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Abstract. We show that A2(7, 4) ≤ 388 and, more generally, Aq(7, 4) ≤
(q2 − q + 1)[7] + q4 − 2q3 + 3q2 − 4q + 4 by semidefinite programming for

q ≤ 101. Furthermore, we extend results by Bachoc et al. on SDP bounds for

A2(n, d), where d is odd and n is small, to Aq(n, d) for small q and small n.

1. Introduction. By P(V ) we denote the set of all subspaces in a finite dimen-3

sional vector space V over a finite field of order q. The set P(V ) forms a metric4

space with respect to the subspace metric ds(U,W ) = dim(U +W )− dim(U ∩W ).5

The space (P(V ), ds) plays an important role in random linear network coding and6

was introduced by Kötter and Kschischang in [27] to describe error-detecting and7

-correcting transmission of informations in the subspace channel model. A subset8

C of P(V ) is called subspace code and its elements are called codewords. The sub-9

space distance of C is given by ds(C) = min{ds(U,W ) : U,W ∈ V and U 6= W}.10

We refer the reader to Subsection 2.1 for a more detailed introduction to the used11

terminology.12

The vector (x0(C), . . . , xn(C)) with xk(C) as the number of k-subspaces in C is13

called the dimension distribution of C and the set K(C) = {dim(U) : U ∈ C}14

contains the dimensions of all codewords of C. We drop the reference to C if it is clear15

by the context. Then (n,N, d;K)q abbreviates the parameters of C; C ⊆ P(Fnq ),16

N = |C|, d ≤ ds(C), and K(C) ⊆ K. If K(C) = {k}, say, then C is called constant-17

dimension code (CDC) and is abbreviated as (n,N, d; k)q. In the other extremal18

case, i.e., K = {0, . . . , n}, the parameters of an (unrestricted) subspace code are19

abbreviated as (n,N, d)q.20

The maximum cardinality N of an (n,N, d;K)q subspace code is denoted as21

Aq(n, d;K) and the simpler notation Aq(n, d; k) in the constant-dimension case and22

Aq(n, d) in the unrestricted case applies, too. The determination of Aq(n, d;K),23
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2 DANIEL HEINLEIN AND FERDINAND IHRINGER

or at least suitable bounds, and a classification of all non-isomorphic maximum1

cardinality codes is known as the main problem of subspace coding, since it is the2

q-analog of the main problem of classical coding theory, cf. [29, Page 23].3

The smallest undetermined and arguably most interesting constant-dimension4

code is a maximum cardinality set of planes in F7
2 mutually intersecting in at most5

a point. Here the best known result is as follows:6

Fact 1.1 ([15, Theorem 2]). We have 333 ≤ A2(7, 4; 3) ≤ 381.7

The lower bound was derived by finding a (7, 333, 4; 3)2 CDC after modifying8

interesting codes arising in an exhaustive search in the GL(F7
2) for subgroups with9

the property being subgroup of automorphism groups of large (7, N, 4; 3)2 CDCs.10

The currently best upper bound is a simple counting argument: There are
[
7
2

]
2

=11

2667 lines in F7
2, each plane contains

[
3
2

]
2

= 7 of them and no line is incident with two12

codewords, hence 2667/7 = 381 upper bounds the size of any (7, N, 4; 3)2 CDC. Any13

putative (7, 381, 4; 3)2 CDC is the binary analog of a Fano plane and a lot of previous14

work tackle its existence question [1, 4–6,9–11,13,14,22,24–26,28,30,31,33,34].15

By omitting the constraint on the dimension of codewords, one arrives at (7,M, 4)216

subspace codes. Of course, a (7, N, 4; 3)2 CDC C can be extended to (7, N + 1, 4)217

subspace code C ∪{F7
q}, providing the best known lower bound 334 ≤ A2(7, 4). Due18

to Honold et al. we know the following:19

Fact 1.2 ([23, Theorem 4.1]). We have A2(7, 4) ≤ 407.20

We improve this to:21

Theorem 1.1. We have A2(7, 4) ≤ 388.22

If equality holds, then the corresponding code consists up to orthogonality of 4123

lines and 347 solids (see Lemma 4.1). The correspondence to constant-dimension24

codes shows in particular that a putative binary Fano plane would imply a (7, 382, 4)225

subspace code and hence reducing the upper bound to less than 382 would immedi-26

ately imply the nonexistence of the binary Fano plane – a seemingly very difficult27

problem.28

In the general case, the best bounds are q8 + q5 + q4 + q2 − q ≤ Aq(7, 4; 3) ≤29 [
7
2

]
/
[
3
2

]
= (q2 − q + 1)[7]; the lower bound is provided by [22, Theorem 4] and30

the upper bound arises again by counting lines. In the unrestricted case, the31

augmentation of a CDC by F7
q provides again the best known lower bound of32

q8 + q5 + q4 + q2 − q + 1 ≤ Aq(7, 4). For the upper bound in the unrestricted33

case, the best previously known method is to relax the minimum distance condi-34

tion from 4 to 3 and then to apply the integer linear programming argument from35

[12, Theorem 10].36

Define the function F (q) by37

F (q) =

{
(q2 − q + 1)[7] + q4 − 2q3 + 3q2 − 4q + 3 for q = 2, 3,

(q2 − q + 1)[7] + q4 − 2q3 + 3q2 − 4q + 4 for q ≥ 4.
38

Theorem 1.2. Let 2 ≤ q ≤ 101 be a prime power. We have Aq(7, 4) ≤ F (q).39

This gives 388, 7696, 71157, 410585 for q = 2, 3, 4, 5, while the previous best40

known bounds were 407, 15802, 144060, 826594. The bound q ≤ 101 is chosen rather41

arbitrarily and we conjecture that it is unnecessary. For general q, we could only42

show the following.43
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Theorem 1.3. Let 2 ≤ q be a prime power. We have Aq(7, 4) ≤ (q2 − q + 1)[7] +1

2(q5 + q3 + 1).2

Previously, Bachoc et al. applied semidefinite programming in [2] to binary sub-3

space codes with odd minimum distance and n ≤ 16. We extend their results in4

several ways: (1) Since Bachoc et al. computed their bounds, several new up-5

per bounds for small CDC codes were discovered, cf. http://subspacecodes.6

uni-bayreuth.de/ associated with [16]. Using these new bounds, we provide an7

update on their bounds (with a slightly differently chosen range of parameters). (2)8

We provide bounds for d even. (3) We compute bounds for q > 2. Our range for all9

these computations is mostly arbitrary, but chosen in a way that the computations10

terminate in less than a week on standard hardware at the time of writing.11

The paper is organized as follows. In Section 2 we introduce basic definitions and12

the used theoretical framework of semidefinite programming in coherent configura-13

tions, so that we can describe the coherent configuration and semidefinite program14

which is associated with the symmetry group of the metric space (P(V ), ds) in Sec-15

tion 3. This culminates in Section 4, in which we investigate Aq(7, 4) and show our16

main results, and Section 5, in which we update the SDP bounds given by Bachoc17

et al. To conclude this current overview on semidefinite programming for subspace18

codes, we provide some bounds on quadruples for the binary analog of the Fano19

plane in Section 6.20

2. Preliminaries.21

2.1. Subspace Codes. Let 2 ≤ q be a prime power, Fq the field with q elements,22

and V ∼= Fnq the n-dimensional vector space over Fq. By P(V ) we denote the set23

of all subspaces in V . For two subspaces U,W ∈ P(V ) we write U ≤ W iff U is24

subspace of W . Recall that P(V ) forms a metric space with respect to the subspace25

metric [27, Section 3.1]26

ds(U,W ) = dim(U +W )− dim(U ∩W ).27

For k ∈ {0, 1, . . . , v},
[
V
k

]
denotes the set of k-dimensional subspaces in V . Its28

cardinality is given by the q-binomial coefficient29

|
[
V

k

]
| =

[
n

k

]
q

=

k∏
i=1

qn−k+i − 1

qi − 1
.30

As an abbreviation we use the q-number [n]q =
[
n
1

]
q

and drop the index q in [n]q31

and
[
n
k

]
q

if there is no confusion with
[
V
k

]
and q is clear by the context. Using32

the q-factorial [n]! =
∏n
i=1[i], the q-binomial coefficient can then be expressed as33 [

n
k

]
= [n]!

[k]![n−k]! . A k-dimensional subspace of V is called simply k-subspace and34

we refer to 1-subspaces as points, 2-subspaces as lines, 3-subspaces as planes, 4-35

subspaces as solids, and (n− 1)-subspaces as hyperplanes.36

Let C be a subspace code. Recall that for 2 ≤ |C| the subspace distance of C37

is given by ds(C) = min{ds(U,W ) : U,W ∈ V and U 6= W} and notice that we38

formally set ds(C) =∞ if |C| ≤ 1.39

By xi(C) we denote the number of i-subspaces in C and drop the reference to C40

if it is clear from the context.41

http://subspacecodes.uni-bayreuth.de/
http://subspacecodes.uni-bayreuth.de/
http://subspacecodes.uni-bayreuth.de/
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The automorphism group of (P(V ), ds) for 3 ≤ n was shown to be generated1

by PΓL(V ) and a polarity π : P(V ) → P(V ), U 7→ U⊥ (see e.g. [23, Theo-2

rem 2.1]). We call U⊥ the orthogonal space of U and apply π also to subspace3

codes C to obtain their orthogonal codes C⊥. If C is an (n,N, d;K)q subspace code4

with dimension distribution (x0(C), . . . , xn(C)), then C⊥ is an (n,N, d; {n − i : i ∈5

K})q subspace code with dimension distribution (xn(C), . . . , x0(C)), in particular6

Aq(n, d; k) = Aq(n, d;n− k).7

2.2. Coherent Configurations. We follow the notation and point of view by8

Hobart and Williford for applying a semidefinite programming bound which is set9

in the context of coherent configurations and we refer to their work for a general10

introduction to that topic [17,18,20,21].11

Definition 2.1. Let X be a finite set. A coherent configuration is a pair (X,R),12

where R = {R0, . . . , Rl} is a set of binary relations on X with the following prop-13

erties:14

(a) R is a partition of X ×X.15

(b) If Ri ∩ diag(X ×X) 6= ∅, then Ri ⊆ diag(X ×X).16

(c) If Ri ∈ R, then RTi ∈ R.17

(d) For Ri, Rj , Rk ∈ R and x, y ∈ X with (x, y) ∈ Rk, the number of z such that18

(x, z) ∈ Ri and (z, y) ∈ Rj is a constant pkij , independent of the choice of x and19

y.20

These pkij are commonly called intersection numbers. Condition (b) gives a par-21

tition of the identity relation into sets Xa called fibers. In the group case, i.e., a22

group G operating on the finite set X, the induced component-wise action of G on23

X×X yields a coherent configuration in which the relations are given by the orbits24

of G on X × X, cf. [19, Pages 212 and 217]. Each relation is contained in some25

Xa×Xa′ . If we restrict X to some Xa, then we obtain a (homogeneous) association26

scheme. For each Ri we can define an |X| × |X| matrix Ai indexed by X with27

(Ai)xy =

{
1 if (x, y) ∈ Ri,
0 otherwise.

28

The matrices {A0, . . . , Al} generate an algebra A with several useful properties. For29

the representation theory of A we follow the notation of [21]. Let {∆1, . . . ,∆m}30

the set of absolutely irreducible representations of A, chosen such that ∆s(A
∗) =31

(∆s(A))∗. Denote the multiplicity of ∆s by fs. Let γ denote the number of fibers32

of the coherent configuration and Eij the (γ × γ)-matrix with a 1 at position (i, j)33

and 0 otherwise. Since A is semisimple, it decomposes into a direct sum of algebras34

Es. There exists a basis Esij for each algebra Es satisfying the following equations:35

EsijEtkl = δstδjkEsil, (Esji)∗ = Esij , and ∆s(Etij) = δstEij . (1)36

Let mi = |Ri|. Then37

Ak =
∑
i,j,s

(∆s(Ak))ijEsij and Esij = fs
∑
k

1

mk
(∆s(Ak))ijAk. (2)38

The next lemma shows bounds on subsets of X in terms of the positive semidef-39

initeness of involved matrices. Bounds arising by this method are commonly called40

semidefinite programming bound as it is a generalization of Delsarte’s linear pro-41

gramming bound [8].42
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Theorem 2.2 ([20, Theorem 2.2 and 2.3]). Let (X,R) be a coherent configuration,1

Y ⊆ X, and bi = |(Y × Y ) ∩ Ri|. Define D(Y ) =
∑l
i=1

bi
mi
Ai. Then the matrices2

D(Y ) and ∆s(D(Y )) are positive semidefinite for any irreducible representation ∆s3

of the coherent configuration satisfying ∆s(A
∗) = (∆s(A))∗.4

If all fibers of a coherent configuration correspond to a commutative association5

scheme, we can use the the intersection numbers, i.e., the algebra generated by the6

intersection matrices Li = (pkij)kj , to first calculate all Esij via the eigenvalues of the7

association scheme restricted to the fibers (see [7, Chapter 2, Proposition 2.2.2]) and8

then apply the identities (1) to determine the remaining parameters. In Section 3.39

we provide details for this calculation.10

Since each relation is contained in some Xa × Xb we index the relations, basis11

matrices, intersection numbers, etc. accordingly: Rabl, Aabl, p
(a,b,k)
(a,d,i),(d,b,j), mabl, and12

babl such that a, b, d are indices of fibers and l, k, i, j are counters. In particular, all13

other intersection numbers are zero. The first equation of the identities (2) is hence14

Aabl =
∑
s(∆s(Aabl))abEsab.15

2.3. Semidefinite programming. We abbreviate the term positive semidefinite16

as psd and for symmetric matrices A and B we write A < B iff A − B is psd. A17

semidefinite program (SDP) is an optimization problem of the form18

min cTx (3)19

subject to

m∑
i=1

Fixi < F020

x ∈ Rm21

with c ∈ Rm and symmetric Fi ∈ Rn×n for i ∈ {0, . . . ,m}. The dual problem22

associated with (3) (which is then called primal) is23

max tr(F0Z)24

subject to tr(FiZ) = ci for all i ∈ {1, . . . ,m}25

Z < 026

and, if the primal and dual contain feasible points x and Z, the optimal value of the27

dual lower bounds the optimal value of the primal. We have equality if the primal28

or the dual contains strictly feasible points, cf. [35, Page 64 and Theorem 3.1].29

Although it can be solved in polynomial time with the ellipsoid method, interior-30

points methods are often faster in practice cf. [35, Page 52] and [36].31

Using the Schur complement, many quadratic inequalities can be modeled as32

constraints in an SDP: Let
(
A B
BT C

)
be symmetric and A be positive definite, then33

M is psd iff C − BTA−1B is psd. In particular, using I as an identity matrix of34

appropriate size,
(

I Ax−b
(Ax−b)T cT x−d

)
is positive semidefinite iff (Ax − b)T (Ax − b) ≤35

cTx− d.36

Unless the complexity classes P and NP coincide, in general quadratic equations37

are not possible to model in an SDP, e.g. x ∈ {0, 1} is equivalent to x(x−1) = 0 and38

the Schur complement allows to rewrite x(x− 1) ≤ 0 as ( 1 x
x x ) < 0 but x(x− 1) ≥ 039

as constraint in an SDP would imply the solvability the NP-complete binary linear40

programming with polynomial time algorithms of SDPs.41

If multiple matrices shall be psd simultaneously, they are commonly arranged42

as blocks on the main diagonal of the Fi and linear inequalities are commonly43
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embedded as diagonal matrices, hence any linear program can be written as an1

SDP.2

3. The Coherent Configuration of PΓL(V ) operating on P(V ).3

3.1. Triples in Vector Spaces. In this section we provide a general formula for4

counting triples in vector spaces.5

Lemma 3.1. Let A be an a-space and B a b-space with c = dim(A∩B) in Fa+b−cq .6

Then the number of d-spaces D having trivial intersection with A and B is7

ψ(a, b, c, d) :=

d−1∏
j=0

qj+c(qa−c−j − 1)(qb−c−j − 1)

qd−j − 1
.8

Proof. We double count ((P0, . . . , Pd−1), D), where (P0, . . . , Pd−1) is an ordered9

basis of D. For P0, . . . , Pj−1 given, we have10

[a+ b− c]− [a+ j]− [b+ j] + [c+ 2j] =
q2j+c(qa−c−j − 1)(qb−c−j − 1)

q − 1
11

choices for Pj . Hence, we have
∏d−1
j=0

q2j+c(qa−c−j−1)(qb−c−j−1)
q−1 choices for (P0, . . . , Pd−1).12

Similarly, the number of choices for (P0, . . . , Pd−1) with given D is
∏d−1
j=0([d]− [j]) =13 ∏d−1

j=0
qj(qd−j−1)

q−1 , showing the assertion.14

Lemma 3.2. Let A be an a-space and B a b-space with c = dim(A∩B) in Fa+b−cq .15

Then the number of d-spaces D meeting A in an α-space, B in an β-space and A∩B16

in a γ-space is ϕ(a, b, c, d, α, β, γ) :=17 [
c

γ

]
q(α+β−2γ)(c−γ)

[
a− c
α− γ

][
b− c
β − γ

]
ψ(a− α, b− β, c− γ, d− α− β + γ).18

Proof. Clearly, there are
[
c
γ

]
choices for A ∩ B ∩ D. It is well-known that the19

remaining choices for A ∩D and B ∩D are20

q(α+β−2γ)(c−γ)
[
a− c
α− γ

][
b− c
β − γ

]
.21

In the quotient of 〈A∩D,B∩D〉 we see that we have ψ(a−α, b−β, c−γ, d−α−β+γ)22

choices left to complete D.23

Now we obtain the following:24

Lemma 3.3. Let A be an a-space and B a b-space with c = dim(A ∩ B) in Fnq .25

Then the number of d-spaces D meeting A in an α-space, B in an β-space and A∩B26

in a γ-space is27

χ(a, b, c, d, n, α, β, γ) :=

min{d,a+b−c}∑
x=α+β−γ

q(d−x)(a+b−c−x)
[
n− a− b+ c

d− x

]
ϕ(a, b, c, x, α, β, γ).28

Hence, we conclude that we can count triples as follows.29

Lemma 3.4. Let A be an a-space and B a b-space which meet in codimension30

k in Fnq . Then the number of d-spaces D meeting A in codimension i and B in31

codimension j is32

min{a,b}−k∑
`=0

χ(a, b,min{a, b} − k, d, n,min{a, d} − i,min{b, d} − j,min{a, b} − k − `).33
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The intersection numbers p
(a,b,k)
(a,d,i),(d,b,j) are given by the expression in the last1

lemma and all other intersection numbers vanish.2

3.2. Irreducible Representations. The coherent configuration in this paper arises3

by the action of PΓL(V ) on P(V ) × P(V ). Hence, we have the n + 1 fibers la-4

beled with 0, 1, . . . , n, such that the k-th fiber consists of all k-spaces of V . A5

pair of subspaces (x, y) is in the relation Rabc iff x has dimension a, y has di-6

mension b, and c = min{a, b} − dim(x ∩ y) for all a, b ∈ {0, . . . , n + 1} and7

c ∈ {0, . . . ,min{min{a, b}, n −min{a, b}}}. The benefit of choosing c as the codi-8

mension of the intersection is that Rii0 corresponds to the identity on the i-th9

fiber. The fibers of this coherent configuration are obviously symmetric association10

schemes and hence by [17, Chapter 4] commutative. For V ∼= F7
q, we show in Corol-11

lary 4.6 that the 0-space and the 7-space cannot be contained in a large subspace12

code and hence we restrict ourself in this case to proper subspaces.13

Since we investigate the bound on Aq(7, 4) analytically, Table 1 shows the rep-14

resentation explicitly in the style of Hobart and Williford [21]. To improve the15

notation, we also introduce the abbreviations ϕ = q2 + 1 and ψ = q2− q+ 1. Notice16

that17

|Xa| =
[
7

a

]
, ∆s(Axyc) = Exa∆s(Aabc)Eby, and mxyc = mabc (4)18

for (x, y) ∈ {(a, b), (b, a), (7−a, 7−b), (7−b, 7−a)} by orthogonality and symmetry19

for all a, b, c, and s.20

3.3. Calculating the Irreducible Representation. Let us outline how to cal-21

culate ∆s. Since our fibers are commutative, we can use standard techniques for22

commutative association schemes, see [7, Prop. 2.2.2], to calculate23

Aiik =
∑
s

(∆s(Aiik))iiEsii.24

This yields the entries of Esii for all i and s. Notice that Mxy = Mx′y′ for all matrices25

M ∈ A if (x, y) and (x′, y′) are in the same relation, in particular we write M(i,j,k)26

for Mxy with some (x, y) ∈ Rijk. Now let i 6= j. By Equation (1), we know that27

EsiiAijk = Esii

(∑
s′

(∆s′(Aijk))ijEs
′

ij

)
= (∆s(Aijk))ijEsij .28

Note that EsiiAijk = ((Aijk)T (Esii)T )T = (AjikEsii)T since Esii is symmetrical. Hence,29

using the triple intersection numbers, we can derive (∆s(Aijk))ijEsij . To be more30

precise, using the previous two equalities we have31

((∆s(Aijk))ijEsij)xy = (EsiiAijk)xy = (AjikEsii)yx =
∑
z

(Ajik)yz(Esii)zx32

=
∑

(y,z)∈Rjik

(Esii)zx =
∑
`

p
(j,i,m)
(j,i,k),(i,i,l)(E

s
ii)(i,i,l),33

in which m is defined by (y, x) ∈ Rjim. As EsijEsji = Esii, this is sufficient to calculate34

Esij . Notice that this is not unique as we can replace Esij by −Esij and all conditions35

on the Esij such as EsijEsjk = Esik are still satisfied. After we have chosen Esij , we can36

determine (∆(Aijk))ij by solving Equation (2).37
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Aabc mabc/|Xa| ∆0(Aabc) ∆1(Aabc) ∆2(Aabc) ∆3(Aabc)

A110 1 E11 E11

A111 q[6] q[6]E11 −E11

A120 [6] [2]
√
ψ[3]E12

√
q[5]E12

A121 q2ψ[3][5] q2[5]
√
ψ[3]E12 −

√
q[5]E12

A130

[
6
2

]
[3]
√
ψ[5]E13 q

√
ϕ[5]E13

A131 q3(q3 + 1)
[
5
2

]
q3[4]

√
ψ[5]E13 −q

√
ϕ[5]E13

A140

[
6
3

]
[4]
√
ψ[5]E14 q

√
qϕ[5]E14

A141 q4ψ[3][5] q4[3]
√
ψ[5]E14 −q

√
qϕ[5]E14

A150

[
6
4

]
[5]
√
ψ[3]E15 q2

√
[5]E15

A151 q5[6] q5[2]
√
ψ[3]E15 −q2

√
[5]E15

A160

[
6
5

]
[6]E16 q5/2E16

A161 q6 q6E16 −q5/2E16

A220 1 E22 E22 E22

A221 q[2][5] q[2][5]E22 (q2[4]− 1)E22 −[2]E22

A222 q4ϕ[5] q4ϕ[5]E22 −q2[4]E22 qE22

A230 [5]
√

[3][5]E23 [2]
√
qϕE23 q

√
[3]E23

A231 q2[4][5] q2[4]
√

[3][5]E23 (q3[3]− [2])
√
qϕE23 −q[2]

√
[3]E23

A232 q6ϕ[5] q6ϕ
√

[3][5]E23 −q3[3]
√
qϕE23 q2

√
[3]E23

A240 ϕ[5] ϕ
√

[3][5]E24 q[3]
√
ϕE24 q2

√
[3]E24

A241 q3[4][5] q3[4]
√

[3][5]E24 q(q4[2]− [3])
√
ϕE24 −q2[2]

√
[3]E24

A242 q8[5] q8
√

[3][5]E24 −q5[2]
√
ϕE24 q3

√
[3]E24

A250 ϕ[5] ϕ[5]E25 q3/2[4]E25 q3E25

A251 q4[2][5] q4[2][5]E25 q3/2(q5 − [4])E25 −[2]q3E25

A252 q10 q10E25 −q13/2E25 q4E25

A330 1 E33 E33 E33 E33

A331 q[3][4] q[3][4]E33 (q2[2][3]− 1)E33 (q2 − 1)[3]E33 −[3]E33

A332 q4ϕ[3]2 q4ϕ[3]2E33 q2[3](q4 − q − 1)E33 −q[3](q2 + q − 1)E33 q[3]E33

A333 q9[4] q9[4]E33 −q6[3]E33 q4[2]E33 −q3E33

A340 [4] [4]E34 [3]
√
qE34 q[2]E34

√
q3E34

A341 q2ϕ[3]2 q2ϕ[3]2E34 [3](q3[2]− 1)
√
qE34 q[3](q2 − q − 1)E34 −[3]

√
q3E34

A342 q6[3][4] q6[3][4]E34 q3(q5 − [2][3])
√
qE34 −q2(q3 − 1)[2]E34 q[3]

√
q3E34

A343 q12 q12E34 −q8√qE34 q6E34 −q3
√
q3E34

fs 1 [7]− 1
[
7
2

]
− [7]

[
7
3

]
−
[
7
2

]
Table 1. Here ϕ = q2 + 1 and ψ = q2 − q + 1.

3.4. Semidefinite programming. We apply Theorem 2.2 for (n, |C|, d)q subspace1

codes C ⊆ P(V ). Then bijl = |(C × C) ∩ Rijl| is the number of pairs (U,W ) of2

codewords in C such that dim(U) = i, dim(W ) = j, and min{i, j}−dim(U∩W ) = l.3

The minimum subspace distance of d implies that bijl = 0 for triples i, j, l satisfying4

i 6= j or 1 ≤ l if l < min{i, j}+(d−i−j)/2. In particular, the number of i-subspaces5

in C is given by xi = bii0 and they fulfill6

bijl = bjil, b2ii0 =
∑
l

biil, and bii0bjj0 =
∑
l

bijl. (5)7

Since the last two conditions of Equations (5) cannot be expressed as constraints8

in an SDP, we implement only two inequalities: First, b2ii0 ≤
∑
l biil corresponds9

via the Schur complement to
(

1 bii0
bii0

∑
l biil

)
< 0. Second, bii0bjj0 ≥

∑
l bijl is10
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equivalent to b2ii0b
2
jj0 ≥ (

∑
l bijl)

2 and using Equations (5) this is again equiva-1

lent to
(∑

l biil
∑

l bijl∑
l bijl

∑
l bjjl

)
< 0. But this constraint is redundant as it is implied by2 ∑

il
biil
miil

∆0(Aiil) +
∑
i<j,l

bijl
mijl

(∆0(Aijl) + ∆0(Ajil)) < 0.3

Since |C| =
∑
i bii0 and |C|2 =

∑
ijl bijl, the inequality

∑
ijl bijl ≥ (

∑
i bii0)2 is4

valid and, using again the Schur complement, can be expressed as
(

1
∑

i bii0∑
i bii0

∑
ijl bijl

)
<5

0. This constraint can be sharpened by considering pairs of fibers. On the one6

hand, we have xi + xj = bii0 + bjj0. On the other hand, we have (xi + xj)
2 =7

x2i+2xixj+x
2
j =

∑
l biil+2

∑
l bijl+

∑
l bjjl. The Schur complement shows then that8 (

1 bii0+bjj0
bii0+bjj0

∑
l biil+2

∑
l bijl+

∑
l bjjl

)
< 0 is equivalent to

∑
l biil + 2

∑
l bijl +

∑
l bjjl ≥9

(bii0 + bjj0)2.10

Using Equations (4) and (5), we have11

bijl
mijl

∆s(Aijl) +
bjil
mjil

∆s(Ajil) =
bijl
mijl

(∆s(Aijl) + ∆s(Ajil))12

for i 6= j, which is a symmetric matrix. Hence, using only bijl for i ≤ j fulfills the13

condition of SDPs to consist of symmetric matrices.14

The complete SDP is given by the general conditions15

max
∑
i

bii0 subject to16

∑
il

biil
miil

∆s(Aiil) +
∑
i<j,l

bijl
mijl

(∆s(Aijl) + ∆s(Ajil)) < 0 for all s17

(
1 bii0
bii0

∑
l biil

)
< 0 for all i18 (

1 bii0+bjj0
bii0+bjj0

∑
l biil+2

∑
l bijl+

∑
l bjjl

)
< 0 for all i < j19

bijl ∈ R for all i ≤ j, l20

and the problem specific conditions are given by21

0 ≤ bijl ≤ Aq(n, 2dd/2e; i) ·Aq(n, 2dd/2e; j) for all i ≤ j, l with i 6= j or 1 ≤ l22

0 ≤ bii0 ≤ Aq(n, 2dd/2e; i) for all i23

bijl = 0 for all i ≤ j, l satisfying i 6= j or 1 ≤ l if l < min{i, j}+ (d− i− j)/2.24

25

This SDP is bounded and the assignment bijl = 0 for all i ≤ j, l is a feasible solution.26

Although Aq(n, 2dd/2e; k) is often not known explicitly, it can be replaced by a27

suitable upper bound, cf. http://subspacecodes.uni-bayreuth.de/ associated28

with [16].29

The restriction of the variables in the SDP to a subset of the fibers implies the30

following31

Lemma 3.5. Let K be a subset of {0, . . . , n}. If i and j in the SDP above are32

restricted to values in K, then the optimal value of this SDP is an upper bound for33

Aq(n, d;K).34

4. Theorem 1.2 and Related Results. Throughout this section let C be a sub-35

space code of F7
q with minimum distance 4. We denote the number of elements of C36

in the i-th fiber (so of dimension i) by xi. By Theorem 2.2 and Table 1, we obtain a37

http://subspacecodes.uni-bayreuth.de/
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semidefinite program. Optimizing this program with the SDP solver SDPA-GMP,1

we verified Theorem 1.2. The purpose of this section is to motivate Theorem 1.22

and provide some partial results which might show Theorem 1.2 for all q.3

First let us note the following result for the inner distributions of C in the binary4

case:5

Lemma 4.1. Let C be a subspace code of F7
2 with 384 ≤ |C| ≤ 388 and minimum6

distance 4, then one of the following occurs (up to orthogonality):7

|C| = 388 and x2 = 41, x4 = 347,8

|C| = 387 and x2 = 41− α, x4 = 346 + α for α ∈ {0, 1, . . . , 5},9

|C| = 386 and x2 = 41− α, x4 = 345 + α for α ∈ {0, 1, . . . , 12},10

|C| = 385 and x2 = 41− α, x4 = 344 + α for α ∈ {0, 1, . . . , 18},11

|C| = 384 and x2 = 41− α, x4 = 343 + α for α ∈ {0, 1, . . . , 23} or12

|C| = 384 and x2 = 38− α, x4 = 345 + α, x6 = 1 for α ∈ {0, 1, 2}.13

14

If |C| = 388, then (b241, b442) is one of the following:15

(5026, 44058),16

(5027, 44054 + x) for x ∈ {0, . . . , 3},17

(5028, 44051 + x) for x ∈ {0, . . . , 4},18

(5029, 44047 + x) for x ∈ {0, . . . , 6},19

(5030, 44044 + x) for x ∈ {0, . . . , 7},20

(5031, 44042 + x) for x ∈ {0, . . . , 7},21

(5032, 44039 + x) for x ∈ {0, . . . , 9},22

(5033, 44037 + x) for x ∈ {0, . . . , 9},23

(5034, 44035 + x) for x ∈ {0, . . . , 9},24

(5035, 44033 + x) for x ∈ {0, . . . , 9},25

(5036, 44032 + x) for x ∈ {0, . . . , 8},26

(5037, 44031 + x) for x ∈ {0, . . . , 8},27

(5038, 44030 + x) for x ∈ {0, . . . , 7},28

(5039, 44029 + x) for x ∈ {0, . . . , 6},29

(5040, 44029 + x) for x ∈ {0, . . . , 4},30

(5041, 44029 + x) for x ∈ {0, 1, 2},31

(5042, 44029 + x) for x ∈ {0, 1}.32

33

To obtain this result, we solve the SDP as described in Subsection 3.4 and added34

additional constraints which forced certain distributions for the xi. For |C| = 38835

we additionally determined all possible distributions of the bijk’s using the same36

idea. This ruled out x2 = 40 and x4 = 248 (which is otherwise feasible).37

We use x2 ≤ Aq(7, 4; 2) = q5 + q3 + 1 and x5 ≤ Aq(7, 4; 5) = Aq(7, 4; 2) =38

q5 + q3 + 1. This is implied by the following lemma due to Beutelspacher and39

orthogonality.40
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Lemma 4.2 ([3]). Aq(n, 2k; k) = qn−q
qk−1 − q + 1 if k divides n− 1.1

The following lemma generalizes x3 + x4 ≤ 381 in the binary case from [23,2

Lemma 4.2.ii].3

Lemma 4.3. We have x3 + x4 ≤ (q2 − q + 1)[7] with equality only if x3 = 0 or4

x4 = 0.5

Proof. We write b = x3 and c = x4 to avoid indices. The only allowed relations are6

(up to transposition and orthogonality) R330, R332, R333, R342, R343. Let x3β denote7

the number of pairs in relation R332, δ the number of pairs in relation R342, x4γ8

the number of pairs in relation R442. From ∆1(Aabc) and, respectively, ∆2(Aabc)9

and Theorem 2.2 we obtain the following positive semidefinite matrices (after some10

simplifications and multiplying by q3
√
qψ[3][4][5][7]):11

N1 =

(
bq3([3][7]− [3]2b+ β[7]) q5/2([7]δ − bc[3][4])
q5/2([7]δ − bc[3][4]) cq3([3][7]− [3]2c+ γ[7])

)
12

N2 =

(
bq[2]([3](q7 + q5 + b− 1)− β[2]2ψ) −[2][3]((q3 + 1)δ − ϕbc)

−[2][3]((q3 + 1)δ − ϕbc) cq[2]([3](q7 + q5 + c− 1)− γ[2]2ψ)

)
13

For an m×m matrix M and a set I, let MI denote the m×m with (MI)xy = Mxy if14

x, y ∈ I and (MI)xy = 0 otherwise. We set Nt = N1 + t1N2 + t2((N2){1}+(N2){2}),15

where16

t1 =
q5/2[7]

[2][6]
, t2 =

q2[5][7]

[2]2[6](q2 + q3/2 + q + q1/2 + 1)
17

For q ≥ 2 the factors t1, t2 are positive, so Nt is a positive semidefinite matrix.18

Hence, det(Nt) ≥ 0. Rearranging for b yields19

0 ≤ b ≤ ((q2 − q + 1)[7]− c) 1

1 + c
qψ[3]2

.20

This implies the assertion.21

This can be improved to:22

Corollary 4.4. We have x1 + x3 + x4 ≤ (q2− q+ 1)[7] with equality only if x3 = 023

or x4 = 0.24

Proof. The minimum distance implies x1 ≤ 1. If x1 = 0, then Lemma 4.3 shows25

the claim. Hence, we assume x1 = 1.26

The only allowed relations are (up to transposition and orthogonality) R110,27

R131, R141, R333, R332, R330, R343, and R342. Let (x23−x3)a332 denote the number28

of pairs in relation R332, (x24 − x4)a442 the number of pairs in relation R442, and29

x3x4a342 the number of pairs in relation R342. From ∆1(Aabc) and, respectively,30

∆2(Aabc) and Theorem 2.2 we obtain the following positive semidefinite matrices31

(after some simplifications and multiplying by [7]):32

N1 =


1 − x3√

[5]ϕ(q5+q2)
− x4

√
ϕ√

[5]q5/2[3]ψ

− x3√
[5]ϕ(q5+q2)

x3([7][3]−a332[7]+x3(a332[7]−q2−[4]−[5]+1))
[5]q3(q4+q2+1)ϕ[2]

x3x4(a342[7]+[2]−[4]−[5]−[6]+1)
q7/2[5][3]ϕψ[2]

− x4
√
ϕ√

[5]q5/2[3]ψ

x3x4(a342[7]+[2]−[4]−[5]−[6]+1)
q7/2[5][3]ϕψ[2]

x4([7][3]−a442[7]+x4(a442[7]−q2−[4]−[5]+1))
[5]q3(q4+q2+1)ϕ[2]

33
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N2 =

0 0 0

0 x3(a332(x3−1)(q2−[5])+[7](q3+q−1)+[3]x3−[5]+1)
[5]q5ϕ(q4+q2+1) −x3x4(a342(q

3+1)−ϕ)
[5]q6ψϕ

0 −x3x4(a342(q
3+1)−ϕ)

[5]q6ψϕ
x4(a442(x4−1)(q2−[5])+[7](q3+q−1)+x4[3]−[5]+1)

[5]q5ϕ(q4+q2+1)

1

We set Nt = N1 + t1N2 + t2((N2){2} + (N2){3}), where2

t1 =
q5/2[7]

[3]ψ[2]
2 , t2 =

[7]q2([3]−√q[2])

[3]ψ[2]
3 .3

For q ≥ 2 the factors t1, t2 are positive, so Nt is a positive semidefinite matrix.4

Hence, det(Nt) ≥ 0 and solving this inequality for x3 yields an upper bound for x3,5

say u(q, x4). Then, the objective function is upper bounded by 1 + u(q, x4) + x4,6

which has its maximum on 0 ≤ x4 ≤ (q2−q+1)[7] at
√
q[4]2(q4 + q2 + 1)2−q([7]+7

q2ϕ) with the value 2
√
q(q([7] + q[4])−√q− q3/2− 5/2q5/2− q7/2− 2q9/2− q11/2−8

q13/2 + 1), which is at most (q2 − q + 1)[7].9

10

Lemma 4.5. We have x2 + x3 ≤ (q2 − q + 1)[7] with equality only if x2 = 0.11

Proof. We write a = x2 and b = x3 to avoid indices. The only allowed relations12

are (up to transposition and orthogonality) R220, R222, R232, R330, R332, R333. Let13

x3β denote the number of pairs in relation R332. From ∆1(Aabc) and, respectively,14

∆2(Aabc) and Theorem 2.2 we obtain the following positive semidefinite matrices:15

N1 =

(
a[4]([7]− [2]a) −abq7/2[2][3]

√
ϕ

−abq7/2[2][3]
√
ϕ bq3([3][7]− [3]2b+ β[7])

)
16

N2 =

(
aq3[2]((ψ[3](q2[4]− 1) + a) abq2[2]

√
[3]

abq2[2]
√

[3] bq[2]([3](q7 + q5 + b− 1)− β[2]2ψ)

)
17

Set Nt = N1 + t1N2, where t1 = q2[7]
[2]2ψ . As t1 ≥ 0, Nt is positive semidefinite, so18

det(Nt) ≥ 0. Rearranging this for b yields19

b ≤ ((q2 − q + 1)[7]− a)
1

1 + a [2]2C
q[5]3

,20

where C = 2[2]
√
q[3]ψ − (q4 + 3q3 + 3q2 + 3q + 1). The assertion follows.21

This also shows that only proper subspaces are of interest.22

Corollary 4.6. If (q2 − q + 1)[7] + 3 ≤ |C|, then x0 = x7 = 0 and x1 + x6 ≤ 1.23

Proof. By the minimum distance, we have 0 ≤ xi ≤ 1 for i ∈ {0, 1, 6, 7}. If x0 =24

x7 = 1 then the minimum distance shows C ⊆ {{0},F7
q}. If x0 + x7 = 1 then by25

orthogonality we can assume without loss of generality that x0 = 0 and x7 = 1 and26

in particular |C| = x1 +x2 +x3 +1. If x1 = 1 then x2 = 0 and |C| ≤ Aq(7, 4; 3)+2 ≤27

(q2 − q + 1)[7] + 2 contradicting the claim. Hence, we have |C| = x2 + x3 + 1 ≤28

(q2 − q + 1)[7] + 1 using the inequality from Lemma 4.5.29

Assume now that x0 = x7 = 0 and x1 = x6 = 1. Then x2 = x5 = 0 by the30

minimum distance and |C| = x3 + x4 + 2 ≤ (q2 − q + 1)[7] + 2 using the inequality31

from Lemma 4.3 and completing the proof.32

We finish with the motivation for the bound in Theorem 1.2.33

Lemma 4.7. We have x2 + x4 ≤ F (q).34
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Proof. We write a = x2 and c = x4 to avoid indices. The only allowed relations1

are (up to transposition and orthogonality) R220, R222, R241, R242, R440, R442, R443.2

Let α denote the number of pairs in relation R241, and x4γ the number of pairs3

in relation R442. From ∆1(Aabc) and, respectively, ∆2(Aabc) and Theorem 2.2 we4

obtain the following positive semidefinite matrices:5

N1 =

(
a[4]([7]− [2]a) [2]ϕ([7]α− acq3[2][4])

[2]ϕ([7]α− acq3[2][4]) bq3([3][7]− [3]2b+ β[7])

)
6

N2 =

(
aq3[2]((ψ[3](q2[4]− 1) + a) q[2]

√
[3](acϕ− αψ[3])

q[2]
√

[3](acϕ− αψ[3]) bq[2]([3](q7 + q5 + b− 1)− β[2]2ψ)

)
7

Set Nt = N1 + t1N2 + t2(N1)22, where8

t1 =
q2
√
ϕ[7]

[6]
√

[3]
, t2 =

[2]2
√
ϕ√

[3]3
− 1.9

As t1, t2 ≥ 0, Nt is positive semidefinite, so det(Nt) ≥ 0. Solving this inequality for10

c gives an upper bound on c in terms of a, say c(a). Then a+ c ≤ ba+ c(a)c. The11

function F (q) is defined such that F (q) = max0≤a≤q5+q3+1ba+ c(a)c for q a prime12

power. Here we use Lemma 4.2.13

Combining Lemma 4.5, Lemma 4.7, and Lemma 4.3 shows Theorem 1.3.14

We applied also the strategy of [23, Section 4.1] in the binary case with functions15

x3 ≤ f ′(x4), x3 ≤ g′(x2), and x3 ≤ h′(x5) defined by16

f ′(x) =

⌊
294(381− x)

294 + x

⌋
, g′(x) =

⌊
62(6
√

70 + 59)(381− x)

372
√

70 + 3658 + 9x

⌋
, and17

h′(x) =

⌊
(13209651− 28575x)

√
35 + 73499853− 192913x

192913 + 34671
√

35− 98x

⌋
,18

as implied by the same reasoning as in Lemmata 4.3, 4.5, and 4.7. Denote the pre-19

vious upper bounds fHKK, gHKK, and hHKK from [23, Lemma 4.2], [23, Lemma 4.3],20

and [23, Lemma 4.4], respectively. The bounds f ′ and h′ are stronger than fHKK and21

hHKK, respectively, for large arguments while gHKK(x) ≤ g′(x) for all 0 ≤ x ≤ 41.22

Assuming x4 ≤ x3, we have x4 ≤ 151 by f ′, improving x4 ≤ 190 from [23,23

Lemma 4.2.i]. Then, as shown in [23, Section 4.1], if x4 ≤ x3 we have the bound24

x2 + x3 + x4 + x5 ≤ max
0≤x2≤41
0≤x5≤41

x2 + F (min{g(x2), h(x5)},min{g(x5), h(x2)}) + x5 with25

F (u3, u4) = max
0≤x4≤min{u3,u4,151}

min{u3, f(x4)}+ x426

in which we fixed an error with the max in F from [23, Section 4.1]. Using only27

the functions implied by the SDP arguments, i.e., f = f ′, g = g′, and h = h′, an28

exhaustive computer calculation determines the right hand side as 432. By taking29

f = min{f ′, fHKK}, g = gHKK, and h = min{h′, hHKK}, the right hand side of30

the maximization problem is 393 which improves the 406 from [23, Section 4.1]31

but is inferior to Theorem 1.2. Nevertheless, this calculation involved only integer32

computations and is resilient against numerical errors. Then Corollary 4.6 shows33

A2(7, 4) ≤ 394.34
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5. New and Updated SDP Bounds. Bachoc et al. [2] provided bounds for1

network codes with odd distances, but not for even distances or q > 2. With2

the general formulas for triple intersection numbers described in Section 3.1, we3

can calculate the corresponding coherent configuration with standard techniques4

and let a semidefinite programming solver (here SDPA-GMP1) find a bound on the5

corresponding problem. The following tables list bounds on Aq(n, d) for small q and6

small n, complementing and, for q = 2 and odd d, improving the work by Bachoc et7

al. New best bounds are bold. If q = 2 and d is odd, the new SDP bound is better8

than the old or there was no previous SDP bound in literature, then the entry is in9

italics.10

d \ n 8 9 10 11 12 13 14

3 9191 107419 2531873 57201557 2685948795 119527379616 11215665059647
4 6479 53710 1705394 28600778 1816165540 59763689822 7496516673358
5 327 2458 48255 660265 26309023 688127334 54724534275
6 260 1240 38455 330133 21362773 344063682 43890879895
7 1219 8844 314104 4678401 330331546
8 1090 4480 279476 2343888 292988615
9 4483 34058 2298622

10 4226 17133 2164452
11 259 17155
12 16642

Table 2. SDP bounds on A2(n, d).

d \ n 6 7 8 9 10 11 12

3 967 15394 760254 34143770 5026344026 675225312722 298950313257852
4 788 7696 627384 17071886 4112061519 337612656529 244829520433920
5 166 7222 123535 16008007 818518696 320387589445
6 6727 61962 14893814 409259348 298571221318
7 490 61002 1076052 400831735
8 59539 539351 391178436
9 1462 537278

10 532903

Table 3. SDP bounds on A3(n, d).

d \ n 6 7 8 9 10 11

3 4772 142313 20482322 2341621613 1343547758223 614496020025690
4 4231 71156 18245203 1170810807 1194101275238 307248010015067
5 516 68117 2132181 1122729102 140323867490
6 66054 1067796 1088550221 70161933745
7 2052 1058831 33669242
8 1050630 16847095
9 8196

Table 4. SDP bounds on A4(n, d).

1Some numbers require a higher precision output than what SDPA offers. See https:

//github.com/ferihr/sdpa-gmp for a version where the constants P FORMAT obj and P FORMAT gap

in sdpa io.h adjust the output length.

https://github.com/ferihr/sdpa-gmp
https://github.com/ferihr/sdpa-gmp
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d \ n 6 7 8 9 10

3 17179 821170 277100135 64262978412 108238287449582
4 15883 410585 256754528 32131489207 100215014898311
5 1254 398154 19675409 31196584033
6 391883 9847885 30703887393
7 6254 9803150
8 9771883

Table 5. SDP bounds on A5(n, d).

d \ n 6 7 8 9 10

3 123239 11807778 14753449680 9728400942608 85039309360944189
4 118347 5903889 14176726504 4864200471305 81703574152063079
5 4806 5803270 566262547 4784663914039
6 5769615 283240686 4756893963688
7 33618 282744208
8 282508875

Table 6. SDP bounds on A7(n, d).

We added these bounds and will continuously add data on the SDP bound for1

larger numbers on http://subspacecodes.uni-bayreuth.de/, cf. [16].2

6. Quadruple Conditions for the 2-Fano plane. Famously, Schrijver used3

semidefinite programming to improve the bounds on constant weight codes [32]4

and considered the centralizer algebra of a vertex, i.e., a codeword. In principle the5

same method is feasible for any (sufficiently symmetric) graph. In vector spaces6

this corresponds to constant-dimension codes. One way of obtaining the necessary7

structural information is to calculate the triples (so the pkij) in relationship to one8

fixed vertex. Let π be a plane in F7
q. We can now define a coherent configuration9

on planes in F7
q in the following way: Our a-th fiber consists of all planes τ with10

codim(π ∩ τ) = a. Clearly, a ∈ {0, 1, 2, 3}. The relations between elements are11

characterized as follows: two planes x and y are in relation Ra,b;α,β,γ if12

(codim(x ∩ π), codim(y ∩ π); codim(x ∩ y), codim(x ∩ y ∩ π), codim(〈x, y〉 ∩ π)) = (a, b;α, β, γ).13

http://subspacecodes.uni-bayreuth.de/
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It can be easily verified that feasible parameter sets up to transposition are as1

follows:2

(0, 0; 0, 0, 0), (0, 1; 1, 1, 0), (0, 1; 2, 2, 0), (0, 1; 3, 3, 0),3

(1, 1; 0, 1, 1), (1, 1; 1, 1, 0), (1, 1; 1, 1, 1), (1, 1; 1, 2, 0), (1, 1; 2, 2, 0),4

(1, 2; 1, 2, 0), (1, 2; 1, 2, 1), (1, 2; 2, 2, 0), (1, 2; 2, 2, 1), (1, 2; 2, 3, 0), (1, 2, 3, 3, 0),5

(1, 3; 2, 3, 1), (1, 3; 3, 3, 0), (1, 3; 3, 3, 1),6

(2, 2; 0, 2, 2), (2, 2; 1, 2, 2), (2, 2; 1, 2, 1), (2, 2; 2, 2, 0), (2, 2; 2, 2, 1), (2, 2; 2, 2, 2),7

(2, 2; 1, 3, 1), (2, 2; 2, 3, 1), (2, 2; 2, 3, 0), (2, 2; 3, 3, 0), (2, 2; 3, 3, 1),8

(2, 3; 1, 3, 2), (2, 3; 2, 3, 2), (2, 3; 2, 3, 1), (2, 3; 3, 3, 0), (2, 3; 3, 3, 1),9

(3, 3; 0, 3, 3), (3, 3; 1, 3, 3), (3, 3; 1, 3, 2), (3, 3; 2, 3, 2), (3, 3; 2, 3, 1), (3, 3; 3, 3, 0),10

(3, 3; 3, 3, 1).11

Notice that these relations also characterize the relations for the centralizer algebra12

of k-spaces in Fnq in general, but it is non-trivial to count triple intersection numbers13

here. Hence, we limit ourselves to the one open case where the pkij ’s can be counted14

with the computer explicitly, that is (n, k, q) = (7, 3, 2).15

For the q-Fano plane upper and lower bounds on pairs of planes in certain rela-16

tions are well-known. Using the same techniques as before, we obtain the following17

upper and lower bounds on the number of quadruples occurring for the 2-Fano18

plane. We assume that π is in the q-Fano plane. We leave pairs, which are always19

0, out. The notation abα∗ refers to the maximal sum of pairs in a relation of type20

(a, b;α, β, γ). The numbers abα∗ are known for general q. We mostly provide them21

for completeness.22

Rel 00000 02220 03330
# = 1 140 240

Rel 22220 22221 22222 22231 22230 22330 22331
# ≤ 420 1260 2240 5040 420 5040 7560
# ≥ 0 0 1400 4620 0 4200 6720

Rel 23232 23231 23330 23331
# ≤ 7560 5040 2520 20160
# ≥ 6720 4200 1680 19320

Rel 33232 33231 33330 33331
# ≤ 20160 2520 1920 34440
# ≥ 19320 1680 1080 33600

Rel 222∗ 223∗ 232∗ 233∗ 332∗ 333∗

# = 7700 11760 11760 21840 21840 35520

Table 7. Upper and lower bounds on the number of pairs in re-
lation abαβγ = (a, b;α, β, γ) for π in the 2-Fano plane.

7. Future Work. An obvious open problem is to show the bound of Theorem 1.223

for general q. This might be of larger interest as it is usually very hard to optimize24

SDP problems with parameters except for certain special cases. For all bounds an25

interesting question is if we can find constructions which match them.26
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In [32] Schrijver successfully improved the best known bounds for constant weight1

codes with semidefinite programming. If one can calculate a version of Lemma 3.42

for the relations of Section 6, then it is surely feasible to improve the known bounds3

on constant-dimension codes.4

Acknowledgments. The second author thanks Jason Williford for many inter-5

esting discussions about semidefinite programming in coherent configurations. We6

would like to thank the SDPA developers for providing this excellent software, in7

particular Maho Nakata for the GMP version of it.8
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