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ABSTRACT 

 
      Metabolomics studies provide useful information about health and disease status. Metabolite based 

investigations on various cancers is a powerful approach to diagnosis, prognosis and therapy of cancer 

diseases. Recently by using advanced analytical techniques such as NMR and MS and its hyphenation 

methods, global metabolic profiling of diseases has been possible. It is predictable that international 

contributions and software developments in the future will lead to accurate instrumental analysis based on  a 

large number of  human samples that finally will improve validation methods and reach this field from the 

research phase to the clinical phase. In this review, we also discussed the latest developments in analytical 

methods, application of data analysis, investigation of useful databases and the curent application of 

metabolomics in cancer diseases that have led to the identification of related biomarkers. In continuation, we 

listed biomarkers involved in cancer diseases that have been published during recent years. 
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Abbreviations: NMR: Nuclear Magnetic Resonance, MS: Mass Spectrometry, HMDB: Human 

Metabolome Database, RF: radio frequency ; EBC: Exhaled breath condensate ; CSF: cerebro-spinal fluid; 

AF: Amniotic fluid; JRES: J-resolved ; CPMG: Carr-Purcell-Meiboom-Gill ; TMS: Trimethylsilan ; TSP: 3-

trimethyl silyl propionic acid; DSS:  2, 2-dimethyl-2-sila pentane-5-sulfonate sodium salt ; MAS-NMR: 

magic angle spinning Nuclear Magnetic Resonance; HR-MAS: High Resolution Magic Angle Spinning ; 

GC-MS: Gas chromatography-mass spectrometry; EI:  electron impact; CI: chemical ionization ; MSTFA: 

N-methyl-trimethyl silyltriflouroacetamide ;GC-TOF-MS: Gas chromatography time of flight -mass 

spectrometry; LC-MS: Liquid chromatography mass spectrometry; RP-HPLC: reversed phase high 

performance liquid chromatography; ESI:  electrospray ionization; MALDI: Matrix Assisted laser 

desorption/ionization ; DESI: Desorption electrospray ionization Mass Spectrometry; EESI: Extractive 

electrospray ionization ; UHPLC: Ultra high-performance liquid chromatography CE-MS: Capillary 

Electrophorese-mass spectrometry; MVA: Multivariate analysis; PCA: principle component analysis ; PCs: 

principal components; STOCSY : statistical correlation spectroscopy; CLASSY: cluster analysis statistical 

spectroscopy; PLS: partial least square ; DFA: discriminant function analysis ; PCR: Principal Component 

Regression ;PLS-DA:  partial least square discriminant analysis; OPLS: Orthogonal partial least square; 

ANN: Artificial neural network ; ROC: receiver-operator characteristic ; OSCC: Oral squamous cell 

carcinoma ; HNSCC: Head and neck squamous cell carcinoma ; lysoPCs: Lysophosphatidylcholines . 

 

INTRODUCTION  
   In the past few years, great changes have taken 

place in the biological sciences leading into the 

emergence field of systems biology. The 

metabolomics and metabonomics terms were used 

in the late nineteenth and early twentieth-century  

[1, 2]. Metabolomics is one of the important 

building blocks of systems biology, 

complementary of other “omic” sciences and the 

closest correlation to phenotype. On the other 

hand, metabolites are the reflection of 

physiological and disease status, then study of 
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metabolites facilitates understanding biochemical 

pathways. Metabolome is the collection of small 

molecules in a mass below approximately 1500 

Dalton (metabolites) that  produced by a cell as a 

result of response to environmental stresses[3] .

Metabonomics were defined by Nicolson as 

“quantitative measurement of dynamic multi 

parametric metabolic response of living systems 

to pathophysiological stimuli or genetic 

modification”[4]. Metabolomics were defined as 

“study of the complete set of metabolites/low 

molecular intermediate, which are contexts 

dependent, varying according to the 

physiological, developmental or pathological state 

of cell, tissue and organ or organism” [3]. These 

two terminologies often use instead of each other.  

Metabolites are divided into two categories; 

Endogenous and Exogenous. Endogenous 

metabolites, are the collection of chemicals that 

produce and consume by organism in the absence 

of extracellular materials and exogenous 

metabolites are foreign substances such as 

nutrients, drugs, xenobiotic and environmental 

change [5]. 

Analysis of metabolism has different ways; target 

analysis and integrated analysis. Target analysis 

deals with the measurement of specific 

metabolites or focuses on one or more metabolic 

pathways. [6]. Untargeted analysis is 

simultaneous measurement of metabolites without 

bias It must be noted that untargeted 

metabolomics somewhere refer metabolic 

profiling  [7]. Untargeted analysis has two 

subsets: metabolic fingerprinting and metabolic 

footprinting. Metabolic Fingerprinting is a 

measurement of collection of metabolites without 

any previous assumption  [8], although it is 

impossible to evaluate all present metabolites, but 

with recent advances in analytical instruments and 

Chemometric techniques can be closer to this 

goal. Metabolic Footprinting is defined as 

laboratory culture media that measurement of 

changes that caused by an organism. Another 

definition of Metabolic Footprinting is secreted 

metabolites that caused by an organism and often 

apply in biotechnology and microbiology  [9]. 

 

General workflow of metabolic studies can be 

categorized into five steps: 1) Sample preparation 

2) Analytical platforms based on NMR or MS 

spectroscopy, 3) pre-processing 4) data analysis 

(via Chemometrics methods) and 5) metabolite 

identification and data interpretation  

 

Biological samples 

      Metabolites are generated by the processes of 

metabolism in cells, tissue or organ. The human 

body contains approximately 38000 (exactly 

37,166, until now, according to a very recent 

report on the HMDB Version 3.6) detectable 

metabolites that are very diverse chemical 

compounds such as volatile, polar and more polar 

metabolites (Table 1) 

  
Table 1. classes of chemical compounds 

Volatile Polar More polar 

Hydrocarbons,  

Alcohols 

Eicosanoids, 

Steroids 

Organic acids 

Essential oils, 

Terpenoids 

Esters, Amino 

Acids,  

Organic 

amines 

Aldehydes, Ketones Hydrophilic 

Carbohydrate 

Nucleosides 

Hydrophobic lipids Carotenoids, 

Alkaloids 

Ionic species 

Isocyanates, 

Isothiocyanates 

Flavonoids/ 

Phenols 

Nucleotides 

Amines, Pyrols, 

Sulfides 

Lipids, Fatty acids, 

Catecholamines 

Polyamines 

 

Because of difference in polarity of compounds, it 

is impossible to measure all of metabolites with a 

unique technics. Factors that affecting 

metabolomics analysis is gender [10], age [10], 

lifestyle [10], smoky [11]and physical activity 

[12]. One of the most important steps in metabolic 

approach is the selection of the sample and its 

preparation before instrumental analysis. The 

required analytical technique varies depending on 

types of sample. The common samples for 

metabolic analysis are blood (serum/plasma) [15], 

urine, , saliva, tissue, cell line [13], exhaled 

cerebro-spinal fluid(CSF) breath and amniotic 

fluids [14, 15]. Each of these samples has 

advantages and limitations of the analysis that 

summarized in Table 2. 
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Analytical Tools 
     A variety of analytical technologies have been 

applied to metabolomics studies. The most 

common analytical instrument that have been 

employed are nuclear magnetic resonance (NMR) 

spectroscopy and hyphenated mass spectrometry 

[16]. At first, a brief explanation is given and then 

their application in the diagnosis of cancer will be 

discussed. 

Metabolomics based on NMR spectroscopy 

      NMR spectroscopy is application of strong 

magnetic fields and radio frequency (RF) pulses 

to the nuclei of atoms for atoms either an odd 

atomic number (e.g., 
1
H) or odd mass number  

(e.g., 13C, 31P) or both of them (e.g. 14N) in the 

presence of a strong magnetic field, the nucleus 

will cause the possess spin (nuclear spin). 

Absorption of RF energy will then allow the 

nuclei to be promoted from low-energy to high-

energy spin states, and the subsequent emission of 

radiation during the relaxation process is detected. 

The majority of applications employs 1H (proton) 

NMR for clinical studies and as the known 

metabolites contain various hydrogen atoms in 

their molecular structure [17]. Between used 

techniques; The NMR has attracted so much 

attention to itself because it is rapid, Quantitative, 

non-destructive and cost effective. It needs little 

or no sample preparation and produces repeatable 

and reproducible results. NMR is a powerful tool 

for assigning and identification in a large  number 

of metabolites in complex biofluids because each 

metabolite has its chemical shifts and unique 

multiple patterns. [18]. 

 

 

This technique has some limitations, for example, 

low sensitivity (in comparison with MS 

spectroscopy) and signal overlapping. It must be 

noted that NMR sensitivity depends on some 

factors such as natural abundance of the atom that 

are studied (1H, 31P, 19F 100%; 13C1. 10%; 15N 

0.37%).This limitation was improved by the 

construction of modern NMR instruments with 

higher magnetic fields and special microprobes 

for trace analysis. By using high magnetic fields 

(800-900 MHz) and cryogenic probe signal to 

noise were Improve dramatically [19]. 

Another approach is the use of microbes instead 

of conventional 5 mm probes, new probes have a 

diameter of 1-3 mm or micro scaled [20]. This 

also will reduce the sample amount that is needed 

for analysis (600µl to 60µl respectively).  

Recently, two dimensional (2D) homonuclear 1H, 

J-resolved (JRES) nuclear magnetic resonance 

spectroscopy is used in metabolomics research. 

This NMR method contains many advantages 

such as disperses the overlapping resonances into 

a second dimension, reducing overlap, simplify 

spectral assignments and accurate quantification 

.[12]  One of the challenges in NMR-based 

metabolomics is suppression of water in biofluids. 

This problem has been solved by applying pulse 

sequences of  standard pulse sequence nuclear 

Overhauser effect spectroscopy (NOESY preset) 

[22]. This pulse program has been used especially 

for urine samples. Another challenge in NMR-

based approach is signal's suppression of 

macromolecules that is possible by Carr-Purcell-

Meiboom-Gill (CPMG) sequence  [23, 24]. 

 

Table2. common biological samples in metabolic studies 

Sample Advantage Limitations No. of 

biomarker
a
  

Blood 

Serum/pl

asma 

-Are common biofluids in NMR metabolomics 

-Easy to obtain 

-Most of the relevant NMR detectable 

metabolites have been by (HMDB) 

-non-invasive 

-Broad signals from proteins and lipids  

4535 

 

 

Urine 

- non-invasive 

-Easy to collection and storage 

-Easy sample preparation 

-Good for toxicology or drug follow-up studies 

-Urine contains more metabolites than blood and 

CSF. 

-More overlapping signals in an NMR 

spectrum 

-Need to maintain homeostasis results in 

it being one of the most complex 

Composition 

 

 

3995 
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Tissue 

- Tissue is even greater homeostasis regulation 

than plasma and urine therefore provide highly 

consistent metabolic measurements 

-Are suitable for the study of  specific sites for 

body (toxicity) 

-Need HR-MAS 

-More difficult to collect 

-Invasive 

- Highly sensitive analysis techniques 

are required 

-Expensive 

 

 

439 

 

 

 

 

 

Exhaled 

breath 

[25] 

- Exhaled breath condensate (EBC) collection is 

an innovative method 

-Rich in volatile metabolites (such as aldehydes, 

ketones, alcohols, hydrocarbons and esters) 

-Inexpensive 

-Safe and noninvasive method of diagnostic and 

therapeutic monitoring 

- Limited to the investigation of 

respiratory disease 

-  Dilution is an issue that is a problem 

with all methods of sampling the airway 

and lungs including sputum collection 

and bronchoalveolar lavage 

- The small volume of sample collected 

- EBC is currently used only as a 

research tool, (due to the lack of 

appropriate standardization and the 

absence of reference values) 

 

 

 

 

 

 

16 

 

 

 

CSF [26, 

27] 

CSF indirectly reflects the biochemical 

processes occurring in the brain. 

Therefore provides information about states of 

normal or pathological metabolism of the brain. 

-The biochemical composition of CSF contains 

metabolites which are secreted by the central 

nervous system (CNS) 

-CSF has lower protein and lipid content 

- Signal overlaps in CSF is not as serious 

-Samples are more difficult to obtain 

-Invasive 

 

 

 

436 

 

 

Saliva 

Saliva encompasses the secretions of three major 

glands namely parotid gland, submandibular 

gland and sublingual gland and other minor 

salivary glands
 

It reflects a large range of physiological needs 

and information 

-Most compounds found in blood 

Are also present in saliva, but usually in lower 

concentrations 

-non-invasive, 

- Reliable 

collection of sample is low-cost. 

Highly sensitive analysis techniques is 

required because of low compound 

concentrations 

 

 

1233 

Cell line Good for understanding of the in vitro and in 

vivo actions of drugs - and aid in their rapid 

incorporation into novel therapeutic settings 

-Cells can also be stored in a deep frozen state 

and doing so there is no alteration to their 

growth rate or genetic composition and they can 

be revived whenever needed 

-It is far more economical to use cell cultures 

instead of rearing animals and doing 

experiments with animals 

-There is no requirement for ethical approval 

 

-Need for specialized equipment, 

-Their sensitivity to varying 

environmental conditions, e.g. power 

failure. 

-Is that cell cultures are very prone to 

infections 

-Very time consuming 

 

 

 

 

49 

Amniotic 

fluids 

Amniotic fluid (AF) composition reflects the 

physiological status during fetal development 

and it may be used to detect potential 

pathological conditions excretions and placental 

tissues. 

AF contains large amounts of proteins 

and metabolites produced by the amnion 

epithelial cells, fetal tissues 

 

17 

a
Based on HMDB Version 3.6 



 

Journal of Paramedical Sciences (JPS)                Spring 2015 Vol.6, No.2  ISSN 2008-4978 

 

120 

 

 

Because of the low concentration of the 

Metabolites in biofluids (serum), proteins (such as 

albumin) with high concentration, has been 

masked the NMR signals of metabolites. For 

solving this major problem in NMR, researchers 

use this item that, relaxation time (T2) of 

Metabolites relatively long then produce narrow 

peak and  in contrast, macromolecules such as 

proteins have short T2 and produce broad peaks. 

This difference in relaxation times causes a big 

background of protein in 1HNMR signals. 

Veenstra and co-workers [28] have designed 

WET–CPMG pulse sequence to remove these 

unwanted signals. In this pulse program, NMR 

peak intensities are decreased proportional to their 

T2 relaxation times. Therefore, CPMG used to 

suppress signals arising from macromolecules  

[29, 30]. Another great merit of NMR technique is 

ready to measure the concentration of metabolites 

(qNMR) because the intensity in a resonance line 

is directly proportional with the number of 

resonant nuclei (spins)[31].  

It must be noted that in order to measure exact 

concentration of metabolite it is necessary to use 

an internal standard in NMR spectroscopy. 

Trimethylsilan (TMS) is useful for organic 

solvent but common reference for biological 

samples are (3-trimethyl silyl propionic acid-d4, 

TSP-d4) and 2, 2-dimethyl-2-sila pentane-5-

sulfonate sodium salt (DSS) [32, 33]. 

One of the recent developments in NMR 

technique’s automated NMR using Autosampler 

that is applying for NMR structure determination, 

epidemiological or population screening studies. 

Automated NMR can analysis 200-300 sample 

per day  [34, 35]. High Resolution Magic Angle 

Spinning (HR-MAS) for solid samples is another 

powerful NMR technics in metabolomics. In this 

technique that  invented for the 1950s use of 

magic angle spinning NMR (MAS-NMR) allows 

intact tissues and cells to be examined with little 

sample preparation (~20 mg) or no preparation  

[36, 37]. MAS-NMR significantly reduces the 

effect of magnetic-field inhomogeneity, because a 

sample in homogeneity leads differences in 

magnetic susceptibility and causes broad and 

distorted peak shapes. HR-MAS-NMR yield's 

remarkably high-resolution spectra from a range 

of intact tissue types, therefore, provides detailed 

analysis of complex matrices such as tissue. It has 

recently been applied in toxicology and oncology, 

such as the study of the toxins- and disease-

induced changes in a variety of tissues, including 

tumors and kinds of cancers. MAS-NMR also 

provides a means to validate, and  study of 

metabolism both in vitro and in vivo conditions. 

Another advantage of HR-MAS-NMR approaches 

is usefulness in MRS imaging studies [38].  

Furthermore, HR-MAS-NMR  also has been 

applied to help interpretation of proton MRS 

imaging of tumors [39]. 

Mass based metabolomics 

    Recently, Metabolomics based on mass 

spectrometry is being used increasingly as an 

alternative approach specially hyphenated 

methods coupled with separation methods such as 

GC-MS, LC-MS, CE-MS. These techniques are 

more sensitive, selective and have wide dynamic 

range compared to NMR. The number of 

compounds that measured in mass based 

techniques strongly will depend on the resolution 

of the chromatography system and the specificity 

of the detection technique. A mass spectrometer 

can function as highly specific chromatographies. 

In this article, we have explained recent research 

results briefly based on MS detection techniques. 

Metabolomics based on GC-MS spectroscopy 

    Gas chromatography-mass spectrometry (GC-

MS) is a hyphenated technique that has been used 

over many years. This technique is suitable for 

target-metabolomics In this approach inert carrier 

gas (i.e. N2, He) moves analytes between silica 

capillary. Separation occurs as a result of 

equilibrium formed between the solutes and the 

stationary phase. Useful detectors for GC-MS are 

electron impact/ chemical ionization (EI/CI) mass 

spectrometry. Electron Impact (EI) ion source 

leads to extensive fragmentation and is helpful for  

unambiguous identification of analytes while the 

CI ion source is mild and usually uses for 

determine accurate mass measurement of 

metabolites. (Because of little fragmentation)  

GC-MS is highly sensitive, and it is suitable for 

volatile metabolites. One of the most advantages 
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of GC-MS is access to powerful libraries such as 

NIST, Wiley Library that allows  users to search 

both chromatographies retention time and mass 

spectra of analytes. Derivatization for detection of 

some polar metabolites (for example: fatty acids, 

phenols, prostaglandins, Steroids, alkaloids, 

amino acids)  is necessary before GC-MS 

analysis.  Chemical derivatization is usually 

necessary due to decrease the polarities of 

functional groups to facilitate their separation by 

GC. Generally, there are three basic types of 

derivatization reactions: silylation, alkylation and 

acylation. Silylation is the most widespread 

derivatization method and is very suitable for 

non-volatile samples. In this respect, Silylating 

reagents react with active hydrogen and convert 

them to be silylated derivatives that are more 

volatile and thermally stable and creating narrow 

peaks. One of The most common silyating 

reagents is present N-methyl-

Ntrimethylsilyltriflouro-acetamide (MSTFA); 

Acylating reagents react with highly polar 

functional groups such as amino acids or 

carbohydrates,  and  an acyl group is attached to 

an organic compound. In this method of 

derivatization, active hydrogens (e.g., -OH, -SH 

and -NH) converted into esters, thioesters and 

amides, respectively through acylation.  One of 

Common reagent for the Acylation is 

Fluoracylimidazoles. Alkylating reagents protect 

active hydrogens and replace of active hydrogen 

by an aliphatic or aliphatic-aromatic (e.g., benzyl) 

group. Dialkylacetals are common derivatization 

reagents for the Alkylation reactions.  

GC-MS has some limitations, for example. It is 

destructive, low reproducible, low quantitation, 

needs high sample amount and  has limitations for 

the detection of more polar metabolites and 

thermally labile metabolites, one of most its 

disadvantage is incapability to identify unknown 

compounds after derivatization [40, 41]. 

Recently multidimensional GC, known GC×GC-

MS, GC-TOF-MS improved limitations of GC-

MS techniques such as resolution, sensitivity. 

GC×GC-MS has composed of two columns; the 

first column is longer than second and separates 

compounds based on volatility whereas the 

second column separates based on polarity [42]. 

LC-MS based metabolomics 

    Liquid chromatography hyphenated with mass 

spectrometry is the most important technique 

among analytical tools that has been used for 

metabolic studies. Commonly used column in  LC 

is reversed phase column (RP-HPLC), and ion 

source is  electrospray ionization (ESI) for 

detection ionic compounds and ion suppression.   

LC-MS separates, identify and quantify a very 

broad group of metabolites. It has advantages 

such as highly sensitive, no need for 

derivatization, able to analysis of thermo-labile 

metabolites, but this technique also has some 

limitations, for example, does not access to good 

libraries, thus limited structural information, has 

high matrix effects, expensive, time consuming, 

low reproducibility [43, 44]. 

In the few past years LC-MS-MS (tandem mass), 

Matrix Assisted laser desorption/ ionization 

(MALDI-MS) [45], Desorption electrospray 

ionization Mass Spectrometry (DESI) [46], 

Extractive electrospray ionization (EESI-MS) [47] 

methods have been used. These methods removed 

many problems of conventional technique (LC-

MS) for example, LC-MS-MS is suitable  to 

validate and identifying of unknown molecules 

because of the second mass analyzer [48]. 

MALDI-MS is highly sensitive, detect a wide 

range of molecules and is label free DESI and 

EESI-MS approaches are useful for high-

throughput data  [49]. 

Recently in LC-MS columns instead of 

conventional particulate have been used 

monolithic columns (for separation of peptides 

and proteins). Ultra high-performance liquid 

chromatography (UHPLC) has improved 

limitation of HPLC (chromatographic resolution, 

improved detection limit 3-5 fold) [50]. 

Recently, LC-NMR-MS has applied in 

metabolomics that it has advantages both 

techniques and has been noticed by scientists [16, 

51]. 

CE-MS 

    Capillary Electrophorese-Mass spectroscopy is 

a powerful technique for the Analysis of small 

soluble compounds in biological fluids, but it has 

not been used widely for metabolic studies. CE-

MS is useful for polar metabolites, complex 
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biological sample that leading to high resolution, 

but this approach suffers from insufficient 

sensitivity, low reproducibility, high cost and time 

consuming. Interface of CE with MS is so 

difficult and desalting step is necessary prior to 

mass spectrometry, it has Complex methodology 

and quantification is problematic [52-54]. 

Pre- reprocessing 

    Metabolomics data are highly informative and 

extraction of them has always been a challenging 

problem. The main objective of data 

preprocessing is to convert raw spectra to datasets 

and summarize them in a table (data matrix). Both 

NMR and mass spectra contain hundreds up to 

thousand signals. Analysis of such heavy datasets 

is a more challenging process. Before stepping of 

multivariate analysis, a number of data 

pretreatments are required. The data pretreatment 

in 
1
HNMR and GC-MS are fundamentally 

different. It is for NMR data as baseline 

correction, alignment, binning, Normalization, 

scaling and transformations. Data pre-processing 

of mass peaks is one of the most challenging areas 

in the metabolomics field with regard to software 

development.  Data preprocessing for MS based 

methods are noise Filtering, data binning, Peak 

detection, Time Alignment, Missing values, 

Normalization and Scaling. Preprocessing steps 

NMR and MS based methods are summarized in 

Table 3 and Table 4 respectively: 

  
Table 3. preprocessing of NMR spectra 

Preprocessing for 

NMR based 

approach[21] 

Pre-processing Explain Solution 

Baseline correction 

-Correction of distortions 

-Exclude outside 0.2-10.0ppm 

-Remove solvent water(in 4.7-5ppm) 

-Remove urea (in urine samples) 

-Automated baseline correction 

-Iterative polynomial-fitting[55] 

-Asymmetric Least Squares[56] 

-B-splines[34] 

Alignment 

Correction of peak shift caused by 

instrumental factors 

-Changes of pH, temperature 

- Changes of salt concentration and 

dilution 

 

 

-Aligned with spectral 

reference[57] 

-Interval correction[58] 

shifting(icoshif)[59] 

-Warping correlation optimized 

warping (COW) [60] 

-Hierarchical cluster-based peak 

Alignment(CluPA)[61] 

-Time warping[62] 

Binning(bucketing)[63] 

Used for quantitative, objective or scored 

integrals of specific spectral peak 

dimensional 

Reduce the data 

-Equidistant binning of 0.04ppm 

-Non equidistant binning adaptive-

intelligent binning (Al-binning) 

-Gaussian binning 

-Adaptive binning with wavelet 

transform 

-Dynamic Adaptive binning 

Normalization[64] 

Make all samples comparable with each 

other 

-Dilution effects (especially for urine 

samples) 

Eliminate systematic errors 

Delete inter-sample variation 

-Probabilistic normalization (PQ) 

-Histogram Normalization 

-Group aggregation normalization 

(GAN) 

Scaling[30] 

-Scaling the most abundant metabolites 

before analysis 

 

-Mean centering 

-Auto scaling 

-Pareto scaling 

-Range scaling 

-Vast scaling 

-Level scaling 

Transformation[65] 

Remove hetero scedasticy 

Decrease the effect of non-normality 

 

Log transform 

Box-Cox 
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Table 4.  preprocessing of MS spectra (GC-MS) and (LC-MS) 

 Pre-processing Explain Solution 

Preprocessin

g for MS 

based 

approach[66] 

Noise Filtering 

[67] 

Mask the important components of 

the chromatographic data. 

One of the common ways of removing noise is 

based on a so-called “moving window” filter 

(Antoniou 1993; Mitra 1998) 

Data binning [68] 

Mass intensities are binned into 

Mass aligned vectors of uniform 

Length 

 

Make slices (default 0.1m/z) 

Assign intensity to each slice 

 For each scan. 

-Several methods available: 

- Bin (default) and Binlin, Binlinbase, Intlin 

Peak detection [68, 

69] 

-Identify all signals caused by true 

ions and avoid detection of false 

positives (i.e., noise, spikes) 

- Also aims to provide accurate 

quantitative information about ion 

concentrations 

-Detection in two directions by finding peaks 

independently in both m/z and retention time 

direction 

- The other strategy is slicing data to extract ion 

chromatograms (XIC), with each one covering a 

narrow m/z range, therefore avoiding the 

problem of searching for peaks in m/z direction. 

(XCMS) 

- For feature extraction is model fitting against 

the original raw signal 

Retention Time 

Alignment[70] 

Match peaks with similar retention 

times across 

Multiple samples, and use the groups 

of matched peaks for time alignment 

-AMDIS automatically finds peaks and 

deconvolutes the mass spectra of co-eluting 

compounds  

- A simple linear retention time shift could align 

peaks at only one of the time points, but not 

both.  

-The nonlinear alignment algorithm in XCMS 

properly aligns peaks over all times 

Missing values[71] 
Any peaks that failed to recognize  

 

-Using information from peak detection about 

where peaks begin and end, and aligned 

retention times for each sample 

Then integrate the raw LC/MS data to fill in 

intensity values for each of the missing data 

points. 

 

 

Normalization[72] 

It is necessary to remove the effect of 

the total amount from the analysis. 

Remove the unwanted systematic 

errors 

Bias in ion intensities between 

measurements, while 

Retaining the interesting biological 

variation 

Normalization by unit norm  

Normalization by median intensities, 

Normalization by the maximum likelihood 

method  

Normalization by a single or multiple internal or 

external standard compounds based on empirical 

rules, such as specific regions of retention time  

 

Scaling[73] 

Scaling the most abundant metabolites 

before analysis 

Mean-centered,  

Pareto-scaled 

Range scaling 

Vast scaling 

 

Data analysis 

  Chemometrics is one of an influential branch of 

chemistry and provides mathematical and 

statistical tools for data extraction and analysis of 

complex chemical and biological data. 

Multivariate analysis (MVA) is one of prominent 

subset of Chemometrics. This method of analysis 

is widely used in metabolomics studies that leads 

to reduces complexity and dimensionally of 

NMR/MS datasets and provides relevant 
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biological information from the input analytical 

data obtained from instrument. These initial data 

consists of many different variables in a matrix. 

This matrix has column and rows, that columns 

are results of observations (variables: 

metabolites) and rows are objects. Any variable 

can be considered as a different dimension. 

Reduction of dimensionality can be done in one 

of two ways;  either unsupervised or supervised 

analysis[74, 75]. 

Unsupervised analysis 

   In unsupervised learning, input information 

(metabolite/peak data), are clustered into 

groups, revealing the overall structure on the 

data. One of the most applied methods is a 

principal component analysis (PCA). PCA is a 

method that reduces the dimension of data 

between variables in the dataset by application 

of covariance analysis. This technics is useful 

to identify hidden information within the data 

set by compressing of a data set and it is a 

linear combination of original data parameters. 

PCA utilizes a maximum of variables to the 

minimum of principal components (PCs). Each 

PC is orthogonal to the others. PCA can be 

visualized in two metrics, known Scores and 

Loadings. Score plot (T), is linear combinations 

of the original variables and reveals how the 

data is spread; each point expresses of a single 

spectrum, whereas loading plot/scatter plot (P) 

shows the effect (weight) of the individual X-

variables in the model. Each point depicts a 

different spectral intensity. Detections of 

outliers are another application of PCA [62]. 

Other unsupervised methods which have been 

used in metabolomics are k-means, 

HCA(Hierarchical cluster analysis ), STOCSY 

(statistical correlation spectroscopy), a hybrid 

of two methods of  STOCSY and  HCA that 

known as CLASSY (cluster analysis statistical 

spectroscopy)[76]. 

In table 5 briefly about each of them have been 

explained. Unsupervised analyzing methods have 

some limitations because of the character of 

unsupervised learning that cannot predict and 

evaluate  model’s parameters [62, 77].  

 

 
 
 

Table 5. Other unsupervised methods 

unsupervised methods explain 

Hierarchical cluster 

analysis (HCA) 

-Make group based on 

similarity 

- Necessary choice of two 

input function 

K-means Clustering approach 

-Most apply in 

Transcripotomics 

Statistical correlation 

spectroscopy (STOCSY) 

Extract of information from 

1D , 2D-NMR 

-Applied in drug 

metabolites 

Cluster analysis, statistical 

spectroscopy (CLASSY) 

-Better than STOCSY 

- Applied in hyphenated 

techniques  

-Is highly accurate 
 

Supervised Analysis 

   In supervised techniques the input information 

(metabolite/peak date), is paired with defined 

outputs e.g. disease or control (training data) and 

a model is built to classify the data. Some of 

statistical strategies are used for prediction of 

models, include, partial least square (PLS) which 

is a linear regression method; discriminant 

function analysis (DFA), Principal Component 

Regression (PCR),  partial least square 

discriminant analysis (PLS-DA) and OPLS 

method is modified form of the PLS method to 

help overcome the pitfalls. These techniques use a 

subset of the overall data (training data), to model 

the outcomes. The remaining data set is used to 

validate the predictive strength of the built model 

[78]. Validation is a very important step in 

evaluating a model for an independent Dataset. 

Several methods for validation of models exist. In 

a few years An Artificial neural network (ANN) 

method has been extensively used  as a non-linear 

data modeling method in metabolic studies and 

pathway analysis [79].  A relevant criterion for 

assessing the quality of fit models And determine 

the correct prediction of the Performance is 

defined under the curve receiver operating 

characteristic (ROC) [80]. The most common 

methods are cross-validation, double cross-

validation [81]. Many data in metabolic systems 

display non-linear dependencies because of 

biological  
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Complexity and environmental factors [81] . The 

linear methods are close to fail in such situations. 

Therefore Metabolites that are significant can be 

further analyzed using the receiver-operator  

Characteristic (ROC) curve. This is a plot of the 

degree of sensitivity (predicting a disease) versus 

specificity (predicting non-disease), and is used to 

identify the most discriminatory metabolites, 

based on a ROC score identify cutoff points for 

metabolites [82]. the Performance is defined 

under the curve receiver operating characteristic 

(ROC) [80]. The most common methods are 

cross-validation, double cross-validation [81]. 

Many data in metabolic systems display non-

linear dependencies because of biological  

Complexity and environmental factors [81] . 

The linear methods are close to fail in such 

situations.  

Therefore Metabolites that are significant can 

be further analyzed using the receiver-operator 

characteristic (ROC) curve. This is a plot of the 

degree of sensitivity (predicting a disease) 

versus specificity (predicting non-disease), and 

is used to identify the most discriminatory 

metabolites, based on a ROC score identify 

cutoff points for metabolites [82]. 

Common Database for Metabolomics 

    Metabolomics  like  other  “Omics”  sciences 

 dealing with complex and high throughput 

data, then Researcher to identify metabolites, 

assignment of compounds, exact mass, GC-EI 

spectrum, MS/MS spectrum comparison, 

identity of pathways Require access to a 

comprehensive database. We listed here the 

major open-access resources available (Table6) 

Application of Metabolomics 
     Recently, metabolomics has been used in 

many research fields, for example in the study 

of toxicology [83] responses to environmental 

stress [84], , nutrition [85], drug discovery [86]  

diagnosis of disease [87-94],identify 

biomarkers of disease and prognostic 

biomarkers [90] cancer [95-97], in natural 

product (plant metabolomics)  [98], and in 

traditional medicine [99-101]. Metabolomics 

allow the accurate prediction of disease, 

etiology and mechanisms[102, 103] Cancer is a 

complex disease state that changes the normal 

of healthy cells into tumor cells. Due to the 

cancer is associated with metabolic changes, 

therefore metabolomics studies can help in 

early stage detection and diagnosis of cancer 

and in evaluation of clinical trial. In this section 

we briefly describe the biomarkers identified in 

cancer diseases. identifed biomarkers kinds of 

cancers listed in the Table7. 
 

 

Table 6. Common database for metabolic study 

Database characteristics 

METLIN[104] The METLIN Database is a repository of metabolite information as well as tandem mass 

spectrometry data.  

Human Metabolome 

Database(HMDB)[105]  

 

The database contains three kinds of data: 1) chemical data, 2) clinical data, and 3) 

molecular biology/biochemistry data. 

Many data fields are hyperlinked to other databases (KEGG, PubChem, MetaCyc, ChEBI, 

PDB, Swiss-Prot, and GenBank) and a variety of structure and pathway viewing applets. 

BiGG[106]  The BiGG database is a metabolic reconstruction of human metabolism designed for 

systems biology simulation and metabolic flux balance modeling. It is a comprehensive 

literature-based genome-scale metabolic  

SetupX[107] 

 

SetupX, developed by the Fiehn laboratory and is web-based. It displays GC-MS 

metabolomic data through its metabolic annotation database called BinBase. BinBase is a 

GC-TOF metabolomic database 

SYSTOMONAS[108] 

 

(SYSTems biology of pseudOMONAS) is a database for systems biology studies of 

Pseudomonas species. It contains transcriptomic, proteomic and metabolomic data as well 

as metabolic reconstructions of this pathogen.  

MetaboLights[109] MetaboLights is a database for metabolomics experiments. It is cross-species, cross-

technique and covers metabolite structures and their reference spectra as well as their 

biological roles, locations, concentrations and experimental data from metabolic 

experiments.  
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MassBank[110] 

 

MassBank is a mass spectral database of experimentally acquired high resolution MS 

spectra of metabolites. Maintained and supported by the JST-BIRD project, it offers 

various query methods for standard spectra obtained from Keio University, RIKEN PSC, 

and other Japanese research institutions. It is officially sanctioned by the Mass 

Spectrometry Society of Japan. The database has very detailed MS data and excellent 

spectral/structure searching utilities. More than 13,000 spectra of 1900 different 

compounds are available. 

Golm Metabolome 

Database[111] 

 

The Golm Metabolome Database provides public access to GC/MS libraries which are 

stored as Mass Spectral (MS) and Retention Time Index (RI) Libraries (MSRI). These 

libraries of mass spectral and retention time indices can be used by the NIST/AMDIS 

software to identify metabolites according their spectral tags and RI's. The libraries are 

both searchable and downloadable and have been carefully collected under defined 

conditions on several types of GC/MS instruments (quadrupole and TOF). 

Fiehn GC-MS Database 

 

This database contains characteristics of compounds (name, structure, CAS ID, other links) 

and GC/MS data (spectra and retention indices)that  have been collected by the Fiehn 

laboratory.  

BML-NMR[112] 

 

The Birmingham Metabolite Library Nuclear Magnetic Resonance database is a freely 

available resource .This database includes both 2-D 1H J-resolved spectra and 1-D 1H 

spectra, recorded at 500 MHz using various water suppression methods and acquisition 

parameters, for solutions at pH values of 6.6, 7.0 and 7.4.  

MzCloud[113] 

 

MzCloud features a searchable collection of high resolution/accurate mass spectral trees 

using a new third generation spectra correlation algorithm. MzCloud tries to address the 

identification bottleneck by considering all mass spectrometricaly relevant aspects, looking 

at number of experimental and computational details and in some cases, allowing 

identification of unknowns even if they are not present in library. 

BMRB [114] 

 

The BioMagResBank (BMRB) is the central repository for experimental NMR spectral 

data, primarily for macromolecules. The BMRB also contains a recently established 

subsection for metabolite data. The current metabolomics database contains structures, 

structure viewing applets, nomenclature data, extensive 1D and 2D spectra peak lists (from 

1D, TOCSY, DEPT, HSQC experiments), raw spectra and FIDs for nearly 500 molecules.  

MMCD [115] 

 

The Madison Metabolomics Consortium Database (MMCD) is a database of chemicals. 

This database provides the chemical formula, names and synonyms, structure, physical and 

chemical properties, NMR and MS data on pure compounds under defined conditions, 

NMR chemical shifts determined by empirical and/or theoretical approaches, information 

on the presence of the metabolite in different biological species, and extensive links to 

images, references, and other public databases. 

 
Table7. Identified biomarkers by metabolomics studies 

Disease Sample Instrument Biomarker Ref 

Ovarian 

borderline 

tumor 

Tissue GC-ToF-MS 51 metabolites were significantly different between 

borderline tumors and carcinomas 

Glycerol phosphate alpha, Lactic acid 

[116] 

Kidney cancer Urine GC-ToF-MS High level quinolinate, α-ketoglutarate, and gentisate,  [117, 

118] 

Colorectal 

cancer 

Serum 

and Urine 

GC/MS Taurine, lactate, choline, inositol, glycine, phosphocholine, 

proline, phenylalanine, alanine, threonine, valine and 

leucine 

{ L-alanine, L-glutamine, glucoronoic lacaton}[119] 

[120, 

121] 

Gastrointestinal 

cancer(early 

stage) 

Serum GC-MS  3-hydroxypropionic acid, pyruvic acid [119] 

Lung cancer Urine NMR Hippurate, trigonelline, ß-hydroxyisovalerate, α-

hydroxyisobutyrate, N-acetylglutamine and creatinine 

[122] 

Lung cancer Plasma NMR High concentration( lactate, pyruvate) 

Low concentration (citrate, Formate, acetate, glucose, 

[123] 
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glutamine, alanine, tyrosine and Valine)  

Prostate cancer Cell line NMR Myoinositol, glutathione, amino acids, methionine, 

phosphocholine, phosphocholine/glycerophosphocholine 

[124, 

125] 

Human 

hepatocellular 

Carcinoma 

Serum NMR Higher levels of acetate, N-acetylglycoproteins, 

Private, glutamine, a-ketoglutarate, glycerol, 

Tyrosine, 1-methylhistidine and phenylalanine, together 

with  

Lower levels of low-density lipoprotein, Isoleucine, Valine, 

acetoacetate, 

Creatine, choline and unsaturated lipids. 

[126] 

Human Brain 

cancer 

Tumor 

cell 

NMR 

 

Phosphocholine/glycerophosphocholine [127] 

Human Brain 

cancer 

Tissue HR-MAS and 

solution NMR 

Lactate, mobile lipids (correlate with the degree of tumor 

necrosis 

 The ratio of (Phosphocholine/choline (correlates with 

malignancy of glioma) 

 

[128] 

Breast Cancer  HR-MAS Coline, phosphocholine/glycerophosphocholine (degree of 

tumor) 

 Glutamine, glutamate, glycine and taurine (in tumor type 

discrimination) 

[129] 

Breast Cancer Breast 

tissue 

HR-MAS High level (taurine, choline containing metabolites) [130] 

Breast Cancer Extract 

of 

tumor 

NMR In normal tissue (High level of glucose, Myo-inositol) 

In tumor tissue (phosphocholine, lactate, succinate) 

[131] 

Head and neck 

squamous cell 

carcinoma 

(HNSCC) 

Tissue HR-MAS Higher levels of lactate, amino acids, choline and lower 

levels of triglyceride 

[132, 

133] 

Oral squamous 

cell carcinoma 

(OSCC) early 

stage 

Saliva NMR 

LC-TOF-MS 

14 potential salivary metabolites were identified. Eight 

biomarkers up-regulated in OSCC patients are compared 

with control and six down-regulated groups. 

Five salivary biomarkers (propionylcholine, N-Acetyl-L-

phenylalanine, sphinganine, phytosphingosine, and S-

carboxymethyl-L-cysteine 

[80, 

132, 

134] 

 

As seen in the table, levels of glucose, pyruvate, 

taurine , lactate have been increased and levels of 

phosphocholine, choline betaine and glycine have 

been decreased. Cancer cells request more energy 

that supplies it by high rate of glycolysis then 

going up lactic acid fermentation in the cytosol 

that it is known as the “Warburg” effect [135]. 

Proliferation of tumor in acidic environment 

elevates and in acidic media tumor cells invade to 

healthy cells.[136]. Therefore level of glucose has 

been decreased. [137, 138]. Glucose generates 

precursors of amino acids, lipids , and nucleotides 

[135]. Also Levels of fatty acids have been 

increased in early stage of cancer (specially breast 

cancer [139, 140]) and it is related to conversion 

of pyruvate to acetyl CoA.  Acetyl CoA can be 

consumed for de novo fatty acid synthesis [141].  

Reduced Level of Glycine has been observed in 

tumor cells because glycerin is a precursor for 

purine synthesis, and glycine has been consumed 

to produce sarcasm.  Levels of urinary Sarcosion 

had been increased in prostate cancer. [142, 143]. 

Sarcosine is produced by methyl transfer from 

SAMe(S-adenosyl-L-methionine) to glycine. 

The levels of Choline, phosphocholine, 

phosphatidylcholine, and glycerophospho-choline 

have been increased in brain, breast, prostate and 

liver cancers[96, 144] . Decreased levels of 

Lysophosphati-dylcholines (lysoPCs) have been 

observed in lung [145]and liver cancer [146]. 

while lysophosphatic acid has been reported as 
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increased in ovarian cancer[147] (lysoPCs) are 

lipid intermediates that can used to form PCs or 

are the products of phospholipases acting on PCs. 

ratios of (glycerophosphocholine and 

phosphocholine)/creatine, myo-inositol/ scyllo-

inositol, choline/creatine and other ratios were 

demonstrated to correlate with the number of 

tumor cells, tumor cell proliferation[148]. 

Therefore in cancer cells, metabolites are 

associated with increased glycolysis, anaplerosis, 

and membrane choline metabolism. 

 

CONCLUSION 

    Metabolomics use  in a wide variety of 

disciplines, including  toxicology, systems 

biology, pharmacology, and medicine, especially 

in prognoses, diagnoses and therapy. Actually, 

diseases are perturbation in metabolic orders. 

Therefore,  measurement of metabolites in the 

healthy and disease state leads to a better 

understanding on the mechanism of the disease, 

finding  metabolic pathways involved in disease.  

In this review, we briefly explained about 

research strategies and analytical tools that use 

and chemometric approaches (MVA) and the 

most common databases and finally application of 

metabolomics in diagnosis of cancer diseases.  

 It is noticeable that metabolic studies are being 

applied to better understand metabolism of cancer 

cells, for diagnosis and prognosis  biomarkers. 

One of most limitations of metabolomics is that  

known biomakers  are still experimental and in 

the research phase, there are some challenges 

include identification of all the variables 

(unknown peaks)by improvement in analytical 

tools and chemometrics, validation studies for 

high population,  communion of clinical 

metabolomics data with the clinic, Detailed 

interpretation of clinical metabolomics data, and 

Following results of NMR and MS in the clinical.  

Due to metabolomics is the downstream  

approach and complimentary to the other omics 

approaches. The future of medical research within 

the field of cancer will use from information of 

systems biology particularly metabolomics to 

diagnosis biomarkers. 

Systems biology  approaches   will combine 

together until acquire detailed information about 

cancer pathways, therefore, will facilitate 

understanding about the complexity of cancer. 
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