14 research outputs found

    Role of aminotransferases in glutamate metabolism of human erythrocytes

    Get PDF
    Human erythrocytes require a continual supply of glutamate to support glutathione synthesis, but are unable to transport this amino acid across their cell membrane. Consequently, erythrocytes rely on de novo glutamate biosynthesis from α-ketoglutarate and glutamine to maintain intracellular levels of glutamate. Erythrocytic glutamate biosynthesis is catalyzed by three enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and glutamine aminohydrolase (GA). Although the presence of these enzymes in RBCs has been well documented, the relative contributions of each pathway have not been established. Understanding the relative contributions of each biosynthetic pathway is critical for designing effective therapies for sickle cell disease, hemolytic anemia, pulmonary hypertension, and other glutathione-related disorders. In this study, we use multidimensional 1H–13C nuclear magnetic resonance (NMR) spectroscopy and multiple reaction mode mass spectrometry (MRM-MS) to measure the kinetics of de novo glutamate biosynthesis via AST, ALT, and GA in intact cells and RBC lysates. We show that up to 89% of the erythrocyte glutamate pool can be derived from ALT and that ALT-derived glutamate is subsequently used for glutathione synthesis

    DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs

    Get PDF
    DrugBank (http://www.drugbank.ca) is a richly annotated database of drug and drug target information. It contains extensive data on the nomenclature, ontology, chemistry, structure, function, action, pharmacology, pharmacokinetics, metabolism and pharmaceutical properties of both small molecule and large molecule (biotech) drugs. It also contains comprehensive information on the target diseases, proteins, genes and organisms on which these drugs act. First released in 2006, DrugBank has become widely used by pharmacists, medicinal chemists, pharmaceutical researchers, clinicians, educators and the general public. Since its last update in 2008, DrugBank has been greatly expanded through the addition of new drugs, new targets and the inclusion of more than 40 new data fields per drug entry (a 40% increase in data ‘depth’). These data field additions include illustrated drug-action pathways, drug transporter data, drug metabolite data, pharmacogenomic data, adverse drug response data, ADMET data, pharmacokinetic data, computed property data and chemical classification data. DrugBank 3.0 also offers expanded database links, improved search tools for drug–drug and food–drug interaction, new resources for querying and viewing drug pathways and hundreds of new drug entries with detailed patent, pricing and manufacturer data. These additions have been complemented by enhancements to the quality and quantity of existing data, particularly with regard to drug target, drug description and drug action data. DrugBank 3.0 represents the result of 2 years of manual annotation work aimed at making the database much more useful for a wide range of ‘omics’ (i.e. pharmacogenomic, pharmacoproteomic, pharmacometabolomic and even pharmacoeconomic) applications

    Recent developments and application of metabolomics in cancer diseases

    Get PDF
          Metabolomics studies provide useful information about health and disease status. Metabolite based investigations on various cancers is a powerful approach to diagnosis, prognosis and therapy of cancer diseases. Recently by using advanced analytical techniques such as NMR and MS and its hyphenation methods, global metabolic profiling of diseases has been possible. It is predictable that international contributions and software developments in the future will lead to accurate instrumental analysis based on  a large number of  human samples that finally will improve validation methods and reach this field from the research phase to the clinical phase. In this review, we also discussed the latest developments in analytical methods, application of data analysis, investigation of useful databases and the curent application of metabolomics in cancer diseases that have led to the identification of related biomarkers. In continuation, we listed biomarkers involved in cancer diseases that have been published during recent years.

    Effects of Atmospheric CO2 Level on the Metabolic Response of Resistant and Susceptible Wheat to Fusarium graminearum Infection.

    Get PDF
    Rising atmospheric CO2 concentrations and associated climate changes are thought to have contributed to the steady increase of Fusarium head blight (FHB) on wheat. However, our understanding of precisely how elevated CO2 influences the defense response of wheat against Fusarium graminearum remains limited. In this study, we evaluated the metabolic profiles of susceptible (Norm) and moderately resistant (Alsen) spring wheat in response to whole-head inoculation with two deoxynivalenol (DON)-producing F. graminearum isolates (DON+), isolates 9F1 and Gz3639, and a DON-deficient (DON−) isolate (Gzt40) at ambient (400 ppm) and elevated (800 ppm) CO2 concentrations. The effects of elevated CO2 were dependent on both the Fusarium strain and the wheat variety, but metabolic differences in the host can explain the observed changes in F. graminearum biomass and DON accumulation. The complexity of abiotic and biotic stress interactions makes it difficult to determine if the observed metabolic changes in wheat are a result of CO2-induced changes in the host, the pathogen, or a combination of both. However, the effects of elevated CO2 were not dependent on DON production. Finally, we identified several metabolic biomarkers for wheat that can reliably predict FHB resistance or susceptibility, even as atmospheric CO2 levels rise

    Recent advances of metabolomics in plant biotechnology

    Get PDF
    Biotechnology, including genetic modification, is a very important approach to regulate the production of particular metabolites in plants to improve their adaptation to environmental stress, to improve food quality, and to increase crop yield. Unfortunately, these approaches do not necessarily lead to the expected results due to the highly complex mechanisms underlying metabolic regulation in plants. In this context, metabolomics plays a key role in plant molecular biotechnology, where plant cells are modified by the expression of engineered genes, because we can obtain information on the metabolic status of cells via a snapshot of their metabolome. Although metabolome analysis could be used to evaluate the effect of foreign genes and understand the metabolic state of cells, there is no single analytical method for metabolomics because of the wide range of chemicals synthesized in plants. Here, we describe the basic analytical advancements in plant metabolomics and bioinformatics and the application of metabolomics to the biological study of plants

    High-resolution magic angle spinning nuclear magnetic resonance of intact zebrafish embryos detects metabolic changes following exposure to teratogenic polymethoxyalkenes from algae

    Get PDF
    Techniques based on nuclear magnetic resonance (NMR) for imaging and chemical analyses of in vivo, or otherwise intact, biological systems are rapidly emerging and finding diverse applications within a wide range of fields. Very recently, several NMR-based techniques have been developed for the zebrafish as a model animal system. In the current study, the novel application of high-resolution magic angle spinning (HR-MAS) NMR is presented as a means of metabolic profiling of intact zebrafish embryos. Toward investigating the utility of HR-MAS NMR as a toxicological tool, these studies specifically examined metabolic changes of embryos exposed to polymethoxy-1-alkenes (PMAs)-a recently identified family of teratogenic compounds from freshwater algae-as emerging environmental contaminants. One-dimensional and two-dimensional HR-MAS NMR analyses were able to effectively identify and quantify diverse metabolites in early-stage (≤36 h postfertilization) embryos. Subsequent comparison of the metabolic profiles between PMA-exposed and control embryos identified several statistically significant metabolic changes associated with subacute exposure to the teratogen, including (1) elevated inositol as a recognized component of signaling pathways involved in embryo development; (2) increases in several metabolites, including inositol, phosphoryl choline, fatty acids, and cholesterol, which are associated with lipid composition of cell membranes; (3) concomitant increase in glucose and decrease in lactate; and (4) decreases in several biochemically related metabolites associated with central nervous system development and function, including γ-aminobutyric acid, glycine, glutamate, and glutamine. A potentially unifying model/hypothesis of PMA teratogenicity based on the data is presented. These findings, taken together, demonstrate that HR-MAS NMR is a promising tool for metabolic profiling in the zebrafish embryo, including toxicological applications.Solid state NMR/Biophysical Organic Chemistr

    To metabolomics and beyond: a technological portfolio to investigate cancer metabolism

    Get PDF
    Tumour cells have exquisite flexibility in reprogramming their metabolism in order to support tumour initiation, progression, metastasis and resistance to therapies. These reprogrammed activities include a complete rewiring of the bioenergetic, biosynthetic and redox status to sustain the increased energetic demand of the cells. Over the last decades, the cancer metabolism field has seen an explosion of new biochemical technologies giving more tools than ever before to navigate this complexity. Within a cell or a tissue, the metabolites constitute the direct signature of the molecular phenotype and thus their profiling has concrete clinical applications in oncology. Metabolomics and fluxomics, are key technological approaches that mainly revolutionized the field enabling researchers to have both a qualitative and mechanistic model of the biochemical activities in cancer. Furthermore, the upgrade from bulk to single-cell analysis technologies provided unprecedented opportunity to investigate cancer biology at cellular resolution allowing an in depth quantitative analysis of complex and heterogenous diseases. More recently, the advent of functional genomic screening allowed the identification of molecular pathways, cellular processes, biomarkers and novel therapeutic targets that in concert with other technologies allow patient stratification and identification of new treatment regimens. This review is intended to be a guide for researchers to cancer metabolism, highlighting current and emerging technologies, emphasizing advantages, disadvantages and applications with the potential of leading the development of innovative anti-cancer therapies

    Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics

    Get PDF
    This review explores the latest developments in Fourier transform mass spectrometry and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing high resolution mass spectrometry data

    The Application and Development of Metabolomics Methodologies for the Profiling of Food and Cellular Toxicity

    Get PDF
    Metabolomics is a rapidly growing field of study. Its growth reflects advancements in technology and an improved understanding of the impact of the environment on metabolism. As a result, metabolomics is now commonly employed to investigate and characterize human and plant metabolism. The first chapter of this thesis provides an introduction to metabolomics and an overview of the protocols for sample preparation, data collection and statistical analysis. The second thesis chapter describes in explicit detail the step-by-step process of extracting and analyzing metabolites collected from mammalian cells, specifically brain tissue with a focus on Parkinson’s disease. The chapter highlights important factors to consider including experiment design, sample collection, and data processing. Chapters 3 and 4 include the application of metabolomics to evaluate how the metabolome responds to the environment. Chapter 3 focuses on the neuronal response to the xenobiotic arsenic. It demonstrates how astrocytes increase glutathione production through an up regulation of the citric acid cycle and glycolytic processes. Arsenic was also observed to decreases related metabolites including citrate and lactate. These metabolites are important intermediates to ATP production and illustrate the interconnection of metabolomic processes. Chapter 4 shows how metabolite profiles can be used to evaluate the impact of environmental conditions on wines. Metabolite profiles of Pinot Noir derived from the same scion clone (Pinot noir 667) and grown in different regions along the Pacific coast were compared. NMR and a differential sensing array were used to profile the chemical composition of the samples. We observed how environmental conditions resulted in different metabolite profiles in the various wine samples. This thesis aims to highlight the application of metabolomic to various biological studies in order to evaluate the impact of external stimuli. Advisor: Robert Power
    corecore