
2014 25

Enrique Pelayo Campillos

Magnitude Sensitive
Competitive Neural

Networks

Departamento

Director/es

Ingeniería Electrónica y Comunicaciones

Buldain Pérez, Julio David
Orrite Uruñuela, Carlos

Director/es

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Departamento

Director/es

Enrique Pelayo Campillos

MAGNITUDE SENSITIVE
COMPETITIVE NEURAL NETWORKS

Director/es

Ingeniería Electrónica y Comunicaciones

Buldain Pérez, Julio David
Orrite Uruñuela, Carlos

Tesis Doctoral

Autor

2014

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Departamento

Director/es

Director/es

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Magnitude Sensitive Competitive

Neural Networks

By

Enrique Pelayo Campillos

Dissertation presented to the Department of Departamento de Ingenieŕıa Electrónica y

Comunicacionesin partial fulfillment of the requirements for the degree of

Doctor of Philosophiae

PhD Advisors:

David Buldain Pérez

Carlos Orrite Uruñuela (Co-director)

At

Escuela de Ingenieŕıa y Arquitectura

Universidad de Zaragoza, 2014

Abstract

Competitive Learning is a kind of unsupervised learning commonly used to find a solu-

tion to the approach of Vector Quantization (VQ) task. VQ tries to generate a reduced

representation of the vector-data distribution used in its training process.

There are many Competitive Learning algorithms, but most of them share the property

of distributing their centroids over the data with a density proportional to the probabil-

ity density function of the data. That results in modeling representations that tend to

concentrate centroids in the densest areas of the data distribution.

However, some quantization applications may require an inverse relation between the

codewords density and the data density, as in many biological systems. It is not just that,

sometimes it is required a codeword distribution independent of data density.

In this Thesis it is presented a set of Neural Networks called Magnitude Sensitive

Competitive Neural Networks (MSCNNs). They are a set of neural competitive learning

algorithms, that include a magnitude term as a modulation factor of the distance used for

the unit competition. As other competitive methods, MSCNNs perform a vector quanti-

zation of the data, however the magnitude factor leads centroids to represent with higher

detail any desired zones, defined by this factor. This distribution is improved with the use

of independent learning factor for each unit, calculated form the magnitude, as it will be

explained in the description of the algorithms.

Two MSCNNs neural networks are developed: MSCL (Magnitude Sensitive Compet-

itive Learning) a hard competitive algorithm, and MS-SOM (Magnitude Sensitive Self

Organizing Maps) a soft competitive algorithm, that shares with MSCL its capability of

allocating centroids in data-distribution zones according to an arbitrary magnitude, but

additionally preserves topological information of the data. Both algorithms are analysed,

as well as their ’masked’ versions (implementation that may be trained with data samples

2

3

containing invalid components).

MS-INITis a new codebook initialization algorithm, developed as a generalization of

the known KKZ and K-Means++, but taking into account the magnitude.

MSCL, MS-SOM and MS-INIT(in their different implementations) were compared with

other vector quantization approaches in several examples of interpolation, image color

quantization, surface modelling, classification, and some simple artificial examples. Addi-

tionally it is presented a new image compression algorithm, MSIC (Magnitude Sensitive

Image Compression) that make use of these new algorithms, and achieves a level of com-

pression different along the image according to the user defined magnitude.

Results show that the new MSCNNs are more versatile than other competitive learning

algorithms in certain tasks, and present a clear improvement in vector quantization over

them when data is weighted by a magnitude that marks the ’interest’ of each sample.

Resumen

El aprendizaje competitivo (Competitive Learning, CL) es un tipo de aprendizaje no super-

visado que se usa habitualmente para encontrar una solución al problema de cuantificación

vectorial (Vector Quantization, VQ). En este tipo de tareas el problema consiste en con-

seguir una representación reducida de la distribución de datos de entrada usada en el

proceso de entrenamiento.

Hay muchos tipos de algoritmos de competitivo, pero la mayoŕıa de ellos comparten

la propiedad de distribuir sus centroides sobre los datos con una densidad proporcional

a la función de densidad de probabilidad de los datos. Como resultado, los centroides se

concentran en las zonas más densas de la distribución de datos.

Sin embargo, algunas aplicaciones de cuantización de datos requieren una relación in-

versa entre la densidad de los datos y de los centroides, como sucede en muchos sistemas

biológicos. Y no solo eso, algunas veces se requiere una distribución que sea totalmente

independiente de los datos.

En esta Tesis se presentan un conjunto de redes neuronales llamadas: Magnitude Sen-

sitive Competitive Neural Networks (MSCNNs). Se trata de un conjunto de algoritmos de

Competitive Learning que incluyen un término de magnitud como un factor de modu-

lación de la distancia usada en la competición. Al igual que otros métodos competitivos,

MSCNNs realizan la cuantización vectorial de los datos, pero el término de magnitud gúıa

el entrenamiento de los centroides de modo que se representan con alto detalle las zonas

deseadas, definidas por la magnitud. Esta distribución de las unidades se mejora con el uso

de un coeficiente de aprendizaje independiente para cada unidad, calculado a partir de la

magnitud, tal y como se explicará a lo largo de la descripción de los algoritmos.

Se han desarrollado dos redes neuronales de tipo MSCNN: MSCL (Magnitude Sensitive

Competitive Learning), algoritmo de tipo ’hard competitive’ y MS-SOM (Magnitude Sensi-

4

5

tive Self Organizing Maps), un algoritmo donde la competición es de tipo ’soft competitive’,

que comparte con MSCL su capacidad de ubicar centroides en determinadas zonas de la

distribución de datos de acuerdo a una magnitud arbitraria, pero adicionalmente, consigue

mantener mantener en el mapa de la red neuronal las propiedades topológicas de los datos.

En la Tesis he desarrollado y estudiado en profundidad ambos algoritmos, y sus versiones

’enmascaradas’ (Estas versiones permiten que el entrenamiento se realice con muestras que

incluyen alguna componente inválida).

También se muestra un nuevo algoritmo de inicialización del codebook, MS-INIT, que

es una generalización de los conocidos KKZ and K-Means++, pero teniendo en cuenta la

magnitud.

MSCL, MS-SOM y MS-INIT(en sus distintas implementaciones) se comparan con otros

algoritmos de cuantización vectorial en diversos ejemplos de interpolación, reducción de

color, modelado de superficies, clasificación, y varios ejemplos sencillos de demostración.

Además se introduce un nuevo algoritmo de compresión de imágenes, MSIC (Magnitude

Sensitive Image Compression), que hace uso de los algoritmos mencionados previamente,

y que consigue una compresión de la imagen variable según una magnitud definida por el

usuario.

Los resultados muestran que las nuevas redes neuronales MSCNNs son más versátiles

que otros algoritmos de aprendizaje competitivo, y presentan una clara mejora en cuanti-

zación vectorial sobre ellos cuando el dato está sopesado por una magnitud que indica el

’interés’ de cada muestra.

Dedicatoria

Por tu bondad y sacrificio me inspiraste a ser mejor y ahora puedo decir que esta tesis

lleva mucho de t́ı, gracias por estar siempre a mi lado, Gloria.

6

Agradecimientos

Es dif́ıcil entender la importancia de los agradecimientos de una tesis doctoral hasta que

no se ha terminado. En ese momento te das cuenta de cuánto tienes que agradecer a tanta

gente. Intentaré resumir en unas ĺıneas la gratitud que siento a todas las personas que han

estado presentes durante esa etapa, haciendo posible que hoy deje de ser un sueño para

pasar a ser una realidad.

En primer lugar agradezco al Dr. David Buldain, director de esta tesis y amigo mio tras

tanto tiempo trabajando juntos, por su orientación y apoyo durante toda la investigación.

Sus ideas me han estimulado, y ha sabido centrarme hasta conseguir que de ideas haya

llegado a trabajos cient́ıficos con el suficiente rigor académico.

Agradezco también al Dr. Carlos Orrite, codirector de la tesis, por su disponibilidad y

colaboración en este trabajo. El me abrió puertas del grupo de investigación del CV-lab,

como participante del proyecto SOCIAL-BEHAVE, dándome la oportunidad de tener una

visión más amplia del mundo de la investigación y descubrir cuánto me motiva. Además

tuvo un seguimiento muy cercano a mi labor de investigación especialmente en mis primeras

etapas de la tesis.

También deseo agradecer el apoyo moral recibido por mis amigos de Ingenieŕıa, Daniel,

Jesús y Jose Antonio. Aunque se dedican a otras áreas de conocimiento alejadas de la

presente tesis, comprenden su dificultad y desde el principio me han apoyado para seguir

adelante con la misma. Por su puesto no me olvido de Jose Maŕıa, Carlos y otros com-

pañeros compañeros de trabajo, como Antonio y Carlos, mis jefes, que me han apoyado

en mi formación. Aunque normalmente ellos vean la I+D ”desde la barrera”, saben lo

complejo que es investigar, especialmente si se hace en ratos libres como yo.

Por último, pero no menos importante, deseo agradecer a mi familia su apoyo. Primero

a mis padres Enrique y Angelines, por infundirme el esṕıritu cient́ıfico que está detrás de

7

8

todos mis estudios. A mis hijas Carmen y Maŕıa por haberme perdonado el que les haya

robado tantas horas de juegos juntos. Y finalmente a Gloria, la persona que más me ha

ayudado a sacar adelante la tesis. Sin su sacrificio y su apoyo emocional durante todo éste

tiempo hubiese sido totalmente imposible.

Muchas gracias a todos.

El autor también desea agradecer al I3A, al Departamento de Ingenieŕıa Electrónica

y Comunicaciones de la Escuela de Ingenieŕıa y Arquitectura de la Univ. de Zaragoza y

al CDTI por su confianza. Este trabajo ha sido parcialmente financiado con la subvención

concedida por el Ministerio de Ciencia e Innovación y el fondo Social Europeo (TIN2010-

20177).

Contents

List of Figures 14

List of Tables 21

I INTRODUCTION 23

1 Introduction 24

1.1 Introduction and motivation . 24

1.2 Thesis organization . 26

1.3 Notational conventions . 26

2 Competitive Learning Neural Networks 29

2.1 Introduction . 29

2.2 Basic Competitive Learning Algorithm . 32

2.3 Usual Competitive Learning Algorithms . 33

2.3.1 K-Means . 33

2.3.2 Neural Gas . 34

2.3.3 Self-Organizing Feature Map . 34

2.4 Most related methods . 36

2.4.1 Frequency Sensitive Competitive Learning 36

2.4.2 Energy Based Competitive Learning 37

2.4.3 K-Harmonic Means and Weighted K-means 37

2.4.4 Magnification control . 37

9

Contents 10

II ALGORITHMS 39

3 MSCL algorithm 40

3.1 Introduction . 40

3.1.1 Proposed approach . 40

3.1.2 Magnitude . 40

3.1.3 Chapter description . 43

3.2 The MSCL algorithm . 43

3.2.1 Online implementation of the MSCL algorithm 43

3.2.2 Batch implementation of the MSCL algorithm 46

3.3 Algorithm analysis . 48

3.3.1 Resulting Voronoi regions . 48

3.3.2 Connections . 49

3.3.3 Modified quality measures . 51

3.3.4 Effect of alpha . 53

3.3.5 Effect of beta . 54

3.3.6 Effect of gamma . 55

3.3.7 Effect of the number of winners . 57

3.4 Application examples . 57

3.4.1 Modelling Gaussian distributions . 57

3.4.2 Interpolation application . 67

4 MS-SOM algorithm 69

4.1 Introduction . 69

4.2 Magnitude Sensitive Self Organizing Maps 70

4.2.1 The algorithm . 70

4.2.2 Analysing of the algorithm . 72

4.3 Application examples . 73

4.3.1 Modelling Gaussian distributions . 73

4.3.2 Classification . 76

5 Masked MSCL algorithm 80

5.1 Introduction . 80

5.2 The masked MSCL algorithm . 81

5.2.1 Initialization . 81

5.2.2 Random selection of data samples 81

Contents 11

5.2.3 Global unit competition . 82

5.2.4 Local unit competition . 82

5.2.5 Winner update . 82

5.2.6 Magnitude update . 83

5.2.7 Stopping condition . 83

5.3 The masked MS-SOM algorithm . 83

5.4 Experimental results . 84

6 Magnitude Sensitive Initialization 89

6.1 Introduction . 89

6.2 Related algorithms: K-means++ and KKZ 90

6.2.1 KKZ . 90

6.2.2 K-means++ . 91

6.3 MS-Init . 91

6.4 Experiments . 92

6.4.1 Initialization example . 93

6.4.2 Training example . 96

III APPLICATIONS 99

7 Color Quantization with MSCL 100

7.1 Introduction . 100

7.1.1 Problem formulation . 101

7.1.2 Proposed approach . 102

7.1.3 Chapter description . 102

7.2 Applications . 103

7.2.1 Homogeneous color quantization . 104

7.2.2 CQ Focused on the image center . 105

7.2.3 CQ Avoiding dominant colors . 105

7.2.4 CQ Focused in salient colors . 111

7.2.5 Image binarization . 112

8 MSIC: Magnitude Sensitive Image Compression 117

8.1 Introduction . 117

8.2 Magnitude Sensitive Image Compression . 121

8.2.1 Pictorical library generation . 122

Contents 12

8.2.2 Saliency map quantization . 122

8.2.3 Map restoration at transmitter . 124

8.2.4 Image quantization . 125

8.2.5 Map restoration at receiver . 127

8.2.6 Image restoration . 127

8.3 Extension to color images . 127

8.4 Experimental results . 129

8.4.1 Grayscale images . 129

8.4.2 Color images . 132

9 Surface modelling 135

9.1 Introduction . 135

9.2 Point clouds example . 136

9.2.1 Curvature codebook and curvature map 136

9.2.2 MSCL focused in curvature . 138

9.2.3 Results . 139

9.3 3D Depth images example . 141

IV CONCLUSIONS 144

10 Conclusions and future work 145

10.1 Contributions . 145

10.2 List of publications . 148

10.3 Future work . 149

V APPENDICES 156

Appendix A Abbreviations 157

Appendix B MS Toolbox 158

B.1 Introduction . 158

B.2 MS Toolbox . 159

B.2.1 Structures . 159

B.2.2 Initialization and training functions 161

B.2.3 Visualization functions . 162

B.2.4 Auxiliary functions . 162

Contents 13

B.3 The magnitude function . 163

B.3.1 Use of the magnitude function . 163

B.3.2 List of magnitude function examples 166

B.4 Demos . 166

Bibliography 167

List of Figures

2.1 Competitive neural network architecture 33

3.1 Architecture of the MSCL neural network using two alternative definitions

of the magnitude function: a) as a magnitude map evaluated into units, or

b) as an external magnitude vector associated to data patterns. 42

3.2 MSCL flowchart . 44

3.3 Example of Voronoi regions corresponding to 30 units. (a) Centroids and

magnitude, abs(x2). It can be appreciated how the density of centroids

increases as x2 becomes higher, as higher magnitude zones attract more

units to be represented. (b) Voronoi sets of each unit: Samples assigned to

centroids using distance weighted by magnitude defined in a, (c) Voronoi

regions for Euclidean distance, (d) Voronoi regions for distance weighted by

magnitude defined in a. 50

3.4 Example of representation of a trained MSCL with connections obtained

after training. 51

3.5 Evolution of WMSE (black) and normalized Weighted Entropy (red) during

training of a MSCL with 50 units along 5 cycles of 10 epochs each. As

expected, WMSE decreases during training, while the normalized Weighted

Entropy tends to a constant value of 1. 53

3.6 Effect of the value of γ during training a MSCL. Higher values enhance the

importance of the magnitude during competition. In the figure we repre-

sented the following values for it: (a) γ = 0, (b) γ = 0.2, (c) γ = 1 (normal

situation) and (d) γ = 5. Units are colored according the value of mum(t)γ

(black means near zero values, and red the highest one). 56

14

List of Figures 15

3.7 Analysis of the MSCL behavior for different K values in networks with 50

units. Three magnitude functions were explored: first row of graphs shows

results for MSCL with magnitude in equation 3.26 (absolute value of x2),

second row of graphs show MSCL emulating FSCL, and the third row shows

results for MSCL with Q-error. Graphs show the averaged final values (wide

blue line) of the quality measures (WMSE, Entropy and DB-index) and the

standard deviation values (narrow blue lines). The networks were simulated

10 times for averaging and were trained along 10 cycles with the synthetic-

Gaussian problem. Horizontal coordinate is the value of K used in each

experiment. It is clear that K=2 shows the most reasonable behaviour, and

if K is too high (K=50), the behavior becomes unstable. 58

3.8 Example of representation with 80 units (trained with MSCL for mean Q-

error as magnitude function) used to estimate the data density. The centred

black points indicate the units corresponding to the dense-zone codewords

(ωdense), while the rest unit prototypes are assigned to the sparse-zone code-

words (ωsparse). The color bar represents the normalized-density (magni-

tude) values. 60

3.9 Gaussian example. Resulting representations of MSCL for contraction mag-

nitude functions are shown in figures a and b, MSCL with expansion magni-

tude functions in c and d MSCL with Q-err in f and FSCL in figure e. The

color bar represents the magnitude values assigned to the units. Black points

represent the initial codebook for density estimation of the data, separated

by Otsu method into dense (shown in figures b and c) and sparse (shown

in figures a and d) sub-representations. Contract1 and Expansion1 (a and

c) present magnitude functions that force units to avoid the correspond-

ing black points. Contract2 and Expansion2 (b and d) present magnitude

functions that force units to approximate to the black points. 61

3.10 Evolution along training process during 50 cycles of the averages in 30 sim-

ulations of the DB-Index, Normalized Entropy and Weighted Mean Squared

Error. The left column shows the evolution for methods: MSCL with Q-

error, FSCL, FCM, NG, SOM and K-means. The right column shows also

MSCL with Q-error and K-means as comparison, with the results for the

different MSCL in contract-expansion examples. 64

List of Figures 16

3.11 Interpolation example showing the FSCL and MSCL representations of the

data series. The red line represents the magnitude value along the data

series. FSCL does not represent the data in the high frequency perturbation

as well as MSCL. 67

4.1 Gaussian example. (a) U-matrix and Magnitude map of MS-SOM using

MF4 as magnitude function. (b) Trained SOM. MS-SOM trained with MF1

(c), with MF2 (d), with MF3 (e) and trained with MF4 (d). 74

4.2 Classification results for MS-SOM. Iris example: (a)map with colours de-

pending on the classes for each unit (interpolating colours mean that a unit

has samples from different classes), (b) map with the final assigned class for

each unit, and (c) magnitude associated to each unit (clearer grey means

higher magnitude). In this representation, the map size (10x6 units) was

bigger than the one used in the comparative to highlight the value of the

magnitude in zones of high class confusion. Glass example: (d)Results of

training a (17x11) grid with SOM. (e) Corresponding results of MS-SOM. . 79

5.1 Dataset matrix (left) and corresponding mask(right). This dataset corre-

sponds to the three 3D Gaussian distributions. Mask matrix indicates valid

components of each sample (in white), or invalid (30% of components, in

black). 85

5.2 Final results of a trained MSCL with 10 units using two magnitude func-

tions. On top, row figures represent direct training without taking the mask

into consideration. Bottom shows masked version of MSCL (using mask

shown in figure 5.1). Left column uses constant magnitude function equal

to one. Right column uses as magnitude function the absolute value of first

component of each sample. 86

5.3 Final results of a trained MS-SOM with 10 units using two magnitude func-

tions. On top, row figures represent direct training without taking the mask

into consideration. Bottom shows masked version of MS-SOM (using mask

shown in figure 5.1). Left column uses constant magnitude function equal

to one. Right column uses as magnitude function the absolute value of first

component of each sample. 88

List of Figures 17

6.1 (a) Dataset used in the examples of this chapter (with color coding according

to the magnitude associated to each sample) and codebooks of 80 units

initialized with the different methods: (b) Random init, (c) KKZ algorithm,

(d) Kmeans++ algorithm, (e) MS-INITmax algorithm and (f) MS-INITprob

algorithm. 93

6.2 Final results after training with K-means a codebook with 80 units, using

different initialization methods: (a) KKZ algorithm, (b) Kmeans++ algo-

rithm, (c) MS-INITmax algorithm and (d) MS-INITprob algorithm. 96

6.3 Final results after training a MSCL with 80 units, using different initial-

ization methods: (a) KKZ algorithm, (b) Kmeans++ algorithm, (c) MS-

INITmax algorithm and (d) MS-INITprob algorithm. 98

7.1 Problem formulation of Color Quantization: pixels are considered 3-dimensional

vectors that are processed as inputs for a competitive neural network with

many units as colors in the palette. Magnitude value can be associated to

the pixel, as another input to the network, or be associated to the units, as

an internal parameter. 101

7.2 Original Tiger image (top-left) and its reconstruction using 8 colors applying:

ADU (top-right), Homogeneous MSCL (bottom-left) and Centered MSCL

(bottom-right). 103

7.3 Original images used in the example of MSCL avoiding dominant colors and

one example of the corresponding dominant color palettes (from 1 to 8 colors).106

7.4 Representation of a fraction of the pixels in the color distribution for the fish

image. The large red circles represent the regions close to the two dominant

colors of the image. The 8 blue circles represent the 8-color palette obtained

for MSCL avoiding those dominant colors. MSCL uses three palette-colors

for the orange colors of the fish, two colors for the white tones, and only

three colors dedicated to the background colors. 108

7.5 Results of color quantization for the fish example using an 8-color palette

with different methods: a) MSCL avoiding two dominant colors, b) NG, c)

FSCL, d) FCM, e) K-MEANS, f) SOM. The corresponding color palettes

are shown in the right of each image. As can be appreciated, MSCL gets a

more vivid palette for the fish and presents a lower number of colors in the

palette dedicated to the background with the anemone. 109

List of Figures 18

7.6 Saliency example. Top row, from left to right : Original image, saliency

map (clearer values for high saliency), the mask binary image used for MSE

measurement and (bottom row, from left to right) the reconstructed image

with an 8-colors palette from: SOM, FS-SOM and MSCL focused on the

saliency. 111

7.7 Binarization example: in top row (a) original image, (b) Otsu method, (c)

filtering with Laplacian operator, and (d) its binarization with Otsu; in bot-

tom row (e) SOM, (f) MSCL in homogeneous grey quantization, (g) MSCL

with two features, and (h) Otsu binarization of (g). 112

7.8 The top four graphs correspond to each example image, when dealing with

generation of 8-color palettes. The averaged Sum Square Error in the High

Magnitude Region (HMR), divided by the total SSE in the image (SSE-ratio)

is represented for the different algorithms (FSCL, FCM, NG, K-MEANS,

SOM and MSCL). The abscissas in the graphs show several numbers of

dominant colors, from 1 to 5. MSCL always presents a smaller SSE-ratio, for

all the images and different number of dominant colors. The bottom graph

represents the evolution of the averaged HMR-ratios (number of pixels in

HMR divided by total number of pixels) when using from 1 to 20 dominant

colors. 114

7.9 Results of CQ of the Fish example in a 8 color palette, avoiding different

number of dominant colors: (from top to bottom) with 1 to 8 dominant

colors. (In columns): magnitude map, pixels with magnitude value over

50% of the maximum (High Magnitude Region), and MSCL reconstruction

for the corresponding number of dominant colors. 115

7.10 High Magnitude Regions for different number of dominant colors. Images in

rows correspond, from top to bottom, with 1 to 8 dominant colors. Images

in the left column show the flower example, the column in the middle the

tower and the right column the goat image. 116

8.1 Basic idea of Competitive Learning algorithms in the task of image com-

pression for grayscale images. Top: Common CL algorithm. Bottom: MSIC

algorithm. Differences with other CL algortihms are the use of a MSCL to

get block centers (centers are trained weights of MSCL units), the use of

irregular blocks and the masked quantization/deprocessing. 118

List of Figures 19

8.2 Global algorithm for grayscale images. Marked with #n the corresponding

subsection with the detailed explanation and, also showing the order of

processing steps in the transmitter and receiver. 120

8.3 Neural networks used in the MSIC algorithm: Top: BMUMC and BMUIC .

It is important to mention that this last MSCL is used also in receiver

(BMUIC2). Bottom: Block extraction phase. Each block delivers the block

limits, the image and a binary mask. MSCLPICT (l) neural network, where

a input sample (vectorized block from the extraction phase) has several

masked components. 125

8.4 Examples of MSCLPICT codebooks. (a) Codebook size l = 4. (b) Code-

book size l = 10. These codebooks and others for different sizes are known,

in form of library, by the transmitter and the receiver. 126

8.5 Global algorithm for color images. Each color component is processed sep-

arately as in the grayscale method. However this process is exemplified in

the text with a different magnitude definition for the saliency map, oriented

to preserve the detail of the image for certain colors selected by the user. . 128

8.6 Top in columns: Original image, saliency map, MSIC, JPEG and SOM

compression for the test images. Bottom: Lena detail in the three methods.

It can be clearly seen that the Lena face, compressed with MSIC shows a

more natural view (altmost like painted with Pointillism technique) than

the other methods that have square block borders. 131

8.7 Original ’Street’ image and the compressed images using MSIC with four

different Magnitude Functions. 132

8.8 Top in columns: Original color image, saliency map generated for a one

or two-color selection (fish with orange and white; flower with dark and

clear pink; boat with brown; parachute with pink and black), MSIC and

JPEG compression for the test images. Bottom: Fish image detail in both

compression methods. 134

9.1 Definition of curvature. The cyan ellipsoid is the Voronoi region of unit

marked in red. In yellow they are shown the neighbouring units. Curvature

at one unit (ie. the red unit) is defined as the average of the projection

of each of the vectors between the neighbours and the unit, over the third

principal component calculated at the unit’s Voronoi region. Red arrow

represents this third principal component of the red unit. 137

List of Figures 20

9.2 In left image, the curvature map for Bunny example obtained with a cur-

vature codebook with 2010 units (after pruning 3 units). In right image,

Bunny model visualization from Stanford webpage [73]. It is clear that the

curvature map shows enough detail of the model. 138

9.3 Bunny modelling with 2013 units for MSCL with curvature, MSCL with Q-

error, FSCL and Neural Gas. Bar color represents curvature values assigned

to prototypes. MSCL with curvature concentrates prototypes in the curls

and folds of the skin, modelling with high detail the eyes, ears and the

joining zones of limbs and body. 139

9.4 Fandisk modelling with 2397 units for MSCL with curvature, MSCL with Q-

error, FSCL and Neural Gas. Bar color represents curvature values assigned

to prototypes. MSCL with curvature shows more detailed representation in

the vertexes and edges of the piece. 140

9.5 Histograms of the curvatures assigned to prototypes in several methods

(from left to right and top to bottom: MSCL curvature, MSCL Q-error,

FSCL, FCM, NG and SOM) for the Fandisk example. The red vertical line

indicates the mean value and the green lines represent the standard devia-

tion range. MSCL with curvature shows the larger number of units in high

curvature zones. 141

9.6 Surface modelling example.(a) Original image. (b) 3D depth image. (c) Cur-

vature map applying Canny. Zones with higher curvature are also brighter.

(d) Final surface models after training dataset with a SOM and (e) a MS-

SOM following curvature. 142

List of Tables

1.1 Summary of notational conventions. 27

3.1 Comparison of the final values of WMSE and normalized Weighted Entropy

in MSCL and a basic CL method, trained with the gaussian dataset and

magnitude function of eq. (3.26) for three codebook sizes (25,100 and 400

units). 52

3.2 Mean and standard deviation, for 30 tests, of final measures: DB-index, Nor-

malized entropy and WMSE, after training 40 units for the VQ task along

50 cycles. The codebook for the estimation of densities has 80 codewords

and is shown in figure 3.8. 65

3.3 Mean and standard deviation, for 30 tests, of final measures: DB-index, Nor-

malized entropy and WMSE, after training 80 units for the VQ task along

50 cycles. The codebook for the estimation of densities has 80 codewords

and is shown in figure 3.8. 66

3.4 Mean and standard deviation, for 30 tests, of final measures: DB-index, Nor-

malized entropy and WMSE, after training 160 units for the VQ task along

50 cycles. The codebook for the estimation of densities has 160 codewords

and is shown in figure 3.8. 66

4.1 Table shows the mean values in 100 tests of theWeighted Mean Square Error

(WMSE) calculated in three codebooks (sizes 40, 80 and 160) after applying

SOM and MS-SOM trained with four magnitude functions. WMSE is always

lower in MS-SOM independently of the magnitude function used. 75

21

List of Tables 22

4.2 Mean classification error (CE) and Weighted Mean Square Error (WMSE)

for SOM (with sub-index S) and MS-SOM (MS) obtained after training

both algorithms with the three datasets. Additionally number of samples,

number of inputs, classes, and map size is displayed for each problem. . . . 77

6.1 Table shows the mean values in 100 tests of theWeighted Mean Square Error

(WMSE) calculated in three codebooks (sizes 40, 80 and 160) after applying

five initialization algorithms (Random, KKZ, Kmeans++, MSINITmax and

MSINITprob). Each of these codebooks is trained following one of three

possibilites: No training / Trained using Kmeans / Trained using MSCL

(with the same magnitude funcion as for MS-INIT). 95

6.2 Table shows the mean values in 100 tests of the normalized Weighted En-

tropy calculated in three codebooks (sizes 40, 80 and 160) after applying

five initialization algorithms (Random, KKZ, Kmeans++, MSINITmax and

MSINITprob). Each of these codebooks is trained following one of three pos-

sibilites: No training / Trained using Kmeans / Trained using MSCL (with

the same magnitude funcion as for MS-INIT). 95

7.1 MSE calculated in the whole image and in the image center. 104

8.1 Mean MSE for the whole image as well as for areas with saliency over 50%

(grayscale example). Standard deviation is also shown (in brackets). 129

8.2 Mean MSE for the whole image as well as for areas with saliency over 50%

(color example). Standard deviation is also shown (in brackets). 133

A.1 List of abreviations . 157

Part I

INTRODUCTION

23

Chapter 1
Introduction

1.1 Introduction and motivation

Competitive Learning is a kind of unsupervised learning commonly used to find a solution

to the Vector Quantization (VQ) task. VQ tries to generate a reduced representation of the

vector-data distribution used in its training process. The resulting weight-vectors (proto-

types) of the units are denominated centroids, or codewords, and the set of centroids of the

neurons constitute the codebook of the VQ representation. Many practical applications

can benefit from VQ methods.

Well known Competitive Learning approaches are K-means ([49], [48]), Frequency Sen-

sitive Competitive Learning (FSCL) [1], Self-Organizing Maps (SOM) [38], Neural Gas

(NG) [50], Elastic Net (EN) [24] and Generative Topographic Mapping (GTM) [11]. All

these methods distribute their centroids over the data distributions with a density propor-

tional to the probability density function of the data. This type of codification is optimal

from the point of view of maximizing the Shannon’s Information-Theory entropy for the

use of codewords in a transmission task.

On the contrary, some applications may require an inverse relation between codewords

density and data density. It has been demonstrated that in biological systems, unusual

stimuli are differentiated with high precision, whereas frequent stimuli are distinguished

only in a rough manner. This effect is usually called as ‘perceptual magnet’ effect [39],

[40]. Some of the variants of the previously mentioned methods achieve a codebook rep-

resentation inversely proportional to data density thorough ’magnification control ’. Next

chapter will explain how it works.

However, none of these methods solve the issue of dataset modeling with units following

24

Chapter 1. Introduction 25

a probability distribution different from density. For instance, in biological systems unusual

stimuli are not only dependant on its frequency of appearance but also on its context. In

an image, the position, orientation, size or color of an object may be relevant to define

saliency. An elephant in the Savanna is not surprising, but it is if you see an elephant in a

street. Or in the original image if the elephant is magenta. Or an elephant floating in the

sky.

In artificial datasets similar problem arises: In satellite image quantization it may be

interesting to compress images but giving more importance to certain areas of the image,

depending on the image characteristics (i.e. blue color if the goal is information on water)

or regular shapes if the goal is getting information on buildings.

Another example is economic analysis. In the temporal evolution of financial markets it

is usual that certain shapes arise, shapes which economists associate with some important

economic facts. It is interesting to process economical data modelling in detail these

significant data samples.

Other possible issue that is not completely solved using common CL algorithms is

Anomaly Detection in complex industrial processes. These processes usually imply multi-

variate (high dimensional) data samples that may be abnormal depending on the circum-

stances. A trained operator is able to deal with the whole information to define if the

product from a certain process is normal or abnormal (i.e. it has the required quality).

However it may be difficult to retrieve all the necessary information so an automatic unsu-

pervised learning method could process correctly the novelty information intrinsic to the

dataset.

Conventional Competitive Learning methods do not give a good data model representa-

tion in these cases. That is the reason that motivated this Thesis. In the Thesis we present

a group of new competitive neural networks, Magnitude Sensitive Competitive Neural Net-

works (MSCNN), that have the property of distributing centroids in data-distribution zones

according to an arbitrary magnitude calculated or obtained locally for each unit, opening

not only the possibility of allocating codewords in function of data density, but also in

function of any other user-defined target magnitude.

These algorithms are: Magnitude Sensitive Competitive Learning (MSCL), Magnitude

Sensitive Self Organizing Maps (MS-SOM), and their masked versions. Additionally it is

presented a new method for initializing the codebook, method that also takes the magni-

tude into account (MS-INIT).

Throughout the Thesis, several examples of the use of these algorithms have been

shown, including some real application examples in the field of computer vision. I decided

Chapter 1. Introduction 26

to use this kind of applications to demonstrate the advantages of the new algorithms against

other conventional methods for two reasons:

• Results are very visual and self-explanatory.

• I belong to the Computer Vision Lab from the University of Zaragoza

(http://i3a.unizar.es/en/content/cvlab).

1.2 Thesis organization

This Thesis is structured in four parts with some appendices containing complementary

materials to the main core of the Thesis.

Part I is composed of Chapters 1 and 2. It is an introductory block where some of the

most important Competitive Neural Networks are revised with special attention to those

most related with the new ones developed in this Thesis.

Part II includes Chapters 3 to 6. It contents the description of the new competitive

learning algorithms developed within the Thesis.

Part III (chapters 7 to 9) shows the use of the new algorithms in three different computer

vision related tasks: color quantization, image compression and 3D surface modelling.

Finally, last part includes a concluding chapter with a review of the Thesis achievements

and explains future open research areas. Appendices contain the description of additional

materials, including the MS Toolbox, a Matlab toolbox [52] to work with all the algorithms

previously explained.

1.3 Notational conventions

This section covers the general style of notational and mathematical expressions used in

this thesis. Mostly matrix operations are used.

Matrices are denoted as upper-case boldface letters, e.g. X. When referring to the

i-th row vector of a matrix, the lower-case bold letter of the matrix letter is used, and a

subscript is written to denote the row index, respectively. For example, matrix X’s i-th

row vector would be written as xi . When referring to a single element of matrix X in row

i and column j, it is written as a lower-case italic letter with subscripts (with or without

comma), e.g. xij or xi,j

Vectors are denoted as lower-case boldface letters. The elements of a vector, e.g. v,

are written with a subscript to denote its index in the vector: v = (v1, v2, . . . , vk).

http://i3a.unizar.es/en/content/cvlab)

Chapter 1. Introduction 27

Symbol Meaning

‖ · ‖ Euclidean norm
S Set
|S| Cardinality of S, i.e. the number of elements of a set
x A vector
xi i-th element of vector x
X A matrix
xi i-th row of matrix X

xij/xi,j Element (i, j) of matrix X

Table 1.1: Summary of notational conventions.

Notation for matrix and vector operation is the universally accepted. We only want to

mark that in the chapter 5, it is necessary to use element-wise vector products, which are

denoted as ’◦’ .

The different models described in this Thesis share several architectural properties and

some specific names are used to denote units or sample data.

Each network consists of a set of M units:

M = {u1, u2, . . . , uM} (1.1)

with unit weights wm ∈ R
D (corresponding to unit um) indicating its position or receptive

field center in input space.

The n-dimensional input signals are assumed to be generated from a finite training

data set of length equal to N :

X = {x1,x2, . . . ,xN},xi ∈ R
D (1.2)

During training, the sample presented to the neural network at time t is denoted as

x(t).

Given one input signal x(t), the winner j (also called Best Matching Unit, or BMU)

among the units in M is defined as the unit with the nearest reference vector.

Usually in competitive neural networks, distance is measured by euclidean distance.

Then j equals:

j = argmin
um∈M

(‖x(t)−wm(t)‖) (1.3)

However, in the Magnitude Sensitive Competitive Neural Networks developed in this

Chapter 1. Introduction 28

Thesis it is not used this definition of Best Matching Unit, because the magnitude must

be taken into account in the competition.

For convenience we define the Voronoi Region of a unit um as the Voronoi region of its

reference vector:

Vm = {x ∈ R
D | BMU(x) = um} (1.4)

In the case of a input data set X we denote for a unit um with the term Voronoi Set

the subset Rm of X for which um is the winner

Rm = {x ∈ X | BMU(x) = um} (1.5)

Additionally we define Quantization Error of one sample x(t) with BMU j as:

Qerr(t, j) = ‖x(t)−wj(t)‖ (1.6)

The mean of its squared value for all the units is the Mean Squared Error:

MSE(X ;M) =
1

| X |
·

∑

um∈M

x∈Rm

‖x−wm‖2 (1.7)

Chapter 2
Competitive Learning Neural Networks

2.1 Introduction

Unsupervised learning concerns the problem of trying to find hidden structures in unla-

belled data. Competitive Learning is a form of unsupervised learning based on artificial

neural networks, in which nodes compete for the right to respond to a subset of the input

data. A common goal of those algorithms is to distribute a certain number of vectors

(prototypes or centroids) in the input data space. The distribution of these vectors should

reflect (in one of several possible ways) the probability distribution of the input signals

which in general is not given explicitly but only through sample vectors.

Competitive Learning Neural Networks usually contain an unique layer of neurons

with unit weights wi ∈ R
D which is commonly known as ’competitive layer’. The training

process is usually divided in two steps:

1. Competition phase: For every input vector x , neurons ’compete’ with each other to

see which one of them is the most similar to that particular input vector (that unit

is called ’winner’).

2. Weights updating phase: In this step, one or more of the units move towards the

input sample.

There are two paradigms of Competitive Learning algorithms depending on which of

the units are updated. Hard competitive learning (a.k.a. winner-take-all learning) com-

prises methods where each input signal only determines the adaptation of one unit, the

winner. A general problem occurring with hard competitive learning is the possible ex-

istence of ’dead units’. Another problem of hard competitive learning is that different

29

Chapter 2. Competitive Learning Neural Networks 30

random initializations may lead to very different results.

The second paradigm is called Soft competitive learning (a.k.a. winner-take-more learn-

ing). In this case not only the winner but also some other units move towards the sample

input. Unit adaptation is different depending on similarity of each unit to the winner unit

or the input data, being always greater for winner.

Training can be obtained by performing either batch or on-line update. In batch

methods all possible input signals (which must come from a finite set in this case) are

evaluated first, before any adaptation is done. This is iterated a number of times. On-line

methods, on the other hand, perform an update step directly after each input signal. The

possibility of this on-line training, in conjunction with the simplicity of the method is an

advantage over other unsupervised learning algorithms.

CL neural networks are used for different applications depending on the goal of the

used CL method . Main applications are:

1. Vector quantization: Vector Quantization is a classical quantization technique

which allows the modelling of probability of the density of a dataset by the dis-

tribution of a set prototype vectors. Input dataset is divided into groups having

approximately the same number of points closest to them. Each group is represented

by a prototype vector (codeword).

The goal in Vector Quantization is the minimization of the expected quantization

(or distortion) error between that codeword and the input vectors that it represent.

Correspondingly, in the case of a finite data set D the Mean Squared Error has to be

minimized:

MSE(X ;M) =
1

| X |
·

∑

um∈M

x∈Rm

‖x−wm‖2 (2.1)

2. Entropy maximization: If we interpret the generation of an input signal and the

subsequent mapping onto the nearest unit in M as random experiment which assigns

a value u ∈ M to the random variable X, the Shannon entropy (a measure of the

information content in the codification), is defined as:

H(X) = −
∑

um∈M

p(um) log p(um) (2.2)

Here, p(um) is the probability mass function of outcome um, that is, the probability

Chapter 2. Competitive Learning Neural Networks 31

that input signal is assigned to unit um:

p(um) =
| Rm |

| X |
(2.3)

Therefore, the entropy becomes:

H(X) = −
∑

um∈M

(

| Rm |

| X |

)

log

(

| Rm |

| X |

)

(2.4)

When the goal of the CL algorithm is entropy maximization, ensuring that all the

codewords are used with equal frequency, the probability p(u) tends to the following

value as the neural network is trained:

p(um) =
1

| X |
(2.5)

3. Clustering: Another possible application of CL algorithms is clustering, where a

partition of the dataset into subgroups or clusters is sought, such that data samples

in the same group (called cluster) are more similar (in some sense or another) to each

other than to those in other groups (clusters). Clustering is widely used for pattern

recognition, feature extraction, image segmentation, function approximation, and

data mining.

4. Feature mapping: Sometimes it is necessary to produce a low-dimensional repre-

sentation of the input space of the training samples in such a way, that some similarity

relations present in the original data are still present after mapping. This process has

been denoted feature mapping and can be useful for data visualization. It requires a

neural network with fixed dimensionality such as SOM (it will be explained later).

5. Novelty detection. The goal is the determination whether or not a unknown data

sample x is well represented by a previously trained CL neural network . The sample

is said to be ’known’ if the distance from the sample to its BMU (wj) in the CL

neural network is less than a pre defined threshold Th:

‖x−wj‖ < Th (2.6)

Otherwise it is a ’new’ sample. The value of Th is usually defined from the mean

and standard deviation of the quantitation error reached during the neural network

Chapter 2. Competitive Learning Neural Networks 32

training.

In this chapter we will analyse some of the existing Competitive Learning algorithms.

The remainder of this chapter is organized as follows: Next section describes the basic

Competitive Learning Algorithm. Section 2.3 explains some of the most common CL

algorithms. Finally, last section describes some other algorithms related to the Magnitude

Sensitive Competitive Neural Networks described in this Thesis.

2.2 Basic Competitive Learning Algorithm

Here we present the basic Competitive Learning Algorithm in an online training mode. It

follows these steps:

1. The codebook set is initialized to contain M units, with codewords wi initialized with

samples randomly selected from the dataset D:

M = {u1, u2, . . . , uM} (2.7)

2. Selection at random of an input signal x(t) from the dataset X .

3. Determination of winner unit uj as:

j = argmin
um∈M

(‖x(t)−wm(t)‖) (2.8)

4. Adaptation the codeword of the winner towards the input sample:

wj(t+ 1) = wj(t) + α(t) · (x(t)−wj(t)) (2.9)

where α(t) is the learning factor. It takes a constant value or decreases during

training.

5. Step 2 is repeated until a stopping condition is reached (e.g. a pre-defined number

of iterations).

This CL algorithm is the basis of other algorithm that will be explained in this chapter.

Its implementation in batch mode is called LBG (or generalized Lloyd) algorithm.

Chapter 2. Competitive Learning Neural Networks 33

Figure 2.1: Competitive neural network architecture

2.3 Usual Competitive Learning Algorithms

Here we will describe some of the most extended competitive learning algorithms.

2.3.1 K-Means

K-means algorithm ([49]) is the basic CL algorithm, using different values for α for each

unit:

αm =
1

tm
(2.10)

In this case, tm stands for the number of input signals for which unit um has been

winner so far. Doing so, codeword wm(t) is always the exact arithmetic mean of the input

signals it has been winner for. The number of units is K, what originates its name.

k-means is rather easy to implement and apply even on large data sets, and therefore

it has been widely used in clustering. As such, it has been successfully used in various

topics, ranging from market segmentation, computer vision, geostatistics and astronomy.

The algorithm has two main drawbacks:

1. It requires to define the number of codewords, what may be a problem in clustering

Chapter 2. Competitive Learning Neural Networks 34

when it is unknown the number of clusters in advance.

2. K-means is sensitive to initialization as it is a Hard Learning algorithm.

2.3.2 Neural Gas

This algorithm is named ’neural gas’ because of the dynamics of the feature vectors during

the adaptation process, which distribute themselves like a gas within the data space. The

algorithm follows the Soft Competing paradigm, what means that all of the units move

through the input sample with a step size decreasing with the increase of the distance

order.

This adaptation of the whole codebook yields to a robust convergence, but on the other

hand processing is more time consuming than K-means.

Neural Gas follows same steps than the basic CL algorithm, but it changes in steps 3

and 4:

3. The distance order of the feature vectors to the given data vector x is determined. i0

denotes the index of the closest feature vector (wi0), i1 the index of the second closest

feature vector (wi1), . . . , and iN−1 the index of the feature vector most distant to x.

4. In the adaptation step, each codeword wik(k = 0, . . . ,M − 1) is adapted according

to:

wik(t+ 1) = wik(t) + α(t) · e−k/λ(t) · (x(t)−wik(t)) (2.11)

Both α(t), and λ(t), the so-called neighborhood range, are reduced with increasing

time t.

Growing neural gas (Fritzke, 1994b, 1995a) is a variant of this algorithm where the

number of units is increased during training (beginning with very few units) until the global

quantization error measures lower a pre-defined value. This version of Neural Gas has the

advantage that it does not require to define in advance the number of units as a parameter.

2.3.3 Self-Organizing Feature Map

Self-Organizing Feature Map (also called SOM) is a is a type of CL neural network that has

the capability of mapping the D-dimensional input space (being D arbitrarily large) to a

lower dimension structure (usually called map), while preserving the topological properties

of the input space. This makes it possible to get a representation of the data which may

be used for visualization purposes (in this case it uses a 2D or 3D representation).

Chapter 2. Competitive Learning Neural Networks 35

The SOM is also a Soft Competive Algorithm that follows the basic CL algorithm

excepting in step 3, as all of the units (not only the winner) are updated.

3. For each unit ui ∈ M:

wm(t+ 1) = wm(t) + α(t) · hmj(t) · (x(t)−wm(t)) (2.12)

In this equation, hmj(t) is the neighborhood function that depends on the lattice

distance between the BMU (uj) and unit um. A Gaussian function is a common

choice for this neighborhood function.

The advantage of SOM against other CL algorithms is the ordered topological structure

of neurons in data space. SOM may be considered a nonlinear generalization of Princi-

pal Components Analysis (PCA) [84]. It has been shown, using both artificial and real

geophysical data, that SOM has many advantages over it ([46], [47]).

Due of these advantages, SOM has been widely used in several machine learning appli-

cations. They include image and video processing; density or spectrum profile modeling;

text/document mining and management systems; gene expression data analysis and dis-

covery; and high dimensional data visualization.

Being such a popular unsupervised learning algorithm, it has several variants. Some of

them are:

• Time adaptive self-organizing map (TASOM) network ([72]) is an extension of the

basic SOM. TASOM employs adaptive learning rates and neighborhood functions. It

also includes a scaling parameter to make the network invariant to scaling, transla-

tion and rotation of the input space. The TASOM and its variants have been used

in several applications including adaptive clustering, multilevel thresholding, input

space approximation, and active contour modeling.

• Growing self-organizing map (GSOM, [3]) is a growing variant of the self-organizing

map. GSOM was developed to address the issue of identifying a suitable map size

for the SOM. It starts with a minimal number of nodes and grows new nodes during

training. By using a value called the spread factor, the data analyst has the ability

to control the growth of the GSOM.

• There are also several temporal extensions of the SOM to have into account the effect

of the temporal occurrence of the input samples. Temporal Kohonen Map (TKM,

Chapter 2. Competitive Learning Neural Networks 36

[15]) and Recurrent Self-Organizing Map (RSOM, [78]), incorporate leaky integrator

memory to preserve the temporal context of the input signals.

• Other variants are related with the number of neural networks used simultaneously

as in the case of Hierarchical SOMs, where, at some stage, one of the SOMs receives

as inputs the outputs of another SOM.

2.4 Most related methods

There are several methods highly related to MSCL or MS-SOM. Here we explain some of

them.

2.4.1 Frequency Sensitive Competitive Learning

The most similar one is the FSCL method [1], that basically follows the same structure as

MSCL if we use the winning frequency of the units as magnitude.

The FSCL introduces during the competition phase a parameter, named the relative

winning frequency or ’conscience’. The centres chance to win the competition is directly

proportional to the relative winning frequency. The learning rate of the frequent winners

is reduced, as their chance to win the competition does. By this additional ’conscience’

term, it circumvents the ’dead units’ problem usually present in the k-means algorithm.

FSCL uses the basic implementation of CL, with a modified criterion for selection of

the best-matching unit by adding the ’conscience’ term F , that depends on the number of

hits that every unit has received up to the moment (wm). Therefore, step 3 is different:

j = argmin
um∈M

(F (wm) · ‖x(t)−wm(t)‖) (2.13)

where usually F (wm) takes an exponential form:

F (wm) = (wm)γ (2.14)

Some successful applications of the FSCL algorithm are feature extraction [13] and

image compression [14]. Some variants of FSCL has been developed for clustering tasks, as

the Rival Penalized Competitive Learning algorithm RPCL [12]. This algorithm rewards

the winning center and penalizes with a de-learning rate the second winner, named rival.

Chapter 2. Competitive Learning Neural Networks 37

2.4.2 Energy Based Competitive Learning

Energy Based Competitive Learning [82] is an algorithm that addresses the three impor-

tant issues associated with competitive learning clustering. Auto-initialization is achieved

by extracting samples of high energy to form a core point set, whereby connected compo-

nents are obtained as initial clusters. To adapt to clusters of different size and sparsity, a

novel competition mechanism, uses for each prototype a definition of energy multiplied by

distance, to select a winner prototype. For eliminating the disturbance caused by outliers,

adaptive learning rate based on samples’ energy is proposed to update the winner.

The reason of using energy is to select a number of prototypes to cluster the data

distributions optimally according to its density, so that it differs considerably from MSCL,

that is formulated as a magnitude-oriented VQ method.

2.4.3 K-Harmonic Means and Weighted K-means

Two methods based on K-means, K-Harmonic Means [86] and Weighted K-means [37], use

the modulation of the distance by factors as MSCL does with magnitude. The first method

replaces the minimum distance from a data point to the centroids, used in K-means, by

the Harmonic Averages of the distances from the data point to all centroids. The main

goal of this algorithm is that the K-means becomes less sensitive to the initialization of

the centroids. However authors claim that the method significantly improves the quality

of clustering results comparing with both K-Means and Expectation Maximization [22].

The Weighted K-means uses the same structure of K-Harmonic Means, introducing

membership function for the centroids, but replacing the Harmonic Averages of the dis-

tances by weights obtained from a density-biased reservoir sampling algorithm, that rep-

resents the density of the original data points. Both methods are oriented to specific tasks

by means of their weighted distance, but basically do not define an open method to any

desired target in the VQ processing as MSCL does.

2.4.4 Magnification control

After training a CL neural network, the achieved weight vector density ρ (w) is in relation

to the data density P (D) following:

P (X) ∝ ρ (w)α (2.15)

The exponent α is called magnification exponent or magnification factor. Controlling

this factor it is possible to modify the magnification properties of the vector quantizer as

Chapter 2. Competitive Learning Neural Networks 38

it may be required in different application tasks.

Magnification and its control is related to biological phenomena like the ’perceptual

magnet effect’. In 1992, Kuhl, introduced this phenomenon, which demonstrated that as a

second language is acquired, the brain gradually groups sounds according to their similarity

with phonemes in the native language. That was due to the fact that rarely occurring

stimuli are differentiated with high precision whereas frequent stimuli are distinguished

only in a rough manner ([39]; [40]).

It is a kind of attention-based learning with inverted magnification, where rarely oc-

curring input samples are emphasized by an increased learning gain.

This effect is also beneficial in technical systems. For instance in remote-sensing image

analysis, seldomly found ground cover classes should be detected, whereas usual (frequent)

classes with broad variance should be suppressed ([54], [80]). Also anomaly detection

in industrial processes or intrusion detection in computer security systems requires that

abnormal situations receive more importance during training.

Villmann presents in ([81]) a general framework to control the magnification achieved

by SOM or NG neural networks. This method works by following one of these learning

schemes:

1. Localized learning : Introduction of a multiplicative factor by a local learning rate

αm = α (wm) that depends on the stimulus density P at the position of their weight

vectors wm via

〈αm〉 = α0 · P (wm)γ , (2.16)

where the brackets 〈〉 denote the average in time.

2. Winner-relaxing learning : Introduction of winner relaxing by adding a winner-enhancing

(relaxing) term R:

wj(t+ 1) = wj(t) + α(t) · (x(t)−wj(t)) +R (2.17)

3. Concave-convex learning : Scaling of the learning shift by powers ξ in the factor

(x−wi)
ξ:

wj(t+ 1) = wj(t) + α(t) · (x(t)−wj(t))
ξ (2.18)

Part II

ALGORITHMS

39

Chapter 3
MSCL algorithm

3.1 Introduction

3.1.1 Proposed approach

MSCL is a parallelizable algorithm, as other neural networks, that admits on-line data

training and follows the general Competitive Learning steps:

Selection the winner prototype . Given an input data vector, the competitive units

compete each other to select the winner neuron comparing their prototypes with

the input. This Best Matching Unit (BMU) is selected in MSCL as the one that

minimizes the product of the magnitude (provided with data or calculated from a

user-defined function and assigned to each unit) and the distance of the unit proto-

types to the input data vector. This procedure differs from other usual competitive

algorithms where the BMU is determined only by distance. The MSCL competition

is implemented by a two-step competition: global and local competitions, as will be

explained in section 3.2.

Updating the winner and magnitude . Winner’s weights are adjusted iteratively for

each training sample, with a learning factor specific for each unit, and forced to decay

with training time. Concurrently, magnitude at each unit is also updated.

3.1.2 Magnitude

MSCL algorithm uses a user-defined magnitude function, MF (), that acts as an extra

information for the network, forcing neurons to represent with more detail those zones of

40

Chapter 3. MSCL algorithm 41

data space with higher magnitude values. The idea behind the use of the magnitude as

a weighting factor in the competition by distance is that, in case of a sample placed at

equal distance from two competing units, the winner will be the unit with lower magnitude

value. One key point of the method is the appropriate definition of the magnitude function

for the desired VQ task. Output of this function is always a positive scalar, and it takes

the general form:

MF : [wm(t), < m >,X , 〈args〉] → R
+ (3.1)

Here we refer with 〈args〉 as optional arguments for the function. As they are optional

they may have different sizes. For the sake of clarity we will avoid these arguments in the

rest of the Thesis just for clarity.

There exists mainly two situations depending on the data dependency of this function

MF ():

1. When magnitude function depends on neuron data, MF (wm(t), < m >), we define

for each neuron um an internal variable, mum(t). This variable for each unit forms

an additional magnitude layer which is used during local competition and is of equal

size than the output layer or map. It is calculated as:

mum(t) = MF (wm(t), < m >) (3.2)

With < m > we represent any variable related to unit um, for instance samples in

its Voronoi region Vm, or neigboring units of unit um. From now on, we will use

the term ”magnitude map” when magnitude is calculated from the units, see Figure

3.1(a).

2. When magnitude is determined exclusively from input data, we use MF (X) and

define a magnitude vector, mx, that is included as an extra input for the neurons of

the map. This value at each sample is used to calculate the value of the magnitude

associated to each unit. From now on, we will use the term ”magnitude vector”

when magnitude is an external value associated to the data patterns, see Figure

3.1(b). Then, mx(t) is equal to:

mx(t) = MF (x(t)) (3.3)

Chapter 3. MSCL algorithm 42

(a) Using MF (wm(t),< m >)

(b) Using MF (X)

Figure 3.1: Architecture of the MSCL neural network using two alternative definitions of the
magnitude function: a) as a magnitude map evaluated into units, or b) as an external magnitude
vector associated to data patterns.

Chapter 3. MSCL algorithm 43

3.1.3 Chapter description

The remainder of this chapter is organized as follows. Next section describes in more detail

the Magnitude Sensitive Competitive Learning (MSCL) method. Section 3.3 analyses the

influence of its parameters in its behaviour.

Section 3.4 shows the comparison of the method with well known methods used in

VQ tasks, as FSCL, Fuzzy C-means clustering (FCM), Neural Gas (NG), K-Means and

Self-Organizing Maps (SOM). Two application examples are proposed to show the different

results that MSCL generates, as an oriented method by the magnitude function, compared

with the results of these known methods. The first proposed application is to model a

toy problem with 5000 data samples in three gaussian distributions, comparing the final

results with three evaluation measures for the VQ representations generated in the methods

without supervision. The second application is a simple problem designed to show how

can MSCL focus units in zones of high variability when interpolating data series, compared

with FSCL.

3.2 The MSCL algorithm

Next subsections describe the algorithm in an iterative updating schedule, whose flowchart

is shown in figure 3.2, and also an updating schedule in batch mode, where units are

adjusted after a presentation of a number of samples or after the complete presentation of

the whole dataset

3.2.1 Online implementation of the MSCL algorithm

Initialization

M unit weights are initialized with data inputs randomly selected from the dataset, and

their initial value of its magnitude is equal to the magnitude function at these samples.

wm(0) = x(m) m = 1 . . .M (3.4)

Then, unit magnitude might be initialized by the magnitude function (MF ()) depend-

ing only on unit parameters (equation 3.5a), or alternatively by the value of the magnitude

at the selected sample data for each unit (eq. 3.5b):

mum(0) = MF (wm(0), < m >) (3.5a)

mum(0) = mx(m) (3.5b)

Chapter 3. MSCL algorithm 44

Figure 3.2: MSCL flowchart

where mx is the magnitude of the sample x(m). The initial accumulated magnitude of

unit um, is set to:

maccm(0) = mum(0) (3.6)

Random selection of data samples

A sample data x(t) = (x1, .., xn)(t) ∈ R
D is randomly selected at time t from the dataset

X . This process will be repeated until every data has been presented to the MSCL neural

network. It is recommended to retrain the neural network with the whole dataset several

cycles, along C input data presentations (iterations), to make results independent of data-

presentation ordering.

Global unit competition

K units with minimum distance from their weights to the input data vector are selected

as winners in this first step. These units form the S set (S ⊂ M):

S = {us1, us2, ..., usK}

‖x(t)−ws(t)‖ < ‖x(t)−wm(t)‖ ∀um /∈ S ∧ us ∈ S . (3.7)

Chapter 3. MSCL algorithm 45

Local unit competition

In the second step, winner unit with index j is selected from units belonging to S as the one

that minimizes the product of its magnitude value as in equation 3.8a (or the accumulated

magnitude, eq. 3.8b) with the distance of its weights to input data vector, following one

of these equations

j = argmin
us∈S

(mus(t)
γ · ‖x(t)−ws(t)‖) , or (3.8a)

j = argmin
us∈S

(maccs(t)
γ · ‖x(t)−ws(t)‖) , (3.8b)

being maccs(t) the accumulated magnitude of unit us calculated by the equation 3.10

The use of mu in local competition is more adequate than macc when the goal of

training is Qerr reduction while macc is better to reduce the entropy. γ is an exponential

factor to modulate the strength of the magnitude during the competition.

Winner update

For all units in the map, weights and magnitude are adjusted iteratively for each training

sample, following (m = 1 . . .M):

mf(t) =







mx(t), if used a magnitude vector (mx).

muj(t), otherwise.
(3.9)

maccj(t+ 1) = maccj(t) +mf(t) (3.10)

αm(t) =

(

mf(t)

maccm(t+ 1)

)β

(3.11)

wj(t+ 1) = wj(t) + αm(t) (x(t)−wj(t)) (3.12)

where α is the learning rate calculated for the winner and forced to decay with the mag-

nitude accumulation and β is a scalar value between 0 and 1. Using this definition, when

β is equal to one, the value of each unit’s weights become the weighted running mean of

the input data samples belonging to its Voronoi region.

Chapter 3. MSCL algorithm 46

Magnitude update

Only winner’s magnitude is adjusted for each training sample, following:

muj(t+ 1) =







muj(t) + αm(t) (mx(t)−muj(t)) , if mx is used.

MF (wj(t+ 1), < j >), otherwise.
(3.13)

Stopping condition

Training finish when a termination condition is reached: it may be the situation when all

data samples has been presented to the MSCL neural network along certain number of

cycles (if a limited number of samples is used), or the condition of low mean change in unit

weights, or any other function that could measure the training stabilization.

3.2.2 Batch implementation of the MSCL algorithm

Next subsections describe the algorithm in an batch updating schedule, where units are

adjusted after a presentation of a limited number of samples at each epoch or after the

complete presentation of the whole dataset. Here we name tep the epoch number.

Initialization

Initialization is done in the same way than in online MSCL implementation.

Random selection of data samples

We select a data set Xep ⊂ X formed of Nep randomly selected samples from the dataset:

Xep = {x1,x2, . . . ,xNep},xi ∈ R
D (3.14)

Global unit competition

For each sample in Xep, K units with minimum distance from their weights to the input

data vector are selected as winners in this first step. These units form the S(t) set,

corresponding to input sample x(t) (S(t) ⊂ M):

Chapter 3. MSCL algorithm 47

S(t) = {us1, us2, ..., usK}

‖x(t)−ws(t)‖ < ‖x(t)−wm(t)‖ ∀um /∈ S(t) ∧ us ∈ S(t)

t = 1 . . . Nep. (3.15)

Local unit competition

Once again, for each sample in Xep, best matching unit j is selected from units belonging

to S as the one that minimizes the product of its magnitude value as in equation 3.16a (or

the accumulated magnitude, eq. 3.16b) by the distance of its weights to input data vector,

following one of these equations:

j = argmin
us∈S(tep)

(mus(t)
γ · ‖x(t)−ws(t)‖) , or (3.16a)

j = argmin
us∈S(tep)

(maccs(t)
γ · ‖x(t)−ws(t)‖) . (3.16b)

Winner update

First, the magnitude of input sample at time t,mf(t), is calculated through equation 3.9.

Then for each unit um, we calculate the weighted arithmetic mean (xepm) of samples

belonging to Xep within its Voronoi Region Rm, using the value of the magnitude mf(t)

as the value for weighting the sample x(t):

xepm =

∑

k∈Rm

mf(k) · x(k)

∑

k∈Rm

mf(k)
(3.17)

being Rm = {x ∈ Xep | j = um}.

The estimated increase of magnitude in the epoch for that unit is:

mepm =
∑

k∈Rm

mf(k) (3.18)

These values are used for calculating the learning rate αm, and update the accumulated

magnitude and weight of each unit:

Chapter 3. MSCL algorithm 48

maccm(tep + 1) = maccm(tep) +mepm (3.19)

αm =

(

mepm
maccm(tep + 1)

)β

(3.20)

wm(tep + 1) = wm(tep) + αm (xepm −wm(tep)) (3.21)

where β is a scalar value between 0 and 1.

Magnitude update

Each unit um updates its magnitude. If this value is given by a value associated to each

input sample, magnitude at each unit becomes the running weighted mean of the magnitude

of all data samples at its Voronoi region:

mxepm =

∑

k∈Rm

mx(k)2

∑

k∈Rm

mx(k)
(3.22)

mum(tep + 1) = mum(tep) + αi (mxepm −mum(tep)) (3.23)

Otherwise, it is calculated directly with the magnitude function:

mum(tep + 1) = MF (wm(tep + 1), < M >) (3.24)

Stopping condition

Training finish when a termination condition is reached, as in the case of online MSCL

implementation. Otherwise the process will be repeated from step 2 every epoch until

every data has been presented to the MSCL neural network.

3.3 Algorithm analysis

3.3.1 Resulting Voronoi regions

As mentioned in Chapter1, section 3, Voronoi region of a unit um consists of all points in

the Euclidean space where this unit is the Best Matching Unit of these points.

Chapter 3. MSCL algorithm 49

When Euclidean distance is used in the competition step in a Competitive Learning

algorithm, decision region between adjacent Voronoi regions is formed by hyperplanes.

These hyperplanes consist of all the points in the space equidistant to the two nearest

unit-prototypes.

In this case,

Vm = {x ∈ R
D | ‖x−wm‖ ≤ ‖x−wk‖ ∀uk ∈ M} (3.25)

However, with the magnitude term weighting the distance in a two step competition

(as in the MSCL algorithm), the resulting boundaries between Voronoi regions can be

more complex and those units with higher magnitude tend to have lower volumes in their

Voronoi regions, even if the data density is uniform.

Example of figure 3.3(a) shows the result of training 30 units in a two-dimensional

synthetic data set consisting of P = 5000 samples generated from a mixture of three

Gaussian distributions centered on the points (0,0), (3,4) and (6,0) with covariance matrix

[0.1 0; 0 0.1] for all of them. The percentage of samples placed in each cluster is almost

the same: 33.3%.

We use a magnitude associated to each sample through the function:

MF (x) = abs (x2) (3.26)

As can be appreciated in the figure, magnitude takes null values in the horizontal line

with x2 = 0, and takes value 1 in the higher value of the second component of x. This

figure, 3.3, shows the Voronoi regions corresponding to Euclidean distance (c) and those

corresponding to a magnitude weighted distance (d). Each limit between two neighbouring

units are equidistant from both units in the case (c), while it is closer to the unit of lower

magnitude in the case (d).

3.3.2 Connections

MSCL is a winner-take-all neural network, therefore each unit forms no structure with its

neighbouring units. However, for certain applications it is interesting to know what is the

neighborhood of a given unit. To do it we define a set of the neighborhood connections

between units of the network as:

C = M×M (3.27)

where two units (ui, uj) ⊂ C are ’connected’ if both are first and second BMUs considering

Chapter 3. MSCL algorithm 50

Figure 3.3: Example of Voronoi regions corresponding to 30 units. (a) Centroids and magnitude,
abs(x2). It can be appreciated how the density of centroids increases as x2 becomes higher, as
higher magnitude zones attract more units to be represented. (b) Voronoi sets of each unit: Samples
assigned to centroids using distance weighted by magnitude defined in a, (c) Voronoi regions for
Euclidean distance, (d) Voronoi regions for distance weighted by magnitude defined in a.

the euclidean distance:

i = argmin
uk∈M

(‖x(t)−wk(t)‖) (3.28)

j = argmin
uk∈M\{ui}

(‖x(t)−wk(t)‖) (3.29)

Usually connections set C is generated once training has finished. This set can also be

calculated during the training process. In this case, as units are moving in the data space,

connections established during the early stages of training usually does not correspond

Chapter 3. MSCL algorithm 51

with the final ones. Therefore, it becomes necessary to remove old connections. We define

that two units (ui, uj) 6⊂ C if they have not been connected during any of the previous KC

input signal presentations, where KC is an integer that usually corresponds to the total

number of data samples.

Figure 3.4 shows the result of training of a MSCL with 20 units (centroids painted in

blue) in the same dataset of previous example, but using abs(x1) as the magnitude. In

figure 3.4(a) each sample of the dataset is coloured by the value of the magnitude of its

BMU . On the right, it is shown the same figure, but adding the connections between units

as it has been explained above.

(a) Trained MSCL (b) Trained MSCL with connections

Figure 3.4: Example of representation of a trained MSCL with connections obtained after training.

3.3.3 Modified quality measures

Two new magnitudes Weighted Mean Squared Error and Weighted Entropy has been de-

fined to measure the quality of training in a Magnitude Sensitive Competitive Neural

Network.

• Weighted Mean Squared Error: Weighted Mean Square Error (WMSE) is the

weighted mean of the quantization squared error, where weights are the values of the

magnitude at each sample (normalized by the sum of magnitudes in all the dataset),

and it is calculated in a similar way to [66]:

WMSE(X ;M) =

∑

um∈M

x∈Rm

MF (x) · ‖x−wm‖2

∑

x∈X MF (x)
(3.30)

Chapter 3. MSCL algorithm 52

Given a finite data set X , and a defined number of units M, the WMSE value is lower

as the distribution of centroids are replicating in more detail the magnitude function.

• Weighted Entropy: It is also possible to define a value of Weighted Entropy,

where weights are the value of the magnitude at each sample. It also follows 2.3, but

using a different definition for the probability p(um), that depends on the density of

magnitude, instead of the data density.

p(um) =

∑

x∈Rm

MF (x)

∑

x∈X
MF (x)

(3.31)

By dividing by the maximum entropy (obtained when all units have the same value

in eq.3.31), the normalized entropy is expressed as:

H(X) = −
∑

um∈M





∑

x∈Rm

MF (x)

∑

x∈X

MF (x)



 log





∑

x∈Rm

MF (x)

∑

x∈X

MF (x)



 / log (| M |) (3.32)

Figure 3.5 shows the evolution of WMSE (black line) and Weighted Entropy (red line)

during training of a MSCL with 50 units along 5 cycles of 10 epochs each. Both magnitudes

present an abrupt change at the beginning of training and they move towards its final values

but more slowly. Dataset X is the three Gaussian example with magnitude function of

equation 3.26.

Table 3.1 shows a comparison of the final values of WMSE and normalized Weighted

Entropy, with a MSCL and the basic CL algorithm. Both test are done with different

number of units: 25, 100 and 400. As it can be seen in the table, WMSE is always lower

Q measure Algorithm 25 100 400

WMSE MSCL 0.543 0.290 0.142
CL 0.585 0.304 0.145

Weighted Entropy MSLC 0.962 0.947 0.941
CL 0.885 0.912 0.932

Table 3.1: Comparison of the final values of WMSE and normalized Weighted Entropy in MSCL
and a basic CL method, trained with the gaussian dataset and magnitude function of eq. (3.26)
for three codebook sizes (25,100 and 400 units).

Chapter 3. MSCL algorithm 53

0 5 10 15 20 25 30 35 40 45 50
0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.5: Evolution of WMSE (black) and normalized Weighted Entropy (red) during training
of a MSCL with 50 units along 5 cycles of 10 epochs each. As expected, WMSE decreases during
training, while the normalized Weighted Entropy tends to a constant value of 1.

in MSCL, and the Weighted Entropy is always higher. This means that MSCL is better

than simple CL for all the cases independently if the goal is error minimization or entropy

maximization.

3.3.4 Effect of alpha

As it has been mentioned in 3.2.1, α is the learning rate, that depends on the magnitude

of input samples and is different for each unit. It is assigned a value so that the vector

reference wm(t) for unit um is always the exact arithmetic weighted mean of the input

signals it has been the winner. This only happens when β is equal to 1 (Next subsection

will explain the influence of β).

If we name y(t) (t = 1 . . . | Rm |) to the successive inputs where um is its BMU , and

my(t) the corresponding value of magnitude. The sequence of successive values of wm,

Chapter 3. MSCL algorithm 54

when equations 3.10 to 3.12 are applied for beta=1, is the following:

wm(0) = y(0)

wm(1) = wm(0) +

(

my(1)

my(0) +my(1)

)

· (y(1)−wm(0))

=
my(0) · y(0) +my(1) · y(1)

my(0) +my(1)

wm(2) = wm(1) +

(

my(2)

my(0) +my(1) +my(2)

)

· (y(2)−wm(1))

=
my(0) · y(0) +my(1) · y(1) +my(2) · y(2)

my(0) +my(1) +my(2)

...

wm(t) = wm(t− 1) +

(

my(t)

my(0) +my(1) + . . .+my(t)

)

· (y(t)−wm(t− 1))

=

∑

i=1···t
my(i) · y(i)

∑

i=1···t
my(i)

(3.33)

Therefore, as desired, the reference vector becomes the arithmetic weighted mean of

samples in its Voronoi region. It should be noted that the set of signals y(t) for which a

particular unit um has been the winner may contain elements which lie outside the final

Voronoi region of um due to changes in the value of wm during training.

3.3.5 Effect of beta

β is an scalar between 0 and 1 (both values are possible) used to add a forgetting factor

for unit adaptation during training. As it has been shown in the previous subsection, a

value of β = 1 results in reference vectors that are equal to the arithmetic weighted mean

of samples in its Voronoi Set.

However, usually units change substantially during first epochs of training, while they

tend to be stationary at last stages. The parameter β is used precisely to enhance the

importance of last samples during training (when units are close to its final position). A

low value of β (near zero) gives less weight to initial samples when calculating the weighted

arithmetic mean of input samples. In the extreme situation, if β = 0 then α = 1 and:

Chapter 3. MSCL algorithm 55

w(t) = x(t) (3.34)

A good selection for β, given the desired final value for α is:

β =
log(αfinal)

log
(

M
P ·C

) (3.35)

being C the number of cycles, M the number of units, and P the number of samples.

3.3.6 Effect of gamma

Parameter γ is a positive scalar used to enhance the effect of the magnitude during lo-

cal competition step. High values make competition dependent only on the value of the

magnitude, and values near zero confine the competition to the euclidean distance. Using

γ = 0 means that the competition is done only by distance.

Is important to highlight that for a null value of γ, winner will be the same during

the competition steps than using a value of magnitude equal to one for all the samples.

However winner update will be different in both cases. That is because in the first case

the reference vector of each unit is the weighted mean of samples in its Voronoi Set, while

using magnitude equal to one, the final codewords are the simple mean of those samples.

Figure 3.6 shows the results of training a MSCL with the same dataset used in the

Voronoi subsection (and the same number of units), using the following values for γ =

(0, 0.2, 1 and 5). Magnitude function used was the absolute value of the first component

of each data sample. This will force units towards rightmost Gaussian distribution of the

dataset.

It can be noticed that γ = 0 distributes units nearby the density distribution. That

is not exactly the density distribution because γ depends on the fraction of accumulated

magnitude at each unit instead of its accumulated frequency. With γ = 0.2 some of the

units moves towards zones with higher magnitude, but their distribution only follow the

magnitude distribution when γ = 1 (this is the normal case). Value of γ = 5 concentrates

units more densely than the normal case in zones with high magnitude, so that units have

almost disappeared from the lower left Gaussian (the one with magnitude near zero).

This parameter, has similar effect in different data distributions and is useful in situ-

ations where magnitude variation is small from zones with high magnitude to zones with

low magnitude.

Chapter 3. MSCL algorithm 56

−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4

5

6

7

(a)

−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4

5

6

7

(b)

−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4

5

6

7

(c)

−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4

5

6

7

(d)

Figure 3.6: Effect of the value of γ during training a MSCL. Higher values enhance the importance
of the magnitude during competition. In the figure we represented the following values for it:
(a) γ = 0, (b) γ = 0.2, (c) γ = 1 (normal situation) and (d) γ = 5. Units are colored according the
value of mum(t)γ (black means near zero values, and red the highest one).

Chapter 3. MSCL algorithm 57

3.3.7 Effect of the number of winners

The number of winners in the first competition by distance (K) was established to be equal

to 2 in the rest of the chapters. This selection is based in multiple simulations executed with

different values of K, analysing the final measures of the networks after training process.

The problem chosen was the synthetic-gaussian distributions using data samples with 2, 10

and 30 dimensions. Results did not vary for dimensionality, so figure 3.7 only shows results

for the problem with 10 dimensions. Influence in the number of units of the network was

also explored, using 25, 50 and 100 neurons, but again the same behaviour was observed,

so figure 3.7 only shows results for networks with 50 units.

The quality measures calculated in the networks were: WMSE, Entropy and DB-index,

that are shown by columns in that figure. The different magnitude functions explored were

three: first row of graphs shows results for MSCL with magnitude equal to the absolute

value of x2, second row of graphs show MSCL emulating FSCL, and the third row shows

results for MSCL with Q-error. Horizontal coordinate is the value of K used in each

experiment (averaged 10 times).

It is clear that K=2 shows the most reasonable behaviour, and if K is too high (K=50),

the behaviour becomes unstable for the first magnitude function. With the other two

magnitude functions it is not so clear, but as processing time for the competition step is

larger as K increases, best selection is K=2.

3.4 Application examples

In order to demonstrate the effectiveness of the MSCL algorithm in oriented tasks, we per-

form several magnitude-function experiments in two types of data processing: Gaussian

data quantization, and series interpolation. Five representative competitive learning algo-

rithms are compared with MSCL along the experiments: frequency sensitive competitive

learning (FSCL), Fuzzy c-means clustering (FCM), Neural Gas (NG), K-Means and Self-

Organizing Maps (SOM). We do not pretend with these experiments to demonstrate that

MSCL is the best strategy for the proposed application fields. The goal of the experiments

is to show the focused behaviour of the MSCL with the different function magnitudes

compared with the density focused behaviours of the other VQ methods.

3.4.1 Modelling Gaussian distributions

In this example a synthetic data set consisting of P = 5000 samples in a 2D plane (x(t) ∈

R
2) was generated from a mixture of three Gaussian distributions with means [0,0], [3,4]

Chapter 3. MSCL algorithm 58

Figure 3.7: Analysis of the MSCL behavior for different K values in networks with 50 units. Three
magnitude functions were explored: first row of graphs shows results for MSCL with magnitude in
equation 3.26 (absolute value of x2), second row of graphs show MSCL emulating FSCL, and the
third row shows results for MSCL with Q-error. Graphs show the averaged final values (wide blue
line) of the quality measures (WMSE, Entropy and DB-index) and the standard deviation values
(narrow blue lines). The networks were simulated 10 times for averaging and were trained along
10 cycles with the synthetic-Gaussian problem. Horizontal coordinate is the value of K used in
each experiment. It is clear that K=2 shows the most reasonable behaviour, and if K is too high
(K=50), the behavior becomes unstable.

and [6,0], and covariance matrix [0.1 0; 0 0.1] for all of them. The fraction of samples

placed in each cluster is 0.33 for the first and second distributions and 0.34 for the third.

This data will be quantized by three different tests with 40, 80 and 160 prototypes (M =

{40, 80, 160}).

For FCM algorithm, we used 2 as exponent for the membership partition matrix. Neural

gas parameters were: initial step size of 0.5 and initial decay constant equal to N/2. K-

Means were trained using a batch method. Finally SOM was a two-dimensional map

initialized linearly with default parameters provided by SOM Toolbox [79]. We used 10

Chapter 3. MSCL algorithm 59

training cycles for all methods. To emulate FSCL, we set MSCL with magnitude function

for each unit as the normalized winning-frequency of the unit, using initial and final learning

rates of αini = 0.9, and αfinal = 0.1. For MSCL, we used five predefined magnitude

functions in different oriented tasks, all of them with values of beta so initial and final

learning rates takes the following values: αini = 0.9, and αfinal = 0.1.

Q-error magnitude function

The first magnitude function for MSCL is the mean Q-error in their Voronoi regions:

MF (m)(t) = mean(Qerr(t,m)) (3.36)

As calculation of the magnitude function for each sample is computationally hard, it

is only recalculated after each training cycle. The Qerr(t,m) is the quantization error

of the data samples belonging to the Voronoi region of unit um. This function tends to

distribute prototypes over the data distributions to generate the same mean Q-error in all

the units. This magnitude function will be used to generate a density estimation of the

data distributions that is needed for the next magnitude functions.

Data density estimation

The next four magnitude functions are defined to focus the prototypes on the regions of the

data distributions with dense or sparse presence of samples. For the former, we expect the

prototypes to be concentrated in the means of the distributions. For the later, we expect

prototypes to be distributed mainly far from the means, surrounding the distributions.

For this purpose we need an estimation for the density of samples. In order to do this,

an initial codebook (that we call density codebook) is trained to generate the estimation

of the data density. The density estimation with M = 80 density codewords is shown in

figure 3.8. It was obtained for MSCL with mean Q-error as magnitude function.

The reason of using this MSCL as the generator of the density codebook is based in the

next reasoning. Lets suppose that the Voronoi area of each density codeword is similar,

so we can approximate the density function as the number of samples of each codeword

in its Voronoi region normalized by the total number of samples. This estimation of data

density for these codewords provides a probability distribution that can be separated into

two groups (Otsu method [58] was used to obtain a suitable threshold): codewords with

higher density are marked with black points in figure 3.8, while those units without black

points represent the codewords with density below the threshold. This resulting density

Chapter 3. MSCL algorithm 60

codebook separated in two groups, is fixed for all the simulations. It will be used as a

reference table to define low density regions (Msparse ∈ M), and high density regions

(Mdense ∈ M) to calculate the four magnitude functions described ahead.

−4 −2 0 2 4 6 8 10
−4

−2

0

2

4

6

8

X1

X
2

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.8: Example of representation with 80 units (trained with MSCL for mean Q-error as
magnitude function) used to estimate the data density. The centred black points indicate the units
corresponding to the dense-zone codewords (ωdense), while the rest unit prototypes are assigned to
the sparse-zone codewords (ωsparse). The color bar represents the normalized-density (magnitude)
values.

Contract and expansion magnitude functions

In order to force units to concentrate in these dense or sparse zones, we can apply two

magnitude functions, that we call Contract1 and Contract2, to move prototypes to the

dense zones, and two magnitude functions, called Expansion1 and Expansion2, to move

prototypes to sparse zones. Many other definitions of magnitude functions are possible to

focus prototypes in these zones, but we selected these four magnitude functions in a simple

Chapter 3. MSCL algorithm 61

Figure 3.9: Gaussian example. Resulting representations of MSCL for contraction magnitude
functions are shown in figures a and b, MSCL with expansion magnitude functions in c and d

MSCL with Q-err in f and FSCL in figure e. The color bar represents the magnitude values
assigned to the units. Black points represent the initial codebook for density estimation of the
data, separated by Otsu method into dense (shown in figures b and c) and sparse (shown in figures
a and d) sub-representations. Contract1 and Expansion1 (a and c) present magnitude functions
that force units to avoid the corresponding black points. Contract2 and Expansion2 (b and d)
present magnitude functions that force units to approximate to the black points.

Chapter 3. MSCL algorithm 62

form, as it was not our objective to determine which is the best selection of magnitude

function for each task. Figure 3.9 shows an example of simulation results corresponding

to the MSCL algorithm for different contraction and expansion magnitudes.

In MSCL example for Contract2, the magnitude function is chosen to concentrate units

in data zones with high density, identified by ωdense. First, for each unit um it is calculated

its minimal distance (MD) to the zone of the dense-prototypes, Mdense:

MDm(t) = min
um∈M

uk∈Mdense

(‖ωk(t)−wm(t)‖) (3.37)

And the magnitude function of each unit uses this distance normalized by the maximum

for all units:

MF (m)(t) = 1−
MDm(t)

max
um∈M

(MDm(t))
(3.38)

This magnitude function has maximum value 1 when the unit prototype coincides with

one of the dense-prototypes, so units are impelled to compete for placing their prototypes

over the black dense-representation, as can be appreciated in figure 3.9(b).

We can also force the contraction of the prototypes in dense zones by avoiding the

sparse-prototype representation. The magnitude function in this Contract1 approximation

is calculated:

MDm(t) = min
um∈M

uk∈Msparse

(‖ωk(t)−wm(t)‖) (3.39)

MF (m)(t) =
MDm(t)

max
um∈M

(MDm(t))
(3.40)

This magnitude function has maximum value of 1 in one unit such as its distance to

the Msparse set is the maximum from all prototypes, so units are impelled to compete

for placing their prototypes far from the black sparse-prototypes in figure 3.9(a). It is

worth noting that these prototypes mainly tend to concentrate on the means of data

distributions, while external distribution zones, marked with the black sparse-prototypes,

are less represented.

For the expansion applications we aim to concentrate units in data areas with low

data-density. The same magnitude functions used in contraction cases can be used by

interchanging dense-prototypes by sparse-prototypes. The Expansion1 case shown in figure

Chapter 3. MSCL algorithm 63

3.9(c) is obtained by avoiding the dense-prototypes, while Expansion2 shown in figure

3.9(d) is obtained by approximation to the sparse-prototypes. These expansion cases tend

to represent the boundaries of the clusters with more detail. Novelty detection applications

can benefit from this behavior, as they precisely need to distinguish these boundaries with

more detail, in order to identify if a new data sample belongs to the known data distribution

or not.

For all methods mentioned before, three tests with 40, 80 and 160 prototypes (M =

[40, 80, 160]) for initial random weights were trained with the dataset during 50 cycles for

each algorithm. Along the training process three evaluation measures are calculated to

represent their evolution and final values. The three tests were replicated 30 times and

their evaluation measures averaged to avoid distortion due to the random initialization.

In order to evaluate the performance of the methods in generating a vector quantization

task, and considering that data is not labelled in any form, we propose three unsupervised

measures for evaluation: Davies-Bouldin Index (DB-index) [20], Shannon’s informational

entropy (normalized by the maximum value log2(number of codewords)) and the Weighted

Mean Squared Error (WMSE).

Figure 3.10 shows the training evolution of the mean DB-index in the different meth-

ods (averaged in 30 simulations). The left graph shows the evolution for methods: MSCL

with Q-error as magnitude, FSCL, FCM, NG, SOM and K-means. The right graph also

shows these two methods as comparison, and the results for the different MSCL in contract-

expansion examples. The minimum final values correspond to MSCL with Expansion1 and

Q-error as magnitude functions. As expansion examples do not pretend to achieve an opti-

mum VQ of the dataset, their DB-index evolution present final values higher than the other

magnitudes. It is interesting to note that DB-indexes of Contract1 and Expansion1 ex-

amples that avoid the sparse-prototypes and dense-prototypes, respectively, present lower

values than Contract2 and Expansion2 examples that approximate the dense-prototypes

and sparse-prototypes respectively. This difference stems surely from the fact that the

approximating strategy is less flexible in the prototype distribution (focusing in the fixed

black or sparse prototypes) than the avoiding strategy.

In the top-left graph of figure 3.10, the MSCL with Q-error generates the lower DB-

index, and surprisingly the Expansion1 magnitude function in the top-right graph can

generate the minimum value. This magnitude function forces units to avoid the dense

codewords in the center of distributions and generates a more detailed representation of

the external parts of data distributions. MSCL, with mean Q-error as magnitude func-

tion, tends to give the best clustering representations measured by DB-index, that is not

Chapter 3. MSCL algorithm 64

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

D
B

−
in

de
x

Measures

Q−error

K−Means

FSCL

FCM

NG

SOM

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
B

−
in

de
x

Measures

 Q−error

K−Means

Contract1

Contract2

Expansion1

Expansion2

0 20 40 60 80 100
0.9

0.92

0.94

0.96

0.98

1

E
nt

ro
py

Measures

Q−error

K−Means

FSCL

FCM

NG

SOM

0 20 40 60 80 100

0.85

0.9

0.95

1

E
nt

ro
py

Measures

Q−error

K−Means

Contract1

Contract2

Expansion1

Expansion2

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

W
M

S
E

Measures

Q−error

K−Means

FSCL

FCM

NG

SOM

0 20 40 60 80 100
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

W
M

S
E

Measures

Q−error

K−Means

Contract1

Contract2

Expansion1

Expansion2

Figure 3.10: Evolution along training process during 50 cycles of the averages in 30 simulations
of the DB-Index, Normalized Entropy and Weighted Mean Squared Error. The left column shows
the evolution for methods: MSCL with Q-error, FSCL, FCM, NG, SOM and K-means. The right
column shows also MSCL with Q-error and K-means as comparison, with the results for the different
MSCL in contract-expansion examples.

surprising as DB-index is based on evaluating the homogeneous partition of mean Q-error

among prototypes, so MSCL using Q-error as magnitude, which tends to accomplish this

desired behavior, becomes the best in this index evaluation.

For normalized entropy in graphs of the second row, the best method is FSCL, as it

Chapter 3. MSCL algorithm 65

Method BD Mean/Std H Mean/Std WMSE Mean/Std

Q-error 0.385 0.070 0.9157 0.0034 0.2743 0.0023
FSCL 0.491 0.188 0.9972 0.0003 0.2247 0.0010
Contract1 0.638 0.382 0.9739 0.0026 0.2186 0.0093
Contract2 0.837 0.425 0.9493 0.0077 0.2497 0.0116
Expansion1 0.492 0.147 0.8157 0.0094 0.3936 0.0124
Expansion2 1.065 0.699 0.8482 0.0080 0.3653 0.0140
FCM 0.673 0.286 0.9934 0.0016 0.2735 0.0052
NG 0.385 0.108 0.9776 0.0013 0.2307 0.0012
K-Means 0.473 0.130 0.9751 0.0027 0.2388 0.0041
SOM 2.093 0.108 0.9423 0.0036 0.5530 0.0124

Table 3.2: Mean and standard deviation, for 30 tests, of final measures: DB-index, Normalized
entropy and WMSE, after training 40 units for the VQ task along 50 cycles. The codebook for the
estimation of densities has 80 codewords and is shown in figure 3.8.

was expected. The other standard VQ methods tend to rise their entropies as they are

methods focused in data density replication, but MSCL methods do not increase entropies,

as their magnitudes are other than data density replication. The bottom graphs represent

the Weighted MSE. In this case, the magnitude used for weighting the MSE of each unit

of all methods is obtained as the equation 3.38, so all methods who tend to concentrate

units in the center of the data distributions will present a decreasing evolution for their

WMSEs (as it can be appreciated in the lower-left graph), being the MSCL methods with

contract magnitude functions whose present the lower values of all (lower-right graph).

However, the MSCL with expansion magnitude functions (Expansion1 and Expansion2)

tend to push their units out of the centers of data distributions and the calculated WMSE

tends to grow instead of decreasing (lower-right graph).

Tables 3.2, 3.3 and 3.4 show the mean and standard deviation (30 simulations) for

the final values obtained in the three evaluation measures with the different algorithms

using 40, 80 and 160 units. For the entropic measure, FSCL is always the best, as was

expected by [1]. For the Weighted MSE, as this measure is obtained by applying normalized

magnitudes obtained with equation 3.38, the MSCL methods with contracting magnitude

functions (Contract1 and Contract2) tend to give the lower values in WMSE. For DB-index

measure it is not so clear which method is the best in obtaining the lower value, besides

the standard deviation values are quite large compared with those of entropy and WMSE.

However, MSCL with Q-error presents in DB-index consistent lower values and standar

Chapter 3. MSCL algorithm 66

Method BD Mean/Std H Mean/Std WMSE Mean/Std

Q-error 0.3559 0.0639 0.9160 0.0021 0.1404 0.0012
FSCL 0.3842 0.1805 0.9967 0.0003 0.1131 0.0009
Contract1 0.5717 0.4761 0.9738 0.0024 0.1093 0.0053
Contract2 0.7375 0.4298 0.9640 0.0037 0.1041 0.0033
Expansion1 0.3322 0.1503 0.8201 0.0070 0.1962 0.0050
Expansion2 0.7019 0.3268 0.8568 0.0064 0.1794 0.0068
FCM 0.7874 0.4513 0.9910 0.0014 0.1584 0.0035
NG 0.3904 0.1462 0.9768 0.0013 0.1189 0.0007
K-Means 0.4208 0.1743 0.9760 0.0025 0.1233 0.0026
SOM 3.1550 0.1980 0.9451 0.0021 0.4285 0.0073

Table 3.3: Mean and standard deviation, for 30 tests, of final measures: DB-index, Normalized
entropy and WMSE, after training 80 units for the VQ task along 50 cycles. The codebook for the
estimation of densities has 80 codewords and is shown in figure 3.8.

Method BD Mean/Std H Mean/Std WMSE Mean/Std

Q-error 0.3429 0.1628 0.9337 0.0016 0.0641 0.0004
FSCL 0.3179 0.1570 0.9960 0.0003 0.0544 0.0006
Contract1 0.4487 0.3566 0.9636 0.0022 0.0518 0.0016
Contract2 0.5652 0.3807 0.9622 0.0017 0.0497 0.0009
Expansion1 0.4061 0.1473 0.8373 0.0032 0.0878 0.0017
Expansion2 0.5723 0.4350 0.8794 0.0024 0.0794 0.0057
FCM 0.8428 0.6305 0.9782 0.0018 0.1107 0.0030
NG 0.3443 0.1274 0.9782 0.0012 0.0580 0.0005
K-Means 0.3911 0.1562 0.9830 0.0024 0.0621 0.0014
SOM 3.6653 0.1224 0.9605 0.0015 0.2508 0.0059

Table 3.4: Mean and standard deviation, for 30 tests, of final measures: DB-index, Normalized
entropy and WMSE, after training 160 units for the VQ task along 50 cycles. The codebook for
the estimation of densities has 160 codewords and is shown in figure 3.8.

Chapter 3. MSCL algorithm 67

deviations, as it was expected cause the DB-index is based in Q-error estimation.

3.4.2 Interpolation application

3.4 3.6 3.8 4.0 4.2
−10

−8

−6

−4

−2

0

2

4

6

8

10

X

Y

Data
MSCL
FSCL
Magnitude

Figure 3.11: Interpolation example showing the FSCL and MSCL representations of the data series.
The red line represents the magnitude value along the data series. FSCL does not represent the
data in the high frequency perturbation as well as MSCL.

Next example consists in interpolating a designed data series to show that MSCL can

be focused to any characteristic of the data. In this case, we focus the magnitude function

to have a detailed representation of high frequency variations that can be found in the

data series. Data set was generated by uniformly sampling a function with three piecewise

function with a high frequency perturbation:

LF (x) = −10 cos (12x) + 12 sin (10x),

HF (x) = 2.1 + 6 sin (0.15x),

y(x) =

{

LF (x), ∀ x ∈ {(3.3, 3.9], [3.96, 4.3)}

HF (x), otherwise

Chapter 3. MSCL algorithm 68

with x = {3.3, . . . , 4.3}.

Two networks with 50 units (with a value of β so αini = 0.5, αfinal = 0.01) were trained

for 100 cycles with input data vectors (x, y), one with FSCL and the other with MSCL. The

selected magnitude function is focused on detecting high frequency peaks. To accomplish

it, MF (m) is chosen as the average of the smooth function SM() for data samples assigned

to unit um at time t:

SM(xk) = smooth(|y(xk)− y(xk−1)|) (3.41)

MF (m) = mean(SM(xk)) ∀xk ∈ Rm(t)

The smooth function generates a 100 point moving average filter of the series of differ-

ences of y in two consecutive points.

Figure 3.11 shows that MSCL (black circles) is more efficient than FSCL (blue crosses)

to represent high frequency peaks. The value of the magnitude function is also represented

(red line) showing high values when y(x) presents abrupt changes, and low values when

y(x) is almost constant.

Chapter 4
MS-SOM algorithm

4.1 Introduction

Soft competitive learning comprises a set of methods were more than a single neuron

adapt on presentation of a sample pattern. These algorithms possess some features that

are advantageous over hard competitive learning methods: avoiding unused (‘dead’) units,

accelerating the learning phase, filling empty areas in the dataset space or avoiding local

minima. Self Organizing Maps (SOM) [38] is one of these algorithms with the property

of generating topographic organization of neurons in a grid of reduced dimension. This

makes SOM useful for visualizing low-dimensional views of high-dimensional data, akin to

multidimensional scaling. SOM has also been used for data classification (i.e. [51], [7]).

On the other hand, Magnitude Sensitive Competitive Learning (MSCL) [61] is a hard

competing algorithm which has the capability of distributing the unit centroids following

any user defined magnitude that may have no kind of relation with the data density (as it

has been demonstrated in the previous chapter).

Comparing both algorithms, the main disadvantage of SOM neural networks against

MSCL is that SOM only can distribute unit in direct function of the data density. Only

magnification control methods ([81], [54]) present an alternative to SOM that allows the

modification of the relation between data and weight vector density for a given model.

However, it is important to highlight that in this kind of methods, final unit distribution

is always somehow related with data density.

In this chapter we describe a new algorithm, Magnitude Sensitive Self Organizing Map

(MS-SOM), an hybrid between MSCL and SOM, which synthesizes the advantages of

both methods. It preserves the topological properties of the input space and additionally,

69

Chapter 4. MS-SOM algorithm 70

distributes units following a target magnitude.

The remainder of this chapter is organized as follows. Section 4.2 describes the pro-

posed MS-SOM algorithm. In section 4.3 the new algorithm is applied to three examples:

a toy example with Gaussians to show the algorithm capabilities, 3D surface modelling,

and data classification.

4.2 Magnitude Sensitive Self Organizing Maps

4.2.1 The algorithm

Magnitude definitions:

As in the MSCL algorithm, the user-defined magnitude function, MF (), acts as an extra

information for the network, forcing neurons to represent with more detail those zones of

data space with higher magnitude values. There exists mainly two situations depending

on the data dependency of this function MF (): when magnitude is determined exclusively

from input data, MF (X), we define a magnitude vector, mx, that is included as an extra

input for the neurons of the map, however, when magnitude function also depends on neu-

ron data, MF (wm(t),X), we define for each neuron m an internal variable, mum(t). These

unit variables can be represented as a magnitude map Mu(t) with the same dimensionality

of the map grid. Only in the second situation, the magnitude value of the winning neuron

must be feed back to the rest of the neurons for their updating phase. The examples stud-

ied in next sections show both situations: 3D-surface example presents magnitude vector

associated with input data, while Gaussian and classification examples present magnitude

maps associated with neurons.

1. Initialization

Initial codebook M is formed by M weight vectors wm (m = 1 · · ·M) initialized linearly,

forming a low dimensional grid (usually 2D). For the case when magnitude depends on

neurons, we need to initialize the magnitude map in t = 0 with initial values for Mu(0).

Their accumulated magnitudes are maccm. Their initial values at t = 0 are:

muk(0) = MF (wm(0),m,X) (4.1)

macck(0) = muk(0) (4.2)

Chapter 4. MS-SOM algorithm 71

2. Random selection of data samples

A sample data x(t) = (x1, .., xD)(t) ∈ R
D is randomly selected at time t from the dataset

X with P patterns.

3. Global unit competition

The unit i with minimum distance from its weights to the input data vector is selected as

global winner in this first step.

i = argmin
m∈M

(‖x(t)−wm(t)‖). (4.3)

At this point, we form the local winner set S, (S ⊂ M) with the Mgrid units belonging

to the neighbourhood in the grid, of unit i in the MS-SOM map as:

S = {s1, s2, ..., sMgrid
} (4.4)

For example, in a two dimensional grid with hexagonal representation, Mgrid would

have a value of 7, for the winner unit and its six closest neigbour units around.

4. Local unit competition

Winner unit j is selected from units belonging to S, as the one that minimizes the product

of its magnitude value with the distance of its weights to the input data vector, one of

these equations:

j =











argmin
us∈S

(mus(t)
γ · ‖x(t)−ws(t)‖)

argmin
us∈S

(maccs(t)
γ · ‖x(t)−ws(t)‖)

(4.5)

The use of mu in local competition is more adequate than macc when the goal of

training is Qerr reduction while macc is better to reduce the entropy.

5. Winner and magnitude updating

For all units in the map, weights and magnitude are adjusted iteratively for each training

sample, following (m = 1 . . .M):

Chapter 4. MS-SOM algorithm 72

mf(t) =







mx(t), if used a magnitude vector (mx).

muj(t), otherwise.
(4.6)

maccm(t+ 1) = maccm(t) +mf(t) · hmj(t) (4.7)

αm(t) =

(

mf(t) · hmj(t)

maccm(t+ 1)

)β

(4.8)

wm(t+ 1) = wm(t) + αm(t) (x(t)−wm(t)) (4.9)

mum(t+ 1) =







mum(t) + αm(t) (mx(t)−mum(t)) , if mx is used.

MF (wm(t+ 1),m,X), otherwise.
(4.10)

In the above equations hmj(t) is the neighbourhood kernel around the winner unit j

at time t. This kernel is a function depending on the distance of map units j and m in

the map grid, and mum(t) is the value of the magnitude at unit m. Finally, αm(t) is the

learning factor, γ defines the strength of the magnitude during the competition and β is

a scalar value between 0 and 1. Observe in eq. 4.10 that if magnitude is presented as an

extra input, the magnitude of the unit is updated as any other weight.

6. Stopping condition

Training is finished when a termination condition is reached. It may be the situation when

all data samples has been presented to the MS-SOM neural network along certain number

of cycles, T , or any other function that could measure the training stabilization.

4.2.2 Analysing of the algorithm

Competition:

Competition for the Best Matching Unit (BMU) includes a local competition step taking

into account the magnitude, that forces units to move towards space regions of higher value

of magnitude. Neurons with high values of magnitude are less competitive than those with

low values (eq.4.5), so space zones with larger magnitude recruit more neurons in their

representations.

Learning:

Learning factor αm(t) for each unit depends on:

Chapter 4. MS-SOM algorithm 73

1. The value of the magnitude mf(t) associated to each sample data. High magnitude

produces high changes in unit weights, while values near zero produces practically

no learning.

2. The distance from each unit to the winner unit. The importance of this factor is

modulated by the kernel function hkj. Higher distance means lower learning.

3. The accumulated magnitude at the unit. It is related to the firing history of each

unit. High accumulated magnitude means high learning up to the moment, and

therefore unit becomes practically static.

4. The value of β, the forgetting factor. Using the definition of learning factor of (4.9),

when β is equal to one, units’ weights become the running weighted mean of the value

of the data samples belonging to its Voronoi region, and adjacent regions (weighted

according to its neighbourhood). On the contrary, lower values of β means that

recent patterns have higher importance in the running weighted mean. In the limit

case (β = 0), each unit would become the last presented sample: wm(t+ 1) = x(t)

Magnitude Map:

As MS-SOM generates a low dimensional grid structure, it is possible to draw a magnitude

map in low dimension. This map has the same dimensions of the grid, with a value for

each unit equal to its corresponding magnitude. Figures 4.1(a) and 4.2(c) show examples

of magnitude maps. If magnitude is only data dependent, the weights of neurons in the

magnitude input can be used to generate the magnitude grid. If magnitude depends on

neuron, we can use the magnitude map Mu.

4.3 Application examples

4.3.1 Modelling Gaussian distributions

In this example we test the performance of a MS-SOM with four different types of magni-

tude functions, compared with a SOM.

We use a synthetic data set consisting of N = 5000 samples in a 2D plane (x(t) ∈ R
2)

drawn from a mixture of three Gaussian distributions with means [0,0], [3,4] and [6,0], and

covariance matrix [0.1 0; 0 0.1] for all of them. The fraction of samples placed in each

cluster is N/3.

Chapter 4. MS-SOM algorithm 74

Figure 4.1: Gaussian example. (a) U-matrix and Magnitude map of MS-SOM using MF4 as
magnitude function. (b) Trained SOM. MS-SOM trained with MF1 (c), with MF2 (d), with MF3

(e) and trained with MF4 (d).

Chapter 4. MS-SOM algorithm 75

Units Algorithm Constant X2 dist(0, 0) dist(Xmean)

40 SOM 0.574 0.726 0.688 0.692
MSSOM 0.474 0.550 0.540 0.536

80 SOM 0.424 0.524 0.515 0.503
MSSOM 0.357 0.435 0.402 0.404

160 SOM 0.296 0.361 0.358 0.353
MSSOM 0.246 0.273 0.274 0.275

Table 4.1: Table shows the mean values in 100 tests of the Weighted Mean Square Error (WMSE)
calculated in three codebooks (sizes 40, 80 and 160) after applying SOM and MS-SOM trained with
four magnitude functions. WMSE is always lower in MS-SOM independently of the magnitude
function used.

SOMs are trained using a Gaussian function for hkj(t) with neighbour ratios within

[3,0.05] and a learning factor that decreases exponentially with time. Three SOMs are

initialized linearly in the data space using codebooks of 40, 80 and 160 units.

MS-SOMs have the same number of units than SOM (also uses 40, 80 and 160), use

the same initial codebooks, hkj(t) and a value of β = 1. We apply four different magnitude

functions, that depend on unit weights:

1. Constant value: MF1(wm(t),m,X) = 1.

2. Distance to ordinate axis : MF2(wm(t),m,X) = abs(wm,2).

3. Distance to point (0,0): MF3(wm(t),m,X) =‖ wm ‖.

4. Distance to the mean of dataset: MF4(wm(t),m,X) =‖ wm − xmean ‖.

Figure 4.1 shows some results for SOM and MS-SOM (with 80 units) of the grid repre-

sentation over the data space. Figure 4.1(a) shows the corresponding U-matrix (Matrix of

distances between neighbouring units), and the magnitude map for one MS-SOM. Figure

4.1(b) shows the typical result of a trained SOM were units tend to allocate their centroids

in areas with higher data density.

MS-SOM neural network in Fig. 4.1(c) used a constant value for magnitude equal to

one, so that magnitude function have no effect on final training. Units only compete by

distance. As in the SOM case, units are centered in zones with high density. However its

distribution is not so affected by the ’border effect’, of the SOM representation. That is

because the learning factor is different for each unit in MS-SOM and αm(t) depends on

Chapter 4. MS-SOM algorithm 76

the activation frequency of unit m. In Figure 4.1(d) units avoid the ordinate axis, and in

Figure 4.1(e) units avoid the(0,0) point.

Figure 4.1(f) shows a more expansive MS-SOM than using constant magnitude. Mag-

nitude of units becomes higher as their centroids are farther from mean of dataset and

units focus on these areas, although they have low data density.

We use Weighted Mean Squared Error (WMSE) as a measure of quantization quality.

It is the weighted mean of the quantization squared error, where weight factors in the

trained network are the values of mf (in eq.(4.6)), with Vm being the Voronoi set of the

unit m:

WMSE(X ;M) =

∑

m∈M

x∈Vm

mf · ‖x−wm‖
∑

x∈X
mf

(4.11)

Table 4.1 shows the Weighted Mean Square Error (WMSE) calculated in three code-

books (sizes 40, 80 and 160) after applying SOM and MS-SOM trained with four magnitude

functions indicated above. Results are different in the four magnitude functions because

weights of each sample change depending on the selected function.

In all the cases MS-SOM surpass SOM, getting lower weighted quantization error. It

is significant that in the case of the constant one magnitude function, MS-SOM is better

than SOM, because ’border effect’ is lower in MS-SOM.

4.3.2 Classification

Dataset in classification problems consists on P samples x(t) ∈ R
D separated in K possible

classes, C ∈ {C1, C2, . . . , CK}. Each sample has a label that indicates the class where the

sample belongs to (see eq. 4.12) and is provided to the neural network during training, so

it is able to provide class information for magnitude calculation at the units.

We will compare SOM and a MS-SOM that focus units in zones with high miss-

classification error. The process is as follows:

1. Vector data in the sample dataset are joined with the class label vector:

y(t) = (x1, . . . , xD, c1, . . . , cK) ∈ R
(D+K), (4.12)

being ck = 1 if x(t) ∈ Ck, or ck = 0 if it belongs to other class.

2. Data samples are normalized for the first D components, the only components

considered during the first competition step based in distance. Last part of vector y

(c1, . . . , cK) is masked but it is updated during training.

Chapter 4. MS-SOM algorithm 77

3. SOM and MS-SOM are trained using y(t) as data inputs selected randomly.

Magnitude function for MS-SOM depends on each unit and has the following value:

mum = K ·
1−max(ξm)

(K − 1)
(4.13)

where ξm is the vector formed by the last K components of weight vector wm. This vector,

ξm, acts as a counter of samples of each class captured by unit. By this way, magnitude

is 0 if unit only have data samples of one class, or close to 1 in the situation of maximum

confusion between the K classes. Then, (max(ξm) = 1/K),

4. After training, the class assigned to each unit is:

class() = argmax(ξ) (4.14)

In this classification comparative, we used three data sets: the Iris Dataset [31] and two

downloaded from the Proben1 library [67]. First one consists of 150 samples from three

species of Iris (Setosa, Virginica and Versicolor). The second dataset presents 6 types of

glasses; defined in terms of their oxide content (i.e. Na, Fe, K, etc). The Third dataset

is based on patient data to decide whether or not a Pima Indian individual is diabetes

positive. Number of samples, inputs and classes are specified for each problem in Table

4.2.

SOM and MS-SOM were trained with the same parameters, with ratios within [3,0.05]

using a Gaussian neighbouring function and a decreasing learning factor. Both neural

networks received the same linear initialization. Map sizes for all the problems are displayed

in column Map of Table 4.2. MS-SOM uses a value of β = 1.

Table 4.2 shows the mean classification error (CE) and the mean Weighted MSE

(WMSE) averaged in 20 trainings with each dataset. CE is the total number of sam-

Problem Samples/Inputs Classes Map CES CEMS WMSES WMSEMS

Iris 150 / 4 3 [5x3] 0.012 0.002 0.643 0.556
Glass 214 / 9 6 [6x4] 0.244 0.137 1.484 1.306
Diabetes 768 / 8 2 [10x8] 0.076 0.049 1.493 1.366

Table 4.2: Mean classification error (CE) and Weighted Mean Square Error (WMSE) for SOM
(with sub-index S) and MS-SOM (MS) obtained after training both algorithms with the three
datasets. Additionally number of samples, number of inputs, classes, and map size is displayed for
each problem.

Chapter 4. MS-SOM algorithm 78

ples associated to an erroneous class after each test, divided by the number of samples in

the dataset. Columns CES and CEMS display classification errors for SOM and MS-SOM

respectively. Columns WMSES and WMSEMS are the equivalent for the Weighted Mean

Square Error.

It is clear that in the three problems, MS-SOM with units focused in the limits between

classes is able to distinguish more accurately the class to which each sample belongs to (it

has lower CE error). The reason is that MS-SOM leave few units in areas with no class

confusion (where classification error is null) while many of the units tend to be in the limit

between classes. On the other hand, WMSE reflects the quantization error, focussing in

areas of high magnitude. This measure is lower in MS-SOM algorithm, what means that

its centroid density is higher in the decision regions, giving as result a better performance

in the classification task.

Figure 4.2 shows a MS-SOM trained with the iris dataset: (a) Map with colours de-

pending on the classes for each unit (interpolating colours mean that a unit has samples

from different classes), (b) map with the final assigned class for each unit, and (c) magni-

tude associated to each unit. In the magnitude map, limits between the three classes are

more clearly represented because MS-SOM tends to distribute units in the decision regions

between contiguous classes.

Chapter 4. MS-SOM algorithm 79

Figure 4.2: Classification results for MS-SOM. Iris example: (a)map with colours depending on the
classes for each unit (interpolating colours mean that a unit has samples from different classes), (b)
map with the final assigned class for each unit, and (c) magnitude associated to each unit (clearer
grey means higher magnitude). In this representation, the map size (10x6 units) was bigger than
the one used in the comparative to highlight the value of the magnitude in zones of high class
confusion. Glass example: (d)Results of training a (17x11) grid with SOM. (e) Corresponding
results of MS-SOM.

Chapter 5
Masked MSCL algorithm

5.1 Introduction

In chapter 3 we have explained the MSCL algorithm in detail. MSCL as many competitive

learning algorithms use homogeneous dataset in the sense that each of the samples has

to have the same dimension (the number of components), and the trained neural network

also has the same dimension. Similar issue affects MS-SOM.

However sometimes, due to the nature of the dataset, some of the data samples may

have unknown values for any of its components. This forces to some kind of preprocessing

that usually introduces undesired artifacts during training. There may be different reasons

for the inconsistency in the dataset’s component size. Data collected in different periods

of time or by different entities may be inconsistent. For instance meteorological data may

lack of some variables as wind velocity when remounting may years ago, or just come from

different meteorological stations. Then, it is no possible to process directly this dataset

with common competitive learning methods. To do it, incomplete components in some of

the samples must be dealt in some way. Another example is statistical information about

citizens in different countries. Even though there are international entities that are doing

a huge effort to unify measures, they are usually different in some way.

Here we present a masked version of MSCL that is able to deal with data samples of

different size (we speak of ’masked’ data). To use this algorithm we will consider that

each data sample consists in two vectors, x(t) = (x1, . . . , xD)(t) ∈ R
D the data vector

itself (with the maximal possible dimension of a data sample D), and its corresponding

mask msk(t) = (msk1, . . . ,mskD)(t) ∈ R
D. The mask is a vector with ones in the valid

components of x(t) and zeros for the rest.

80

Chapter 5. Masked MSCL algorithm 81

The new algorithm will imply the use of vectors of length equal to D instead of scalars

for the accumulated magnitude of each unit (macci(t) = (macci1, . . . ,maccin)(t) ∈ R
D),

and also for the learning vector (alpha = (α1, . . . , αn) ∈ R
D).

5.2 The masked MSCL algorithm

The next subsections describe the algorithm in an sequential mode, where units are ad-

justed after a presentation of each sample.

5.2.1 Initialization

Initialized the neural network M to contain M units:

M = {u1, u2, . . . , uM} (5.1)

with unit weights wm ∈ R
D (corresponding to unit um) the value of randomly selected

inputs from the dataset:

wm(0) = x(m) m = 1 . . .M (5.2)

Then, unit magnitude might be initialized from the magnitude function depending only

on unit parameters (equation 5.3a), or alternatively by the value of the magnitude at the

selected sample data for each unit (eq. 5.3b). Obviously, this function has to be able to

deal with different sized input vectors, and return a scalar value.

mum(0) = MF (msk(t) ◦wm(0), < m >), (5.3a)

mum(0) = mx(m), (5.3b)

Finally, initial values for the magnitude accumulated vectors are:

maccm(0) = mum(0) ·msk(m) (5.4)

5.2.2 Random selection of data samples

A sample data x(t) and its corresponding mask, msk(t) is randomly selected at time t

from the dataset. This process will be repeated until every data has been presented to the

masked MSCL neural network.

Chapter 5. Masked MSCL algorithm 82

5.2.3 Global unit competition

K units with minimum distance from their masked weights to the masked input data vector

are selected as winners in this first step. In this case distance is calculated considering only

valid components in msk(t) for both vectors. Once again we form the S set. S ∈ M such

that:

‖msk(t) ◦ (x(t)−ws(t))‖ < ‖msk(t) ◦ (x(t)−wm(t))‖ ∀us ∈ S ∧ um /∈ S . (5.5)

5.2.4 Local unit competition

In the local competition step, winner unit j is selected from units belonging to S as the

one that minimizes the product, component by component, of its magnitude value as in

equation 5.6-top or the accumulated magnitude, eq. 5.6-bottom, using the distance of its

weights to input data vector calculated in the p valid components. It follows:

j =











argmin
us∈S

‖muγm · (msk(t) ◦ (x(t)−wm(t)))‖, or

argmin
us∈S

‖maccm(t)γ ◦ (x(t)−wm(t)))‖
(5.6)

The use of mu in local competition is more adequate than macc when the goal of

training is Qerr reduction while macc is better to reduce the entropy.

5.2.5 Winner update

First it is necessary to calculate the value of the magnitude vector associated to the input

sample mx(t). It may have two definitions depending if the magnitude function depends

directly on the input, or it is calculated from the magnitude at the BMU(t) of the input

sample:

mx(t) =







MF (msk(t) ◦ x(t)) ·msk(t), if depends on sample magnitude

muj(t) ·msk(t), if depends on BMU’s magnitude
(5.7)

This vector is used to update the accumulated magnitude at winner unit:

maccj(t+ 1) = maccj(t) +mx(t) (5.8)

Chapter 5. Masked MSCL algorithm 83

Then, only valid components (those with mskd = 1) of winner weights are updated:

wjd(t+ 1) = wjd(t) + αd (xd(t)− wjd(t)) , d : mskd = 1 (5.9)

where alpha is the learning factor vector for the winner calculated as the element-wise

division between mx and maccj powered to β. Using this definition of alpha(t), only

valid components at time t of winner weight are updated. The value of its k component is:

αk(t) =







(

mxk(t)
maccjk(t+1)

)β
, if mskk = 1,

0, otherwise
(5.10)

5.2.6 Magnitude update

Only winner’s magnitude is adjusted iteratively for each training sample, following eq.3.23

if magnitude is given by a value associated to each input sample, or eq.3.24 otherwise. The

mean value of alpha in the valid components is used as muj is an scalar:

mum(t+ 1) =







mum(t) +mean(alpha(t)) · (mx(t)−mum(t)) , if MF (x(t)) is used.

MF (wm(t+ 1), < m >), otherwise.

(5.11)

5.2.7 Stopping condition

Training finish when a termination condition is reached (this condition may be the same

as in the MSCL algorithm).

5.3 The masked MS-SOM algorithm

The masked MS-SOM algorithm follows the same steps and equations as the masked MSCL

algorithm excepting in the following points:

• mx takes different values for different units taking into account the unit neighboring

function, hij following:

mxi(t) =







hij ·MF (msk(t) ◦ x(t)) ·msk(t)

hij ·muj(t) ·msk(t)
(5.12)

Chapter 5. Masked MSCL algorithm 84

Unit neighboring function may be defined depending on the grid distance between

each unit i and the winner j in different ways, for instance:

hij = exp

(

distance(i, j)2

2σ2

)

(5.13)

• alpha and macc are calculated for every unit, not only for the winner.

• All units are updated at each step.

5.4 Experimental results

We perform a simple example to demonstrate the capability of the MSCL and MS-SOM

in their ’masked’ implementation to deal with incomplete data. To do it, we first set up

a synthetic data set X , consisting of P = 3000, 3D samples (x(t) ∈ R
3) drawn from a

mixture of three Gaussian distributions with means [0,0,0], [1,1,1] and [0 0.35 0.65], and

covariance matrix [0.02 0 0; 0 0 0.02; 0 0.02 0] for all of them. All of the three gaussians

have 1000 samples.

Additionally, we generate a ’mask’ matrix with the same size as X , so that its i-th

row vector corresponds to the mask of x(t), to indicate if that component is valid or not.

Each component of this mask vector takes a value of 1 (with probability of 70%) or 0 (with

probability equal to 30%).

Figure 5.1 shows the dataset used in the algorithms, and the corresponding mask.

We trained a MSCL and a MS-SOM neural networks in two cases, directly with dataset

X , an also using the ’mask’ matrix. Codebooks neural networks have 10 units in both cases.

For training, we tested two different magnitude functions. First a constant value equal to

one (it is the same than training directly with the basic CL algorithm, and SOM). Tests

were repeated using the absolute value of first component of each sample as the magnitude

function.

Figure 5.2 shows final results for training the MSCL in the four cases (two magnitude

functions, and direct(graphs in top row)/masked(graphs in bottom row) training). It can

be seen that there is no appreciable difference between the use or not of the mask. Using

magnitude equal to one, units spread homogeneously in the three Gaussian distributions

in both cases. Using the magnitude funtion as MF (t) = abs(x1(t)), units are mainly

allocated in the Gaussian with higher value of first component of each sample.

Similar situation can be appreciated in Figure 5.3, that shows final results for training

the MS-SOM in the four cases (two magnitude functions, and direct(top)/masked(bottom)

Chapter 5. Masked MSCL algorithm 85

Figure 5.1: Dataset matrix (left) and corresponding mask(right). This dataset corresponds to
the three 3D Gaussian distributions. Mask matrix indicates valid components of each sample (in
white), or invalid (30% of components, in black).

Chapter 5. Masked MSCL algorithm 86

0

0.5

1
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1
1.2

1.40

0.5

1

(a)

0

0.5

1
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1
1.2

1.40

0.5

1

(b)

0

0.5

1
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1
1.2

1.40

0.5

1

(c)

0

0.5

1
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1
1.2

1.40

0.5

1

(d)

Figure 5.2: Final results of a trained MSCL with 10 units using two magnitude functions. On
top, row figures represent direct training without taking the mask into consideration. Bottom
shows masked version of MSCL (using mask shown in figure 5.1). Left column uses constant
magnitude function equal to one. Right column uses as magnitude function the absolute value of
first component of each sample.

Chapter 5. Masked MSCL algorithm 87

training). Differences with MSCL are due to the pulling effect of the MS-SOM.

These results demonstrate that the new algorithm is able to deal with incomplete data

in its two versions, using a MSCL neural network and a MS-SOM neural network.

Chapter 5. Masked MSCL algorithm 88

0

0.5

1
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1
1.2

1.40

0.5

1

(a)

0

0.5

1
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1
1.2

1.40

0.5

1

(b)

0

0.5

1
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1
1.2

1.40

0.5

1

(c)

0

0.5

1
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1
1.2

1.40

0.5

1

(d)

Figure 5.3: Final results of a trained MS-SOM with 10 units using two magnitude functions. On
top, row figures represent direct training without taking the mask into consideration. Bottom
shows masked version of MS-SOM (using mask shown in figure 5.1). Left column uses constant
magnitude function equal to one. Right column uses as magnitude function the absolute value of
first component of each sample.

Chapter 6
Magnitude Sensitive Initialization

6.1 Introduction

As it has be mentioned in chapter 2, one of the most popular clustering algorithms is the

K-means algorithm. This algorithm is a greedy algorithm for minimizing the MSE error,

hence, it may not converge to the global optimum. The performance of K-means strongly

depends on the initial guess of partition (that is, in the selection of initial centroids). To

achieve a good initialization, many other techniques have been proposed apart of random

initialization with data samples.

For instance, Cutting [19] used group average agglomerative clustering to select initial

centroids. Likas [44] proposed the global K-Means algorithm, an incremental approach to

clustering which dynamically adds one cluster center at a time through a global search

consisting on several executions of the K-Means algorithm. Onoda [57] proposed a seeding

method based on the independent component analysis. Katsavounidis et. al [36] proposed

a method, KKZ, that utilizes the sorted pairwise distances for initialization.

Some of these algorithms are not viable in practice as they are computationally expo-

nential in K. In 2007 Arthur and Vassilvitskii [8] proposed the K-means++ algorithm.

This algorithm chooses new centers by weighting of data points according to their squared

distance from the closest center already chosen. This algorithm improves both speed and

efficiency of K-means.

In this chapter we present a new algorithm, Magnitude Sensitive Init (MS-INIT) as a

generalization of both K-Means++ and KKZ when data samples are additionally weighted

with any kind of magnitude. This algorithm chooses centroids such they are focused in

space areas with high magnitude. Therefore, it is a good initialization method for MSCL,

89

Chapter 6. Magnitude Sensitive Initialization 90

as it will be demonstrated later.

The chapter has three sections. First, K-Means++ and KKZ are outlined. Then,

we present the new MS-INIT algorithm. Finally, some experiments show the algorithm

capabilities.

6.2 Related algorithms: K-means++ and KKZ

6.2.1 KKZ

The KKZ algorithm works as follows:

1. The codebook set is initialized to contain only one unit, with codeword w1 randomly

selected from the dataset X :

M = {u1} (6.1)

2. Calculate for each input sample x ∈ X the value of d(x) as the shortest distance

from a data point to the closest of centers already chosen:

j = argmin
m∈M,x∈X

(‖x−wm‖)

d(x) = ‖x−wj‖ (6.2)

3. Take a new center un, choosing wn = x the sample with maximum value of d.

un = argmax
x∈X

(d(x))

M = M∪ {un} (6.3)

4. Repeat step 2 until we have chosen M centers altogether (we say that we choose ”M”

centers instead of ”K” for homogeneity in notation with other parts of this Thesis).

Once the algorithm has finished its processing, this is the codebook set:

M = {u1, u2, · · · , uM} (6.4)

Chapter 6. Magnitude Sensitive Initialization 91

6.2.2 K-means++

K-means++ works as follows:

1. The codebook set is initialized to contain only one unit, with codeword w1 randomly

selected from the dataset X :

M = {u1} (6.5)

2. Calculate for each input sample x ∈ X the value of d(x) as the shortest distance

from a data point to the closest of centers already chosen:

j = argmin
um∈M,x∈X

(‖x−wm‖)

d(x) = ‖x−wj‖ (6.6)

3. Take a new center un, choosing wn = x with probability

p(x) =
d(x)

∑

x∈X
d(x)

(6.7)

M = M∪ {un} (6.8)

4. Repeat step 2 until we have chosen M centers altogether. Once the algorithm has

finished its processing,

M = {u1, u2, · · · , uM} (6.9)

6.3 MS-Init

The new algorithm, MS-INIT requires the definition of the value of a magnitude mx

associated to each sample x. The algorithm works as follows:

1. The codebook set is initialized to contain only one unit, with codeword w1 randomly

selected from the dataset X according to the probability of appearance of x:

p(x) =
mx

∑

x∈D
mx

(6.10)

Chapter 6. Magnitude Sensitive Initialization 92

2. Calculate for each input sample x ∈ X the value of d(x) as the shortest distance

from a data point to the closest of centers already chosen:

j = argmin
um∈M,x∈X

‖x−wm‖

d(x) = ‖x−wj‖ (6.11)

3. Choose a new center un, making wn = x, with one of this two possibilities, following

the probability of the product of the magnitude associated to each samplemx(x)·d(x)

(eq. 6.12a) or maximizing this product (eq. 6.12b) :

p(x) =
mx(x) · d(x)

∑

x∈X
mx(x) · d(x)

(6.12a)

un = argmax
x∈X

(mx(x) · d(x)) (6.12b)

4. Add un to the codebook set (M = M∪{un}) and repeat step 2 until we have chosen

K centers altogether. Once the algorithm has finished its processing, the codebook

is:

M = {u1, u2, · · · , uM} (6.13)

The algorithm produces a codebook initialization with unit prototypes focused in

zones where mx is high, as it will be shown in the experimental section. Obviously if

the value of the magnitude is constant and equal to 1, equation (6.12a) is the same as

the equivalent in K-means++ and eq. (6.12b) as the KKZ algorithm. Therefore, MS-

INIT is a generalization of both algorithms, when magnitude information is provided.

6.4 Experiments

The aim of these experiments is to demonstrate that the MS-INIT algorithm is capable of

initializing a codebook of a desired size from a dataset X , following a defined magnitude.

The selected dataset is the 3 Gaussian distributions used in other chapters (i.e, in

subsection [4.3.1]). This dataset is represented in figure 6.1(a) were each sample has a

colour code according to its magnitude: black color means magnitude near zero, while

higher magnitude is represented in red.

Each sample has a associated value of magnitude given by:

Chapter 6. Magnitude Sensitive Initialization 93

−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4

5

6

7

1

2

3

4

5

6

7

(a)

−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4

5

6

7

(b)

−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4

5

6

7

(c)

−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4

5

6

7

(d)

−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4

5

6

7

(e)

−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4

5

6

7

(f)

Figure 6.1: (a) Dataset used in the examples of this chapter (with color coding according to the
magnitude associated to each sample) and codebooks of 80 units initialized with the different meth-
ods: (b) Random init, (c) KKZ algorithm, (d) Kmeans++ algorithm, (e) MS-INITmax algorithm
and (f) MS-INITprob algorithm.

mx(x) = abs(x2) (6.14)

Figure 6.1(b)− (f) shows the results of initializing a codebook of 80 units with the five

methods. In blue it is represented the dataset, while unit centers are the coloured circles.

6.4.1 Initialization example

In this example, each test consists on the initialization of three codebooks of sizes M =

[40,80,160] using the following methods for initialization:

• Random init : Directly M samples are selected at random to form the codebook.

• KKZ : Implemented with MS-INIT using magnitude = 1, maximizing d(x).

• K-Means++: Implemented with MS-INIT using magnitude = 1 and following the

probability of d(x)

Chapter 6. Magnitude Sensitive Initialization 94

• MS-INITmax: Following equation (6.12b). Therefore, maximizing the productmx(x)·

d(x).

• MS-INITprob: Following the probability of the product mx(x) · d(x), as indicated in

eq. (6.12a).

Since all algorithms under test select first unit randomly, what could affect the final

result, we ran 100 trials for every case. As a measure of performance quality of the new

method we use magnitude-weighted versions of MSE, and normalized Entropy. Table 6.1

shows the means (in 100 trials) of weigthed MSE, while table 6.2 shows the means of

weigthed entropy. By rows are ordered three different codebook lengths: 40, 80, and

160 units, and by columns shows results of applying the five initialization algorithms.

Every three possible training schemes after each initialization are marked with: None, K-

means and MSCL. Results of training the neural network after initialization (with different

methods) are explained in next section.

The number of units affects quantization in a inverse proportion and entropy in a direct

way. Higher number of units means lower value for the Weighted MSE and higher Weighted

Entropy (that tends to a value of one when normalized). For the None situation in the

tables, the representation is obtained with the initialization method without training.

Comparing these values the initialization algorithm that yields worse results is random

init as expected (except in the case of low number of units where KKZ forces units to

take the value of extreme samples in the dataset and therefore the weighted quantization

error increases). KKZ tends to distribute codewords uniformly in the data space, so

becoming very expansive (some of the reference vectors are in the limits of the three

Gaussian distributions). K-means++ also distributes codewords at random but with a

unit distribution that tends to follow the data density distribution. However, all of these

methods are still worse than MS-INIT when the goal is reducing the quantization error

following a magnitude function.

When goal is achieving high entropy, worse results are for KKZ and MS-INITmax as

none of these two algorithms achieve an uniform probability distribution (as it can be seen

in table 6.2 in the rows of training equal to ’None’).

In general, implementations of MS-INIT achieve better results, but it is clear that using

MS-INITprob is advantageous against the use of MS-INITmax regarding the performance

results. In figure 6.1 it can be seen that few more units are distributed in the limits of

Gaussian dataset with highest magnitude than in the case of MS-INITprob.

Chapter 6. Magnitude Sensitive Initialization 95

Units Training Random KKZ Kmeans++ MSINITmax MSINITprob

40 None 0.678 (0.049) 0.757 (0.038) 0.621 (0.031) 0.655 (0.030) 0.578 (0.019)
Kmeans 0.535 (0.024) 0.525 (0.010) 0.528 (0.020) 0.496 (0.006) 0.499 (0.010)
MSCL 0.475 (0.010) 0.474 (0.007) 0.470 (0.007) 0.464 (0.006) 0.468 (0.007)

80 None 0.485 (0.039) 0.468 (0.017) 0.433 (0.016) 0.417 (0.012) 0.392 (0.015)
Kmeans 0.371 (0.012) 0.365 (0.005) 0.367 (0.011) 0.349 (0.004) 0.339 (0.006)
MSCL 0.336 (0.006) 0.337 (0.004) 0.334 (0.006) 0.325 (0.003) 0.322 (0.003)

160 None 0.342 (0.016) 0.300 (0.006) 0.297 (0.010) 0.270 (0.004) 0.267 (0.005)
Kmeans 0.245 (0.009) 0.251 (0.004) 0.243 (0.008) 0.229 (0.002) 0.224 (0.003)
MSCL 0.231 (0.007) 0.233 (0.002) 0.231 (0.005) 0.220 (0.001) 0.217 (0.002)

Table 6.1: Table shows the mean values in 100 tests of the Weighted Mean Square Error (WMSE)
calculated in three codebooks (sizes 40, 80 and 160) after applying five initialization algorithms
(Random, KKZ, Kmeans++, MSINITmax and MSINITprob). Each of these codebooks is trained
following one of three possibilites: No training / Trained using Kmeans / Trained using MSCL
(with the same magnitude funcion as for MS-INIT).

Units Training Random KKZ Kmeans++ MSINITmax MSINITprob

40 None 0.857 (0.035) 0.752 (0.012) 0.874 (0.021) 0.804 (0.019) 0.914 (0.016)
Kmeans 0.890 (0.022) 0.893 (0.007) 0.896 (0.017) 0.927 (0.006) 0.928(0.010)
MSCL 0.956 (0.010) 0.954 (0.004) 0.958 (0.008) 0.970 (0.004) 0.970 (0.006)

80 None 0.878 (0.027) 0.804 (0.011) 0.890 (0.014) 0.849 (0.010) 0.940 (0.010)
Kmeans 0.900 (0.017) 0.892 (0.006) 0.902 (0.014) 0.925 (0.004) 0.946 (0.009)
MSCL 0.948 (0.009) 0.949 (0.005) 0.951 (0.007) 0.976 (0.002) 0.974 (0.006)

160 None 0.900 (0.016) 0.841 (0.006) 0.904 (0.010) 0.886 (0.004) 0.945 (0.005)
Kmeans 0.917 (0.009) 0.885 (0.004) 0.913 (0.008) 0.927 (0.002) 0.952 (0.003)
MSCL 0.944 (0.007) 0.942 (0.002) 0.944 (0.005) 0.968 (0.001) 0.971 (0.002)

Table 6.2: Table shows the mean values in 100 tests of the normalized Weighted Entropy calculated
in three codebooks (sizes 40, 80 and 160) after applying five initialization algorithms (Random,
KKZ, Kmeans++, MSINITmax and MSINITprob). Each of these codebooks is trained following
one of three possibilites: No training / Trained using Kmeans / Trained using MSCL (with the
same magnitude funcion as for MS-INIT).

Chapter 6. Magnitude Sensitive Initialization 96

−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4

5

6

7

(a)

−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4

5

6

7

(b)

−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4

5

6

7

(c)

−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4

5

6

7

(d)

Figure 6.2: Final results after training with K-means a codebook with 80 units, using different
initialization methods: (a) KKZ algorithm, (b) Kmeans++ algorithm, (c) MS-INITmax algorithm
and (d) MS-INITprob algorithm.

6.4.2 Training example

Next example has been developed to show the effect of different initialization schemes in

the final codebook of a competitive neural network after training. To do it we apply the

initialization methods used in the previous example to three MSCLs of different size (also

40, 80 and 160 units) and to three K-Means neural networks, with the same number of

clusters, K. Performance measures will be the same than in the initialization example.

Training is made in batch mode in all the cases using:

• K-Means: Repeating training during 10 cycles.

Chapter 6. Magnitude Sensitive Initialization 97

• MSCL: Training each neural network during 10 cycles, and 5 epochs each cycle.

Selected magnitude function will be the same than the used for MS-INIT.

Figure 6.2 shows final training results of 80 centroids using K-means following the

initialization methods: KKZ (a), K-Means++ (b), MS-INITmax (c) and MS-INITprob (d).

Figure 6.3 shows final training codebook of the MSCL with 80 units, being initialized as

in figure 6.2.

Tables 6.1 and 6.2 also show the quality results after training the with K-means neural

networks and the MSCLs respectively. As in the previous example, neural networks with

more units present better results. MS-INIT has lower values in WMSE and higher Weighted

Entropy than the other three initialization algorithms. Once again, KKZ and MS-INITmax

have lower values for entropy due to the fact that both algorithms tends to select some of

the unit weights from data samples in the limits of the distributions.

Obviously, as the selected magnitude function for training the MSCL is the same than

in the MS-INIT method, MSCL gets better final center representations than K-Means.

Finally it is worth noting the fact that optimal values are achieved using MS-INIT and

then training a MSCL with the same magnitude function. Besides, it is preferable training

a MSCL while using random initialization, than only initializing the codebook with MS-

INIT and performing no subsequent training.

Chapter 6. Magnitude Sensitive Initialization 98

−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4

5

6

7

(a)

−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4

5

6

7

(b)

−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4

5

6

7

(c)

−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4

5

6

7

(d)

Figure 6.3: Final results after training a MSCL with 80 units, using different initialization methods:
(a) KKZ algorithm, (b) Kmeans++ algorithm, (c) MS-INITmax algorithm and (d) MS-INITprob

algorithm.

Part III

APPLICATIONS

99

Chapter 7
Color Quantization with MSCL

7.1 Introduction

With the informatics development of society, large amount of scanned documents and

images are transmitted and stored, therefore it would be desirable to reduce the number

of colors in an image to reduce storage and transmission costs. This is generally achieved

by mean of Vector Quantization techniques called Color Quantization (CQ) where each

data sample is a vector representing the color of a pixel. They are important in certain

applications related to segmentation, compression, and transmission of images.

Some of the most common competitive learning methods, or their variants, have already

been used in CQ and Color Segmentation tasks. Uchiyama and Arbib [75] developed

Adaptive Distributing Units (ADU), a CL algorithm used in Color Segmentation that is

based on a simple cluster splitting rule. More recently, Celebi [12] demonstrated that this

algorithm outperforms other common algorithms in a CQ task. Fuzzy C-Means (FCM), is

a well-known clustering method in which each sample can belong to more than one cluster

[10]. In [13], Celebi presented a relevant work using Neural Gas Networks.

SOM has also been used in color related applications: in binarization [59], segmentation

[43] and CQ [21], [56], [17] and [16] where author presents FS-SOM a frequency sensitive

learning scheme including neighborhood adaptation that achieves similar results to SOM,

but is less sensitive to the training parameters. One variant of special interest is the neural

network Self-Growing and Self-Organized Neural Gas (SGONG) [9], an hybrid algorithm

using the GNG mechanism for growing the neural lattice and the SOM leaning adaptation

mechanism. Author proved that it is one of the most efficient Color Reduction algorithms,

closely followed by SOM and FCM.

100

Chapter 7. Color Quantization with MSCL 101

In this chapter we propose the use of a MSCL neural network in the CQ task. As a

result of the training process, units will distribute according to the salient pixels in the

image, where different definitions of saliency are used as magnitude functions. Final color

palette will therefore enhance salient areas of the image.

7.1.1 Problem formulation

Given an image I of size (xmax, ymax), we define a data sample x(t) from the pixel I(x,y)

as the color vector of that pixel in the coordinates in the corresponding color space:

Figure 7.1: Problem formulation of Color Quantization: pixels are considered 3-dimensional vectors
that are processed as inputs for a competitive neural network with many units as colors in the
palette. Magnitude value can be associated to the pixel, as another input to the network, or be
associated to the units, as an internal parameter.

Chapter 7. Color Quantization with MSCL 102

x(t) = Color(I(x, y)), x = 1..xmax and y = 1..ymax (7.1)

t = 1..P, where P = xmax ∗ ymax . (7.2)

Each pixel receives an additional value for the magnitude function, MF (t). This func-

tion is proposed as to weight each pixel with a value of interest. As higher is the value of

magnitude, more interesting is the pixel. The goal is training a neural network to get units

representing the colors of the interesting pixels in higher detail. The prototype of unit

m (m = 1 . . .M) is represented by a vector of weights in the 3-dimensional color space.

The associated value of the magnitude in that unit, mum(t), can be calculated from the

values of MF (t) at samples in its Voronoi region, or can be introduced to the network as

the rest of input data.

Figure 7.1 shows this process. From one image (tiger example), we get a dataset with

the 3-D color coordinates of each pixel. The dataset is presented to the competitive neural

network to generate the color palette with as many colors as units in the network. In the

bottom of the image, the color distribution of the image using a [R G B] color space is

shown.

7.1.2 Proposed approach

We propose the use of MSCL neural network, to train this 3-D dataset, taking into account

the magnitude function, which can be defined to lead the training process of the palette

to accomplish any desired task.

7.1.3 Chapter description

The remainder of this chapter is organized as follows:

Section 7.2 shows the comparison of the MSCL with some of the well known competitive

learning algorithms, using five different examples of applications. The first example gets

a color quantization that we call homogeneous quantization (Subsect. 7.2.1). The second

example gets a color quantization focused in the image center (Subsect. 7.2.2). The third

example is focused on getting a color palette avoiding the dominant colors usually found

in image background (Subsect. 7.2.3). Fourth example returns a color palette according

with a certain image saliency (Subsect. 7.2.4). Last example shows the use of MSCL in a

document image binarization (Subsec. 7.2.5).

Chapter 7. Color Quantization with MSCL 103

7.2 Applications

In the examples, data samples are 3D vectors corresponding to the RGB components of

the image pixels. We have used the RGB space in order to have comparable results to

other works, in spite that it is a non-uniform color space (instead of using this one, we

could have used other color models as L ∗ a ∗ b whose suitability has been demonstrated

for interpreting the real world).

The goal is to get a reduced color palette to represent the colors in the image focused on

different objectives. The next five examples show that, adequately selecting the magnitude

function, it is possible to get an optimal palette according to the desired application.

Figure 7.2: Original Tiger image (top-left) and its reconstruction using 8 colors applying: ADU
(top-right), Homogeneous MSCL (bottom-left) and Centered MSCL (bottom-right).

Chapter 7. Color Quantization with MSCL 104

Pixels Image Som FSCL M-h FCM FSSom ADU M-c Sgong

Whole img. T8 987 1016 1037 1005 985 990 1095 987
T16 566 596 577 606 564 562 667 570
T32 334 343 341 357 328.1 327.8 409 574

L8 401 416 424 451 400.2 406 406 400.9
L16 216 234 215 234 216 214 217 218
L32 121 126 122 141 120 119 125 222

B8 1120 1126 1138 1151 1117 1126 1227 1121
B16 633 641 633 693 632.4 632.8 751 635
B32 380 389 380 440 375.2 375.9 479 442

Img. center T8 1223 1311 1207 1263 1214 1244 1151 1226
T16 626 710 596 735 631 608 485 655
T32 361 381 356 408 353 355 283 407

L8 445 472 436 552 440 447 423 447
L16 265 294 273 301 262 266 254 267
L32 161 167 160 187 159 159 149 163

B8 1346 1354 1210 1421 1343 1338 1062 1321
B16 708 740 683 833 705 689 602 714
B32 381 412 387 515 372 374 354 539

Table 7.1: MSE calculated in the whole image and in the image center.

7.2.1 Homogeneous color quantization

This example shows the case we call Homogeneous Color Quantization. The mean quanti-

zation error (qerr) for all samples within the Voronoi region of unit i is used as magnitude

function. The qerr of a sample x(t) is the distance between x(t) and the prototype (weights)

of its corresponding best matching unit. This magnitude forces the palette colors to be

uniformly distributed over the dataset in the RGB space, independently of its data density,

and resulting in Voronoi regions with similar mean qerr.

We use the known Tiger, Lena and Baboon images for performance comparison in

the CQ task (marked in the table as T*, L* and B*, where * is the number of colors).

Homogeneous MSCL (M-h) and Centered MSCL (M-c, explained in next subsection) are

compared against the most successful neural models used in different papers: SOM, FSCL,

FCM, FS-SOM, ADU and SGONG. Training process applied learning rates between (0.7-

0.01) along three cycles, except in ADU whose algorithm parameters selection follows [75].

The threshold for adding/removing a neuron used in SGONG was (0.1/0.05).

Figure 7.2 shows the color reduction effects for tiger image with ADU, Homogeneous

Chapter 7. Color Quantization with MSCL 105

MSCL and Centered MSCL. The upper part of Table 7.1 shows the mean of MSE (Mean

Squared Error) in 10 trials with different number of palette colors (8, 16 and 32) calculated

in the whole image. Peak Signal-to-Noise Ratio (PSNR) measure can be easily calculated

from MSE value. In general, ADU outperforms all other models, closely followed by SOM

and FS-SOM. However, it is clear that ADU (top-right image in Fig. 7.2) paints the tiger

skin with greenish color as an effect of the over-representation of green colors. Both MSCL

results (bottom images in Fig. 7.2) tend to maintain orange colors in the tiger skin, as

they are not focused in data density representation.

7.2.2 CQ Focused on the image center

Previous example provides a CQ task giving equal importance to every pixel of the image,

and not distinguishing between pixels from the foreground or the background. However the

more interesting image regions are usually located in the foreground center. Using MSCL

with the adequate magnitude function, it is possible to get a palette with colors mainly

adapted to pixels located in the foreground, or any other desired point in the image. In

this example we use the following magnitude function for each sample:

MF (t) = 1− d(x(t)) (7.3)

where d(x(t)) is the normalized distance, in the plane of the image (x, y), calculated from

the corresponding pixel position to the center of the image. This magnitude function is

normalized by the maximum.

We compare the performance of centered MSCL, with the same methods used in pre-

vious example. Number of colors and training parameters were also the same.

As it can be seen in the lower part of Table 7.1, prototypes of centered MSCL tend

to focus on colors in the central part of the image, so the MSE for the whole image

is worse than those obtained using other methods, as background is under-represented.

However, when repeating the measures in the central area of the image (150x170 pixels),

this algorithm (column M-c in the table) outperforms the others, because its color palette

models with more detail the central region of the image.

7.2.3 CQ Avoiding dominant colors

Many natural images present few dominant background colors. It means that the majority

of the image pixels are represented with a limited set of colors, while other small chunks

of the image use a wider palette. That is why, when it is applied traditional Competitive

Chapter 7. Color Quantization with MSCL 106

Learning algorithms for color quantization on this kind of images, final color palette usually

over-represents dominant colors, and other secondary colors tend to be dismissed.

In this example MSCL is used to get a reduced color palette avoiding the color domi-

nance. This goal is accomplished in a two-step method. First the dominant colors of the

image are found, second, MSCL is applied to avoid these dominant colors by defining a

magnitude function that gives higher values to the pixels that are more distant from them.

We tested this methodology with 4 images (shown in top of Fig. 7.3: fish, flower, tower,

goat) and compared it with the results of 5 neural models used in different papers: FSCL,

FCM, Neural Gas (NG), K-Means and SOM.

Following we describe the two-step method in detail and the results of the experiments.

Figure 7.3: Original images used in the example of MSCL avoiding dominant colors and one example
of the corresponding dominant color palettes (from 1 to 8 colors).

Chapter 7. Color Quantization with MSCL 107

Determination of Dominant Colors.

First step is the determination of the dominant colors in the image. One simple way to do

it, frequently used in the literature, is using some type of competitive learning algorithm

to cluster pixel colors. Weights of units after training the neural network will be the

dominant colors. A good candidate for this approach is FSCL method. FSCL can be

considered a particular case of MSCL where MF (t) for sample x(t) is the number of hits

of its best matching unit. We use this definition to implement FSCL as a data-density

sensitive method that is able to cluster data colors.

It would possible to use a unique simulation of FSCL to obtain the dominant colors.

However, this method is dependent of the goodness of the unit initialization. So, in order

to smooth this ’noisy’ initialization in the results of the analysis, we use an ensemble of

50 FSCLs for each number of dominant colors (except for the case of one dominant color,

calculated as the mean of the image colors). After generating the 50 networks of each

ensemble, their prototypes are used to train the final FSCL to get the ’averaged’ dominant

colors. We call palk with k ∈ {dominants} to the final dominant-colors palette.

Bottom of Fig. 7.3 shows the resulting palettes from 1 to 8 dominant colors in the four

test images. The evolution of these palettes show that, in the fish dominant-color palette,

orange does not appear until using 5 dominant colors. The flower needs 4 dominant colors

to show a good red color, and the tower needs 8 dominant colors to include the red in the

roof. The goat dominant-color palette shows that the palette is quite monochromatic.

MSCL Avoiding Dominant Colors.

The magnitude function MF (t) used in this example needs to exhibit higher values as

the pixel color is more distant from the dominant-color palette. So, for each palette of

dominant colors, we define a function (distcol(t)) for each pixel as the distance in the color

space from that pixel to the closest color in the palj(t) palette:

j = argmin
k

(‖palk(t)− x(t)‖) k ∈ {dominants} (7.4)

distcol(t) = ‖palj(t)− x(t)‖ . (7.5)

Figure 7.4 shows how this magnitude function works in the case of the fish image

using an 8-color palette that avoids two dominant colors. A fraction of the pixels in the

color distribution is depicted jointly with the closest regions of the dominant colors (large

red circles) and the prototypes generated with MSCL (8 blue circles). MSCL uses three

Chapter 7. Color Quantization with MSCL 108

palette-colors for the orange colors of the fish, two colors for the white tones, one stronger

black and only two colors dedicated to the background colors with the anemone. One of

these colors almost matches with one of the dominant color (in the center of the graph).

This result comes out because there is a large amount of the pixels in this zone, and MSCL

is forced to move a prototype to this zone to reduce quantization error.

Figure 7.4: Representation of a fraction of the pixels in the color distribution for the fish image.
The large red circles represent the regions close to the two dominant colors of the image. The 8
blue circles represent the 8-color palette obtained for MSCL avoiding those dominant colors. MSCL
uses three palette-colors for the orange colors of the fish, two colors for the white tones, and only
three colors dedicated to the background colors.

In Fig. 7.5 the reconstructed images with 8-color palettes of this image are shown,

from left to right and top to bottom: MSCL avoiding two dominant colors, NG, FSCL,

FCM, K-MEANS and SOM. It can be appreciated that MSCL obtained a more vivid color

representation for the fish, losing the detail in the anemonae, while other algorithms tend

to concentrate the units in the most common colors, showing a lot of greyish tones of the

anemone.

Chapter 7. Color Quantization with MSCL 109

Figure 7.5: Results of color quantization for the fish example using an 8-color palette with different
methods: a) MSCL avoiding two dominant colors, b) NG, c) FSCL, d) FCM, e) K-MEANS, f)
SOM. The corresponding color palettes are shown in the right of each image. As can be appreciated,
MSCL gets a more vivid palette for the fish and presents a lower number of colors in the palette
dedicated to the background with the anemone.

Results of experiments avoiding Dominant Colors.

The main problem of the method is to determine the optimum number of dominant colors.

So, we propose to calculate the amount of pixels in High Magnitude Regions (HMR) as a

measure of the level of detail that the MSCL method has to deal with. The HMR in the

image can be estimated with a threshold of the magnitude function that is chosen to be the

50% of the maximum magnitude value. Figure 7.9 shows this process for the fish example

in an 8-color palette. Images from top to bottom in each column correspond to number

Chapter 7. Color Quantization with MSCL 110

of dominant colors from 1 to 8. The first column represents the value of distcol(t) in form

of image (the magnitude map). The second column shows the HMR as the corresponding

binarization of the magnitude maps. It is worth noting in this col that there are still quite

a lot of pixels in HMR considering only one dominant color (corresponding to the fish and

the darker areas in the background of the image). However, when two dominant colors are

used, HMR extension is quite reduced and corresponds only to certain areas in the fish.

Therefore the use of two dominant colors would be a good option for the fish image. The

third column of images in this figure shows examples of the MSCL reconstruction for the

corresponding number of dominant-colors avoidance.

As comparison, Fig. 7.10 shows in three columns the resulting HMRs for the other

three images. In the first column, the flower image presents an interesting behavior for four

dominant colors. In the tower image we have a similar situation, but for three colors (white,

blue and dark grey). However, the goat image tends to keep similar HMR extensions. The

most possible reason for this behavior is that the image is quite monochromatic.

In order to visualize the effect of the number of dominant colors, we define the HMR-

ratio as the number of pixels in HMR divided by the number of pixels in the image. We

generated 50 palettes of dominant colors for each number of colors that varied from 1 to

20. The evolution of the averaged HMR-ratios are shown if the bottom graph of Fig. 7.8.

The curves in the graphs have been smothered. The abscissa shows the different number

of dominant colors analysed in the four images. The ordinates show the mean value of the

HMR-ratio. A lower value in this ratio means that there are fewer pixels in the image far

from the dominant colors. Therefore that palette is a good representative of the dominant

colors in the image.

The evolution of HMR for the fish image shows that there is an abrupt fall in this

value from using one or two dominant colors. This ratio tends to keep consistent until 7

dominant colors are used. An explanation of this behavior can be visualized in Fig. 7.9

(image in row 7 and second column) where the dark band in the background is far from any

dominant color, which makes the HMR-ratio to grow considerably in the bottom graph of

Fig. 7.8.

It would be possible to detect the optimum number of dominant colors by analysing

the HMR-ratio behavior, like detecting relative minimums or thresholding its variation,

which is left for future work, as it is out of the scope of this work.

In order to evaluate the performance of the methods in the HMR, we propose to

calculate the Sum Square Error of quantization (SSE) in the HMR, divided by the total

SSE in the image, that we will call the SSE-ratio. Graphically this can be appreciated

Chapter 7. Color Quantization with MSCL 111

in Fig. 7.8 (top four graphs corresponding to the four example images). The abscissas

in the graphs show several numbers of dominant colors, from 1 to 5, when dealing with

generation of 8-color palettes. The different algorithms (FSCL, FCM, NG, K-MEANS,

SOM and MSCL) were simulated 50 times to show the averaged SSE-ratio. As it can

be seen, MSCL always presents the smallest SSE-ratio, for all the images and different

number of dominant colors. That means that MSCL with dominant-color avoidance is

able to maintain a reduced amount of error in the HMR, while the others methods tend

to concentrate their SSE reduction in the rest of the image.

7.2.4 CQ Focused in salient colors

Figure 7.6: Saliency example. Top row, from left to right : Original image, saliency map (clearer
values for high saliency), the mask binary image used for MSE measurement and (bottom row, from
left to right) the reconstructed image with an 8-colors palette from: SOM, FS-SOM and MSCL
focused on the saliency.

The aim of salient feature detection is to find distinctive local events in images. Some

works ([77]) exploit the possibility of color distinctiveness in salient detection. This example

shows the MSCL algorithm generating a color palette focused on those salient regions. To

achieve that, the chosen magnitude function is the mean computational global saliency

(defined as in [77]). The magnitude is normalized by the maximum, and varies from one

to values near zero in zones with low saliency (see image in Fig. 7.6 in the middle of the

top row). We used 8 colors with decreasing learning rates between 0.7 and 0.01 for every

Chapter 7. Color Quantization with MSCL 112

algorithm.

Figure 7.6 shows an example. The first two algorithms (SOM, FS-SOM) only obtain a

red color and present higher MSE values (SOM: 103.21 and FS-SOM: 103.07) in those pixels

belonging to the white mask region of saliency (right top image of Fig. 7.6). However,

using the global saliency (middle top image of Fig. 7.6) as the magnitude for MSCL, the

resulting image shows three red variants and the MSE error is lower (87.5). A drawback is

that other colors are under-represented, what means a minor problem if we want to detail

the salient regions of the image.

7.2.5 Image binarization

Binarization of a text grey-scale image is the process of assigning each pixel of a text

image depending of its grey-scale value to one of two classes, one corresponding to the

text and the other one to the background. First row of Fig. 7.7 shows the image of a

badly illuminated document (image a), and the results of applying classical binarization

algorithms: Otsu method (b), filtering of original image with Laplacian operator (c) and

its binarization with Otsu (d). Otsu Method definitely fails to get an adequate binarization

because of the dark grey values in the right margin of the paper. Filtering with Laplacian

operator provides a better result, because it is an edge extraction mask. However, this

method does not fill the letters.

Figure 7.7: Binarization example: in top row (a) original image, (b) Otsu method, (c) filtering
with Laplacian operator, and (d) its binarization with Otsu; in bottom row (e) SOM, (f) MSCL in
homogeneous grey quantization, (g) MSCL with two features, and (h) Otsu binarization of (g).

Chapter 7. Color Quantization with MSCL 113

Competitive learning can be used for this application by training 2 units to represent

two levels of gray-scale, which should correspond to the background and foreground classes.

Second row of Fig. 7.7 shows the results with: (e) SOM, (f) MSCL in homogeneous grey

quantization, (g) MSCL with two features (explained below), and (h) Otsu binarization of

last example. The MSCL in (f) with only two neurons is equivalent to the Otsu Method.

The reason is that the mean quantization error for each unit is proportional to the standard

deviation of a data class when using as mean of the data the unit weights that represents

the class.

The quantization result can be improved by using as input a combination of the gray-

level values and the result of Laplace filtering. Therefore data samples will be two di-

mensional vectors combining the values of both features. Then if we apply MSCL using

homogeneous quantization to this combined dataset we will get the two-level image (g) in

Fig. 7.7 (the same image with binarized pixel intensity can be seen in next image (h)).

This result is better than those achieved by other classical methods.

Chapter 7. Color Quantization with MSCL 114

Figure 7.8: The top four graphs correspond to each example image, when dealing with generation
of 8-color palettes. The averaged Sum Square Error in the High Magnitude Region (HMR), divided
by the total SSE in the image (SSE-ratio) is represented for the different algorithms (FSCL, FCM,
NG, K-MEANS, SOM and MSCL). The abscissas in the graphs show several numbers of dominant
colors, from 1 to 5. MSCL always presents a smaller SSE-ratio, for all the images and different
number of dominant colors. The bottom graph represents the evolution of the averaged HMR-ratios
(number of pixels in HMR divided by total number of pixels) when using from 1 to 20 dominant
colors.

Chapter 7. Color Quantization with MSCL 115

Figure 7.9: Results of CQ of the Fish example in a 8 color palette, avoiding different number of
dominant colors: (from top to bottom) with 1 to 8 dominant colors. (In columns): magnitude
map, pixels with magnitude value over 50% of the maximum (High Magnitude Region), and MSCL
reconstruction for the corresponding number of dominant colors.

Chapter 7. Color Quantization with MSCL 116

Figure 7.10: High Magnitude Regions for different number of dominant colors. Images in rows
correspond, from top to bottom, with 1 to 8 dominant colors. Images in the left column show the
flower example, the column in the middle the tower and the right column the goat image.

Chapter 8
MSIC: Magnitude Sensitive Image

Compression

8.1 Introduction

In the human vision system the attention is attracted to visually salient stimuli and there-

fore only scene regions sufficiently different from their surroundings are processed in detail.

This provides the necessary motivation to devise a novel image compression method ca-

pable of applying distinct compression ratios to different zones of the image according to

their saliency.

In this chapter we make use of the Magnitude Sensitive Competitive Learning Algo-

rithm (MSCL) to get a sensitive image compression. Using saliency as the magnitude,

units tend to model more accurately the salient areas of an image, and therefore the neural

network behaviour imitates the human vision system.

In the context of image processing, basic vector quantization consists in dividing the

input image into regular blocks of pixels of a pre-defined size, where each block is considered

as a D-dimensional vector. Each of these input vectors from the original image is replaced

by the index of its nearest codeword, so only this index is stored or transmitted through the

media. The whole codebook serves as a database known on the reconstruction site. This

approach reduces the transmission rate while maintaining a good visual quality. Figure

8.1(a) shows this procedure.

In VQ, compression level depends on two factors, the number of blocks and the level

of compression of each block. Both factors are related in an inverse way. Lower number of

blocks means that they are higher in size, and therefore higher is the bit depth necessary

117

Chapter 8. MSIC: Magnitude Sensitive Image Compression 118

(a) Common CL image compression algorithm.

(b) MSIC algorithm.

Figure 8.1: Basic idea of Competitive Learning algorithms in the task of image compression for
grayscale images. Top: Common CL algorithm. Bottom: MSIC algorithm. Differences with other
CL algortihms are the use of a MSCL to get block centers (centers are trained weights of MSCL
units), the use of irregular blocks and the masked quantization/deprocessing.

Chapter 8. MSIC: Magnitude Sensitive Image Compression 119

to codify each block for a similar quality.

Some authors [41], [5], [26] and [45] have already used some VQ variants, such as

Kohonen neural networks [38] for image compression. These algorithms divide the image

in block of fixed size and use several tricks to get a smaller codification of each block or

to improve the quality of the codification. Laha [41] uses surface fitting of data assigned

to each codeword instead of the codeword itself, which improves the visual quality of the

results. [5], [26] and [45] apply DCT filtering [2] to each block previous to the quantization

step to lower the dimension of the input data. On the other hand, [5] takes advantage of

the topological ordering property of the SOM neural network to codify indexes with a few

bytes.

In this work blocks may have different size, chosen according to its relevance (which

is selected following the image saliency). Blocks located in areas of high image saliency

are smaller than those assigned with lower saliency. As bit depth used in the quantization

step is the same for all blocks, quantization error increases directly with the block size in

areas of low image saliency. Therefore, a lower number of blocks is used to represent the

whole image increasing the overall image compression and preserving, at the same time,

the quality of most relevant areas.

Another important difference in our approach in relation to the above mentioned meth-

ods is that block shapes are, in general, irregular, i.e., neither rectangular nor squared.

Therefore, quantization has to take into account samples that may have invalid compo-

nents. 8.1(b) shows the basic idea of the proposed algorithm applied in grayscale images. It

requires to transmit the block centers and index. At the receiver, it is possible to regener-

ate the shape and mask of each block and locate it into the image, only with its center and

magnitude. Then, the block image is regenerated with its index and summed up to form

the whole image. In Sect. 8.2 we present the complete algorithm, that is more complex to

reduce the amount of data to be transmitted.

The remainder of this chapter is organized as follows. Section 8.2 shows its use to

achieve selective image compression focused on the most salient regions of an image with the

method that we call Magnitude Sensitive Image Compression (MSIC) applied in grayscale

images. Next section extends the algorithm to color images. Finally, a comparative between

MSCL and classical JPEG and SOM based VQ algorithms for a high compression ratio

task is carried out in Sect. 8.4.

Chapter 8. MSIC: Magnitude Sensitive Image Compression 120

Figure 8.2: Global algorithm for grayscale images. Marked with #n the corresponding subsection
with the detailed explanation and, also showing the order of processing steps in the transmitter
and receiver.

Chapter 8. MSIC: Magnitude Sensitive Image Compression 121

8.2 Magnitude Sensitive Image Compression

Figure 8.2 shows the whole MSIC algorithm applied to grayscale images, where image

compression in the transmitter is represented on the top and the image restoration process

at the receiver is depicted on the bottom. Image is compressed with different quality

according to a selected user magnitude.

In this work we use as magnitude the saliency map, that is an image with the same

size as the processed image, obtained by applying a function to the original image. These

functions are explained in section 8.4.

The result of the compression is a group of image blocks encoded by indexes. Unlike

other image compression methods, our algorithm uses blocks of different sizes, which are

located at any position of the image. Therefore, this implies that block centers and sizes has

to be sent to the receiver, in addition to the corresponding index. As this approach would

mean the transmission of huge quantity of information, we have adopted an alternative

solution.

We use the saliency map to train a MSCL network, that we call MSCLMC , using as

inputs the coordinates (x1, x2) of each pixel and the saliency as magnitude. Weights of its

units (codewords) of the MSCLMC after training are the block centers (bc(k), k = 1..M).

The surrounding pixels assigned to the Voronoi region of each block-center configure the

corresponding blocks. The image is so fragmented in so many blocks as units in this

network (M), generating smaller blocks in those zones with high saliency and larger blocks

in those with lower saliency. In 8.2.2 we will show how to determine the block sizes (and

block limits) for each codeword or unit. This process encodes the saliency map with low

quality, and both the encoded image and the encoded saliency map are transmitted.

At the receiver, first the saliency map is regenerated, and with it, the image block limits

and centers can be calculated. They are used with the image indexes to restore the image.

It is worth noting that it is necessary an additional step at the transmitter. Instead

of using directly the saliency map to extract the image blocks, we first decode a saliency

map from the encoded map that has to be transmitted. Then we calculate the image

centers and limits of image blocks using this Regenerated Saliency Map that will be also

regenerated by the receiver.

MSIC algorithm uses several MSCL networks: MSCLMC (map center) to extract map

blocks, both with the same number of units, MSCLIC1 and MSCLIC2 (image center) to

extract image blocks at trasnmitter and receiver respectively, and a pool of MSCLs that

we call MSCL picture library (MSCLPIC) to generate indexes that encode each block

pixels, and act as Look-Up-Table to decode the block shapes with these indexes. This

Chapter 8. MSIC: Magnitude Sensitive Image Compression 122

library is calculated using the masked version of MSCL (see chapter 5 of the Thesis)

as blocks may have irregular shapes. MSCLMC and MSCLIC1 networks are trained

online during map and image quantization. Their codewords are used to codify the blocks.

However MSCLPICT forms a codebook database that is trained offline. It is known by the

transmitter and the receiver as a library of the method. Finally, receiver uses MSCLIC2,

that becomes identical to MSCLIC1 when trained.

Summarizing the MSIC algorithm steps are:

1. Saliency map quantization (at transmitter, creating MSCLMC).

2. Saliency map restoration (at transmitter, using MSCLMC).

3. Image quantization (at transmitter, using MSCLMC for block processing to create

MSCLIC1 and codify image content with MSCLPIC).

4. Saliency map restoration (at receiver, using MSCLMC received through the transs-

mision line).

5. Image restoration (at receiver, usingMSCLMC for block processing to createMSCLIC2

and codify image content with MSCLPIC).

Following sections explain the process in detail.

8.2.1 Pictorical library generation

A previous step, before applying the MSIC algorithm, corresponds to generating a pictorical

library (MSCLPIC), that is known for both, transmitter and receiver. To do it a random

set of image blocks of variable sizes is generated. Then it is assigned to a cluster according

to its size (we define 7 block clusters), and vectorized. Then, vectorized vector is masked

and used as input to train the MSCLPIC .

To generate each of the random blocks, we generate the same number of 2D points as

the desired number of blocks. Each of these points are the centers of the block, and they

are considered as units in a neural network. The block corresponds to the Voronoi region of

each of these units. Extraction phase is done as described in the subsection 8.2.4 excepting

by the fact that centers are the corresponding coordinates of a pixel selected randomly.

8.2.2 Saliency map quantization

The idea is to consider the saliency map as an image and apply the same compression steps

that will be applied to the image. To do it, a MSCL neural network (MSCLMC) will be

Chapter 8. MSIC: Magnitude Sensitive Image Compression 123

generated and used for two different purposes. First to define map blocks that are codified

with MSCLPIC and transmitted remotely. Then MSCLMC is also used to restore the

map at transmitter. This regenerated map image will be used to generate image blocks

that are also be encoded with MSCLPIC and sent remotely. Here it is important to note

that if the saliency map would be common to several images, emitter and transmitter

could know it in advance so this step and the explained in the following section would

be unnecessary. In this chapter we will consider that image saliency is calculated directly

from each image, and it is necessary to send the saliency map associated to each image.

First step corresponds to the block extraction from the saliency map according to the

saliency values. We train the (MSCLMC) using the 2D coordinates of each pixel(x) as

inputs and the following magnitude function:

MF (m, t) =

∑

x∈Rm

saliency(x(t))

|Rm(t)|
(8.1)

where saliency(x) is the pixel saliency of the corresponding sample. Trained unit weights

correspond to the coordinates of the unit in the image, and the magnitude value is the

mean of the saliency inside its Voronoi region. Once trained, it is possible to find the best

matching unit (BMUMC) assigned to every pixel (using magnitude during competition).

The block assigned to each unit is the rectangle wrapping its Voronoi region. A block mask

of equal size than the block is also provided in order to mark the pixels belonging to that

irregular Voronoi region, see Fig. 8.3. We used 40 units for MSCLMC in our experiment.

With this small number of units a coarse saliency map is obtained, but it is enough to

define areas with high saliency.

To codify each of the blocks by VQ, we first resize the block to a squared shape with

side value as the maximum between its horizontal and vertical block sizes. The block and

the mask are inserted in the squared image filling with zeros the void rows or columns.

After that, both are resized to a vector form. We use mean-removed vectors to have a

better quantification. Mean value of saliency in each block of pixels, that we call mean

block-saliency (mb), is sent encoded by 7 bits.

The resulting vector is separated according to its length and dispatched for training or

testing to the MSCL picture library (MSCLPIC(l)). This pool of codebooks are trained

separately only once and become a lookup table in the algorithm. In order to avoid the

transmission of the whole codebook, the pool it is known in advance by both the transmitter

and the receiver.

Each codebook of the pool, with 256 codewords, is dedicated to a precise input-vector

Chapter 8. MSIC: Magnitude Sensitive Image Compression 124

length. The imposition of the same number of codewords for different block sizes forces

that larger blocks present less detail in pictorial content than smaller blocks. We have

chosen a limited group of sizes that model several size possibilities (the value of l is the

length of the square edge to which we have resized the block): l = [4, 6, 7, 8, 10, 15, 29].

Figure 8.4 shows the trained codebook for sizes l = 4 and l = 10.

This pool of codebooks can be specialized in the type of images considered in the

transmission task, or can be generated using an universal library of training images. The

images for training are processed following previous described steps, but the magnitude

function chosen for these MSCLPIC(l) networks is the hit frequency of each unit m:

MF (m, t) = hits(m, t) (8.2)

During competition the BMUPIC is calculated using the masked version of MSCL in

order to avoid the zero-padding mentioned before. Each time a sample is presented to each

neural network of the pool, the corresponding mask is also presented, and only masked

weight components are used to compete (see Fig.8.3, Right). Each sample might have

different masked components. In this way, only pixels corresponding to the Voronoi region

of a block are used to find its BMUPIC .

At the end of this step, the magnitude map has been divided in 40 blocks. It is necessary

to send the receiver the following information of each block: Map indexes (BMUPICT) (1

byte), Map mean (7 bits) and Map Centers (2 bytes). It is not necessary to send the size of

each block because it is calculated from the block centers. In the codification of the whole

image of the saliency map they are used: 40 (blocks) * 31 (bits per block) = 1240 bits.

8.2.3 Map restoration at transmitter

Map representing the saliency of the image, MSCLMC , is also restored at transmitter

with the information generated at the previous step. This is because the restored map

will be used at both transmitter and receiver to define the block centers of the image, to

make the results be the same in both sides. Map restoration is accomplished following the

previous step in inverse order. First we calculate Voronoi regions assigned to each of the

Map Centers by searching for the BMUMC of each pixel in MSCLMC . The codewords of

this neural network are the Map Centers. Additionally, we calculate block limits and mask

wrapping by a rectangle the area corresponding to the Voronoi region of each center.

With i− th index, the new block is converted again into an image block by the look-up

table created with MSCLPIC(l). The codeword of the BMUPIC consists of the pictorical

content of the block image, but needs to be displaced with the mean block-saliency value

Chapter 8. MSIC: Magnitude Sensitive Image Compression 125

Figure 8.3: Neural networks used in the MSIC algorithm: Top: BMUMC and BMUIC . It is
important to mention that this last MSCL is used also in receiver (BMUIC2). Bottom: Block
extraction phase. Each block delivers the block limits, the image and a binary mask. MSCLPICT (l)
neural network, where a input sample (vectorized block from the extraction phase) has several
masked components.

of the corresponding block. After summing the mean, it is masked by the binary mask

and added to the regenerated saliency map. Repeating the process for all the blocks we

obtain the regenerated saliency map, that will represent the saliency values of pixels for

the reconstructed image.

8.2.4 Image quantization

The same process of the previous saliency-map image quantization is followed in this image

quantization step. Blocks are extracted training the MSCLIC (with the coordinates at

each pixel) to get the image block centers according to the Regenerated Saliency Map at

the transmitter. Then the Voronoi regions of each of these centers are calculated. Blocks

are extracted and vectorized. After removing the mean, each image block is processed

using the masked version of MSCL with the MSCLPIC(l) that corresponds its size, in

order to assign it the most similar pictorial content of the library that will be included in

the reconstructed image. It is only necessary to send the corresponding block mean and

index from the MSCLPIC(l) for each block.

Chapter 8. MSIC: Magnitude Sensitive Image Compression 126

(a) Pictorical codebook of size 4x4

(b) Pictorical codebook of size 10x10

Figure 8.4: Examples of MSCLPICT codebooks. (a) Codebook size l = 4. (b) Codebook size
l = 10. These codebooks and others for different sizes are known, in form of library, by the
transmitter and the receiver.

Chapter 8. MSIC: Magnitude Sensitive Image Compression 127

In the codification of the whole image of the saliency map they are used: 830 (approx-

imate number of blocks) * 15 (bits per block, one byte for block index and 7 bits for block

mean) = 13690 bits. The number of blocks vary slightly in the tests to get a final number of

bytes equivalent to JPEG (including map quantization) for a desired compression quality,

as indicated in second column of table 8.1.

8.2.5 Map restoration at receiver

Map restoration at receiver is accomplished following exactly the same process than map

restoration at transmitter. To do it, the receiver uses block Map index, mean block-saliency,

block-center and the same offline MSCLPIC(l) picture library. As operations are the same

and they are applied to the same data, the Regenerated Saliency Map at receiver is exactly

the same than the one at the transmitter.

8.2.6 Image restoration

Last step in the whole process is image restoration, using the received means of block-

saliency, the pixel indexes and the regenerated saliency map. This step is similar to the

previous described Map restoration with small changes.

The main difference is that the image block centers are not available (they have not

been transmitted). They are calculated training a new MSCL (MSCLIC2), with the

coordinates of each pixel, and the magnitude values in the Regenerated Saliency Map

(magnitude that was calculated with eq.8.1 at the emitter). This neural network becomes

identical to MSCLIC . The weights of MSCLIC2 are the centers of the image blocks, and

their Voronoi regions define the masks and limits.

Once again, image indexes are presented to the look-up table created withMSCLPIC(l)

(according to the block size) that returns the block shape. Final image is regenerated by

adding means of block-saliency, masking each block and positioning it in the image (adding

it to the regenerated image as we had done before with the saliency-map image).

8.3 Extension to color images

Figure 8.5 defines the flowchart to use MSIC in the case of color images. The process

is similar to the used in the case of grayscale images, but applied to each of the color

components of the image.

First, we calculate the saliency map from the color image. With this saliency map we

extract and quantify blocks (as described in Subsect. 8.2.2), blocks which are restored at

Chapter 8. MSIC: Magnitude Sensitive Image Compression 128

Figure 8.5: Global algorithm for color images. Each color component is processed separately as in
the grayscale method. However this process is exemplified in the text with a different magnitude
definition for the saliency map, oriented to preserve the detail of the image for certain colors selected
by the user.

transmitter as mentioned in 8.2.3. As a result of this step we get the map block-centers,

block-means and indexes. Encoding is made with the previously trained MSCLPIC(l)

picture library.

Then, original RGB image is transformed to the L-a-b color space. The reason of select-

ing this color codification is that it has been demonstrated its suitability for interpreting

the real world [18].

Now with these L-a-b color components of the image, we follow the process indi-

Chapter 8. MSIC: Magnitude Sensitive Image Compression 129

cated in Subsect. 8.2.4. Each of them will be trained with a MSCL neural network

(MSCLIC−L,MSCLIC−a,MSCLIC−b,) and it will return the block sizes and indexes for

each component. The indexes of the blocks are also encoded with MSCLPICT (l).

Once at receiver saliency map is restored (see Subsect. 8.2.5). Then, we follow the image

restoration step, applied to each L-a-b component. Its centers are calculated training three

MSCL networks (MSCLIC2−L,MSCLIC2−a,MSCLIC2−b,), with the coordinates of each

pixel, and the regenerated saliency map. These neural networks becomes identical to those

at the transmitter.

To get the final image, we transform the restored L-a-b images to RGB.

8.4 Experimental results

8.4.1 Grayscale images

Simulations were conducted on four 256x256 gray scaled images (65536 bytes), all of them

typical in image compression benchmarking tasks.

We applied the MSIC algorithm, with the following MSCL training parameters: 15

cycles and β calculated so the learning factor vary along the training process from 0.9 to

0.05. We used Graph-Based Visual Saliency GBV S(x) ([27]) as the pixel saliency of the

corresponding sample. However, it is possible to use other kind of magnitudes to define

which areas of the image are compressed more or less deeply.

JPEG was applied with the standard Matlab implementation and a compression Qual-

ity of Q = 3 or Q=5 (i.e., with a high compression ratio).

Image Q/Bytes JPEG(Tot/50%) SOM(Tot/50%) MSIC(Tot/50%)

Lena Q5/2010 212.3/340.4 205.4/374.0 501.1(18.2)/211.0(6.1)
Street Q5/2127 302.3/369.0 322.1/465.3 466.2(7.8)/210.6(4.2)
Boat Q5/1988 263.9/383.7 280.4/486.6 436.4(12.3)/282.0(5.6)
Fish Q3/2090 485.7/597.7 466.3/904.3 895.8(15.8)/254.2(9.6)

Table 8.1: Mean MSE for the whole image as well as for areas with saliency over 50% (grayscale
example). Standard deviation is also shown (in brackets).

We also compared with the algorithm described in [45], whose main steps are followed

for all the mentioned SOM based algorithms: The original image is divided into small blocks

(we select a size of 8x8 to achieve a similar compression ratio to JPEG or MSCL). Then,

2-D DCT is first performed on each block. The DC term is directly send for reconstruction,

and the AC terms after low-pass filtering (we only consider 8 AC coefficients) is fed to a

Chapter 8. MSIC: Magnitude Sensitive Image Compression 130

SOM network for training or testing. All experiments were carried out with the following

parameters: 256 units, 5 training cycles and the learning factor decreases from 0.9 to 0.05.

The number of bytes used to compress each image was the same for MSCL and JPEG

(see Table 8.1) and fixed to 2048 for SOM.

For evaluation purpose, we use the mean squared error (MSE) as an objective mea-

surement for the performance. Table 8.1 shows the resulting mean of the MSE in 10 tests

using our algorithm compared to JPEG and SOM applied to 4 test images. We present a

second column showing the value of MSE but only calculated in those pixels which saliency

is over 50%. Standard deviation is also shown (in brackets).

To obtain the generic pictorial library MSCLPIC(l) we used three additional images

different to the images used in testing from [30] with the same training parameters. This

number is quite low, but enough to show the good performance of our proposal. However,

in a real scenario it would be necessary to use a higher number of images to get a suitable

pictorial library. Moreover, we have not used any entropic coding applied to MSCLPIC

indexes which would have result in a further compression.

As expected, the MSE value calculated for the whole image area given by JPEG is

lower than the one provided by MSIC, because in this algorithm prototypes tend to focus

on zones with high saliency while other areas in the image are under-represented.

However, when MSE was calculated taking into account only those pixels with high

saliency, MSIC obtained better results than JPEG or SOM. This effect can be clearly

appreciated by visual inspection of the images represented in Fig. 8.6. They show how

MSIC achieves a higher detail level at image areas of high saliency. In the case of JPEG,

it tends to fill up big portions of the image with plain blocks, being unable to obtain a

good detail at any part of the image. On the other hand, SOM produces slightly blurred

images due to the low frequency filtering.

The new algorithm could also be used in image compression applications with other

magnitude functions instead of saliency. Fig. 8.7 shows the compressed results of applying

MSIC using different Magnitude Functions to the street image. From left to right, first

image is the original one, second image is MSIC using the same Magnitude Functions

that the one used in eq.8.1. The Magnitude function in third image corresponds to 8.1,

but using 1 −GBV S(x) instead of the pixel saliency. The fourth image uses the value of

the vertical coordinate (normalized to one) and finally the fifth one uses the value of the

vertical coordinate (normalized to one) minus one. It can be clearly seen that depending

on the defined Magnitude Function, certain areas are compressed in higher quality than

the rest of the image (foreground, background, top or bottom of the image).

Chapter 8. MSIC: Magnitude Sensitive Image Compression 131

Figure 8.6: Top in columns : Original image, saliency map, MSIC, JPEG and SOM compression
for the test images. Bottom: Lena detail in the three methods. It can be clearly seen that the
Lena face, compressed with MSIC shows a more natural view (altmost like painted with Pointillism
technique) than the other methods that have square block borders.

Chapter 8. MSIC: Magnitude Sensitive Image Compression 132

Figure 8.7: Original ’Street’ image and the compressed images using MSIC with four different
Magnitude Functions.

This toy example was only presented to show the possibilities of achieving selective

compression in different areas of the image just by varying the Magnitude Function.

MSIC algorithm is much more slower than JPEG. In a serial execution on single core

computer, JPEG processing takes only 0.11% of the total processing time used by MSIC

(that in our tests it take 6,8 seconds for compressing each of the grayscale test images).

Most of the time (91.6%) is spent on block extraction (34% of which is used in extracting

blocks from the saliency map and 66% in extracting blocks from the image). Block encoding

and decoding takes 6.7% of the time, and 1.7% the rest of the algorithm.

However processing time may be reduced using parallel processing and compiled li-

braries (now simulated in Matlab). The slowest task is finding the best matching unit to

define the Voronoi region to extract a block, and in the encoding-decoding task. BMU

finding represents the 68% of the block extraction time, and the 51% of the encoding-

decoding time. It is a slow process because in our sequential implementation we must, for

each sample, calculate the distances from it to each of the units. In a parallel implementa-

tion, this processing could be applied simultaneously for all units. Then, using for instance

1000 units, block extraction time could be only 29.3% of initial total time. Using similar

approach for encoding-decoding the final processing time can be reduced to be 2.3 seconds

(34,3% of the original processing time).

8.4.2 Color images

In the color experiments, it is applied the method explained in section 8.3, with the same

parameters used in the grayscale case.

Now we use a different saliency definition focused in those image zones with colors

selected by the user. This type of compression, preserving with more detail image zones

with certain color selection, may have several applications. For instance, in medical images,

the specialist may define the colors of those areas that has to be well preserved. Other

Chapter 8. MSIC: Magnitude Sensitive Image Compression 133

application is for video transmission limited by narrow bandwidths, as in underwater image

transmission. In that case, it is possible to work with a highly compressed global image,

and if the user wants a higher definition in areas of a specific color, MSIC could get to a

better definition of those areas, obviously degrading others to keep the limited bandwidth.

We propose the next process to calculate the saliency map from the color values of each

pixel, we first calculate the saliency map of each color in the set of colors. The saliency map

of a selected color is obtained by binarizing the image, based on thresholding the distance

of the pixel color and the selected color. Then we apply a border detection algorithm to

get the edges of the image zones painted in that color. This edge detection step ensures

that the saliency will represent more clearly those zones of the image with borders with

the selected colors.

The saliency map of the image is obtained as the maximum of the filtered edge images

for all the set of colors. Using this value of magnitude, we get more units in the interesting

regions on which colors are similar to the defined set.

JPEG was implemented using Matlab and different compression qualities.

Experiments use the test images depicted in the first column of Fig. 8.8. The second

column shows the resulting saliency maps for these images. To keep the fish details in the

first image, orange and white colors are used as color set. The flower image uses dark and

clear pink, the boat image uses only brown and the parachute image uses pink and black

from the parachutist.

Image Q/Bytes JPEG(Tot/50%) MSIC(Tot/50%)

Fish Q3/1702 1328/2695 2193(20.7)/1789(40.3)
Flower Q5/1722 862/1299 3540(227.1) /1167(49.4)
Boat Q6/1720 1303/1570 2366(87.4)/1190(25.3)
Sky Q5/1706 967/2312 240(58.2) /468(19.7)

Table 8.2: Mean MSE for the whole image as well as for areas with saliency over 50% (color
example). Standard deviation is also shown (in brackets).

Table 8.2 shows the resulting mean of the MSE in 10 tests using MSCL compared to

JPEG. It is also shown for each algorithm, the MSE value calculated in those pixels with

saliency over 50%. Standard deviation is shown in brackets, and number of bytes and

image quality are also displayed.

As expected, the MSE value calculated for the whole image area is lower using JPEG

than the one provided by MSIC. However, when MSE was calculated taking into account

only those pixels exhibiting a high saliency, MSIC obtained the best results.

Chapter 8. MSIC: Magnitude Sensitive Image Compression 134

Figure 8.8: Top in columns : Original color image, saliency map generated for a one or two-color
selection (fish with orange and white; flower with dark and clear pink; boat with brown; parachute
with pink and black), MSIC and JPEG compression for the test images. Bottom: Fish image detail
in both compression methods.

Chapter 9
Surface modelling

9.1 Introduction

The problem of reconstructing the surface of objects from a point cloud is quite common

in many areas such as CAD design, cartography, virtual reality and medicine, where input

devices can obtain 3D coordinates, but without connectivity information.

Well known techniques propose solutions to the surface reconstruction problem from a

geometric point of view. These algorithms require long processing time for the input point

cloud because they exploit the adjacency relationship of the data points [29] [4]. For this

reason some authors have proposed the use of Competitive Learning algorithms to cope

with this problem, specially those that include an intrinsic definition of neighbourhood

such as SOM [85] and its derivations [68], [53] and [35].

However these techniques are only capable of centering vertex (units) in the surface

according to the 3D-point density, while in many applications it is interesting to detail

zones with other properties (i.e., high curvature), and in general these methods require to

smooth and reconstruct the resulting mesh structure.

Therefore, we propose to take advantage of the capability of the previously explained

Magnitude Sensitive Competitive Neural Networks of distributing units according to a de-

fined magnitude to achieve a mesh surface with high detail in its curved regions, usually

pertaining to edges of the surface. This edge detection is interesting for modelling me-

chanical pieces [74] or modelling 3D environments and robot localization in Simultaneous

Localization And Mapping (SLAM) tasks [55].

In this chapter we use MSCL and MS-SOM in two tasks related to 3D surface mod-

elling. First MSCL is used to generate a good 3D representation from real point clouds

135

Chapter 9. Surface modelling 136

captured by a laser scanner. This dataset consists on a large amount of raw data sam-

ples with the (x, y, z) coordinates of each point, with no additional information about the

surface. Our goal will be to get a surface mesh that model the whole dataset, with unit

centroids centered in zones with high curvature. However, as the MSCL algorithm does

not include any intrinsic definition of neighbourhood, unlike other algorithms like SOM, we

use a neighbourhood definition proposed in section Algorithm analysis of chapter 3. Tests

were made with three typical point clouds sets, and results are compared with several

competitive learning algorithms.

In last section of this chapter we use MS-SOM to perform surface modelling, but

from information from 3D depth/range images. This kind of images, have pixel values

which correspond to the distance, to points in a scene from a specific point, normally

associated with some type of sensor device. Dataset is formed by 3D vectors with the

(X,Y) coordinates and the pixel depth. The difference to point clouds is that there is

topological information on each pixel (it is known which are the neighboring pixels of a

given one). Test were made only with an 3D depth image, and MS-SOM was compared

to SOM, just to show its advantages over it. Here, units were impelled to represent with

higher detail zones with relevant change on depth in the image.

9.2 Point clouds example

We compare MSCL with other VQ algorithms using two well-known cloud datasets: the

first dataset consists of 41255 points from one of the scan views of the Stanford Bunny

Model (downloaded from [73]). The second dataset corresponds to the scan of a mechanical

piece, the Fandisk. This dataset is formed by 11984 points and was downloaded from

[25]. The 3-D coordinates of every point in these databases is used as input data for the

competitive models.

9.2.1 Curvature codebook and curvature map

First of all, it is necessary to evaluate the curvature map, that is the value of the curvature

in each portion of the input space calculated from the cloud datasets. This value, applied to

each point will be used as a magnitude to get a MSCL centered on curvature. But first, we

apply MSCL using as target function the mean Q-error, as it was calculated in equation

3.36, to obtain that we call the curvature codebook. This codebook, with prototypes

uniformly distributed along the scanned surface, is used to estimate the curvature map

that will be handled as a lookup-table for the magnitude curvature.

Chapter 9. Surface modelling 137

Figure 9.1: Definition of curvature. The cyan ellipsoid is the Voronoi region of unit marked in red.
In yellow they are shown the neighbouring units. Curvature at one unit (ie. the red unit) is defined
as the average of the projection of each of the vectors between the neighbours and the unit, over
the third principal component calculated at the unit’s Voronoi region. Red arrow represents this
third principal component of the red unit.

In order to estimate this curvature map, we have used the definition shown in figure

9.1, i.e. we consider that the Voronoi data-subset of each unit in the curvature codebook

spans a little piece of the surface. This Voronoi-plane is almost flat and centred at the unit

prototype. Principal component analysis of these Voronoi data subsets, should generate

the first and the second principal components contained in these plane-pieces, while the

third principal components should be perpendicular to these planes. For each unit, the

vector difference between the unit prototype and those of the mesh neighbour-units is

calculated. These inter-prototype vectors are projected on the third principal component

previously mentioned and averaged over all the neighbours of the unit to generate its ”mean

curvature”.

When the surface is flat, the units and their closest neighbours will present a value

near zero in their mean curvature. However, if the area surrounding a unit is curved,

this magnitude will take high values. To maintain this mean curvature realistic, this

calculation eliminates from the codebook those units with less than three samples in their

Voronoi regions (as three samples only can define a plane and its third PCA component

would be null). They usually are units in extreme points of the surface and the estimated

curvature would have no sense in these border zones. This pruning process only affects

a low number of codewords in the curvature codebook, but does not affect the curvature

map estimation, as the data points of eliminated codewords are reassigned to the surviving

curvature codebook.

The MSCL for estimating curvature used in the Bunny example included 2013 units,

which is approximately the number of points in Bunny dataset divided by 20. For the

Chapter 9. Surface modelling 138

Figure 9.2: In left image, the curvature map for Bunny example obtained with a curvature codebook
with 2010 units (after pruning 3 units). In right image, Bunny model visualization from Stanford
webpage [73]. It is clear that the curvature map shows enough detail of the model.

Fandisk example the network used 1198 units, which is approximately the number of

points divided by 10. For both surfaces, units were initialized with random samples,

networks were trained 15 cycles with a value of β, so that initial and final learning rates

are αini = 0.9 and αfinal = 0.1. We call the resulting curvature codebook wq. As the

pruning of ”border” units reduces the number of units, the final numbers of units were

2010 and 1198 units in Bunny and Fandisk respectively. Figure 9.2 shows in the left image

the curvature codebook wq obtained for the Bunny example, with the associated color

scale representing the curvature values associated to the codewords, while the right image

shows the model of Stanford to compare both.

Once the curvature codebook wq is obtained, the curvature map for the dataset is cal-

culated as follows: each data sample is shown to the curvature codebook, and its associated

curvature is obtained interpolating between those curvatures of codewords corresponding

to its first an second BMU.

9.2.2 MSCL focused in curvature

We train a MSCL network denoted as MSCLcurv, focused on the curvature map of the

cloud points surface. This MSCLcurv is compared to MSCL with mean Q-error as magni-

tude, frequency sensitive competitive learning (FSCL), Fuzzy C-means clustering (FCM),

Neural Gas (NG), K-Means and Self-Organizing Maps (SOM), using the same parameters

Chapter 9. Surface modelling 139

applied in section 3.4.1, but training along 15 cycles. Number of units for the different

surfaces were 2013 for Bunny and 2397 for Fandisk. In the MSCLcurv, the magnitude

function for each sample is:

MF (x) = curvature (x) (9.1)

9.2.3 Results

Figure 9.3: Bunny modelling with 2013 units for MSCL with curvature, MSCL with Q-error,
FSCL and Neural Gas. Bar color represents curvature values assigned to prototypes. MSCL with
curvature concentrates prototypes in the curls and folds of the skin, modelling with high detail the
eyes, ears and the joining zones of limbs and body.

Chapter 9. Surface modelling 140

Figure 9.4: Fandisk modelling with 2397 units for MSCL with curvature, MSCL with Q-error,
FSCL and Neural Gas. Bar color represents curvature values assigned to prototypes. MSCL with
curvature shows more detailed representation in the vertexes and edges of the piece.

In relation to the Bunny dataset, the FCM model cracked, K-means generated many

dead units, and SOM result was a too soft representation unable to model the Bunny

surface properly. Therefore, Figure 9.3 shows the resulting meshes for the other models:

MSCL with curvature, MSCL with Q-error, FSCL and Neural Gas. For the same reasons

as mentioned before, figure 9.4 only shows the results for these models in the Fandisk

example. It is clear that meshes generated by MSCL with curvature were more efficient in

prototype utilization for high curvature zones and edge detections, showing in these zones

Chapter 9. Surface modelling 141

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

C
ou

nt
s

Range of curvature values

MSCL Curvature

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

C
ou

nt
s

Range of curvature values

MSCL Q−error

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

C
ou

nt
s

Range of curvature values

FSCL

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

C
ou

nt
s

Range of curvature values

FCM

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

C
ou

nt
s

Range of curvature values

NG

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

C
ou

nt
s

Range of curvature values

SOM

Figure 9.5: Histograms of the curvatures assigned to prototypes in several methods (from left to
right and top to bottom: MSCL curvature, MSCL Q-error, FSCL, FCM, NG and SOM) for the
Fandisk example. The red vertical line indicates the mean value and the green lines represent the
standard deviation range. MSCL with curvature shows the larger number of units in high curvature
zones.

a larger number of units that increase their resolution.

As a comparative measure, we represent histograms of curvature values along the dif-

ferent codebooks generated by the models. To assign a curvature value to each unit, we

interpolate the curvature map as if its prototype vector was a data sample. Figure 9.5

shows histograms for the different models in Fandisk example. The red vertical line in-

dicates mean value of the curvature distribution for each model. It is worth noting that

curvature-based MSCL approach shows the distribution of curvature in its codebook with

more concentration in high curvature values taking 0.3451 as mean value, while the rest

of models have means between 0.22 and 0.23. The number of units dedicated to planar

zones (null curvature bin in the horizontal axe) is clearly the lowest for the curvature-based

MSCL approach, while the rest of the models have high number of units in these planar

zones.

9.3 3D Depth images example

In 3D computer graphics, a depth map or a 3D depth image is an image that contains

information relating to the surface distances of scene objects from a viewpoint, usually

represented by a grey level. This property facilitates the computation of the curvature at

each region of the image, which is closely related to the problem of discovering the edges

Chapter 9. Surface modelling 142

Figure 9.6: Surface modelling example.(a) Original image. (b) 3D depth image. (c) Curvature
map applying Canny. Zones with higher curvature are also brighter. (d) Final surface models after
training dataset with a SOM and (e) a MS-SOM following curvature.

in the grayscale image. An edge mostly corresponds to a change in depth, and therefore it

is a region with high curvature.

In this example we compare the performance of SOM and MS-SOM in the task of

modelling a 3D surface, given a depth image downloaded from [76]. Processing a 3D image

in this way is useful when it is necessary to have a good representation of the 3D space

(i.e. in robot indoor navigation to define the 3D occupancy grid mapping).

Data samples are the three dimensional vector formed by the pixel coordinates and the

pixel depth: x(t) = (x, y, z), where z is the normalized distance to the camera. Curvature

is calculated applying the Canny filter to the image I. Top of figure 9.6 shows the original

image, the depth map I (closer points are brighter) and its associated curvature values

obtained with Canny filter. This curvature is used as magnitude vector associated to

dataset X .

We trained both SOM and MS-SOM with the same number of units, and similar train-

ing parameters, including the same linear codebook initialization. Figure 9.6 (d and e)

shows the surface modelled with SOM and MS-SOM respectively. MS-SOM allocates

more units than SOM in the zones corresponding to the edges in the 3D depth map, there-

fore three-dimensional borders are clearly represented, and it is possible to distinguish the

Chapter 9. Surface modelling 143

human figure and other details, while in the SOM figure they are mostly confused with the

background.

Part IV

CONCLUSIONS

144

Chapter 10
Conclusions and future work

The subject of this thesis is to advance in dataset modeling via competitive learning where

data samples are weighted by a magnitude that does not necessarily correspond with data

density.

I proposed a set of Magnitude Sensitive Competitive Neural Networks (MSCNN) that

work like usual competitive learning neural networks in vector quantization tasks, but

include a target magnitude function. The effect of this factor is to force units to concentrate

in zones of high value of the desired target function, calculated locally from the data or

unit parameters. MSCNNs differ from other standard Competitive Learning algorithms

that usually generate a discrete approximation to data probability density-function. As

a result, MSCNNs are more versatile to distribute prototypes following any property or

characteristic of the data.

The application examples showed MSCNN capabilities in different applications: Gaus-

sian distribution quantization, data series interpolation, surface modelling from 3D point

clouds, color quantization and selective image compression. The comparative results with

other competitive methods have validated advantages of MSCNNs in those tasks where

the desired codebook distribution does not correspond to the data density distribution.

10.1 Contributions

The major contributions of this Thesis are:

1. I proposed a hard competitive learning algorithm, MSCL, which has the property

of distributing centroids in data-distribution zones according to an arbitrary magni-

tude calculated or obtained locally for each unit (Algorithm is described in [63] and

145

Chapter 10. Conclusions and future work 146

exhaustively explained in [61]). The algorithm uses two heuristic methods to get this

goal:

• First, competition step takes a global and a local phase, where units compete

to get minimal product of magnitude by distance.

• Second, learning factor is different for each unit, and depends on the previously

accumulated magnitude that this unit have received.

The MSCL Algorithm was proposed in sequential and in batch implementations.

Several examples showed the advantages of it over other competitive learning algo-

rithms.

2. I proposed a soft competitive learning algorithm, MS-SOM (inspired in Self-organizing

maps), which also has the property of distributing centroids in data-distribution zones

according to the magnitude, but keeping track of neigboring relations between units

so it produces a low-dimensional (typically two-dimensional), discretized representa-

tion of the input space of the training samples, called a map (Algorithm described

in [65]).

Apart from the local competition and the use of specific learning factor for every

unit, it uses a neighboring function to modulate learning, and updates all units each

time a sample is presented. The algorithm is also introduced in online and batch

versions. Experimental comparisons were made with SOM in a simple VQ example

and classification tasks.

The topological representation of stimulus naturally emerges in the biological model

of lateral connectivity with excitation/inhibition in the form of Mexican hat. SOM

algorithm was developed as an smart simplification of this biological model. MS-SOM

introduces a second level of organization of neurons following any magnitude function.

This magnitude mechanism could be simplifying other types of biological processes

as, for example, a magnitude derived from a chemical diffusion map. This proposition

is not supported by experimental biological proofs, but I considered interesting to

develop a new method that, preserving the topological behaviour, added other levels

of organization with certain biological plausibility.

3. I presented a masked version of MSCL and MS-SOM that enabled the possibility of

learning from data samples of different length (idea outlined in [64]). The algorithm

is useful when data samples have some invalid components. This situation occurs

Chapter 10. Conclusions and future work 147

some times when data is retrieved from different sources, for instance in statistical

data from different countries.

A conventional algorithm fails in learning from this dataset, as it needs some kind of

data normalization. I demonstrated in Chapter 5 that a codebook trained with this

algorithm results in similar unit allocation than using MSCL or MS-SOM with the

unmasked dataset.

4. I presented a generalization of two common algorithms, frequently used in initializing

K-means methods: KKZ and K-Means++. The new algorithm, called MS-INIT is

the extrapolation of both algorithms to the situation where each sample have an

associated magnitude.

The idea is that MS-INIT also use a ’magnitude’ factor during competition to select

each of the units from the data samples. This algorithm was compared with other

initialization algorithms and I demonstrated that it performs better in initializing a

MSCL neural network.

5. I also developed the Magnitude Sensitive Image Compression algorithm, MSIC ([64]).

This algorithm, which uses several MSCL networks, was intended to achieve image

compression with different compression ratios in different areas of the image, depend-

ing on their saliency. The algorithm was developed in two versions, for grayscale

images, and for colour images.

The basic idea of this algorithm was to divide the image in irregular blocks of different

size, smaller in zones of high interest (i.e., high magnitude), and bigger otherwise.

Then, blocks were encoded by a set of MSCLs, where each MSCL neural network

was trained with blocks of different size. As there were more number of blocks in the

most interesting areas of the image (areas with higher saliency), these zones receive

higher resolution in the compression process.

The definition of blocks were made by an additional MSCL trained to allocate its

units in areas corresponding to the more salient pixels. For training some of the

MSCL, I used the ’masked’ version of the algorithm.

Comparison with JPEG and SOM demonstrate the advantages of MSIC in selective

image compression.

Additionally I made some minor contributions:

1. I defined two functions to measure the goodness of the quantization achieved by

MSCNNs developed along the thesis: WMSE, the weighted version of MSE (Mean

Chapter 10. Conclusions and future work 148

Squared Error), and weighted Entropy. Here, instead of the density of probability, it

is used probability of accumulated magnitude at each unit.

2. I also demonstrate the advantage of both MSCL and MS-SOM in a surface modeling

task. In this case two real application examples were shown, surface reconstruction

from 3D point clouds generated form real laser, and the same task using Depth images

captured with TOF cameras. Both algorithms surpassed other typical competitive

learning algorithms, because MSCL or MS-SOM were trained to focus on the zones

of great curvature, while plain portions of the surface were underrepresented.

3. I presented the use of the new algorithms in a real Color Reduction task. Here,

dataset consists on triplets formed by the three coordinates of each sample in the

image color space. Training a neural network with a reduced number of codewords,

it is possible to get a reduced color palette for the image. The novelty was the use

of a MSCL for this training process, with some kind of magnitude associated to each

sample. I tested different functions to define this magnitude: pixel saliency, distance

to the center of the image, a magnitude that avoids mean color in the image, text

image binarization . In these cases, MSCL and MS-SOM performed better than other

algorithms.

4. Finally I compared SOM and MS-SOM in classification tasks. In this case, magnitude

was selected to force units to focus in zones with higher miss-classification error so

the final classification error was lower in MS-SOM than in the SOM algorithm.

10.2 List of publications

1. E. Pelayo, J. D. Buldain, C. Orrite, SO-VAT: Self-Organizing Visual Assessment

of cluster Tendency for large data sets, in proceeding of the European Symposium

on Artificial Neural Networks, Computational Intelligence and Machine Learning,

ESANN (2011) 141-146.

2. E. Pelayo, J. D. Buldain, C. Orrite, Magnitude Sensitive Competitive Learning, in

proceeding of the European Symposium on Artificial Neural Networks, Computa-

tional Intelligence and Machine Learning, ESANN (2012) 305-310.

3. E. Pelayo, J. D. Buldain, C. Orrite, Focused Image Color Quantization using Mag-

nitude Sensitive Competitive Learning Algorithm, in Proceedings of the 4 th Inter-

national Joint Conference on Computational Intelligence, IJCCI, (2012) 516-521.

Chapter 10. Conclusions and future work 149

4. E. Pelayo, J. D. Buldain, C. Orrite, Magnitude Sensitive Competitive Learning,

Neurocomputing 112 (2013) 4-18, ISSN 0925-2312.

5. E. Pelayo, J. D. Buldain, C. Orrite, Magnitude Sensitive Image Compression, in

Proceedings of the 5 th International Joint Conference on Computational Intelligence,

IJCCI, (2013) 370-380. (This paper received the NCTA 2013 - BEST STUDENT

PAPER AWARD).

6. E. Pelayo, J. D. Buldain, C. Orrite, Color Quantization with Magnitude Sensitive

Competitive Learning Algorithm, LNCS, Transactions on Computational Collective

Intelligence, Special Issue IJCCI 2012. (Review pending).

7. E. Pelayo, J. D. Buldain, C. Orrite, Selective image compression using MSIC algo-

rithm, LNCS, Studies in Computational Intelligence (SCI) published by Springer-

Verlag, Special Issue IJCCI 2013. (Review pending).

8. E. Pelayo, J. D. Buldain, MS-SOM: Magnitude Sensitive Self-Organizing Maps, in

Proceedings of the 10th WORKSHOP ON SELF-ORGANIZING MAPS, WSOM

(2014) (Review pending).

10.3 Future work

Algorithms proposed in this thesis can be improved, and research and future developments

can be expected.

Regarding the methodological aspects there are some possible competitive learning vari-

ants that can be developed, maintaining the idea of magnitude modulation:

1. Regarding MSCL itself, a wider experimentation could be done on some of the al-

gorithm parameters. For instance, using a variable number of winners to compete

in the local competition step. In the chapter devoted to the MSCL algorithm, we

demonstrated that low values for the number of competing units were the most suit-

able when a constant value was used. However, it was not investigated the effect of

using a variable number of winners, number that could decrease during training.

2. The neural gas (NG) is a simple algorithm for finding optimal data representations

based on feature vectors. It is a soft competitive algorithm, as SOM neural network,

but NG does not preserve the topological properties of the input space. It has the

advantage over SOM of being simpler, and getting better results in some occasions,

Chapter 10. Conclusions and future work 150

specially with high dimensional datasets. Extending the idea of magnitude to Neural

Gas as we did with SOM is one of the possible future research lines (this algorithm

could be called MS-NG).

3. Another option is using once again soft competition, but with no fixed neighbor-

ing relation between units, just winner unit could pull from neigboring ones. These

relations could be established between winner an rival units during training (as men-

tioned in the section related to connections, in the chapter dedicated to MSCL). The

resulting algorithm could be an alternative to MS-NG or MS-SOM. The advantages

of this algorithm over MSCL would be a faster convergence and the fact that it would

avoid ’dead-units’.

4. A growing version of MSCL could be implemented (it could be somehow as an initial

step with MS-INIT, and then normal training). The advantage over MSCL or MS-

SOM is that it would not be required to know in advance the number of units

necessary for quantification.

5. It could be implemented a Recursive/Recurrent MSCL to be applied in temporal

series. Then, MSCL would be focused on responding to certain temporal variations.

6. Another methodological improvement is the use of Hierarchical MSCLs. Different

MSCLs could be trained simultaneously from the dataset, but achieving better results

than if being alone.

7. Finally, it is also possible to use any of the MSNN neural networks to train the

center vectors in a Radial Basis Function Neural Network. Therefore, depending

on the used magnitude function, it is possible to approximate a function with great

detail in certain areas of the space, or achieve better time-series prediction giving

higher importance to some of the temporal sequences.

Concerning the application of these algorithms, there are several open research lines.

1. A possible future work in color quantization would be the processing of multi-channel

images from satellite. In this application, the number of colors is replaced by the

number of channels, so the dimension of the data can increase considerably. Using

MSCL, with magnitude maps obtained from labelled zones of the images, it is possible

to focus the vector quantification towards zones of interest, for example detailing built

areas or areas that contains a specific crop.

Chapter 10. Conclusions and future work 151

2. In image compression, future work comprises several research lines such as the use

of entropy coding for the information of each compressed image block, filtering each

image with DCTs, and its comparison against other compression algorithms. Another

point to be analysed is the kind of images used to generate the generic pictorial

codebooks used for compression and restoration, as the library of training images

can be selected for the chosen task. The test of the algorithm in specific tasks as

mentioned in the previous paragraph is a research line that is left for future work

too.

3. Surface modeling from 3D point clouds could also be improved using some of the

typical methodologies in this type of applications. For instance, it is possible to filter

outliers during training (points so far from the main dataset usually are reading

errors from the laser scan). On the other hand, it is typical to apply some kind of

post processing to the final surface (to prune or create new nodes in some of the

areas as border limits, abrupt surface changes, ...).

4. Apart from computer vision, MSCNNs may be applied in other fields. Novelty de-

tection (also known as anomaly detection) is one of these areas. The issue related to

novelty detection is that usually are not enough anomalous (or ’new’) samples, and

training has to be reduced to the known cases.

Classic competitive learning algorithms provide a solution to this problem, because

they are trained with the ’known’ dataset, and therefore, this dataset is modeled

according to its data density. Then, in the recall phase, each training sample is

presented to the neural network. If it is close enough to the neural network, sample

is labeled to be ’known’, otherwise, it is labeled as ’novel’ or ’new’.

The distinction between ’new’ and ’known’ samples is improved if units are forced

to the data zones with low density. This process may be done using ’magnification’

control, as explained in chapter 2, or with MSCL or MS-SOM neural networks. In

that case, magnitude corresponding to areas with low density should be greater than

its value in low populated regions.

However, MSCNNs not only can improve novelty detection in this way. The use of

competition by magnitude opens the possibility to the use of alternative definitions

of ’new’ samples. For instance, if samples are ordered sequentially, appearance time

could be taken into account so if a sample locates in ’old’ regions (that have got no

hits recently), it may be considered a ’new’ event. Or the novelty may be related to

high changes of density. Or directly, a person may label in a supervised way each

Chapter 10. Conclusions and future work 152

sample in the training dataset as ’novel’ or ’known’. None of this novelty definitions

may be addressed with the classical methods.

5. Clustering is another research field to be explored more exhaustively (I developed

a preliminary work in this area in [60]). With the new methods developed in this

Thesis, it is possible to use any definition of limit between clusters, distance, distance

intracluster versus distance intercluster, or other complex definitions, and force units

to model in detail limits among clusters. Then, as in the example of classification

with MS-SOM, they may be distinguished in detail limits among clusters.

Conclusiones

El objetivo de esta tesis es el avanzar en modelado de conjuntos de datos por medio de

algoritmos de aprendizaje competitivo en los que las muestras son ponderadas por medio

de una magnitud que no se corresponde necesariamente con la densidad de los datos.

Se han propuesto un conjunto de MSCNNs que trabajan como redes neuronales com-

petitivas en tareas de cuantización vectorial, pero en las que se incluye una función de

magnitud objetivo. El efecto de ésta función es forzar a las unidades a concentrarse en

zonas de alto valor de la magnitud, calculada localmente a partir de los datos o de los

parámetros de cada unidad. En éste sentido MSCNNs difiere de otros algoritmos de apren-

dizaje competitivo que usualmente generan una aproximación a la densidad de probabilidad

de los datos de entrada. Por tanto MSCNNs son mucho más versátiles al ser capaces de

distribuir los prototipos siguiendo otras propiedades o caracteŕısticas de los datos.

Los ejemplos de aplicación mostraron la capacidad de MSCNN en distintas aplicaciones:

Cuantización de distribuciones Gausianas, interpolación de series de datos, modelado de

superficies, cuantización de color o compresión selectiva de imágenes. Los resultados com-

parando los nuevos algoritmos frente a otros algoritmos competitivos validaron las ventajas

de las redes MSCNNs en aquellas tareas en los que el la distribución deseada de las unidades

no se corresponde con la densidad de distribución de los datos.

Las mayores contribuciones de la tesis son:

1. Se ha propuesto un algoritmo competitivo de tipo ’hard competitive’, MSCL (descrito

en [63] y explicado exhaustivamente en [61]) con la propiedad de distribuir los cen-

troides en zonas del espacio siguiendo una magnitud arbitraria calculada localmente

para cada unidad. Dicho algoritmo se basa en dos métodos para conseguir su obje-

tivo: Uso de dos fases de competición y hecho del empleo de un factor de aprendizaje

distinto para cada neurona. El algoritmo se ha propuesto en dos implementaciones,

153

Chapter 10. Conclusions and future work 154

secuencia y por lotes.

2. Se ha propuesto un algoritmo competitivo de tipo ’soft competitive’ inspirado en

los Mapas autoorganizados de Kohonen, MS-SOM (descrito en [65]). Este algoritmo

también tiene la propiedad de distribuir los centroides en zonas del espacio sigu-

iendo una magnitud, pero lo hace conservando las relaciones de vecindad entre las

unidades, con lo que se consigue una representación discreta del espacio de entrada

(normalmente bidimensional).

3. Se ha presentado una versión enmascarada da MSCL y MSSOM que permite el

aprendizaje a partir de datos de distinta longitud (la idea se esbozó en (64)). Este

algoritmo es útil en situaciones en las que alguna de las muestras tiene componentes

inválidas, por ejemplo en el modelado de procesos industriales, donde falla algún

sensor, o en el procesamiento de datos estad́ısticos procedentes de distintas fuentes.

Un algoritmo convencional falla en éstas situaciones ya que requiere algún tipo de

preprocesamiento artificial de los datos para igualarlos y poder tratarlos durante el

entrenamiento.

4. Se ha presentado una generalización de dos algoritmos usados habitualmente para

la inicialización de K-means: KKZ y K-Means++. El nuevo algoritmo, MS-INIT

emplea un factor de magnitud adicional (asociado a cada muestra) durante la se-

lección de las unidades. Se ha demostrado que el nuevo algoritmo produce una mejor

inicialización de un codebook para luego ser entrenado mediante MSCL.

5. También se ha desarrollado un nuevo algoritmo de compresión selectiva de imágenes,

MSIC ([64]), que emplea diversas redes neuronales de tipo MSCL y que consigue que

distintas áreas de una imagen reciban distinto ratio de compresión dependiendo de la

saliencia de la imagen. El algoritmo se basa en dividir la imagen en bloques irregulares

de distinto tamaño de acuerdo a dicha saliencia, que luego son comprimidos con

MSCL enmascarado. Los experimentos han demostrado las ventajas de MSIC frente

a JPEG y SOM en compresión selectiva de imágenes.

Otras contribuciones menores de la tesis son las siguientes:

1. Se han definido dos medidas de calidad de cuantización aplicables a redes de tipo

MSCNN: WMSE y Weighted Entropy, ambas versiones ponderadas por la magnitud

del ’Mean Squared Error’ y de la entroṕıa.

Chapter 10. Conclusions and future work 155

2. También se ha demostrado la ventaja de MSCL y MSSOM en modelado de superficies

(tanto de imágenes de profundidad 3D como de nubes de puntos de scanner láser)

ya que los nuevos algoritmos son capaces de centrar las neuronas en zonas de alta

curvatura.

3. Se han mostrado las ventajas de los nuevos algoritmos en una tarea de reducción

de colores. En concreto se ha buscado que la paleta reducida de colores enfatizase

aquellos que se encontrasen en zonas de mayor saliencia (para lo cual se han definido

distintas medidas de saliencia).

Finalmente se ha comparado SOM y MS-SOM en tareas de clasificación de datos.

Se ha seleccionado una magnitud que fuerza las neuronas a centrarse en las zonas

de mayor error de clasificación. De éste modo el error de clasificación final de la red

entrenada ha sido menor empleando MS-SOM que el obtenido cuando se ha empleado

SOM.

Part V

APPENDICES

156

Appendix A
Abbreviations

Name Meaning

ANN Artificial Neural Network
BMU Best-Matching Unit
CL Competitive Learning
CR Color reduction
CQ Color Quantization
FSCL Frequency Sensitive Competitive Learning
MSCL Magnitude Sensitive Competitive Learning
MSCNN Magnitude Sensitive Competitive
MSIC Magnitude Sensitive Image Compression
MS-INIT Magnitude Sensitive initialization
MS-SOM Magnitude Sensitive Self-Organizing Map
NG Neural Gas
k-NN k-Nearest Neighbors
SGONG Self-Growing and Self-Organized Neural Gas
SOM Self-Organizing Map
VQ Vector Quantization

Table A.1: List of abreviations

157

Appendix B
MS Toolbox

B.1 Introduction

This technical report presents the Magnitude Sensitive Toolbox (MS Toolbox) hereafter

simply called the Toolbox, for Matlab computing environment by MathWorks, Inc.

The Toolbox comprises a number of useful functions to use the MSCL and the MS-SOM

algorithms. It uses some functions from the SOM Toolbox, developed by the Laboratory

of Computer and Information Science (CIS) at the Helsinki University of Technology. This

Toolbox is downloadable from http://www.cis.hut.fi/somtoolbox/

MSCL, as other unsupervised learning algorithms may be trained online, which have

the advantage of avoiding an extensive preprocessing of the dataset or the storage of this

information in long temporal memories. However, due of the fact that it is necessary to

update the value of the magnitude, it might require excesive computation time if made for

each new sample.

That is why we decided to work in epochs with both MSCL and MS-SOM algorithms.

Input data is divided in small blocks (or if received online, saved in small memories). Then,

at every epoch, a data block that we call dataep is presented to the MSCL neural network.

The MSCL is then trained with dataep: Unit weights compete first in a global compe-

tition considering only the distance of each unit to the samples in dataep and in a second

step, competition is local, but it haves into account the value of the magnitude, mgi(t).

Then, weights of winner units are updated. These steps, unit competition and update,

might be done in two ways:

• Sequentially, where unit competition and update is done just after the presentation

of each individual sample in dataep

158

http://www.cis.hut.fi/somtoolbox/

Appendix B. MS Toolbox 159

• In batch mode, where unit competition is done with all samples in dataep and after

that all winner’s weights are updated.

• ’Mask’ mode, where unit competition and update is done just after the presentation of

each individual sample in dataep, but each sample have associated a mask (different

for each sample) used to determine the components used in that sample during the

competition.

The magnitude associated to each unit is calculated by calling a user magnitude func-

tion magfunct(), as it is explained in section B.3, and then updated.

Section B.2 explain the structures and the different functions used in the algorithm.

Section B.3 explain how to define and use a magnitude function, and gives several examples

of useful magnitude functions. Finally last section explain some demos.

The MS-Toolbox is available free of charge under the GNU General Public License

from: http://www.researchgate.net/profile/Enrique_Pelayo

B.2 MS Toolbox

This section gives an explanation of the Toolbox. Additional information is available from

the help section of every function.

The kind of data that can be processed with the Toolbox is so-called spreadsheet or

table data. Each row of the table is one data sample. The columns of the table are the

variables or components of the data set. The variables might be the properties of an

object, or a set of measurements at an specific time. The Toolbox can handle only numeric

data. Every sample may have the same number of components (that we call DIM), or have

different number. In this case it is used the ’Mask’ training mode . If the available data

do not agree with these specifications, they can usually be transformed so that they do.

The total number of samples in the dataset is called LENGTH. These data comprises one

cycle. During training it is possible to repeat the presentation of the whole dataset if a

number of cycles greater than one is selected. As it has been previously mentioned, dataset

is divided in training epochs (Each cycle is divided in several epochs). The subset of the

data that correspond to an epoch is dataep and we call its length: epochlength.

B.2.1 Structures

The Toolbox includes two structures to group related information. The first one (the MS

struct) is the neural network. The second one is a structure created to pass the parameters

http://www.researchgate.net/profile/Enrique_Pelayo

Appendix B. MS Toolbox 160

to the magnitude function: the Magnitude Function struct. The MS-SOM also uses an

additional MS-struct to train the SOM map (it is used to define several MS-SOM training

parameters).

The MSCL struct includes all the information about the neural network. It is initialized

by the mscl init() function. Its fields are:

Field Type Description

.name (string) Name of the neural network

.type (string) Fixed value: ’ms struct’

.cb (num units x DIM) Codebook matrix. Units expressed in rows

.mu (vec., num units x 1) Magnitudes associated to each unit

.macc (vec., num units x 1) Accumulated magnitude in each unit

.conn (num units x num units) Sparse connexion matrix

.train (struct) Training parameters:

.msk (vec., DIM) Component mask vector

.wins (integer) Number of competing units in local mode

.gamma (integer) Gamma

.beta (integer) Beta

.kconns (integer) Forgetting parameter

.function (@pointer) Pointer to the magnitude function

.args (cell) Arguments

.flags (struct) -

.acc (boolean) Use accumulated magnitude

.conn (boolean) Calculate connexions

.datafcn (boolean) Magnitude defined by sample input

.unitfcn (boolean) Magnitude defined by unit weights

.cmdfcn (boolean) Magnitude defined by unit commands

.update (boolean) Update weights and magnitudes

.cmds (struct) Command flags corresponding to the optional

MF struct fields. If one flag, the corresponding

field of a MF struct is filled.

Table 1. MS struct.

The Magnitude Function struct (MF struct) is created and filled within the different

training functions, and it is used to pass the parameters to the Magnitude Function. This

function only may receive an argument, the MF struct. Its fields are:

Appendix B. MS Toolbox 161

Field Type Description

.maskbmu (vec., DIM) Global component mask.

.args (cell) User arguments.

OPTIONAL: Optional fields

.mu (vec., num units x 1) Magnitudes associated to each unit.

.mg (vec., num units x 1) Magnitudes used in BMU local competition.

.macc (vec., num units x 1) Accumulated magnitudes in each unit.

.qerr (epochlength x 1) Quantization error (samples at the epoch).

.bmus (epochlength x 1) Best Matching Units (samples at the epoch).

.dataep (epochlength x DIM) Data matrix (samples at the epoch).

.conns (num units x num units) Connection matrix.

Table 2. MF struct.

It is important to remark that the optional fields are only created depending on the

parameters provided when passing the magnitude function pointer to the training functions

(see section B.3).

B.2.2 Initialization and training functions

There are one initialization and three training implementations of the MSCL algorithm

(sequential, sequential with masked components and batch [default]) in the Toolbox,

and two for the MS-SOM algorithm (sequential [default] and sequential with masked

components).

The simplest way to initialize and train a MSCL is to use function ms make()which does

both by default using automatically selected parameters. Depending on these parameters,

it is possible also to define that the MS struct is only created and defined with initial

values, or on the contrary, that it is trained a previously existing MS neural network.

The function divides the dataset in epochs what are passed to one of these low level

training functions:

• ms seqtrain(sM, data) : Trains sequentially a MSCL network.

• ms batchtrain(sM, data) : Training is done in batch mode.

• ms masktrain (sM, data, datamask) : Training is done in sequential mode, but

using an associated a mask for each sample.

Appendix B. MS Toolbox 162

Additionally there are two functions for initialization and training. Both functions

directly call ms make() and are equivalent to use it with the same parameters:

• ms init(num units, data, [[argID, value],...]) : Creates and initializes a

MSCL network. It is equivalent to the use of:

ms make(num units, data, ’init’, [[argID, value],...]) .

• ms train(MS, data,[[argID, value],...]) : Trains a MSCL network. It is

equivalent to the use of ms make(MS, data,[[argID, value],...]) .

On the other hand, MS-SOM training is achieved by ms somtrain(sMap, sM, D,

[[argID, value],...]) . This function use sequential algorithm to train a Magnitude

Sensitive Self-Organizing Map (MS-SOM) depending on unit magnitude. Unit magnitude

and some training parameters related to the use of magnitude are passed through a MS-

Struct. The function returns both trained structures (codebooks for both are the same).

B.2.3 Visualization functions

There are two functions to visualize trained MS networks (MSCL or MS-SOM): ms fig()

and ms connplot():

• ms fig(Dw, nns, [[argID, value],...]): The first one draws dataset (up to 3

selected dimensions), and unit centers of a MS struct (with same number of com-

ponents). It is possible to select which internal variable of each unit is represented

with a colour palette (.mu, .macc, . . .). This function is also capable of drawing the

SOM grid if the network corresponds to a MS-SOM (in this case it is necessary to

pass both, the MS and the SOM structs).

• ms connplot(sM, [[argID, value],...]): The second function is used to draw

the connection matrix obtained during or after training. It is only valid for MS-

structs (and it is equivalent to the SOM grid).

B.2.4 Auxiliary functions

This is the list of other auxiliary functions in the MS-Toolbox:

• ms connmake(sM,data): Generates the connection matrix of a MSCL.

Appendix B. MS Toolbox 163

• ms cbinit(numunits, datainput, [[argID, value], ...]) : Competitive algo-

rithm for generating an initial codebook for a MSCL neural network. Centers are

selected to minimize the sum of weighted squared distance from each center to the

total of data samples within its Voronoi region.

• ms bmus(sM, data) : Find the best-matching units from the MSCL for the given

vectors, having into account the magnitude at each unit.

• ms bmusmask(sM, data, mask) : Find the best-matching units from the MSCL for

the given vectors, having into account the magnitude at each unit. Use individual

masks for each data sample.

• ms getcmds(arguments) : Extracts the commands from the ’arguments’ cell array

(containing command strings and arguments for the magnitude function), sets com-

mand flags corresponding to the optional MF struct fields, and extracts arguments in

an isolated cell array. The output results are used when calling a magnitude function

that uses a MF struct. It is possible that ’arguments’ contains no string commands.

In that case, iscmf flag is set to FALSE and input is passed directly to ’args’.

• ms beta(cycles, numdata, numunits, finalalpha) : Calculates the value of

beta, optimized so the final alpha value tends to a user defined value. If this value is

null, it is optimized to the value that it would get in one cycle.

• ms quality(sM, data) : Calculates the Weighted Mean Squared Error (WMSE)

and Weighted Entropy of a trained MSCL.

B.3 The magnitude function

B.3.1 Use of the magnitude function

MSCL and MS-SOM algorithms need to define the value of the magnitude at each unit

for the competition step. The magnitude is a scalar, that can be calculated through the

magnitude function mf . This function takes the general form:

mf : Y → R (B.1)

There are three ways to define it, depending on which arguments (Y) are used:

1. As a function of data sample x. A particular case is when this function can not be

explicitly defined, but there is still a scalar value that can be assigned to that sample,

Appendix B. MS Toolbox 164

mx(t). In this case it may be created an extended data vector from the concatenation

of x and mx(t):

xextended(t) = [x(t)mx(t)] (B.2)

Then, this vector is used instead of x .

2. As a function of the values of each unit weights wk(t).

3. As a function of the values of each unit weights wk(t) and other parameters of the

Voronoi region corresponding to unit k.

To use the MS Toolbox the user may develop its own function to define the magnitude

function. This function always outputs two vectors:

• mags: new values of the magnitudes for each unit may be calculated from the data

samples (matrix) at the current epoch, or the codebook matrix (depending on the

input arguments). Its length corresponds to the matrix number of rows, and returns

a scalar for each row.

• valid: vector of flags that indicates if the corresponding magnitude is a valid value.

However, the input arguments are different depending on the way to define the function:

1. In the first case, Y is formed by a data matrix (with data in rows), and additional

function arguments, args (cell if more than one, or a numeric scalar, vector or an

array if it is a single argument):

[mags valid] = user mf(X, args) (B.3)

in this case outputs are two column vectors with size equal to the dataset length.

2. In the second case, Y is formed by the codebook matrix (with units in rows), and

the additional function arguments (cell if more than one, or a numeric scalar, vector

or an array if it is a single argument):

[mags valid] = user mf(codebook, args) (B.4)

in this case outputs are two column vectors with size equal to the number of units.

Appendix B. MS Toolbox 165

3. In the last case, Y is formed by the codebook matrix (with units in rows), and the

structure function MF. It is a structure described before whose fields are created and

modified by training functions. These fields may be the data in the epoch (dataep),

several training variables (bmus, hits, quantization error,...) or other user defined

arguments:

[mags valid] = user mf(codebook,MF) (B.5)

In this case, outputs are also two vectors with size equal to the number of units.

It is important to remark that it is possible the situation where one o more units have

not valid value for mags. One example of this situation is when one unit k has no hits in

one epoch, but the magnitude function uses the data associated to the unit. In that case

valid(k) indicates that mags(k) can not be calculated.

The way to use it is through the ’magfunction’ or ’unitfunction’ parameter used

when calling any of the initialization or training functions, for both MSCL and MS-SOM.

It is necessary to indicate which of the fields will be necessary for the function, so the

training function can fill the MF struct fields.

This parameter is always followed by a pointer to the user function and a cell with a

list of fields names and the user arguments:

...,′ function′,@user mf, {commands, userargs}), ...

where commands is the list of field names and userargs are the user arguments.

For example, the function user mf1 is called by ms make() in the following way:

MS = ms make(data, MSini,′ function′,@user mf1, {′qerr′,′ bmus′, arg1, arg2});

Then it initializes a MS struct defining the .train.fcn field to be equal to the pointer to

user mf1, and additionally it forces to create a MF struct with the following fields:

.maskbmu: mask vector.

.args: { argument1 argument2}.

.qerr: the quantization error of each sample of the epoch data.

.bmus: the best matching unit of each sample of the epoch data.

This makes it possible to use any of these variables internally into the user function :

function [mags, valid] = user mf1(codebook, MF)

Appendix B. MS Toolbox 166

mask = MF. maskbmu; % mask

numberunits = size(codebook,1);

argument one = MF.args{1}; % arguments

argument two = MF.args{2};

quantizationerrors = MF.qerr;

...

end

B.3.2 List of magnitude function examples

Here you can find a list of useful pre-programmed magnitude functions. They are expressed

in the way that they must be called in the initialization or training functions. Parameters

between single quotes are required and must be expressed as they are. User parameters

may also be necessary. In that case, they are written in italic.

• ..., @msf ones, [],...: Returns the constant magnitude value ’1’ for each unit.

• ..., @msf dist, {points, distmax}, ...: Returns the minimum distance from

each sample (in rows) to a set of points.

• ..., @msf xcomp, comp, ...: Returns a column vector of the absolute value of the

selected input comp.

B.4 Demos

• demo mscl.m: Test of several initialization an training modes of a MSCL neural

network. Uses simple magnitude functions.

• demo quality.m: Test Entropy and WMSE calculation during an epoch and at the

end of the algorithm.

• demo figs.m: Test of visualization functions.

• demo mask.m: Test of initialization an training of MSCL and MS-SOM neural net-

works in ’mask’ mode. Uses simple magnitude functions.

• demo mssom.m: Test of several initialization an training modes of a MS-SOM neural

network. Uses simple magnitude functions.

Bibliography

[1] S. C. Ahalt, A. K. Krisnamurthy, P. Chen, and D. E. Melton, Competitive learning

algorithms for vector quantization, Neural Networks 3 (1990) 277-290.

[2] N. Ahmed, T. Natarajan, K.R. Rao: Discrete cosine transform. Computers, IEEE

Transactions on 100(1) (1974) 90–93

[3] D. Alahakoon, S. K. Halgamuge, B. Srinivasan, Dynamic self-organizing maps with

controlled growth for knowledge discovery. Neural Networks, IEEE Transactions on,

11:3, (2000) 601-614.

[4] N. Amenta, M. Bern, M. Kamvysselis, A new voronoi based surface reconstruction

algorithm, in: Proc. of Siggraph 98 (1998) 415-422.

[5] C.Amerijckx, J.D. Legat, M. Verleysen: Image compression using self-organizing

maps. Systems Analysis Modelling Simulation 43(11) (2003) 1529–1543

[6] H. Annuth and C.A. Bohn, Smart Growing Cell: Supervising Unsupervised Learning,

Studies in Computational Intelligence 399 (2012) 405-420.

[7] S. Arias, H. Gómez, F. Prieto, M. Botón, R. Ramos: Satellite image classification by

self organized maps on GRID computing infrastructures. In Proceedings of the second

EELA-2 Conference, pp. 1-11. (2009)

[8] D. Arthur, S. Vassilvitskii, K-means++: the advantages of careful seeding. In: ACM-

SIAM Symposium (2007)

[9] A. Atsalakis, and N. Papamarkos, Color reduction and estimation of the number of

dominant colors by using a self-growing and self-organized neural gas. Engineering

Applications of Artificial Intelligence, (2006) 19(7):769–786.

167

Bibliography 168

[10] J. Bezdek, Pattern recognition with fuzzy objective function algorithms. Plenum Press,

(1981).

[11] C. M. Bishop, M.Svensen and C. K. I. Williams, GTM: The generative topographic

mapping, Neural Computation 10 (1998) 215-234.

[12] M. Celebi, An effective color quantization method based on the competitive learn-

ing paradigm, in: Proceedings of the International Conference on Image Processing,

Computer Vision, and Pattern Recognition (2009), 876-880.

[13] M. Celebi and G. Schaefer, G. Neural Gas Clustering for Color Reduction, in Pro-

ceedings of the International Conference on Image Processing, Computer Vision, and

Pattern Recognition (2010) 429-432.

[14] M. Celebi, Improving the Performance of K-Means for Color Quantization. Image

(Rochester, N.Y.), (2011) 29(4):260–271.

[15] G. J. Chappell, J. G. Taylor, The temporal Kohønen map. Neural networks, 6:3,

(1993) 441-445.

[16] C. Chang, P. Xu and R. Xiao, New adaptive color quantization method based on

self-organizing maps. Neural Networks, IEEE, (2005) 16(1):237–249.

[17] G. Cheng, Image Color Reduction Based on Self-Organizing Maps and Growing Self-

Organizing Neural Networks, in: proceedings of the Sixth International Conference

on Hybrid Intelligent Systems,(2006), 24.

[18] Y. Cheung, On rival penalization controlled competitive learning for clustering with

automatic cluster number selection, IEEE Transactions on Knowledge Data Engineer-

ing 17 (2005) 1583-1588.

[19] D. Cutting, D.Karger, J. Pedersen, J.Scatter/Gather, A Cluster-based Approach to

Browsing Large Document Collections. In: ACM SIGIR Conference (1992)

[20] D.L. Davies, D.W. Bouldin, A cluster separation measure, IEEE Transactions On

Pattern Analysis and Machine Intelligence (1979) 224-227.

[21] A. Dekker ,Kohonen Neural Networks for Optimal Colour Quantization, Network:

Computation in Neural Systems 3:5 (1994) 351-367.

Bibliography 169

[22] A. P. Dempster, N.M. Laird, D.B. Rubin, Miximum Likelyhood from Incomplete Data

via the EM Algorithm, Journal of the Royal Statistical Society, Series B, 39(1) (1977)

1-38.

[23] N. Dhavale, L. Itti, Saliency-Based Multi-Foveated MPEG Compression, in: Pro-

ceedings of the IEEE Seventh International Symposium on Signal Processing and its

Applications, (2003) 229-232.

[24] R. Durbin, and D. Willshaw, An analogue approach to the travelling salesman problem

using an elastic net method, Nature 326 (1987) 689-691.

[25] http://visionair.ge.imati.cnr.it/ontologies/shapes/.

[26] M. Harandi, M. Gharavi-Alkhansari: Low bitrate image compression using self-

organized kohonen maps. In: Proceedings 2003 International Conference on Image

Processing, ICIP’03. Volume 3. (2003) 267-270

[27] J. Harel, C. Koch, and P. Perona, Graph-Based Visual Saliency, in: Proceedings of

the NIPS 2006, (2006) 545-552.

[28] http://www.klab.caltech.edu/~harel/share/gbvs.php.

[29] H. Hoppe, T. Derose, T. Duchamp, J. Mcdonald, W. Stuetzle, Surface reconstruction

from unorganized points, in : Proc. of Siggraph 92 (1992) 71-78.

[30] Computer Vision Group, U.o.G.: Dataset of standard 512x512 grayscale test images.

http://decsai.ugr.es/cvg/CG/base.htm (2002)

[31] Iris Dataset, http://archive.ics.uci.edu/ml/datasets/Iris

[32] L. Itti, C. Koch, and E. Niebur, A model of saliency based visual attention for rapid

scene analysis, IEEE Transactions on Pattern Analysis and Machine Learning 20 (11)

(1998) 1254-1259.

[33] L. Itti, and C. Koch Computational modeling of visual attention. Nature reviews

neuroscience, (2001) 2(3), 194-203.

[34] C. Koch and S. Ullman, Shifts in selective visual attention: towards the underlying

neural circuitry. Human Neurobiology, (1985) 4(4), 219-227.

[35] I. Ivrissimtzis, W.K. Jeong, S. Lee, Yunjin Lee, H.P. Seidel, Surface Reconstruction

Based on Neural Meshes, in proceedings Mathematical Methods for Curves and Sur-

faces, (2005) 223-242.

http://visionair.ge.imati.cnr.it/ontologies/shapes/
http://www.klab.caltech.edu/~harel/share/gbvs.php
http://archive.ics.uci.edu/ml/datasets/Iris

Bibliography 170

[36] I. Katsavounidis, C. Kuo, Z. Zhang, A new initialization technique for generalised

lloyd iteration. IEEE Signal Processing Letters 1 (10), (1994) 144-146.

[37] K. Kerdprasop, N. Kerdprasop, P. Sattayatham, Weighted K-Means for Density-

Biased Clustering, in: Proceedings of the Data Warehousing and Knowledge Discovery,

7th International Conference (DaWaK 2005) 488-497.

[38] T. Kohonen. Self-Organizing Maps, Springer-Verlag, New York, 1997.

[39] P. K. Kuhl, Human adults and human infants show a ‘perceptual magnet’ effect for

the prototypes of speech categories, monkeys do not, Perception and Psychophysics

50 (1991) 93-107.

[40] P. K. Kuhl, K. A. Williams et al. , Linguistic experience alters phonetic perception in

infants by 6 months of age, Science 255 (1992) 606-608.

[41] A. Laha, N. Pal, B. Chanda, Design of vector quantizer for image compression using

self-organizing feature map and surface fitting. Image Processing, IEEE Transactions

on (2004) 13(10) 1291-1303

[42] J. Lampinen, E. Oja, Clustering properties of hierarchical self-organizing maps. Jour-

nal of Mathematical Imaging and Vision, 2:2-3, (1992) 261-272.

[43] J. Lazaro, J. Arias, J. Martin, A. Zuloaga, and C. Cuadrado, SOM Segmentation of

gray scale images for optical recognition. Pattern Recognition Letters, (2006) 27(16)

1991-1997.

[44] A. Likas, N. Vlassis, J.V. Jakob, The global k-means algorithm. Pattern Recognition

36(2), 451:461 (2003)

[45] R.J. Liou, Image compression using sub-band dct features for self-organizing map

system. Journal of Computer Science and Application (2007) 3(2)

[46] Y. Liu, R. H. Weisberg, Patterns of ocean current variability on the West Florida

Shelf using the self-organizing map. Journal of Geophysical Research, (2005) 110(C6),

C06003.

[47] Y. Liu, R. H. Weisberg, C. N. Mooers, Performance evaluation of the self-organizing

map for feature extraction. Journal of Geophysical Research: Oceans, (2006), 111(C5),

1978-2012

Bibliography 171

[48] S. Lloyd, Least Squares Quantization in PCM, IEEE Transactions on Information

Theory 28(2) 129-136 (1982).

[49] J. MacQueen, Some Methods for Classification and Analysis of Multivariate Obser-

vations, Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and

Probability, (1967) 281-297.

[50] Th. M. Martinetz, S. G. Berkovich, and K. J. Schulten, ‘Neural-gas’ network for vector

quantization and its application to time-series prediction, IEEE Trans. on Neural

Networks 4 (1993) 558-569.

[51] P. Martinez,et al., Hyperspectral image classification using a self-organizing map. In

Summaries of the X JPL Airborne Earth Science Workshop (2001).

[52] Matlab, from MathWorks http://www.mathworks.es

[53] M. Melato, B. Hammer , K. Hormann, Neural Gas for Surface Reconstruction, Tech-

nical reports, Clausthal-Zellerfeld: Clausthal University of Technology.(2007).

[54] E. Merenyi, A. Jain, T. Villmann, Explicit magnification control of self-organizing

maps for ’forbidden’ data. IEEE Transactions on Neural Networks (2007) 18(3): 786-

797.

[55] A. Nachter, K. Lingemann, J. Hertzberg, H. Surmann, 6D SLAM 3D Mapping Out-

door Environments, Journal of Field Robotics 24(8/9) (2007) 699-722.

[56] N. Nikolaou and N. Papamarkos, Color reduction for complex document images, In-

ternational Journal of Imaging Systems and Technology 19(1) (2009) 14-26.

[57] T. Onoda, M. Sakai, S.Yamada, Independent Component Analysis based Seeding

method for k-means Clustering. In: IEEE/WIC/ACM Conference (2011).

[58] N. Otsu, A threshold selection method from gray-level histograms, IEEE Transactions

on Systems, Man, and Cybernetics, 9(1) (1979) 62-66.

[59] N.Papamarkos, A neuro-fuzzy technique for document binarisation. Neural Computing

and Applications, (2003), 12(3-4):190–199.

[60] E. Pelayo, J. D. Buldain, C. Orrite, SO-VAT: Self-Organizing Visual Assessment of

cluster Tendency for large data sets, in proceeding of the European Symposium on Ar-

tificial Neural Networks, Computational Intelligence and Machine Learning, ESANN

(2011) 141-146.

http://www.mathworks.es

Bibliography 172

[61] E. Pelayo, D. Buldain, C. Orrite, Magnitude Sensitive Competitive Learning. Neuro-

computing 112, (2013) 4-18.

[62] E. Pelayo, D. Buldain, C. Orrite, Focused Image Color Quantization using Magnitude

Sensitive Competitive Learning Algorithm, in Proceedings of the 4 th International

Joint Conference on Computational Intelligence, IJCCI, (2012) 516-521.

[63] E. Pelayo, J. D. Buldain, C. Orrite, Magnitude Sensitive Competitive Learning, in

proceeding of the European Symposium on Artificial Neural Networks, Computational

Intelligence and Machine Learning, ESANN (2012) 305-310.

[64] E. Pelayo, J. D. Buldain, C. Orrite, Magnitude Sensitive Image Compression, in Pro-

ceedings of the 5 th International Joint Conference on Computational Intelligence,

IJCCI, (2013) 370-380. (This paper received the NCTA 2013 - BEST STUDENT

PAPER AWARD).

[65] E. Pelayo, J. D. Buldain, MS-SOM: Magnitude Sensitive Self-Organizing Maps, in

Proceedings of the 10th Workshop On Self-organizing Maps, WSOM (2014) (Review

pending).

[66] N. Ponomarenko , S. Krivenko , K. Egiazarian J. Astola, V. Lukin, Weighted MSE

Based Metrics for Characterization of Visual Quality of Image Denosing Methods,

Fifth International Workshop on Video Processing and Quality Metrics for Consumer

Electronics, Scottsdale, Arizona USA, (2010).

[67] L. Prechelt, Proben1 - a set of neural network benchmark problems and benchmarking

rules. Technical Report 21/94, Fac. of Informatics, Univ. Karlsruhe (1994).

[68] R. do Rego, F.de Lima Neto, Growing Self-Organizing Maps for Surface Reconstruc-

tion from Unstructured Point Clouds, in: Proc. of theInternational Joint Conference

on Neural Networks (2007) 1900-1905.

[69] U. Rutishauser, D. Walther, C. Koch, P. Perona, Is bottom-up attention useful for

object recognition, in: Proceedings of the CVPR 2004, Vol. 2 (2004) 37-44.

[70] K. Tasdemir, E.Merenyi, Considering topology in clustering of the Self-Organizing

Maps, in: Proc. of 5th Workshop on Self-Organizing Maps (2005) 439-446.

[71] A. Treisman and G.Gelade, A feature integration theory of attention. Cognitive

Psychology,(1980), 12:97–136.

Bibliography 173

[72] H. Shah-Hosseini, R. Safabakhsh, TASOM: a new time adaptive self-organizing map.

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 33:2,

(2003) 271-282.

[73] http://www-graphics.stanford.edu/data/3Dscanrep/.

[74] H. Song and HY. Feng, A Point Cloud Simplification Algorithm for Mechanical Part

Inspection, Int J. Adv Manuf Technol 45 (2009) 583-592.

[75] T. Uchiyama, and M. Arbib, Color image segmentation using competitive learning.

IEEE Transactions on Pattern Analysis and Machine Intelligence, (1994), 16(12),

1197-1206.

[76] DGait Database, http://www.cvc.uab.es/DGaitDB/Summary.html.

[77] E. Vazquez, T. Gevers, M. Lucassen, J. van de Weijer, and R. Baldrich, Saliency

of color image derivatives: a comparison between computational models and human

perception. Journal of the Optical Society of America. A, Optics, image science, and

vision,(2010), 27(3) 613-21.

[78] M. Varstal, J. D. R. Millán, J. Heikkonen. A recurrent self organizing map for tem-

poral sequence processing. In Artificial Neural Networks, ICANN’97 . Springer Berlin

Heidelberg, (1997) 421-426.

[79] J. Vesanto, J. Himberg, E. Alhoniemi and J. Parhankangas, Self-organizing map in

Matlab: the SOM Toolbox, in: Proceedings of the Matlab DSP Conference 1999,

(1999) 35-40.

[80] T. Villmann, E. Merényi, B. Hammer, Neural Maps in Remote Sensing Image Analy-

sis. Neural Networks, Special Issue on Self-Organizing Maps for Analysis of Complex

Scientific Data, 16:(3-4) (2003) 389-403.

[81] J. C. Claussen, Magnification Control in Self-Organizing Maps and Neural Gas, Neural

Computation, 18 (2006) 446-469.

[82] CD. Wang, JH. Lai, Energy based competitive learning, Neurocomputing 74 (2011)

2265-2275.

[83] L. Xu, A. Krzyzak, and E. Oja, Rival Penalized Competitive Learning for Clustering

Analysis, RBF net and Curve Detection. IEEE Tr. on Neural Networks, (1993), 4

636-649.

http://www-graphics.stanford.edu/data/3Dscanrep/
http://www.cvc.uab.es/DGaitDB/Summary.html

Bibliography 174

[84] H. Yin, Learning nonlinear principal manifolds by self-organising maps. In Principal

Manifolds for Data Visualization and Dimension Reduction. Springer Berlin Heidel-

berg (2008) 68-95.

[85] Y. Yu, Surface reconstruction from unorganized points using self-organizing neural

networks, in: Proc. of IEEE Visualization Conference (1999) 61-64.

[86] B. Zhang, Generalized k-harmonic means - boosting in unsupervised learning. Tech-

nical Report HPL-2000-137. Hewlett-Packard Labs (2000)

	585.pdf
	List of Figures
	List of Tables
	I INTRODUCTION
	Introduction
	Introduction and motivation
	Thesis organization
	Notational conventions

	Competitive Learning Neural Networks
	Introduction
	Basic Competitive Learning Algorithm
	Usual Competitive Learning Algorithms
	K-Means
	Neural Gas
	Self-Organizing Feature Map

	Most related methods
	Frequency Sensitive Competitive Learning
	Energy Based Competitive Learning
	K-Harmonic Means and Weighted K-means
	Magnification control

	II ALGORITHMS
	 MSCL algorithm
	Introduction
	Proposed approach
	Magnitude
	Chapter description

	The MSCL algorithm
	Online implementation of the MSCL algorithm
	Batch implementation of the MSCL algorithm

	Algorithm analysis
	Resulting Voronoi regions
	Connections
	Modified quality measures
	Effect of alpha
	Effect of beta
	Effect of gamma
	Effect of the number of winners

	Application examples
	Modelling Gaussian distributions
	Interpolation application

	MS-SOM algorithm
	Introduction
	Magnitude Sensitive Self Organizing Maps
	The algorithm
	Analysing of the algorithm

	Application examples
	Modelling Gaussian distributions
	Classification

	 Masked MSCL algorithm
	Introduction
	The masked MSCL algorithm
	Initialization
	Random selection of data samples
	Global unit competition
	Local unit competition
	Winner update
	Magnitude update
	Stopping condition

	The masked MS-SOM algorithm
	Experimental results

	 Magnitude Sensitive Initialization
	Introduction
	Related algorithms: K-means++ and KKZ
	KKZ
	K-means++

	MS-Init
	Experiments
	Initialization example
	Training example

	III APPLICATIONS
	Color Quantization with MSCL
	Introduction
	Problem formulation
	Proposed approach
	Chapter description

	Applications
	Homogeneous color quantization
	CQ Focused on the image center
	CQ Avoiding dominant colors
	CQ Focused in salient colors
	Image binarization

	MSIC: Magnitude Sensitive Image Compression
	Introduction
	Magnitude Sensitive Image Compression
	Pictorical library generation
	Saliency map quantization
	Map restoration at transmitter
	Image quantization
	Map restoration at receiver
	Image restoration

	Extension to color images
	Experimental results
	Grayscale images
	Color images

	Surface modelling
	Introduction
	Point clouds example
	Curvature codebook and curvature map
	MSCL focused in curvature
	Results

	3D Depth images example

	IV CONCLUSIONS
	Conclusions and future work
	Contributions
	List of publications
	Future work

	V APPENDICES
	Appendix Abbreviations
	Appendix MS Toolbox
	Introduction
	MS Toolbox
	Structures
	Initialization and training functions
	Visualization functions
	Auxiliary functions

	The magnitude function
	Use of the magnitude function
	List of magnitude function examples

	Demos

	Bibliography

