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a b s t r a c t

For q, n, d ∈ N, let AL
q(n, d) denote the maximum cardinality of a code C ⊆ Zn

q with
minimum Lee distance at least d, where Zq denotes the cyclic group of order q. We
consider a semidefinite programming bound based on triples of codewords, which bound
can be computed efficiently using symmetry reductions, resulting in several new upper
bounds on AL

q(n, d).
The technique also yields an upper bound on the independent set number of the nth

strong product power of the circular graph Cd,q, which number is related to the Shannon
capacity of Cd,q. Here Cd,q is the graph with vertex set Zq, in which two vertices are
adjacent if and only if their distance (mod q) is strictly less than d. The new bound does
not seem to improve significantly over the bound obtained from Lovász theta-function,
except for very small n.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Fix two integers n, q ∈ N. Denote by Zq the group of integers 0, 1, . . . , q − 1 (mod q), which serves as alphabet. A
word is an element v ∈ Zn

q and a code is a subset C ⊆ Zn
q . For two words u, v ∈ Zn

q , their Lee distance is dL(u, v) :=∑n
i=1 min{|ui − vi|, q − |ui − vi|}. The minimum Lee distance dLmin(C) of a code C ⊆ Zn

q is the minimum of dL(u, v) taken
over distinct u, v ∈ C . (If |C |≤ 1, we set dLmin(C) = ∞.) For any natural number d, define

AL
q(n, d) := max{|C | | C ⊆ Zn

q, dLmin(C) ≥ d}. (1)

The Lee distance was introduced by C.Y. Lee in 1958 [14]. If q = 2 or q = 3, the Lee distance coincides with the Hamming
distance. For q ≥ 4, the Lee distance does not only take into account the number of symbols that are different in two
words (which is measured by the Hamming distance), but also to what extent these symbols are different. Because of
this property, the Lee distance is used in certain communication systems for information transmission (so called ‘phase
modulated systems’, see [7, Chapter 8]).

Generally, it is an interesting and nontrivial problem to determine AL
q(n, d) for given q, n, d. Quistorff made a table of

upper bounds on AL
q(n, d) based on analytic arguments [20]. H. Astola and I. Tabus calculated several new upper bounds by

linear programming [2], using an adaptation of the classical Delsarte bound based on pairs of codewords [9] (see also [1]).
For binary codes equipped with the Hamming distance, the Delsarte bound was generalized to a semidefinite

programming bound based on triples of codewords by A. Schrijver [23], and later to a quadruple bound by Gijswijt,
Mittelmann and Schrijver [11]. Also, nonbinary codes with the Hamming distance have been considered [12,16], codes
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Table 1
An overview of the new upper bounds for Lee codes. The new upper bounds are instances of the bound BL

3(q, n, d) from (3) below. The superscript l

refers to a bound obtained by Astola and Tabus using linear programming [2]. The superscript b refers to a bound from Quistorff [20]. The superscript ∗

refers to an upper bound matching the known lower bound: AL
7(4, 5) = 49 is achieved by a linear code [3].

q n d New upper bound Best upper bound previously known q n d New upper bound Best upper bound previously known

5 4 3 62 64l 6 5 6 61 67l

5 4 4 27 30l 6 5 7 22 24bl

5 4 5 10 11l 6 6 6 273 293l

5 5 3 270 276l 6 6 7 79 85l

5 5 5 36 39l 6 6 8 48 52l

5 5 6 15 18l 6 6 9 16 17l

5 6 3 1170 1176l 7 3 4 21 24bl

5 6 4 494 520b 7 3 5 10 11l

5 6 5 149 155l 7 4 3 256 263l

5 6 6 60 63l 7 4 4 121 128b

5 6 7 25 28l 7 4 5 49∗ 50l

5 7 3 5180 5208bl 7 4 6 23 27l

5 7 4 2183 2232b 7 4 7 11 13l

5 7 5 590 608l 7 4 8 6 7bl

5 7 6 250 284l 7 5 3 1499 1512l

5 7 7 79 81l 7 5 4 686 720b

5 7 8 35 41l 7 5 5 240 249l

6 3 3 27 29l 7 5 6 116 130l

6 3 4 14 17l 7 5 7 49 54l

6 4 4 78 79l 7 5 8 25 28l

6 4 5 22 26l 7 5 9 13 14l

6 5 3 693 699l 7 6 10 26 31l

6 5 4 366 378l 7 6 11 13 14b

6 5 5 107 114l

with mixed alphabets [15] and constant weight (binary) codes [19,23]. In [4], the authors mention the possibility of
applying semidefinite programming to Lee codes and they state that to their best knowledge, such bounds for Lee codes
using triples have not yet been studied.

In this paper, we describe how to efficiently compute a semidefinite programming upper bound BL
3(q, n, d) on AL

q(n, d)
based on triples of codewords, using symmetry reductions, and we calculate this bound for several values of q, n, d. We
only consider q ≥ 5, since for q = 4, the problem of determining AL

4(n, d) is equivalent to determining the maximum size
of a binary code of length 2n and minimum distance d using the Gray map (see, for example, [8]). We find several new
upper bounds on AL

q(n, d), see Table 1.
In Section 4, we show how to adapt the new bound to an upper bound BL∞

3 (q, n, d) on the independent set number
of the nth strong product power of the circular graph Cd,q, which number is related to the Shannon capacity of Cd,q.
The circular graph Cd,q is the graph with vertex set Zq, in which two vertices are adjacent if and only if their distance
(mod q) is strictly less than d. The new bound does not seem to improve significantly over the bound obtained from
Lovász theta-function, except for very small n.

1.1. The semidefinite programming bound

We define a hierarchy of semidefinite programming upper bounds on AL
q(n, d), which is an adaptation of the

semidefinite programming hierarchy for binary codes defined by Gijswijt, Mittelmann and Schrijver in [11]. For k ∈ Z≥0,
let Ck be the collection of codes C ⊆ Zn

q with |C |≤ k. For any D ∈ Ck, we define

Ck(D) := {C ∈ Ck | C ⊇ D, |D|+2|C \ D|≤ k}. (2)

Note that with this definition |C ∪ C ′
|≤ k for all C, C ′

⊆ Ck(D). Also we define, for any function x : Ck → R and D ∈ Ck,
the Ck(D) × Ck(D)-matrix Mk,D(x) by Mk,D(x)C,C ′ := x(C ∪ C ′), for C, C ′

∈ Ck(D). Now define the following number:

BL
k(q, n, d) := max{

∑
v∈Zn

q

x({v}) | x : Ck → R, x(∅) = 1, x(S) = 0 if dLmin(S) < d,

Mk,D(x) is positive semidefinite for each D in Ck}. (3)

Proposition 1.1. Fix k ∈ N. For all q, n, d ∈ N, we have AL
q(n, d) ≤ BL

k(q, n, d).
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Proof. Let C ⊆ Zn
q be a code with dLmin(C) ≥ d and |C |= AL

q(n, d). Define x : Ck → R by x(S) = 1 if S ⊆ C and x(S) = 0 else.
Then x satisfies the conditions in (3), where the last condition is satisfied since Mk,D(x)C,C ′ = x(C)x(C ′) for all C, C ′

∈ Ck(D).
Moreover, the objective value equals

∑
v∈Zn

q
x({v}) = |C |= AL

q(n, d), which gives BL
k(q, n, d) ≥ AL

q(n, d). □

It can be shown that the bound BL
2(q, n, d) is equal to the Delsarte bound in the Lee scheme, which was calculated for

many instances by Astola and Tabus in [2]. In this paper we consider the bound BL
3(q, n, d). The method for obtaining a

symmetry reduction, using representation theory of the dihedral and symmetric groups, is an adaptation of the method
in [16].

1.2. Symmetry reductions

Fix k ∈ N. Let Dq be the dihedral group of order 2q and let Sn be the symmetric group on n elements. The group H :=

Dn
q ⋊ Sn acts naturally on Ck, and this action maintains minimum distances and cardinalities of codes C ∈ Ck. We can

assume that the optimum x in (3) is H-invariant, i.e., g ◦ x = x for all g ∈ H . Indeed, if x is any optimum solution for (3),
then for each g ∈ H , the function g ◦ x is again an optimum solution, since the objective value of g ◦x equals the objective
value of x and g ◦ x still satisfies all constraints in (3). Since the feasible region is convex, the optimum x can be replaced
by the average of g ◦ x over all g ∈ H . This gives an H-invariant optimum solution.

Let Ωk be the set of H-orbits on Ck. Then |Ωk| is bounded by a polynomial in n, for fixed q. Since there exists an
H-invariant optimum solution, we can replace, for each ω ∈ Ωk and C ∈ ω, each variable x(C) by a variable z(ω). Hence,
the matrices Mk,D(x) become matrices Mk,D(z) and we have considerably reduced the number of variables in (3).

We only have to check positive semidefiniteness of Mk,D(z) for one code D in each H-orbit of Ck, as for each g ∈ H , the
matrix Mk,g(D)(z) can be obtained by simultaneously permuting rows and columns of Mk,D(z).

We sketch how to reduce these matrices in size. For D ∈ Ck, let HD be the subgroup of H consisting of all g ∈ H
with g(D) = D. Then the action of H on Ck induces an action of HD on Ck(D). The simultaneous action of HD on the rows
and columns of Mk,D(z) leaves Mk,D(z) invariant. This means that the matrices Mk,D(z) are elements of (CCk(D)×Ck(D))HD ,
which is naturally isomorphic to the centralizer algebra of the action of HD on CCk(D), i.e., the collection of HD-equivariant
endomorphisms CCk(D) → CCk(D). Therefore, there exists a block-diagonalization Mk,D(z) ↦→ UTMk,D(z)U of Mk,D(z), for a
matrix U depending on HD but not depending on z. Then Mk,D(z) is positive semidefinite if and only if each of the blocks
is positive semidefinite. There are several equal (or equivalent) blocks and after removing duplicate (or equivalent) blocks
we obtain a matrix of order bounded polynomially in n, for fixed q, where the entries in each block are linear functions in
the variables z(ω) (with coefficients bounded polynomially in n). Hence, we have reduced the size of the matrices involved
in our semidefinite program.

The reductions of the optimization problem will be described in detail in Section 3. Table 1 contains the new upper
bounds. All improvements have been found using multiple precision versions of SDPA [18].

2. Preliminaries on representation theory

In this section we give the definitions and notation from representation theory (mostly concerning the symmetric
group) used throughout the paper, similarly to the notation used in [16]. Proofs are omitted, but for more information,
the reader can consult Sagan [21]. The content of this section is the same as Section 2 of [16,19], so readers who are
familiar with one of these papers can safely skip this section.

A group action of a group G on a set X is a group homomorphism φ : G → SX , where SX is the group of bijections of X
to itself. If G acts on X , we write g ◦ x := φ(g)(x) for all g ∈ G and x ∈ X and we write XG for the set of elements of X
invariant under the action of G. If X is a linear space, the elements of SX are assumed to be linear functions. The action
of G on a set X induces an action of G on the linear space CX , by (g ◦ f )(x) := f (g−1

◦ x), for g ∈ G, f ∈ CX and x ∈ X .
If m ∈ N and G is a finite group acting on V = Cm, then V is a G-module. If V and W are G-modules, then a

G-homomorphism (or: G-equivariant map) ψ : V → W is a linear map such that g ◦ ψ(v) = ψ(g ◦ v) for all g ∈ G, v ∈ V .
Moreover, a module V is called irreducible if the only G-invariant submodules of V are {0} and V itself.

Suppose that G is a finite group acting unitarily on V = Cm. This means that for each g ∈ G there is a unitary
matrix Ug ∈ Cm×m such that g ◦ x = Ugx for all x ∈ Cm. Consider the inner product ⟨x, y⟩ := x∗y for x, y ∈ Cm,
where x∗ denotes the conjugate transpose of x ∈ Cm. Then V can be decomposed as a direct sum of G-isotypical
components V1, . . . , Vk. This means that Vi and Vj are orthogonal for distinct i and j (with respect to the mentioned inner
product), and each Vi is a direct sum Vi,1 ⊕ · · · ⊕ Vi,mi of irreducible and mutually isomorphic G-modules, such that Vi,j
and Vi′,j′ are isomorphic if and only if i = i′.

For each i ≤ k and j ≤ mi we choose a nonzero vector ui,j ∈ Vi,j with the property that for each i and all j, j′ ≤ mi
there exists a G-isomorphism Vi,j → Vi,j′ mapping ui,j to ui,j′ . For each i ≤ k, we define Ui to be the matrix [ui,1, . . . , ui,mi ]

with columns ui,j (j = 1, . . . ,mi). Any set of matrices {U1, . . . ,Uk} obtained in this way is called a representative set for
the action of G on Cm. Then the map

Φ : (Cm×m)G →

k⨁
i=1

Cmi×mi with A ↦→

k⨁
i=1

U∗

i AUi (4)
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is bijective. So dim((Cm×m)G) =
∑k

i=1 m
2
i , which can be considerably smaller than m. Another crucial property for our

purposes is that any A ∈ (Cm×m)G is positive semidefinite (i.e., self-adjoint with all eigenvalues nonnegative) if and only
if the image Φ(A) is positive semidefinite, i.e., each of the matrices U∗

i AUi is positive semidefinite.
It turns out that all representative sets we define consist of real matrices. Then

Φ(A) =

k⨁
i=1

UT
i AUi for A ∈ (Rm×m)G, and Φ

(
(Rm×m)G

)
=

k⨁
i=1

Rmi×mi . (5)

Also, A ∈ Rm×m is positive semidefinite if and only if each of the matrices UT
i AUi is positive semidefinite (i = 1, . . . , k).

This is very useful for checking whether A is positive semidefinite.
It is convenient to note that, since Vi,j is the linear space spanned by G ◦ ui,j (for each i, j), we have

Cm
=

k⨁
i=1

mi⨁
j=1

CG ◦ ui,j, (6)

where CG denotes the group algebra of G. It will also be convenient to consider the columns of Ui as elements of the dual
space (Cm)∗ via the inner product mentioned above.

2.1. A representative set for the action of Sn on V⊗n

Fix n ∈ N and a finite-dimensional vector space V . We will consider the natural action of Sn on V⊗n by permuting
the indices. We describe a representative set for the action of Sn on V⊗n that will be used repeatedly in the reductions
throughout this paper.

A partition λ of n is a sequence (λ1, . . . , λh) of natural numbers with λ1 ≥ · · · ≥ λh > 0 and λ1 + · · · + λh = n. The
number h is called the height of λ. We write λ ⊢ n if λ is a partition of n. The Young shape (or Ferrers diagram) Y (λ) of λ
is the set

Y (λ) := {(i, j) ∈ N2
| 1 ≤ j ≤ h, 1 ≤ i ≤ λj}. (7)

Fixing an index j0 ≤ h, the set of elements (i, j0) (for 1 ≤ i ≤ λj) in Y (λ) is called the j0-th row of Y (λ). Similarly, fixing
an element i0 ≤ λ1, the set of elements (i0, j) (where j varies) in Y (λ) is called the i0-th column of Y (λ). Then the row
stabilizer Rλ of λ is the group of permutations π of Y (λ) with π (Z) = Z for each row Z of Y (λ). Similarly, the column
stabilizer Cλ of λ is the group of permutations π of Y (λ) with π (Z) = Z for each column Z of Y (λ).

A Young tableau with shape λ (also called a λ-tableau) is a function τ : Y (λ) → N. A Young tableau with shape λ is
semistandard if the entries are nondecreasing in each row and strictly increasing in each column. Let Tλ,m be the collection
of semistandard λ-tableaux with entries in [m]. Then Tλ,m ̸= ∅ if and only if m is at least the height of λ. We write τ ∼ τ ′

for λ-tableaux τ , τ if τ ′
= τ r for some r ∈ Rλ.

Let B = (B(1), . . . , B(m)) be an ordered basis of V ∗. For any τ ∈ Tλ,m, define

uτ ,B :=

∑
τ ′∼τ

∑
c∈Cλ

sgn(c)
⨂
y∈Y (λ)

B
(
τ ′(c(y))

)
. (8)

Here the Young shape Y (λ) is ordered by concatenating its rows. Then (cf. [21] and [16]) the set{
[uτ ,B | τ ∈ Tλ,m] | λ ⊢ n

}
, (9)

consisting of matrices, is a representative set for the natural action of Sn on V⊗n, for any ordering of the elements in Tλ,m.

2.2. A representative set for the action of Gn ⋊ Sn on V⊗n

Let G be any group acting unitarily on V := Cm. Suppose that a representative set for the action of G on Cm is given.
Here each Bi is an m × mi matrix, for given integers k,m1, . . . ,mk.

Let N be the collection of all k-tuples (n1, . . . , nk) of nonnegative integers adding up to n. For n = (n1, . . . , nk) ∈ N ,
let λ ⊢ n mean that λ = (λ1, . . . , λk) with λi ⊢ ni for i = 1, . . . , k. (So each λi is equal to a partition (λi,1, . . . , λi,t ) of ni,
for some t .)

For λ ⊢ n define

Wλ := Tλ1,m1 × · · · × Tλk,mk ,

and for τ = (τ1, . . . , τk) ∈ Wλ define

vτ :=

k⨂
i=1

uτi,Bi . (10)

Proposition 2 of [16] implies the following. (In Ref. [16], it is stated that G = Sq and V = Rq×q, but with a straightforward
adaptation one obtains the following result.)
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Proposition 2.1. The matrix set

{ [vτ | τ ∈ Wλ] | n ∈ N ,λ ⊢ n} (11)

is representative for the action of H := Gn ⋊ Sn on V⊗n (for any ordering of the elements in Wλ).

Note that the representative set from (11) is real if we start with a real representative set {B1, . . . , Bk} for the action
of G on V .

3. Reduction of the optimization problem

In this section we give the reduction of optimization problem (3) for computing BL
3(q, n, d), using the representation

theory from the previous section. First we consider block diagonalizing M3,D(z) for D ∈ C3 with |D|= 1. Subsequently we
consider the case D = ∅. Note that for the cases |D|= 2 and |D|= 3 the matrix M3,D(z) = (z(D)) has order 1 × 1, so it is
its own block diagonalization. Hence, in those cases, M3,D(z) is positive semidefinite if and only if z(D) ≥ 0.

3.1. The case |D|= 1

The Lee isometry group H = Dn
q ⋊ Sn acts transitively on Zn

q , so we may assume that D = {0}, where 0 = 0 . . . 0 is the
all-zero word. The rows and columns of M3,D(z) are indexed by sets of the form {0, α} for α ∈ Zn

q . Then the subgroup HD
of H that leaves D invariant is equal to Sn2 ⋊ Sn, as the zero word must remain fixed (so we cannot apply a rotation of the
alphabet in any coordinate position). Here the non-identity element of S2 acts on Zq, where we consider 0, . . . , q − 1 as
vertices of a regular q-gon, as a reflection switching vertices i and q − i (for i = 1, . . . , ⌊ q−1

2 ⌋). So vertex 0 is fixed if q is
odd, and vertices 0 and q/2 are fixed if q is even. For i = 0, . . . , q − 1, let ei be the ith unit vector of CZq .

Proposition 3.1. A representative matrix set for the reflection action of S2 on CZq is

{B1, B2}, with B1 :=

[
e0,

(
ei + eq−i

)⌊
q
2 ⌋

i=1

]
, B2 :=

[(
ei − eq−i

)⌊
q−1
2 ⌋

i=1

]
. (12)

Proof. For j = 1, . . . , ⌊q/2⌋ + 1, define W1,j to be the 1-dimensional vector space spanned by the jth column w1,j of B1.
Moreover, for j = 1, . . . , ⌊(q − 1)/2⌋, define W2,j to be the 1-dimensional vector space spanned by the jth column w2,j
of B2. Note that each Wi,j is S2-stable and that Wi,j and Wi′,j′ are orthogonal whenever (i, j) ̸= (i′, j′) (with respect to the
inner product u, v ↦→ v∗u). Observe that, for j, j′ and l, l′ the maps W1,j → W1,j′ and W2,l → W2,l′ defined by w1,j ↦→ w1,j′

and w2,l ↦→ w2,l′ , respectively, are S2-equivariant. Note that the number of W1,j we have defined is ⌊q/2⌋+1, the number
of W2,j is ⌊(q − 1)/2⌋, and

(⌊q/2⌋ + 1)2 + ⌊(q − 1)/2⌋2 =

{ 1
2q

2
+ 2 if q is even,

(q2 + 1)/2 if q is odd,

which is equal to |(Zq × Zq)/S2|= dim(CZq ⊗ CZq )S2 . (If q is even, the points (0, 0), (q/2, 0), (0, q/2) and (q/2, q/2) in
Zq × Zq are fixed by the nonidentity element in S2. If q is odd, only the point (0, 0) in Zq × Zq is fixed by the nonidentity
element in S2.) It follows that the W1,j and W2,j form a decomposition of CZq into irreducible representations (as any
further representation, or decomposition, or equivalence among the Wi,j would yield that the sum of the squares of the
multiplicities of the irreducible representations is strictly larger than dim(CZq ⊗CZq )S2 , which contradicts the fact that Φ
in (4) is bijective). So the matrix set (12) is indeed representative for the action of S2 on CZq . □

Note that the representative set is real. Set m1 := ⌊q/2⌋ + 1 and m2 := ⌊(q − 1)/2⌋. Let N be the collection of all
2-tuples (n1, n2) of nonnegative integers adding up to n. As before, for n = (n1, n2) ∈ N , let λ ⊢ n mean that λ = (λ1, λ2)
with λi ⊢ ni for i = 1, 2. (So each λi is equal to a partition (λi,1, . . . , λi,t ) of ni, for some t .)

For λ ⊢ n define

Wλ := Tλ1,m1 × Tλ2,m2 , (13)

and for τ = (τ1, τ2) ∈ Wλ define

vτ := uτ1,B1 ⊗ uτ2,B2 . (14)

Then Proposition 2.1 implies that

{ [vτ | τ ∈ Wλ] | n ∈ N ,λ ⊢ n} (15)

is representative for the action of Sn2 ⋊ Sn on (CZq )⊗n
= CZn

q . Note that the representative set is real.
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3.1.1. Computations for |D|= 1
Let D = {0} ∈ C3 and let Ω3 denote the set of all Dn

q ⋊ Sn-orbits of codes in C3. For each ω ∈ Ω3, we define
the C3(D) × C3(D)-matrix Nω with entries in {0, 1} by

(Nω){0,α},{0,β} :=

{
1 if {0, α, β} ∈ ω,

0 else.
(16)

Given n = (n1, n2) ∈ N , for each λ ⊢ n we write Uλ for the matrix in (15) that corresponds with λ. For each z : Ω3 → R
we obtain with (5) that

Φ(M3,D(z)) = Φ

⎛⎝ ∑
ω∈Ω3

z(ω)Nω

⎞⎠ =

⨁
n∈N

⨁
λ⊢n

∑
ω∈Ω3

z(ω)UT
λNωUλ. (17)

The number of n ∈ N , λ ⊢ n, and the numbers |Wλ| and |Ω3| are all bounded by a polynomial in n. This implies that
the number of blocks in (17), the size of each block and the number of variables occurring in all blocks are polynomially
bounded in n. We now show how to compute the entries of the matrix UT

λNωUλ, for all ω ∈ Ω3, n ∈ N , λ ⊢ n, in polynomial
time. That is, we show how to compute the coefficients vTτNωvσ , for τ, σ ∈ Wλ, in the blocks

∑
ω∈Ω3

z(ω)UT
λNωUλ in

polynomial time.
Let Π be the set of those words that appear as lexicographically minimal element in a Dq-orbit of Z3

q . So there is a
bijection between Π and the set of orbits of the action of Dq on Z3

q . For any word v ∈ Z3
q , write π (v) for the element in Π

that is in the same Dq-orbit of Z3
q as v. Note that

Π = {00j | j = 0, . . . , ⌊q/2⌋} ∪ {0jh | j = 1, . . . , ⌊q/2⌋, h = 0, . . . , q − 1}. (18)

For any element P ∈ Π , define

dP :=

∑
i,j∈Zq :

π (0ij)=P

ei ⊗ ej. (19)

Then the set Z := {dP | P ∈ Π} forms a basis for (CZq ⊗CZq )S2 , where we consider the reflection action of S2 on Zq, i.e., we
consider 0, . . . , q−1 ∈ Zq as vertices of a regular q-gon, and the non-identity element of S2 switches the vertices i and q−i
(for i = 1, . . . , ⌊ q−1

2 ⌋). We write Z∗ for the dual basis.
Let Q denote the set of monomials of degree n on (CZq ⊗ CZq )S2 . Then the function (Zn

q)
3

→ C3 that maps an ordered
triple (α, β, γ ) to the unordered triple {α, β, γ } induces a surjective function r : Q → Ω3 \ {{∅}}. For any µ ∈ Q , define

Kµ :=

∑
d1,...,dn∈Z
d∗1 ···d∗n=µ

n⨂
j=1

dj.

Then a routine calculation (as in Lemma 1 of [16]) implies that, for each ω ∈ Ω3,

Nω =

∑
µ∈Q

r(µ)=ω

Kµ.

For any τ, σ ∈ Wλ, define the following degree n polynomial on (CZq ⊗ CZq )S2 :

pτ,σ :=

2∏
i=1

∑
τ ′i ∼τi
σ ′
i ∼σi

∑
ci,c′i∈Cλi

sgn(cic ′

i )
∏

y∈Y (λi)

Bi(τ ′

i ci(y)) ⊗ Bi(σ ′

i c
′

i (y)). (20)

This polynomial can be computed (i.e., expressed as linear combination of monomials in Bi(j)⊗Bi(h)) in time polynomially
bounded in n, for fixed q (cf. [10,16]). Then a straightforward calculation, highly similar to the one in Lemma 2 of [16],
yields that∑

µ∈Q

(vTτKµvσ)µ = pτ,σ . (21)

So
∑

µ∈Q v
T
τKµvσµ can be computed by expressing the polynomial pτ,σ as linear combination of monomials µ ∈ Q , which

are products of linear functions in Z∗. In order to express pτ,σ as linear combination of monomials µ ∈ Q it remains to
express each Bi(j) ⊗ Bi(h) as a linear function into the basis Z∗, that is, to calculate the numbers (Bi(j) ⊗ Bi(h))(dP ) for all
i = 1, 2 and j, h = 1, . . . ,mi, and P ∈ Π . We find

B1(1) ⊗ B1(1) = 1d∗

000,

B1(1) ⊗ B1(j + 1) = 2d∗

00j, for j = 1, . . . , ⌊q/2⌋
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B1(j + 1) ⊗ B1(1) = 2d∗

0j0, for j = 1, . . . , ⌊q/2⌋
B1(j + 1) ⊗ B1(h + 1) = 2d∗

0jh + 2d∗

0j(q−h), for j, h ∈ {1, . . . , ⌊q/2⌋},

B2(j) ⊗ B2(h) = 2d∗

0jh − 2d∗

0j(q−h), for j, h ∈ {1, . . . , ⌊(q − 1)/2⌋}, (22)

where the coefficient of d∗

P is obtained by evaluating (Bi(j) ⊗ Bi(h))(dP ). Now one computes the entry
∑

ω∈Ω3
z(ω)vT

τNωvσ

by first expressing pτ,σ as a linear combination of µ ∈ Q and subsequently replacing each µ ∈ Q in pτ,σ with the
variable z(r(µ)).

3.2. The case D = ∅

Let D = ∅. The rows and columns of M3,∅(z) = M2,∅(z) are indexed by words in Zn
q together with the empty set, and HD

is equal to Dn
q ⋊ Sn. Here Dq acts on CZq by permuting the vertices 0, . . . , q − 1 of a regular q-gon. To compute the block

diagonalization of M2,∅(z), one can use the Delsarte formulas in the Lee scheme [1,2]. Here we give the reduction in terms
of representative sets.

Let ζ = e2π i/q be a primitive qth root of unity. For each j = 0, . . . , ⌊q/2⌋, define the vectors aj := (1, ζ j, ζ 2j, . . . , ζ (q−1)j)T ,
bj := (1, ζ−j, ζ−2j, . . . , ζ−(q−1)j)T ∈ CZq and set Vj := span{aj, bj}. Furthermore, put

cj :=

√
dim Vj

2
(aj + bj) =

√
dim Vj(1, cos(2jπ/q), . . . , cos(2(q − 1)jπ/q))T ∈ RZq ⊆ CZq .

Proposition 3.2. A representative set for the action of Dq on CZq is given by{
C1, . . . , C⌊

q
2 ⌋+1

}
, where Cj := cj−1, for j = 1, . . . , ⌊

q
2
⌋ + 1. (23)

Proof. Observe that each Vj is Dq-stable and that cj ∈ Vj. Moreover, Vl and Vj are orthogonal if l ̸= j (with respect to the
inner product u, v ↦→ u∗v). To see this, note that x := ζ±j±l is a qth root of unity unequal to 1 if j ̸= l ∈ {0, . . . , ⌊q/2⌋},
so 1 + x + x2 + · · · + xq−1

= 0. This implies that a∗

j al = b∗

j al = a∗

j bl = b∗

j bl = 0, so Vl and Vj are orthogonal. Note
that

∑⌊q/2⌋
j=0 12

= ⌊q/2⌋ + 1, which is the number of distinct Vj, is equal to the dimension of (CZq×Zq )Dq . So the Vj form
an orthogonal decomposition of CZq into irreducible representations (as any further representation, or decomposition, or
equivalence among the Vj would yield that the sum of the squares of the multiplicities of the irreducible representations
is strictly larger than ⌊q/2⌋ + 1, which contradicts the fact that Φ in (4) is bijective). As Cj+1 is an element of Vj

for j = 0, . . . , ⌊q/2⌋, this implies that
{
C1, . . . , C⌊

q
2 ⌋+1

}
is a representative matrix set. □

Note that the representative set is real, and that each Ci is a q × 1-matrix. For simplicity of notation, set s := ⌊
q
2⌋ + 1.

Let M be the collection of all s-tuples (n1, . . . , ns) of nonnegative integers adding up to n. For n ∈ M , define vn :=

C⊗n1
1 ⊗ C⊗n2

2 ⊗ · · · ⊗ C⊗ns
s . Section 2.2 gives the following.

Proposition 3.3. The set

{ vn | n ∈ M} (24)

is representative for the action of Dn
q ⋊ Sn on (CZq )⊗n

= CZn
q = CC3(∅)\{∅}.

Observe that Dn
q ⋊ Sn acts trivially on ∅. The Dn

q ⋊ Sn-isotypical component of CZn
q consisting of the Dn

q ⋊ Sn-invariant
elements corresponds to the matrix in the representative set indexed by n = (n, 0, . . . , 0). Hence we add a new unit base
vector ϵ∅ to this matrix (as a column) in order to obtain a representative set for the action of Dn

q ⋊ Sn on CZn
q∪{∅}

= CC3(∅).

3.2.1. Computations for D = ∅

In this section we explain how to compute the coefficients in the block diagonalization of M2,∅(z). First we give a
reduction of M2,∅(z) without the row and column indexed the empty code. Later we explain how the empty code is
added. For each ω ∈ Ω2, we define the Zn

q × Zn
q-matrix N ′

ω with entries in {0, 1} by

(N ′

ω)α,β :=

{
1 if {α, β} ∈ ω,

0 else.
(25)

For each z : Ω2 → R we obtain with Eqs. (24) and (5) that Φ
(∑

ω∈Ω2
z(ω)N ′

ω

)
=

⨁
n∈M

∑
ω∈Ω2

z(ω)vTnN
′
ωvn. This shows

that Φ
(∑

ω∈Ω2
z(ω)N ′

ω

)
is a diagonal matrix. Note that |Ω2| and |M | are polynomially bounded in n. Now we show how

to compute vTnN
′
ωvn, for n ∈ M in polynomial time.
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Define Π ′
= {00j | j = 0, . . . , ⌊q/2⌋} ⊆ Π . For any element P ∈ Π ′, define

fP :=

∑
i,j∈Zq :

π (iij)=P

ei ⊗ ej (26)

Then the set Z̃ := {fP | P ∈ Π ′
} forms a basis for (CZq ⊗ CZq )Dq . Let Z̃∗ denote the dual basis. Let Q ′ denote the set of

monomials of degree n on (CZq ⊗CZq )Dq . The function (Zn
q)

2
→ C2 that maps (α, β) to {α, β} induces a surjective function

r ′
: Q ′

→ Ω2 \ {{∅}}. For any n ∈ M , define the following degree n polynomial on (CZq ⊗ CZq )Dq :

pn :=

s∏
i=1

(Ci ⊗ Ci)ni . (27)

For any µ ∈ Q ′, define

K ′

µ :=

∑
f1,...,fn∈Z
f ∗1 ···f ∗n =µ

n⨂
j=1

fj, so that (cf. Lemma 2 of [16])
∑
µ∈Q ′

vTnK
′

µvnµ = pn.

So
∑

µ∈Q ′ v
T
nK

′
µvnµ can be computed by expressing the polynomial pn as linear combination of monomials µ ∈ Q ′, which

are products of linear functions in Z̃∗. To this end, we express each Ci ⊗ Ci as linear function into the basis Z̃∗, i.e., we
calculate the numbers (Ci ⊗ Ci)(fP ) for all i = 1, . . . , s and P ∈ Π ′. We find

for q even: Ci ⊗ Ci = q

⎛⎝f ∗

000 + (−1)if ∗

00(q/2) + 2
q/2−1∑
j=1

cos(2π ji/q)f ∗

00j

⎞⎠ , for i ∈ {0, . . . , q/2},

for q odd: Ci ⊗ Ci = q

⎛⎝f ∗

000 + 2
(q−1)/2∑

j=1

cos(2π ji/q)f ∗

00j

⎞⎠ , for i ∈ {0, . . . , (q − 1)/2}. (28)

Now, as N ′
ω =

∑
µ∈Q ′

r′(µ)=ω
K ′
µ (for each ω ∈ Ω2), one computes the entry

∑
ω∈Ω2

z(ω)vTnN
′
ωvn by first expressing pn as a

linear combination of µ ∈ Q ′ and subsequently replacing each µ ∈ Q ′ in pn with the variable z(r ′(µ)).
To add the empty code, we add an extra row and column corresponding to the vector ϵ∅ to the matrix in the

representative set indexed by n = (n, 0, . . . , 0), as explained below Proposition (24). So the only matrix block affected by
the empty code in the block diagonalization of M2,∅(z) is

T := [ϵ∅, vn]
TM2,∅(z)[ϵ∅, vn], (29)

which is a 2 × 2-matrix. Then ϵT
∅
M2,∅(z)ϵ∅ = M2,∅(z)∅,∅ = x(∅) = 1 by definition, see (3). Since vn = C⊗n

1 is the all-ones
vector, we have ϵT

∅
M∅(z)vn = qnzω0 , where ω0 ∈ Ω2 is the (unique) Dn

q ⋊ Sn-orbit of a code of size 1.

4. The strong product power of circular graphs

For any graph G = (V , E), let Gn denote the graph with vertex set V n and edges between two distinct ver-
tices (u1, . . . , un) and (v1, . . . , vn) if and only if for all i ∈ {1, . . . , n} one has either ui = vi or uivi ∈ E. The Shannon
capacity of G is defined as

Θ(G) := sup
d∈N

d
√
α(Gd), (30)

where α(Gd) denotes the maximum cardinality of an independent set in Gd, i.e., a set of vertices no two of which are
adjacent [24].

For two integers d, q with q ≥ 2d, the circular graph Cd,q is the graph with vertex set Zq, the cyclic group of order q,
in which two distinct vertices are adjacent if and only if their distance (mod q) is strictly less than d. So C2,q = Cq, the
circuit on q vertices. A classical upper bound on α(Cn

d,q) is given by Lovász’s ϑ-function (see [17]): one has

α(Cn
d,q) ≤ ϑ(Cn

d,q) = ϑ(Cd,q)n. (31)

Hence, Lovász’s ϑ-function gives an upper bound on the Shannon capacity of Cd,q. A closed formula for ϑ(Cd,q) is given
in [5]. We describe how the bound BL

3(q, n, d) can be adapted to an upper bound BL∞
3 (q, n, d) on α(Cn

d,q), which either
improves or is equal to the bound obtained from Lovász’s ϑ-function. However, the new bound is not multiplicative over
the strong product, so it does not give an upper bound on Θ(Cd,q).

For distinct u, v in Zn
q , define their Lee∞-distance dL∞ (u, v) to be the maximum over the distances of ui and vi (mod q),

where i ranges from 1 to n. The minimum Lee∞-distance dL∞min(D) of a set D ⊆ Zn
q is the minimum Lee∞-distance between
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Table 2
Bounds on α(Cn

5 ), α(C
n
7 ) and α(Cn

3,7), rounded to three decimal places. It holds that BL∞
2 (5, n, 2) =

√
5
n
.

1 2 3 4 5

BL∞
2 (5, n, 2) 2.236 5.000 11.180 25.000 55.902

BL∞
3 (5, n, 2) 2.000 5.000 10.915 25.000 55.902

BL∞
2 (7, n, 2) 3.318 11.007 36.517 121.152 401.943

BL∞
3 (7, n, 2) 3.000 10.260 35.128 119.537 401.908

BL∞
2 (7, n, 3) 2.110 4.452 9.393 19.818 41.814

BL∞
3 (7, n, 3) 2.000 4.139 8.957 19.494 41.782

#Vars in BL∞
3 (5, n, 2) 2 9 48 214 799

#Vars in BL∞
3 (7, n, 2) 3 43 423 3161 19023

#Vars in BL∞
3 (7, n, 3) 2 12 137 1316 9745

any pair of distinct elements of D. (If |D|≤ 1, set dL∞min(D) = ∞.) Then dL∞min(D) ≥ d if and only if D is independent in Cn
d,q.

Define, for k ≥ 2,

BL∞
k (q, n, d) := max{

∑
v∈Zn

q

x({v}) | x : Ck → R, x(∅) = 1, x(S) = 0 if dL∞min(S) < d,

Mk,D(x) is positive semidefinite for each D in Ck}. (32)

So BL∞
k (q, n, d) is obtained from the bound BL

k(q, n, d) in (3) by replacing in the definition dLmin(S) by dL∞min(S). It is not hard
to see that α(Cn

d,q) ≤ BL∞
k (q, n, d), by a proof analogous to that of Proposition 1.1. For comparison, ϑ(Cn

d,q) is equal to the
bound obtained from BL∞

2 (q, n, d) by removing the constraints that M2,D(x) is positive semidefinite for subsets D ∈ C2
with D ̸= ∅. Moreover, BL∞

2 (q, n, d) is equal to the Delsarte bound, which is equal to the bound ϑ ′(Cn
d,q), with ϑ ′ as in [22].

To compute BL∞
3 (q, n, d), the reductions from Section 3 can be used. The new bound BL∞

3 (q, n, d) does not seem to
improve significantly over the bound obtained from Lovász’s ϑ-function, except for very small n. See Table 2 for some
results for q ∈ {5, 7} and 1 ≤ n ≤ 5. For these cases, BL∞

3 (q, n, d) does not give new upper bounds on α(Cn
d,q), as the

values α(C3
5 ) = 10, α(C2

7 ) = 10, α(C3
7 ) = 33 (cf. [6]), α(C3

3,7) = 8 (cf. [13]) are already known and α(C4
7 ) ≤ ⌊(7/2)α(C3

7 )⌋ =

115. The number of variables ‘‘#Vars’’ in BL∞
3 (q, n, d), which is the number of Dn

q ⋊Sn-orbits of nonempty codes of size ≤ 3
and minimum Lee∞-distance at least d, is also given in Table 2 for the considered cases.
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Appendix A. Formulas with integers

Note that for q ≤ 4 or q = 6 all coefficients the formulas in Section 3.2.1 for the block diagonalization of M3,∅(z)
are rational (hence all constraints can be made integer). For other q the formulas contain irrational numbers. To obtain
a semidefinite program which only contains integers we used in the implementation for q = 5 and q = 7 not the
representative set from (24) for the action of Dn

q ⋊ Sn on CZn
q but the representative set from (15) for the action of Sn2 ⋊ Sn

on CZn
q to reduce the matrix

∑
ω∈Ω2

z(ω)N ′
ω . Then (5) gives (where we write Ψ for the map in (5) to distinguish it from

the map Φ from Section 3.2.1)

Ψ

⎛⎝ ∑
ω∈Ω2

z(ω)N ′

ω

⎞⎠ =

⨁
n∈N

⨁
λ⊢n

∑
ω∈Ω2

z(ω)UT
λN

′

ωUλ, (33)

where Uλ denotes the matrix in (15) that corresponds with λ ∈ Wλ. By (21), we have
∑

µ∈Q v
T
τKµvσµ = pτ,σ . From

this, one obtains that
∑

µ∈Q ′ v
T
τK

′
µvσµ = p′

τ,σ , where p′
τ,σ is the polynomial obtained from pτ,σ by replacing each
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Fig. 1. Algorithm to generate a semidefinite program for computing BL
3(q, n, 1). To compute BL

3(q, n, d) or BL∞
3 (q, n, d), one must set all variables z(ω)

with ω ∈ Ω3 an orbit corresponding to a code of minimum Lee (respectively, Lee∞) distance < d to zero. If rows and columns in matrix blocks Mλ

consist only of zeros after the replacement, it is useful to remove these rows and columns.

variable d∗

0ij ∈ Z∗ (with 0ij ∈ Π ) by the variable f ∗

π (iij) ∈ Z̃∗. Hence the following replacements must be done, using
the formulas from (22):

B1(1) ⊗ B1(1) = 1d∗

000 ↦→ 1f ∗

000,

B1(1) ⊗ B1(j + 1) = 2d∗

00j ↦→ 2f ∗

00j, for j = 1, . . . , ⌊q/2⌋
B1(j + 1) ⊗ B1(1) = 2d∗

0j0 ↦→ 2f ∗

00j, for j = 1, . . . , ⌊q/2⌋
B1(j + 1) ⊗ B1(h + 1) = 2d∗

0jh + 2d∗

0j(q−h) ↦→ 2f ∗

00t1 + 2f ∗

00t2 , for j, h ∈ {1, . . . , ⌊q/2⌋},

B2(j) ⊗ B2(h) = 2d∗

0jh − 2d∗

0j(q−h) ↦→ 2f ∗

00t1 − 2f ∗

00t2 , for j, h ∈ {1, . . . , ⌊(q − 1)/2⌋}, (34)

where in the above formulas we set t1 := j − h if j ≥ h and t1 := h − j else, and we set t2 := j + h if j + h ≤ ⌊q/2⌋
and t2 := q − (j + h) else.

So one computes the entry
∑

ω∈Ω2
z(ω)vT

τN
′
ωvσ in the block

∑
ω∈Ω2

z(ω)UT
λN

′
ωUλ by first expressing p′

τ,σ as a linear
combination of µ ∈ Q ′ and subsequently replacing each µ ∈ Q ′ in p′

τ,σ with the variable z(r ′(µ)).
To add the empty code, one may add a new unit base vector ϵ∅ to the matrix in the representative set (15) indexed

by n = ((n), ()) and calculate the new entries ϵT
∅
M2,∅(z)vσ , for each σ ∈ Wλ. However, this is not necessary. As

Ψ

(∑
ω∈Ω2

z(ω)N ′
ω

)
is positive semidefinite if and only if Φ

(∑
ω∈Ω2

z(ω)N ′
ω

)
is positive semidefinite, and M2,∅(z) is
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positive semidefinite if and only if both Φ
(∑

ω∈Ω2
z(ω)N ′

ω

)
and T from (29) are positive semidefinite, we find that

M2,∅(z) is positive semidefinite ⇐⇒ Ψ

⎛⎝ ∑
ω∈Ω2

z(ω)N ′

ω

⎞⎠ and T are positive semidefinite.

So the 2 × 2 matrix T together with the matrix blocks in (33) form a block diagonalization of M2,∅(z).

Appendix B. An overview of the program

In this section we give a high-level overview of the program, to help the reader with implementing the method. See
Fig. 1 for an outline of the method.

A few remarks regarding the implementation:

(i) We write ω0 for the unique Dn
q ⋊ Sn-orbit corresponding to a code of size 1.

(ii) To speed up the replacement of monomials in d∗

P or f ∗

P by variables z(ω), it is useful to add a preprocessing step to
determine in advance for each degree n monomial µ = d∗

P1
. . . d∗

Pn with all Pi ∈ Π and µ′
= f ∗

P1
. . . f ∗

Pn with all Pi ∈ Π ′

which orbit r(µ) ∈ Ω3 or r ′(µ′) ∈ Ω2 corresponds with it. If the orbit corresponds to a code of minimum Lee (or
Lee∞) distance < d to zero, we must set the corresponding variable to zero and can delete it from the program.

(iii) In case D = ∅, the matrix blocks contain irrational numbers for q /∈ {2, 3, 4, 6}. In Appendix A it is explained how
to obtain a semidefinite program which only contains integers. This is not displayed in the above pseudocode, but
the adaptations are straightforward.
In order to obtain the matrix blocks from (33) for D = ∅ one can simply repeat the steps in the above pseudocode
for |D|= 1, but with the following adaptation: replace each Bi(j) ⊗ Bi(h) by the linear expression in f ∗

P from (34),
and subsequently replace each monomial µ of degree n in f ∗

P by a variable z(r ′(µ)).
(iv) The programs we used to generate input for the SDP-solver can be found at the following location (also accessible

via the author’s website):
https://drive.google.com/open?id=1-XRbfc4TYhoySC33GRWfvNEMOZEltg6X.
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