2,566 research outputs found

    Semidefinite programming, binary codes and a graph coloring problem

    Get PDF
    Experts in information theory have long been interested in the maximal size, A(n, d), of a binary error-correcting code of length n and minimum distance d, The problem of determining A(n, d) involves both the construction of good codes and the search for good upper bounds. For quite some time now, Delsarte\u27s linear programming approach has been the dominant approach to obtaining the strongest general purpose upper bounds on the efficiency of error-correcting codes. From 1973 forward, the linear programming bound found many applications, but there were few significant theoretical advances until Schrijver proposed a new code upper bound via semidefinite programming in 2003. Using the Terwilliger algebra, a recently introduced extension of the Bose-Mesner algebra, Schrijver formulated a new SDP strengthening of the LP approach. In this project we look at the dual solutions of the semidefinite programming bound for binary error-correcting codes. We explore the combinatorial meaning of these variables for small n and d, such as n = 4 and d = 2. To obtain information like this, we wrote a computer program with both Matlab and CVX modules to get solution of our primal SDP formulation. Our program efficiently generates the primal solutions with corresponding constraints for any n and d. We also wrote a program in C++ to parse the output of the primal SDP problem, and another Matlab script to generate the dual SDP problem, which could be used in assigning combinatorial meaning to the values given in the dual optimal solution. Our code not only computes both the primal and dual optimal variable values, but allows the researcher to display them in meaningful ways and to explore their relationship and dependence on arameters. These values are expected to be useful for later study of the combinatorial meaning of such solutions

    Semidefinite code bounds based on quadruple distances

    Full text link
    Let A(n,d)A(n,d) be the maximum number of 0,10,1 words of length nn, any two having Hamming distance at least dd. We prove A(20,8)=256A(20,8)=256, which implies that the quadruply shortened Golay code is optimal. Moreover, we show A(18,6)≤673A(18,6)\leq 673, A(19,6)≤1237A(19,6)\leq 1237, A(20,6)≤2279A(20,6)\leq 2279, A(23,6)≤13674A(23,6)\leq 13674, A(19,8)≤135A(19,8)\leq 135, A(25,8)≤5421A(25,8)\leq 5421, A(26,8)≤9275A(26,8)\leq 9275, A(21,10)≤47A(21,10)\leq 47, A(22,10)≤84A(22,10)\leq 84, A(24,10)≤268A(24,10)\leq 268, A(25,10)≤466A(25,10)\leq 466, A(26,10)≤836A(26,10)\leq 836, A(27,10)≤1585A(27,10)\leq 1585, A(25,12)≤55A(25,12)\leq 55, and A(26,12)≤96A(26,12)\leq 96. The method is based on the positive semidefiniteness of matrices derived from quadruples of words. This can be put as constraint in a semidefinite program, whose optimum value is an upper bound for A(n,d)A(n,d). The order of the matrices involved is huge. However, the semidefinite program is highly symmetric, by which its feasible region can be restricted to the algebra of matrices invariant under this symmetry. By block diagonalizing this algebra, the order of the matrices will be reduced so as to make the program solvable with semidefinite programming software in the above range of values of nn and dd.Comment: 15 page

    New and Updated Semidefinite Programming Bounds for Subspace Codes

    Get PDF
    We show that A2(7,4)≤388A_2(7,4) \leq 388 and, more generally, Aq(7,4)≤(q2−q+1)[7]q+q4−2q3+3q2−4q+4A_q(7,4) \leq (q^2-q+1)[7]_q + q^4 - 2q^3 + 3q^2 - 4q + 4 by semidefinite programming for q≤101q \leq 101. Furthermore, we extend results by Bachoc et al. on SDP bounds for A2(n,d)A_2(n,d), where dd is odd and nn is small, to Aq(n,d)A_q(n,d) for small qq and small nn

    Semidefinite programming bounds for Lee codes

    Get PDF
    For q,n,d∈Nq,n,d \in \mathbb{N}, let AqL(n,d)A_q^L(n,d) denote the maximum cardinality of a code C⊆ZqnC \subseteq \mathbb{Z}_q^n with minimum Lee distance at least dd, where Zq\mathbb{Z}_q denotes the cyclic group of order qq. We consider a semidefinite programming bound based on triples of codewords, which bound can be computed efficiently using symmetry reductions, resulting in several new upper bounds on AqL(n,d)A_q^L(n,d). The technique also yields an upper bound on the independent set number of the nn-th strong product power of the circular graph Cd,qC_{d,q}, which number is related to the Shannon capacity of Cd,qC_{d,q}. Here Cd,qC_{d,q} is the graph with vertex set Zq\mathbb{Z}_q, in which two vertices are adjacent if and only if their distance (mod qq) is strictly less than dd. The new bound does not seem to improve significantly over the bound obtained from Lov\'asz theta-function, except for very small nn.Comment: 14 pages. arXiv admin note: text overlap with arXiv:1703.0517

    Commutative association schemes

    Full text link
    Association schemes were originally introduced by Bose and his co-workers in the design of statistical experiments. Since that point of inception, the concept has proved useful in the study of group actions, in algebraic graph theory, in algebraic coding theory, and in areas as far afield as knot theory and numerical integration. This branch of the theory, viewed in this collection of surveys as the "commutative case," has seen significant activity in the last few decades. The goal of the present survey is to discuss the most important new developments in several directions, including Gelfand pairs, cometric association schemes, Delsarte Theory, spin models and the semidefinite programming technique. The narrative follows a thread through this list of topics, this being the contrast between combinatorial symmetry and group-theoretic symmetry, culminating in Schrijver's SDP bound for binary codes (based on group actions) and its connection to the Terwilliger algebra (based on combinatorial symmetry). We propose this new role of the Terwilliger algebra in Delsarte Theory as a central topic for future work.Comment: 36 page

    Lecture notes: Semidefinite programs and harmonic analysis

    Full text link
    Lecture notes for the tutorial at the workshop HPOPT 2008 - 10th International Workshop on High Performance Optimization Techniques (Algebraic Structure in Semidefinite Programming), June 11th to 13th, 2008, Tilburg University, The Netherlands.Comment: 31 page
    • …
    corecore