46,700 research outputs found

    Stochastic multi-period multi-product multi-objective Aggregate Production Planning model in multi-echelon supply chain

    Get PDF
    In this paper a multi-period multi-product multi-objective aggregate production planning (APP) model is proposed for an uncertain multi-echelon supply chain considering financial risk, customer satisfaction, and human resource training. Three conflictive objective functions and several sets of real constraints are considered concurrently in the proposed APP model. Some parameters of the proposed model are assumed to be uncertain and handled through a two-stage stochastic programming (TSSP) approach. The proposed TSSP is solved using three multi-objective solution procedures, i.e., the goal attainment technique, the modified ε-constraint method, and STEM method. The whole procedure is applied in an automotive resin and oil supply chain as a real case study wherein the efficacy and applicability of the proposed approaches are illustrated in comparison with existing experimental production planning method

    Robust Multi-Objective Sustainable Reverse Supply Chain Planning: An Application in the Steel Industry

    Get PDF
    In the design of the supply chain, the use of the returned products and their recycling in the production and consumption network is called reverse logistics. The proposed model aims to optimize the flow of materials in the supply chain network (SCN), and determine the amount and location of facilities and the planning of transportation in conditions of demand uncertainty. Thus, maximizing the total profit of operation, minimizing adverse environmental effects, and maximizing customer and supplier service levels have been considered as the main objectives. Accordingly, finding symmetry (balance) among the profit of operation, the environmental effects and customer and supplier service levels is considered in this research. To deal with the uncertainty of the model, scenario-based robust planning is employed alongside a meta-heuristic algorithm (NSGA-II) to solve the model with actual data from a case study of the steel industry in Iran. The results obtained from the model, solving and validating, compared with actual data indicated that the model could optimize the objectives seamlessly and determine the amount and location of the necessary facilities for the steel industry more appropriately.This article belongs to the Special Issue Uncertain Multi-Criteria Optimization Problem

    Supplier selection under disaster uncertainty with joint procurement

    Get PDF
    Master of ScienceDepartment of Industrial & Manufacturing Systems EngineeringJessica L. Heier StammHealth care organizations must have enough supplies and equipment on hand to adequately respond to events such as terrorist attacks, infectious disease outbreaks, and natural disasters. This is achieved through a robust supply chain system. Nationwide, states are assessing their current supply chains to identify gaps that may present issues during disaster preparedness and response. During an assessment of the Kansas health care supply chain, a number of vulnerabilities were identified, one of which being supplier consolidation. Through mergers and acquisitions, the number of suppliers within the health care field has been decreasing over the years. This can pose problems during disaster response when there is a surge in demand and multiple organizations are relying on the same suppliers to provide equipment and supplies. This thesis explores the potential for joint procurement agreements to encourage supplier diversity by splitting purchasing among multiple suppliers. In joint procurement, two or more customers combine their purchases into one large order so that they can receive quantity discounts from a supplier. This research makes three important contributions to supplier selection under disaster uncertainty. The first of these is the development of a scenario-based supplier selection model under uncertainty with joint procurement. This optimization model can be used to observe customer purchasing decisions in various scenarios while considering the probability of disaster occurrence. Second, the model is applied to a set of experiments to analyze the results when supplier diversity is increased and when joint procurement is introduced. This leads to the third and final contribution: a set of recommendations for health care organization decision makers regarding ways to increase supplier diversity and decrease the risk of disruption associated with disaster occurrence

    An assessment of supply chain and innovation management practices in the manufacturing industries in Turkey

    Get PDF
    This paper aims at assessing the supply chain and innovation management in the manufacturing industries in Turkey on an empirical basis. The assessments presented are based on parts of the data and information collected through the execution of the Competitive Strategies and Best Practices Benchmarking Questionnaire in 82 companies from four sectors of the manufacturing industries in Turkey. Results of these sectoral benchmarking studies reported elsewhere indicate the need of adopting product differentiation particularly through more knowledge intensive products as the dominant competitive strategy and also the need for improvement in various areas of supply chain as well as innovation management. In this paper, these issues are analysed through the survey results and some conclusions are drawn. Several policy measures applicable in near future are suggested for improving the areas found in need of improvement

    Decision support for build-to-order supply chain management through multiobjective optimization

    Get PDF
    This is the post-print version of the final paper published in International Journal of Production Economics. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.This paper aims to identify the gaps in decision-making support based on multiobjective optimization (MOO) for build-to-order supply chain management (BTO-SCM). To this end, it reviews the literature available on modelling build-to-order supply chains (BTO-SC) with the focus on adopting MOO techniques as a decision support tool. The literature has been classified based on the nature of the decisions in different part of the supply chain, and the key decision areas across a typical BTO-SC are discussed in detail. Available software packages suitable for supporting decision making in BTO supply chains are also identified and their related solutions are outlined. The gap between the modelling and optimization techniques developed in the literature and the decision support needed in practice are highlighted. Future research directions to better exploit the decision support capabilities of MOO are proposed. These include: reformulation of the extant optimization models with a MOO perspective, development of decision supports for interfaces not involving manufacturers, development of scenarios around service-based objectives, development of efficient solution tools, considering the interests of each supply chain party as a separate objective to account for fair treatment of their requirements, and applying the existing methodologies on real-life data sets.Brunel Research Initiative and Enterprise Fund (BRIEF

    Supply chain risks: an automotive case study

    Get PDF
    The supply chain is a complex system exchanging information, goods, material and money within enterprises, as well as between enterprises within the value chain. An effective supply chain management contributes to large corporate profits and it is therefore a valid path to reinforce the enterprises' competitiveness. However, supply chain is exposed to influences from undesirable factors both from the outside environment and the entities in the chain. Moreover, industrial trends towards lean production, increasing outsourcing, globalisation and reliance on supply networks capabilities and innovations, increase the complexity of the supply chain . Therefore, managers need to identify, and manage risks, as well as opportunities, from a more diverse range of sources and contexts. This paper contributes to identify and categorise supply chain risks based on a literature study and an automotive manufacturer’s viewpoint. The empirical results indicate suppliers and raw material prices as the major internal and external potential risks
    corecore