2,185 research outputs found

    Developed cascaded multilevel inverter topology to minimise the number of circuit devices and voltage stresses of switches

    Get PDF
    In this study, a novel structure for cascade multilevel inverter is presented. The proposed inverter can generate all possible DC voltage levels with the value of positive and negative. The proposed structure results in reduction of switches number, relevant gate driver circuits and also the installation area and inverter cost. The suggested inverter can be used as symmetric and asymmetric structures. Comparing the peak inverse voltage and losses of the proposed inverter with conventional multilevel inverters show the superiority of the proposed converter. The operation and good performance of the proposed multilevel inverter have been verified by the simulation results of a single-phase nine-level symmetric and 17-level asymmetric multilevel inverter and experimental results of a nine-level and 17-level inverters. Simulation and experimental results confirmed the validity and effectiveness performance of the proposed inverter

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    A Novel Reduced Components Model Predictive Controlled Multilevel Inverter for Grid-Tied Applications

    Get PDF
    This paper presents an improved single-phase Multilevel Inverter (MLI) which is conceptualized to reduce power switches along with separate DC voltage sources. Compared with recent modular topologies, the proposed MLI employs a reduced number of components. The proposed inverter consists of a combination of two circuits, i.e., the level generation and polarity generation parts. The level generation part is used to synthesize different output voltage levels, while the polarity inversion is performed by a~conventional H-bridge circuit. The performance of the proposed topology has been studied using s single-phase seven-level inverter, which utilizes seven power switches and three independent DC voltage sources. Model Predictive Control (MPC) is applied to inject a sinusoidal current into the utility grid which exhibits low Total Harmonic Distortion (THD). Tests, including a~change in grid current amplitude as well as operation under variation in Power Factor (PF), have been performed to validate the good performance obtained using MPC. The effectiveness of the proposed seven-level inverter has been verified theoretically using MATLAB Simulink. In addition, Real-Time (RT) validation using the dSPACE-CP1103 has been performed to confirm the system performance and system operation using digital platforms. Simulation and RT results show improved THD at 1.23% of injected current

    Multiphase induction motor drives - a technology status review

    Get PDF
    The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operatio

    Comparison between flying capacitor and modular multilevel inverter

    Get PDF
    The paper describes the operational principle of flying capacitor and modular multilevel inverters. The detailed discussions of dc link capacitors voltage balancing methods for both inverters are given in order to enable fair comparison. The causes of dc link capacitors voltage imbalance in flying capacitor multilevel inverter with more than three levels are highlighted. Computer simulation is used to compare the performance of both inverters under several operating conditions

    Multilevel single phase isolated inverter with reduced number of switches

    Get PDF
    This paper proposes a cascaded single phase multilevel inverter using an off-the-shelf three-phase inverter and transformer. The concept is based on a cascaded connection of two inverter legs using a typical three phase inverter in such a way that the third leg is shared between the other two phases. The cascaded connection is achieved through an integrated series transformer with a typical three-phase transformer core. Utilization of a special transformer design has been previously proposed in the Custom Power Active Transformer. However, cascaded connection of inverter legs has not been previously investigated with such a concept. In this way, a three-leg inverter and a three-phase transformer are converted into an isolated multilevel single-phase inverter based on an unique configuration and modulation technique.Postprint (author's final draft

    Comparison between two VSC-HVDC transmission systems technologies : modular and neutral point clamped multilevel converter

    Get PDF
    The paper presents a detail comparison between two voltage source converter high voltage dc transmission systems, the first is based on neutral point-clamped (also known as HVDC-Light) and the second is based on innovative modular multilevel converter (known as HVDC-Plus). The comparison focuses on the reliability issues of both technologies such as fault ride-through capability and control flexibility. To address these issues, neutral point-clamped and three-level modular converters are considered in both stations of the dc transmission system, and several operating conditions are considered, including, symmetrical and asymmetrical faults. Computer simulation in Matlab-Simulink environment has been used to confirm the validity of the results

    Distributed control of a fault tolerant modular multilevel inverter for direct-drive wind turbine grid interfacing

    Get PDF
    Modular generator and converter topologies are being pursued for large offshore wind turbines to achieve fault tolerance and high reliability. A centralized controller presents a single critical point of failure which has prevented a truly modular and fault tolerant system from being obtained. This study analyses the inverter circuit control requirements during normal operation and grid fault ride-through, and proposes a distributed controller design to allow inverter modules to operate independently of each other. All the modules independently estimate the grid voltage magnitude and position, and the modules are synchronised together over a CAN bus. The CAN bus is also used to interleave the PWM switching of the modules and synchronise the ADC sampling. The controller structure and algorithms are tested by laboratory experiments with respect to normal operation, initial synchronization to the grid, module fault tolerance and grid fault ride-through

    Hysteresis Current Control Operation of Flying Capacitor Multilevel Inverter and Its Application in Shunt Compensation of Distribution Systems

    Get PDF
    Flying capacitor multilevel inverter (FCMLI) is a multiple voltage level inverter topology intended for high voltage and power operations with low distortion. It uses capacitors, called flying capacitors for clamping the voltage across the power semiconductor devices. In this paper, the implementation of a distribution static compensator (DSTATCOM) using an FCMLI is presented. A hysteresis current control technique for controlling the injected current by the FCMLI-based DSTATCOM is discussed. A new method for controlling the flying capacitor voltages is proposed which ensures that their voltages remain constant and at the same time maintain the desired current profile under the hysteresis current control operation. Simulation studies are performed using PSCAD/EMTDC to validate the efficacy of the control scheme and the FCMLI-based DSTATCOM
    corecore