13 research outputs found

    Local Adaptive Receptive Field Self-Organizing Map for Image Segmentation

    Get PDF
    A new self-organizing map with variable topology is introduced for image segmentation. The proposed network, called Local Adaptive Receptive Field Self-Organizing Map (LARFSOM-RBF), is a two-stage network capable of both color and border segment images. The color segmentation stage is responsibility of LARFSOM which is characterized by adaptive number of nodes, fast convergence and variable topology. For border segmentation RBF nodes are included to determine the border pixels using previously learned information of LARFSOM. LARFSOM-RBF was tested to segment images with different degrees of complexity showing promising results

    Local Adaptive Receptive Field Self-Organizing Map for Image Segmentation

    Get PDF
    A new self-organizing map with variable topology is introduced for image segmentation. The proposed network, called Local Adaptive Receptive Field Self-Organizing Map (LARFSOM-RBF), is a two-stage network capable of both color and border segment images. The color segmentation stage is responsibility of LARFSOM which is characterized by adaptive number of nodes, fast convergence and variable topology. For border segmentation RBF nodes are included to determine the border pixels using previously learned information of LARFSOM. LARFSOM-RBF was tested to segment images with different degrees of complexity showing promising results

    Color Reduction in Hand-drawn Persian Carpet Cartoons before Discretization using image segmentation and finding edgy regions

    Get PDF
    In this paper, we present a method for color reduction of Persian carpet cartoons that increases both speed and accuracy of editing. Carpet cartoons are in two categories: machine-printed and hand-drawn. Hand-drawn cartoons are divided into two groups: before and after discretization. The purpose of this study is color reduction of hand-drawn cartoons before discretization. The proposed algorithm consists of the following steps: image segmentation, finding the color of each region, color reduction around the edges and final color reduction with C-means. The proposed method requires knowing the desired number of colors in any cartoon. In this method, the number of colors is not reduced to more than about 1.3 times of the desired number. Automatic color reduction is done in such a way that final manual editing to reach the desired colors is very easy

    Improving the Performance of K-Means for Color Quantization

    Full text link
    Color quantization is an important operation with many applications in graphics and image processing. Most quantization methods are essentially based on data clustering algorithms. However, despite its popularity as a general purpose clustering algorithm, k-means has not received much respect in the color quantization literature because of its high computational requirements and sensitivity to initialization. In this paper, we investigate the performance of k-means as a color quantizer. We implement fast and exact variants of k-means with several initialization schemes and then compare the resulting quantizers to some of the most popular quantizers in the literature. Experiments on a diverse set of images demonstrate that an efficient implementation of k-means with an appropriate initialization strategy can in fact serve as a very effective color quantizer.Comment: 26 pages, 4 figures, 13 table

    A Clustering Method for Data in Cylindrical Coordinates

    Get PDF
    We propose a new clustering method for data in cylindrical coordinates based on the k-means. The goal of the k-means family is to maximize an optimization function, which requires a similarity. Thus, we need a new similarity to obtain the new clustering method for data in cylindrical coordinates. In this study, we first derive a new similarity for the new clustering method by assuming a particular probabilistic model. A data point in cylindrical coordinates has radius, azimuth, and height. We assume that the azimuth is sampled from a von Mises distribution and the radius and the height are independently generated from isotropic Gaussian distributions. We derive the new similarity from the log likelihood of the assumed probability distribution. Our experiments demonstrate that the proposed method using the new similarity can appropriately partition synthetic data defined in cylindrical coordinates. Furthermore, we apply the proposed method to color image quantization and show that the methods successfully quantize a color image with respect to the hue element

    SOM based Face Recognition using Steganography and DWT Compression Techniques

    Get PDF
    Biometrics is used in day to day life of human beings to access mobile phones, computers, vehicles etc. In this paper, we propose SOM based Face Recognition using Steganography and DWT Compression Techniques. The various available standard face databases such as ORL, JAFFE, NRI, YALE, Indian male and Indian female are used to test the performance of the algorithm. The number of face images per person is reduced using stenography compression technique. The preprocessing techniques such as resize and Gaussian filter are applied on reduced number of face images for uniform size and good quality of images. The initial features are extracted using Discrete Wavelet Transform (DWT) and Local Binary Pattern (LBP). The DWT and LBP features are fused using arithmetic additions and connected to input of Self Organizing Map (SOM). The final features are extracted from SOM. The test image features are compared with face database images using Euclidian Distance (ED) to compute performance parameters. It is observed that the performance of the proposed method is better than the existing methods

    New adaptive color quantization method based on self-organizing maps

    No full text
    Color quantization (CQ) is an image processing task popularly used to convert true color images to palletized images for limited color display devices. To minimize the contouring artifacts introduced by the reduction of colors, a new competitive learning (CL) based scheme called the frequency sensitive self-organizing maps (FS-SOMs) is proposed to optimize the color palette design for CQ. FS-SOM harmonically blends the neighborhood adaptation of the well-known self-organizing maps (SOMs) with the neuron dependent frequency sensitive learning model, the global butterfly permutation sequence for input randomization, and the reinitialization of dead neurons to harness effective utilization of neurons. The net effect is an improvement in adaptation, a well-ordered color palette, and the alleviation of underutilization problem, which is the main cause of visually perceivable artifacts of CQ. Extensive simulations have been performed to analyze and compare the learning behavior and performance of FS-SOM against other vector quantization (VQ) algorithms. The results show that the proposed FS-SOM outperforms classical CL, Linde, Buzo, and Gray (LBG), and SOM algorithms. More importantly, FS-SOM achieves its superiority in reconstruction quality and topological ordering with a much greater robustness against variations in network parameters than the current art SOM algorithm for CQ. A most significant bit (MSB) biased encoding scheme is also introduced to reduce the number of parallel processing units. By mapping the pixel values as sign-magnitude numbers and biasing the magnitudes according to their sign bits, eight lattice points in the color space are condensed into one common point density function. Consequently, the same processing element can be used to map several color clusters and the entire FS-SOM network can be substantially scaled down without severely scarifying the quality of the displayed image. The drawback of this encoding scheme is the additional storage overhead, which can be cut down by leveraging on existing encoder in an overall lossy compression scheme.Published versio

    Magnitude Sensitive Competitive Neural Networks

    Get PDF
    En esta Tesis se presentan un conjunto de redes neuronales llamadas Magnitude Sensitive Competitive Neural Networks (MSCNNs). Se trata de un conjunto de algoritmos de Competitive Learning que incluyen un término de magnitud como un factor de modulación de la distancia usada en la competición. Al igual que otros métodos competitivos, MSCNNs realizan la cuantización vectorial de los datos, pero el término de magnitud guía el entrenamiento de los centroides de modo que se representan con alto detalle las zonas deseadas, definidas por la magnitud. Estas redes se han comparado con otros algoritmos de cuantización vectorial en diversos ejemplos de interpolación, reducción de color, modelado de superficies, clasificación, y varios ejemplos sencillos de demostración. Además se introduce un nuevo algoritmo de compresión de imágenes, MSIC (Magnitude Sensitive Image Compression), que hace uso de los algoritmos mencionados previamente, y que consigue una compresión de la imagen variable según una magnitud definida por el usuario. Los resultados muestran que las nuevas redes neuronales MSCNNs son más versátiles que otros algoritmos de aprendizaje competitivo, y presentan una clara mejora en cuantización vectorial sobre ellos cuando el dato está sopesado por una magnitud que indica el ¿interés¿ de cada muestra
    corecore