, is a bipolar fuzzy set in X defined by: for each x ∈ X,

(
⋂
j∈J

Aj)(x) = (
∨
j∈J

A−
j (x),

∧
j∈J

A+
j (x)).

(ii) The union of (Aj)j∈J , denoted by
⋃

j∈J Aj, is a bipolar fuzzy set in X defined by: for each x ∈ X,

(
⋃
j∈J

Aj)(x) = (
∧
j∈J

A−
j (x),

∨
j∈J

A+
j (x)).

Result 2. ([23], Proposition 3.8). Let A ∈ BPF(X), and let (Aj)j∈J ⊂ BPF(X). Then:

(1) (Generalized distributive laws): A ∪ (
⋂

j∈J Aj) =
⋂

j∈J(A ∪ Aj),

A ∩ (
⋃

j∈J Aj) =
⋃

j∈J(A ∩ Aj),
(2) (Generalized De Morgan’s laws): (

⋃
j∈J Aj)

c =
⋂

j∈J Ac
j , (

⋂
j∈J Aj)

c =
⋃

j∈J Ac
j .

From Results 1 and 2, it is obvious that (BPF(X),∪,∩,c , 0bp, 1bp) is a complete distributive lattice
satisfying De Morgan’s laws.

3. Bipolar Fuzzy Relations

In this section, we introduce the concepts of the bipolar fuzzy relation, the composition of two
bipolar fuzzy relations, and the inverse of a bipolar fuzzy relation and study some their properties.

Throughout this paper, X, Y, Z denote ordinary non-empty sets, and we define the union,
the intersection, and the composition between bipolar fuzzy relations by using only the
min-max operator.

Definition 5. R = (R−, R+) is called a bipolar fuzzy relation (BPFR) from X to Y, if R+ : X × Y → [0, 1]
and R− : X ×Y → [−1, 0] are mappings, i.e.,

R ∈ BPF(X ×Y).

In particular, a BPFR from from X to X is called a BPFR on X (see [21]).
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The empty BPFR (resp. the whole BPFR) on X, denoted by R0 = (R−0 , R+
0 ) (resp. R1 = (R−1 , R+

1 )), is
defined as follows: for each (x, y) ∈ X × X,

R+
0 (x, y) = 0 = R−0 (x, y) [resp. R+

1 (x, y) = 1 and R−1 (x, y) = −1].

We will denote the set of all BPFRs on X (resp. from X to Y) as BPFR(X) (resp. BPFR(X ×Y)).

It is obvious that if R = (R−, R+) ∈ BPFR(X), then −R− and R+ are fuzzy relations on X, where
(−R−1)(x, y) = −R−(x, y) for each (x, y) ∈ X × X.

Definition 6. Let R ∈ BPFR(X ×Y). Then:

(i) the inverse of R, denoted by R−1 = ((R−1)−, (R−1)+), is a BPFR from Y to X defined as follows:
for each (y, x) ∈ Y × X, R−1(x, y) = R(y, x), i.e.,

(R−1)+(y, x) = R+(x, y), (R−1)−(y, x) = R−(x, y).

(ii) the complement of R, denoted by Rc = ((Rc)−, (Rc)+), is a BPFR from X to Y defined as follows: for each
(x, y) ∈ X ×Y,

(Rc)+(x, y) = 1− R+(x, y), (Rc)−(x, y) = −1− R+(x, y).

Proposition 1. Let R, S, P ∈ BPFR(X ×Y). Then:

(1) R0 ⊂ R ⊂ R1,
(2) (Rc)−1 = (R−1)c,
(3) (R−1)−1 = R,
(4) R ⊂ R ∪ S and S ⊂ R ∪ S,
(5) R ∩ S ⊂ R and R ∩ S ⊂ S,
(6) if R ⊂ S, then R−1 ⊂ S−1,
(7) if R ⊂ P and S ⊂ P, then R ∪ S ⊂ P,
(8) if P ⊂ R and P ⊂ S, then P ⊂ R ∩ S,
(9) if R ⊂ S, then R ∪ S = S and R ∩ S = R,

(10) (R ∪ S)−1 = R−1 ∪ S−1, (R ∩ S)−1 = R−1 ∩ S−1,

Proof. (1) The proof is obvious.
(2) Let (x, y) ∈ X ×Y. Then

[(Rc)−1]−(x, y) = (Rc)−(y, x) = −1− R−(y, x)

= −1− (R−1)−(x, y)

= [(R−1)c]−(x, y).
Similarly, we have [(Rc)−1]+(x, y) = [(R−1)c]+(x, y). Thus, the result holds.

(3) The proof is easy by Definition 6.
(4) Let (x, y) ∈ X ×Y. Then,

(R ∪ S)−(x, y) = R−(x, y) ∧ S−(x, y) ≤ R−(x, y)
and

(R ∪ S)+(x, y) = R−(x, y) ∨ S−(x, y) ≥ R+(x, y).
Thus, R ⊂ R ∪ S. Similarly, we have S ⊂ R ∪ S.
The remainder can be proven from Definitions 2, 3, and 6.

The following is the similar results of Results 1 and 2.

228



Mathematics 2019, 7, 1044

Proposition 2. Let R, S, P ∈ BPFR(X ×Y), and let (Rj)j∈J ⊂ BPFR(X ×Y). Then:

(1) (Idempotent laws): R ∪ R = R, R ∩ R = R,
(2) (Commutative laws): R ∪ S = S ∪ R, R ∩ S = S ∩ R,
(3) (Associative laws): R ∪ (S ∪ P) = (R ∪ S) ∪ P, R ∩ (S ∩ P) = (R ∩ S) ∩ P,
(4) (Distributive laws): R ∪ (S ∩ P) = (R ∪ S) ∩ (R ∪ P), R ∩ (S ∪ P) = (R ∩ S) ∪ (R ∩ P),
(4)

′
(Generalized distributive laws): R ∪ (

⋂
j∈J Rj) =

⋂
j∈J(R ∪ Rj), R ∩ (

⋃
j∈J Rj) =

⋃
j∈J(R ∩ Rj),

(5) (Absorption laws): R ∪ (R ∩ S) = R, R ∩ (R ∪ S) = R,
(6) (De Morgan’s laws): (R ∪ S)c = Rc ∩ Sc, (R ∩ S)c = Rc ∪ Sc,
(6)

′
(Generalized De Morgan’s laws): (

⋃
j∈J Rj)

c =
⋂

j∈J Rc
j , (

⋂
j∈J Rj)

c =
⋃

j∈J Rc
j .

(7) (Involution): (Rc)c = R.

Example 1. Let X = {a, b, c}, and let R be a BPFR on X given by the following Table 1.

Table 1. R.

a b c

a (−0.4, 0.6) (−0.7, 0.5) (−1, 0.8)
b (−0.3, 0.8) (−0.6, 0.3) (−0.2, 0.6)
c (−0.5, 0.7) (−0.8, 0.3) (−0.6, 0.3)

Then, the inverse and the complement of R are given as below Tables 2–5.

Table 2. R−1.

a b c

a (−0.4, 0.6) (−0.3, 0.8) (−0.5, 0.7)
b (−0.7, 0.5) (−0.6, 0.3) (−0.8, 0.3)
c (−1, 0.8) (−0.2, 0.6) (−0.6, 0.3)

Table 3. Rc.

a b c

a (−0.6, 0.4) (−0.3, 0.5) (0, 0.2)
b (−0.7, 0.2) (−0.4, 0.7) (−0.8, 0.4)
c (−0.5, 0.3) (−0.2, 0.7) (−0.4, 0.7)

Table 4. R ∩ Rc.

a b c

a (−0.4, 0.4) (−0.3, 0.5) (0, 0.2)
b (−0.3, 0.2) (−0.4, 0.3) (−0.2, 0.4)
c (−0.5, 0.3) (−0.2, 0.3) (−0.4, 0.3)

Table 5. R ∪ Rc.

a b c

a (−0.6, 0.6) (−0.7, 0.5) (−1, 0.8)
b (−0.7, 0.8) (−0.6, 0.7) (−0.8, 0.6)
c (−0.5, 0.7) (−0.8, 0.7) (−0.6, 0.7)
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Remark 1. For each R ∈ BPFR(X), R ∩ Rc = R0 and R ∪ Rc = R1 do not hold, in general.

Consider the BPFR in Example 1. Then, R ∩ Rc 
= R0 and R ∪ Rc 
= R1.

Definition 7. Let R ∈ BPFR(X×Y), and let S ∈ BPFR(Y× Z). Then, the composition of R and S, denoted
by S ◦ R = ((S ◦ R)+, (S ◦ R)−), is a BPFR from X to Z defined as: for each (x, z) ∈ X × Z,

(S ◦ R)+(x, z) = (S+ ◦ R+)(x, z) =
∨

y∈Y
[R+(x, y) ∧ S+(y, z)],

(S ◦ R)−(x, z) = (S− ◦ R−)(x, z) =
∧

y∈Y
[R−(x, y) ∨ S−(y, z)].

We can easily see that (−S− ◦ −R−)(x, y) =
∨

y∈Y[−R+(x, y) ∧−S−(x, y)].

Proposition 3.

(1) P ◦ (S ◦ R) = (P ◦ S) ◦ R), where R ∈ BPFR(X ×Y), S ∈ BPFR(Y × Z), and P ∈ BPFR(Z×W).
(2) P ◦ (R ∪ S) = (P ◦ R) ∪ (P ◦ S), P ◦ (R ∩ S) = (P ◦ R) ∩ (P ◦ S), where R, S ∈ BPFR(X ×Y) and

P ∈ BPFR(Y × Z).
(3) If R ⊂ S, then P ◦ R ⊂ P ◦ S, where R, S ∈ BPFR(X ×Y) and P ∈ BPFR(Y × Z).
(4) (S ◦ R)−1 = R−1 ◦ S−1, where R ∈ BPFR(X ×Y) and S ∈ BPFR(Y × Z).

Proof.

(1) The proof is straightforward.
(2) The proof is straightforward.
(3) Let R, S ∈ BPFR(X ×Y) and P ∈ BPFR(Y × Z). Suppose R ⊂ S, and let (x, z) ∈ X × Z. Then

(P ◦ R)−(x, z) =
∧

y∈Y[R−(x, y) ∨ P−(y, z)]

≥ ∧
y∈Y[S−(x, y) ∨ P−(y, z)]

[Since R ⊂ S, R−(x, y) ≥ S−(x, y)]

= (P ◦ S)−(x, z).

Similarly, we can prove that (P ◦ R)+(x, z) ≤ (P ◦ S)+(x, z). Furthermore, the proof of the
second part is similar to the first part. Thus, the result holds.

(4) Let R ∈ BPFR(X ×Y) and S ∈ BPFR(Y × Z), and let (x, z) ∈ X × Z. Then

[(S ◦ R)−1]−(z, x) = (S ◦ R)(x, z)

=
∧

y∈Y[R−(x, y) ∨ S−(y, z)]

=
∧

y∈Y[(S−1)−(z, y) ∨ (R−1)−(y, x)]

= (R−1 ◦ S−1)−(z, x).

Similarly, we can see that [(S ◦ R)−1]+(z, x) = (R−1 ◦ S−1)+(z, x). Thus, the result holds.

Remark 2. For any BPFRs R and S, S ◦ R 
= R ◦ S, in general.

Let IFR(X) be the set of all intuitionistic fuzzy relations on a set X introduced by Bustince and
Burillo [27]. Then, we have the following result.
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Proposition 4. Let BPFRb(X) = {R ∈ BPFR(X) : R+(x) − R−(x) ≤ 1, ∀ (x, y) ∈ X × X} ∪
{R0b , R1b}, where R0b (resp. R1b ) denotes the bipolar fuzzy empty (resp. whole) relation on BPFb(X) defined
by: for each x ∈ X,

R0b(x) = (−1, 0) (resp. R1b = (0, 1)).

We define two mappings f : BPFRb(X) → IFR(X) and g : IFR(X) → BPFRb(X) as
follows, respectively:

[ f (R)](x, y) = (R+(x, y),−R−(x, y)), ∀R ∈ BPFRb(X), ∀(x, y)x ∈ X × X,

[g(S)](x, y) = (−νS(x, y), μS(x, y)), ∀S ∈ IFR(X), ∀(x, y) ∈ X × X.

Then g ◦ f = 1BPFRb(X), f ◦ g = 1IFR(X).

Proof. The proof is similar to Proposition 3.14 in [23].

Let IVR(X) be the set of all interval-valued fuzzy relations on a set X (see [28]). Then, we have
the following result.

Proposition 5. We define two mappings f : IVR(X) → IFR(X) and g : IFR(X) → IVR(X) as
follows, respectively:

[ f (R)](x, y) = (RL(x, y), 1− RU(x, y)), ∀R ∈ IVR(X), ∀(x, y) ∈ X × X,

[g(S)](x, y) = [μS(x), 1− νS(x)], ∀S ∈ IFS(X), ∀(x, y) ∈ X × X.

Then g ◦ f = 1IVR(X), f ◦ g = 1IFR(X).

Proof. The proof is similar to Lemma 1 in [29].

From Propositions 4 and 5, we have the following.

Corollary 1. We define two mappings f : BPFRb(X) → IVR(X) and g : IVR(X) → BPFRb(X) as
follows, respectively:

[ f (R)](x, y) = [R+(x, y), 1 + R−(x, y)], ∀R ∈ BPFRb(X), ∀(x, y) ∈ X × X,

[g(S)](x, y) = (−1 + SU(x, y), SL(x, y)), ∀S ∈ IVR(X), ∀(x, y) ∈ X × X.

Then, g ◦ f = 1BPFRb(X), f ◦ g = 1IVR(X).

4. Bipolar Fuzzy Reflexive, Symmetric, and Transitive Relations

In this section, we introduce bipolar fuzzy reflexive, symmetric, and transitive relations and
obtain some properties related to them.

Definition 8. The bipolar fuzzy identity relation on X, denoted by IX (simply, I), is a BPFR on X defined as:
for each (x, y) ∈ X × X,

I−X (x, y) =

{
−1 if x = y
0 if x 
= y,

I+X (x, y) =

{
1 if x = y
0 if x 
= y.

It is clear that I = I−1 and Ic = (Ic)−1. Moreover, it is obvious that if IX is the bipolar fuzzy
identity relation on X, then −I−1

X and I+X are fuzzy identity relations on X.

Definition 9. R ∈ BPFR(X) is said to be:
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(i) reflexive, if for each x ∈ X, R(x, x) = (−1, 1), i.e.,

R−(x, x) = −1, R+(x, x) = 1,

(ii) anti-reflexive, if for each x ∈ X, R(x, x) = (0, 0).

From Definitions 8 and 9, it is obvious that R is bipolar fuzzy reflexive if and only if I ⊂ R.
The following is the immediate results of the above definition.
It is clear that R = (R−1, R+) is a bipolar fuzzy reflexive (resp. anti-reflexive) relation on X,

then −R− and R+ are fuzzy reflexive (resp. anti-reflexive) relations on X. Thus, R and S are fuzzy
reflexive (resp. anti-reflexive) relations on X iff (−R, S) or (−S, R) are bipolar fuzzy reflexive (resp.
anti-reflexive) relations on X.

Proposition 6. Let R ∈ BPFR(X).

(1) R is reflexive if and only if R−1 is reflexive.
(2) If R is reflexive, then R ∪ S is reflexive, for each S ∈ BPFR(X).
(3) If R is reflexive, then R ∩ S is reflexive if and only if S ∈ BPFR(X) is reflexive.

The following is the immediate result of Definitions 2, 3, 6, and 9.

Proposition 7. Let R ∈ BPFR(X).

(1) R is anti-reflexive if and only R−1 is anti-reflexive.
(2) If R is anti-reflexive, then R ∪ S is anti-reflexive if and only if S ∈ BPFR(X) is anti-reflexive.
(3) If R is anti-reflexive, then R ∩ S is anti-reflexive, for each S ∈ BPFR(X).

Proposition 8. Let R, S ∈ BPFR(X). If R and S are reflexive, then S ◦ R is reflexive.

Proof. Let x ∈ X. Since R and S are reflexive,

R−(x, x) = −1, R+(x, x) = 1 and S−(x, x) = −1, S+(x, x) = 1.

Thus
(S ◦ R)−(x, x) =

∧
y∈X [R−(x, y) ∨ S−(y, x)]

= [
∧

x 
=y∈X(R−(x, y) ∨ S−(y, x))] ∧ [R−(x, x) ∨ S−(x, x)]
= [

∧
x 
=y∈X(R−(x, y) ∨ S−(y, x))] ∧ (−1∧−1)

= −1,

(S ◦ R)+(x, x) =
∨

y∈X [R+(x, y) ∧ S+(y, x)]
= [

∨
x 
=y∈X(R+ ∧ S+(y, x))] ∨ [R+(x, x) ∧ S+(x, x)]

= [
∨

x 
=y∈X(TR(x, y) ∧ TS(y, x))] ∨ (1∧ 1)
= 1.

Therefore, S ◦ R is reflexive.

Definition 10. Let R ∈ BPFR(X). Then:

(i) R is said to be symmetric, if for each x, y ∈ X,

R(x, y) = R(y, x), i.e., R−(x, y) = R−(y, x) and R+(x, y) = R+(y, x),

(ii) R is said to be anti-symmetric, if for each (x, y) ∈ X × X with x 
= y,

R(x, y) 
= R(y, x), i.e., R−(x, y) 
= R−(y, x) and R+(x, y) 
= R+(y, x).
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From Definitions 9 and 10, it is obvious that R0 is a symmetric and anti-reflexive BPFR, R1 and I
are symmetric and reflexive BPFRs, and Ic is an anti-reflexive BPFR.

The following is the immediate result of Definitions 6 and 10.

Proposition 9. Let R ∈ BPFR(X). Then, R is symmetric iff R = R−1.

Proposition 10. Let R, S ∈ BPFR(X). If R and S are symmetric, then R ∪ S and R ∩ S are symmetric.

Proof. Let (x, y) ∈ X × X. Then, since R and S and are symmetric,

(R ∪ S)−(x, y) = R−(x, y) ∧ S−(x, y) = R−(y, x) ∧ S−(y, x) = (R ∪ S)−(y, x)

and:
(R ∪ S)+(x, y) = R+(x, y) ∨ S+(x, y) = R+(y, x) ∧ S+(y, x) = (R ∪ S)+(y, x).

Thus, R ∪ S is symmetric.
Similarly, we can prove that R ∩ S is symmetric.

Remark 3. R and S are symmetric, but S ◦ R is not symmetric, in general.

Example 2. Let X = {a, b, c}, and consider two BPFRs R and S on X given by the following Tables 6 and 7.

Table 6. R.

a b c

a (−0.4, 0.5) (−0.3, 0.6) (−0.6, 0.3)
b (−0.3, 0.6) (−0.6, 0.7) (−0.2, 0.4)
c (−0.6, 0.3) (−0.2, 0.4) (−0.4, 0.7)

Table 7. S.

a b c

a (−0.6, 0.7) (−0.7, 0.5) (−1, 0.8)
b (−0.7, 0.5) (−0.4, 0.3) (−0.8, 0.6)
c (−1, 0.8) (−0.8, 0.6) (−0.6, 0.7)

Then, clearly, R and S are symmetric. However:

(S ◦ R)+(a, b) = 0.5 
= 0.6 = (S ◦ R)+(b, a).

Thus, S ◦ R is not symmetric.

The following gives the condition for its being symmetric.

Proposition 11. Let R, S ∈ SVNR(X). Let R and S be symmetric. Then, S ◦ R is symmetric if and only if
S ◦ R = R ◦ S.

Proof. Suppose S ◦ R is symmetric. Then
S ◦ R = S−1 ◦ R−1 (by Proposition 9)

= (R ◦ S)−1 (by Proposition 3 (4))
= R ◦ S (by the hypothesis).

Conversely, suppose S ◦ R = R ◦ S. Then
(S ◦ R)−1 = R−1 ◦ S−1 (by Proposition 3 (4))
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= R ◦ S (since R and S and are symmetric)
= S ◦ R (by the hypothesis).

This completes the proof.

The following is the immediate result of Proposition 11.

Corollary 2. If R is symmetric, then Rn is symmetric, for all positive integers n, where Rn = R ◦ R ◦ ...
n times.

Definition 11. R ∈ BPFR(X) is said to be transitive, if R ◦ R ⊂ R, i.e., R2 ⊂ R.

It is clear that if R = (R−, R+) is a bipolar fuzzy transitive relation on X, then −R− and R+ are
fuzzy transitive relations on X. Thus, R and S are fuzzy transitive relations on X iff (−R, S) and
(−S, R) are bipolar fuzzy transitive relations on X.

Proposition 12. Let R ∈ BPFR(X). If R is transitive, then R−1 is also.

Proof. Let (x, y) ∈ X × X. Then
(R−1)−(x, y) = R−(y, x)

≤ (R ◦ R)−(y, x)
=

∧
z∈X [R−(y, z) ∨ R−(z, x)]

=
∧

z∈X [(R−1)−(z, y) ∨ (R−1)−(x, z)]
=

∧
z∈X [(R−1)−(x, z) ∨ (R−1)−(z, y)]

= (R−1 ◦ R−1)−(x, y).
Similarly, we can prove that:

(R−1)+(x, y) ≥ (R−1 ◦ R−1)+(x, y).

Thus, the result holds.

Proposition 13. Let R ∈ BPFR(X). If R is transitive, then so is R2.

Proof. Let (x, y) ∈ X × X. Then
(R2)−(x, y) =

∧
z∈X [R−(x, z) ∨ R−(z, y)]

≤ ∨
z∈X [(R2)−(x, z) ∨ (R2)−(z, y)]

= [(R2)− ◦ (R2)−](x, y).
Similarly, we can see that (R2)−(x, y) ≥ [(R2)− ◦ (R2)−](x, y). Thus, the result holds.

Proposition 14. Let R, S ∈ BPFR(X). If R and S are transitive, then R ∩ S is transitive.

Proof. Let (x, y) ∈ X × X. Then
[(R ∩ S) ◦ (R ∩ S)]−(x, y)
=

∧
z∈X [(R ∩ S)−(y, z) ∨ (R ∩ S)−(z, x)]

=
∧

z∈X [(R−(x, z) ∨ S−(x, z)) ∨ (R−(z, y) ∨ S−(z, y)]
=

∧
z∈X [(R−(x, z) ∨ R−(z, y)) ∨ (S−(x, z) ∨ S−(z, y))]

= (
∧

z∈X [R−(x, z) ∧ R−(z, y)]) ∨ (
∧

z∈X [S−(x, z) ∨ S−(z, y)])
= (R ◦ R)−(x, y) ∨ (S ◦ S)−(x, y)
≥ R−(x, y) ∨ S−(x, y) (since R and S are transitive)
= (R ∩ S)−(x, y).

Similarly, we can prove that:

[(R ∩ S) ◦ (R ∩ S)]+(x, y) ≤ R ∩ S)+(x, y).
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Thus, R ∩ S is transitive.

Remark 4. For two bipolar fuzzy transitive relation R and S in X, R ∪ S is not transitive, in general.

Example 3. Let X = {a, b, c}, and consider two BPFRs R and S in X given by the following Tables 8 and 9.

Table 8. R.

a b c

a (−0.4, 0.5) (−0.3, 0.6) (−0.3, 0.7)
b (−0.3, 0.6) (−0.6, 0.7) (−0.5, 0.4)
c (−0.3, 0.7) (−0.5, 0.4) (−0.6, 0.8)

Table 9. S.

a b c

a (−0.3, 0.7) (−0.2, 0.5) (−0, 2, 0.6)
b (−0.7, 0.5) (−1, 0.3) (−0.2, 0.6)
c (−0.2, 0.6) (−0.2, 0.6) (−0.8, 0.7)

Then, we can easily see that R and S are transitive. Moreover, we have Table 10 as R ∪ S.

Table 10. R ∪ S.

a b c

a (−0.4, 0.7) (−0.3, 0.6) (−0.3, 0.7)
b (−0.7, 0.6) (−1, 0.7) (−0.5, 0.6)
c (−0.3, 0.7) (−0.5, 0.6) (−0.8, 0.8)

Thus, [(R ∪ S) ◦ (R ∪ S)]−(c, a) = −0.5 
≥ −0.3 = (R ∪ S)−(c, a). Therefore, R ∪ S is not transitive.

5. Bipolar Fuzzy Equivalence Relation

In this section, we define the concept of a bipolar fuzzy equivalence class and a bipolar fuzzy
partition, and we prove that the set of all bipolar fuzzy equivalence classes is a bipolar fuzzy partition
and induce the bipolar fuzzy equivalence relation from a bipolar fuzzy partition.

Definition 12. R ∈ BPFR(X) is called a:

(i) tolerance relation on X, if it is reflexive and symmetric,
(ii) similarity (or equivalence) relation on X, if it is reflexive, symmetric, and transitive.

(iii) partial order relation on X, if it is reflexive, anti-symmetric, and transitive.

We will denote the set of all tolerance (resp., equivalence and order) relations on X as BPFT(X) (resp.
BPFE(X) and BPFO(X)).

We can easily see that R = (R−, R+) is a bipolar fuzzy tolerance (resp. similarity and partial
order) relation on X, then −R− and R+ are fuzzy tolerance (resp. similarity and partial order) relations
on X. Furthermore, R and S are fuzzy tolerance (resp. similarity and partial order) relations on X iff
(−R, S) and (−S, R) are bipolar fuzzy tolerance (resp. similarity and partial order) relations on X.

The following is the immediate result of Propositions 6, 10, and 14.
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Proposition 15. Let (Rj)j∈J ⊂ BPFT(X) (resp., BPFE(X) and BPFO(X)). Then,
⋂

Rj ∈ BPFT(X) (resp.,
BPFE(X) and BPFO(X)).

Proposition 16. Let R ∈ BPFE(X). Then, R = R ◦ R.

Proof. From Definition 11, it is clear that R ◦ R ⊂ R.
Let (x, y) ∈ X × X. Then

(R ◦ R)−(x, y) =
∧

z∈X [R−(x, z) ∨ R−(z, y)]
≤ R−(x, x) ∨ R−(x, y)
= −1∨ R−(x, y) (since R is reflexive)
= R−(x, y),

(R ◦ R)+(x, y) =
∨

z∈X [R+(x, z) ∧ R+(z, y)]
≥ R+(x, x) ∧ R+(x, y)
= 1∧ R−(x, y) (since R is reflexive)
= R+(x, y).

Thus, R ◦ R ⊃ R. Therefore, R ◦ R = R.

Definition 13. Let A ∈ BPF(X). Then, A is said to be normal, if:∧
x∈X

A−(x) = −1,
∨

x∈X
A+(x) = 1.

Definition 14. Let R ∈ BPFE(X), and let x ∈ X. Then, the bipolar fuzzy equivalence class of x by R, denoted
by Rx, is a BPFS in X defined as:

Rx = (R−x , R+
x ),

where R+
x : X → [0, 1] and R−x : X → [−, 0] are mappings defined as: for each y ∈ X,

R+
x (y) = R+(x, y) and R−x (y) = R−(x, y).

We will denote the set of all bipolar fuzzy equivalence classes by R as X/R, and it will be called the bipolar
fuzzy quotient set of X by R.

Proposition 17. Let R ∈ BPFE(X), and let x, y ∈ X. Then:

(1) Rx is normal; in fact, Rx 
= 0bp,
(2) Rx ∩ Ry = 0bp iff R(x, y) = (0, 0),
(3) Rx = Ry iff R(x, y) = (−1, 1),
(4)

⋃
x∈X Rx = 1bp.

Proof. (1) Since R is reflexive,

R+
x (x) = R+(x, x) = 1 and R−x (x) = R−(x, x) = −1.

Then,
∨

y∈X R+
x (y) = 1 and

∧
y∈X R−x (y) = −1. Therefore, Rx is normal. Moreover, Rx =

(−1, 1) 
= (0, 0) = 0bp(x). Hence, Rx 
= 0bp.
(2) Suppose Rx ∩ Ry = 0bp, and let z ∈ X. Then

0 = (Rx ∩ Ry)−(z)
= R−x (z) ∨ R−y (z)
= R−(x, z) ∨ R−(y, z) (by Definition 14)
= R−(x, z) ∨ R−(z, y) (since R is symmetric),
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0 = (Rx ∩ Ry)+(z)
= R+

x (z) ∧ R+
y (z)

= R+(x, z) ∧ R+(y, z) (by Definition 14)
= R−(x, z) ∧ R−(z, y) (since R is symmetric).

Thus
0 =

∧
z∈X [R−(x, z) ∨ R−(z, y)]

= (R ◦ R)−(x, y)
= R−(x, y) (by Proposition 16),

0 =
∨

z∈X [(R+(x, z) ∧ R+(z, y)]
= (R ◦ R)+(x, y)
= R+(x, y) (by Proposition 16).

Therefore, R(x, y) = (0, 0).
The sufficient condition is easily proven.
(3) Suppose Rx = Ry, and let z ∈ X. Then, R(x, z) = R(y, z). In particular, R(x, y) = R(y, y).

Since R is reflexive, R(x, y) = (−1, 1).
Conversely, suppose R(x, y) = (−1, 1), and let z ∈ X. Since R is transitive, R ◦ R ⊂ R. Then:

R−(x, y) ∨ R−(y, z) ≥ R−(x, z), R+(x, y) ∧ R+(y, z) ≤ R+(x, z).

Since R(x, y) = (−1, 1), R+(x, y) = 1 and R−(x, y) = −1. Thus:

R−(y, z) ≥ R−(x, z), R+(y, z) ≤ R+(x, z).

Therefore, R−y (z) ≥ R−x (z), R+
y (z) ≤ R+

x (z). Hence, Ry ⊂ Rx.
Similarly, we can see that Rx ⊂ Ry. Therefore, Rx = Ry.
(4) Let y ∈ X. Then

[
⋃

x∈X Rx](y) = (
∨

x∈X R+
x (y),

∧
x∈X R−x (y))

= (
∨

x∈X R+(x, y),
∧

x∈X R−(x, y))
= (R+(y, y), R−(y, y)) = (−1, 1)
= 1bp(y).

Thus, the result holds.

Definition 15. Let Σ = (Aj)j∈J ⊂ BPF(X). Then, Σ is called a bipolar fuzzy partition of X, if it satisfies
the following:

(i) Aj is normal, for each j ∈ J,
(ii) either Aj = Ak or Aj 
= Ak, for any j, k ∈ J,

(iii)
⋃

j∈J Aj = 1bp.

The following is the immediate result of Proposition 17 and Definition 15.

Corollary 3. Let R ∈ BPFE(X). Then, X/R is a bipolar fuzzy partition of X.

Proposition 18. Let Σ be a bipolar fuzzy partition of X. We define
R(Σ) = (R(Σ)+, R(Σ)−) as: for each (x, y) ∈ X × X,

R(Σ)+(x, y) =
∨

A∈Σ

[A+(x) ∧ A+(y)], R(Σ)−(x, y) =
∧

A∈Σ

[A−(x) ∨ A−(y)],

where R(Σ)+ : X × X → [0, 1] and R(Σ)− : X × X → [−1, 0] are mappings.
Then, R(Σ) ∈ BPFE(X).
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Proof. Let x ∈ X. Then, by Definition 15 (iii),

R(Σ)−(x, x) =
∧

A∈Σ

[A−(x) ∨ A−(x)] =
∧

A∈Σ

A−(x) = −1

and
R(Σ)+(x, x) =

∨
A∈Σ

[A+(x) ∧ A−(x)] =
∨

A∈Σ

A+(x) = 1.

Thus, R(Σ) is reflexive.
From the definition of R(Σ), it is clear that R(Σ) is symmetric.
Let (x, y) ∈ X × X. Then

[R(Σ) ◦ R(Σ)]−(x, y)
=

∧
z∈X [R(Σ)−(x, z) ∨ R(Σ)−(z, y)]

=
∧

z∈X [
∧

A∈Σ(A−(x) ∨ A−(z)) ∨∧
B∈Σ(B−(z) ∨ B−(y))]

=
∧

z∈X [(
∧

A∈Σ A−(z) ∨∧
B∈Σ B−(z)) ∨ (A−(x) ∨ B−(y))]

=
∧

z∈X [(−1∨−1) ∨ (A−(x) ∨ B−(y))] (since A and B are normal)
=

∧
z∈X [A−(x) ∨ B−(y)]

= R(Σ)−(x, y).
Similarly, we can prove that [R(Σ) ◦ R(Σ)]+(x, y) = R(Σ)+(x, y). Thus, R(Σ) is transitive.

Therefore, R(Σ) ∈ BPFE(X).

Proposition 19. Let R, S ∈ BPFE(X). Then, R ⊂ S iff Rx ⊂ Sx, for each x ∈ X.

Proof. Suppose R ⊂ S, and let x ∈ X. Let y ∈ X. Then, by the hypothesis,

R−x (y) = R−(x, y) ≥ S−(x, y) = S−x (y),

R+
x (y) = R+(x, y) ≤ S+(x, y) = S+

x (y).

Thus, Rx ⊂ Sx.
The converse can be easily proven.

Proposition 20. Let R, S ∈ BPFE(X). Then, S ◦ R ∈ BPFE(X) iff S ◦ R = R ◦ S.

Proof. Suppose S ◦ R = R ◦ S. Since R and S are reflexive, by Proposition 8, S ◦ R is reflexive. Since R
and S are symmetric, by the hypothesis and Proposition 11, S ◦ R is symmetric. Then, it is sufficient to
show that S ◦ R is transitive:

(S ◦ R) ◦ (S ◦ R) = S ◦ (R ◦ S) ◦ R (by Proposition 3 (1))
= S ◦ (S ◦ R) ◦ R)
= (S ◦ S) ◦ (R ◦ R)
⊂ S ◦ R.

Thus, S ◦ R is transitive. Therefore, S ◦ R ∈ BPFE(X).
The converse can be easily proven.

Proposition 21. Let R, S ∈ BPFE(X). If R ∪ S = S ◦ R, then R ∪ S ∈ BPFE(X).

Proof. Suppose R ∪ S = S ◦ R. Since R and S are reflexive, by Proposition 6 (2), R ∪ S is reflexive.
Since R and S are symmetric, by the hypothesis and Proposition 10, R ∪ S is symmetric. Then, by the
hypothesis, S ◦ R is symmetric. Thus, by Proposition 11, S ◦ R = R ◦ S. Therefore, by Proposition 20,
S ◦ R ∈ BPFE(X). Hence, R ∪ S ∈ BPFE(X).
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6. Relationships between a Bipolar Fuzzy Relation and Its Level Set

Each member of [−1, 0] × [0, 1] will be called a bipolar point. We define the order ≤ and the
equality = between two bipolar points as follows: for any (a, b), (c, d) ∈ [−1, 0]× [0, 1],

(i) (a, b) ≤ (c, d) iff a ≥ c and b ≤ d,
(ii) (a, b) = (c, d) iff a = c and b = d.

Definition 16. Let R ∈ BPFR(X ×Y), and let (a, b) ∈ [−1, 0]× [0, 1].

(i) The strong (a, b)-level subset or strong (a, b)-cut of R, denoted by [R]∗(a,b), is an ordinary relation from X
to Y defined as:

[R]∗(a,b) = {(x, y) ∈ X ×Y : R−(x, y) < a, R+(x, y) > b}.

(ii) The (a, b)-level subset or (a, b)-cut of R, denoted by [R](a,b), is an ordinary relation from X to Y defined
as:

[R](a,b) = {(x, y) ∈ X ×Y : R−(x, y) ≤ a, R+(x, y) ≥ b}.

Example 4. Consider the BPFR R in Example 1. Then
[R](−0.3,0.8) = {(x, y) ∈ X × X : R+(x, y) ≥ 0.8, R−(x, y) ≤ −0.3} = {(a, c), (b, a)},
[R]∗(−0.3,0.8) = {(x, y) ∈ X × X : R+(x, y) > 0.8, R−(x, y) < −0.3} = φ,
[R](−0.4,0.5) = {(a, a), (a, b), (a, c), (c, a)},
[R]∗(−0.4,0.5) = {(a, c), (c, a)}.

Proposition 22. Let R, S ∈ BPFR(X ×Y), and let (a, b), (a1, b1), (a2, b2) ∈ [−1, 0]× [0, 1].

(1) If R ⊂ S, then [R](a,b) ⊂ [S](a,b) and [R]∗((a,b) ⊂ [S]∗(a,b).

(2) If (a1, b1) ≤ (a2, b2), then [R](a2,b2
) ⊂ [R](a1,b1)

and [R]∗(a2,b2)
⊂ [R]∗(a1,b1)

.

Proof. The proofs are straightforward.

Proposition 23. Let R ∈ BPFR(X ×Y). Then:

(1) [R](a,b) is an ordinary relation from X to Y, for each (a, b) ∈ [−1, 0]× [0, 1],
(2) [R]∗(a,b) is an ordinary relation from X to Y, for each (a, b) ∈ (−1, 0]× [0, 1),

(3) [R](a,b) =
⋂
(c,d)<(a,b)[R](c,d), for each (a, b) ∈ [−1, 0)× (0, 1],

(4) [R]∗(a,b) =
⋃
(c,d)>(a,b)[R]∗(c,d), for each (a, b) ∈ (−1, 0]× [0, 1).

Proof. The proofs of (1) and (2) are clear from Definition 16.
(3) From Proposition 22, it is obvious that {[R](a,b) : (a, b) ∈ [−1, 0]× [0, 1]} is a descending family

of ordinary relations from X to Y. Let (a, b) ∈ (0, 1]× [−1, 0) Then, clearly, [R](a,b) ⊂
⋂
(c,d)<(a,b)[R](c,d).

Assume that (x, y) /∈ [R](a,b). Then, R+(x, y) < b or R−(x, y) > a. Thus, there is (c, d) ∈ [−1, 0)× (0, 1]
such that:

R+(x, y) < d < b or R−(x, y) > c > a.

Therefore, (x, y) /∈ [R](c,d), i.e., (x, y) /∈ ⋂
(c,d)<(a,b)[R](c,d). Hence:

⋂
(c,d)<(a,b)

[R](c,d) ⊂ [R](a,b).

Therefore, the result holds.
(4) Furthermore, from Proposition 22, it is obvious that {[R]∗(a,b) : (a, b) ∈ [−1, 0] × [0, 1]} is

a descending family of ordinary relations from X to Y. Let (a, b) ∈ (−1, 0] × [0, 1). Then, clearly,
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[R]∗(a,b) ⊂
⋃
(c,d)>(a,b)[R]∗(c,d). Assume that (x, y) /∈ [R]∗(a,b). Then, R+(x, y) ≤ b or R−(x, y) ≥ a. Thus,

there exists (c, d) ∈ (−1, 0]× [0, 1) such that:

R+(x, y) ≤ b < c or R−(x, y) ≥ a > d.

Thus, (x, y) /∈ [R](c,d), i.e., (x, y) /∈ ⋃
(c,d)>(a,b)[R]∗(c,d). Therefore,

⋃
(c,d)>(a,b)

[R]∗(c,d) ⊂ [R]∗(a,b).

Hence, [R]∗(a,b) =
⋃
(c,d)>(a,b)[R]∗(c,d).

Definition 17. Let X, Y be non-empty sets; let R be an ordinary relation from X to Y; and let RB ∈ BPFR(X×
Y). Then, RB is said to be compatible with R, if R = S(RB), where S(RB) = {(x, y) : R+

B (x, y) >

0, R−B (x, y) < 0}.

Example 5. (1) Let X, Y be non-empty sets, and let φX×Y be the ordinary empty relation from X to Y. Then,
clearly, S(R0) = φX×Y. Thus, R0 is compatible with φX×Y.

(2) Let X, Y be non-empty sets, and let X ×Y be the whole ordinary relation from X to Y. Then, clearly,
S(R1) = X ×Y. Thus, R1 is compatible with X ×Y.

From Definitions 9, 10, and 16, it is clear that R ∈ BPFR(X) is reflexive (resp. symmetric),
then [R](a,b) and [R]∗(a,b) are ordinary reflexive (resp. symmetric) on X, for each (a, b) ∈ [−1, 0]× [0, 1].

Proposition 24. Let R ∈ BPFR(X), and let (a, b) ∈ [−1, 0]× [0, 1]. If R is transitive, then [R](a,b) and
[R]∗(a,b) are ordinary transitive on X.

Proof. Suppose R is transitive. Then, R ◦ R ⊂ R, and let (x, z) ∈ [R](a,b) ◦ [R](a,b). Then, there exists
y ∈ X such that (x, z), (z, y) ∈ [R](a,b). Thus:

R+(x, z) ≥ b, R−(x, z) ≤ a and R+(z, y) ≥ b, R−(z, y) ≤ a.

Therefore, R+(x, z) ∧ R+(z, y) ≥ b, R−(x, z) ∨ R−(z, y) ≤ a. Since R ◦ R ⊂ R,

R+(x, y) ≥ R+(x, z) ∧ R+(z, y), R−(x, y) ≤ R−(x, z) ∨ R−(z, y).

Hence, R+(x, y) ≥ b, R−(x, y) ≤ a, i.e., (x, y) ∈ [R](a,b). Therefore, [R](a,b) is ordinary transitive.
The proof of the second part is similar.

The following is the immediate results of Definitions 9, 10, and 16 and Proposition 24.

Corollary 4. Let R ∈ BPFE(X), and let (a, b) ∈ [−1, 0]× [0, 1]. Then, [R](a,b) and [R]∗(a,b) are the ordinary
equivalence relation on X

7. Conclusions

This paper dealt with the properties of bipolar fuzzy reflexive, symmetric, and transitive relations
and bipolar fuzzy equivalence relations. In particular, we defined a bipolar fuzzy equivalence class
of a point in a set X modulo a bipolar fuzzy equivalence relation R and a bipolar fuzzy partition of a
set X. In addition, we proved that the set of all bipolar fuzzy equivalence classes is a bipolar fuzzy
partition and induced the bipolar fuzzy equivalence relation by a bipolar fuzzy partition. Furthermore,
we defined the (a, b)-level set of a BPFR and investigated some relationships between BPFRs and their
(a, b)-level set. Then, we could see that bipolar fuzzy relations generalized fuzzy relations.
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In the future, we expect that one will study bipolar fuzzy relations on a fixed BPFS A and deal
with a decomposition of a mapping f : X → Y by bipolar fuzzy relations. Furthermore, we think that
the bipolar fuzzy relation can be applied to congruences in a semigroup, algebras, topologies, etc.
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Abstract: The major success of fuzzy logic in the field of remote control opened the door to its
application in many other fields, including finance. However, there has not been an updated and
comprehensive literature review on the uses of fuzzy logic in the financial field. For that reason,
this study attempts to critically examine fuzzy logic as an effective, useful method to be applied to
financial research and, particularly, to the management of banking crises. The data sources were
Web of Science and Scopus, followed by an assessment of the records according to pre-established
criteria and an arrangement of the information in two main axes: financial markets and corporate
finance. A major finding of this analysis is that fuzzy logic has not yet been used to address banking
crises or as an alternative to ensure the resolvability of banks while minimizing the impact on the
real economy. Therefore, we consider this article relevant for supervisory and regulatory bodies,
as well as for banks and academic researchers, since it opens the door to several new research axes on
banking crisis analyses using artificial intelligence techniques.

Keywords: fuzzy logic; finance; banking; banking crisis management

1. Introduction

Fuzzy logic has been successfully applied in the field of finance due to its ability to address
imprecise, incomplete and vague data. This methodology has also been used in the field of banking,
although to a lesser extent, with particular relevance to areas such as risk management and credit
scoring. However, with regard to the specific field of banking crises, the footprint of fuzzy logic
has been almost non-existent. This absence could be seen as a contradiction, given the properties of
fuzzy logic, which seem to fit particularly well in complex and uncertain environments. Since the
global financial crisis, preventing banking crises and establishing banking resolution strategies to
avoid the use of public money to rescue banks have been the main priorities within the area of finance.
This priority suggests the importance to both academia and practitioners of exploring this topic through
different approaches. Introducing fuzzy logic to the analysis of banking crises could represent an
important step towards addressing and resolving banking crises more efficiently.

Banking crises are usually associated with significant, negative impacts on growth, output levels
and asset prices, tending to lead to lower tax revenues, higher public expenditures and increased
public debt [1]. In accordance with this relationship, we acknowledge the urgency to develop new
tools to prevent and manage banking crises. When working with banking crises, we highlight four
areas on which research has focused to date and to which the use of fuzzy logic could add value,
including (i) preventing banking crises; (ii) managing banking crises and assessing their impact on the
economy; (iii) defining a strong institutional and regulatory framework; and (iv) banking resolution.
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As a pioneering study proposing the use of fuzzy logic in the field of banking crisis analysis, this work
explores in detail the potential uses of fuzzy logic in these four areas.

Of the four points mentioned above, banking resolution is the area in which regulators and
governments are currently exerting their strongest efforts. Banking resolution is understood as the
restructuring of a bank led by a resolution authority, using one or more resolution tools while following
several principles. These principles include safeguarding public interests, preserving the bank’s critical
services to the economy, ensuring financial stability and minimizing the impact on taxpayers [2].
The impact of the recent financial crisis on the global economy pushed the Basel Committee on Banking
Supervision (BCBS) to review and strengthen the Basel accords. This decision led to the publication of
Basel III [3], which was transposed into European law by the capital requirements regulation (CRR),
as well as the capital requirements directive IV (CRD IV) and the bank recovery and resolution directive
(BRRD). In particular, the BRRD addresses the resolution of troubled banking entities and proposes the
bail-in tool as one of the key elements for resolving bank crises [4]. The bail-in tool is one of the key
instruments of the new resolution framework, forcing banks to absorb any potential losses with capital
and debt instruments and to recapitalize the bank if needed to avoid the use of public funds to rescue
the entity. To ensure the credibility of the bail-in tool, all European banks are required to increase their
loss absorption requirements through the minimum requirement of eligible liabilities (MREL), which is
a concept similar to the well-known total loss absorption capacity (TLAC) with which global systemic
important banks (G-SIBs) must comply. Although this paper is written from a European regulatory
viewpoint, most of its conclusions are also useful from a broader international perspective.

Given the relevance of the bail-in tool to the new banking regulatory landscape, it is important
to understand its potential spill-over effects on the real economy. As mentioned above, we propose
the exploration of this topic later in this work. Only after the risk transmission mechanism between
the banking sector and the real economy is well understood will it be possible to affirm that
post-global financial crisis regulation is effectively improving the soundness of the European economy.
However, this stability does not yet exist, and the new European resolution framework remains to be
tested. The importance and complexity of this topic justify the need to search for new techniques to
improve the knowledge on this subject. In accordance with this need, in an attempt to apply nonlinear
advanced methods to assess the potential impact of the new resolution framework on the real economy,
we have identified fuzzy logic as an adequate tool to perform such tasks. However, to the best of the
authors’ knowledge, there is no available, updated, comprehensive literature review of fuzzy logic in
the field of finance.

The initial hypothesis of this work is, therefore, that fuzzy logic is a solid tool that can be applied
in finance, banking crisis and banking resolution analyses due to its ability to manage imprecise,
incomplete and vague data.

Several works explore the links between fuzzy logic and mathematics. Some studies are focused
on this relationship from a historical perspective [5,6], other studies elaborate on the formal mathematic
framework of the Fuzzy Sets Theory [7,8], while other studies take a step into the links between
mathematics and fuzzy logic in practical applications [9].

In addition to the academic works devoted to exploring the generic links between mathematics
and fuzzy logic, there are some works focused on analysing the fuzzy mathematics of finance.
These works seek to show the relevance of fuzzy logic as a useful method to deal with financial
research. In particular, one of the first studies suggesting a potential successful application of fuzzy
logic techniques to finance proposes using fuzzy alternatives to classic financial data [10]. Other works
focused on developing fuzzy mathematics in finance followed, including a generalization of the
framework for fuzzy mathematics in finance [11]. From that point, as our analysis shows, the number
of articles taking advantage of the foundations of fuzzy mathematics in finance increased exponentially.

In line with the above, the goal of this work is to critically examine fuzzy logic as an effective,
useful method to be applied to financial research and, specifically, to analyse banking crises and
resolution events. For these reasons, we conducted a bibliometric and literature review of a large
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group of articles indexed in Web of Science and Scopus, in which fuzzy logic has been applied to the
financial field. Additionally, we discuss the potential applications of fuzzy logic in four specific areas,
including the prevention of banking crises, assessments of the impact and management of banking
crises, institutional settings and banking regulation, as well as banking crisis resolution.

This paper starts with a brief introduction, followed by a description of the methods. The main
findings obtained are presented as bibliometric and systematic analyses results. Section 4 elaborates
on the findings and provides related discussions, paying specific attention to the use of fuzzy logic
in the field of banking crises. Section 5 concludes with the main findings of this study including the
contributions of this work to the academia and to practitioners, and the limitations faced.

2. Methods

2.1. Fuzzy Logic

The Fuzzy Sets Theory was initially introduced in 1965 by L. A. Zadeh and can be described as a
logic for dealing with uncertainly and imprecision [12]. The term “fuzzy” is appropriate to describe a
mathematical environment where there are no well-defined boundaries between the variables under
study [13]. The goal of fuzzy logic is to express the vagueness and imprecision of human thinking
with the appropriate mathematical tools. The human way of thinking and reasoning is not binary,
where everything is either yes (true) or no (false), and thus Boolean logic is not always the most efficient
way to deal with real problems that human beings have to face [14]. Concepts like “danger–safe” or
“hot–cold” cannot be sharply defined, and even human beings will use fuzzy language expressions
like “very”, “a little” or “a lot” to define temperature or dangerous situations.

The fuzzy logic theory is based on the concept of “fuzzy sets”, which is a generalization of the
classical set theory [14]. A crispy set can be defined by a mathematical function that only accepts
binary values, meaning that it can only represent elements that fully belong to the set (represented by
the value 1) and elements that do not belong to that set (represented by 0). A fuzzy set is defined by a
membership function that allows every element to be represented by a different “grade of membership”
specifying to which extent the element belong to the set. It is important to observe that the grades
of membership are subjective and rely on the context. To illustrate this, consider a cow, which could
be labelled as a “big animal” if the universe of disclosure is “farm animals”, but probably will be
considered a “medium-size animal” if elephants and hippopotamuses are added to the universe
of disclosure.

A fuzzy set is defined from the universe of discourse, which constitutes the reference set and it
cannot be fuzzy. Being U = {x1, x2, ..., xn} the universe of disclosure, a fuzzy set F (F ⊂ U) is always
defined as a set of ordered pairs, the second part of the pair being the degree of membership {(xi, μF(xi))}
and μA will always take a value between 0 (non-belonging to the set) and 1 (fully belonging to the set).

Various fuzzy sets tend to be defined on the same universe of disclosure forming a partition of
the universe. At this point, a linguistic expression will need to be used to label the different fuzzy
sets. This is known as the linguistic variable and can be defined as a variable whose values are words
instead of numbers. L.A. Zadeh defines a linguistic variable by a quintuple (X,T,U,G,M) where X is the
name of the variable, T are the linguistic values of the variable, U is the universe of disclosure, G is the
rule to give a name to the terms in T, and M a semantic rule which associates with each linguistic value
X its meaning [15].

The mathematic foundations of fuzzy logic include basic concepts previously described, such as
fuzzy sets, membership functions and the basic fuzzy operations (intersection, union and complement).
There is a large number of academic papers using fuzzy logic in theoretical fields of traditional
mathematics, such as topology, differential equations, probability theory, mathematics and statistics,
or measure and integral theory, which shows the strong link between mathematics and fuzzy logic [8].
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2.2. Systematic Review Methodology: ProKnow-C

Several authors have conducted literature reviews on fuzzy logic applied to different knowledge
fields, such as decision making [16], social policy [17] and medical sciences [18], showing a wide range
of applications in which fuzzy logic can be used. However, literature reviews of the use of fuzzy logic in
finance published so far are not complete nor comprehensive enough, with some examples focusing on
the application of neuro-fuzzy systems in business [19] or the uses of fuzzy logic in insurance [20]. It is
noted that some interesting books on the subject exist, although they focus on particular applications
rather than providing a general overview of fuzzy logic applied to finance [21–23].

There are several ways to approach a literature review, with theoretical background literature
reviews being the most common, and hence the approach followed in this study. In particular,
two essential forms of analysing the literature regarding a given topic are found: within-study literature
analyses and between-study literature studies [24]. The former refers to analysing a specific work
while the latter involves contrasting the content of several sources. Some of the benefits of a theoretical
background literature review include highlighting what has been explored in a given area and what is
still pending to be explored, identifying links between key concepts and listing the main analysis and
methodologies that have been successfully used [25].

Rigorous literature reviews must be systematic in following a methodological approach [26].
The method used was based on the knowledge development process-constructivist (ProKnow-C) [27],
a technique that describes a process analogous to a protocol. Hence, this study included an extensive
search across different databases to conduct a systemic analysis to obtain information on the content of
the different papers that comprise our final portfolio. A bibliometric analysis was conducted to obtain
relevant data on publication trends, the most relevant authors and journals on the topic. This method
has been widely applied in the literature reviews on different topics in recent years [28–30]. One of the
main advantages of the methodology chosen is that it is particularly effective to deal with descriptive
and exploratory tasks. Therefore, ProKnow-C is especially useful for theoretical background literature
reviews such as the one developed in this analysis.

The eligibility criteria focused on identifying all relevant academic articles that somehow apply
fuzzy logic to solve problems linked to the field of finance. Thus, it is important to define exactly
what is meant by “finance” in this work, given that this subject is broad and therefore difficult to
precisely define. Among the many definitions of finance, Drake and Fabozzi [31] defined finance as
the application of economic principles to decision making that involves the allocation of money under
conditions of uncertainty. The study of finance is usually divided into four main categories: corporate
finance, financial markets, public finance, and personal finance. In this study, we especially focus on
the fields of corporate finance and financial markets because these fields are those in which fuzzy logic
has been the most frequently applied to date.

The information sources considered were the Web of Science and Scopus databases. The choice of
Web of Science and Scopus was motivated by the academic acknowledgement of these databases as
being two of the main academic literature collections [32,33].

The search was defined as a Boolean combination of key words grouped on two main axes,
namely “fuzzy logic” and “finance”. The selected key words were deliberately vague to increase the
number of results in the searches.

The study selection was carefully conducted as follows. We introduced our queries of the database
already defined and filtered the output by type of source, excluding all documents except academic
journals and books. Then, we identified the duplicated records and excluded them from our portfolio.
The records remaining were then assessed manually based on the title, abstract and full text, in that
order. A full-text review at this point was also a method to reduce the risk of bias in individual studies,
as it allowed better direct scanning of the articles. Another way to control risk of bias, but across studies,
was the inclusion of studies from the list of references as an attempt to not exclude all grey literature
without lowing the quality by considering records from the main databases. Additionally, articles with
no citations in the Google Scholar database were removed. Given the small number of citations,
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they cannot be considered relevant from an academic viewpoint. Finally, all the references included in
the final group of records were analysed with the same criteria mentioned above.

This work focused on the following data items: the number of publications per year, the most
prominent journals on the topic, and the most active authors. Finally, the synthesis of the results
is depicted in five main proposed areas: financial markets (forecasting, valuation financial assets,
portfolio management, and trading and decision making), corporate finance (fundamental analysis,
banking, insurance, investments and decision making, and others), public finance, personal finance
and others.

One of the disadvantages of the methodology is that given the large number of articles on fuzzy
logic applied to economics and the social sciences, settling boundaries between each and defining
the eligibility criteria was a manual and complex task. As a result, some articles could have been
involuntary omitted. However, our final portfolio is large enough to represent a comprehensive list of
articles applying fuzzy logic in finance. It is also a large sample that helps to identify areas in which
more research has been accomplished and to understand why and which methods seem to be more
effective in the field of finance.

We deliberately excluded conference proceedings from our bibliographic portfolio, seeking to
increase the scientific relevance of the sample under study, rather than the quantity of all the documents
analysed. Both approaches are generally accepted; however, it is frequently perceived that conference
proceedings are less mature than academic papers [34,35].

3. Results

The purpose of this section is to present the results of the analysis of the study characteristics
(included in the bibliometric characteristics) and the content of the 795 final articles included,
corresponding to the results of individual studies in the portfolio. We first present an analysis
of the bibliometrics of the portfolio, with special attention paid to the recent trends in numbers of
publications per year, as well as the most prominent journals and authors on the subject. Then, a section
focused on the content of the articles follows.

Prior to presenting these results, we describe the process followed to define our final portfolio.
After performing the search in both databases, filtering by type of source and excluding all documents
but academic journals and books, we obtained a total of 10,941 records (5289 from Web of Science and
5652 from Scopus). Before starting the manual filtering process by the title and then by the abstract,
the next step was to remove duplicates. A total of 2952 documents were found in both databases;
therefore, we ended up with an initial gross bibliographic portfolio of 7985 records. The 7985 articles
were then manually filtered first by title adequacy, and then followed by abstract and full-text
alignment with the subject of interest. After conducting these steps, we obtained 931 papers in our final
portfolio. However, all articles with no citations in the Google Scholar database were removed because,
given the small number of citations, they cannot be considered relevant from an academic viewpoint.
Following this approach, the number of articles decreased to 768. For the final bibliographic portfolio,
all of the references included in each of the 768 papers were analysed to assess whether they could
be included in the final portfolio. This increased the number of eligible papers by 27, resulting in a
final portfolio of 795 articles. A flow diagram showing this study selection process at each stage is
presented in Figure 1.

This section elaborates on key aspects, including the particular topics within the field of finance in
which fuzzy logic has been more commonly applied to date and the combination of methods seen with
greater frequency.
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Figure 1. Flow diagram of the study selection process. Source: PRISMA Model [34].

3.1. Bibliometric Analysis

Fuzzy logic was introduced to the financial field by Buckley, who explored the mathematics of
fuzzy logic in finance, applying them to the study of the time value of money [10]. Following the
success of Buckley’s work, Calzi [11] continued exploring the topic, widening the scope of applications
to which fuzzy logic can be applied in the financial field. Several studies followed, investigating the net
present value of investments [35,36]. More recently, other authors have also contributed to increasing
the literature with studies related to bankruptcy forecasting, stock market prediction or portfolio
management optimization, among others [37–39]. However, as shown in Figure 2, it was not until
recently that the research on finance using fuzzy logic truly became sizeable. In accordance with this
development, the analysis of the publications per year reveals that, from the mid-2000s, the number of
articles exploring the use of fuzzy logic in finance increased significantly.
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Figure 2. The number of articles published by year (1987–2017) exploring the use of fuzzy logic in
finance has increased significantly since the mid-2000s.

In Figure 3, the academic journals that appear with greater frequency in our portfolio are shown.
In addition, we included the 2017 impact factor for each article. When focusing on the most relevant
journals, we found that Expert Systems with Applications is the journal with the greatest number of
articles within our portfolio, with more than 90 articles and an impact factor of 3.76. Information Sciences
and Fuzzy Sets and Systems followed, with 28 and 27 articles, respectively, and impact factors of 4.31
and 2.68. These findings place Expert Systems with Applications as the leading journal associated
with financial research conducted using fuzzy logic methods. Overall, in our final portfolio, we found
300 different journals. However, approximately 50% of all articles are concentrated in only 25 journals,
with an average impact factor of 2.7.
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Figure 3. Academic journals that appear with greater frequency in our portfolio and their 2017
impact factors.

The most cited paper within our portfolio is entitled “Bankruptcy prediction in banks and firms
via statistical and intelligent techniques—a review”, with 849 citations. The article focuses on different
approaches to address bankruptcy prediction, with fuzzy logic as one of the techniques explored.
Other articles with more than 450 citations include “Effective lengths of intervals to improve forecasting
in fuzzy time series”, “Surveying stock market forecasting techniques—Part II: Soft-computing
methods”, and “The fuzzy mathematics of finance”.

Table A1 summarizes the authors with the largest numbers of publications in our final portfolio.
We show the aggregated number of citations per author considering only the articles included in the
portfolio. Cheng, from National Yunlin University of Science and Technology (Taiwan), with 21 articles
published and a total of 925 citations, is the most prominent author in the field. Other authors,
with 12 articles published, are Quek and Zhang from the Nanyang Technological University (Singapore)
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and South China University of Technology (Guangzhou, China), respectively. Finally, we also consider
the journals in which the authors have published their work, sorted first by number of articles published
and second in alphabetical order.

Bibliometric analysis enables the investigation of numerous, diverse questions on the subject
under study from a bibliographic viewpoint. The results presented above clearly indicate that the
use of fuzzy logic in financial research has increased significantly over the last two decades, and the
trend seems to indicate that the number of publications on the subject could continue rising in the
near future. In addition, we obtained information regarding the most prominent journals and authors.
However, no analysis of the content of the papers included in our final portfolio has yet been performed;
hence, developing a systematic analysis at this point is crucial to completing the task of reviewing
the literature on the topic under study. The next section focuses precisely on that topic by providing
relevant insights into the most common financial topics in which fuzzy logic has been traditionally
used in finance while briefly describing the main findings in each field.

3.2. Systematic Analysis

After a comprehensive review of the articles in which fuzzy logic has been used in the financial
field and to develop the systematic analysis, we propose a classification of the articles by topic.
The most frequent topic in which fuzzy logic has been applied in the field of finance is financial markets,
with approximately 60% of the total articles classified in this category, followed by corporate finance,
with approximately 35%. The remaining articles focused on public finance (3%), personal finance (1%)
and other topics (2.52%). This fact clearly underscores the focus of the academic research on financial
markets and corporate finance, and it can be explained by the greater volume of publicly available
data in these fields compared with other areas, such as personal finance.

Figure 4 shows the breakdown of the main topics usually analysed when applying fuzzy logic
in finance in the categories of financial markets and corporate finance. Regarding financial market
research, Bahrammirzaee [40] emphasizes that the study of financial markets has been traditionally
conducted following three different methodologies, namely (i) parametric statistical methods, such as
discriminant analysis and regression; (ii) non-parametric statistical methods, such as nearest neighbour
and decision trees; and (iii) soft-computing and artificial intelligence (AI) methods, including fuzzy
logic, neural networks and genetic algorithms. The existing literature tends to agree that most of
the research conducted using artificial intelligence methods, such as fuzzy logic or neural networks,
generally tend to outperform parametric and non-parametric statistical methods [41,42].

 

(a) (b) 

Figure 4. Categorization of the main topics usually analysed when applying fuzzy logic in finance:
(a) Category of financial markets, and (b) category of corporate finance.

In particular, approximately 60% of papers analysing financial markets focused on forecasting.
As noted by Atsalakis and Valavanis [41], the non-conventional forecasting methods, such as fuzzy
logic, neural networks and genetic algorithms, outperform conventional forecasting techniques in
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almost all circumstances. Most of the papers reached the conclusion that optimal results are obtained
when combining fuzzy logic with neural networks.

One of the areas with more practical implementations is the field of technical analysis. In this
vein, one of the most cited papers proposed the use of a neuro-fuzzy system composed of an adaptive
neuro-fuzzy inference system (ANFIS) to predict short-term stock market trends with encouraging
results [43]. Another similar example using an ANFIS model is applied to the Istanbul Stock Exchange,
and once again, the results show significant improvement in financial market predictions when the
ANFIS model is used [37]. Fuzzy expert systems have also been used for financial market forecasting
purposes, with Ijegwa et al. [44] proposing a pure fuzzy system to perform financial market forecasting.
The authors justified the relevance of using a fuzzy system given that, in many cases, responses of
technical indicators to market movements are not a definite yes or no. Hence, fuzzy reasoning is
very effective in this type of environment. Van den Berg et al. proposed a probabilistic fuzzy system
based on the Takagi–Sugeno method that combines the properties of probabilistic systems with the
interpretability of fuzzy systems. In particular, Chang and Liu [45] developed a Takagi–Sugeno–Kang
fuzzy system that predicted stock price movements across different sectors, claiming to achieve an
accuracy of approximately 97.6% in the Taiwan Stock Exchange.

Portfolio management, which represents approximately 25% of all papers in financial markets
research, relies heavily on Markowitz portfolio optimization theory. However, implementation of the
Markowitz model requires future mean returns and correlations between assets. In real life, predicting
these metrics accurately could represent a problem, making uncertainty and lack of accuracy two
characteristics that all portfolio management models must address. To overcome this issue, fuzzy logic
has been applied in the area of portfolio management, obtaining successful results [46–49].

Moving to the field of financial asset valuation, one of the areas in which fuzzy logic has been
widely used is in options pricing. Muzzioli and De Baets [50], in a comprehensive literature review on
the topic, identified that the majority of papers using fuzzy logic for option pricing have addressed
the direct problem of pricing in both discrete and continuous time settings. Several articles have
shown that fuzzy logic is suitable for identifying the market value of complex instruments, such as
derivatives [51–53].

Trading and decision making represent approximately 7% of the articles focused on financial
markets analysis. Many research papers in this area seek to find trends and identify patterns,
to define complex trading strategies or to simply make, buy or sell decisions based on a set of
rules. Several papers have proven the success of fuzzy logic in trading algorithms and financial
decision-making processes [54–56]. In particular, Kuo et al. [57] combined genetic algorithms,
fuzzy logic and neural networks to present a “buy–sell” system using both quantitative and qualitative
factors. This study proved once again the advantages of combining multiple AI techniques.

The papers analysed thus far point towards the increasing use of fuzzy logic in financial market
analysis in the coming years. Some of the areas in which we see the scope for further expansion
include not only credit trading, particularly when managing illiquid products, but also in areas such
as market analysis through human behaviour reactions (behavioural finance) and social media and
trading decisions (social trading).

Once we reviewed the literature linked to financial markets, we focused on corporate finance
research. However, the field of corporate finance is vast and includes a wide range of subjects. One of
its predominant fields, accounting for approximately 40% of the articles, is fundamental analysis.
In contrast to technical analysis, fundamental analysis relies on macroeconomic data, including interest
rates, inflation rates and GDP growth, as well as on microeconomic data, which can be obtained from
the annual accounts and more specifically from the profit and loss (P&L), cash flow statement and
balance sheet. Therefore, fundamental analysis requires uncertain information, such as macroeconomic
forecasts, and vague and imprecise data, such as management guidance and press releases, as input
data. The nature of this information makes fuzzy logic one of the most suitable AI tools for managing
fundamental analysis. An example can be found in the work by W. Berlin and N.F. Tseng, in which
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macroeconomic and company-specific data were used as linguistic variables in a fuzzy regression
model to analyse the business cycle [58]. Other works include the use of fuzzy methods to address
cash flow forecast analyses [59], corporate acquisition analysis [60], company evaluations [61] and
credit rating analysis [62].

Another area in which fuzzy logic has been traditionally applied within corporate finance is the
choice of investment opportunities, representing approximately 20% of the articles. Fuzzy logic was
applied to a wide range of specific topics to evaluate the different investment options from the oil
sector [63] to the real estate market [64]. These decision-making processes have been traditionally
conducted in relation to multiple criteria decision aiding (MCDA) techniques. Basically, MCDA enables
the inherent uncertainty linked to financial decisions to be assessed through a multidimensional
process. The combination of MCDA with fuzzy logic, allowing for the treatment of variables as fuzzy,
opens a wider range of possibilities to successfully use MCDA techniques [65]. Among the MCDA
techniques, we highlight the frequent use of the technique for order of preference by similarity to ideal
solution (TOPSIS).

Fuzzy logic has been introduced into the insurance sector by De Wit [66]. In their original work,
De Wit [66] sought to identify fuzziness in underwriting. From this area, several papers studying
different insurance areas in which fuzzy logic could be applied emerged. Approximately 13% of
the papers in the category of corporate finance address insurance-related problems. In particular,
Lemaire [67] contributed to the expansion of fuzzy logic theory applied to the insurance field by
presenting some of the concepts of fuzzy logic in an insurance framework. A study published by
Ostaszewski and Karwowski [68] included an in-depth analysis of the uses of fuzzy logic in actuarial
sciences. Derrig and Cummins [69] explored further uses of fuzzy logic in the insurance business,
with relevant contributions to the fields of property–casualty insurance forecasting and price modelling.
Fuzzy logic has proven to be useful in determining insurance pricing decisions, which consider
additional data on an ongoing basis [70] and the opinions of experts [71]. As observed in other
knowledge areas, in its early stages, fuzzy logic was applied on a stand-alone basis in the insurance
field. However, more recently, with the expansion of neural network methods, both tools have been
combined, delivering in most cases even better results [72]. Shapiro also elaborated on the subject
of fuzzy logic being used in the insurance sector from a broader perspective, pointing out a wide
range of areas in which fuzzy theory can be successfully applied in insurance, including classification,
underwriting, present value and pricing calculations, as well as asset allocation [20].

The use of fuzzy logic in public and personal finance is much more limited compared with
financial markets and corporate finance. Regarding public finance, we witnessed increasing interest
from scholars in the use of AI techniques applied to the public sector. Some examples of studies
applying fuzzy logic to public finance address import and export forecasts [73], financing of public
schools [74], forecasting countries’ domestic debt using a combination of fuzzy logic and neural
network techniques [75] and the analysis of the degree of effectiveness of European public policies
in meeting sustainable development goals [76]. In particular, studies using AI methods in the public
finance sector are particularly relevant from a regulatory and government perspective, and we should
expect an increase in these types of studies in areas such as the potential impacts of quantitative easing
programmes, central banks’ decisions about interest rates and the impact of national regulations on the
funding profiles of corporations.

Finally, focusing on the analyses of banks, the existing literature shows that the introduction of
AI techniques represents a breakthrough in the analysis of several areas, such as risk management.
Using big data to increase banks’ knowledge of their customers, to provide loans according to certain
credit scores, to measure their efficiency, to use advanced computational systems to balance their
ALCO portfolios and to optimize the capital structure and liquidity and funding needs, banks have
come to rely heavily on these advanced methodologies [77–82]. The growing importance of fuzzy
logic in this type of analysis is demonstrated by the finding that approximately 20% of the portfolios
focused on corporate finance are concerned with bank analysis.
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4. Discussion

The analysis of the literature on fuzzy logic in the field of finance opens the door to a wide range
of new and promising applications. A particular field in which the impact of fuzzy logic could be
especially greater is in banking crisis and banking resolution analyses. Next, we discuss the applications
of fuzzy logic in the following areas linked to banking crises and resolutions: (i) applications in banking
crisis analysis and banking resolution; (ii) impact and magnitude of banking crises; (iii) institutional
setting and financial regulation; and (iv) banking crises resolution.

4.1. Fuzzy Logic and Its Potential Applications in Banking Crisis Analyses and Banking Resolution

The existing academic literature has identified the three main factors associated with the probability
and magnitude of banking crises [83]. These factors are classified as (i) pre-crisis macroeconomic
conditions, since banking crises are usually preceded by credit and asset price booms, suggesting the
importance of developing early warning systems to identify the build-up of imbalances at the
macroeconomic level; (ii) pre-crisis characteristics of the banking sector, highlighting the importance of
maintaining a sound banking sector through the entire economic cycle; and (iii) institutional settings,
which should be responsible for enforcing an efficient regulatory and supervisory framework to ensure
that the banking sector is solid and serves its main purposes with regard to the real economy. Of these
three factors, the pre-crisis characteristics at the macroeconomic level and at the banking sector level
can be grouped into one category, directly linked to the prevention of banking crises through early
warning systems. The institutional setting is particularly relevant with regard to the key role that the
regulatory framework and the supervisory and resolution institutions play to ensure a sound and safe
banking sector; therefore, in this work, we classify it as a different topic.

In addition to the two topics mentioned above, understanding the impact of banking crises on the
real economy is another key area to be addressed. Finally, since the global financial crisis, governments,
regulators and banking supervisors have focused their efforts on developing a solid resolution
framework to minimize the impacts of banking crises on the real economy. Therefore, the study of
banking resolution is the fourth main area that we develop further in this section.

The results obtained in the previous section demonstrate that fuzzy logic could be a particularly
relevant tool for addressing the four aforementioned topics. Accordingly, we next elaborate on the
main topics within these four areas to which fuzzy logic could potentially add more value.

Systematic analysis reveals a reduced number of articles in which fuzzy logic has been used for
banking crisis and banking resolution analysis to date. Additional analysis includes papers sorted by
number of citations, author names, the journals in which the articles have been published, the year
of publication, the main purpose of the articles, and the methodologies used. Most of these articles
focused on early warning systems to predict banks’ defaults, as shown in Table A2. However, there was
also one article on systemic risk, one on contagion risk analysis and one on the analysis of bank
supervisory criteria.

4.1.1. Preventing Banking Crises by Monitoring Pre-Crisis Macroeconomic and Banking
Sector Conditions

Banking crises are considered a recurrent systemic phenomenon, often triggering deep and long
recessions. They are not random events, and they tend to occur following periods of very strong
credit growth (credit booms), significant increases in asset prices and other financial imbalances,
such as strong correlations in risk exposures among banks [84]. Banking crises are also associated
with the concept of systemic risk, which can be defined as the risk that can damage financial stability,
impairing the correct functioning of the main activities of the financial system with major negative
effects on the real economy. Systemic risk also builds up over a long period of time, and it is not a
random event triggered suddenly. In particular, authors have emphasized that approximately one-third
of banking crises are preceded by a credit boom, generally stemming from correlated risk exposures and
increases in asset prices, leading to bubbles. In accordance with this observation, we suggest that early
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warning systems powered by fuzzy logic could be an extremely useful tool. We acknowledge the large
number of variables that must be considered when attempting to prevent financial crises, ranging from
macroeconomics to aggregated banking sector data or individual bank dynamics. This extremely large
number of factors led us to conclude that fuzzy logic could be a useful tool for addressing this subject.

Most of the articles included in the table above elaborated on early warning systems to
prevent banking crises or predict bank failure. Bankruptcy prediction is one of the areas in which
fuzzy logic and other AI techniques clearly outperform classic analysis methods. The prominent
work developed by Ravi-Kumar and Ravi [85] presented a list of bankruptcy prediction methods,
including statistical techniques, neural networks, decision trees, evolutionary algorithms and fuzzy
logic techniques. In particular, focusing on the use of fuzzy logic for bankruptcy prediction tasks,
the authors highlighted that this method successfully manages imprecision and ambiguity, combining
it with human expert knowledge. Interestingly, bankruptcy prediction has been traditionally studied
as a classification problem. Different techniques have been applied to predict firms’ defaults,
including regressions, linear discriminant analysis (LDA), multiple discriminant analysis (MDA),
neural networks, support vector machines and decision trees. In one of the pioneering studies on
bankruptcy prediction, Altman [86] proposed a multivariate discriminant analysis technique to classify
firms as solvent or bankrupt. Focusing exclusively on bank default prediction, Sinkey [87] also used
MDA to detect failing banks, while Altman [88] later published a study focused on banks’ insolvency
prediction. The use of a fuzzy-clustering algorithm to forecast bank failure is another example [89].
Overall, the academic literature on bankruptcy prediction has tended to agree that neural networks
commonly outperform other methods [90]. However, when samples are smaller, or more transparency
is sought, support vector machines obtain better results [91]. Ravi-Kumar and Ravi [85] used an
ensemble of classifiers to predict failures of Spanish and US banks, emphasizing that ANFIS is among
the top performers. From a decision support systems viewpoint, an optimal system to predict the
failure of a bank should not be a classifier on a stand-alone basis but a combination of them [92].
Therefore, a combination of two or more classifiers seems to be the most appropriate technique for
predicting which banks could fail in the short or medium term. A combination of fuzzy-SVM and
ANFIS could be a useful tool for determining whether a bank should be considered “failing or likely to
fail” and subsequently entered into a liquidation or resolution procedure.

A particularly interesting study conducted by W.L. Tung et al. [93] elaborated on early warning
systems to predict banking failures using a neuro-fuzzy system. This paper showed how the use
of fuzzy logic and its combination with other AI techniques could be seen as a powerful tool for
addressing banking supervision and regulatory issues. In particular, after the analysis of the literature,
we propose the use of neuro-fuzzy models, particularly ANFIS, to address bankruptcy prediction.

4.1.2. Impact and Magnitude of Banking Crises

One of the key topics when studying banking crises is understanding their impact on the economy.
Only with accurate methodologies to account for the holistic impact of such events will regulators and
supervisors be able to design regulatory frameworks that could offset the existing trade-off between
the benefits and costs of tight banking regulations. Currently, the academic literature is not aligned
with regard to the variables that determine the impacts of banking crises [94]. As authors have pointed
out, this lack of consensus could be partly explained by the proxy used as a measure of the impact
on the real economy of a banking crisis. However, the large number of factors to be considered
when performing such calculations is a limitation of any methodology based on traditional analysis.
Following the results obtained in Section 4, we consider that fuzzy logic methods, combined with other
artificial intelligence tools, such as neural networks or machine learning, could significantly increase
the accuracy of such estimates.

Financial contagion is another important topic to focus on when addressing the study of
banking crises. The links between banks through interbank lending and the interconnection between
banks and other economic sectors must be monitored even more closely in the new resolution
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framework. The literature using fuzzy logic to analyse this point has been scarce; however, in a recent
study, De Marco et al. [95] modelled a financial network with fuzzy numbers, which could be a good
starting point for a deeper analysis of the contagion risks using fuzzy logic techniques.

The bail-in tool seems to be a promising technique with which to address banking failures.
However, loss absorption requirements force banks to issue bail-in-able debt and capital instruments
that are mainly acquired by non-banking entities. This process could spread financial risk across
other sectors instead of achieving the goal of reducing systemic risk. Understanding the potential risk
transfer from the financial sector to other sectors of the real economy and from banks to citizens is a
topic that must be analysed. We propose fuzzy numbers and ANFIS as candidate methods to address
contagion risk issues.

4.1.3. Institutional Setting and Financial Regulation

We also consider it relevant to analyse banking regulators’ and supervisors’ performance. In the
current environment, entities such as the SRB or the ECB in Europe have significant power to address
banking crises. Despite the fact that it seems necessary to have institutions in charge of the stability of
banking and the financial system, the complexities of the current regulation and the power of such
institutions make it necessary to monitor their tasks and decisions. Understanding whether and how
banks are reaching the capital, leverage and liquidity targets imposed by regulators could be a method
of assessing the banking regulators’ performance. Using fuzzy MCDM and neuro-fuzzy approaches
to evaluate regulators’ and supervisors’ performance could open a door to a new wave of studies
analysing whether regulators are making the right decisions, whether the methods used are effective
and whether any significant mistakes have been made thus far.

In addition, regulators should enhance banks’ transparency and the accuracy of the information
reported by financial entities. Fraudulent reporting is, at the time of writing, another major concern
for regulators, investors and other economic agents. Proof of this concern is the interest shown by
academia in studying financial reporting fraud and how to detect and prevent it [96]. Well-known
examples of fraudulent reporting, such as the case of Bankia in Spain or Banco Espirito Santo in
Portugal, emphasize the importance of detecting such fraudulent techniques. In the case of the Spanish
entity, a potential manipulation of the financial information disclosed by the bank before the initial
public offer (IPO) is currently under investigation by the Spanish High Court [97], while in the
case of the Portuguese bank, the management decisions and reporting techniques are considered
borderline fraud [98]. The work published in 1986 by Albrecht and Romney [99] is considered to
be the first study analysing empirically the prediction of fraud in financial reports, and from this
point, several articles have been published on the subject [100,101]. Fuzzy logic has proven to be
useful in this field as well, with several papers published on the subject [102,103]. In particular,
Lin et al. [104] proposed a neuro-fuzzy technique to detect fraudulent reports. The authors showed
how neuro-fuzzy methods outperform traditional methods, such as logit models, in the detection of
fraudulent reporting. The literature on this topic suggests that the application of fuzzy logic top fraud
reporting will contribute to enhancing transparency in the banking sector. In particular, in accordance
with other research axes, neuro-fuzzy systems seem once again to be the most efficient method for
developing solid banking fraud reporting research analysis.

4.1.4. Banking Crisis Resolution

The triggering of a banking resolution and its effects on the real economy are very sensitive
and complex processes that involve managing financial information, macroeconomic data and legal
aspects. The decision to trigger the resolution of a banking entity represents a decision-making
process that combines different expertise areas, in which a significant degree of uncertainty and
subjectivity arises. Therefore, we suggest that the use of fuzzy logic in the banking resolution field
could be a disruptive technique to model and better understand several of its implications for the
real economy. However, banking resolution analysis must be extended further, with the triggering of
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the bank resolution representing only the first step. Setting the right loss absorption requirements,
choosing the optimal resolution tool in each case and limiting the contagion from the financial sector to
other sectors are some of the points that should be explored further. In accordance with these issues,
due to the complexities linked to this type of analysis, in which information is uncertain, and the fact
that several factors, such as politics, macroeconomic variables and regulation, participate, the impacts
on the real economy of preventing a banking crisis with tools such as bail-in or deposits guarantee that
schemes are difficult to analyse with traditional econometric models. We therefore suggest that the
application of fuzzy logic, combined with other innovative tools, such as neural networks, could yield
solid results.

To address the decision-making process of determining a financial institution “failing or likely to
fail”, this work considers that multicriteria decision aid (MCDA) could potentially be a key methodology
for addressing such a complex decision. MCDA is a method that enables analysis of different criteria
at the same time, and, according to the recent literature, it is the best method for choosing optimal
solutions in probability option exercises [105]. Following this literature review, we consider that using
fuzzy MCDM (and fuzzy AHP in particular) to decide whether to trigger the resolution of a bank could
be a more objective and unbiased method than that currently used in Europe based on the judgement
of ECB and SRB experts.

In accordance with the above discussion, it is also important to design efficient loss absorption
instruments; hence, these instruments should also be a focus of study. It is also important to bear
in mind that regulatory requirements, such as total loss absorption capacity (TLAC) or minimum
requirement of eligible liabilities (MREL), could potentially result in higher funding costs for banks.
They could also lead to a transfer of these higher funding costs to the real economy through a worsening
of credit conditions. Analysing the impact of such requirements on the real economy is a complex
task; however, in accordance with the existing literature on fuzzy logic, it seems that neuro-fuzzy
methodologies could contribute significantly to the development of such analyses. In addition, it is
essential to design instruments that are sufficiently attractive to investors to maintain a relatively low
cost of funding for banks, while simultaneously, the banks’ resolvability should be increased due to the
loss absorption features provided by these instruments. In this regard, both fuzzy valuation methods
and ANFIS seem to be good methodologies for managing this task.

5. Conclusions

The existing literature shows that fuzzy logic has already been applied to a wide range of areas
within the field of finance. However, it is far from reaching its full potential compared with its use in
other fields, such as control systems, engineering and environmental sciences, in which the number of
articles using fuzzy logic is much greater. After analysing the results published in studies in which fuzzy
logic has been used, one of our main conclusions is that fuzzy logic has shown to be especially efficient
when addressing uncertainty and vagueness, which are two of the most common characteristics
linked to financial analysis. Therefore, given the particularities of this tool in managing complex and
uncertain scenarios, the first conclusion of this analysis is that we should expect a significant increase
in the number of papers within the finance field using fuzzy logic in the coming years. In particular,
areas such as financial market forecasting, credit market analysis, public finance and personal finance
could be some of the areas benefiting the most from standardization of the use of fuzzy logic and other
AI techniques in the field of business and finance.

This work also emphasizes that a combination of AI techniques, including fuzzy logic,
neural networks and evolutionary programming, outperforms traditional techniques according
to the results presented in Section 4. In particular, the use of fuzzy logic and neural networks as a
hybrid approach tends to be the most common technique and demonstrates the best performance.
We acknowledge the efficiency of this method; therefore, we expect a significant increase in the number
of scholars applying such hybrid techniques in their work in the near future.
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This study is, to the authors’ best knowledge, pioneering in terms of the introduction of fuzzy
logic to the field of banking crisis analysis and banking resolution. Consequently, this work is intended
to represent only a first step in this research area, suggesting key topics in which further research
would be particularly welcomed. In particular, this work proposes four research axes in which we
strongly believe fuzzy logic would improve the results obtained to date when using traditional analysis
methods. These topics include the (i) prevention of banking crises through fuzzy logic-powered early
warning systems; (ii) management of banking crises and measurement of their impacts on the real
economy; (iii) institution setting and financial regulations to address, prevent and resolve banking
crises; and (iv) overcoming banking crises through efficient resolution methods.

The complexities linked to the ambitious task of proposing the use of an alternative methodology
to address a well-known subject, leads to several limitations in our work. First, a limitation shared by
many other literature reviews is that some articles could have been involuntary omitted; hence, our work
draws conclusions from an extensive, but not exhaustive, list of papers. Another limitation is associated
with the lack of papers using fuzzy logic in the field of banking crisis analysis, which means that the
models that we propose have not yet been tested in a banking crisis framework. Finally, identifying the
key areas within the field of banking crises to which fuzzy logic can be applied opens the door to
potential overlaps between areas.

This study has relevant implications not only for researchers but also for practitioners. From an
academic viewpoint, the main contributions of this paper are linked to identifying in which fields of
financial research fuzzy logic has been utilized and extrapolating the results to suggest other areas
where the use of fuzzy logic could bring positive advances, such as in trading and behavioural finance.
It also adds value regarding the management of banking crises, since a group of articles are analysed
to identify the most adequate fuzzy logic techniques to deal with specific problems linked to banking
crises research. From a practitioner’s standpoint, this work discussed several studies where fuzzy
logic has been applied in the financial field with successful results, including financial forecasting,
stock markets and public finance. It could also be useful for banking regulatory and supervisory bodies,
since this work briefly explores the potential use of fuzzy logic in the field of banking regulation.

In conclusion, since banking crises are among the most devastating events from an economic
viewpoint, we acknowledge the relevant efforts undertaken by the academic community to better
understand the existing mechanisms to prevent and manage banking crisis. Due to the nature of the
data involved in such studies, we consider fuzzy logic and its combination with neural networks
particularly appropriate for the analysis of banking crises and banking resolution mechanisms.
This work contributes to easing the integration of fuzzy logic into the analysis of banking crises through
a comprehensive literature review and identification of the key areas for development.
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5. Bělohlávek, R.; Dauben, J.W.; Klir, G.J. Fuzzy Logic and Mathematics: A Historical Perspective; Oxford University
Press: Oxford, UK, 2017.

6. Kerre, E.E.; Mordeson, J.N. A historical overview of fuzzy mathematics. New Math. Nat. Comput. 2005,
1, 1–26. [CrossRef]

7. Zimmermann, H.J. Fuzzy Set Theory and Its Applications, 4th ed.; Springer Seience, Business Media:
New York, NY, USA, 2001.

8. Šostaks, A. Mathematics in the context of fuzzy sets: Basic ideas, concepts, and some remarks on the history
and recent trends of development. Math. Model. Anal. 2011, 16, 173–198. [CrossRef]

9. Gottwald, S. Fuzzy Sets and Fuzzy Logic: The Foundations of Application—From a Mathematical Point of View;
Springer: Berlin, Germany, 2013.

10. Buckley, J.J. The fuzzy mathematics of finance. Fuzzy Sets Syst. 1985, 21, 257–273. [CrossRef]
11. Li Calzi, M. Towards a general setting for the fuzzy mathematics of finance. Fuzzy Sets Syst. 1990, 35, 265–280.

[CrossRef]
12. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
13. Venkat, N.R.; Kushal, R.N.; Sangam, S. Application of Fuzzy Logic in Financial Markets for Decision Making.

Int. J. Adv. Res. Comput. Sci. 2017, 8, 382–386.
14. Werro, N. Fuzzy Classi Cation of Online Customers; University of Fribourg: Fribourg, Switzerland, 2008.
15. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 1975,

8, 199–249. [CrossRef]
16. Liu, W.; Liao, H. A Bibliometric Analysis of Fuzzy Decision Research During 1970–2015. Int. J. Fuzzy Syst.

2017, 19, 1–14. [CrossRef]
17. Lee, C.H.L.; Liu, A.; Chen, W.S. Pattern discovery of fuzzy time series for financial prediction. IEEE Trans.

Knowl. Data Eng. 2006, 18, 613–625.
18. Mahfouf, M.; Abbod, M.F.; Linkens, D.A. A survey of fuzzy logic monitoring and control utilisation in

medicine. Artif. Intell. Med. 2001, 21, 27–42. [CrossRef]
19. Rajab, S.; Sharma, V. A review on the applications of neuro-fuzzy systems in business. Artif. Intell. Rev. 2018,

49, 481–510. [CrossRef]
20. Shapiro, A.F. Fuzzy logic in insurance. Insur. Math. Econ. 2004, 35, 399–424. [CrossRef]
21. Von Altrock, C. Fuzzy Logic and NeuroFuzzy Applications in Business and FInance; Prentice-Hall, Inc.:

Upper Saddle River, NJ, USA, 1996.
22. Bojadziev, G. Fuzzy Logic for Business, Finance, and Management; World Scientific Pub Co Inc.: Singapore, 2007.
23. Gil-Lafuente, A.M. Fuzzy Logic in Financial Analysis; Springer: Berlin, Germany, 2005.
24. Onwuegbuzie, A.J.; Leech, N.L.; Collins, K.M.T. Qualitative analysis techniques for the review of the literature.

Qual. Rep. 2012, 17, 1–28.
25. Onwuegbuzie, A.J.; Collins, K.M.; Leech, N.L.; Dellinger, A.B.; Jiao, Q.G. A meta-framework for conducting

mixed research syntheses for stress and coping researchers and beyond. In Toward a Broader Understanding
of Stress and Coping: Mixed Methods Approaches; Information Age Publishing: Charlotte, NC, USA, 2010;
pp. 169–211.

26. Okoli, C.; Schabram, K. A Guide to Conducting a Systematic Literature Review of Information Systems Research;
Sprouts: Phoenix, AZ, USA, 2010; Volume 10.

27. Ensslin, L.; Ensslin, S.R.; Lacerda, R.T.; Tasca, J.E. ProKnow-C, Knowledge Development Process—Construtivist
2010. Available online: http://www.ucdoer.ie/index.php/Education_Theory (accessed on 20 December 2010).

260



Mathematics 2019, 7, 1091

28. Arruda, L.; França, S.; Quelhas, O. Mobile Computing: Opportunities for Improving Civil Constructions
Productivity. Int. Rev. Manag. Bus. Res. 2014, 3, 648–655.

29. Ensslin, L.; Mussi, C.C.; Chaves, L.C.; Demetrio, S.N. Errata-“IT outsourcing management: The state of the
art recognition by a constructivist process and bibliometrics”. J. Inf. Syst. Technol. Manag. 2016, 13, 151.
[CrossRef]

30. Thiel, G.G.; Ensslin, S.R.; Ensslin, L. Street lighting management and performance evaluation: Opportunities
and challenges. J. Local Self-Gov. 2017, 15, 303–328. [CrossRef]

31. Drake, P.P.; Fabozzi, F.J. The Basics of Finance: An Introduction to Financial Markets, Business Finance, and Portfolio
Management; John Wiley & Sons: Hoboken, NJ, USA, 2010.

32. Aghaei Chadegani, A.; Salehi, H.; Md Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ale Ebrahim, N.
A comparison between two main academic literature collections: Web of science and scopus databases.
Asian Soc. Sci. 2013, 9, 18–26. [CrossRef]

33. Mongeon, P.; Paul-hus, A. The journal coverage of bibliometric databases: A comparison of Scopus and Web
of Science. Scientometrics 2014, 1–6.

34. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and
meta-analyses: The PRISMA statement. J. Clin. Epidemiol. 2009, 6, e1000097.

35. Behrens, A. Use of intervals and possibility distributions in economic analysis. J. Oper. Res. Soc. 1992,
43, 907–918.

36. Gutiérrez, I. Fuzzy numbers and net present value. Scand. J. Manag. 1989, 5, 149–159. [CrossRef]
37. Boyacioglu, M.A.; Avci, D. An adaptive network-based fuzzy inference system (ANFIS) for the prediction

of stock market return: The case of the Istanbul stock exchange. Expert Syst. Appl. 2010, 37, 7908–7912.
[CrossRef]

38. Tiryaki, F.; Ahlatcioglu, B. Fuzzy portfolio selection using fuzzy analytic hierarchy process. Inf. Sci. 2009,
179, 53–69. [CrossRef]

39. Verikas, A.; Kalsyte, Z.; Bacauskiene, M.; Gelzinis, A. Hybrid and ensemble-based soft computing techniques
in bankruptcy prediction: A survey. Soft Comput. 2010, 14, 995–1010. [CrossRef]

40. Bahrammirzaee, A. A comparative survey of artificial intelligence applications in finance: Artificial neural
networks, expert system and hybrid intelligent systems. Neural Comput. Appl. 2010, 19, 1165–1195. [CrossRef]

41. Atsalakis, G.S.; Valavanis, K.P. Surveying stock market forecasting techniques-Part I: Conventional methods.
Expert Syst. Appl. 2009, 36, 5932–5941. [CrossRef]

42. Ravi Kumar, P.; Ravi, V. Bankruptcy prediction in banks and firms via statistical and intelligent
techniques-A review. Eur. J. Oper. Res. 2006, 180, 1–28. [CrossRef]

43. Atsalakis, G.S.; Valavanis, K.P. Forecasting stock market short-term trends using a neuro-fuzzy based
methodology. Expert Syst. Appl. 2009, 36, 10696–10707. [CrossRef]

44. Ijegwa, A.D.; Rebecca, V.O.; Olusegun, F.; Isaac, O.O. A Predictive Stock Market Technical Analysis Using
Fuzzy Logic. Comput. Inf. Sci. 2014, 7, 1–17. [CrossRef]

45. Chang, P.C.; Liu, C.H. A TSK type fuzzy rule based system for stock price prediction. Expert Syst. Appl. 2008,
34, 135–144. [CrossRef]

46. Arenas Parra, M.; Bilbao Terol, A.; Rodríguez Uría, M.V. A fuzzy goal programming approach to portfolio
selection. Eur. J. Oper. Res. 2001, 133, 287–297. [CrossRef]

47. Huang, X. Mean-entropy models for fuzzy portfolio selection. IEEE Trans. Fuzzy Syst. 2008, 16, 1096–1101.
[CrossRef]

48. Shaverdi, M.; Ramezani, I.; Tahmasebi, R.; Rostamy, A.A.A. Combining Fuzzy AHP and Fuzzy TOPSIS with
Financial Ratios to Design a Novel Performance Evaluation Model. Int. J. Fuzzy Syst. 2016, 18, 248–262.
[CrossRef]

49. Nakano, M.; Takahashi, A.; Takahashi, S. Fuzzy logic-based portfolio selection with particle filtering and
anomaly detection. Knowl.-Based Syst. 2017, 131, 113–124. [CrossRef]

50. Muzzioli, S.; De Baets, B. Fuzzy Approaches to Option Price Modeling. IEEE Trans. Fuzzy Syst. 2017, 25, 392–401.
[CrossRef]

51. De Andrés-Sánchez, J. Pricing European Options with Triangular Fuzzy Parameters: Assessing Alternative
Triangular Approximations in the Spanish Stock Option Market. Int. J. Fuzzy Syst. 2018, 20, 1624–1643.
[CrossRef]

261



Mathematics 2019, 7, 1091

52. Li, H.; Ware, A.; Di, L.; Yuan, G.; Swishchuk, A.; Yuan, S. The application of nonlinear fuzzy parameters PDE
method in pricing and hedging European options. Fuzzy Sets Syst. 2016, 331, 14–25. [CrossRef]

53. Muzzioli, S.; Torricelli, C. A multiperiod binomial model for pricing options in a vague world. J. Econ.
Dyn. Control 2004, 28, 861–887. [CrossRef]

54. Dymova, L.; Sevastianov, P.; Bartosiewicz, P. A new approach to the rule-base evidential reasoning:
Stock trading expert system application. Expert Syst. Appl. 2010, 37, 5564–5576. [CrossRef]

55. Huang, H.; Pasquier, M.; Quek, C. Financial market trading system with a hierarchical coevolutionary fuzzy
predictive model. IEEE Trans. Evol. Comput. 2009, 13, 56–70. [CrossRef]

56. Huang, Y.; Jiang, W. Extension of TOPSIS Method and its Application in Investment. Arab. J. Sci. Eng. 2018,
43, 693–705. [CrossRef]

57. Kuo, R.J.; Chen, C.H.; Hwang, Y.C. An intelligent stock trading decision support system through integration of
genetic algorithm based fuzzy neural network and artificial neural network. Fuzzy Sets Syst. 2001, 118, 21–45.
[CrossRef]

58. Wu, B.; Tseng, N.-F. A new approach to fuzzy regression models with application to business cycle analysis.
Fuzzy Sets Syst. 2002, 130, 33–42. [CrossRef]

59. Chiu, C.-Y.; Park, C.S. Fuzzy cash flow analysis using present worth criterion. Eng. Econ. 1994, 39, 113–138.
[CrossRef]

60. McIvor, R.T.; McCloskey, A.G.; Humphreys, P.K.; Maguire, L.P. Using a fuzzy approach to support financial
analysis in the corporate acquisition process. Expert Syst. Appl. 2004, 27, 533–547. [CrossRef]

61. Magni, C.A.; Malagoli, S.; Mastroleo, G. An alternative approach to firms’ evaluation: Expert Systems and
Fuzzy Logic. Int. J. Inf. Technol. Decis. Mak. 2006, 5, 195–225. [CrossRef]

62. Jiao, Y.; Syau, Y.R.; Lee, E.S. Modelling credit rating by fuzzy adaptive network. Math. Comput. Model. 2007,
45, 717–731. [CrossRef]

63. Amiri, M.P. Project selection for oil-fields development by using the AHP and fuzzy TOPSIS methods.
Expert Syst. Appl. 2010, 37, 6218–6224. [CrossRef]

64. Mao, Y.; Wu, W. Fuzzy Real Option Evaluation of Real Estate Project Based on Risk Analysis.
Syst. Eng. Procedia 2011, 1, 228–235. [CrossRef]

65. Jiménez, A.; Martín, M.C.; Mateos, A.; Pérez-Sénchez, D.; Dvorzhak, A. A fuzzy MCDA framework for safety
assessment in the remediation of a uranium mill tailings site in Ukraine. Intelligent Systems and Decision
Making for Risk Analysis and Crisis Response. In Proceedings of the 2013 4th International Conference on
Risk Analysis and Crisis Response, RACR, Istanbul, Turkey, 27–29 August 2013; pp. 1–22.

66. De Wit, G.W. Underwriting and Uncertainty. Insur. Math. Econ. 1982, 1, 277–285. [CrossRef]
67. Lemaire, J. Fuzzy Insurance. Astin Bull. 1990, 20, 34–58. [CrossRef]
68. Ostaszewski, K.; Karwowski, W. An Analysis of Possible Applications of Fuzzy Set Theory to the Actuarial

Credibility Theory; NASA. Johnson Space Center: Louisville, KY, USA, 1993.
69. Derrig, R.A.; Cummins, J.D. Fuzzy Trends in Property-Liability Insurance Claim Costs. J. Risk Insur. 1993,

60, 429–465.
70. Young, V.R. Insurance Rate Changing: A Fuzzy Logic Approach. J. Risk Insur. 1996, 63, 461–484. [CrossRef]
71. Casanovas, M.; Torres-Martínez, A.; Merigó, J.M. Decision making processes of non-life insurance pricing

using Fuzzy Logic and OWA operators. Econ. Comput. Econ. Cybern. Stud. Res. 2015. Available online:
http://repositorio.uchile.cl/handle/2250/133834 (accessed on 8 June 2015).

72. Shapiro, A.F. The merging of neural networks, fuzzy logic, and genetic algorithms. Insur. Math. Econ. 2002,
31, 115–131. [CrossRef]

73. Xiao, Z.; Gong, K.; Zou, Y. A combined forecasting approach based on fuzzy soft sets. J. Comput. Appl. Math.
2009, 228, 326–333. [CrossRef]

74. Ammar, S.; Duncombe, W.; Jump, B.; Wright, R. Constructing a fuzzy-knowledge-based-system: An application
for assessing the financial condition of public schools. Expert Syst. Appl. 2004, 27, 349–364. [CrossRef]

75. Keles, A.; Kolcak, M.; Keles, A. The adaptive neuro-fuzzy model for forecasting the domestic debt.
Knowl.-Based Syst. 2008, 21, 951–957. [CrossRef]

76. Rivera-Lirio, J.M.; Muñoz-Torres, M.J. The effectiveness of the public support policies for the European
industry financing as a contribution to sustainable development. J. Bus. Ethics 2010, 94, 489–515. [CrossRef]

77. Malhotra, R.; Malhotra, D.K. Differentiating between good credits and bad credits using neuro-fuzzy systems.
Eur. J. Oper. Res. 2002, 136, 190–211. [CrossRef]

262



Mathematics 2019, 7, 1091

78. Wang, Y.; Wang, S.; Lai, K.K. A new fuzzy support vector machine to evaluate credit risk. IEEE Trans.
Fuzzy Syst. 2005, 13, 820–831. [CrossRef]

79. Akkoç, S. An empirical comparison of conventional techniques, neural networks and the three stage hybrid
Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish
credit card data. Eur. J. Oper. Res. 2012, 222, 168–178. [CrossRef]

80. Nazemi, A.; Fatemi Pour, F.; Heidenreich, K.; Fabozzi, F.J. Fuzzy decision fusion approach for
loss-given-default modeling. Eur. J. Oper. Res. 2017, 262, 780–791. [CrossRef]

81. Bennouna, G.; Tkiouat, M. Fuzzy logic approach applied to credit scoring for micro finance in Morocco.
Procedia Comput. Sci. 2018, 127, 274–283. [CrossRef]

82. Wanke, P.; Azad, A.K.; Emrouznejad, A. Efficiency in BRICS banking under data vagueness: A two-stage
fuzzy approach. Glob. Financ. J. 2018, 35, 58–71. [CrossRef]

83. Amaglobeli, D.; End, N.; Jarmuzek, M.; Palomba, G. From Systemic Banking Crises to Fiscal Costs: Risk Factors;
IMF Working Papers; International Monetary Fund N.W.: Washington, DC, USA; Volume WP/15/166.

84. Freixas, X.; Peydró, J.-L.; Laeven, L.; Freixas, X.; Laeven, L.; Peydró, J.-L. Systemic Risk and Macroprudential
Regulation. In Systemic Risk, Crises, and Macroprudential Regulation; MIT Press: Cambridge, MA, USA, 2016.

85. Ravikumar, P.; Ravi, V. Bankruptcy prediction in banks by an ensemble classifier. In Proceedings of the IEEE
International Conference on Industrial Technology, Mumbai, India, 15–17 December 2006; pp. 2032–2036.

86. Altman, E. Financial Ratios, Discriminant Analysis, and the Prediction of Corporate Bankruptcy. J. Financ.
1968, 23, 589–609. [CrossRef]

87. Sinkey, J.F. A Multivariate Statistical Analysis of the Characteristics of Problem Banks. J. Financ. 1975, 7, 77–91.
[CrossRef]

88. Altman, E.I. Predicting performance in the savings and loan association industry. J. Monet. Econ. 1977, 3, 443–466.
[CrossRef]

89. Alam, P.; Booth, D.; Lee, K.; Thordarson, T. The use of fuzzy clustering algorithm and self-organizing neural
networks for identifying potentially failing banks: An experimental study. Expert Syst. Appl. 2000, 18, 185–199.
[CrossRef]

90. Boyacioglu, M.A.; Kara, Y.; Baykan, Ö.K. Predicting bank financial failures using neural networks,
support vector machines and multivariate statistical methods: A comparative analysis in the sample
of savings deposit insurance fund (SDIF) transferred banks in Turkey. Expert Syst. Appl. 2009, 36, 3355–3366.
[CrossRef]

91. Shin, K.S.; Lee, T.S.; Kim, H.J. An application of support vector machines in bankruptcy prediction model.
Expert Syst. Appl. 2005, 28, 127–135. [CrossRef]

92. Olmeda, I.; Fernandez, E. Hybrid Classifiers for Financial Multicriteria Decision Making: The Case of
Bankruptcy Prediction. Comput. Econ. 1997, 1621, 36–43.

93. Tung, W.L.; Quek, C.; Cheng, P. GenSo-EWS: A novel neural-fuzzy based early warning system for predicting
bank failures. Neural Netw. 2004, 17, 567–587. [CrossRef] [PubMed]

94. Wilms, P.; Swank, J.; Haan, J. De Determinants of the real impact of banking crises: A review and new
evidence. N. Am. J. Econ. Financ. 2018, 43, 54–70. [CrossRef]

95. De Marco, G.; Donnini, C.; Gioia, F.; Perla, F. On the measure of contagion in fuzzy financial networks.
Appl. Soft Comput. J. 2018, 67, 584–595. [CrossRef]

96. Lou, Y.; Wang, M. Fraud Risk Factor Of The Fraud Triangle Assessing The Likelihood Of Fraudulent Financial
Reporting. J. Bus. Econ. Res. 2009, 7, 61–78. [CrossRef]

97. Farrando, I. Bankia’s IPO: Some Remarks on the Biggest Failure in the Spanish Banking System. 2018.
Available online: https://ssrn.com/abstract=3176481 (accessed on 10 May 2018).

98. Sloan, T. Banco Espirito Santo and European banking regulation. 2015. Available online: http://data.europa.
eu/88u/dataset/exercise-espirito-santo-financial-group-sa-esfg- (accessed on 27 July 2015).

99. Albrecht, W.S.; Romney, M.B.; Cherrington, D.J.; Payne, I.R.; Roe, A.J.; Romney, M.B. Red-flagging
management fraud: A validation. Adv. Account. 1986, 3, 323–333.

100. Kalbers, L.P. Fraudulent financial reporting, corporate governance and ethics: 1987–2007. Rev. Account.
Financ. 2009, 15, 65–84. [CrossRef]

101. Summers, S.L.; Sweeney, J.T. Fraudulently misstated financial statements and insider trading: An empirica
analysis. Account. Rev. 1998, 73, 131–146.

263



Mathematics 2019, 7, 1091

102. Pathak, J.; Vidyarthi, N.; Summers, S.L. A fuzzy-based algorithm for auditors to detect elements of fraud in
settled insurance claims. Manag. Audit. J. 2005, 20, 632–644. [CrossRef]

103. Ravisankar, P.; Ravi, V.; Raghava Rao, G.; Bose, I. Detection of financial statement fraud and feature selection
using data mining techniques. Decis. Support Syst. 2011, 50, 491–500. [CrossRef]

104. Lin, J.W.; Hwang, M.I.; Becker, J.D. A fuzzy neural network for assessing the risk of fraudulent financial
reporting. Manag. Audit. J. 2003, 18, 657–665. [CrossRef]

105. Mardani, A.; Jusoh, A.; Zavadskas, E.K. Fuzzy multiple criteria decision-making techniques and
applications-Two decades review from 1994 to 2014. Expert Syst. Appl. 2015, 42, 4126–4148. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

264



mathematics

Article

On ω-Limit Sets of Zadeh’s Extension of
Nonautonomous Discrete Systems on an Interval

Guangwang Su 1,2, Taixiang Sun 1,2,*
1 College of Information and Statistics, Guangxi University of Finance and Economics, Nanning 530003,

China; s1g6w3@163.com
2 Guangxi Key Laboratory Cultivation Base of Cross-border E-commerce Intelligent Information Processing,

Nanning 530003, China
* Correspondence: stxhql@gxu.edu.cn; Tel.: +86-138-7815-8146

Received: 18 September 2019; Accepted: 13 November 2019; Published: 16 November 2019

Abstract: Let I = [0, 1] and fn be a sequence of continuous self-maps on I which converge uniformly
to a self-map f on I. Denote by F (I) the set of fuzzy numbers on I, and denote by (F (I), f̂ ) and
(F (I), f̂n) the Zadeh’s extensions of (I, f ) and (I, fn), respectively. In this paper, we study the ω-limit
sets of (F (I), f̂n) and show that, if all periodic points of f are fixed points, then ω(A, f̂n) ⊂ F( f̂ )
for any A ∈ F (I), where ω(A, f̂n) is the ω-limit set of A under (F (I), f̂n) and F( f̂ ) = {A ∈ F (I) :
f̂ (A) = A}.

Keywords: fuzzy number; ω-limit set; periodic point; Zadeh’s extension

1. Introduction

Research for the dynamical properties of nonautonomous discrete systems on a metric space is
very interesting (see [1–11]). In [12], Kempf investigated the ω-limit sets of a sequence of continuous
self-maps fn on I which converge uniformly to a self-map f on I and showed that, if P( f ) = F( f ),
then ω(x, fn) is a closed subset of I with ω(x, fn) ⊂ F( f ) for any x ∈ I, where F( f ) and P( f )
are the set of fixed points of f and the set of periodic points of f , respectively, and ω(x, fn) is the
set of ω-limit points of x under (X, fn). Further, Cánovas [13] showed that, if fn is a sequence of
continuous self-maps on I which converge uniformly to a self-map f on I and P( f ) = F( f 2s

) for
some s ∈ N, then ω(x, fn) = ∪2s

k=1[pk, qk] ⊂ F( f 2s
) with f ([pk, qk]) = [pk+1, qk+1] (1 ≤ k ≤ 2s − 1)

and f ([p2s , q2s ]) = [p1, q1] for any x ∈ I. In [14], we studied the ω-limit sets of a sequence of
continuous self-maps fn on a tree T which converge uniformly to a self-map f on T and showed that,
if P( f ) = F( f ), then ω(x, fn) is a closed connected subset of T with ω(x, fn) ⊂ F( f ) for any x ∈ T.

It is well known [15] that the discrete dynamical system (X, f ) naturally induces a dynamical
system (F (X), f̂ ), where F (X) is the set of all fuzzy sets on a metric space X and f̂ is the Zadeh’s
extension of continuous self-maps f on X. It is natural to ask how the dynamical properties of f
is related to the dynamical properties of f̂ . Already, there are many results for this question so far;
see, e.g., References [16–21] and the related references therein, where different chaotic properties and
topological entropies of Zadeh’s extensions of continuous seif-maps on metric spaces were considered.
Our aim in this paper is to study the ω-limit sets of Zadeh’s extensions of nonautonomous discrete
systems on intervals.

2. Preliminaries

Throughout this paper, let (X, d) be a metric space, write I = [0, 1], and denote by N the set of
all positive integers. Let C0(X) be the set of all continuous self-maps on X. For a given f ∈ C0(X),
let f n+1 = f ◦ f n for any n ∈ N. We call F( f ) = {x ∈ X : f (x) = x} the set of fixed points of f and
P( f ) = {x ∈ X : f n(x) = x for some n ∈ N} the set of periodic points of f .

Mathematics 2019, 7, 1116; doi:10.3390/math7111116 www.mdpi.com/journal/mathematics265
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Let fn ∈ C0(X) (n ∈ N) and F0 be the identity map of X, and write

Fn = fn ◦ fn−1 ◦ · · · ◦ f1 for any n ∈ N.

y ∈ X is called the ω-limit point of x(∈ X) under (X, fn) if there are n1 < n2 < · · · < nk < · · ·
such that

lim
k−→∞

Fnk (x) = y.

Denote by ω(x, fn) the set of ω-limit points of x under (X, fn). We write fn =⇒ f if fn converges
uniformly to f .

Now, let us recall some definitions for fuzzy theory which are from [15].

Definition 1. Let X be a metric space. A mapping A : X −→ [0, 1] is called a fuzzy set on X. For each fuzzy set
A and each α ∈ (0, 1], Aα = {t ∈ X : A(t) ≥ α} is called an α-level set of A and A0 = {t ∈ X : A(t) > 0}
is called the support of A, where B means the closure of subset B of X.

Definition 2. A fuzzy set A on I is said to be a fuzzy number if it satisfies the following conditions:

(1) A1 
= ∅;
(2) A is an upper semicontinuous function;
(3) For any t1, t2 ∈ I and any λ ∈ [0, 1], A(λt1 + (1− λ)t2) ≥ min{A(t1), A(t2)};
(4) A0 is compact.

Let F (I) denote the set of fuzzy numbers on I. It is known that α-level set Aα of A determines
the fuzzy number A and that every Aα is a closed connected subset of I. If A ∈ I, then A ∈ F (I) with
Aα = [A, A] for any α ∈ [0, 1].

For any A, B ∈ F (I) with Aα = [Al,α, Ar,α] and Bα = [Bl,α, Br,α] for any α ∈ (0, 1], we define the
metric of A and B as follows:

D(A, B) = sup
α∈(0,1]

max{|Al,α − Bl,α|, |Ar,α − Br,α|}.

Obviously, we have

D(A, B) = sup
α∈(0,1]

max{ sup
x∈Aα

d(x, Bα), sup
y∈Bα

d(y, Aα)}H(Aα, Bα),

where d(x, J) = infy∈J d(x, y) for any x ∈ I and J ⊂ I. It is known that (F (I), D) is a complete metric
space (refer to [15]).

Let f ∈ C0(I). We define the Zadeh’s extension f̂ : F (I) −→ F (I) of f for any x ∈ I and
A ∈ F (I) by

( f̂ (A))(x) = sup
f (y)=x

A(y).

It follows from [15] that f is continuous if and only if f̂ is continuous, and it follows from [22]
(Lemma 2.1) that

[ f̂ (A)]α = f (Aα)

for any A ∈ F (I) and α ∈ (0, 1]. In this paper, we will show the following theorem.

Theorem 1. Let fn be a sequence of continuous self-maps on I with fn =⇒ f . If P( f ) = F( f ), then
ω(A, f̂n) ⊂ F( f̂ ) for any A ∈ F (I).
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3. Proof of the Main Result

In this section, we let f ∈ C0(I) and f̂ is the Zadeh’s extension of f . Let F̂0 be the identity map of
F (I) and for any n ∈ N, we write

F̂n = f̂n ◦ f̂n−1 ◦ · · · ◦ f̂1.

Lemma 1. Assume that fn ∈ C0(I) for any n ∈ N with fn =⇒ f . Then, f̂n =⇒ f̂ on F (I).

Proof. Since fn =⇒ f on I, it follows that, for any ε > 0, there is an N ∈ N such that, when n ≥ N,
we have

| f (x)− fn(x)| < ε

2

for any x ∈ I, which implies that, for any B ⊂ I, we have d(z, fn(B)) < ε/2 for any z ∈ f (B) and
d(z, f (B)) < ε/2 for any z ∈ fn(B). Thus when n ≥ N, we have

D( f̂ (A), f̂n(A)) = sup
α∈(0,1]

H( f (Aα), fn(Aα)) ≤
ε

2
< ε

for any A ∈ F (I). Lemma 1 is proven.

Lemma 2. Assume that fn ∈ C0(I) for any n ∈ N with fn =⇒ f . If B ∈ ω(A, f̂n) for some A ∈ F (I), then
ω(x, fn) ∩ Bα 
= ∅ for any α ∈ (0, 1] and x ∈ Aα.

Proof. Let B ∈ ω(A, f̂n) and α ∈ (0, 1]. Let n1 < n2 < · · · < nk < · · · such that

lim
k−→∞

D(F̂nk(A), B) = 0.

Then,
lim

k−→∞
H(Fnk(Aα), Bα) = 0.

Let x ∈ Aα. By taking a subsequence, we let limk−→∞ Fnk(x) = y ∈ ω(x, fn). If y 
∈ Bα, then
ε = d(y, Bα) > 0. Since limk−→∞ H(Fnk(Aα), Bα) = 0, there is an N ∈ N such that, when nk > N,
we have

H(Fnk(Aα), Bα) <
ε

2
,

which implies d(Fnk(x), Bα) < ε/2 and limk−→∞ Fnk(x) 
= y since Fnk(x) ∈ Fnk(Aα). This is a
contradiction. Thus, y ∈ Bα. Lemma 2 is proven.

Proposition 1. Assume that fn ∈ C0(I) for any n ∈ N with fn =⇒ f and P( f ) = F( f ). Then, the following
statements hold:

(1) If B ∈ ω(A, f̂n) for some A ∈ F (I), then ∅ 
= f (Bα) ∩ Bα ∩ ω(x, fn) ⊂ F( f ) for any α ∈ (0, 1] and
x ∈ Aα.

(2) If B ∈ ω(A, f̂n) for some A ∈ F (I), then ∪B∈ω(A, f̂n)
Bα ∪ ω(x, fn) is a connected subset of I for any

α ∈ (0, 1] and x ∈ Aα.

Proof. It follows from Theorem 1 and Lemma 2.

Lemma 3 (See [14] (Lemma 2)). Assume that f ∈ C0(I) with F( f ) = P( f ). Then, for any x ∈ I and n ∈ N,
f n(x) > x if f (x) > x and f n(x) < x if f (x) < x.

Now, we show the main result of this paper.
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Proof of Theorem 1. Let B ∈ ω(A, f̂n). For any α ∈ (0, 1], write Bα = [aα, bα] and f (Bα) = [cα, dα]. Let
n1 < n2 < · · · < nk < · · · such that

lim
k−→∞

D(F̂nk(A), B) = 0. (1)

By f̂ ∈ C0(F (I)), we see that, for any ε > 0, there is an δ = δ(ε) > 0 such that, if D(B, C) < δ

with C ∈ F (I), then
D( f̂ (B), f̂ (C)) <

ε

3
.

By Lemma 1, we see that there is an N = N(ε) ∈ N such that , when n ≥ N, we have

D( f̂ (W), f̂n(W)) ≤ ε

3
(2)

for any W ∈ F (I). Take r = nk ≥ N such that D(F̂r(A), B) < δ. Thus,

D( f̂ (B), F̂r+1(A)) ≤ D( f̂ (B), f̂ (F̂r(A))) + D( f̂ (F̂r(A)), F̂r+1(A)) ≤ 2ε

3
. (3)

In the following, we show that aα = cα and bα = dα. For convenience, write aα = a, bα = b, cα = c,
and dα = d.

(i) We will show c ≤ a. Assume on the contrary that c > a. Then, by Proposition 1, we see c ≤ b.
We claim that there is an u ∈ (a, 1] such that f (u) = a. Indeed, if f ([a, 1]) ⊂ (a, 1], then let

ε = min{d(a, f ([a, 1])), c− a} > 0. By Equation (3), we see Fr+1(Aα) ⊂ [a + ε/3, 1]. It follows from
Equation (2) that

H( f (Fr+1(Aα)), Fr+2(Aα)) ≤
ε

3
.

Thus, Fr+2(Aα) ⊂ [a + ε/3, 1]. Continuing in this fashion, we have that Fn(Aα) ⊂ [a + ε/3, 1] for
any n ≥ r + 1, which contradicts Equation (1). The claim is proven.

Let u = min{x ∈ (a, 1] : f (x) = a}. Then, u > b since f ([a, b]) = [c, d] and u > d (Otherwise, if
b < u ≤ d, then there exists an u1 ∈ [a, b] and u2 ∈ [u1, u] such that u1 = f (u2) < u2 ≤ d = f (u1).
This contradicts Lemma 3.). By Lemma 3, we see f ([a, u]) ⊂ [a, u). Write

p = max{b, d, max f ([a, u])},

ε1 = (u− p)/2,

q = min{c, min f ([a, p + ε1])},

ε = min{(q− a)/2, ε1}.

By Equation (3), we see Fr+1(Aα) ⊂ [q− ε, p + ε1]. It follows from Equation (2) that

H( f (Fr+1(Aα)), Fr+2(Aα)) ≤
ε

3
.

Thus, Fr+2(Aα) ⊂ [q− ε, p + ε1]. Continuing in this fashion, we have that Fn(Aα) ⊂ [q− ε, p + ε1]

for any n ≥ r + 1, which contradicts Equation (1).
(ii) In similar fashion, we can show d ≥ b.

(iii) We will show that, if c = a, then d = b. Assume on the contrary that d > b. Let u = max{z ∈
[a, b] : f (z) = d} and e = min{z ∈ [a, b] : f (z) = a}. Then, we have e < u (Otherwise, if e > u, then
there is an w ∈ [u, e] satisfying u = f (w) < w < d = f 2(w). This contradicts Lemma 3.) and f (a) < u.
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We claim that there is an v ∈ (u, 1] such that f (v) = u. Indeed, if p = min f ([u, 1]) > u, then let
ε = min{(d− b)/2, d(u, p)} > 0. By Equation (3), we see

D( f̂ (B), F̂r+1(A)) ≤ 2ε

3
.

If Fn(Aα)∩ [a, u] 
= ∅ for any n ≥ r + 1, then we have d− 2ε/3 ∈ Fn(Aα) for any n ≥ r + 1, which
contradicts Equation (1). If Fn(Aα)∩ [a, u] = ∅ for some n ≥ r + 1, then let m = min{Fn(Aα)∩ [a, u] =
∅ : n ≥ r + 1}. Thus, Fm(Aα) ⊂ (u, 1], and it follows from Equation (2) that

H( f (Fm(Aα)), Fm+1(Aα)) ≤
ε

3
,

which implies Fm+1(Aα) ⊂ [p− ε/3, 1] ⊂ (u, 1]. Continuing in this fashion, we obtain that Fn(Aα) ⊂
[p− ε/3, 1] ⊂ (u, 1] for any n ≥ m, which contradicts Equation (1). The claim is proven.

Let v = min{x ∈ (u, 1] : f (x) = u}. Then, by Lemma 3, we see d < v and p = max f ([u, v]) < v.
If there is an w ∈ [0, a) satisfying f (w) = u, then let w = max{x ∈ [0, a) : f (x) = u}. By Lemma 3,

we see q = min f ([w, a]) > w and f ([w, v]) = [q, p]. Write

ε1 = (v− p)/2,

z = min f ([u, p + ε1]) > u,

ε = min{(d− b)/2, (q− w)/2, (z− u)/2, ε1}.

By Equation (3), we see

D( f̂ (B), F̂r+1(A)) ≤ 2ε

3
.

This implies Fr+1(Aα) ⊂ [q− ε, p + ε1]. If Fn(Aα) ∩ [a, u] 
= ∅ for any n ≥ r + 1, then we have
d− 2ε/3 ∈ Fn(Aα) for any n ≥ r + 1, which contradicts Equation (1). If Fn(Aα) ∩ [a, u] = ∅ for some
n ≥ r + 1, then let m = min{Fn(Aα) ∩ [a, u] = ∅ : n ≥ r + 1}. Thus, Fm(Aα) ⊂ (u, p + ε1], and it
follows from Equation (2) that

H( f (Fm(Aα)), Fm+1(Aα)) ≤
ε

3
,

which implies Fm+1(Aα) ⊂ [z− ε/3, p + ε1] ⊂ (u, p + ε1]. Continuing in this fashion, we obtain that
Fn(Aα) ⊂ [z− ε/3, p + ε1] ⊂ (u, p + ε1] for any n ≥ m, which contradicts Equation (1).

If max f ([0, a]) < u, then f ([0, v]) = [0, p]. Using the similar arguments as ones developed in the
above given proof, we also obtain a conclusion which contradicts Equation (1).

(iv) We will show c = a. Assume on the contrary that c < a. Then by claim (ii), we see b ≤ d.
Using the similar arguments as ones developed in the proof of claim (iii), we can obtain b < d. Let
ε = min{(a − c)/2, (d − b)/2}. By Equation (3), we see Fr+1(Aα) ⊃ [a − ε, b + ε]. It follows from
Equation (2) that

H( f (Fr+1(Aα)), Fr+2(Aα)) ≤
ε

3
.

Thus, Fr+2(Aα) ⊃ [a− ε, b + ε]. Continuing in this fashion, we have that Fn(Aα) ⊃ [a− ε, b + ε]

for any n ≥ r + 1, which contradicts Equation (1).
By claims (iii) and (iv), we see f (Bα) = Bα for any α ∈ (0, 1], which implies f (B) = B. Theorem 1

is proven.

Using the similar arguments as ones developed in the proofs of Proposition 1.4 of [13] and
Theorem 1, we may show the following result.

Corollary 1. Let fn ∈ C0(I) for any n ∈ N with fn =⇒ f . If P( f ) = F( f 2s
) for some s ∈ N, then

ω(A, f̂n) ⊂ F( f̂ 2s
) for any A ∈ F (I).
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The following example illustrates that there are fn ∈ C0(I) for any n ∈ N such that fn =⇒ f with
P( f ) = F( f ) and ω(A, f̂n) = ∅ for some A ∈ F (I).

Example 1. Let f ∈ C0(I) with f (1) = 1 > 0 = f (0) and x < f (x) for any x ∈ (0, 1) and fn ≡ f for any
n ∈ N. Thus, fn =⇒ f . We define A ∈ F (I) for any x ∈ I by

A(x) = −x + 1.

By calculation, we have Aα = [0, 1− α] for any α ∈ (0, 1] and f n(A1) = {0} for any n ∈ N. In the
following, we assume that α ∈ (0, 1) and let f n(Aα) = [an(α), bn(α)]. Then, an(α) = 0 for any n ∈ N and
bn(α) ≤ bn+1(α) ≤ 1 for any n ∈ N and bn(α) −→ 1. Since b(α) = 1 is not left continuous at α = 1, by
Theorem 2.1 of [23], there is not a B ∈ F (I) such that Bα = [a(α), b(α)] = [0, 1] for any α ∈ (0, 1]. Thus,
ω(A, f̂ ) = ∅.

4. Conclusions

In this paper, we investigated the ω-limit sets of Zadeh’s extensions of a nonautonomous discrete
system fn on an interval which converges uniformly to a map f and show that, if P( f ) = F( f ), then
ω(A, f̂n) ⊂ F( f̂ ) for any A ∈ F (I).
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Abstract: A fuzzy collaborative approach is proposed in this study to assess the suitability of a smart
health practice, which is a challenging task, as the participating decision makers may not reach
a consensus. In the fuzzy collaborative approach, each decision maker first applies the alpha-cut
operations method to derive the fuzzy weights of the criteria. Then, fuzzy intersection is applied to
aggregate the fuzzy weights derived by all decision makers to measure the prior consensus among
them. The fuzzy intersection results are then presented to the decision makers so that they can
subjectively modify the pairwise comparison results to bring them closer to the fuzzy intersection
results. Thereafter, the consensus among decision makers is again measured. The collaboration
process will stop when no more modifications are made by any decision maker. Finally, the fuzzy
weighted mean-centroid defuzzification method is applied to assess the suitability of a smart health
practice. The fuzzy collaborative approach and some existing methods have been applied to assess
the suitabilities of eleven smart health practices for a comparison. Among the compared practices,
only the fuzzy collaborative approach could guarantee the existence of a full consensus among
decision makers after the collaboration process, i.e., that the assessment results were acceptable to all
decision makers.

Keywords: smart health; fuzzy collaborative intelligence; fuzzy analytic hierarchy process; suitability

1. Introduction

The application of smart technologies to enhance mobile health care, i.e., so-called smart health,
has received a lot of attention [1,2]. As smart health practices are becoming more and more sophisticated,
how to recommend suitable smart health practices to a target population becomes a challenging
task. For example, Chen and Chiu [3] reviewed the literature and concluded that the most effective
smart health practices adopted smart mobile services, smart phones, smart glasses/spectacles/contact
lens, and smart surveillance cameras. Haymes et al. [4] applied behavior analysis to find out factors
that contributed to the success of smart health practices for individuals with intellectual disabilities.
Chiu and Chen [5] assessed the sustainable effectiveness of the adjustment mechanism of a ubiquitous
clinic recommendation system by modelling the improvement in the successful recommendation rate
as a learning process. Chen [6] put forward a hybrid methodology combining fuzzy geometric mean
(FGM), alpha-cut operations (ACO), and fuzzy weighted mean (FWM) to evaluate the sustainability
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of a smart health practice, in which FGM, ACO, and FWM were for aggregation, prioritization,
and assessment, respectively. Compared with earlier studies, the FGM-ACO-FWM method was
more precise because of the application of the exact solution technique ACO. However, whether
decision makers reached a consensus was not checked before aggregating their judgments, which was
problematic [7]. To resolve this problem, a fuzzy collaborative approach is proposed in this study.
In the fuzzy collaborative approach, decision makers’ judgments will be aggregated only after they
achieve a consensus.

A fuzzy collaborative approach is proposed in this study to evaluate the suitability of a smart
health practice. In the proposed methodology, multiple decision makers fulfill the assessment task
collaboratively. For each decision maker, ACO is applied to derive the fuzzy weights of criteria.
Then, fuzzy intersection (FI) (or the minimum t-norm) is applied to aggregate the fuzzy weights
derived by all decision makers. Obviously, the proposed methodology is a posterior-aggregation
fuzzy analytic hierarchy process (FAHP) method, while the FGM-ACO-FWM method proposed by
Chen [6] is an anterior-aggregation method. The FI results can be used to measure the prior consensus
among decision makers. If the FI results are wide, i.e., many possible values are acceptable to all
decision makers, then the consensus is high. Subsequently, the FI results are presented to decision
makers so that they can subjectively modify the pairwise comparison results to bring them closer to
the fuzzy intersection results. Thereafter, the consensus among decision makers is again measured.
The collaboration process will stop when no more modifications are made by any decision maker. At
last, based on the aggregation results, the FWM method [8] was applied to assess the suitability of
a smart health practice. The assessment result is defuzzified using the centroid-defuzzification (CD)
method for generating an absolute ranking.

The differences between our proposed methodology and some existing methods are summarized
in Table 1. Our proposed methodology is a posterior-aggregation method, while the method proposed
by Chen [6] is an anterior-aggregation method. In other words, our proposed methodology checks
the existence of a consensus among decision makers, while the method proposed by Chen [6] does
not. In addition, our proposed methodology derives the values of fuzzy weights, while the method
proposed by Chen [7] only approximates the values of fuzzy weights. As a result, our proposed
methodology is more precise and reliable than the method proposed by Chen [7].

Table 1. The differences between the proposed methodology and some existing methods. fuzzy
geometric mean (FGM), alpha-cut operations (ACO), and fuzzy weighted mean (FWM), fuzzy
intersection (FI).

Method
Smart

Technology
Assessment

Method
Group Decision

Making
Consensus Aggregation

Chen and Chiu [3] All Literature
review No - -

Haymes et al. [4] Not specified Behavior
analysis No - -

Chiu and Chen [5] Smart mobile
services

Learning curve
analysis No - -

Chen [6] All FGM-ACO-FWM Yes Not guaranteed Anterior-aggregation

Chen [7] All FGM-FI-FWM Yes Guaranteed Posterior-aggregation

Our proposed
methodology All ACO-FI-FWM Yes Guaranteed Posterior-aggregation

The remainder of this paper is organized as follows. Section 2 reviews previous works. Section 3
puts forward the fuzzy collaborative approach for assessing the suitability of a smart health practice.
Section 4 provides the results of applying the fuzzy collaborative approach to assess eleven smart
health practices, so as to choose the most suitable smart technology application. Three existing methods
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were also applied to these smart health practices for comparison. Finally, Section 5 presents concluding
remarks and lists a few topics worthy of further investigation.

2. Previous Work

Social media, mobile devices, and sensors are valuable for communicating health-related
information [9–11]. In particular, the applications of social networking apps to mobile health care are
prevalent. For example, Cook et al. [12] compared the average number of Twitter posts by people with
depression to that by people without depression, and found a significant difference. The survey done
by Reeder and David [13] revealed that the most prevalent applications of smart watches to mobile
health care included activity monitoring, heart rate monitoring, speech therapy adherence, diabetes
self-management, and the detection of seizures, tremors, scratching, eating, and medication-taking
behaviors. Mandal et al. [14] described the substitutable medical applications and reusable technologies
(SMART) project launched by Harvard Medical School and Boston Children’s Hospital jointly to
increase the portability of medical applications. Based on the infrastructure, several apps have been
designed. Hamidi [15] proposed a new standard for applying biometric technologies to fast identify
the user of a mobile health care service.

According to the survey of Cook et al. [12], due to advances in sensor and wireless communication
technologies, more than twenty-one types of sensors have been prevalent on mobile or wearable
devices, much more than those in the past [16]. Eklund and Forsman [17] designed a suit of smart
work clothes with embedded sensors for monitoring the heart rate and breathing of a worker, so as to
provide him/her suggestions to avoid musculoskeletal disorders.

There are a number of mobile health care studies focusing on special groups, e.g., people with
extremely bad vision [1], people with intellectual disabilities [4], and older adults [18]. According
to the survey by Liu et al. [18], the most suitable smart health practices for older adults adopted
smart homes and home-based health-monitoring technologies. Such applications were mostly used to
monitor the daily activities, cognitive decline, mental health, and heart conditions of older adults with
complex needs.

In the view of Eskofier et al. [19], the ability to walk was critical to the quality of life. For this
reason, smart shoes with embedded sensors were applied to monitor the gait and mobility of a user,
so as to support healthy living, complement medical diagnostics, and monitor therapeutic outcomes.
Smart technologies can be applied to fall detection, for which machine learning and decision tress
are the most prevalent data analysis techniques. In the view of Chen et al. [20], health monitoring
using traditional wearable devices was not sustainable because of the uncomfortableness of long-term
wearing, insufficient accuracy, etc. This problem is expected to be alleviated soon with rapid advances
in wearable technologies.

3. Methodology

The fuzzy collaborative approach proposed in this study is composed of three major parts: ACO,
FI, and FWM. A similar treatment was taken by Duman et al. [21] that combined fuzzy decision-making
trial and evaluation laboratory (DEMATEL), analytic network process (ANP), and an artificial neural
network (ANN). In addition, the fuzzy collaborative approach is a posterior-aggregation method.
Recently, Chen [6] proposed the FGM-ACO-FWM method for a similar purpose. The differences
between the two methods is highlighted by Figure 1. A recent survey of FAHP refers to [22].
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… …

Figure 1. Comparison with a recent method.

3.1. Deriving Fuzzy Weights for Each Decision Maker Using ACO

In the proposed methodology, a team of K decision makers is formed. First, each decision maker
compares the relative weights of criteria for assessing the suitability of a smart health practice in pairs.
The results are used to construct a fuzzy pairwise comparison matrix as

Ãn×n(k) = [̃aij(k)]; i, j = 1 ∼ n; k = 1 ∼ K (1)

where

ãi j(k) =

⎧⎪⎪⎨⎪⎪⎩ 1 if i = j
1

ã ji(k)
otherwise ; i, j = 1 ∼ n; k = 1 ∼ K (2)

ãi j(k) is the relative weight of criterion i over criterion j judged by decision maker k. Equation (2)
is the reciprocal requirement. ãi j(k) are mapped to triangular fuzzy numbers (TFNs) satisfying
aij2(k) = {1, 3, 5, 7, 9}, aij1(k) = max(aij2(k)− 4, 1), and aij3(k) = min(aij2(k)+ 4, 9) (see Figure 2). In this
way, the fuzzy weights derived by decision makers are more likely to overlap before collaboration.
However, that does not mean that the TFNs used in this study are better or more suitable than those
adopted in [23,24]. Regardless of which set of TFNs is used, decision makers can reach a consensus
after several rounds of collaboration using the proposed methodology. However, this is obviously
based on the assumption that all decision makers accept that these TFNs reflect their preferences.
If this assumption holds, in our view, it is more likely for each fuzzy judgment matrix to be consistent.
A positive comparison satisfies ãi j(k) ≥ 1.

Figure 2. Triangular fuzzy numbers (TFNs) used in the proposed methodology.
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Subsequently, a fuzzy eigen analysis is performed to derive the fuzzy eigenvalue and eigenvector
of Ã [25,26]:

det(Ã(−)λ̃I) = 0 (3)

(Ã(−)λ̃I)(×)̃x = 0 (4)

where (−) and (×) indicates fuzzy subtraction and multiplication, respectively. However, solving the
two equations is a computationally intensive task. To address this, most of the past studies applied
approximation techniques such as FGM [27] and fuzzy extent analysis (FEA) [28]. In contrast, an exact
technique such as ACO is able to derive the values of λ̃ and x̃.

The α cut of a fuzzy variable y(α) = [yL(α), yR(α)] is an interval. In ACO, the fuzzy parameters
and variables in Equations (3) and (4) are replaced with their α cuts:

aij(α) = [aL
ij(α), aR

ij(α)] (5)

λ(α) = [λL(α),λR(α)] (6)

x(α) = [xL(α), xR(α)]. (7)

Substituting (5–7) into (3–4) gives

det(A(α) − λ(α)I) = 0 (8)

(A(α) − λ(α)I)x(α) = 0. (9)

If the possible values of α are enumerated, e.g., every 0.1, then Equations (8) and (9) need to be
solved 10· 2Cn

2 + 1 times, from which the minimal and maximal results specify the lower and upper
bounds of the α cut [29–31]:

wi(α) = [wL
i (α), wR

i (α)]

= [min∗
x∗i (α)

n∑
j=1

x∗j(α)
, max∗

x∗i (α)
n∑

j=1
x∗j(α)

] (10)

where * can be L or R, indicating the left or right α cut of the variable, respectively. The pseudo code
for implementing ACO is shown in Figure 3.

FOR each value of  
  FOR the two  cuts of the first positive comparison 
    …… 
      FOR the two  cuts of the last positive comparison 
        Derive the maximal eigenvalue and weight from ( )A  
        IF the derived maximal eigenvalue < the minimum of the fuzzy maximal eigenvalue THEN 
          UPDATE the minimum of the fuzzy maximal eigenvalue to the derived maximal eigenvalue 
        END IF 
        IF the derived maximal eigenvalue > the maximum of the fuzzy maximal eigenvalue THEN 
          UPDATE the maximum of the fuzzy maximal eigenvalue to the derived maximal eigenvalue 
        END IF 
        FOR each fuzzy weight 
          IF the derived weight < the minimum of the fuzzy weight THEN 
            UPDATE the minimum of the fuzzy weight to the derived weight 
          END IF 
          IF the derived weight > the maximum of the fuzzy weight THEN 
            UPDATE the maximum of the fuzzy weight to the derived weight 
          END IF 
        END LOOP 
      END LOOP 
    …… 
  END LOOP 
END LOOP 

Figure 3. Pseudo code for implementing ACO.
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Based on λ̃, Satty [23] suggested evaluating the consistency among fuzzy pairwise comparison
results as

Consistency index : C̃.I.(m) =
λ̃max(m) − n

n− 1
(11)

Consistency ratio : C̃.R.(m) =
C̃.I.(m)

R.I.
(12)

where R.I. is the randomized consistency index.

3.2. Aggregating the Fuzzy Weights by All Decision Makers Using FI

After the negotiation process, the FI result of the fuzzy weights derived by all decision makers is
adopted to represent their consensus [32–36]. When a consensus among all decision makers does not
exist, an alternative is to seek for the consensus among only some of the decision makers [37].

The membership function of the FI result is given by

μF̃I({w̃i(k)}(x) = min
k

(μw̃i(k)(x)) (13)

as shown in Figure 4. If the TFNs for linguistic terms have narrow ranges, fuzzy weights may not
overlap and F̃I({w̃i(k)}) will be an empty (null) set, as illustrated in Figure 5.

0                                                               1

*
*
min

wi(k)

(wi(k))

*

Figure 4. The FI result.

0                                                               1
wi(k)

(wi(k))

Figure 5. The FI result is a null set if TFNs have narrow ranges.

Alternatively, F̃I({w̃i(k)}) can be represented with its α cut as

FIL({w̃i(k)})(α) = max
k

(wL
i (k)(α)) (14)

FIR({w̃i(k)})(α} = min
k

(wR
i (k)(α)) (15)

as illustrated in Figure 6.
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0                                                               1

** max
wi(k)

(wi(k))

*  
min

Figure 6. The α cut of the FI result.

If decision makers are of unequal importance levels, FI is not suitable. To address this issue, the
fuzzy weighted intersection (FWI) can be sought for instead.

Definition 1. Let w̃i(1) ~ w̃i(K) be the fuzzy weights derived by K decision makers. The importance of
decision maker k is ω(k). Then the fuzzy weighted intersection (FWI) of fuzzy weights, indicated with
F̃WI({w̃i(k)|k = 1 ∼ K)} is expected to meet the following requirements:

(i) F̃WI({w̃i(k)}) = w̃i(g) if ωg = 1 for some g: If a decision maker is absolutely important, then the value
of w̃i is determined solely by the decision maker.

(ii) F̃WI({w̃i(k)}) = F̃I({w̃i(k)}) if ωk = 1/K ∀ k: If all decision makers are equally important, then the
value of w̃i is determined by the consensus among the decision makers.

(iii)
∣∣∣μF̃WI(x) − μw̃i(g1)

(x)
∣∣∣≥∣∣∣μF̃WI(x) − μw̃i(g2)

(x)
∣∣∣ if ωg1 ≤ ωg2 ∀ g1 � g2: If decision maker g2 is more

important than decision maker g1, then the value of w̃i is closer to the value derived by decision maker g2

than to that by decision maker g1.

In theory, there are numerous possible FWI operators. A FWI operator considers the membership
function value, rather than the value, of a fuzzy weight, which is obviously distinct from the common
aggregator such as FWM.

3.3. Assessing the Suitability of a Smart Health Practice Using FWM

Subsequently, FWM is applied to assess the suitability of a smart health practice, for which the FI
result provides the required fuzzy weights:

S̃q =

n∑
i=1

(F̃I({w̃i(k)})(×)p̃qi)

n∑
i=1

F̃I({w̃i(k)})
(16)

where S̃q is the suitability of the q-th smart health practice; p̃qi is the performance of the q-th smart health
practice in optimizing the i-th criterion. A FWM problem is not easy to solve because the dividend
and divisor of Equation (16) are dependent [8]. Nevertheless, for comparison, only the dividend of
Equation (16) needs to be calculated, since the divisor is the same for all alternatives:

S̃q =
n∑

i=1

(F̃I({w̃i(k)})(×)p̃qi). (17)
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The α cut of S̃q is defined as the interval [SL
q , SR

q ] that can be derived as

SL
q (α) =

n∑
i=1

(FIL({w̃i(k)})(α)pL
qi(α)) (18)

SR
q (α) =

n∑
i=1

(FIR({w̃i(k)})(α)pR
qi(α)) (19)

according to the alpha-cut operations. The assessment result is then defuzzified using the prevalent
CD method [38]. However, the alpha-cut operations method takes samples uniformly along the y-axis,
as illustrated in Figure 7, while the CD method distributes samples evenly along the x-axis. To resolve
this inconsistency, a possible way is to divide the range of S̃q into Γ equal intervals:

S̃q = {[Γ − η+ 1
Γ

SL
q (0) +

η− 1
Γ

SR
q (0),

Γ − η
Γ

SL
q (0) +

η

Γ
SR

q (0)]|η = 1 ∼ Γ} (20)

as illustrated in Figure 8. The center of the η-th interval is indicated with Cq(η):

Cq(η) = 1
2 (

Γ−η+1
Γ SL

q (0) +
η−1

Γ SR
q (0) +

Γ−η
Γ SL

q (0) +
η
Γ SR

q (0))

=
2Γ−2η+1

2Γ SL
q (0) +

2η−1
2Γ SR

q (0)
(21)

Cq(η) can be determined by interpolating the two closest values of S̃q:

μS̃q
(Cq(η)) =

Cq(η)− max
S∗q(α)≤Cq(η)

S∗q(α)

( min
S∗q(α)≥Cq(η)

S∗q(α)− max
S∗q(α)≤Cq(η)

S∗q(α))
· min

S∗q(α)≥Cq(η)
α

+

min
S∗q(α)≥Cq(η)

S∗q(α)−Cq(η)

( min
S∗q(α)≥Cq(η)

S∗q(α)− max
S∗q(α)≤Cq(η)

S∗q(α))
· max

S∗q(α)≤Cq(η)
α

(22)

where * can be R or L. Then, the centroid of S̃q is the derived as follows:

COG(S̃q) =

Γ∑
η=1

(μS̃q
(Cq(η))Cq(η))

Γ∑
η=1
μS̃q

(Cq(η))

. (23)

0                                                               1
Sq(k)

(Sq(k))

Figure 7. The way of taking samples in the alpha-cut operations method.
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0                                                               1
Sq(k)

(Sq(k))

Figure 8. The way of taking samples in the centroid-defuzzification (CD) method.

4. Application

With advances in transportation, sensing, and communication technologies, smart health becomes
a critical issue [39]. There have been a number of smart health practices, however, and how to
choose the most suitable smart health practice is a challenging task. To fulfill this task, the proposed
methodology has been applied to assess and compare the suitabilities of eleven smart health practices.
Chen [6] evaluated the sustainability of a smart health practice, in which five criteria—unobtrusiveness,
supporting online social networking, compliance with related medical laws, the size of the health care
market, and the correct identification of a user’s need and situation, were considered. Compared with
sustainability, suitability is a shorter-term concept. For this reason, the following five criteria were
considered in this study instead [6,40–48]:

(1) C1: unobtrusiveness,
(2) C2: supporting online social networking,
(3) C3: cost effectiveness,
(4) C4: availability of mobile health care facilities, and
(5) C5: correct, reliable, and robust identification of a user’s need and situation.

In addition, two less relevant smart health practices, smart connected vehicles and smart defense
technologies, were excluded from the experiment. The proposed methodology was applied as follows.

First, a team of three decision makers, including an information management professor,
a computer-aided industrial design professor, and an ambient intelligence (AmI) decision maker,
was formed. Each decision maker compared the relative weights of criteria in pairs. The results are
summarized in Table 2.

Table 2. The results of pairwise comparisons.

C1 C2 C3 C4 C5

C1 1 (1, 5, 9), (3, 7, 9),
(3, 7, 9)

(1, 1, 5), (1, 5, 9),
(1, 1, 5)

(3, 7, 9), (5, 9, 9),
(1, 1, 5)

(1, 5, 9), (1, 5, 9),
(1, 3, 7)

C2 - 1 (1, 1, 5), (1, 4, 8),
(1, 3, 7)

(3, 7, 9), (1, 3, 7),
(1, 1, 5) -

C3 - - 1 - (1, 5, 9), (1, 4, 8),
(1, 5, 9)

C4 - - (1, 1, 5), (1, 3, 7),
(1, 1, 5) 1 (3, 7, 9), (1, 5, 9),

(1, 3, 7)

C5 - (1, 3, 7), (1, 5, 9),
(1, 4, 8) - - 1

Each decision maker applied ACO to derive fuzzy eigenvalues and the fuzzy weights of criteria.
The results are summarized in Figures 9 and 10, respectively. In our view, if the linguistic terms
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adopted in the proposed methodology reflected the preferences of decision makers, it was more likely
for their fuzzy judgment matrixes to be consistent. To ensure this, the fuzzy consistency index C̃.I.(k)
should be less than the threshold of 0.1 for each decision maker, by requesting:

μC̃.I.(k)(0.1) ≥ 0 ∀ k (24)

According to the experimental results, Condition (23) was successfully satisfied. In contrast, if the
commonly adopted linguistic terms were adopted, C̃.I.(k) was always greater than 0.1. This result
supported the suitability of the linguistic terms adopted in the proposed methodology.
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Figure 9. Fuzzy eigenvalues derived by decision makers.
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Figure 10. Fuzzy weights derived by decision makers.

In this experiment, decision makers were equally important. Therefore, FI was considered effective
for aggregating the fuzzy weights derived by all decision makers. The results are shown in Figure 11.
The results showed that a prior consensus has been achieved among decision makers regarding the
values of each fuzzy weight.
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Figure 11. The FI results.

The FI results were presented to decision makers for them to consider when modifying their
pairwise comparison results. The modified pairwise comparison results are summarized in Table 3.
ACO was again applied to derive fuzzy weights for each decision maker. Then, FI was applied to
measure the consensus among decision makers after collaboration. The results are summarized in
Figure 12. After collaboration, the FI results became wider, showing a higher consensus since more
possible values were acceptable to all decision makers. Taking w̃4 as an example, the FI results before
and after collaboration are compared in Figure 13. The collaboration stopped because no decision
maker made any further modification.

Table 3. The modified pairwise comparison results.

C1 C2 C3 C4 C5

C1 1 (1, 5, 9), (3, 7, 9),
(3, 7, 9)

(1, 1, 5), (1, 3, 7),
(1, 1, 5)

(3, 7, 9), (1, 5, 9),
(1, 1, 5)

(1, 5, 9), (1, 5, 9),
(1, 3, 7)

C2 - 1 (1, 1, 5), (1, 1, 5),
(1, 3, 7)

(3, 7, 9), (1, 5, 9),
(1, 1, 5) -

C3 - - 1 - (1, 5, 9), (1, 4, 8),
(1, 5, 9)

C4 - - (1, 1, 5), (1, 3, 7),
(1, 1, 5) 1 (3, 7, 9), (1, 4, 8),

(1, 3, 7)

C5 - (1, 3, 7), (1, 5, 9),
(1, 4, 8) - - 1
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Figure 12. The FI results after collaboration.
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Figure 13. The FI results of w̃4 before and after collaboration.

The suitabilities of eleven smart health practices were assessed. To this end, the performances
of these smart health practices in optimizing the five criterion were evaluated by the same decision
makers using the following linguistic terms [3]:

Very poor: (0, 0, 1),
Poor: (0, 1, 2),
Moderate: (1.5, 2.5, 3.5),
Good: (3, 4, 5), and
Very good: (4, 5, 5).

The evaluations by decision makers were aggregated in a similar way. Specifically speaking,
decision makers were asked to modify their evaluations slightly until these evaluations overlapped.
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Then, the evaluations by all decision makers were averaged. The results are summarized in Table 4.
It can be seen that none of the smart health practices dominated the others, causing difficulty in
choosing from them. In addition, it was noteworthy that the cost effectiveness of smart phones was
high, while that of smart watches was low, due to the fact that smart phones were much more prevalent
than smart watches. Therefore, a decision maker did not consider buying his/her smart phone as an
additional investment.

Table 4. Performances of eleven smart technologies along five dimensions.

Smart Health Practice
C1

(Unobtrusiveness)

C2
(Online Social
Networking)

C3
(Cost Effectiveness)

C4
(Availability of
Mobile Health
Care Facilities)

C5
(Correct, Reliable,

and Robust
Identification)

Smart body analyzers (1.00, 2.00, 3.00) (1.00, 2.00, 3.00) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (2.50, 3.50, 4.50)
Smart clothes (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (2.50, 3.50, 4.50)
Smart glasses (0.00, 1.00, 2.00) (3.33, 4.33, 5.00) (0.00, 1.00, 2.00) (2.00, 3.00, 4.00) (2.50, 3.50, 4.50)

Smart mobile services (3.67, 4.67, 5.00) (3.67, 4.67, 5.00) (3.67, 4.67, 5.00) (3.67, 4.67, 5.00) (3.33, 4.33, 5.00)
Smart motion sensors (2.00, 3.00, 4.00) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (3.67, 4.67, 5.00)

Smart phones (3.67, 4.67, 5.00) (3.67, 4.67, 5.00) (2.50, 3.50, 4.50) (3.67, 4.67, 5.00) (3.67, 4.67, 5.00)
Smart smoke alarms (2.00, 3.00, 4.00) (0.00, 1.00, 2.00) (1.00, 2.00, 3.00) (2.00, 3.00, 4.00) (3.67, 4.67, 5.00)

Smart toilets (1.00, 2.00, 3.00) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (2.00, 3.00, 4.00)
Smart watches (3.67, 4.67, 5.00) (2.50, 3.50, 4.50) (1.00, 2.00, 3.00) (3.67, 4.67, 5.00) (3.67, 4.67, 5.00)

Smart wheelchairs (2.50, 3.50, 4.50) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (2.00, 3.00, 4.00) (2.00, 3.00, 4.00)
Smart wigs (2.00, 3.00, 4.00) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (2.50, 3.50, 4.50)

FWM was applied to assess the suitability of each smart health practice, for which the fuzzy
collaborative FAHP approach provided the required fuzzy weights. The results are summarized in
Figure 14.

     

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10

(
S 1

)

S1

(Smart body analyzer)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10

(
S 2

)

S2

(Smart clothes)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10

(
S 3

)

S3

(Smart glasses)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10

(
S 4

)

S4

(Smart mobile service)

Figure 14. Cont.
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Figure 14. FWM results.

For generating an absolute ranking, CD was applied to defuzzify the fuzzy suitability of each
smart health practice. The results are summarized in Table 5.

287



Mathematics 2019, 7, 1180

Table 5. Defuzzification results.

Smart Health Practice Defuzzified Suitability

Smart body analyzers 2.10
Smart clothes 1.52
Smart glasses 2.40
Smart mobile services 4.64
Smart motion sensors 2.45
Smart phones 4.54
Smart smoke alarms 2.91
Smart toilets 1.86
Smart watches 4.17
Smart wheelchairs 2.79
Smart wigs 2.33

According to the experimental results,

(1) Smart mobile services were the most suitable smart health practice, while smart clothes were still
the least suitable smart health practice, owing to their obtrusiveness.

(2) The suitabilities of the eleven smart health practices were ranked. The results are shown in
Figure 15. The ranking results of the sustainabilities of these smart health practices, retrieved from
Chen [6], are also presented in this figure for comparison. Obviously, there are some differences
between the two results. For example, the suitability of smart body analyzers was low, but its
suitability was high, showing the great potential of smart body analyzers in the future.
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Figure 15. Comparing the suitability and sustainability of each smart technology application.

(3) In the experiment, decision makers modified their fuzzy judgment results just once to achieve
a higher consensus, yet this was not always the case since modifications were subjectively made.
It was possible for decision makers to undergo many rounds of collaboration before achieving
a higher consensus. To tackle this problem, a mechanism for facilitating the collaboration process
among decision makers should be designed.

(4) The efficiency of ACO was a problem to the application of the fuzzy collaborative approach,
and needed to be enhanced somehow, e.g., by applying a genetic algorithm. In previous studies,
there were two major ways of combining genetic algorithms with fuzzy analytic hierarchy analysis.
The first way obtains the weights of criteria by using fuzzy analytic hierarchy analysis, which
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designs the fitness function of the genetic algorithm to compare various alternatives. The second
way solves a multi-objective optimization problem with a genetic algorithm to obtain multiple
Pareto-optimal solutions, and then performs a fuzzy analytic hierarchy analysis to set the weights
of the objective functions to further compare these Pareto-optimal solutions. The motive for
applying a genetic algorithm in this study is different from those in previous studies.

(5) Three existing methods, fuzzy ordered weighted average (FOWA), fuzzy geometric mean
(FGM)-FWM, and the fuzzy extent analysis (FEA)-weighted average (WA) method proposed by
Chang [29], were also applied to assess the suitability of each smart health practice for comparison.
In FOWA, the moderately optimistic strategy was adopted. In FGM-FWM, fuzzy weights were
approximated using FGM and expressed in terms of TFNs. In FEA-WA, since the weights
estimated using FEA were crisp, WA, rather than FWM, was applied to assess the suitability of
each smart health practice. Finally, the suitabilities of all smart health practices were ranked.
The ranking results using various methods are compared in Figure 16. In sum, these methods
came to the same conclusions about the suitabilities of smart mobile services and smart phones.
In contrast, the suitabilities of other smart health practices assessed using different methods were
not the same.
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Figure 16. Comparing the results using various methods: fuzzy geometric mean (FGM)-fuzzy weighted
average (FWA); fuzzy extent analysis (FEA)-weighted average (WA); fuzzy ordered weighted average
(FOWA).

5. Conclusions

Smart health is the context-aware complement of mobile health within a smart city [49]. In the
past work, a great deal of effort has been made to promote the smart health in a city or region [50].
However, assessing the suitability of a smart health practice is still a challenging task because the
applied smart technology is still evolving. To this end, several group-based decision-making FAHP
methods have been devised. However, the prerequisite for such group-based decision-making FAHP
methods is the existence of a consensus among the participating decision makers, which has rarely
been checked. To address this issue, this study puts forward a fuzzy collaborative approach that is
the joint application of ACO, FI, and FWM. In particular, FI is applied to assess the consensus among
decision makers before the collaboration process. The FI results are presented to decision makers,
so that they can subjectively modify the pairwise comparison results to bring them closer to the FI
results. Thereafter, the consensus among decision makers is again measured. The collaboration process
continues until no further modifications are made by decision makers. Last, the FWM-CD method is
applied to assess the suitability of a smart health practice.
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To elaborate the effectiveness of the fuzzy collaborative approach, we assessed the suitabilities of
eleven smart health practices. According to the experimental results, the following conclusions were
drawn:

(1) Smart mobile services and smart clothes were evaluated as the most suitable and the least suitable
smart health practices, respectively.

(2) The suitabilities of smart mobile services and smart phones evaluated using various methods
were identical. In contrast, the suitabilities of other smart health practices, assessed using various
methods, differed.

(3) Among the compared methods, only the fuzzy collaborative approach could guarantee the
existence of a consensus among decision makers. In other words, only the results assessed using
the fuzzy collaborative approach were acceptable to all decision makers.

Smart technologies are still evolving. Therefore, the suitability of a smart health practice needs to
be re-assessed in the near future. In addition, other types of methods can also be applied to assess the
suitability of a smart health practice.
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Abstract: Picture fuzzy numbers (PFNs), as the generalization of fuzzy sets, are good at fully
expressing decision makers’ opinions with four membership degrees. Since aggregation operators are
simple but powerful tools, this study aims to explore some aggregation operators with PFNs to solve
practical decision-making problems. First, new operational rules, the interaction operations of PFNs,
are defined to overcome the drawbacks of existing operations. Considering that interrelationships
may exist only in part of criteria, rather than all of the criteria in reality, the partitioned Heronian
aggregation operator is modified with PFNs to deal with this condition. Then, desirable properties are
proved and several special cases are discussed. New decision-making methods with these presented
aggregation operators are suggested to process hotel selection issues. Last, their practicability and
merits are certified by sensitivity analyses and comparison analyses with other existing approaches.
The results indicate that our methods are feasible to address such situations where criteria interact in
the same part, but are independent from each other at different parts.

Keywords: picture fuzzy numbers; interaction operations; partitioned Heronian; aggregation
operators; hotel selection

1. Introduction

Decision making refers to selecting the optimal alternative according to some rules [1–3]. Generally,
many uncertain or fuzzy factors may exist in the real decision-making process, which are not able to be
described by crisp numbers [4,5]. In this case, fuzzy set theory [6], which was presented by Zadeh,
can be used to express these uncertainty and vagueness. Nevertheless, because fuzzy set just has a
membership degree, it cannot depict information in some circumstances, specifically where decision
makers (DMs) disagree with each other. Then, Atanassov [7] put forward the concept of intuitionistic
fuzzy sets (IFSs) with membership and non-membership functions, so that both people’s consistency
and inconsistency can be conveyed by IFSs. However, different DMs may have different attitudes
for a certain decision-making issue, not just ‘support’ or ‘opposition’. Hence, there are two inherent
flaws in IFSs. (1) Except for consistent and inconsistent degrees, other possibilities, such as hesitant or
refusal degrees, are not contained in the IFSs. (2) In addition, another shortcoming of IFSs is in their
traditional operations: the interaction between membership degree and non-membership degree is
not considered.

To overcome the first drawback, Cuong [8] first proposed picture fuzzy numbers (PFNs). PFNs can
sufficiently depict DMs’ diverse behaviors using four membership functions, including positive, neutral,
negative, and refusal membership degrees [9]. Since then, the distance/similarity measure [10,11], cross
entropy [12], and projection [13,14] of PFNs have been defined. Moreover, various decision-making
methods based on them have been studied [15,16], such as the multi-attributive border approximation
area comparison (MABAC) method [17] and the Vlsekriterijumska Optimizacija I Kompromisno
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Resenje (VIKOR) method [13]. Clearly, PFNs show greater performances than fuzzy sets and IFSs
in conveying complicated evaluation information. However, there is also an imperfection in the
operations of PFNs: (3) The interactions among four different membership functions of PFNs are not
taken into account fully. Thus, improper results may occur in certain cases, specifically when the
neutral membership degree in a picture fuzzy number (PFN) is zero. When this happens, regardless of
the value(s) of neutral membership degree(s) in other PFN(s), their aggregated neutral membership
degree using the traditional operations is still zero.

To conquer disadvantage (2), He et al. [18] redefined the operational rules of IFSs through making
an interaction between membership function and non-membership function. Likewise, for overcoming
limitation (3), some interaction operational laws of PFNs are proposed.

When it comes to decision-making methods, information aggregation operators are basic and
powerful at dealing with decision-making problems [19,20]. To date, several aggregation operators
have been extended with PFNs. For example, Garg [21] defined the arithmetic weighted averaging,
ordered weighted averaging, and hybrid averaging operators of PFNs; Wang et al. [22] adopted the
geometric aggregation operators to aggregate picture fuzzy information; and Wei [23] integrated the
Hamacher aggregation operators with PFNs to process practical problems. Nevertheless, a common
defect of these operators is that (4) all of these operators presume that the parameters are standalone,
and the interrelations among them are not considered at all. In reality, some inputs may be dependent
on each other, but the above-mentioned operators are unable to deal with this situation. Lately, Xu [24]
discussed the Muirhead mean operator in a picture fuzzy environment. The Muirhead mean operator
is a useful method to capture the interrelationships among inputs. However, it may be difficult for
DMs to determine a vector of parameters in the Muirhead mean operator.

In this case, the Bonferroni averaging [25,26] or Heronian averaging (HA) [27,28] operator may be
a good choice to overcome limitation (4). Both of them can establish the relationships between two
arguments, and only two parameter values need to be assigned by DMs. Compared with the Bonferroni
averaging operator, the great advantages of the HA operator include: the correlation between inputs
and itself is also taken into account, and no redundancy exists in the aggregated values. To date,
the HA operator has been widely extended with various fuzzy sets, such as IFSs [29] and linguistic
neutrosohpic numbers [30]. The limitations of this operator are related to two aspects. (5) Until now,
no HA operator has been modified to aggregate picture fuzzy information; and (6) there is a hypothesis
in the HA operator that each input is relevant with the remaining inputs, but this is not true at all times.
More commonly, parts of arguments have relationships with each other, while no connections exist
among several parts. Apparently, the conventional HA operator is helpless to handle this situation.

For coping with defect (6), the concepts of partitioned HA (PHA) and partitioned geometric HA
(PGHA) operators are put forward by Liu et al. [31]. The function of these operators is to address such
a general circumstance where the inputs are classified into several partitions, and the interrelationships
are just found among the inputs in the same partition but not found among those in distinct partitions.
Motivated by this idea, this study proposes some PHA operators within a picture fuzzy condition to
circumvent weaknesses (5) and (6).

The main contributions of this study are outlined in the following.
First, new operational laws of PFNs are defined to capture the interactions among four membership

degrees, so that limitation (3) is overcome.
Second, some PHA operators are extended with PFNs based on the new interaction operation

rules. They can settle the situation where criteria need to be partitioned, as correlations can be seen
only in the same part rather that in different parts. Special cases and important properties are discussed.
Hence, drawbacks (4), (5), and (6) are all defeated.

Third, novel methods with the proposed aggregation operations are proposed to cope with
complex decision-making issues in picture fuzzy circumstances. In the case study, PFNs are suggested
to describe hotel evaluation information, and our methods are adopted to select the optimal hotel. This
surmounts limitation (1) and justifies the feasibility of the proposed methods.
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Fourth, full discussions with sensitivity analyses and comparison analyses are taken to confirm
the strengths of our methods.

The remainder of this study is arranged as follows. In Section 2, the preliminaries of PFNs and
PHA operators are introduced in brief. Section 3 defines the new interaction operation rules of PFNs,
and several picture fuzzy PHA operators are based on these operations. Then, new decision-making
methods with these aggregation operators are recommended in Section 4. In Section 5, a case of
hotel selection is studied to show the advantages of PFNs and the practicability of our methods.
Section 6 makes some discussions by analyzing the influence of parameters and comparing with other
existing approaches for demonstrating the superiority of the proposed methods. Last, some necessary
conclusions are provided.

2. Preliminaries

2.1. Picture Fuzzy Numbers

Definition 1 ([8]). The PFS (picture fuzzy set) is an object on a universe Ω with a(χ) ={
< χ, pa(χ), ma(χ), na(χ) >

∣∣∣χ ∈ Ω
}
, where pa(χ) ∈ [0, 1] is the positive membership degree, ma(χ) ∈ [0, 1]

is the neutral membership degree, na(χ) ∈ [0, 1] is the negative membership degree, and va(χ) =

1− pa(χ) −ma(χ) − na(χ) ∈ [0, 1] is the refusal membership degree of χ in a.

In particular, the PFS is degenerated to a PFN (picture fuzzy number) a = (pa, ma, na) if Ω has
only one element.

Definition 2 ([22]). Let a = (pa, ma, na) and b = (pb, mb, nb) be two arbitrary PFNs (picture fuzzy numbers),
then the operational laws between them are

(1) a⊕W b = (pa, ma, na) ⊕W (pb, mb, nb) = (1− (1− pa)(1− pb), mamb, (na + ma)(nb + mb) −mamb);
(2) a⊗W b = (pa, ma, na) ⊗W (pb, mb, nb) = ((pa + ma)(pb + mb) −mamb, mamb, 1− (1− na)(1− nb));

(3) δ · a = (1− (1− pa)
δ, (ma)

δ, (na + ma)
δ − (ma)

δ), δ ∈ (0,+∞);

(4) aδ = ((pa + ma)
δ − (ma)

δ, (ma)
δ, 1− (1− na)

δ), δ ∈ (0,+∞).

Example 1. Let a1 = (p1, m1, n1) = (0.5, 0.3, 0.1) and a2 = (p2, m2, n2) = (0.6, 0, 0.3) be two PFNs.
According to Definition 2, the aggregation values of a1 and a2 are a1 ⊕ a2 = (0.8, 0, 0.12) and a1 ⊗ a2 =

(0.48, 0, 0.37). That is, because m2 = 0 in a2, the value of m1 in a1 has no influence on the aggregation values of
a1 and a2 Clearly, this is an imperfection.

Definition 3 ([22]). Assume a = (pa, ma, na) is a PFN, the score function and the accuracy function of a are

E(a) = pa − na, (1)

F(a) = pa + ma + na. (2)

Definition 4 ([22]). Given two PFNs a = (pa, ma, na) and b = (pb, mb, nb), the comparison method is

(1) if E(a) < E(b), then a ≺ b;
(2) if E(a) = E(b) and F(a) > F(b), then a � b;
(3) when E(a) = E(b) and F(a) = F(b), then a ∼ b.

2.2. Partitioned Heronian Averaging Operators

HA operator is a powerful tool to explore the relationship among inputs. The definitions of HA
and geometric HA (GHA) operators are given in the following.
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Definition 5 ([29]). Suppose αi (i = 1, 2, . . . , y) is a group of non-negative real numbers and β, η ≥ 0, then the
HA aggregation operator is

HAβ,η(α1,α2, · · · ,αy) = (
2

y(y + 1)

∑y

i=1

∑y

j=1
(αi)

β(α j)
η)

1
β+η

, (3)

and the GHA operator is

GHAβ,η(α1,α2, · · · ,αy) =
1
β+ η

(
∏y

i=1

∏y

j=1
βαi + ηα j)

2
y(y+1) . (4)

To reflect a situation where argument values in the same group correlate with each other and
the inputs in different groups are dissociated, Liu et al. [31] put forward the concepts of the PHA
aggregation operator and PGHA operator as follows.

Definition 6 ([31]). Assume αi (i = 1, 2, . . . , y) is a set of non-negative real numbers, and they are divided into
x independent groups S1, S2, . . . , Sx, where Sk =

{
αk1,αk2, . . . αk|Sk |

}
(k = 1, 2, . . . , x), the cardinality of Sk is

|Sk| and
∑x

k=1|Sk| = y. Let β, η ≥ 0, then the PHA operator is

PHAβ,η(α1,α2, · · · ,αy) =
1
x
(
∑x

k=1
(

2∣∣∣Sk
∣∣∣(∣∣∣Sk

∣∣∣+1)

∑|Sk |
i=1

∑|Sk |
j=1

(αki)
β(αkj)

η)

1
β+η

), (5)

and the PGHA operator is

PGHAβ,η(α1,α2, · · · ,αy) = (
∏x

k=1
(

1
β+ η

(
∏|Sk |

i=1

∏|Sk |
j=1
βαki + ηαkj)

2
|Sk |(|Sk |+1)

))

1
x

. (6)

3. Some Picture Fuzzy Interaction Partitioned Heronian Averaging Operators

In this section, the interaction operational rules of PNFs are first defined. Thereafter, some picture
fuzzy interaction PHA operators are presented based on the new rules.

3.1. Interaction Operational Laws of Picture Fuzzy Numbers

The In this subsection, new operational laws—the interaction operational laws of PFNs—are
proposed to overcome the limitations of the existing operations mentioned in Section 2.2.

The interaction operations take the interaction among true, hesitant and false membership degrees
into account, which are shown as follows.

Definition 7. Given two PFNs a1 = (p1, m1, n1) and a2 = (p2, m2, n2), then the interaction operational laws
are defined as

(1) a1⊕a2=
(
1−∏2

i=1 (1−pi),
∏2

i=1 (1−pi)−∏2
i=1 (1−pi −mi),

∏2
i=1 (1−pi −mi)−∏2

i=1 (1−pi −mi −ni)
)
;

(2) a1⊗a2=
(∏2

i=1 (1−ni −mi)−∏2
i=1 (1−ni −mi −pi),

∏2
i=1 (1−ni)−∏2

i=1 (1−ni −mi), 1−∏2
i=1 (1−ni)

)
;

(3) δ · a1 =
(
1− (1− p1)

δ, (1− p1)
δ − (1− p1 −m1)

δ, (1− p1 −m1)
δ − (1− p1 −m1 −n1)

δ
)
, δ ∈ (0,+∞);

(4) (a1)
δ =

(
(1−n1 −m1)

δ − (1−n1 −m1 −p1)
δ, (1−n1)

δ − (1−n1 −m1)
δ, 1− (1−n1)

δ
)
, δ ∈ (0,+∞).

Example 2. Let a1 = (0.5, 0.3, 0.1) and a2 = (0.6, 0, 0.3), which are the same as Example 1. Based on
Definition 7, the interaction aggregation values of a1 and a2 are a1 ⊕ a2 = (0.8, 0.12, 0.07) and a1 ⊗ a2 =

(0.41, 0.21, 0.37), which are more reasonable than the results in Example 1.
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3.2. Picture Fuzzy Interaction Partitioned Heronian Averaging Operator

In this subsection, the picture fuzzy interaction PHA (PFIPHA) and picture fuzzy weighted
interaction PHA (PFWIPHA) operators are defined, and some important properties are proved.

Definition 8. Assume ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a set of PFNs, and they can be partitioned into x
distinct sorts S1, S2, . . . , Sx, where Sk =

{
ak1, ak2, . . . , ak|sK |

}
(k = 1, 2, . . . , x). Then the PFIPHA operator is

defined as

PFIPHAβ,η(a1, a2, . . . , ay) =
1
x

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x∑

k=1

⎛⎜⎜⎜⎜⎜⎜⎝ 2∣∣∣Sk
∣∣∣(∣∣∣Sk

∣∣∣+1)

|Sk |∑
i=1

|Sk |∑
j=i

(aki)
β ⊗ (akj)

η

⎞⎟⎟⎟⎟⎟⎟⎠
1
β+η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (7)

where β, η ≥ 0, |Sk| is the cardinality of Sk, and
x∑

k=1
|Sk| = y.

Theorem 1. If ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a group of PFNs, and β, η ≥ 0, then their aggregated result
using Equation (7) is still a PFN, and the following is true:

PFIPHAβ,η(a1, a2, . . . , ay) =⎛⎜⎜⎜⎜⎜⎜⎝1−
(

x∏
k=1

(
1− (1−Nβ,ηk + Mβ,ηk )

1
β+η + (Mβ,ηk )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (1−Nβ,ηk + Mβ,ηk )

1
β+η + (Mβ,ηk )

1
β+η

)) 1
x

−(
x∏

k=1

(
1 + (Mβ,ηk )

1
β+η − (1−Oβ,ηk + Mβ,ηk )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1 + (Mβ,ηk )

1
β+η − (1−Oβ,ηk + Mβ,ηk )

1
β+η

)) 1
x

−
(

x∏
k=1

(
(Mβ,ηk )

1
β+η

)) 1
x
⎞⎟⎟⎟⎟⎟⎟⎠

(8)

where Mβ,ηk =

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Aβ,ηk

⎞⎟⎟⎟⎟⎠tk

, Nβ,ηk =

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Bβ,ηk

⎞⎟⎟⎟⎟⎠tk

, Oβ,ηk =

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Cβ,ηk

⎞⎟⎟⎟⎟⎠tk

, tk = 2|Sk|(|Sk|+1)
, Aβ,ηk =

(vki)
β(vkj)

η, Bβ,ηk = 1 − (uki)
β(ukj)

η + (vki)
β(vkj)

η, Cβ,ηk = 1 + (vki)
β(vkj)

η − (rki)
β(rkj)

η, rki = 1 − nki,
rkj = 1− nkj, uki = 1− nki −mki, ukj = 1− nkj −mkj, vki = 1− nki −mki − pki and vkj = 1− nkj −mkj − pkj.

Note that the Proof of Theorem 1 can be seen in the Appendix A.
For the PFIPHA operator, the following properties should be satisfied.

Property 1. (Idempotency) Suppose ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a collection of PFNs, and ai = a =

(p, m, n) for all i = 1, 2, . . . , y, then PFIPHAβ,η(a1, a2, . . . , ay) = a.

Proof. Because a1 = a2 = · · · = ay = (p, m, n), then for all i = 1, 2, . . . , y, ri = 1 − ni = r,

ui = 1− ni −mi = u and vi = 1− ni −mi − pi = v⇒Aβ,ηk = (vki)
β(vkj)

η = vβ+η, Bβ,ηk = 1− (uki)
β(ukj)

η+

(vki)
β(vkj)

η = 1 − uβ+η + vβ+η and Cβ,ηk = 1 + (vki)
β(vkj)

η − (rki)
β(rkj)

η = 1 + vβ+η − rβ+η ⇒

Mβ,ηk =

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Aβ,ηk

⎞⎟⎟⎟⎟⎠tk

=

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

vβ+η
⎞⎟⎟⎟⎟⎠tk

= vβ+η, Nβ,ηk =

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Bβ,ηk

⎞⎟⎟⎟⎟⎠tk

=

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(1− uβ+η + vβ+η)

⎞⎟⎟⎟⎟⎠tk

=

1 − uβ+η + vβ+η and Oβ,ηk =

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Cβ,ηk

⎞⎟⎟⎟⎟⎠tk

=

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(1 + vβ+η − rβ+η)

⎞⎟⎟⎟⎟⎠tk

= 1 + vβ+η − rβ+η, then

PFIPHAβ,η(a1, a2, . . . , ay) =⎛⎜⎜⎜⎜⎜⎝1−
(

x∏
k=1

(
1− (1−Nβ,ηk + Mβ,ηk )

1
β+η

+ (Mβ,ηk )
1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (1−Nβ,ηk + Mβ,ηk )

1
β+η

+ (Mβ,ηk )
1
β+η

)) 1
x

−(
x∏

k=1

(
1 + (Mβ,ηk )

1
β+η − (1−Oβ,ηk + Mβ,ηk )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1 + (Mβ,ηk )

1
β+η − (1−Oβ,ηk + Mβ,ηk )

1
β+η

)) 1
x

−
(

x∏
k=1

(
(Mβ,ηk )

1
β+η

)) 1
x
⎞⎟⎟⎟⎟⎟⎠

=
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⎛⎜⎜⎜⎜⎜⎝1−
(

x∏
k=1

(
1−

(
1− (1− uβ+η + vβ+η) + vβ+η

) 1
β+η + (vβ+η)

1
β+η

)) 1
x

,(
x∏

k=1

(
1−

(
1− (1− uβ+η + vβ+η) + vβ+η

) 1
β+η + (vβ+η)

1
β+η

)) 1
x

−
(

x∏
k=1

(
1 + (vβ+η)

1
β+η −

(
1− (1 + vβ+η − rβ+η) + vβ+η

) 1
β+η

)) 1
x

,(
x∏

k=1

(
1 + (vβ+η)

1
β+η −

(
1− (1 + vβ+η − rβ+η) + vβ+η

) 1
β+η

)) 1
x

−
(

x∏
k=1

(
(vβ+η)

1
β+η

)) 1
x
⎞⎟⎟⎟⎟⎟⎠

=⎛⎜⎜⎜⎜⎜⎝1−
(

x∏
k=1

(
1− (uβ+η) 1

β+η + (vβ+η)
1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (uβ+η) 1

β+η + (vβ+η)
1
β+η

)) 1
x

−
(

x∏
k=1

(
1 + (vβ+η)

1
β+η − (rβ+η) 1

β+η

)) 1
x

,(
x∏

k=1

(
1 + (vβ+η)

1
β+η − (rβ+η) 1

β+η

)) 1
x

−
(

x∏
k=1

(
(vβ+η)

1
β+η

)) 1
x
⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝1−
(

x∏
k=1

(1− u + v)
) 1

x

,
(

x∏
k=1

(1− u + v)
) 1

x

−
(

x∏
k=1

(1 + v− r)
) 1

x

,
(

x∏
k=1

(1 + v− r)
) 1

x

−
(

x∏
k=1

(v)
) 1

x
⎞⎟⎟⎟⎟⎟⎠

= (1− (1− u + v), (1− u + v) − (1 + v− r), (1 + v− r) − v) = (u− v, r− u, 1− r)
= ((1− n−m) − (1− n−m− p), (1− n) − (1− n−m), 1− (1− n)) = (p, m, n) = a. �

Now, the Proof is completed.

Property 2. (Commutativity) Let ai = (pi, mi, ni) and a∗i = (p∗i , m∗i , n∗i ) (i = 1, 2, . . . , y) be two sets of
PFNs. If (a∗1, a∗2, · · · , a∗y) is an arbitrary permutation of (a1, a2, · · · , ay), then PFIPHAβ,η(a1, a2, . . . , ay) =

PFIPHAβ,η(a∗1, a∗2, · · · , a∗y).

Proof. According to Equation (8), PFIPHAβ,η(a1, a2, . . . , ay) =⎛⎜⎜⎜⎜⎜⎝1−
(

x∏
k=1

(
1− (1−Nβ,ηk + Mβ,ηk )

1
β+η

+ (Mβ,ηk )
1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (1−Nβ,ηk + Mβ,ηk )

1
β+η

+ (Mβ,ηk )
1
β+η

)) 1
x

−(
x∏

k=1

(
1 + (Mβ,ηk )

1
β+η − (1−Oβ,ηk + Mβ,ηk )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1 + (Mβ,ηk )

1
β+η − (1−Oβ,ηk + Mβ,ηk )

1
β+η

)) 1
x

−
(

x∏
k=1

(
(Mβ,ηk )

1
β+η

)) 1
x
⎞⎟⎟⎟⎟⎟⎠

,

and PFIPHAβ,η(a∗1, a∗2, · · · , a∗y) =⎛⎜⎜⎜⎜⎜⎝1−
(

x∏
k=1

(
1− (1−N∗β,ηk + M∗β,ηk )

1
β+η

+ (M∗β,ηk )
1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (1−N∗β,ηk + M∗β,ηk )

1
β+η

+ (M∗β,ηk )
1
β+η

)) 1
x

−(
x∏

k=1

(
1 + (M∗β,ηk )

1
β+η − (1−O∗β,ηk + M∗β,ηk )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1 + (M∗β,ηk )

1
β+η − (1−O∗β,ηk + M∗β,ηk )

1
β+η

)) 1
x

−
(

x∏
k=1

(
(M∗β,ηk )

1
β+η

)) 1
x
⎞⎟⎟⎟⎟⎟⎠.

.

As (a∗1, a∗2, · · · , a∗y) is an arbitrary permutation of (a1, a2, · · · , ay), it is clearly that
PFIPHAβ,η(a1, a2, . . . , ay) = PFIPHAβ,η(a∗1, a∗2, · · · , a∗y). �

Several special cases of the PFIPHAβ,η operator are discussed as follows.

Special case 1:

When η→ 0 , PFIPHAβ,0(a1, a2, . . . , ay) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎜⎝1−

( |Sk |∏
i=1

(
1− (uki)

β + (vki)
β
))tk

+

( |Sk |∏
i=1

(vki)
β
)tk

⎞⎟⎟⎟⎟⎟⎠
1
β

+

⎛⎜⎜⎜⎜⎜⎝( |Sk |∏
i=1

(vki)
β
)tk

⎞⎟⎟⎟⎟⎟⎠
1
β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎜⎝1−

( |Sk |∏
i=1

(
1− (uki)

β + (vki)
β
))tk

+

( |Sk |∏
i=1

(vki)
β
)tk

⎞⎟⎟⎟⎟⎟⎠
1
β

+

⎛⎜⎜⎜⎜⎜⎝( |Sk |∏
i=1

(vki)
β
)tk

⎞⎟⎟⎟⎟⎟⎠
1
β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎜⎝( |Sk |∏
i=1

(vki)
β
)tk

⎞⎟⎟⎟⎟⎟⎠
1
β

−
⎛⎜⎜⎜⎜⎜⎝1−

( |Sk |∏
i=1

(
1 + (vki)

β − (rki)
β
))tk

+

( |Sk |∏
i=1

(vki)
β
)tk

⎞⎟⎟⎟⎟⎟⎠
1
β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎜⎝( |Sk |∏
i=1

(vki)
β
)tk

⎞⎟⎟⎟⎟⎟⎠
1
β

−
⎛⎜⎜⎜⎜⎜⎝1−

( |Sk |∏
i=1

(
1 + (vki)

β − (rki)
β
))tk

+

( |Sk |∏
i=1

(vki)
β
)tk

⎞⎟⎟⎟⎟⎟⎠
1
β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝( |Sk |∏

i=1
(vki)

β
)tk

⎞⎟⎟⎟⎟⎟⎠
1
β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
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Special case 2:

When β→ 0 , then PFIPHA0,η(a1, a2, . . . , ay) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
1− (ukj)

η + (vki)
η
)⎞⎟⎟⎟⎟⎠tk

+

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(vkj)
η

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
η

+

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
(vkj)

η

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
η
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
1− (ukj)

η + (vkj)
η
)⎞⎟⎟⎟⎟⎠tk

+

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(vkj)
η

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
η

+

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
(vkj)

η

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
η
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
(vkj)

η

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
η

−
⎛⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
1 + (vkj)

η − (rkj)
η
)⎞⎟⎟⎟⎟⎠tk

+

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(vkj)
η

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
η
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
(vkj)

η

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
η

−
⎛⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
1 + (vkj)

η − (rkj)
η
)⎞⎟⎟⎟⎟⎠tk

+

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(vkj)
η

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
η
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
(vkj)

η

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
η
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Special case 3:

When β = 1 and η→ 0 , then PFIPHA1,0(a1, a2, . . . , ay) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1

(1− uki + vki)

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
x

,

⎛⎜⎜⎜⎜⎜⎝ x∏
k=1

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1

(1− uki + vki)

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
x

−
⎛⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1

(1 + vki − rki)

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
x

,

⎛⎜⎜⎜⎜⎜⎝ x∏
k=1

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1

(1 + vki − rki)

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
x

−

⎛⎜⎜⎜⎜⎜⎝ x∏
k=1

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1

vki

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
x
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Special case 4:

When β = η = 1, then PFIPHA1,0(a1, a2, . . . , ay) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(1− ukiukj + vkivkj)

⎞⎟⎟⎟⎟⎠tk

+

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

vkivkj

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
2

+

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
vkivkj

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(1− ukiukj + vkivkj

⎞⎟⎟⎟⎟⎠tk

+

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

vkivkj

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
2

+

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
vkivkj

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
vkivkj

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
2

−
⎛⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(1 + vkivkj − rkirkj)

⎞⎟⎟⎟⎟⎠tk

+

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

vkivkj

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
vkivkj

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
2

−
⎛⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(1 + vkivkj − rkirkj)

⎞⎟⎟⎟⎟⎠tk

+

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

vkivkj

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
vkivkj

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Definition 9. If ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a set of PFNs, and they can be partitioned into x distinct
sorts S1, S2, . . . , Sx, where Sk =

{
ak1, ak2, . . . , ak|sK |

}
(k = 1, 2, . . . , x); (w1, w2, · · · , wy) is the weight vector of

(a1, a2, · · · , ay), where wi ∈ [0, 1] and
y∑

i=1
wi = 1, then the PFWIPHA operator is defined as

PFWIPHAβ,η(a1, a2, . . . , ay) =
1
x

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x∑

k=1

⎛⎜⎜⎜⎜⎜⎜⎝ 2∣∣∣Sk
∣∣∣(∣∣∣Sk

∣∣∣+1)

|Sk |∑
i=1

|Sk |∑
j=i

(wiaki)
β ⊗ (wjakj)

η

⎞⎟⎟⎟⎟⎟⎟⎠
1
β+η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (9)

where β, η ≥ 0, |Sk| is the cardinality of Sk, and
x∑

k=1
|Sk| = y.
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Theorem 2. Suppose ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a group of PFNs, (w1, w2, · · · , wy) is the weight

vector of (a1, a2, · · · , ay), wi ∈ [0, 1],
y∑

i=1
wi = 1 and β, η ≥ 0, then their aggregated result using Equation (9) is

still a PFN, and the following is true:

PFWIPHAβ,η(a1, a2, . . . , ay) =⎛⎜⎜⎜⎜⎜⎜⎝1−
(

x∏
k=1

(
1− (1 + Jβ,ηk − Lβ,ηk )

1
β+η + (Jβ,ηk )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (1 + Jβ,ηk − Lβ,ηk )

1
β+η + (Jβ,ηk )

1
β+η

)) 1
x

−(
x∏

k=1

(
1 + (Jβ,ηk )

1
β+η − (1−Qβ,ηk + Jβ,ηk )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1 + (Jβ,ηk )

1
β+η − (1−Qβ,ηk + Jβ,ηk )

1
β+η

)) 1
x

−
(

x∏
k=1

(
(Jβ,ηk )

1
β+η

)) 1
x
⎞⎟⎟⎟⎟⎟⎟⎠

(10)

where Jβ,ηk =

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Gβ,ηk

⎞⎟⎟⎟⎟⎠tk

, Lβ,ηk =

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
1−Hβ,ηk + Gβ,ηk

)⎞⎟⎟⎟⎟⎠tk

, Qβ,ηk =

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
1 + Gβ,ηk − Iβ,ηk

)⎞⎟⎟⎟⎟⎠tk

,

tk = 2|Sk|(|Sk|+1)
, Gβ,ηk =

(
(vki)

wi
)β(

(vkj)
wj

)η
, Hβ,ηk =

(
1 + (vki)

wi − (eki)
wi
)β(

1 + (vkj)
wj − (ekj)

wj
)η

,

Iβ,ηk =
(
1− ( fki)

wi + (vki)
wi
)β(

1− ( fk j)
wj + (vkj)

wj
)η

, eki = 1 − pki, ekj = 1 − pkj, fki = 1 − pki − mki,
fk j = 1− pkj −mkj, vki = 1− pki −mki − nki and vkj = 1− pkj −mkj − nkj.

Note that the Proof of Theorem 2 can be seen in the Appendix B.

3.3. Picture Fuzzy Interaction Partitioned Geometric Heronian Averaging Operator

In this subsection, the picture fuzzy interaction partitioned geometric HA (PFIPGHA) and the
picture fuzzy weighted interaction partitioned geometric HA (PFWIPGHA) operators are discussed.
Different from arithmetic aggregation operators, the geometric aggregation operators emphasize
the equilibrium of all inputs and the harmonization (rather than the complementarity) among their
individual values [32]. Therefore, the following discussion of PFIPGHA and PFWIPGHA operators are
also necessary.

Definition 10. Assume ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a set of PFNs, and they can be partitioned into x
distinct sorts S1, S2, . . . , Sx, where Sk =

{
ak1, ak2, . . . , ak|sK |

}
(k = 1, 2, . . . , x). Then the PFIPGHA operator is

defined as

PFIPGHAβ,η(a1, a2, . . . , ay) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1
β+ η

⎛⎜⎜⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(βaki ⊕ ηakj)

⎞⎟⎟⎟⎟⎟⎟⎠
2

|Sk |(|Sk |+1)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

(11)

where β, η ≥ 0, |Sk| is the cardinality of Sk and
x∑

k=1
|Sk| = y.

Theorem 3. If ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a group of PFNs, and β, η ≥ 0, then their aggregated result
using Equation (11) is still a PFN, and the following is true:

PFIPGHAβ,η(a1, a2, . . . , ay) =⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎝1 +
(
(Rβ,ηk )

tk
) 1
β+η −

(
1− (Uβ,ηk )

tk
+ (Rβ,ηk )

tk
) 1
β+η

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠
1
x

−
⎛⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎝((Rβ,ηk )
tk
) 1
β+η

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠
1
x

,

⎛⎜⎜⎜⎜⎝ x∏
k=1

⎛⎜⎜⎜⎜⎝1−
(
1 + (Rβ,ηk )

tk − (Vβ,ηk )
tk
) 1
β+η

+
(
(Rβ,ηk )

tk
) 1
β+η

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠
1
x

−
⎛⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎝1 +
(
(Rβ,ηk )

tk
) 1
β+η −

(
1− (Uβ,ηk )

tk
+ (Rβ,ηk )

tk
) 1
β+η

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠
1
x

, 1−
⎛⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎝1−
(
1 + (Rβ,ηk )

tk − (Vβ,ηk )
tk
) 1
β+η

+
(
(Rβ,ηk )

tk
) 1
β+η

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠
1
x
⎞⎟⎟⎟⎟⎟⎟⎟⎠

,
(12)
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here Rβ,ηk =
|Sk |∏

i=1, j=i

(
(vki)

β(vkj)
η
)
, Uβ,ηk =

|Sk |∏
i=1, j=i

(
1 + (vki)

β(vkj)
η − (eki)

β(ekj)
η
)
, Vβ,ηk =

|Sk∏
i=1, j=i

(
1− ( fki)

β( fk j)
η + (vki)

β(vkj)
η
)
, tk = 2|Sk|(|Sk|+1)

, eki = 1 − pki, ekj = 1 − pkj, fki = 1 − pki −mki,

fk j = 1− pkj −mkj, vki = 1− pki −mki − nki and vkj = 1− pkj −mkj − nkj.

Note that the Proof of Theorem 1 can be seen in the Appendix C.
For the PFIPGHA operator, the following properties should be satisfied.

Property 3. (Idempotency) Suppose ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a collection of PFNs, and ai = a =

(p, m, n) for all i = 1, 2, . . . , y, then PFIPGHAβ,η(a1, a2, . . . , ay) = a.

Property 4. (Commutativity) Let ai = (pi, mi, ni) and a∗i = (p∗i , m∗i , n∗i ) (i = 1, 2, . . . , y) be two sets of
PFNs. If (a∗1, a∗2, · · · , a∗y) is an arbitrary permutation of (a1, a2, · · · , ay), then PFIPGHAβ,η(a1, a2, . . . , ay) =

PFIPGHAβ,η(a∗1, a∗2, · · · , a∗y).

Note that the proofs of Property 3 and 4 are similar to those of Property 1 and 2, respectively.
Thus, they are omitted to save space in this study.

Several special cases of the PFIPGHAβ,η operator are discussed as follows.

Special case 1:

When η→ 0 , PFIPGHAβ,0(a1, a2, . . . , ay) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1

(
(gki)

β
)⎞⎟⎟⎟⎟⎠tk

⎞⎟⎟⎟⎟⎟⎠
1
β

−
⎛⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1

(
1 + (gki)

β − (eki)
β
)⎞⎟⎟⎟⎟⎠tk

+

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1

(
(gki)

β
)⎞⎟⎟⎟⎟⎠tk

⎞⎟⎟⎟⎟⎟⎠
1
β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1

(
(gki)

β
)⎞⎟⎟⎟⎟⎠tk

⎞⎟⎟⎟⎟⎟⎠
1
β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1

(
(gki)

β
)⎞⎟⎟⎟⎟⎠tk

−
⎛⎜⎜⎜⎜⎝ |Sk∏

i=1

(
1− ( fki)

β + (gki)
β
)⎞⎟⎟⎟⎟⎠tk

⎞⎟⎟⎟⎟⎟⎠
1
β

+

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1

(
(gki)

β
)⎞⎟⎟⎟⎟⎠tk

⎞⎟⎟⎟⎟⎟⎠
1
β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1

(
(gki)

β
)⎞⎟⎟⎟⎟⎠tk

⎞⎟⎟⎟⎟⎟⎠
1
β

−
⎛⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1

(
1 + (gki)

β − (eki)
β
)⎞⎟⎟⎟⎟⎠tk

+

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1

(
(gki)

β
)⎞⎟⎟⎟⎟⎠tk

⎞⎟⎟⎟⎟⎟⎠
1
β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

,

1−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1

(
(gki)

β
)⎞⎟⎟⎟⎟⎠tk

−
⎛⎜⎜⎜⎜⎝ |Sk∏

i=1

(
1− ( fki)

β + (gki)
β
)⎞⎟⎟⎟⎟⎠tk

⎞⎟⎟⎟⎟⎟⎠
1
β

+

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1

(
(gki)

β
)⎞⎟⎟⎟⎟⎠tk

⎞⎟⎟⎟⎟⎟⎠
1
β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Special case 2:

When β→ 0 , then PFIPGHA0,η(a1, a2, . . . , ay) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i

(
(gkj)

η
)⎞⎟⎟⎟⎟⎠tk

⎞⎟⎟⎟⎟⎟⎠
1
η

−
⎛⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
1 + (gkj)

η − (ekj)
η
)⎞⎟⎟⎟⎟⎠tk

+

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
(gkj)

β
)⎞⎟⎟⎟⎟⎠tk

⎞⎟⎟⎟⎟⎟⎠
1
η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i

(
(gkj)

η
)⎞⎟⎟⎟⎟⎠tk

⎞⎟⎟⎟⎟⎟⎠
1
η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
(gkj)

η
)⎞⎟⎟⎟⎟⎠tk

−
⎛⎜⎜⎜⎜⎝ |Sk∏

i=1, j=i

(
1− ( fk j)

η + (gkj)
η
)⎞⎟⎟⎟⎟⎠tk

⎞⎟⎟⎟⎟⎟⎠
1
η

+

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i

(
(gkj)

η
)⎞⎟⎟⎟⎟⎠tk

⎞⎟⎟⎟⎟⎟⎠
1
η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i

(
(gkj)

η
)⎞⎟⎟⎟⎟⎠tk

⎞⎟⎟⎟⎟⎟⎠
1
η

−
⎛⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
1 + (gkj)

η − (ekj)
η
)⎞⎟⎟⎟⎟⎠tk

+

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
(gkj)

η
)⎞⎟⎟⎟⎟⎠tk

⎞⎟⎟⎟⎟⎟⎠
1
η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

,

1−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
(gkj)

η
)⎞⎟⎟⎟⎟⎠tk

−
⎛⎜⎜⎜⎜⎝ |Sk∏

i=1, j=i

(
1− ( fk j)

η + (gkj)
η
)⎞⎟⎟⎟⎟⎠tk

⎞⎟⎟⎟⎟⎟⎠
1
η

+

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i

(
(gkj)

η
)⎞⎟⎟⎟⎟⎠tk

⎞⎟⎟⎟⎟⎟⎠
1
η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

301



Mathematics 2020, 8, 3

Special case 3:

When β = 1 and η→ 0 , then PFIPGHA1,0(a1, a2, . . . , ay) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ x∏

k=1

( |Sk |∏
i=1

(1 + gki − eki)

)tk
⎞⎟⎟⎟⎟⎟⎠

1
x

−
⎛⎜⎜⎜⎜⎜⎝ x∏

k=1

( |Sk |∏
i=1

gki

)tk
⎞⎟⎟⎟⎟⎟⎠

1
x

,

⎛⎜⎜⎜⎜⎜⎝ x∏
k=1

( |Sk∏
i=1

(1− fki + gki)

)tk
⎞⎟⎟⎟⎟⎟⎠

1
x

−
⎛⎜⎜⎜⎜⎜⎝ x∏

k=1

( |Sk |∏
i=1

(1 + gki − eki)

)tk
⎞⎟⎟⎟⎟⎟⎠

1
x

, 1−
⎛⎜⎜⎜⎜⎜⎝ x∏

k=1

( |Sk∏
i=1

(1− fki + gki)

)tk
⎞⎟⎟⎟⎟⎟⎠

1
x
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Special case 4:

When β = η = 1, then PFIPHA1,0(a1, a2, . . . , ay) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i

(
(gki)(gkj)

)⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
2

−
⎛⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
1 + (gki)(gkj) − (eki)(ekj)

)⎞⎟⎟⎟⎟⎠tk

+

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
(gki)(gkj)

)⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i

(
(gki)(gkj)

)⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
(gki)(gkj)

)⎞⎟⎟⎟⎟⎠tk

−
⎛⎜⎜⎜⎜⎝ |Sk∏

i=1, j=i

(
1− ( fki)( fk j) + (gki)(gkj)

)⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
2

+

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i

(
(gki)(gkj)

)⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i

(
(gki)(gkj)

)⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
2

−
⎛⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
1 + (gki)(gkj) − (eki)(ekj)

)⎞⎟⎟⎟⎟⎠tk

+

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
(gki)(gkj)

)⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

,

1−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
(gki)(gkj)

)⎞⎟⎟⎟⎟⎠tk

−
⎛⎜⎜⎜⎜⎝ |Sk∏

i=1, j=i

(
1− ( fki)( fk j) + (gki)(gkj)

)⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
2

+

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i

(
(gki)(gkj)

)⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Definition 11. If ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a set of PFNs, and they can be partitioned into x distinct
sorts S1, S2, . . . , Sx, where Sk =

{
ak1, ak2, . . . , ak|sK |

}
(k = 1, 2, . . . , x); (w1, w2, · · · , wy) is the weight vector of

(a1, a2, · · · , ay), where wi ∈ [0, 1] and
y∑

i=1
wi = 1, then the PFWIPGHA operator is defined as

PFWIPGHAβ,η(a1, a2, . . . , ay) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1
β+ η

⎛⎜⎜⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

β(aki)
wi ⊕ η(akj)

wj

⎞⎟⎟⎟⎟⎟⎟⎠
2

|Sk |(|Sk |+1)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x

, (13)

here β, η ≥ 0, |Sk| is the cardinality of Sk and
x∑

k=1
|Sk| = y.

Theorem 4. Suppose ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a group of PFNs, (w1, w2, · · · , wy) is the weight

vector of (a1, a2, · · · , ay), wi ∈ [0, 1],
y∑

i=1
wi = 1 and β, η ≥ 0, then their aggregated result using Equation (13)

is still a PFN, and the following is true:

PFWIPGHAβ,η(a1, a2, . . . , ay) =((
x∏

k=1

(
1− (Oβ,ηk )

1
β+η −

(
1− Pβ,ηk + Oβ,ηk

) 1
β+η

)) 1
x

−
(

x∏
k=1

(
(Oβ,ηk )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1−

(
1 + Oβ,ηk −Yβ,ηk

) 1
β+η + (Oβ,ηk )

1
β+η

)) 1
x

−
(

x∏
k=1

(
1− (Oβ,ηk )

1
β+η −

(
1− Pβ,ηk + Oβ,ηk

) 1
β+η

)) 1
x

, 1−
(

x∏
k=1

(
1−

(
1 + Oβ,ηk −Yβ,ηk

) 1
β+η + (Oβ,ηk )

1
β+η

)) 1
x
⎞⎟⎟⎟⎟⎟⎟⎠

(14)

where Oβ,ηk =

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Gβ,ηk

⎞⎟⎟⎟⎟⎠tk

, Pβ,ηk =

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
1 + Gβ,ηk − Tβ,ηk

)⎞⎟⎟⎟⎟⎠tk

, Yβ,ηk =

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
1−Zβ,ηk + Gβ,ηk

)⎞⎟⎟⎟⎟⎠tk

, tk =

2|Sk|(|Sk|+1)
, Gβ,ηk =

(
(vki)

wi
)β(

(vkj)
wj

)η
, Tβ,ηk =

(
1− (uki)

wi + (vki)
wi
)β(

1− (ukj)
wj + (vkj)

wj
)η

, Zβ,ηk =(
1 + (vki)

wi − (rki)
wi
)β(

1 + (vkj)
wj − (rkj)

wj
)η

, rki = 1 − nki, rkj = 1 − nkj, uki = 1 − nki − mki, ukj =

1− nkj −mkj, vki = 1− nki −mki − pki and vkj = 1− nkj −mkj − pkj.
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Note that the Proof of Theorem 4 can be seen in the Appendix D.

4. Decision Making Methods with the Proposed Aggregation Operators

In this section, decision making methods with the proposed aggregation operators are explored to
address complex decision making issues in a picture fuzzy environment.

4.1. Problem Description

With respect to a group decision making problem with picture fuzzy information, assume that there
are h alternatives, denoted as {π1,π2, · · · ,πh}, and l criteria, denoted as

{
φ1,φ2, · · · ,φl

}
. The weight

vector of these criteria is {w1, w2, · · · , wl}, where w1 + w2 + · · ·+ wl = 1 and 0 ≤ w1, w2, · · · , wl ≤ 1.
Then, the decision makers are asked to rank all the alternatives or select the best alternative. Suppose
the evaluation matrix provided by decision makers is A = (aij)h×l, where aij = (pij, mij, nij), which is a
PFN, represents the evaluation value of alternative πi (i = 1, 2, · · · , h) under criterion φ j ( j = 1, 2, · · · , l).

4.2. Decision Making Procedures

In this subsection, decision making methods based on the proposed aggregation operators are
suggested to solve the decision making problem described in Section 4.1. The specific decision-making
procedures are stated as follows.

Step 1: Normalize the initial decision making matrix.
Because benefit and cost criteria may be contained in an initial evaluation matrix at the same time,

they are usually transferred into the same type in the first step. The normalization equation of PFNs is

bij =

{
(pij, mij, nij) f or bene f it criteria φ j
(nij, mij, pij) f or cos t criteria φ j

. (15)

Thus, the normalized evaluation matrix can be denoted as B = (bij)h×l.
Step 2: Calculate the overall preference degree of each alternative.
Based on the PFWIPHA or PFWIPGHA operator defined in Section 3, the evaluation values in each

row of evaluation matrix B are aggregated, and then the overall preference degree of each alternative is
calculated as

ai = PFWIPHAβ,η(ai1, ai2, . . . , ail) (i = 1, 2, · · · , h), (16)

or
ai = PFWIPGHAβ,η(ai1, ai2, . . . , ail) (i = 1, 2, · · · , h). (17)

Step 3: Compute the score function or accuracy function.
Based on Equation (1), the score function E(ai) can be calculated. If two score function values are

equal, then the accuracy function F(ai) should be computed using Equation (2).
Step 4: Obtain the ranking order.
According to the comparison method defined in Definition 4, the ranking order of all the

alternatives is obtained, and the best alternative is selected as π∗.

5. Case Study

In this section, a hotel selection case is studied to justify the practicability of the proposed method.
Recently, five college students plan to book a hotel in advance for their trip next week. They browse

hotel evaluation information in TripAdvisor.com. As a very popular tourism website, TripAdvisor.com
has many true comments about hotels, restaurants and tourist attractions. Accordingly, they choose
four satisfactory hotels based on their price, comfortability, service, location, and convenience. In the
following, the presented methods are suggested to select the optimal hotel. The program codes of
the presented method run under the MATLAB R2016b software. The operation platform is a laptop
with a Windows 10 operating system, an Intel(R) Core(TM) i5-8250U CPU with 1.80 GHz, and 12G
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random-access memory (RAM). The advantage of MATLAB lies in numerical calculation. It can
efficiently solve complex problems, dynamically simulate the system, and display the numerical results
with powerful graphics functions.

First, they need to fill out a questionnaire of selected hotels (See Appendix E) for giving their
respective opinions of these four alternatives (denoted as π1,π2,π3,π4) under six evaluation criteria.
They are φ1 (price), φ2 (comfortability), φ3 (service), φ4 (location) and φ5 (convenience). Then, their
answers can be counted and represented by PFNs. For example, if two students think the price of hotel
π1 is high, one student holds that the price is medium, and two students believe that the price is low,
then their evaluations can be described by a PFN a11 = (0.4, 0.2, 0.4). Thus, when they give their all
evaluations, an original evaluation matrix A with PFNs can be obtained, as shown in Table 1.

Table 1. Initial decision making matrix A.

A φ1 φ2 φ3 φ4 φ5

π1 (0.4, 0.2, 0.4) (0.6, 0.2, 0.2) (0.4, 0.2, 0.2) (0.6, 0, 0.2) (0.6, 0, 0.4)
π2 (0.2, 0.4, 0.4) (0.8, 0.2, 0) (0.4, 0.4, 0.2) (0.6, 0.4, 0) (0.4, 0.2, 0.2)
π3 (0.4, 0.4, 0.2) (0.6, 0, 0.4) (0.8, 0, 0.2) (0.6, 0.2, 0.2) (0.4, 0.2, 0.2)
π4 (0.2, 0.4, 0.2) (0.4, 0.4, 0.2) (0.6, 0.4, 0) (0.4, 0.2, 0.4) (0.8, 0.2, 0)

Case 1: Select the best hotel with the method based on the PFWIPHA operator.
Step 1: Normalize the initial decision making matrix.
Since φ2, φ3, φ4 and φ5 are benefit criteria, while φ1 belongs to cost criterion, they should be

normalized based on Equation (15). The normalized evaluation matrix B is shown in Table 2.

Table 2. Normalized evaluation matrix B.

B φ1 φ2 φ3 φ4 φ5

π1 (0.4, 0.2, 0.4) (0.6, 0.2, 0.2) (0.4, 0.2, 0.2) (0.6, 0, 0.2) (0.6, 0, 0.4)
π2 (0.4, 0.4, 0.2) (0.8, 0.2, 0) (0.4, 0.4, 0.2) (0.6, 0.4, 0) (0.4, 0.2, 0.2)
π3 (0.2, 0.4, 0.4) (0.6, 0, 0.4) (0.8, 0, 0.2) (0.6, 0.2, 0.2) (0.4, 0.2, 0.2)
π4 (0.2, 0.4, 0.2) (0.4, 0.4, 0.2) (0.6, 0.4, 0) (0.4, 0.2, 0.4) (0.8, 0.2, 0)

Step 2: Calculate the overall preference degree of each alternative.
Suppose β = η = 1, and all criteria have the same importance, namely, w1 = w2 = w3 = w4 =

w5 = 0.2. In general, a higher price means a large probability of good comfortability and service.
Likewise, the convenience of transport may have great relations with the location of a hotel. Thus,
according to this correlation pattern, these criteria are partitioned into two parts: S1 =

{
φ1,φ2,φ3

}
and S2 =

{
φ4,φ5

}
. Then, based on the PFWIPHA operator in Equation (16), the overall preference

degree of each hotel is computed as: a2 = (0.2492, 0.7506, 0), a3 = (0 .2526, 0.0859, 0 .6615) and
a4 = (0.2142, 0.7858, 0).

Step 3: Compute the score function.
Using Equation (1), the score function values are calculated as: E(a1) = −0.2809, E(a2) = 0.2494,

E(a3) = −0.4088 and E(a4) = 0.2142.
Step 4: Obtain the ranking order.
since E(a2) > E(a4) > E(a1) > E(a3), the final ranking order is π2 � π4 � π1 � π3, and the optimal

hotel is π2.
Case 2: Select the best hotel with the method based on the PFWIPGHA operator.

Step 1: Normalize the initial decision making matrix.
The normalized evaluation matrix is the same as matrix B, which is shown in Table 2.
Step 2: Calculate the overall preference degree of each alternative.
Suppose β = η = 1, and all criteria have the same importance, namely, w1 = w2 = w3 =

w4 = w5 = 0.2. In accordance with the correlation pattern, these criteria are partitioned into two
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parts: S1 =
{
φ1,φ2,φ3

}
and S2 =

{
φ4,φ5

}
. Then using the PFWIPGHA operator in Equation (17),

the overall preference degree of each hotel is computed as: a1 = (0.7502, 0.0511, 0.1987), a2 =

(0.7884, 0.1197, 0.0919), a3= (0 .7675, 0.1094, 0 .1231) and a4 = (0.7805, 0.1251, 0.0943).
Step 3: Compute the score function and accuracy function.
Using Equation (1), the score function values are calculated as: E(a1) = 0.5514, E(a2) = 0.6965,

E(a3) = 0.6443 and E(a4) = 0.6862.
Step 4: Obtain the ranking order.
Since E(a2) > E(a4) > E(a3) > E(a1), the final ranking order is π2 � π4 � π3 � π1, and the optimal

hotel is π2.
It can be seen that the best alternative is always π2 no matter which aggregation operator

(PFWIPHA or PFWIPGHA) is used.

6. Discussions

In this section, the influence of parameters in the proposed method is investigated by sensitivity
analyses and the advantages of our method are demonstrated through comparison analyses

6.1. Sensitivity Analyses

In this subsection, the impacts of parameters β and η on the final ranking orders under PFWIPHA
and PFWIPGHA operators are discussed, respectively.

First, the score function values of each alternative under PFWIPHA and PFWIPGHA operators
are calculated by assigning different β and η values, as shown in Figures 1 and 2.

 
(a) Score function values of alternative   

 
(b) Score function values of alternative   

(c) Score function values of alternative   
 

(d) Score function values of alternative   

Figure 1. Score function values of four alternatives with β,η ∈ (1,10) under PFWIPHA operators.

305



Mathematics 2020, 8, 3

 
(a) Score function values of alternative   

 
(b) Score function values of alternative  

 
(c) Score function values of alternative   

 
(d) Score function values of alternative   

Figure 2. Score function values of alternative π1 with β,η ∈ (1,10) under PFWIPGHA operators.

From Figure 1, it can be seen that the ranking orders may change when dissimilar β or η values
are allocated under the PFWIPHA operator. Even though, the best alternative is π2 in many cases, and
the worst alternative is always π3. And the preference relations between alternative π1 and π3 (that is,
π1 � π3), and that among π2, π3 and π4 (that is, π2 � π4 � π3) are always true.

From Figure 2, similar conclusions can be reached under the PFWIPGHA operator. For example,
dissimilar rankings are derived with different values of β and η, but the optimal alternative is still π2

in most circumstances whereas the worst alternative is always π1. Likewise, the preference relations
between alternative π1 and π4 (that is, π4 � π1), and that among π1, π2 and π3 (that is, π2 � π3 � π1)
always exist.

All of these indicate that both PFWIPHA and PFWIPGHA operators have a certain degree of
stability, and do not lose flexibility at the same time. Moreover, an interesting phenomenon is that with
the growth of β or η value, the score function of the aggregated values increase under the PFWIPHA
operator, while they decrease under the PFWIPGHA operator. Thus, for an optimistic DM, he/she
can choose a larger β or η value under the PFWIPHA operator, or a smaller β or η value under the
PFWIPGHA operator. In contrast, for a pessimistic DM, he/she can choose a smaller β or η value under
the PFWIPHA operator, or a larger β or η value under the PFWIPGHA operator.

6.2. Comparison Analyses

In this subsection, different approaches based on the existing aggregation operators of PFNs
are compared in terms of ranking results and other characteristics to demonstrate the advantages of
our method.

(1) Comparisons in terms of ranking results

First, the ranking results using the existing approaches with dissimilar aggregation operators (the
picture fuzzy weighted averaging (PFWA), picture fuzzy weighted geometric averaging (PFWGA),
PFWIPHA and PFWIPGHA operators) are listed in Table 3.
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Table 3. Ranking orders with dissimilar aggregation operators.

Aggregation Operators Score Function Values Ranking Orders Best Alternatives

PFWA operator [33] E(a1) = 0.1519, E(a2) = 0.3488,
E(a3) = 0.1067, E(a4) = 0.3886. π4 � π2 � π1 � π3 φ2

PFWGA operator [22] E(a1) = 0.3486, E(a2) = 0.3226,
E(a3) = 0.4169, E(a4) = 0.3023. π3 � π1 � π2 � π4 π3

PFWIPHA operator E(a1) = −0.2809, E(a2) = 0.2494,
E(a3) = −0.4088, E(a4) = 0.2142. π2 � π4 � π1 � π3 π2

PFWIPGHA operator E(a1) = 0.5514, E(a2) = 0.6965,
E(a3) = 0.6443, E(a4) = 0.6862. π2 � π4 � π3 � π1 π2

It is clear that the four ranking orders in Table 3 are dissimilar with each other. For seeking out
the optimal ranking order among them, the technique proposed by Jahan et al. [34] is employed. As
exhibited in Table 4, the numbers of times a host is assigned to diverse ranks is counted. For example,
the hotel π1 has once a ranking of 2, twice a ranking of 3 and once a ranking of 4.

Table 4. Numbers of times a hotel assigned to diverse ranks.

Hotels
Ranks

1 2 3 4

π1 1 2 1
π2 2 1 1
π3 1 1 2
π4 1 2 1

Then, based on Table 4, the smoothing of hotels assignment over ranks is computed (See Table 5).

Table 5. Smoothing of hotels assignment over ranks ΛiZ.

Hotels
Ranks

1 2 3 4

π1 0 1 3 4
π2 2 3 4 4
π3 1 1 2 4
π4 1 3 3 4

According to Table 5, the following maximizing objective function is performed:

Max Θ =
4∑

i=1

4∑
z=1

(Λiz · 42

z · ∇iz)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

4∑
i=1
∇iz = 1, z = 1, 2, 3, 4

4∑
z=1
∇iz = 1, i = 1, 2, 3, 4

∇iz = 0 or 1, ∀i, z

(18)

Through solving the programming model (18), the optimal ranking order π2 � π4 � π1 � π3

is derived.
For clarity, the optimal ranking order and four ranking orders in Table 3 are simultaneously

depicted in the same figure (See Figure 3). It is clear that the optimal ranking is the same with the
ranking order through adopting PFWIPHA operator. The difference between the optimal ranking and
the ranking result by utilizing PFWIPGHA operator is small. Conversely, a larger discrepancy can
be seen among the optimal ranking order, the ranking order with PFWA operator, and the ranking
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order with PFWGA operator. All of these indicate that the presented method is more suitable than the
existing methods in disposing decision making problems with interactions and partitions of inputs.

Figure 3. Optimal ranking order among different orders.

(2) Further comparisons in terms of other features

In view of other characteristics (such as whether consider the relationships among membership
functions, the correlations among criteria, and the partition the inputs), further comparisons are made
in Table 6.

Table 6. Further comparisons in terms of other features.

Aggregation Operators Operational Rules
Interactions among

Membership Functions

Interrelationships
among Aggregating

Arguments

Partition of the
Inputs

PFWA operator [33] Tradition Unconsidered Unconsidered Unconsidered
PFWGA operator [22] Tradition Unconsidered Unconsidered Unconsidered
PFWIPHA operator Interaction Considered Considered Considered

PFWIPGHA operator Interaction Considered Considered Considered

From Table 6, it can be seen that both the PFWA [21] and PFWGA [8] operators are based on the
traditional operational laws of PFNs, where the interactions among membership functions are not
considered. They cannot guarantee the accuracy of aggregated values when ‘zero’ occurs in the neutral
membership degrees. In contrast, the present method (the PFWIPHA or PFWIPGHA operator) is based
on new interaction operational rules of PFNs, which considers the interactions among membership
functions. Furthermore, interrelationships among criteria are considered in our method. It is true
that traditional HA and GHA operators take the interrelationships among aggregating arguments
into account as well, but they hold the supposition that each argument is in relation to the rest of the
arguments. Compared with them, a great advantage of our method is that the partition of the input
arguments is allowed, so that the interactions of inputs are only considered in the same part rather
than different parts.

(3) Strengths analyses and summary

Based on the above comparison analyses, the strengths of our method are summarized as follows.
First, the PFWIPHA and PFWIPGHA operators suggested in this study are based on new

interaction operational rules of PFNs. That is, they consider the interactions among dissimilar
membership functions, and can avoid irrational outcomes even when the neutral membership degree
is allocated as zero.
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Second, the proposed method borrows from the ideas of PHA and PGHA operators, so that it
can do well with the situation where arguments are divided into several portions. Thus, when the
interaction operations are combined, our method can weigh the interrelationships of relevant inputs
in the same panel, and prevent any consideration of the interrelationships of uncorrelated inputs in
different panels.

Third, as our method under the PFWIPHA or PFWIPGHA operator is modified by two parameters,
it is more flexible than the PFWA and PFWGA operators. On the other hand, when only one part exists
in the inputs, the PFWIPGA or PFWIPGHA operator is regarded as the IHA or GHA operator with
PFNs, respectively. In this sense, our method is more universal and powerful.

7. Conclusions

HA operators are effective aggregation operators to dispose interrelationships among criteria,
while PHA operators aim to do with such correlations only in the same partition. As a result,
several aggregation operators, such as PFIPHA, PFWIPHA, PFIPGHA and PFWIPGHA operators
were presented by combining the PHA operators with picture fuzzy information. Many significant
properties, such as the properties of idempotency and commutativity, were proved. Four special cases
of PFIPHA and PFIPGHA with different parameter values were discussed, respectively. Moreover, the
interaction operational rules of PFNs were first proposed to overcome the shortcoming of the existing
operations. Then, the new decision-making methods based on these operators were used to solve the
hotel selection problem by a case study. Sensitivity analyses and comparison analyses revealed that
our methods are more flexible and general when processing complicated evaluation issues within a
picture fuzzy environment.

However, one weakness of our methods is that the criteria weights are assigned previously and
directly. This may be not very reasonable in some cases. Thus, it is worth exploring the weights
determination methods in the future. On the other hand, the extended PHA operators can be well used
to solve other real problems under picture fuzzy conditions. It is something that we are heading toward.
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Appendix A. The Proof of Theorem 1

Proof. Based on the interaction operational laws defined in Definition 7, (aki)
β

=
(
(1− nki −mki)

β − (1− nki −mki − pki)
β, (1− nki)

β − (1− nki −mki)
β, 1− (1− nki)

β
)

and (akj)
η =(

(1− nkj −mkj)
η − (1− nkj −mkj − pkj)

η, (1− nkj)
η − (1− nkj −mkj)

η, 1− (1− nkj)
η
)
.

Let rki = 1 − nki, rkj = 1 − nkj, uki = 1 − nki − mki, ukj = 1 − nkj − mkj, vki = 1 − nki −
mki − pki and vkj = 1 − nkj − mkj − pkj, then (aki)

β =
(
(uki)

β − (vki)
β, (rki)

β − (uki)
β, 1− (rki)

β
)
, (akj)

η

=
(
(ukj)

η − (vkj)
η, (rkj)

η − (ukj)
η, 1− (rkj)

η
)

and

(aki)
β ⊗ (akj)

η =
(
(uki)

β(ukj)
η − (vki)

β(vkj)
η, (rki)

β(rkj)
η − (uki)

β(ukj)
η, 1− (rki)

β(rkj)
η
)
,

⇒
|Sk |∑
i=1

|Sk |∑
j=i

(aki)
β ⊗ (akj)

η =⎛⎜⎜⎜⎜⎝1−
|Sk |∏

i=1, j=i

(
1− (uki)

β(ukj)
η + (vki)

β(vkj)
η
)
,
|Sk |∏

i=1, j=i

(
1− (uki)

β(ukj)
η + (vki)

β(vkj)
η
)
−

|Sk |∏
i=1, j=i

(
1 + (vki)

β(vkj)
η − (rki)

β(rkj)
η
)
,

|Sk |∏
i=1, j=i

(
1 + (vki)

β(vkj)
η − (rki)

β(rkj)
η
)
−

|Sk |∏
i=1, j=i

(
(vki)

β(vkj)
η
)⎞⎟⎟⎟⎟⎠.
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Let tk = 2|Sk|(|Sk|+1)
, Aβ,ηk = (vki)

β(vkj)
η, Bβ,ηk = 1 − (uki)

β(ukj)
η + (vki)

β(vkj)
η and Cβ,ηk = 1 +

(vki)
β(vkj)

η − (rki)
β(rkj)

η, then

2|Sk|(|Sk|+1)

|Sk |∑
i=1

|Sk |∑
j=i

(aki)
β ⊗ (akj)

η =⎛⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
Bβ,ηk

⎞⎟⎟⎟⎟⎠tk

,

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Bβ,ηk

⎞⎟⎟⎟⎟⎠tk

−
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
Cβ,ηk

⎞⎟⎟⎟⎟⎠tk

,

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Cβ,ηk

⎞⎟⎟⎟⎟⎠tk

−
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
Aβ,ηk

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠ ⇒⎛⎜⎜⎜⎜⎝ 2|Sk|(|Sk|+1)

|Sk |∑
i=1

|Sk |∑
j=i

(aki)
β ⊗ (akj)

η

⎞⎟⎟⎟⎟⎠
1
β+η

=⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Bβ,ηk

⎞⎟⎟⎟⎟⎠tk

+

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Aβ,ηk

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
β+η

−
⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
Aβ,ηk

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
β+η

,

⎛⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
Cβ,ηk

⎞⎟⎟⎟⎟⎠tk

+

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Aβ,ηk

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
β+η

−
⎛⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Aβ,ηk

⎞⎟⎟⎟⎟⎠tk

−
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
Bβ,ηk

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
β+η

, 1−
⎛⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Cβ,ηk

⎞⎟⎟⎟⎟⎠tk

+

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Aβ,ηk

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
β+η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let Mβ,ηk =

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Aβ,ηk

⎞⎟⎟⎟⎟⎠tk

, Nβ,ηk =

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Bβ,ηk

⎞⎟⎟⎟⎟⎠tk

and Oβ,ηk =

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Cβ,ηk

⎞⎟⎟⎟⎟⎠tk

, then

x∑
k=1

⎛⎜⎜⎜⎜⎝ 2|Sk|(|Sk|+1)

|Sk |∑
i=1

|Sk |∑
j=i

(aki)
β ⊗ (akj)

η

⎞⎟⎟⎟⎟⎠
1
β+η

=(
1− x∏

k=1

(
1− (1−Nβ,ηk + Mβ,ηk )

1
β+η

+ (Mβ,ηk )
1
β+η

)
,

x∏
k=1

(
1− (1−Nβ,ηk + Mβ,ηk )

1
β+η

+ (Mβ,ηk )
1
β+η

)
−

x∏
k=1

(
1 + (Mβ,ηk )

1
β+η − (1−Oβ,ηk + Mβ,ηk )

1
β+η

)
,

x∏
k=1

(
1 + (Mβ,ηk )

1
β+η − (1−Oβ,ηk + Mβ,ηk )

1
β+η

)
− x∏

k=1

(
(Mβ,ηk )

1
β+η

)) ,

⇒ 1
x

⎛⎜⎜⎜⎜⎜⎜⎝ x∑
k=1

⎛⎜⎜⎜⎜⎝ 2|Sk|(|Sk|+1)

|Sk |∑
i=1

|Sk |∑
j=i

(aki)
β ⊗ (akj)

η

⎞⎟⎟⎟⎟⎠
1
β+η

⎞⎟⎟⎟⎟⎟⎟⎠ =⎛⎜⎜⎜⎜⎜⎝1−
(

x∏
k=1

(
1− (1−Nβ,ηk + Mβ,ηk )

1
β+η

+ (Mβ,ηk )
1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (1−Nβ,ηk + Mβ,ηk )

1
β+η

+ (Mβ,ηk )
1
β+η

)) 1
x

−(
x∏

k=1

(
1 + (Mβ,ηk )

1
β+η − (1−Oβ,ηk + Mβ,ηk )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1 + (Mβ,ηk )

1
β+η − (1−Oβ,ηk + Mβ,ηk )

1
β+η

)) 1
x

−
(

x∏
k=1

(
(Mβ,ηk )

1
β+η

)) 1
x
⎞⎟⎟⎟⎟⎟⎠

.

Thus, PFIPHAβ,η(a1, a2, . . . , ay) =⎛⎜⎜⎜⎜⎜⎜⎝1−
(

x∏
k=1

(
1− (1−Nβ,ηk + Mβ,ηk )

1
β+η + (Mβ,ηk )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (1−Nβ,ηk + Mβ,ηk )

1
β+η + (Mβ,ηk )

1
β+η

)) 1
x

−(
x∏

k=1

(
1 + (Mβ,ηk )

1
β+η − (1−Oβ,ηk + Mβ,ηk )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1 + (Mβ,ηk )

1
β+η − (1−Oβ,ηk + Mβ,ηk )

1
β+η

)) 1
x

−
(

x∏
k=1

(
(Mβ,ηk )

1
β+η

)) 1
x
⎞⎟⎟⎟⎟⎟⎟⎠

. �

Appendix B. The Proof of Theorem 2

Proof. According to the interaction operational laws defined in Definition 7,
wiaki =

(
1− (1− pki)

wi , (1− pki)
wi − (1− pki −mki)

wi , (1− pki −mki)
wi − (1− pki −mki − nki)

wi
)
, wjakj =(

1− (1− pkj)
wj , (1− pkj)

wj − (1− pkj −mkj)
wj , (1− pkj −mkj)

wj − (1− pkj −mkj − nkj)
wj

)
, (wkiaki)

β =((
1 + (1− pki −mki − nki)

wi − (1− pki)
wi

)β − (
(1− pki −mki − nki)

wi
)β

,
(
1− (1− pki −mki)

wi + (1− pki −mki − nki)
wi

)β−(
1 + (1− pki −mki − nki)

wi − (1− pki)
wi

)β
, 1−

(
1− (1− pki −mki)

wi + (1− pki −mki − nki)
wi

)β)
and (wjakj)

η =((
1 + (1− pkj −mkj − nkj)

wj − (1− pkj)
wj

)η − (
(1− pkj −mkj − nkj)

wj
)η

,
(
1− (1− pkj −mkj)

wj + (1− pkj −mkj − nkj)
wj

)η−(
1 + (1− pkj −mkj − nkj)

wj − (1− pkj)
wj

)η
, 1−

(
1− (1− pkj −mkj)

wj + (1− pkj −mkj − nkj)
wj

)η) .

Let eki = 1 − pki, ekj = 1 − pkj, fki = 1 − pki −mki, fk j = 1 − pkj −mkj, vki = 1 − pki −mki − nki and
vkj = 1− pkj −mkj − nkj, then
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(wkiaki)
β =

((
1 + (vki)

wi − (eki)
wi

)β − (
(vki)

wi
)β

,
(
1− ( fki)

wi + (vki)
wi

)β− (
1 + (vki)

wi − (eki)
wi

)β
, 1−

(
1− ( fki)

wi + (vki)
wi

)β),
(wjakj)

η =
((

1 + (vkj)
wj − (ekj)

wj
)η − (

(vkj)
wj

)η
,
(
1− ( fk j)

wj + (vkj)
wj

)η − (
1 + (vkj)

wj − (ekj)
wj

)η
, 1−

(
1− ( fk j)

wj + (vkj)
wj

)η),
and (wiaki)

β ⊗ (wjakj)
η =((

1 + (vki)
wi − (eki)

wi
)β(

1 + (vkj)
wj − (ekj)

wj
)η − (

(vki)
wi

)β(
(vkj)

wj
)η

,
(
1− ( fki)

wi + (vki)
wi

)β(
1− ( fk j)

wj + (vkj)
wj

)η−(
1 + (vki)

wi − (eki)
wi

)β(
1 + (vkj)

wj − (ekj)
wj

)η
, 1−

(
1− ( fki)

wi + (vki)
wi

)β(
1− ( fk j)

wj + (vkj)
wj

)η) .

Let Gβ,ηk =
(
(vki)

wi
)β(

(vkj)
wj

)η
, Hβ,ηk =

(
1 + (vki)

wi − (eki)
wi
)β(

1 + (vkj)
wj − (ekj)

wj
)η

and

Iβ,ηk =
(
1− ( fki)

wi + (vki)
wi
)β(

1− ( fk j)
wj + (vkj)

wj
)η

, then (wiaki)
β ⊗ (wjakj)

η =
(
Hβ,ηk −Gβ,ηk , Iβ,ηk −

Hβ,ηk , 1− Iβ,ηk

)
,⇒

|Sk |∑
i=1

|Sk |∑
j=i

(wiaki)
β ⊗ (wjakj)

η =

⎛⎜⎜⎜⎜⎝1−
|Sk |∏

i=1, j=i

(
1−Hβ,ηk + Gβ,ηk

)
,
|Sk |∏

i=1, j=i

(
1−Hβ,ηk + Gβ,ηk

)
−

|Sk |∏
i=1, j=i

(
1 + Gβ,ηk − Iβ,ηk

)
,
|Sk |∏

i=1, j=i

(
1 + Gβ,ηk − Iβ,ηk

)
−

|Sk |∏
i=1, j=i

(
Gβ,ηk

)⎞⎟⎟⎟⎟⎠.

Let tk =
2|Sk|(|Sk|+1)

, then 2|Sk|(|Sk|+1)

|Sk |∑
i=1

|Sk |∑
j=i

(wiaki)
β ⊗ (wjakj)

η =⎛⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
(1−Hβ,ηk + Gβ,ηk )

⎞⎟⎟⎟⎟⎠tk

,

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(1−Hβ,ηk + Gβ,ηk )

⎞⎟⎟⎟⎟⎠tk

−
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
(1 + Gβ,ηk − Iβ,ηk )

⎞⎟⎟⎟⎟⎠tk

,

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(1 + Gβ,ηk − Iβ,ηk )

⎞⎟⎟⎟⎟⎠tk

−
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
Gβ,ηk

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠⇒⎛⎜⎜⎜⎜⎝ 2|Sk |(|Sk |+1)

|Sk |∑
i=1

|Sk |∑
j=i

(wiaki)
β ⊗ (wjakj)

η

⎞⎟⎟⎟⎟⎠
1
β+η

=⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Gβ,ηk

⎞⎟⎟⎟⎟⎠tk

−
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i

(
1−Hβ,ηk + Gβ,ηk

)⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
β+η

−
⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i
Gβ,ηk

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
β+η

,

⎛⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i

(
1 + Gβ,ηk − Iβ,ηk

)⎞⎟⎟⎟⎟⎠tk

+

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Gβ,ηk

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
β+η

−
⎛⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Gβ,ηk

⎞⎟⎟⎟⎟⎠tk

−
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i

(
1−Hβ,ηk + Gβ,ηk

)⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
β+η

, 1−
⎛⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
1 + Gβ,ηk − Iβ,ηk

)⎞⎟⎟⎟⎟⎠tk

+

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Gβ,ηk

⎞⎟⎟⎟⎟⎠tk
⎞⎟⎟⎟⎟⎟⎠

1
β+η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let Jβ,ηk =

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

Gβ,ηk

⎞⎟⎟⎟⎟⎠tk

, Lβ,ηk =

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
1−Hβ,ηk + Gβ,ηk

)⎞⎟⎟⎟⎟⎠tk

and Qβ,ηk =

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
1 + Gβ,ηk − Iβ,ηk

)⎞⎟⎟⎟⎟⎠tk

,

then

⎛⎜⎜⎜⎜⎝ 2|Sk|(|Sk|+1)

|Sk |∑
i=1

|Sk |∑
j=i

(wiaki)
β ⊗ (wjakj)

η

⎞⎟⎟⎟⎟⎠
1
β+η

=

(
(1 + Jβ,ηk − Lβ,ηk )

1
β+η − (Jβ,ηk )

1
β+η , (1−Qβ,ηk + Jβ,ηk )

1
β+η −

(1 + Jβ,ηk − Lβ,ηk )
1
β+η , 1− (1−Qβ,ηk + Jβ,ηk )

1
β+η

)
,⇒ x∑

k=1

⎛⎜⎜⎜⎜⎝ 2|Sk|(|Sk|+1)

|Sk |∑
i=1

|Sk |∑
j=i

(wiaki)
β ⊗ (wjakj)

η

⎞⎟⎟⎟⎟⎠
1
β+η

=(
1− x∏

k=1

(
1− (1 + Jβ,ηk − Lβ,ηk )

1
β+η

+ (Jβ,ηk )
1
β+η

)
,

x∏
k=1

(
1− (1 + Jβ,ηk − Lβ,ηk )

1
β+η

+ (Jβ,ηk )
1
β+η

)
−

x∏
k=1

(
1 + (Jβ,ηk )

1
β+η − (1−Qβ,ηk + Jβ,ηk )

1
β+η

)
,

x∏
k=1

(
1 + (Jβ,ηk )

1
β+η − (1−Qβ,ηk + Jβ,ηk )

1
β+η

)
− x∏

k=1

(
(Jβ,ηk )

1
β+η

)) ⇒

1
x

⎛⎜⎜⎜⎜⎜⎜⎝ x∑
k=1

⎛⎜⎜⎜⎜⎝ 2|Sk|(|Sk|+1)

|Sk |∑
i=1

|Sk |∑
j=i

(wiaki)
β ⊗ (wjakj)

η

⎞⎟⎟⎟⎟⎠
1
β+η

⎞⎟⎟⎟⎟⎟⎟⎠ =⎛⎜⎜⎜⎜⎜⎝1−
(

x∏
k=1

(
1− (1 + Jβ,ηk − Lβ,ηk )

1
β+η

+ (Jβ,ηk )
1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (1 + Jβ,ηk − Lβ,ηk )

1
β+η

+ (Jβ,ηk )
1
β+η

)) 1
x

−(
x∏

k=1

(
1 + (Jβ,ηk )

1
β+η − (1−Qβ,ηk + Jβ,ηk )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1 + (Jβ,ηk )

1
β+η − (1−Qβ,ηk + Jβ,ηk )

1
β+η

)) 1
x

−
(

x∏
k=1

(
(Jβ,ηk )

1
β+η

)) 1
x
⎞⎟⎟⎟⎟⎟⎠

.

Thus, PFWIPHAβ,η(a1, a2, . . . , ay) =⎛⎜⎜⎜⎜⎜⎝1−
(

x∏
k=1

(
1− (1 + Jβ,ηk − Lβ,ηk )

1
β+η

+ (Jβ,ηk )
1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (1 + Jβ,ηk − Lβ,ηk )

1
β+η

+ (Jβ,ηk )
1
β+η

)) 1
x

−(
x∏

k=1

(
1 + (Jβ,ηk )

1
β+η − (1−Qβ,ηk + Jβ,ηk )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1 + (Jβ,ηk )

1
β+η − (1−Qβ,ηk + Jβ,ηk )

1
β+η

)) 1
x

−
(

x∏
k=1

(
(Jβ,ηk )

1
β+η

)) 1
x
⎞⎟⎟⎟⎟⎟⎠

. �
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Appendix C. The proof of Theorem 3

Proof. According to the interaction operational laws defined in Definition 7, βaki ⊕ ηakj =(
1− (1− pki)

β(1− pkj)
η, (1− pki)

β(1− pkj)
η − (1− pki −mki)

β(1− pkj −mkj)
η, (1− pki −mki)

β(1− pkj −mkj)
η −

(1− pki −mki − nki)
β(1− pkj −mkj − nkj)

η
)

Let eki = 1− pki, ekj = 1− pkj, fki = 1− pki −mki, fk j = 1− pkj −mkj, vki = 1− pki −mki −nki and vkj =

1− pkj −mkj − nkj, then βaki ⊕ ηakj =
(
1− (eki)

β(ekj)
η, (eki)

β(ekj)
η − ( fki)

β( fk j)
η, ( fki)

β( fk j)
η − (vki)

β(vkj)
η
)
,

⇒
|Sk |∏

i=1, j=i
(βaki ⊕ ηakj) =⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i

(
1 + (vki)

β(vkj)
η − (eki)

β(ekj)
η
)
−

|Sk |∏
i=1, j=i

(
(vki)

β(vkj)
η
)
,
|Sk |∏

i=1, j=i

(
1− ( fki)

β( fk j)
η + (vki)

β(vkj)
η
)
−

|Sk |∏
i=1, j=i

(
1 + (vki)

β(vkj)
η − (eki)

β(ekj)
η
)
, 1−

|Sk∏
i=1, j=i

(
1− ( fki)

β( fk j)
η + (vki)

β(vkj)
η
)⎞⎟⎟⎟⎟⎠ .

Let tk =
2|Sk|(|Sk|+1)

, then

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(βaki ⊕ ηakj)

⎞⎟⎟⎟⎟⎠
2

|Sk |(|Sk |+1)

=⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i

(
1 + (vki)

β(vkj)
η − (vki)

β(vkj)
η
)⎞⎟⎟⎟⎟⎠tk

−
⎛⎜⎜⎜⎜⎝ |Sk |∏

i=1, j=i

(
(vki)

β(vkj)
η
)⎞⎟⎟⎟⎟⎠tk

,

⎛⎜⎜⎜⎜⎝ |Sk∏
i=1, j=i

(
1− ( fki)

β( fk j)
η + (vki)

β(vkj)
η
)⎞⎟⎟⎟⎟⎠tk

−⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(
1 + (vki)

β(vkj)
η − (eki)

β(ekj)
η
)⎞⎟⎟⎟⎟⎠tk

, 1−
⎛⎜⎜⎜⎜⎝ |Sk∏

i=1, j=i

(
1− ( fki)

β( fk j)
η + (vki)

β(vkj)
η
)⎞⎟⎟⎟⎟⎠tk

⎞⎟⎟⎟⎟⎟⎠
.

Let Rβ,ηk =
|Sk |∏

i=1, j=i

(
(vki)

β(vkj)
η
)
, Uβ,ηk =

|Sk |∏
i=1, j=i

(
1 + (vki)

β(vkj)
η − (eki)

β(ekj)
η
)

and Vβ,ηk =

|Sk |∏
i=1, j=i

(
1− ( fki)

β( fk j)
η + (vki)

β(vkj)
η
)
, then 1

β+η

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(βaki ⊕ ηakj)

⎞⎟⎟⎟⎟⎠
2

|Sk |(|Sk |+1)

=⎛⎜⎜⎜⎜⎝1−
(
1− (Uβ,ηk )

tk
+ (Rβ,ηk )

tk
) 1
β+η

,
(
1− (Uβ,ηk )

tk
+ (Rβ,ηk )

tk
) 1
β+η −

(
1 + (Rβ,ηk )

tk − (Vβ,ηk )
tk
) 1
β+η

,
(
1 + (Rβ,ηk )

tk − (Vβ,ηk )
tk
) 1
β+η −

(
(Rβ,ηk )

tk
) 1
β+η

⎞⎟⎟⎟⎟⎠,
⇒ x∏

k=1

⎛⎜⎜⎜⎜⎜⎜⎝ 1
β+η

⎛⎜⎜⎜⎜⎝ |Sk |∏
i=1, j=i

(βaki ⊕ ηakj)

⎞⎟⎟⎟⎟⎠
2

|Sk |(|Sk |+1)
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Appendix D. The Proof of Theorem 4

Proof. Based on the interaction operational laws defined in Definition 7, (aki)
wi =(

(1− nki −mki)
wi − (1− nki −mki − pki)

wi , (1− nki)
wi − (1− nki −mki)

wi , 1− (1− nki)
wi
)

and (akj)
wj =(

(1− nkj −mkj)
wj − (1− nkj −mkj − pkj)

wj , (1− nkj)
wj − (1− nkj −mkj)

wj , 1− (1− nkj)
wj

)
.

Let rki = 1 − nki, rkj = 1 − nkj, uki = 1 − nki −mki, ukj = 1 − nkj −mkj, vki = 1 − nki −mki − pki and
vkj = 1− nkj −mkj − pkj, then
β(aki)

wi =
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, then
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Appendix E. Questionnaire of Evaluating Hotels

Please make a choice in each line.
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Table A1. Questionnaire of evaluation hotels.

Hotels Criteria Evaluation

π1

φ1 (Price) � High �Medium � Low
φ2 (Comfortability) � Good � Fair � Poor
φ3 (Service) � Good � Fair � Poor
φ4 (Location) � Good � Fair � Poor
φ5 (Convenience) � Good � Fair � Poor

π2

φ1 (Price) � High �Medium � Low
φ2 (Comfortability) � Good � Fair � Poor
φ3 (Service) � Good � Fair � Poor
φ4 (Location) � Good � Fair � Poor
φ5 (Convenience) � Good � Fair � Poor

π3

φ1 (Price) � High �Medium � Low
φ2 (Comfortability) � Good � Fair � Poor
φ3 (Service) � Good � Fair � Poor
φ4 (Location) � Good � Fair � Poor
φ5 (Convenience) � Good � Fair � Poor

π4

φ1 (Price) � High �Medium � Low
φ2 (Comfortability) � Good � Fair � Poor
φ3 (Service) � Good � Fair � Poor
φ4 (Location) � Good � Fair � Poor
φ5 (Convenience) � Good � Fair � Poor
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Abstract: As the extension of the fuzzy sets (FSs) theory, the intuitionistic fuzzy sets (IFSs) play an
important role in handling the uncertainty under the uncertain environments. The Pythagoreanfuzzy
sets (PFSs) proposed by Yager in 2013 can deal with more uncertain situations than intuitionistic
fuzzy sets because of its larger range of describing the membership grades. How to measure the
distance of Pythagorean fuzzy sets is still an open issue. Jensen–Shannon divergence is a useful
distance measure in the probability distribution space. In order to efficiently deal with uncertainty
in practical applications, this paper proposes a new divergence measure of Pythagorean fuzzy sets,
which is based on the belief function in Dempster–Shafer evidence theory, and is called PFSDM
distance. It describes the Pythagorean fuzzy sets in the form of basic probability assignments (BPAs)
and calculates the divergence of BPAs to get the divergence of PFSs, which is the step in establishing
a link between the PFSs and BPAs. Since the proposed method combines the characters of belief
function and divergence, it has a more powerful resolution than other existing methods. Additionally,
an improved algorithm using PFSDM distance is proposed in medical diagnosis, which can avoid
producing counter-intuitive results especially when a data conflict exists. The proposed method and
the magnified algorithm are both demonstrated to be rational and practical in applications.

Keywords: Pythagorean fuzzy set; Dempster–Shafer evidence theory; basic probability assignment;
medical diagnosis

1. Introduction

With the development of fuzzy mathematics, medical diagnosis has addressed more and more
attention from the research society of applied computer mathematics. In the diagnostic process
of medical profession, improving the processing capacity of various uncertain and inconsistent
information and achieving more accurate decision-making have become the major challenges in
the development of medical diagnosis [1–3]. Up to now, the process of medical diagnosis is
driven by various theoretical studies, such as fuzzy sets theory [4–6], intuitionistic fuzzy sets [7–10],
interval-valued intuitionistic fuzzy sets [11–13], and quantum decision [14–16].

It is well known that medical diagnosis is an effective and reasonable way to handle the
problem of uncertainty. Decision theory [17–19] has been widely applied in this field, containing
a variety of theories and methods. For instance, evidence theory and its extension [20–22],
evidential reasoning [23,24], D numbers theory [25], R numbers theory [26,27], Z numbers
theory [28,29], and other hybrid methods have been used to research it from lots of aspects.
The rationality and practicality of these methods have also been proven by their employment in
applications, such as strategy selection [30–34], decision-making [35–39], prediction [40–42], and fault
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diagnosis [43,44]. In addition, Zadeh presented a useful theory in 1965, the fuzzy set (FS) theory [45],
which drives a big step forward in decision theory. Atanassov’s intuitionistic fuzzy sets (IFSs) [46]
proposed and Yager’s Pythagorean fuzzy sets (PFSs) [47] are two extensions of a fuzzy set which make
use of the membership degree, non-membership degree, and the hesitancy to preciously express the
uncertainty. Among them, Pythagorean fuzzy set has a larger range of expressing the uncertainy than
intuitionistic fuzzy set [48,49]. Hence, the Pythagorean fuzzy set was chosen to apply for medical
diagnosis in this paper.

Distance measure plays a vital role in pattern recognition, information fusion, decision-making,
and other fields. The fuzzy set theory and intuitionistic fuzzy sets have been proposed for many
years and their distance measurements [50–52] have matured compared with Pythagorean fuzzy sets.
There are some useful distances for IFS after suffering the practice and the application. For instance,
the Euclidean distance [53], the Hamming distance [53], and the Hausdorff metric [54] are the most
widely applied distances of IFS. The distance measurement of PFSs is still an open issue, which attracts
many researchers to explore the distance measurement of PFSs and its related applications. A general
distance measurement of PFSs was proposed by Chen [55], is an extension of Euclidean distance and
Hamming distance, and generates a reasonable result in multiple-criteria decision analysis. Wei and
Wei [56] proposed a PFS measurement method based on cosine function and applied it to medical
diagnosis to achieve an ideal result. Later on, Xiao [57] presented a distance measurement of PFSs
based on divergence, called PFSJS distance. Among these methods of measure distance of PFSs,
membership, non-membership and hesitancy are calculated based on the same weights. It is well
known that the hesitancy expresses the uncertainty of membership and non-membership, so finding
a proper method to distribute hesitancy to membership and non-membership can more reasonably
handle the distance of PFSs. The basic probability assignment (BPA) in evidence theory presented
by Dempster–Shafer [58,59] unifies uncertainty in a new set, and can handle various uncertainty
reasonably. Song [60] presented a divergence measure of belief function based on Kullback–Leibler
(KL) divergence [61] and Deng entropy [62], which has better results when dealing with the distance
between BPAs with greater uncertainty. This paper proposes a new method to describe the PFSs in the
form of BPAs, and uses an improverd divergence measurement of BPAs based on Jensen–Shannon
divergence to measure the distance of PFSs. This method applied to medical diagnosis can not only
get more intuitive results when the high conflicts appear in several symptoms between patients and
diseases but also make higher resolution in different results.

According to the above, the structure of this article is as follows:

• The related concepts and properties of Pythagorean fuzzy set (PFS), basic probability assignment
(BPA), the Jensen–Shannon divergence, and some widely applied methods of measuring distance
are introduced.

• A new divergence measure of PFSs is proposed, which is called PFSDM distance. Its measurement
is divided into three stages. The first is establishing a link between PFSs and BPAs. In addition,
then, an improved method is proposed to measure the divergence of PFSs represented as BPAs.
The third is proving the properties of PFSDM distance and expressing the feasibility and merits of
the proposed method using numerical examples.

• The medical diagnosis algorithm based on Xiao’s method [57] is magnified and compares the new
algorithm with other existing methods to prove its practicability.

• The merits and uses of the PFSDM distance are summarized and the future direction of algorithm
improvement is expected.

2. Preliminaries

In this section, the first subsection introduced the definition of Pythagorean fuzzy sets [47,48].
The main idea of basic probability assignment (BPA), Dempster–Shafer evidence theory [58,59] is in
the second subsection. Some concepts of divergence are in the third subsection. In the last subsection,
some existing methods for measuring the distance of PFSs are displayed.
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2.1. Pythagorean Fuzzy Sets

Definition 1. Let X be a limited universe of discourse. An intuitionistic fuzzy set (IFS) [46] M in X is
defined by

M = {〈x, μM(x), vM(x)〉 | x ∈ X}, (1)

where μM(x) : X → [0, 1] represents the degree of support for membership of the x ∈ X of IFS, and vM(x) :
X → [0, 1] represents the degree of support for non-membership of the x ∈ X of IFS, with the condition that
0 ≤ μM(x) + vM(x) ≤ 1. and the hesitancy function πM(x) of IFS reflecting the uncertainty of membership
and non-membership is defined by

πM(x) = 1− μM(x)− vM(x). (2)

Definition 2. Let x be a limited universe of discourse. A Pythagorean fuzzy set (PFS) [47,48] M in X is
defined by

M = {〈x, MY(x), MN(x)〉 |x ∈ X} , (3)

where MY(x) : X → [0, 1] represents the degree of support for membership of the x ∈ X of PFS, and MN(x) :
X → [0, 1] represents the degree of support for non-membership of the x ∈ X of PFS, with the condition that
0 ≤ M2

Y(x) + M2
N(x) ≤ 1. and the hesitancy function MH(x) of PFS reflecting the uncertainty of membership

and non-membership is defined by

MH(x) =
√

1− M2
Y(x) + M2

N(x). (4)

The membership and the non-membership of PFS also can be expressed by another way. A pair of values
r(x) and d(x) for each x ∈ X are used to represent the membership and non-membership as follows:

MY(x) = rM(x)Cos(θM(x)) MN(x) = rM(x)Sin(θM(x)), (5)

where θ(x) = (1− d(x))π
2 = Arctan(MN(x)/MY(x)). Here, we see that θ(x) is expressed as radians and

θ(x) ∈ [0, π
2 ]. In addition, MH(x) =

√
1− r2(x).

Property 1. ([49]) Let B and C be two PFSs in X, then

1. B ⊆ C if ∀x ∈ X, BY(x) ≤ CY(x) and BN(x) ≥ CN(x),
2. B = C if ∀x ∈ X, BY(x) = CY(x) and BN(x) = CN(x),
3. B ∩ C = {〈x, min [BY(x), CY(x)] , max [BN(x), CN(x)]) |x ∈ X},
4. B ∪ C = {(x, max [BY(x), CY(x)] , min [BN(x), CN(x)]) |x ∈ X],

5. B · C =

{〈
x, BY(x)CY(x),

(
B2

N(x) + C2
N(x)− B2

N(x)C2
N(x)

) 1
2

〉
|x ∈ X

}
,

6. Bn =

{(
x, Bn

Y(x),
(
1−

(
1− B2

N(x)n)) 1
2

)
|x ∈ X

}
.

2.2. Dempster–Shafer Evidence Theory

The Dempster–Shafer evidence theory [58,59] is proposed to deal with conditions that are
weaker than Bayes probability [63,64], which can directly express uncertainty and unknown
information [65,66], so that it has been widely used in various applications, FMEA [67–69], evidential
reasoning [70–72], evaluation [73], target recognition [74], industrial alarm system [75,76], and
others [77,78].
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Definition 3. Θ is the set of N elements which represent mutually exclusive and exhaustive hypotheses. Θ is
the frame of discernment [58,59]:

Θ = {H1, H2, · · · , Hi, · · · , HN} . (6)

The power set of Θ is denoted by 2Θ, and

2Θ = {∅, {H1} , · · · , {Hn} , {H1, H2} , · · · , {H1, · · · , HN}} , (7)

where ∅ is an empty set.

Definition 4. A mass function [58,59] m, also called as BPA, is a mapping of 2Θ, defined as follows:

m : 2Θ → [0, 1], (8)

which satisfies the following conditions:

m(∅) = 0 ∑
A∈2*

m(A) = 1 0 ≤ m(A) ≤ 1 A ∈ 2Θ. (9)

The mass m(A) represents how strongly the evidence supports A [79–81].

2.3. Divergence Measure

Definition 5. Given two probabilities distribution A = {A (x1) , A (x2) , . . . , A (xn)} and B =

{B (x1) , B (x2) , . . ., B (xn)}.
Kullback–Leibler divergence [61] between A and B is defined as:

DivKL(A, B) =
n

∑
i=1

A (xi) log2

(
A (xi)

B (xi)

)
(10)

with ∑n
i=1 A(xi) = ∑n

i=1 B(xi) = 1.

The Kullback–Leibler also has some disadvantages of its properties, and one of them is that it
doesn’t satisfy the commutative property:

DivKL(A, B) 
= DivKL(B, A). (11)

In order to realize the commutation in the distance measure, the Jensen–Shannon divergence is an
adaptive choice.

Definition 6. Given two probabilities distribution A = {A (x1) , A (x2) , . . . , A (xn)} and B =

{B (x1) , B (x2) , . . ., B (xn)}.
Jensen–Shannon divergence [82] between A and B is defined as:

JSAB =
DivKL(A, A+B

2 ) + DivKL(B, A+B
2 )

2
= H(

A + B
2

)− H(A)

2
− H(B)

2
, (12)

where H(A) = −∑n
i=1 A(xi)logA(xi) and ∑n

i=1 A(xi) = ∑n
i=1 B(xi) = 1.

Song’s divergence [60] is used to measure the belief function, which is capable of processing
uncertainty efficiently in a highly fuzzy environment by applying the thinking of Deng entropy [62].
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Definition 7. ([60]) Given two basic probability assignments (BPAs) m1 and m2, the divergence between m1

and m2 is defined as follows:

DSD (m1, m2) = ∑
i

1
2|Fi |−1

m1 (Fi) log
(

m1 (Fi)

m2 (Fi)

)
, (13)

where the Fi holds on ∑2Θ−1
i=1 m(Fi) = 1, which is the power subset of frame of discernment Θ and |Fi| is the

cardinal number of Fi.
It is obvious that DSD(m1, m2) 
= DSD(m2, m1). In order to realize the commutative property, a divergence

measurement based on Song’s divergence is defined as follows:

DSDM(m1, m2) = D̃SDM(m2, m1) =
DSD (m1, m2) + DSD (m2, m1)

2
. (14)

Because of thinking of the number of subsets of the mass function and averagely distributing the
BPAs to these subsets, Song’s divergence is more reasonable than others when the basic probability
assignments of non-singleton powers sets Fi are larger.

2.4. Distance Measure of Pythagorean Fuzzy Sets

The Euclidean distance [53] and the Hamming distance [53] are the most widely applied distances,
and Chen proposed a generalized distance measure of PFS [55], which is the extension of Hamming
distance and Euclidean distance.

Definition 8. Let X be a limited universe of discourse, and M and N are two PFSs. Chen’s distance [55]
measure between PFSs M and N denoted as DC(M, N) is defined as:

DC(M, N) = [
1
2
(| M2

Y(x)− N2
Y(x) |β + | M2

N(x)− N2
N(x) |β + | M2

H(x)− N2
H(x) |β)]

1
β , (15)

where β holds on β ≥ 1 is called the distance parameter. As the extension of the Hamming distance and
Euclidean distance, if β = 1 and β = 2, the Chen’s distance is equal to Hamming distance and Euclidean
distance, respectively:

• if β = 1,

DC(M, N) = DHm(M, N) = [ 1
2 (| M2

Y(x)− N2
Y(x) | + | M2

N(x)− N2
N(x) | + | M2

H(x)− N2
H(x) |)],

• if β = 2,

DC(M, N) = DE(M, N) = [ 1
2 ((M2

Y(x)− N2
Y(x))2 + (M2

N(x)− N2
N(x))2 + (M2

H(x)− N2
H(x))2)]

1
2 .

In the application of distance measure, the universe of discourse always has many properties.
Xiao extended them as the normalized distance and proposed a divergence measure of PFSs called
PFSJS based on the Jensen–Shannon divergence, which is the first work to calculate the distance of
PFSs using divergence.

Let X = {x1, x2, · · · , xn} be a limited universe of discourse, two PFSs
M = {〈xi, MY(xi), MN(xi)〉 | xi ∈ X} and N = {〈xi, NY(xi), NN(xi)〉 | xi ∈ X} are in X.

Definition 9. The normalized Hamming distance [57] denoted as D̃Hm(M, N) is defined as:

D̃Hm(M, N) =
1

2n

n

∑
i=1

(| M2
Y(x)− N2

Y(x) | + | M2
N(x)− N2

N(x) | + | M2
H(x)− N2

H(x) |).
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The normalized Euclidean distance [57] denoted as D̃E(M, N) is defined as:

D̃E(M, N) =
1
n

n

∑
i=1

[
1
2
((M2

Y(x)− N2
Y(x))2 + (M2

N(x)− N2
N(x))2 + (M2

H(x)− N2
H(x))2)]

1
2 .

The normalized Chen’s distance [57] denoted as D̃C(M, N) is defined as:

D̃C(M, N) =
1
n

n

∑
i=1

[
1
2
(| M2

Y(x)− N2
Y(x) |β + | M2

N(x)− N2
N(x) |β + | M2

H(x)− N2
H(x) |β)]

1
β ,

where β ≥ 1

Definition 10. The normalized divergence measurements of Pythagorean fuzzy sets denoted as PFSJS [57] of
M and N are defined as follows:

D̃x(M, N) = 1
n ·∑n

i=1 Dx(M, N)

= 1
n ∑n

i=1

√
1
2

[
∑κ M2

κ (xi) log
(

2M2
κ(xi)

M2
κ(xi)+N2

κ (xi)

)
+ ∑κ N2

κ (xi) log
(

2N2
κ (xi)

M2
κ(xi)+N2

κ (xi)

)]
,

(16)

where κ ∈ κ ∈ {Y, N, H}.

According to the existing methods for measuring the PFSs’ distance, what they have in common
is that the weights of membership AY(x) non-membership AN(x) and hesitancy AH(x) are considered
to be the same when calculating distances. As is well known, the hesitancy represents the uncertainty
of membership degree and non-membership degree, and the belief function in evidence theory can
handle the uncertainty in a more proper way. Hence, if the ability of evidence theory to handle
uncertainty is combined with the high resolution of divergence in distance measurement, the PFSs’
distance measurement will be further optimized. In the next section, a new divergence measure of
PFSs is proposed based on belief function, which describes the PFSs in the form of BPAs and measures
the distance of PFSs by calculating the divergence of BPAs.

3. A New Divergence Measure of PFSs

In this section, a new divergence measure of PFSs, called PFSDM distance, is proposed. The first
subsection shows how PFS reasonably expressed in the form of BPA. A new improved method of
BPAs’ divergence measure is introduced in the second subsection, and then the PFSDM distance and
its properties is proposed. In the last subsection, some examples are used to prove its properties and
demonstrate its feasibility by comparing with existing other methods.

3.1. PFS Is Expressed in the Form of BPA

In the evidence theory [58,59], the basic probability assignment (BPA) m(A) represents the degree
of evidence supporting A, and, according to Equations (6) and (7), the elements of power set of frame
of discernment (Θ) should satisfy ∑A∈2θ m(A) = 1. Thus, the method of representing PFS in the form
of BPA is shown as follows:

Definition 11. Let X be a limited universe of discourse, according to the second form of PFS shown in
Equation (5), a Pythagorean fuzzy set M in X is M = {〈x, rM(x)Cos(θM(x)), rM(x)Sin(θM(x))〉 | x ∈ X},
the frame of discernment ΘM of M and their basic probability assignments mp are defined as:

ΘM = {YM, NM}, (17)

• mp(YM) = rM(x)Cos2θM(x),
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• mp(NM) = rM(x)Sin2θM(x),
• mp(YM NM) = 1− rM(x),
• mp(φ) = 0,

where mp(YM) represents the degree of evidence supporting membership of M. The mp(NM) represents
the degree of evidence supporting non-membership of M. The mp(YM NM) represents the degree of evidence
supporting membership and non-membership. Because the basic focal elements YM and NM are totally exclusive,
and the sum of them is equal to 1, they conform to the Dempster–Shafer evidence theory.

According to the meaning of mp(YM NM) and the method of thinking of Deng entropy [62], it
contains the degree of evidence supporting the elements of {YM} , {YN} and {YMYN}, and Song [60]
redistributes the degree of supporting {YM NM} averagely among the three elements when calculating
the distance of BPAs in Equation (13).

3.2. A New Divergence Measure of PFSs

Jensen–Shannon divergence is widely used in distance measure of probability distributions, and in
this subsection, we propose an improved divergence measure of BPA based on Song’s divergence and
Jensen–Shannon divergence. In addition, a new divergence measure of PFSs and its properties are
proposed, which is capable of distinguishing PFSs better.

Definition 12. Let Θ be a frame of discernment Θ = {A1, A2, · · · , An}, and the power set of Θ is
2Θ = {∅, {A1}, · · · , {An}, {A1, A2}, · · · , {A1, An}, · · · , {A1, · · · , An}} = {∅, F1, F2, · · · , F2n−1}.
The Jensen–Shannon divergence measure DJS(m1, m2) of two BPAs m1, m2 is defined as:

DJS(m1, m2) =
1
2
[DSD(m1,

m1 + m2
2

) + DSD(m2,
m2 + m1

2
)]

=
1
2
[ ∑
Fi∈2θ

1
2|Fi|−1

m1(Fi)log(
2m1(Fi)

m1(Fi) + m2(Fi)
) + ∑

Fi∈2θ

1
2|Fi|−1

m2(Fi)log(
2m2(Fi)

m1(Fi) + m2(Fi)
)],

(18)

where | Fi | is the cardinal number of Fi. In addition, just in case there’s a zero in the denominator, 10−8 is used
to replace zero in the calculation.

The improved method satisfies the symmetry and considers the number of elements in the power
set. In addition, then, substituting the PFSs in the form of BPAs into Equation (18) produces the new
divergence measure of Pythagorean fuzzy sets.

Definition 13. Let X be a limited universe of discourse, according to the second form
of PFS shown in Equation (5), two Pythagorean fuzzy sets M and N in X are M =

{〈x, rM(x)Cos(θM(x)), rM(x)Sin(θM(x))〉 | x ∈ X}, N = {〈x, rN(x)Cos(θN(x)), rN(x)Sin(θN(x))〉 |
x ∈ X}. The divergence measure denoted as DPFS(M, N) is defined as follows:
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DPFS(M, N) =
1
2
[rM(x)Cos2θM(x)log(

2rM(x)Cos2θM(x)
rM(x)Cos2θM(x) + rN(x)Cos2θN(x)

)+

rN(x)Cos2θN(x)log(
2rN(x)Cos2θN(x)

rM(x)Cos2θM(x) + rN(x)Cos2θN(x)
)+

rM(x)Sin2θM(x)log(
2rM(x)Sin2θM(x)

rM(x)Sin2θM(x) + rN(x)Sin2θN(x)
)+

rN(x)Sin2θN(x)log(
2rN(x)Sin2θN(x)

rM(x)Sin2θM(x) + rN(x)Sin2θN(x)
)+

1
3
(1− rM(x))log(

2(1− rM(x))
(1− rM(x)) + (1− rN(x))

)+

1
3
(1− rN(x))log(

2(1− rN(x))
(1− rM(x)) + (1− rN(x))

)].

(19)

In order to obtain higher resolution when making distance measurement, the divergence measure of PFSs,
PFSDM distance, denoted as Dmp(M, N), is defined by

Dmp(M, N) =
√

DPFS(M, N). (20)

According to the properties of Jensen–Shannon divergence [82], the larger PFSDM distance,
the more different PFSs, and the smaller PFSDM, the more similar PFSs. The properties of the PFSDM
distance are displayed as follows:

Definition 14. Let M and N be two PFSs in a limited universe of discourse X = {x1, x2, · · · , xn}, where
M = {〈xi, rM(xi)Cos(θM(xi)), rM(xi)Sin(θM(xi))〉} , N = {〈xi, rN(xi)Cos(θN(xi)), rN(xi)Sin(θN(xi))〉}.

The normalized PFSDM distance, D̃mp(M, N), is defined as follows:

D̃mp(M, N) =
1
n

n

∑
i=1
{1

2
[rM(xi)Cos2θM(xi)log(

2rM(xi)Cos2θM(xi)

rM(xi)Cos2θM(xi) + rN(xi)Cos2θN(xi)
)+

rN(xi)Cos2θN(xi)log(
2rN(xi)Cos2θN(xi)

rM(xi)Cos2θM(xi) + rN(xi)Cos2θN(xi)
)+

rM(xi)Sin2θM(xi)log(
2rM(xi)Sin2θM(xi)

rM(xi)Sin2θM(xi) + rN(xi)Sin2θN(xi)
)+

rN(xi)Sin2θN(xi)log(
2rN(xi)Sin2θN(xi)

rM(xi)Sin2θM(xi) + rN(xi)Sin2θN(xi)
)+

1
3
(1− rM(xi))log(

2(1− rM(xi))

(1− rM(xi)) + (1− rN(xi))
)+

1
3
(1− rN(xi))log(

2(1− rN(xi))

(1− rM(xi)) + (1− rN(xi))
)]} 1

2 .

(21)

Property 2. Let M, N, and O be three arbitrary PFSs in the limited universe of discourse X, then

• (P1)Dmp(M, N) = 0 if M = N, for M, N ∈ X.
• (P2)Dmp(M, N) + Dmp(N, O) ≥ Dmp(M, O), for M, N, O ∈ X.
• (P3)Dmp(M, N) ∈ [0, 1], for M, N ∈ X.
• (P4)Dmp(M, N) = Dmp(N, M), for M, N ∈ X.

Proof. (P1)

Suppose two Pythagorean fuzzy sets M and N in the limited universe of discourse X. In addition,
the PFSs of them are given as follows:
M = {〈x, rM(x)Cos(θM(x)), rM(x)Sin(θM(x))〉 | x ∈ X},
N = {〈x, rN(x)Cos(θN(x)), rN(x)Sin(θN(x))〉 | x ∈ X}.
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• If M = N, we can get rM(x) = rN(x) and θN(x) = θM(x). According to Equations (19) and (20),
it can get a result that Dmp(M, N) = 0.

• If Dmp(M, N) = 0, we can get rM(x) = rN(x) and θN(x) = θM(x) in terms of
Equations (19) and (20). Hence, it can be found that M = N.

Thus, the property (P1) in the Property 2 is proven.

Proof. (P2)

Suppose two Pythagorean fuzzy sets M and N in the limited universe of discourse X. In addition,
the PFSs of them are given as follows:
M = {〈x, rM(x)Cos(θM(x)), rM(x)Sin(θM(x))〉 | x ∈ X},
N = {〈x, rN(x)Cos(θN(x)), rN(x)Sin(θN(x))〉 | x ∈ X},
O = {〈x, rO(x)Cos(θO(x)), rO(x)Sin(θO(x))〉 | x ∈ X}.

Given four assumptions:

1. (A1) rM(x)Cos2(θM(x)) ≤ rN(x)Cos2(θN(x)) ≤ rO(x)Cos2(θO(x)).
2. (A2) rO(x)Cos2(θO(x)) ≤ rN(x)Cos2(θN(x)) ≤ rM(x)Cos2(θM(x)).
3. (A3) rN(x)Cos2(θN(x)) ≤ min{rM(x)Cos2(θM(x)), rO(x)Cos2(θO(x))}.
4. (A4) rN(x)Cos2(θN(x)) ≥ max{rM(x)Cos2(θM(x)), rO(x)Cos2(θO(x))}.

Let A = rM(x)Cos2(θM(x)), B = rN(x)Cos2(θN(x)) and C = rO(x)Cos2(θO(x)). According to
the above, it is obvious that | A − C |≤| A − B | + | B − C | is satisfied under the (A1) and (A2).
We can easily find A− B ≥ 0 and C− B ≥ 0 in terms of A3 and A4. Therefore, we have:

| A− B | + | B− C | − | A− C |

= A− B + C− B− A + C, i f A ≥ C,

= A− B + C− B + A− C, i f A ≤ C,

= 2(B−max{A, C}) ≥ 0.

Hence, the inequality| A− C |≤| A− B | + | B− C | is valid under A3 and A4. In the same way,
the r(x)Sin(θ(x)) and 1− r also satisfy the | A− C |≤| A− B | + | B− C |. Therefore, the inequality
in the Property 2 (P2), Dmp(M, N) + Dmp(N, O) ≥ Dmp(M, O), has been proven.

If we let M = 〈x, 0.3, 0.40〉, N = 〈x, 038, 0.48〉, O = 〈x, 0.58, 0.68〉, the Dmp(M, N), Dmp(N, O),
Dmp(M, O) can be calculated in terms of Equations (11), (19), and (20):

Dmp(M, N) = 0.0779,

Dmp(N, O) = 0.2007,

Dmp(M, O) = 0.2754.

Obviously, they satisfy Dmp(M, N) + Dmp(N, O) ≥ Dmp(M, O).

Proof. (P3 & P4)

Given two PFSs M = 〈x, α, β〉 and N = 〈x, β, α〉 in the limited universe of discourse
X. The values α and β represent membership degree and non-membership degree in two PFSs.
According to Equation (5), M and N can be formed as

M = 〈rM(x)Cos(θM(x)), rM(x)Sin(θM(x))〉,

N = 〈rN(x)Cos(θN(x)), rN(x)Sin(θN(x))〉,

where rM(x) = rN(x) =
√

α + β; θM(x) = Arctan(β/α); θN(x) = Arctan(α/β). The α and β satisfy
the X → [0, 1] and 0 ≤ α2 + β2 ≤ 1 in terms of Definition 2. Hence, the PFSDM distance between M
and N are shown in Figure 1a when α and β meet the requirements.
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(a) The PFSDM distance in Proof (b) The symmetry plane of PFSDM distance
in Proof

Figure 1. The results in the proof.

• From Figure 1a, we can find that the PFSDM distances Dmp(M, N) satisfy that its values are
no more than one and no less than zero no matter how the parameters α and β change. Thus,
Property 2 (P3) has been proven.

• As shown in Figure 1b, let us make a plane when α = β. According to the distance graph about
the plane symmetry, we can demonstrate that the PFSDM meets Dmp(M, N) = Dmp(N, M) and
the Property 2 (P4) has been proven.

Up to now, we have demonstrated the four properties of PFSDM distance. In order to fully explore
the characteristics and functions of PFSDM, the proposed method is compared with other existing
methods such as Hamming distance, Euclidean distance, and PFSJS distance in the next subsection.

3.3. Numerical Examples

In this subsection, three numerical examples are used to prove the PFSDM distance’s feasibility
and merits. The powerful resolution of proposed method is proved in Example 1.

Example 1. Suppose a limited universe of discourse X = {x1, x2}, and the PFSs Mi and Ni in the discourse
under the Casei (i ∈ {1, 2 , 3 , · · · , 9}), which are given in Table 1.

Table 1. Two PFSs Mi and Ni under different cases.

PFSs Case1 Case2 Case3

Mi {〈x1, 0.55, 0.45〉, 〈x2, 0.63, 0.55〉} {〈x1, 0.55, 0.45〉, 〈x2, 0.63, 0.55〉} {〈x1, 0.55, 0.45〉, 〈x2, 0.63, 0.55〉}
Ni {〈x1, 0.39, 0.50〉, 〈x2, 0.50, 0.59〉} {〈x1, 0.40, 0.51〉, 〈x2, 0.51, 0.60〉} {〈x1, 0.67, 0.39〉, 〈x2, 0.74, 0.50〉}

PFSs Case4 Case5 Case6

Mi {〈x1, 0.71, 0.63〉, 〈x2, 0.63, 0.55〉} {〈x1, 0.71, 0.63〉, 〈x2, 0.63, 0.55〉} {〈x1, 0.71, 0.63〉, 〈x2, 0.63, 0.55〉}
Ni {〈x1, 0.63, 0.63〉, 〈x2, 0.71, 0.63〉} {〈x1, 0.77, 0.55〉, 〈x2, 0.55, 0.45〉} {〈x1, 0.77, 0.55〉, 〈x2, 0.47, 0.59〉}

PFSs Case7 Case8 Case9

Mi {〈x1, 0.30, 0.20〉, 〈x2, 0.40, 0.30〉} {〈x1, 0.30, 0.20〉, 〈x2, 0.40, 0.30〉} {〈x1, 0.50, 0.40〉, 〈x2, 0.40, 0.30〉}
Ni {〈x1, 0.15, 0.25〉, 〈x2, 0.25, 0.35〉} {〈x1, 0.12, 0.26〉, 〈x2, 0.22, 0.36〉} {〈x1, 0.65, 0.35〉, 〈x2, 0.55, 0.25〉}

The distance measurements are calculated by Hamming distance, Euclidean distance [55], PFSJS distance
proposed by Xiao [57], Fei’s distance [83], the proposed method, and PFSDM distance are shown in Table 2.
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Table 2. The comparison of different methods’ results.

Methods Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9

D̃Hm [55] 0.1487 0.1397 0.1487 0.1444 0.1444 0.1368 0.0825 0.1275 0.1575
D̃E [55] 0.1983 0.1836 0.1951 0.1951 0.1759 0.1724 0.1025 0.1703 0.2226

D̃Fei [83] 0.1074 0.1031 0.0902 0.0683 0.0806 0.0949 0.1118 0.1118 0.1118
D̃Xiao [57] 0.1449 0.1300 0.1300 0.1771 0.1279 0.1279 0.1352 0.1434 0.1509

D̃mp 0.1427 0.1389 0.1159 0.0879 0.0987 0.1193 0.1998 0.1599 0.1482

We can easily find that the PFSDM distance, Dmp, has a satisfying performance in terms of Table 2, which
produces intuitive distances when the PFSJS distance can not distinguish the similar PFSs such as Case2, Case3
and Case5, Case6. In addition, because of its divergence feature, the PFSDM distance can make up for the
shortcoming of subtraction to find the distance, which is displayed in Case1, Case3 of Hamming distance and
Case3, Case4 of Euclidean distance. The other character of the proposed method for calculating the distance of
PFSs is the use of basic probability assignment to express the hesitancy. As the degree of hesitancy decreases,
PFSDM distance thinks it has less and less effect on the distance, which is demonstrated in Case7, Case8, and
Case9. In general, the PFSDM distance can handle the above cases in a proper way when some existing methods
produce counter-intuitive results.

In order to make the comparison between PFSDM distance and other methods more intuitive,
as membership and non-membership change, the distances’ figures are displayed in Example 2.

Example 2. Assume two PFSs M = 〈x, 0.3, 0.4〉 and N = 〈x, α, β〉.
The Hamming distance [55] DHm(M, N), Euclidean distance [55] DE(M, N), PFSJS distance [57]

DXiao(M, N), and PFSDM distance Dmp(M, N) are displayed in Figure 2a–d.

(a) The
Hamming
distance in
Example 2

(b) The
Euclidean
distance in
Example 2

(c) The PFSJS
distance in
Example 2

(d) The PFSDM
distance in
Example 2

Figure 2. The results in Example 2.

We can know from the observation that Figure 2a–c have similar trends, but the PFSDM distance is
different in Figure 2d. It resembles an inverted cone centered on the point 〈α = 0.3, β = 0.4〉 because it has a
more uniform trend as α and β change. Suppose four PFSs A1, A2, B1, B2 as follows:

• A1 = 〈x, A1Y(x), A1N(x)〉 = 〈x, 0.1200, 0.1600〉,
• A2 = 〈x, A2Y(x), A2N(x)〉 = 〈x, 0.1380, 0.1840〉,
• B1 = 〈x, B1Y(x), B1N(x)〉 = 〈x, 0.5220, 0.6960〉,
• B2 = 〈x, B2Y(x), B2N(x)〉 = 〈x, 0.5400, 0.7200〉.

After calculation, we know that

A2Y(x)− A1Y(x) = B2Y(x)− B1Y(x) = 0.0180 A2N(x)− A1N(x) = B2N(x)− B1N(x) = 0.0240.

To verify that PFSDM distance changes more evenly, the Hamming distance [55] DHm(A1, A2) and
DHm(B1, B2), Euclidean distance [55] DE(A1, A2) and DE(B1, B2), PFSJS distance [57] DXiao(A1, A2)
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and DXiao(B1, B2), PFSDM distance Dmp(A1, A2), and Dmp(B1, B2) are calculated and results are obtained
as follows:

• DHm(A1, A2) = 0.0129 DHm(B1, B2) = 0.0531 αHm = DHm(B1, B2)/DHm(A1, A2) = 4.1163,

• DE(A1, A2) = 0.0113 DE(B1, B2) = 0.0466 αE = DE(B1, B2)/DE(A1, A2) = 4.1163,
• DXiao(A1, A2) = 0.0287 DXiao(B1, B2) = 0.0256 αXiao = DXiao(B1, B2)/DXiao(A1, A2) = 2.1021,
• Dmp(A1, A2) = 0.0261 Dmp(B1, B2) = 0.0548 αmp = Dmp(B1, B2)/Dmp(A1, A2) = 0.8915.

In the situation of membership degree and non-membership degree changing equally, we can clearly find
that the ratio of distance changes α is different, and the PFSDM distance’s αmp is closest to 1 among them, which
demonstrate that its variation trend is more even than others when membership and non-membership change
the same.

The previous examples demonstrate the feasibility of PFSDM distance through numerical analysis.
It is well known that pattern recognition is one of the important applications of distance measure.
Paul [84] modifies Zhang and Xu’s distance measure of PFSs and applies them to pattern recognition.
In the next example, the proposed method is applied {to pattern recognition to prove its rationality.

Example 3. Suppose a limited universe of discourse X = {x1, x2, · · · , x10}, and Ai (i = 1, 2, 3, 4) represent
four materials of building respectively, and B is an unknown material. Their PFSs are given in Table 3, and we
need to recognize the type of B in A by finding the smallest distance D(Ai, B) from them. The results of Paul’s
method and proposed method, PFSDM distance, are given in Table 4:

Table 3. The Pythagorean fuzzy sets of building materials in Example 3.

PFS x1 x2 x3 x4 x5

A1(x) 〈x, 0.173, 0.524〉 〈x, 0.102, 0.818〉 〈x, 0.530, 0.326〉 〈x, 0.965, 0.008〉 〈x, 0.420, 0.351〉
A2(x) 〈x, 0.510, 0.365〉 〈x, 0.627, 0.125〉 〈x, 1.000, 0.000〉 〈x, 0.125, 0.648〉 〈x, 0.026, 0.823〉
A3(x) 〈x, 0.495, 0.387〉 〈x, 0.603, 0.298〉 〈x, 0.987, 0.006〉 〈x, 0.073, 0.849〉 〈x, 0.037, 0.923〉
A4(x) 〈x, 1.000, 0.000〉 〈x, 1.000, 0.000〉 〈x, 0.857, 0.123〉 〈x, 0.734, 0.158〉 〈x, 0.021, 0.896〉
B1(x) 〈x, 0.978, 0.003〉 〈x, 0.980, 0.012〉 〈x, 0.798, 0.132〉 〈x, 0.693, 0.213〉 〈x, 0.051, 0.876〉
PFS x6 x7 x8 x9 x10

A1(x) 〈x, 0.008, 0.956〉 〈x, 0.331, 0.512〉 〈x, 1.000, 0.000〉 〈x, 0.215, 0.625〉 〈x, 0.432, 0.534〉
A2(x) 〈x, 0.732, 0.153〉 〈x, 0.556, 0.303〉 〈x, 0.650, 0.267〉 〈x, 1.000, 0.000〉 〈x, 0.145, 0.762〉
A3(x) 〈x, 0.690, 0.268〉 〈x, 0.147, 0.812〉 〈x, 0.213, 0.653〉 〈x, 0.501, 0.284〉 〈x, 1.000, 0.000〉
A4(x) 〈x, 0.076, 0.912〉 〈x, 0.152, 0.712〉 〈x, 0.113, 0.756〉 〈x, 0.489, 0.389〉 〈x, 1.000, 0.000〉
B1(x) 〈x, 0.123, 0.756〉 〈x, 0.152, 0.721〉 〈x, 0.113, 0.732〉 〈x, 0.494, 0.368〉 〈x, 0.987, 0.000〉

Table 4. The results generated by two methods in Example 3.

Distance D(A1, B) D(A2, B) D(A3, B) D(A4, B)

Paul′s method 0.5970 0.5340 0.3240 0.0740
Proposed method 0.5296 0.5169 0.2927 0.0486

In the process of calculation, we use a negligible number such as 10−8 to replace the zero, which is a good
method to avoid having a zero denominator. The smallest PFSDM distance of them is Dmp(A4, B), so the
material B belongs to A4, which is identical to the result of Paul’s modified method. Hence, PFSDM distance is
capable of achieving the desired effect when applied to real-life problems.

In this section, the PFSDM distance for measuring the divergence of PFSs is proposed. Some
numerical examples are used to prove its properties and compared with other existing methods.
The PFSDM distance has been proven that it not only is rational and practical but has more powerful
resolution and a more uniform trend as well, which is because the proposed method combines the
properties of BPA handling uncertainty and divergence’s character distinguishing similar data.
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4. Application in Medical Diagnosis

In this section, a modified algorithm for medical diagnosis is designed, which is improved based
on Xiao’s algorithm [57]. The new algorithm utilizes the PFSDM distance and obtains excellent results
in application.

Problem statement: Suppose a limited universe of discourse X = {x1, x2, x3, · · · , xn} , and the
xi represent the symptoms of diseases and patients. Assume existing m number of patients listed as
P = {P1, P2, · · · , Pm} and o number of diseases listed as D = {D1, D2, · · · , Do}. The symptoms of
diseases and patients represented by Pythagorean fuzzy sets are as follows:

Di = {〈x1, Di
Y(x1), Di

N(x1)〉, 〈x2, Di
Y(x2), Di

N(x2)〉, · · · , 〈xn, Di
Y(xn), Di

N(xn)〉} (1 ≤ i ≤ o),

Pj = {〈x1, Pj
Y(x1), Pj

N(x1)〉, 〈x2, Pj
Y(x2), Pj

N(x2)〉, · · · , 〈xn, Pj
Y(xn), Pj

N(xn)〉} (1 ≤ j ≤ m).

We need to utilize the distance measure to recognize which diseases the patients contract.

Step1 For every symptom, calculate the PFSDM distanceDi
mpt(Di

t, Pj
t ) in terms of Equation (20)

between Di
t and Pj

t , where (1 ≤ t ≥ n).
Step2 Calculate the weight of every symptom in medical diagnosis:

ωt =
Di

mpt(Di
t ,P

j
t )

∑n
1 Di

mpt(Di
t ,P

j
t )

.

Step3 Diagnose the symptoms of the patient and the symptoms of the disease.

Calculate the weighted average PFSDM distance D̄mp(Di, Pj) = ∑n
t=1 ωtDi

mpt(Di
t, Pj

t ).

Step4 For each weighted average PFSDM distance, the patients Pj can be classified to diseases Di,

in which ξ = min1≤i≤m{D̄mp(Di, Pj)}, Pj → Dξ .

When the specific symptoms of the patient conflict with the symptoms of the disease, the proposed
algorithm considers that the conflicted symptoms are paid more attention in the medical diagnosis.
If all symptoms are diagnosed with the same weight, abnormal symptoms will be ignored when the
symptom base is large. In the later examples, the applications of the proposed algorithm and its
comparisons with other existing algorithm are shown.

Example 4. ([85]) Assume there are four patients, Ram, Mari, Sugu, and Somu, denoted as P = {P1, P2,
P3, P4}. Five symptoms, Temperature, Headache, Stomach pain, Cough, and Chest pain, are observed,
denoted as S = {s1, s2, s3, s4, s5}. Additionally, five diagnoses, Viral f ever, Malaria, Typhoid,
Stomach problems, and Chest problems, are defined, represented as D = {D1, D2, D3, D4, D5}. Then, the
Pythagorean fuzzy relations P → S and D → S are displayed in Tables 5 and 6.

Table 5. The symptoms of the patients in Example 4.

Patient s1 s2 s3 s4 s5

P1 〈s1, 0.90, 0.10〉 〈s2, 0.70, 0.20〉 〈s3, 0.20, 0.80〉 〈s4, 0.70, 0.20〉 〈s5, 0.20, 0.70〉
P2 〈s1, 0.00, 0.70〉 〈s2, 0.40, 0.50〉 〈s3, 0.60, 0.20〉 〈s4, 0.20, 0.70〉 〈s5, 0.10, 0.20〉
P3 〈s1, 0.70, 0.10〉 〈s2, 0.70, 0.10〉 〈s3, 0.00, 0.50〉 〈s4, 0.10, 0.70〉 〈s5, 0.00, 0.60〉
P4 〈s1, 0.50, 0.10〉 〈s2, 0.40, 0.30〉 〈s3, 0.40, 0.50〉 〈s4, 0.80, 0.20〉 〈s5, 0.30, 0.40〉
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Table 6. The symptoms of the diagnoses in Example 4.

Diagnose s1 s2 s3 s4 s5

D1 〈s1, 0.30, 0.00〉 〈s2, 0.30, 0.50〉 〈s3, 0.20, 0.80〉 〈s4, 0.70, 0.30〉 〈s5, 0.20, 0.60〉
D2 〈s1, 0.00, 0.60〉 〈s2, 0.20, 0.60〉 〈s3, 0.00, 0.80〉 〈s4, 0.50, 0.00〉 〈s5, 0.10, 0.80〉
D3 〈s1, 0.20, 0.20〉 〈s2, 0.50, 0.20〉 〈s3, 0.10, 0.70〉 〈s4, 0.20, 0.60〉 〈s5, 0.20, 0.80〉
D4 〈s1, 0.20, 0.80〉 〈s2, 0.10, 0.50〉 〈s3, 0.70, 0.00〉 〈s4, 0.10, 0.70〉 〈s5, 0.20, 0.70〉
D5 〈s1, 0.20, 0.80〉 〈s2, 0.00, 0.70〉 〈s3, 0.20, 0.80〉 〈s4, 0.10, 0.80〉 〈s5, 0.80, 0.10〉

The results diagnosis by the proposed algorithm and Xiao’s method [57] are displayed in Tables 7 and 8.
By observing the experimental results of proposed method, it is obvious that the P1 has the least D̄mp 0.4064 for
D1, P2 has the least D̄mp 0.2703 for D4, P3 has the least D̄mp 0.2890 for D3, and P4 has the least D̄mp 0.2470
for D1; Hence, the conclusions are obvious in Table 8.

Table 7. The results generated by the Xiao method in Example 4.

Patient D1 D2 D3 D4 D5 Classi f ication

P1 0.2583 0.3799 0.3512 0.5295 0.5528 D1 : Viral f ever
P2 0.4348 0.4217 0.4034 0.2394 3842 D4 : Stomach problems
P3 0.3925 0.4787 0.2681 0.4140 0.5166 D3 : Typhoid
P4 0.2166 0.4133 0.3454 0.4716 0.5382 D1 : Viral f ever

Table 8. The results generated by the proposed method in Example 4.

Patient D1 D2 D3 D4 D5 Classi f ication

P1 0.4064 0.6139 0.4984 0.7587 0.7776 D1 : Viral f ever
P2 0.6001 0.5971 0.5031 0.2703 5281 D4 : Stomach problems
P3 0.4807 0.6617 0.2890 0.7109 0.7285 D3 : Typhoid
P4 0.2407 0.4824 0.4475 0.5996 0.6271 D1 : Viral f ever

As shown in Table 9, obviously the proposed method generates the same results as Samuel’s method and
Xiao’s method, which can demonstrate that the proposed algorithm is capable of finishing medical diagnosis
problems. In addition to doing this, we can find that the proposed method has better resolution than Xiao’s
method by observing Tables 7 and 8.

Table 9. The results generated by other methods in Example 4.

Method P1 P2 P3 P4

Xiao. [57] Viral f ever Stomach problems Typhoid Viral f ever
Samuel and Rajakumar [86] Viral f ever Stomach problems Typhoid Viral f ever

Proposed method Viral f ever Stomach problems Typhoid Viral f ever

Example 5. ([2,11,57,87–90]) Assume four patients exist, namely, David, Tom, Kim, and Bob, denoted
as P = {P1, P2, P3, P4}. Five symptoms are observed, in which they are Temperature, Headache,
Stomach pain, Cough, and Chest pain, denoted as S = {s1, s2, s3, s4, s5}. Additionally, five diagnoses,
namely, Viral Fever, Malaria, Typhoid, Stomach problems, and Chest problems, are defined, represented
as D = {D1, D2, D3, D4, D5}. The numerical values respectively represented the membership and
non-membership grade of the Pythagorean fuzzy set. Then, through the evaluation of the proposed distance
measurement, the Pythagorean fuzzy sets’ distance of P → S and the Pythagorean fuzzy sets’ distance of D → S
are displayed in the following Tables 10 and 11.
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Table 10. The symptoms of the patients in Example 5.

Patient s1 s2 s3 s4 s5

P1 〈s1, 0.80, 0.10〉 〈s2, 0.60, 0.10〉 〈s3, 0.20, 0.80〉 〈s4, 0.60, 0.10〉 〈s5, 0.10, 0.60〉
P2 〈s1, 0.00, 0.80〉 〈s2, 0.40, 0.40〉 〈s3, 0.60, 0.10〉 〈s4, 0.10, 0.70〉 〈s5, 0.10, 0.80〉
P3 〈s1, 0.80, 0.10〉 〈s2, 0.80, 0.10〉 〈s3, 0.00, 0.60〉 〈s4, 0.20, 0.70〉 〈s5, 0.00, 0.50〉
P4 〈s1, 0.60, 0.10〉 〈s2, 0.50, 0.40〉 〈s3, 0.30, 0.40〉 〈s4, 0.70, 0.20〉 〈s5, 0.30, 0.40〉

Table 11. The symptoms of the diagnoses in Example 5.

Diagnose s1 s2 s3 s4 s5

D1 〈s1, 0.40, 0.00〉 〈s2, 0.40, 0.40〉 〈s3, 0.10, 0.70〉 〈s4, 0.40, 0.00〉 〈s5, 0.10, 0.70〉
D2 〈s1, 0.70, 0.00〉 〈s2, 0.20, 0.60〉 〈s3, 0.00, 0.90〉 〈s4, 0.70, 0.00〉 〈s5, 0.10, 0.80〉
D3 〈s1, 0.30, 0.30〉 〈s2, 0.60, 0.10〉 〈s3, 0.20, 0.70〉 〈s4, 0.20, 0.60〉 〈s5, 0.10, 0.90〉
D4 〈s1, 0.10, 0.70〉 〈s2, 0.20, 0.40〉 〈s3, 0.80, 0.00〉 〈s4, 0.20, 0.70〉 〈s5, 0.20, 0.70〉
D5 〈s1, 0.10, 0.80〉 〈s2, 0.00, 0.80〉 〈s3, 0.20, 0.80〉 〈s4, 0.20, 0.80〉 〈s5, 0.80, 0.10〉

After calculating the distance by the proposed method and Xiao’s method to measure the data, the results
are generated in Tables 12 and 13. The results of David (P1) are different because of the data marked red in
Tables 10 and 11. Though the D2 is more similar to P1 in other data intuitively, it generates a conflicted data in
Headache (s2). We use a weighted average to assign weights to symptoms. Hence, when the patient matches
most of the symptoms of the disease, but one of the symptoms conflicts, the proposed algorithm will give greater
weight to the effect of this symptom on the diagnosis of the disease, which will make the diagnosis of a complex
disease with many symptoms more accurate.

Table 12. The results generated by proposed method in Example 5.

Patient D1 D2 D3 D4 D5 Classi f ication

P1 0.2895 0.4163 0.4924 0.7125 0.7958 D1 : Viral f ever
P2 0.6809 0.7839 0.5058 0.1523 0.6711 D4 : Stomach problems
P3 0.3604 0.5940 0.3197 0.7264 0.7701 D3 : Typhoid
P4 0.2867 0.3699 0.4478 0.5839 0.3370 D1 : Viral f ever

Table 13. The results generated by Xiao’s method in Exmple 5.

Patient D1 D2 D3 D4 D5 Classi f ication

P1 0.2511 0.2457 0.3110 0.5191 0.5606 D2 : Malaria
P2 0.3712 0.4955 0.3389 0.1589 0.4264 D4 : Stomach problems
P3 0.3314 0.4348 0.3126 0.4610 0.5310 D3 : Typhoid
P4 0.2543 0.3195 0.3953 0.4605 0.5564 D1 : Viral f ever

By comparing other applied widely methods of medical diagnosis and their results in Table 14, we can find
that the diagnosis of David (P1) is controversial and its results in Table 13 are similar between Viral f ever (D1)
and Malaria (D2). On the contrary, Viral f ever (D1) and Malaria (D2) have a bigger difference in Table 12,
which means that the new method is quite certain of the result.
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Table 14. The results generated by other methods.

Method P1 P2 P3 P4

Szmidt et al. [88] Viral f ever Stomach problems Typhoid Viral f ever
Wei etl. [11] Malaria Stomach problems Typhoid Viral f ever

Mondal et al. [9] Malaria Stomach problems Typhoid Viral f ever
Ye [90] Viral f ever Stomach problems Typhoid Viral f ever

Vlachos et al. [89] Viral f ever Stomachproblems Typhoid Viral f ever
De et al. [2] Malaria Stomach problems Typhoid Viral f ever

Xiao et al. [57] Malaria Stomach problems Typhoid Viral f ever
Proposed method Viral f ever Stomach problems Typhoid Viral f ever

From the above two examples, the magnified method’s feasibility and merits have been
demonstrated. The feasibility of the new algorithm is illustrated by comparing the results of three
methods in Example 4, and it can be intuitively found from Tables 7 and 8 that the new algorithm
has higher resolution. In the second Example 5, more methods were compared in Table 14. The new
algorithm uses weighted summation to make the previously disputed results more certain, which
proves that it considers that the higher conflicted symptoms play a more important role in the
diagnostic process.

5. Conclusions

In this paper, we propose a new divergence measure, called PFSDM distance, based on belief
function, and modify the algorithm based on Xiao’s method. The proposed method can produce
intuitive results and its feasibility is proven by comparing with the existing method. In addition to
this, the new method has more even change trend and better performance when the PFSs have larger
hesitancy. In addition, we then apply the new algorithm to medical diagnosis and get the desired effect.
The new algorithm has better resolution, which is helpful to ruling thresholds in practical applications.
Consequently, the main contributions of this article are as follows:

• A method to express the PFS in the form of BPA is proposed, which is the first time to establish a
link between them.

• A new distance measure between PFSs, called the PFSDM distance, based on Jensen–Shannon
divergence and belief function, is proposed. Combining the characters of divergence and BPA
contributes to more powerful resolution and even more of a change trend than existing methods.

• A modified medical diagnosis algorithm is proposed based on Xiao’s method, which utilized
the weighted summation to magnify the resolution of algorithm and increase the influence of
conflicted data.

• The new divergence measure and the modified algorithm both have satisfying performance in the
applications of pattern recognition and medical diagnosis.

It is well known that medical diagnosis is not a 100% accurate procedure and uncertainty is
always present in cases. Though we get a definite result in Example 5 by the proposed algorithm, more
cases are supposed to be examined in further research to get a safer result. In future research, we will
try to explore more PFSs’ properties by using the belief function in evidence theory further and apply
them to more situations such as the multi-criteria decision-making and pattern recognition.
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Abstract: In this study, we present the concept of the interval-valued fuzzy soft point and then
introduce the notions of its neighborhood and quasi-neighborhood in interval-valued fuzzy soft
topological spaces. Separation axioms in an interval-valued fuzzy soft topology, so-called q-Ti for
i = 0, 1, 2, 3, 4, are introduced, and some of their basic properties are also studied.

Keywords: interval-valued fuzzy soft set; interval-valued fuzzy soft topology; interval-valued fuzzy
soft point; interval-valued fuzzy soft neighborhood; interval-valued fuzzy soft quasi-neighborhood;
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1. Introduction

In 1999, Molodtsov [1] proposed a new mathematical approach known as soft set theory for
dealing with uncertainties and vagueness. Traditional tools such as fuzzy sets [2] and rough sets [3]
cannot clearly define objects. Soft set theory is different from traditional tools for dealing with
uncertainties. A soft set was defined by a collection of approximate descriptions of an object based on
parameters by a given set-valued map. Maji et al. [4] initiated the research on both fuzzy set and soft
set hybrid structures called fuzzy soft sets and presented a concept that was subsequently discussed
by many researchers. Different extensions of the classical fuzzy soft sets were introduced, such as
generalized fuzzy soft sets [5], intuitionist fuzzy soft sets [6,7], vague soft sets [8], interval-valued
fuzzy soft sets [9], and interval-valued intuitive fuzzy soft sets [10]. In particular, to alleviate some
disadvantages of fuzzy soft sets, interval-valued fuzzy soft sets were introduced where no objective
procedure was available to select the crisp membership degree of elements in fuzzy soft sets. Tanya and
Kandemir [11] started topological studies of fuzzy soft sets. They used the classical concept of topology
to construct a topological space over a fuzzy soft set and named it the fuzzy soft topology. They also
studied some fundamental topological properties for the fuzzy soft topology, such as interior, closure,
and base. Later, Simsekler and Yuksel [12] studied the fuzzy soft topological space in the case of Tanay
and Kandemir [11]. However, they established the concept of the fuzzy soft topology over a fuzzy soft
set with a set of fixed parameters and considered some topological concepts for fuzzy soft topological
spaces such as the base, subbase, neighborhood, and Q-neighborhood. Roy and Samanta [13] noted a
new concept of the fuzzy soft topology. They suggested the notion of the fuzzy soft topology over an
ordinary set by adding fuzzy soft subsets of it, where everywhere, the parameter set is supposed to be
fixed. Then, in [14], they continued to study the fuzzy soft topology and established a fuzzy soft point
definition and various neighborhood structures. Atmaca and Zorlutuna [15] considered the concept of
soft quasi-coincidence for fuzzy soft sets. By applying this new concept, they also studied the basic
topological notions such as interior and closure for fuzzy soft sets. The concept of the product fuzzy
soft topology and the boundary fuzzy soft topology was introduced by Zahedi et al. [16,17], and they
studied some of their properties. They also suggested a new definition for the fuzzy soft point and
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then different neighborhood structures. Separation axioms of the fuzzy topological space and fuzzy
soft topological space were studied by many authors, see [18–23] and [24–27]. The aim of this work is
to develop interval-valued fuzzy soft separation axioms. We start with preliminaries and then give
the definition of the interval-valued fuzzy soft point as a generalization of the interval-valued fuzzy
point and fuzzy soft point in order to create different neighborhood structures in the interval-valued
fuzzy soft topological space in Sections 3 and 4. Finally, in Section 5, the notion of separation axioms
q-Ti, i = 0, 1, 2, 3, 4 in the interval-valued fuzzy soft topology is introduced, and some of their basic
properties are also studied.

2. Preliminaries

Throughout this paper, X is the set of objects and E is the set of parameters. The set of all subsets
of X is denoted by P(X) and A ⊂ E, showing a subset of E.

Definition 1 ([1]). A pair ( f , A) is called a soft set over X, if f is a mapping given by f : A → P(X). For any
parameter e ∈ A, f (e) ⊂ X may be considered as the set e-approximate elements of the soft set ( f , A). In other
words, the soft set is not a kind of set, but a parameterized family of subsets of the set X.

Before introducing the notion of the interval-valued fuzzy soft sets, we give the concept of the
interval-valued fuzzy set.

Definition 2 ([28]). An interval-valued fuzzy (IVF) set over X is defined by the membership function
f : X → int([0, 1]), where int([0, 1]) denotes the set of all closed subintervals of [0, 1]. Suppose that x ∈ X.
Then, f (x) = [ f−(x), f+(x)] is called the degree of membership of the element x ∈ X, where f−(x) and f+

are the lower and upper degrees of the membership of x and 0 < f−(x) < f+(x) < 1.

Yang et al. [9] suggested the concept of interval-valued fuzzy soft set by combining the
interval-valued fuzzy set and soft set as below.

Definition 3 ([9]). An interval-valued fuzzy soft (IVFS) set over X denoted by fE or ( f , E) is defined by
the mapping f : E → IVF (X), where IVF (X) is the set of all interval-valued fuzzy sets over X. For any
e ∈ E, f (e) can be written as an interval-valued fuzzy set such that f (e) = {〈x, [ f−e (x), f+e (x)]〉 : x ∈ X}
where f−e (x)and f+e (x) are the lower and upper degrees of the membership of x with respect to e, where
0 ≤ f−e (x) ≤ f+e (x) ≤ 1.

Note that IVFS(X, E) shows the set of all IVFS sets over X.

Definition 4 ([9]). Let fA and gB be two IVFS sets overX. We say that:

1. fA is an interval-valued fuzzy soft subset of gB, denoted by fA≤̃gB, if and only if:

(i) A ≤ B,
(ii) For all e ∈ A, f−e (x) ≤ g−e (x) and f+e (x) ≤ g+e (x), ∀x ∈ X.

2. fA = gB if and only if fA≤̃gB and gA≤̃ fB.
3. The union of two IVFS sets fA and gB, denoted by fA∨̃gB, is the IVFS set ( f ∨ g, C), where C = A ∪ B,

and for all e ∈ C, we have:

( f ∨ g)e(x) =

⎧⎪⎪⎨⎪⎪⎩
[ f−e (x), f+e (x)], e ∈ A− B

[g−e (x), g+e (x)], e ∈ B− A

[max ( f−e (x), g−e (x), max ( f+e (x), g+e (x)] e ∈ A ∩ B,

for all x ∈ X.
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4. The intersection of two IVFS sets fA and gB, denoted by fA∧̃gB, is the IVFS set ( f ∧ g, C), where
C = A ∩ B, and for all e ∈ C, we have ( f ∧ g)e(x) = [min f−e (x), g−e (x), min f+e (x), g+e (x)] for all
x ∈ X.

5. The complement of the IVFS set fA is denoted by f c
A(x) where for all e ∈ A, we have f c

e (x) = [1−
f+e (x), 1− f−e (x)].

Definition 5 ([9]). Let fE be an IVFS set. Then:

1. fE is called the null interval-valued fuzzy soft set, denoted by ∅E, if f−e (x) = f+e (x) = 0, for all
x ∈ X, e ∈ E.

2. fE is called the absolute interval-valued fuzzy soft set, denoted by XE, if f−e (x) = f+e (x) = 1, for all
x ∈ X, e ∈ E.

Motivated by the definition of the soft mapping, discussed in [29], we define the concept of the
IVFS mapping as the following:

Definition 6. Let fA be an IVFS set over X1 and gB be an IVFS set over X2, where A ⊆ E1 and B ⊆ E2. Let
Φu : X1 → X2 and Φp : E1 → E2 be two mappings. Then:

1. The map Φ : IVFS(X1, E1) → IVFS(X2, E2) is called an IVFS map from X1 to X2, and for any
y ∈ X2 and ε ∈ B ⊆ E2, the lower image and the upper image of fA under Φ is the IVFSΦ( fA) over X2,
respectively, defined as below:

[Φ( f−)](ε)(y) =

⎧⎨⎩supx∈Φ
u−1 (y)

[supe∈Φ
p−1∩A

f−(e)](x), if Φ−1
p (ε) ∩ A 
= φ and Φ−1

u (y) 
= φ

0, otherwise,

[Φ( f +)](ε)(y) =

⎧⎨⎩supx∈Φ
u−1 (y)

[supe∈Φ
p−1∩A

f +(e)](x), if Φ−1
p (ε) ∩ A 
= φ and Φ−1

u (y) 
= φ

0, otherwise.

2. Let Φ : IVFS(X1, E1) → IVFS(X2, E2) be an IVFS map from X1 to X2. The lower inverse image
and the upper inverse image of IVFS gB under Φ denoted by Φ−1(gB) is an IVFS over X1, respectively,
such that for all x ∈ X1 and e ∈ E1, it is defined as below:

[Φ−1(g−)](e)(x) =

⎧⎨⎩g−Φp(e)
Φu(x), if Φp(e) ∈ B

0, otherwise,

[Φ−1(g+)](e)(x) =

⎧⎨⎩g+Φp(e)
Φu(x), if Φp(e) ∈ B

0 otherwise.

Proposition 1. Let Φ : IVFS(X, E) → IVFS(Y, F) be an IVFS mapping between X and X, and
let { fiA}i∈J ⊂ IVFS(X, E) and {giB}i∈J ⊂ IVFS(Y, F) be two families of IVFS sets over X and Y,
respectively, where A ⊆ E and B ⊆ F, then the following properties hold.

1. [Φ( f jA)]
c≤̃Φ( f jA)

c for each j ∈ J.
2. [Φ−1(gjB)]

c = Φ−1(gjB)
c for each j ∈ J.

3. If giB≤̃gjB, then Φ−1(giB)≤̃Φ−1(gjB) for each i, j ∈ J.
4. If fiA≤̃ f jA, then Φ( fiA)≤̃Φ( f jA) for each i, j ∈ J.
5. Φ[∨̃j∈J f jA] = ∨̃j∈JΦ( f jA) and Φ−1[∨̃j∈J gjB] = ∨̃j∈JΦ−1(gjB).
6. Φ[∧̃j∈J f jA] = ∧̃j∈JΦ( f jA) and Φ−1[∧̃j∈J gjB] = ∧̃j∈JΦ−1(gjB).
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Proof. We only prove Part (5). The other parts follow a similar technique. For any k ∈ F, y ∈ Y, and
a ∈ A, then:

Φ[∨̃j∈J f jA](k)(y) = sup
x∈Φ−

u (y)
( sup

z∈Φ−1
p (k)

(∨̃j∈J) f jA)(z)(x)

= sup
x∈Φ−1

u (y)
( sup

z∈Φ−1
p (k)

(max
j∈J

([ f−ja , f+ja ])))(k)(y)

= sup
x∈Φ−1

u (y)
(max

j∈J
( sup

z∈Φ−1
p (k)

[ f−ja (k), f+ja (k)]))(y)

= max
j∈J

( sup
x∈Φ−1

u (y)
( sup

z∈Φ−1
p (k)

[ f−ja (k))(y), f+ja (k)]))(y)]

= max
j∈J

( sup
x∈Φ−

u (y)
( sup

z∈Φ−1
p (k)

f jA(k)(y)))

= max
j∈J

Φ( f jA)(k)(y)

= ∨̃j∈JΦ( f jA)(k)(y).

Now, we prove that Φ−1[∨̃j∈J gjB] = ∨̃j∈JΦ−1(gjB). For any e ∈ E, x ∈ X and b ∈ B:

Φ−1[∨̃j∈J gjB](e)(x) = (∨̃j∈J)gjB(Φp(e))(Φu(x))

= [max
j∈J

g−jb , max
j∈J

g+jb ](Φp(e))(Φu(x))

= [[max
j∈J

g−jb(Φp(e))(Φu(x)), max
j∈J

g+jb(Φp(e))(Φu(x))]

= [max
j∈J

Φ−1
u (g−jb)(e)(x), max

j∈J
Φ−1

u (g+jb)(e)(x)]

= max
j∈J

[Φ−1
u (g−jb)(e)(x), Φ−1

u (g+jb)(e)(x)]

= max
j∈J

Φ−1
u (gjB)(e)(x)

= ∨̃j∈JΦ−1
u (gjB)(e)(x).

3. Interval-Valued Fuzzy Soft Topological Spaces

The interval-valued fuzzy topology IVFT was discussed by Mondal and Samanta [30]. In this
section, we recall their definition and then present different neighborhood structures in the
interval-valued fuzzy soft topology (IVFST).

Definition 7. Let X be a non-empty set, and let τ be a collection of interval valued fuzzy soft sets over X with
the following properties:

(i) ∅E, XE belong to τ,
(ii) If f1E, f2E are IVFS sets belong to τ, then f1E∧̃ f2E belong to τ,

(iii) If the collection of IVFS sets { f jE|j ∈ J} where J is an index set, belonging to τ, then ∨̃j∈J f jE belong to τ.

Then, τ is called the interval-valued fuzzy soft topology over X, and the triplet (X, E, τ) is called the
interval-valued fuzzy soft topological space (IVFST).

As the ordinary topologies, the indiscrete IVFST over X contains only ∅E and XE, while the discrete
IVFST over X contains all IVFS sets. Every member of τ is called an interval-valued fuzzy soft open set
(IVFS-open) in X. The complement of an IVFS-open set is called an IVFS-closed set.

Remark 1. If f−e (x) = f+e (x) = a ∈ [0, 1], then we put [ f−e (x), f+e (x)] = [a, a] = a.
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Example 1. Let X = [0, 1] and E be any subset of X. Consider the IVFS set fE over X by the mapping:

f : E → IVF ([0, 1])

such that for any e ∈ E, x ∈ X:

f̃e(x) =

{
1 0 ≤ x ≤ e
0 e < x ≤ 1.

Then, the collection τ = {ΦE, XE, fE} is an IVFST over X.

1. Clearly XE, ∅E ∈ τ.
2. Let { f jE}j∈J be a sub-family of τ where for any j ∈ J if x ∈ X such that for all e ∈ E:

fje(x) =

{
1 0 ≤ x ≤ e
0 e < x ≤ 1.

Since:

∨j f je(x) =

{
1 0 ≤ x ≤ e
0 e < x ≤ 1,

then ∨̃j f jE ∈ τ.
3. Let fE, gE ∈ τ, where:

fe(x) =

{
1 0 ≤ x ≤ e
0 e < x ≤ 1,

and:

ge(x) =

{
1 0 ≤ x ≤ e
0 e < x ≤ 1.

Since:

fe(x)∧ge(x) =

{
1 0 ≤ x ≤ e
0 e < x ≤ 1.

Thus, fE ∧ gE ∈ τ.

Example 2 ([23]). Let R be the set of all real numbers with the usual topology τu where τu = 〈{(a, b), a, b ∈
R}〉 and E is a parameter set. Let U = (a, b) ⊂ R be an open interval in R; we define IVFS ŨE over R by
the mapping:

Ũ : E → (Int[0, 1])R

such that for all x ∈ R:

Ũe(x) =

{
1 x ∈ (a, b)
0 x /∈ (a, b).

Then, the family {ŨE : (a, b) ⊂ R, ∀a, b ∈ R} generates an IVFS over R, and we denote it by τ
(IVFS)
u :

1. Clearly, RE, ∅E ∈ τ
(IVFS)
u where for all e ∈ E, k ∈ R,RE(e)(k) = [1, 1], and ∅e(k) = 0

2. Let {ŨjE}j∈J be a sub-family of τ
(IVFS)
u where for any j ∈ J if x ∈ (aj, bj) and interval (aj, bj) in R such

that for all e ∈ E:

Ũje(x) =

{
1 x ∈ (aj, bj)

0 x /∈ (aj, bj).

Since ∨̃jŨjE = (∪̃jUj, E) where ∪jUjE ∈ τu, then ∨̃jŨjE ∈ τ
(IVFS)
u

3. Let ŨE, ṼE ∈ τ
(IVFS)
u , then ŨE∧̃ṼE ∈ τ

(IVFS)
u since ŨE∧̃ṼE = (Ũ ∩V, E) where U ∩V ∈ τu.
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Definition 8. Let interval [λ−e , λ+
e ] ⊆ [0, 1] for all e ∈ E. Then, x̃E is called an interval-valued fuzzy soft

point (IVFS point) with support x ∈ X and e lower value λ−e and e upper value λ+
e , if for each y ∈ X:

x̃(e)(y) =

{
[λ−e , λ+

e ] y = x
0 otherwise.

Example 3. Let X = [0, 1] and E be any subset of X. Consider IVFS point x̃E with support x, lower value
zero, and upper value 0.3, we define IVFS point x̃E by:

x̃(e)(c) =

{
[0, 0.3] c = x

0 otherwise,

for any e ∈ E and c ∈ X.

Definition 9. The IVFS point x̃E belongs to IVFS set fE, denoted by x̃E∈̃ fE, whenever for all e ∈ E, we have
λ−e ≤ f−e (x) and λ+

e ≤ f+e (x).

Theorem 1. Let fE be an IVFS set, then fE is the union of all its IVFS points,
i.e., fE = ∨̃x̃E∈̃ fE x̃E.

Proof. Let x ∈ X be a fixed point, y ∈ X and e ∈ E. Take all x̃E∈̃ fE with different e lower and e upper
values λ−je , λ+

je where j ∈ J. Then, there exists λ−je = f−e , λ+
je = f+e where:

∨̃x̃E∈ fE x̃e(y) = [sup x̃−e (y), sup x̃+e (y)]

= [ sup
λ−je ≤̃ f−(x)

λ−je , sup
λ+

je ≤̃ f+(x)
λ+

je ]

= [ f−e (x), f+e (x)].

Proposition 2. Let { f jE}j∈J be a family of IVFS sets over X, where J is an index set and x̃E is an IVFS point
with support x, e lower value λ−e , and e upper value λ+

e . If x̃∈̃∧̃j∈J{ f jE}, then x̃E∈̃{ f jE} for each j ∈ J.

Proof. Let x̃E be an IVFS point with support x, e lower value λ−e , and e upper value
λ+

e , and let x̃∈̃∧̃j∈J{ f jE}. Then, λ−e ≤∧j∈J{ f−je }(x)≤{ f−je }(x) for each e ∈ E, x ∈ X and

λ+
e ≤∧j∈J{ f+je }(x)≤{ f+je }(x) for each e ∈ E, x ∈ X. Thus, [λ−e , λ+

e ]≤[{ f−je }(x), { f+je }(x)], for each
e ∈ E, x ∈ X. Hence, x̃E∈̃{ f jE}j∈J .

Remark 2. If x̃E∈̃ fE∨̃gE does not imply x̃E∈̃ fE or x̃E∈̃gE.

This is shown in the following example.

Example 4. Let τ be an IVFST over X, where τ = {∅E, XE, fE, gE, fE∧̃gE}, and x̃E be the absolute IVFS
point with support x, e lower value λ−e , and e upper value λ+

e . If fEand gE are two IVFS sets in X defined
as below:

f : E → IVF ([0, 1])

and:
g : E → IVF ([0, 1])
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such that for any e ∈ E, x ∈ X:

fe(x) =

{
[1, 0.5] 0 ≤ x ≤ e

0 e < x ≤ 1

and:

ge(x) =

{
[0.2, 1] 0 ≤ x ≤ e

0 e < x ≤ 1.

Since:

fe(x)∨ge(x) =

{
1 if 0 ≤ x ≤ e
0 if e < x ≤ 1,

then x̃E∈̃ fE∨̃gE, but x̃E /̃∈ fE and x̃E /̃∈gE.

Theorem 2. Let x̃E be an IVFS point with support x, e lower value λ−e , and e upper value λ+
e and fE and

gE be IVFS sets. If x̃E∈̃ fE∨̃gE, then there exists IVFS point x̃1E∈̃ fE and IVFS point x̃2E∈̃gE such that
x̃E = x̃1E∨̃x̃2E.

Proof. Let x̃E∈̃ fE∨̃gE. Then, λ−e ≤ f−e (x)∨g−e (x) and λ+
e ≤ f+e (x)∨g+e (x), for each e ∈ E, x ∈ X. Let

us choose
E1 = {e ∈ E|λ−e ≤ f−e (x), λ+

e ≤ f+e (x) : x ∈ X},
E2 = {e ∈ E|λ−e ≤g−E (x), λ+

e ≤g+E (x) : x ∈ X}
and:

x̃1(e)(y) =

{
[λ−e , λ+

e ] if y = x1, e ∈ E1

0, otherwise,

x̃2(e)(y) =

{
[λ−e , λ+

e ], if y = x2, e ∈ E2

0, otherwise.

Since x−1e ≤ f−1e (x) and x+1e ≤ f+1e (x) for each e ∈ E1, x ∈ X, that implies x̃1E∈̃ f1E and also
x−2e ≤ f−2e (x), and x+2e ≤ f+2e (x) for each e ∈ E2, x ∈ X, that implies x̃2E∈̃ f2E. Consequently, E1∨̃E2 = E
and x̃E = x̃1E∨̃x̃2E.

Definition 10. Let (X, E, τ) be an IVFST space and x̃E be an IVFS point with support x, e lower value λ−e ,
and e upper value λ+

e . The IVFS set gE is called the interval-valued fuzzy soft neighborhood (IVFSN) of IVFS
point x̃E, if there exists the IVFS-open set fE in X such that x̃E∈̃ fE<̃gE. Therefore, the IVFS-open set fE is an
IVFSN of the IVFS point x̃E if ∀e ∈ E, x ∈ X such that λ−e < f−e (x) and λ+

e < f+e (x).

Definition 11. Let (X, E, τ) be an IVFST space and x̃E be an IVFS point with support x, e lower value λ−e ,
and e upper value λ+

e and x̃�E be an IVFS point with support x�, e lower value ε−e , and e upper value ε+e . x̃�E is
said to be compatible with λ−e , λ+

e , if x̃�E provides that 0 ≤ ε−e ≤ λ−e and 0 ≤ ε+e ≤ λ+
e for each e ∈ E.

Proposition 3.

1. If fE is an IVFSN of the IVFS point x̃E and fE≤̃hE, then hE is also an IVFSN of x̃E.
2. If fE and gE are two IVFSN of the IVFS point x̃E, then fE∧̃gE is also the IVFSN of x̃E.
3. If fE is an IVFSN of the IVFS point x̃�E with support x�, e lower value λ−e − ε−e , and e upper value

λ+
e − ε+e , for all ε−e compatible with λ−e and ε+e compatible with λ+

e , then fE is an IVFSN of the IVFS
point x̃E.

4. If fE is an IVFSN of the IVFS point x̃1E and gE is an IVFSN of the IVFS point x̃2E, then fE∨̃gE is also
an IVFSN of x̃1E and x̃2E.

5. If fE is an IVFSN of the IVFS point x̃E, then there exists IVFSN gE of x̃E such that gE≤̃ fE and gE is
IVFSN of IVFS point ỹ with support y, e lower value γ−e , and e upper value γ+

e , for all ỹE∈̃gE.
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Proof.

1. Let fE be an IVFSN of the IVFS point x̃. Then, there exists the IVFS-open set gE in X such that
x̃E∈̃gE≤̃ fE. Since fE≤̃hE, x̃E∈̃gE≤̃ fE≤̃hE. Thus, hE is an IVFSN of x̃E.

2. Let fE and gE be two IVFSN of the IVFS point x̃E. Then, there exists two IVFS-open sets hE, kE in
X such that x̃E∈̃hE≤̃ fE and x̃E∈̃kE≤̃gE. Thus, x̃E∈̃hE∧̃kE≤̃ fE∧̃gE. Since hE∧̃kE is an IVFS-open
set, gE∧̃ fE is an IVFSN of x̃E.

3. Let fE be an IVFSN of the IVFS point x̃�E with support x�, e lower value λ−e − ε−e , and e upper
value λ+

e − ε+e , for all ε−e compatible with λ−e and ε+e compatible with λ+
e . Then, there exists

IVFS-open set gx�
E such that x̃�E∈̃gx�

E ≤̃ fE. Let gE = ∨̃x� gx�
E , then gE is IVFS-open in X and gE≤̃ fE.

By Theorem 1 and since for all e ∈ E, ∨̃x̃�E = x̃E≤̃∨̃x� gx�
E = gE≤̃ fE. Hence, x̃E∈̃gE≤̃ fE, i.e., fE is

an IVFSN of x̃E.
4. Let fE be an IVFSN of the IVFS point x̃1E with support x1, e lower value λ−1e, and e upper value

λ+
1e and gE be an IVFSN of the IVFS point x̃2E with support x2, e lower value λ−2e, and e upper

value λ+
2e. Then, there exists IVFS-open sets h1E, h2E such that x̃1E∈̃h1E≤̃ fE and x̃2E∈̃h2E≤̃ fE,

respectively. Since x̃1E∈̃h1E, λ−1e ≤ h−1e(x), λ+
1e ≤ h+1e(x) for each e ∈ E and x ∈ X. Since x̃2E∈̃h2E,

λ−2e ≤ h−2e(x), λ+
2e ≤ h+2e(x) for each e ∈ E and x ∈ X. Thus, we have:

max{[λ−1e, λ+
1e], [λ

−
2e, λ+

2e]} ≤ max{[h−1e(x), h+1e(x)], [h−2e(x), h+2e(x)]}

for each e ∈ E, x ∈ X. Therefore, x̃1E∨̃x̃2E∈̃h1E∨̃h2E, h1E∨̃h2E ∈ τ, and h1E∨̃h2E≤̃ fE∨̃gE.
Consequently, fE∨̃gE is an IVFSN of x1E∨̃x2E.

5. Let fE be an IVFSN of the IVFS point x̃E, with support x, e lower value λ−e , and e upper value
λ+

e . Then, there exists IVFS-open set gE such that x̃E∈̃gE≤̃ fE. Since gE is an IVFS-open set, gE is
a neighborhood of its points, i.e., gE is an IVFSN of IVFS point ỹE with support y, e lower value
γ−e , and e upper value γ+

e , for all e ∈ E. Furthermore, gE is an IVFSN of IVFS point x̃E since
x̃E∈̃gE. Therefore, there exists gE that is an IVFSN of x̃E such that gE≤̃ fE and gE is an IVFSN of
ỹE; since fE is an IVFSN of x̃E.

Definition 12. Let (X, E, τ) be an IVFST space and fE be an IVFS set. The IVFS-closure of fE denoted by
Cl fE is the intersection of all IVFS-closed super sets of fE. Clearly, Cl fE is the smallest IVFS-closed set over
X that contains fE.

Example 5 ([23]). Consider IVFST τ IVFS
u over R as introduced in Example 2, and if H̃E is an IVFS over R

related of the open interval H = (a, b) ⊂ R by mapping:

H̃ : E → (Int[0, 1])R

H̃e(x) =

{
1 x ∈ (a, b)
0 x /∈ (a, b),

where e ∈ E and x ∈ R, then the closure of H̃E is defined as:

ClH̃ : E → (Int[0, 1])R

H̃e(x) =

{
1 x ∈ [a, b]
0 x /∈ [a, b].

Remark 3. By replacing x̃E for fE, the IVFS-closure of x̃E denoted by Clx̃E is the intersection of all IVFS-closed
super sets of x̃E.
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Proposition 4. Let (X, E, τ) be an IVFST space and fE and gE be two IVFSS over X. Then:

1. Cl∅E = ∅E and ClX̃E = X̃E,
2. fE≤̃Cl fE, and Cl fE is the smallest IVFS-closed set containing IVFS fE,
3. Cl(Cl fE) = Cl fE,
4. if fE≤̃gE, then (Cl fE)≤̃ClgE.
5. fE is an IVFS-closed set if and only if fE = Cl fE,
6. Cl( fE∨̃gE) = Cl fE∨̃ClgE,
7. Cl( fE∧̃gE)≤̃Cl fE∧̃ClgE.

Proof. We only prove Part (6). A similar technique is used to show the other parts.
Since fE≤̃ fE∨̃gE and gE≤̃ fE∨̃gE, by Part (4), we have Cl fE≤̃Cl( fE∨̃gE) and Clg≤̃Cl( fE∨̃gE).

Then, Cl fE∨̃ClgE≤̃Cl( fE∨̃gE).
Conversely, we have fE≤̃Cl fE and gE≤̃ClgE, by Part (2). Then, fE∨̃gE≤̃Cl fE∨̃ClgE where

Cl fE∨̃ClgE is an IVFS-closed set. Thus, Cl( fE∨̃gE)≤̃Cl fE∨̃ClgE.
Therefore, Cl( fE∨̃gE) = Cl fE∨̃ClgE.

Definition 13. Let (X1, E1, τ1) and (X2, E2, τ2) be two IVFSTS and:

Φ : (X1, E1, τ1)→ (X2, E2, τ2)

be an IVFS map. Then, Φ is called an:

1. interval-valued fuzzy soft continuous (IVFSC) map if and only if for each gE2 ∈ τ2, we have Φ−1(gE2) ∈ τ1,
2. interval-valued fuzzy soft open (IVFSO) map if and only if for each fE ∈ τ1, we have Φ( fE1) ∈ τ2.

Theorem 3. Let (X1, E1, τ1) and (X2, E2, τ2) be two IVFST and Φ be an IVFS mapping from X1 to X2, then
the following statements are equivalent:

1. Φ is IVFC,
2. For each IVFS point x̃E on X1, the inverse of every neighborhood of Φ(x̃E) under Φ is a neighborhood

of x̃E,
3. For each IVFS point x̃E on X1 and each neighborhood gE of Φ(x̃E), there exists a neighborhood fE of x̃E

such that Φ( fE)≤̃gE.

Proof.

(1) ⇒ (2) Let gE be an IVFSN of Φ(x̃E) in τ2. Then, there exists an IVFS-open set fE
in τ2 such that Φ(x̃E)∈̃ fE≤̃gE. Since Φ is IVFSC, Φ−1( fE) is an IVFS-open in τ1, and we have
x̃E∈̃Φ−1( fE)≤̃Φ−1(gE).

(2)⇒ (3) Let gE be an IVFSN of Φ(x̃E). By the hypothesis, Φ−1(gE) is an IVFSN of x̃E. Consider
fE = Φ−1(gE) to be an IVFSN of x̃E. Then, we have Φ( fE) = Φ(Φ−1(gE))≤̃gE.

(3)⇒ (1) Let gE be an IVFS-open set in τ2. We must show that Φ−1(gE) is an IVFS-open set in
τ1. Now, let x̃E∈̃Φ−1(gE). Then, Φ(x̃E)∈̃gE. Since gE is an IVFS-open set in τ2, we get that gE is an
IVFSN Φ(x̃E) in τ2. By the hypothesis, there exists IVFS-open set fE that is an IVFSN of x̃E such that
Φ( fE)≤̃gE. Thus, fE≤̃Φ−1[Φ( fE)]≤̃Φ−1(gE) for fE is an IVFSN of x̃E. From here, fE≤̃Φ−1(gE), as fE
is an IVFSN of x̃E. Hence, Φ−1(gE)∈̃τ1.

4. Quasi-Coincident Neighborhood Structure of Interval-Valued Fuzzy Soft Topological Spaces

In this section, we present the quasi-coincident neighborhood structure in the interval-valued
fuzzy soft topology (IVFST) and its properties.
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Definition 14. The IVFS point x̃E is called soft quasi-coincident with IVFS fE, denoted by x̃Eq̃ fE, if there
exists e ∈ E such that λ−e + f−e (x) > 1 and λ+

e + f+e (x) > 1. If fE is not soft quasi-coincident with fE, we
write fE¬q̃gE.

Definition 15. The IVFS set fE is called soft quasi-coincident with IVFS gE, denoted by fEq̃gE, if there exists
e ∈ E such that f−e (x) + g−e (x) > 1 and f+e (x) + g+e (x) > 1.

Proposition 5. Let x̃E be an IVFS point with support x, e lower value λ−e , and e upper value λ+
e and fE, gE

two IVFS sets. Then:

(i) fE≤̃gE ⇔ fE¬q̃gc
E,

(ii) x̃E∈̃ fE ⇔ x̃E¬q̃ f c
E.

Proof. We just prove Part (i). A similar technique is used to show Part (ii). For two IVFS sets fE, gE,
we have:

fE≤̃gE ⇔ ∀e ∈ E : [ f−e (x), f+e (x)] ≤ [g−e (x), g+e (x)], ∀x ∈ X

⇔ ∀e ∈ E : f−e (x) ≤ g−e (x) and f+e (x) ≤ g+e (x), ∀x ∈ X

⇔ ∀e ∈ E : f−e (x) + 1− g−e (x) ≤ 1 and f+e (x) + 1− g+e (x) ≤ 1, ∀x ∈ X

⇔ ∀e ∈ E : f−e (x) + g−c
e(x) ≤ 1 and f+e (x) + g+c

e(x) ≤ 1, ∀x ∈ X

⇔ fE¬q̃gc
E.

Proposition 6. Let { f jE : j ∈ J} be a family of IVFS sets over X and x̃E be an IVFS point with support x, e
lower value λ−e , and e upper value λ+

e . If x̃Eq̃(∧̃ f jE), then x̃Eq̃ fjE for each j ∈ J.

Proof. Let x̃Eq̃(∧̃ f jE). Then, λ−e q̃(∧̃j f−je )(x), λ+
e q̃(∧̃j f+je )(x) for e ∈ E, and x ∈ X. This implies that

λ−e > 1−∧j( f−je )(x) and λ+
e > 1−∧j( f+je )(x), x ∈ X. Since ∧j f−je (x) ≤ f−je (x) and ∧j f+je (x) ≤ f+je (x),

then λ−e > 1− ∧j( f−je )(x) > 1− f−je (x) for each e ∈ E, x ∈ X and λ+
e > 1− ∧j( f+je )(x) > 1− f+je (x)

for each e ∈ E, x ∈ X. Hence, λ−e > 1 − f−je (x) and λ+
e > 1 − f+je (x). Therefore, [λ−e , λ+

e ] >

[1, 1]− [ f−je (x), f+je (x)] implies that x̃E > 1− f−jE and x̃Eq̃ fjE for each j ∈ J.

Remark 4. x̃Eq̃( fE ∨ gE) does not imply x̃Eq̃ fE or x̃Eq̃gE. This is shown in the following example.

Example 6. Let us consider Example 4 where x̃Eq̃( fE∨̃gE), but x̃E¬q̃ fE and x̃E¬q̃gE.

Theorem 4. Let x̃E be an IVFS point x̃E with support x, e lower value λ−e , and e upper value λ+
e and fE, gE

be IVFS sets over X. If x̃Eq̃( fE ∨ gE), then there exists x̃1Eq̃ fE and x̃2Eq̃gE such that x̃E = x̃1E∨̃x̃2E.

The proof is very similar to the proof of Theorem 2.

Definition 16. Let (X, E, τ) be an IVFSTS and x̃E be an IVFS point with support x, e lower values λ−e , and
e upper values λ+

e . The IVFS set gE is called a quasi-soft neighborhood (QIVFSN) of IVFS point x̃E if there
exists the IVFS-open set fE in X such that x̃Eq̃ fE≤̃gE. Thus, the IVFS-open set fE is a QIVFSN of the IVFS
point x̃E if and only if ∃e ∈ E, x ∈ X such that λ−e + f−e (x) > 1 and λ+

e + f+e (x) > 1.

Remark 5. A quasi-coincident soft neighborhood of an IVFS point generally does not contain the point itself.
This is shown by the following:
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Example 7. Let X = [0, 1] and E be any subset of X. Consider two IVFS sets fE, gE over X by the mapping
f : E → IVF ([0, 1]) and f : E → IVF ([0, 1]) such that for any e ∈ E, x ∈ X:

f̃e(x) =

{
[0.4, 0.5] 0 ≤ x ≤ e

0 e < x ≤ 1,

and:

g̃e(x) =

{
[0.6, 0.7] 0 ≤ x ≤ e

0 e < x ≤ 1,

and x̃E be any IVFS point defined by:

x̃e(c) =

{
[0.4, 0.5] c = x

0 c 
= x.

Let τ = {∅E, XE, fE, gE}. Then clearly, τ is an IVFST over X. Since fE≤̃gE and x̃q̃ fE, thus gE is a QIVFSN
of x̃E. However, x̃E /∈ gE.

Proposition 7.

(1) If fE≤̃gE and fE is a QINVSN of x̃E, then gE is also a QINVSN of x̃E,
(2) If fE, gE are QINVSN of x̃E, then fE∧̃gE is also a QINVSN of x̃E.
(3) If fE is a QINVSN of x̃1E and gE is a QINVSN of x̃2E, then fE∨̃gE is also a QINVSN of x̃1E∨̃x̃2E.
(4) If fE is a QINVSN of x̃E, then there exists gE that is a QINVSN of x̃E, such that gE≤̃ fE, and gE is a

QINVSN of yE, ∀yEq̃gE.

Proof. (1) and (2) are straightforward.

(3) Let fE be a QINVSN of x̃1E and gE be a QINVSN of x̃2E. Then, there exists an IVFS-open set h1E
in X such that x̃1Eq̃h1E≤̃ fE and gE is a QINVSN of x̃2E. Thus, there exists an IVFS-open set h2E
in X such that x̃2Eq̃h2E≤̃gE. Since x̃1Eq̃h1E for each e ∈ E, x ∈ X, λ−1e + h−1e > 1, λ+

1e + h+1e > 1, this
implies that λ−1e > 1− h−1e, λ+

1e > 1− h+1e for each e ∈ E. Since x̃2Eq̃h2E, for each e ∈ E, λ−2e + h−2e > 1,
λ+

2e + h+2e > 1, this implies that λ−2e > 1− h−2e, λ+
2e > 1− h+2e for each e ∈ E, x ∈ X. From here,

max (λ−1e, λ−2e) > max (1− h−1e(x)), (1− h−2e(x)), max (λ+
1e, λ+

2e) > max (1− h+1e(x)), (1− h+2e(x)).

Therefore, x̃1E∨̃x̃2Eq̃(h1E∨̃h2E)≤̃ fE∨̃gE. Consequently, fE∨̃gE is a QINVSN of x̃1E∨̃x̃2E.
(4) Let fE be a QINVSN of x̃E. Then, there exists gE that is a QINVSN of x̃E such that x̃Eq̃gE≤̃ fE.

Consider the gE = hE. Indeed, since x̃Eq̃hE and hE is an IVFS-open set, hE is a QINVSN of x̃E.
Thus, we obtain hE that is a QINVSN of ỹE.

Theorem 5. In IVFST(X, E, τ), the IVFS point x̃E belongs to Cl fE if and only if each QIVFS of x̃E is soft
quasi-coincident with fE.

Proof. Let IVFS point x̃E with support x, e lower value λ−e , and e upper value λ+
e belong to

Cl fE, i.e, x̃E∈̃Cl fE. For any IVFS-closed gE containing fE, x̃E∈̃gE, which implies that λ−e ≤ g−e (x) and
λ+

e ≤ g+e (x), for all x ∈ X, e ∈ E. Consider hE to be an QIVFN of the IVFS point x̃E and hE¬q̃ fE.
Then, for any e ∈ E and x ∈ X, h−e (x) + f−e (x) ≤ 1, h+e (x) + f+e (x) ≤ 1, and so, fE≤̃hc

E. Since hE is a
QIVFSN of the IVFS point x̃E, by x̃E, it does not belong to hc

E. Therefore, we have that x̃E does not
belong to Cl fE. This is a contradiction.
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Conversely, let any QIVFSN of the IVFS point x̃E be soft quasi-coincident with fE. Consider that
x̃E doe not belong to Cl fE, i.e, x̃E /∈ Cl fE. Then, there exists an IVFS-closed set gE, which contains fE
such that x̃E does not belong to gE. We have x̃Eq̃gc

E. Then, gc
E is an QIVFSN of the IVFS point x̃E and

fE¬q̃gc
E. This is a contradiction with the hypothesis.

5. IVFS Quasi-Separation Axioms

In this section, we develop the separation axioms to IVFST, so-called IVFSQ separation axioms
(IVFSq-Ti axioms) for i = 0, 1, 2, 3, 4, and consider some of their properties.

Definition 17. Let (X, E, τ) be an IVFST space. Let x̃E and ỹE be IVFS points over X, where:

x̃(e)(z) =

{
[λ−e , λ+

e ] z = x
0 otherwise

and:

ỹ(e)(z) =

{
[γ−e , γ+

e ] z = y
0 otherwise,

then x̃E and ỹE are said to be distinct if and only if x̃E∧̃ỹE = ∅E, which means x 
= y.

Definition 18. Let (X, E, τ) be an IVFST space. The IVFS point x̃E is called a crisp IVFS point x[1,1]
E , if

λ−e = λ+
e = 1 for all e ∈ E.

Definition 19. Let (X, E, τ) be an IVFST space and x̃E and ỹE be two IVFS points. If there exists IVFS
open sets fE and gE such that:

(a) when x̃E and ỹE are two distinct IVFS points with different supports x and y, e lower values, and e upper
values λ−e , λ+

e and γ−e , γ+
e , respectively, and fE is an IVFSN of the IVFS point x̃E and ỹE¬q̃ fE or gE is

an IVFSN of the IVFS point ỹE and x̃E¬q̃gE,
(b) when x̃E and ỹE are two IVFS points with the same supports x = y, e value λ−e < γ−e , and e value

λ+
e < γ+

e and fE is a QIVFSN of the IVFS point ỹE such that x̃E¬q̃ fE,

then (X, E, τ) is an interval-valued fuzzy soft quasi-T0 space (IVFSq-T0 space).

Example 8. Consider the IVFS set defined in Example 3.1 and x̃E, ỹE to be any two distinct IVFS points in X
defined by:

x̃(e)(z) =

{
1 z = x
0 z 
= x

and:

ỹ(e)(z) =

{
0 if z = y

1 if z 
= y.

Then, fE is an IVFSN of x̃E and ỹE¬q̃ fE. Thus, X is an IVFSq-T0 space.

Theorem 6. (X, E, τ) is an IVFSq-T0 space if and only if for every two IVFS points x̃E, ỹE and x̃E /∈ ClỹE
or ỹE /∈ Clx̃E.

Proof. Let (X, E, τ) be an IVFSq-T0 space and x̃E and ỹE be two IVFS points in X.
First consider that x̃E and ỹE are two distinct IVFS points with different supports x and y, e lower

values, and e upper values λ−e , γ−e and λ+
e , γ+

e , respectively. Then, a crisp IVFS point x̃[1,1]
E has an

IVFSN fE such that ỹE¬q̃ fE or a crisp IVFS point ỹ[1,1]
E has an IVFSN gE such that x̃E¬q̃ fE. Consider

that the crisp IVFS point x̃[1,1]
E has an IVFSN fE such that ỹE¬q̃ fE. Moreover, fE is an QINFSN of x̃E
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and ỹE¬q̃ fE. Hence, x̃E /∈ ClỹE. Next, we consider the case x̃E and ỹE to be two IVFS points with the
same supports x = y, e lower value λ−e < γ−e , and e upper value λ+

e < γ+
e . Then, ỹE has a QIVFSN

that is not quasi-coincident with x̃E, and so, by Theorem 5, x̃E /∈ ClỹE.
Conversely, let x̃E and ỹE be two IVFS points in X. Consider without loss of generality that

x̃E /∈ ClỹE. First, consider that x̃E and ỹE are two distinct IVFS points with different supports x and
y, e lower values, and e upper values λ−e , γ−e and λ+

e , γ−e , respectively, since x̃E /∈ ClỹE for any e ∈ E,
f−e (y) = f+e (y) = 0 and f−e (x) = f+e (x) = 1. Then, Cl(ỹE)

c is an IVFSN of x̃E such that Cl(ỹE)
c¬q̃ỹE.

Next, let x̃E and ỹE be two IVFS points with the same supports x = y, and we must have e lower value
λ−e > γ−e and e upper value λ+

e > γ+
e , then x̃E has a QIVFSN that is not quasi-coincident with ỹE.

Definition 20. Let (X, E, τ) be an IVFST and x̃E and ỹE be two IVFS points, if there exists IVFS open sets
fE and gE such that:

(a) when x̃E and ỹE are two distinct IVFS points with different supports x and y, e lower values, and e upper
values λ−e , γ−e and λ+

e , γ+
e , respectively, fE is an IVFSN of IVFS points x̃E and ỹE¬q̃ fE, and gE is an

IVFSN of IVFS points ỹE and x̃E¬q̃gE,
(b) when x̃E and ỹE are two IVFS points with the same supports x = y, e value λ−e < γ−e , and e value

λ+
e < γ+

e , fE is an QIVFSN of the IVFS point ỹE such that x̃E¬q̃ fE,

then (X, E, τ) is an interval-valued fuzzy soft quasi-T1 space (IVFSq-T1 space).

Theorem 7. (X, E, τ) is an IVFSq-T1 space if and only if any IVFS point x̃E in X is an IVFS-closed set.

Proof. Suppose that each IVFS point x̃E in X is an IVFS-closed set, i.e., gE = x̃c
E. Then, gE is an

IVFS-open set. Let xE and yE be two IVFS points as follows: First, consider that x̃E and ỹE are two
distinct IVFS points with different supports x and y, e lower values, and e upper values λ−e , γ−e and
λ+

e , γ+
e , respectively. Then, gE is an IVFS-open set such that gE is an IVFSN of IVFS point ỹE and

x̃E¬q̃gE. Similarly, fE = ỹc
E is an IVFS-open set and fE is an IVFSN of the IVFS points x̃E and ỹE¬q̃ fE.

Next, we consider the case x̃E and ỹE to be two IVFS points with the same supports x = y, e value
λ−e < γ−e , and e value λ+

e < γ+
e . Then, ỹE has a QIVFSN gE, which is not quasi-coincident with x̃E.

Thus, X is an IVFSq-T1 space.
Conversely, Let (X, E, τ) be an IVFSq-T1 space. Suppose that any IVFS point x̃E is not an

IVFS-closet set in X, i.e., fE
.
= x̃c

E. Then, f̃E 
= Cl f̃E, and there exists ỹE∈̃Cl f̃E such that x̃E 
= ỹE.
First, consider that x̃E and ỹE are two distinct IVFS points with different supports x and y, e lower

values, and e upper values λ−e , γ−e and λ+
e , γ+

e , respectively. Suppose that e lower value λ−e ≤ 0.5 and
e upper value λ+

e ≤ 0.5. Since ỹE∈̃Cl fE, by Theorem 4.1, any fE is a QIVFSN of ỹE and x̃Eq̃ fE. Then,
there exists IVFS-open set hE such that ỹq̃hE≤̃ fE. Hence, h−e (y) + γ−e > 1. Next, let x̃E and ỹE be two
IVFS points with the same supports x = y, e value λ−e < γ−e , and e value λ+

e < γ+
e . Since yE∈̃ClxE,

by Theorem 5, each fE is a QIVFSN of IVFS points ỹE, x̃Eq̃ fE. This is a contradiction.

Definition 21. Let (X, E, τ) be an IVFST and x̃E and ỹE be two IVFS points, if there exists IVFS open sets
fE and gE such that:

(a) when x̃E and ỹE are two distinct IVFS points with different supports x and y, e lower values, and e upper
values λ−e , γ−e and λ+

e , γ+
e , respectively, fE is an IVFSN of the IVFS point x̃E and gE is an IVFSN of

the IVFS point ỹE, such that fE¬q̃gE,
(b) when x̃E and ỹE are two IVFS points with the same supports x = y, e value λ−e < γ−e , and e value

λ+
e < γ+

e , fE is an IVFSN of IVFS point x̃E and gE is a QIVFSN of IVFS point ỹE,

then (X, E, τ) is an interval-valued fuzzy soft quasi-T2 space (IVFS q-T2 space).
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Example 9. Suppose that X = [0, 1] and E are any proper (E ⊂ X). Consider IVFS sets fE and gE over X
defined as below: f : E → IVF ([0, 1]) and g : E → IVF ([0, 1]), such that for any e ∈ E, x ∈ X:

f (e)(x) =

{
1 0 ≤ x ≤ e
0 e < x ≤ 1

and:

g(e)(x) =

{
0 0 ≤ x ≤ e

1 e ≤ x ≤ 1.

Let τ = {∅E, XE, fE, gE}. Then clearly, τ is an IVFST over X. Therefore, for any two absolute distinct
IVFS points x̃E, ỹE in X defined by:

x̃(e)(z) =

{
1 z = x
0 z 
= x

and:

ỹ(e)(z) =

{
0 if z = y

1 if z 
= y.

Then, fE is an IVFSN of x̃E, and gE is an IVFSN of ỹE, such that fE¬q̃gE. Then, X is an IVFS q-T2 space.

Theorem 8. IVFST(X, E, τ) is an IVFSq-T2 space if and only if for any x ∈ X, we have x̃E =
∧̃{Cl fE :

fE ∈ IVFSN of x̃E}.

Proof. Let (X, E, τ) be a crisp IVFSq-T2 space and x̃E be an IVFS point with support x, e lower value
λ−e , and e upper value γ+

e . Let yE be a crisp IVFS point with support y, e lower value γ−e , and e
upper value λ+

e . If x̃E and ỹE are two IVFS points with different supports x and y, e lower values,
and e upper values λ−e , γ−e and λ+

e , γ+
e , respectively, then there exist two IVFS-open sets fE and gE

containing IVFS points ỹE and x̃E, respectively, such that fE¬q̃gE. Then, gE is an IVFSN of IVFS
point x̃E and fE is a QIVFSN of ỹE such that fE¬q̃gE. Hence, ỹE /∈ ClgE. If x̃E and ỹE are two IVFS
points with the same supports x = y, then γ−e > λ−e and γ−e > λ+

e . Thus, there are QIVFSN fE of
IVFS points ỹE and IVFSN gE such that fE¬q̃gE. Hence, ỹE /∈ ClgE.

Conversely, let x̃E and ỹE be two distinct IVFS points with different supports x and y, e lower
values, and e upper values λ−e , λ+

e and γ−e , γ+
e , respectively. Since:

x̃E =
∧̃
{Cl fE : fE ∈ IVFSN of x̃E}, and

∧̃
{Cl([ f−e , f+e ])(y) : fE ∈ IVFSN of x̃E} = 0.

Thus, ỹE¬q̃
∧̃{Cl fE : fE ∈ IVFSN of x̃E}. Therefore, there exists fE that is an IVFSN of x̃ and

ỹE¬q̃Cl fE. Take two τ-IVFS-open sets fE and (Cl fE)
c. Therefore, fE is an IVFSN of IVFS point x̃E,

(Cl fE)
c an IVFSN of IVFS point ỹE, and fE¬q̃(Cl fE)

c.

Definition 22. Let (X, E, τ) be an IVFST. If for any IVFS point x̃E with support x, e lower values λ−e , and e
upper values λ+

e and any IVFS-closed set fE in X such that x̃E¬q̃ fE, there exists two IVFS-open sets hE and
kE such that x̃E∈̃hE and fE≤̃kE, hE¬q̃kE, then (X, E, τ) is called an interval-valued fuzzy soft quasi regular
space (IVFS q-regular space).

(X, E, τ) is called an interval-valued fuzzy soft quasi-T3 space, if it is an IVFS q-regular space
and an IVFS q-T1 space.

Theorem 9. IVFST(X, E, τ) is an IVFS q-T3 space if and only if for any IVFSN gE of IVFS point x̃E there
exists an IVFS-open set fE in X such that x̃E∈̃ fE≤̃cl fE≤̃gE.
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Proof. Let gE be an IVFS set in X and x̃E be an IVFS point with support x, e lower value λ−e , and
e upper value λ+

e such that x̃E∈̃gE. Then, clearly, gc
E is an IVFS-closed set. Since X is an IVFS q-T3

space, there exist two IVFS-open sets fE, hE such that x̃E∈̃ fE, gc
E≤̃hE, hE and fE¬q̃hE. Thus, f c

E≤̃hc
E.

Therefore, Cl fE≤̃hc
E implies Cl fE≤̃gE. Hence, x̃E∈̃ fE≤̃Cl fE≤̃gE.

Conversely, let x̃E be an IVFS point with different support x, e lower value λ−e , and e upper
value λ+

e , and let gE be an IVFS-closed set such that x̃E¬q̃gE. Then, gc
E is an IVFS-open set containing

the IVFS point x̃E, i.e., x̃E∈̃gc
E. Thus, there exists an IVFS-open set fE containing x̃E such that

x̃E∈̃ fE≤̃Cl fE≤̃gE gE≤̃(Cl fE)
c. Therefore, clearly, (Cl fE)

c is an IVFS-open set containing gE and
fE¬q̃(Cl fE)

c. Hence, X is an IVFS q-T3 space.

Definition 23. Let (X, E, τ) be an IVFST. If for any two IVFS-closed sets fE and gE such that fE¬q̃gE, there
exists two IVFS-open sets hE and kE such that fE≤̃hE and gE≤̃kE, then (X, E, τ) is called an interval-valued
fuzzy soft quasi-normal space (IVFS q-normal space).

(X, E, τ) is called an interval-valued fuzzy soft quasi T4 space if it is an IVFS q-normal space and
an IVFSq-T1 space.

Theorem 10. IVFST(X, E, τ) is an IVFS q-T4 space if and only if for any IVFS-closed set fE and IVFS-open
set containing fE, there exists an IVFS-open set hE in X such that fE≤̃hE≤̃clhE≤̃gE.

Proof. Let fE be an IVFS-closed set in X and gE be an IVFS-open set in X containing fE, i.e., fE≤̃gE.
Then, gc

E is an IVFS-closed set such that fE¬q̃gc
E.

Since X is an IVFS q-T4 space, there exist two IVFS-open sets hE, kE such that fE≤̃hE, gc
E≤̃kE,

and hE¬q̃kE. Thus, hE≤̃kc
E, but ClhE≤̃Clkc

E = kE. Furthermore, gc
E≤̃kE implies kc≤̃gE. That is an

IVFS-closed set over X. Therefore, ClhE≤̃kc
E. Hence, we have fE≤̃hE≤̃ClhE≤̃gE.

Conversely, let f̃E and gE be any IVFS-closed sets such that fE¬q̃gE. Then, fE≤̃gc
E. Thus, there

exists an IVFS-open set hE such that fE≤̃hE≤̃ClhE≤̃gE. Therefore, there are two IVFS-open sets hE
and (ClhE)

c such that fE≤̃hE, gE≤̃(ClhE)
c. This shows that X is an IVFS q-T4 space.

Theorem 11. If Φ : (X1, E1, τ1) → (X2, E2, τ2) is an IVFSC and IVFSO map where ΦuX1 → X2 and
ΦpE1 → E2 are two ordinary bijections, then X1 is an IVFSq-Ti space if and only if X2 is an IVFSq-Ti space
for i = 0, 1, 2, 3, 4.

Proof. We just prove when i = 2. The other parts are similar.
Suppose that we have two IVFS points k̃E2 and s̃E2 with different supports k and s, e lowers

value, and e upper values λ−e , λ+
e and γ−e , γ+

e , respectively, for any e ∈ E2. Then, the inverse lower and
upper image of IVFS point k̃E2 under the IVFSO map Φ is an IVFS point in X1 with different support
Φ−1(k) as below:

Φ−1(k̃−)(e)(x) = k̃−(Φp(e))(Φu(x)) and Φ−1(k̃+)(e)(x) = k̃+(Φp(e))(Φu(x)).

Furthermore, the inverse lower and upper image of IVFS point s̃E2 under the IVFSO map Φ is an
IVFS point in X1 with different support Φ−1(s) as below:

Φ−1(s̃−)(e)(x) = s̃−(Φp(e))(Φu(x)) and Φ−1(s̃+)(e)(x) = s̃+(Φp(e))(Φu(x)).

Since (X1, E1, τ1) is an IVFSq-T2 space, there exist two IVFS-open sets fE and gE in X1 such that
Φ−1(k̃E2)∈̃ fE, Φ−1(s̃E2)∈̃gE, and fE¬q̃gE. Thus, k̃E2 ∈̃ fE and s̃E2 ∈̃gE, while Φ( fE)¬q̃Φ(gE). Therefore,
(X2, E2, τ2) is an IVFSq-T2 space.

Conversely, suppose that we have two IVFS points x̃E and ỹE with different supports x, y ∈ X1, e
lower value, and e upper value λ−e , λ+

e and γ−e , γ+
e , respectively. Then, the lower and upper image
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of an IVFS point x̃E under the IVFSC map Φ is an IVFS point in X2 with different support Φu(x) as
below:

Φ(x̃−)(ε)(k) = sup
z∈Φ−1(k)

[ sup
e∈Φ−1

p (ε)

(x̃−)(e)](z)

=

{
λ−e if k = Φu(x)
0 otherwise,

and:

Φ(x̃+)(ε)(k) = sup
z∈Φ−1(k)

[ sup
e∈Φ−1

p (ε)

(x̃+)(e)](z)

=

{
λ+

e if k = Φu(x)
0 otherwise

and the lower and upper image of an IVFS point ỹE under the IVFSC map Φ is an IVFS point in X2

with different support Φu(y) as below:

Φ(ỹ−)(ε)(k) = sup
z∈Φ−1(k)

[ sup
e∈Φ−1

p (ε)

(ỹ−)(e)](z)

=

{
γ−e if k = Φu(y)
0 otherwise

and:

Φ(ỹ+)(ε)(k) = sup
z∈Φ−1(k)

[ sup
e∈Φ−1

p (ε)

(ỹ+)(e)](z)

=

{
γ+

e if k = Φu(y)
0 otherwise.

Since (X2, E2, τ2) is an IVFSq-T2 space, there exist two IVFS-open sets fE2 and gE2 in X2 such that
Φ(x̃)∈̃ fE2 , Φ(ỹ)∈̃gE2 , and fE2¬q̃gE2 . Clearly, x̃E∈̃Φ−1( fE2), ỹE∈̃Φ−1(gE2) and Φ−1( fE2)¬q̃Φ−1(gE2).
Then, (X1, E1, τ1) is an IVFSq-T2 space.

6. Conclusions

The aim of this study was to develop the interval-valued fuzzy soft separation axioms in order to
build a framework that will provide a method for object ranking. Thus, in this paper, we introduced
a new definition of the interval-valued fuzzy soft point and then considered some of its properties,
and different types of neighborhoods of the IVFS point were studied in interval-valued fuzzy soft
topological spaces. The separation axioms of interval-valued fuzzy soft topological spaces were
presented, and furthermore, the basic properties were also studied.
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21. Varol, B.P.; Aygünoğlu, A.; Aygün, H. Neighborhood structures of fuzzy soft topological spaces. J. Intell.

Fuzzy Syst. 2014, 27, 2127–2135. [CrossRef]
22. Ghanim, M.H.; Kerre, E.E.; Mashhour, A.S. Separation axioms, subspaces and sums in fuzzy topology.

J. Math. Anal. Appl. 1984, 102, 189–202. [CrossRef]
23. Zahedi Khameneh, A. Bitopological Spaces Associated with fuzzy Soft Topology and Their Applications in

Multi-Attribute Group Decision-Making Problems. Doctoral Thesis. Universiti Putra Malaysia, Seri Kembangan,
Malaysia, 2017. Available online: http://ethesis.upm.edu.my (accessed on 23 December 2019).

24. El-Latif, A.M.A. Characterizations of fuzzy soft pre separation axioms. J. New Theory 2015, 7, 47–63.
25. Majumdar, P.; Samanta, S.K. On soft mappings. Comput. Math. Appl. 2010, 60, 2666–2672. [CrossRef]
26. Onasanya, B.; Hoskova-Mayerova, S. Some Topological and Algebraic Properties of alphalevel Subsets

Topology of a Fuzzy Subset. Analele Stiintifice ale Universitatii Ovidius Constanta 2018, 26, 213–227. [CrossRef]
27. Hoskova-Mayerova, S. An Overview of Topological and Fuzzy Topological Hypergroupoids. Ratio Math.

2017, 33, 21–38. [CrossRef]
28. Gorzałczany, M.B. A method of inference in approximate reasoning based on interval-valued fuzzy sets.

Fuzzy Sets Syst. 1987, 21, 1–17. [CrossRef]
29. Bonanzinga, M.; Cammaroto, F.; Pansera, B.A. Monotone weakly Lindelofness. Cent. Eur. J. Math. 2011, 9,

583–592. [CrossRef]
30. Mondal, T.K.; Samanta, S.K. Topology of interval-valued fuzzy sets. Indian J. Pure Appl. Math. 1999, 30,

23–29.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

353





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03928-521-1 


	Blank Page



