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To metabolomics and beyond: a technological portfolio to
investigate cancer metabolism
Federica Danzi1, Raffaella Pacchiana1, Andrea Mafficini2, Maria T. Scupoli3, Aldo Scarpa 2,4, Massimo Donadelli1✉ and
Alessandra Fiore1

Tumour cells have exquisite flexibility in reprogramming their metabolism in order to support tumour initiation, progression,
metastasis and resistance to therapies. These reprogrammed activities include a complete rewiring of the bioenergetic, biosynthetic
and redox status to sustain the increased energetic demand of the cells. Over the last decades, the cancer metabolism field has
seen an explosion of new biochemical technologies giving more tools than ever before to navigate this complexity. Within a cell or
a tissue, the metabolites constitute the direct signature of the molecular phenotype and thus their profiling has concrete clinical
applications in oncology. Metabolomics and fluxomics, are key technological approaches that mainly revolutionized the field
enabling researchers to have both a qualitative and mechanistic model of the biochemical activities in cancer. Furthermore, the
upgrade from bulk to single-cell analysis technologies provided unprecedented opportunity to investigate cancer biology at cellular
resolution allowing an in depth quantitative analysis of complex and heterogenous diseases. More recently, the advent of
functional genomic screening allowed the identification of molecular pathways, cellular processes, biomarkers and novel
therapeutic targets that in concert with other technologies allow patient stratification and identification of new treatment
regimens. This review is intended to be a guide for researchers to cancer metabolism, highlighting current and emerging
technologies, emphasizing advantages, disadvantages and applications with the potential of leading the development of
innovative anti-cancer therapies.
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INTRODUCTION
Tumour cells rewire their metabolism in order to drive and
promote the growth and spreading of cancer cells.1 This
metabolic rewiring causes a unique metabolic phenotype, whose
features can be exploited for biomarkers discovery, disease
prediction, cancer diagnosis, patient stratifications and persona-
lized therapies.2–4 Metabolic alterations of malignant cells have
long been a central focus in the field of cancer research and
currently the deregulation of cellular metabolism is a recognized
core hallmark of cancer in modern medicine5,6 (Fig. 1). The field of
cancer metabolism put down roots in the 1920s with the
pioneered studies of Otto H. Warburg who hypothesized, for
the first time, that cancer, compared to a normal tissue, utilizes
enormous amounts of glucose to generate lactic acid, even in
normoxia or in the presence of non-hypoxic conditions. This
process was named the “Warburg effect” and its molecular
explanation completely prioritized the following years of cancer
research.7–10 During the 1980s, the search for abnormal metabolic
pathways that can be therapeutically exploited drastically
accelerated, leading to the discovery of oncogenes and tumour
suppressor genes that are the basis for alternative metabolic
pathways in cancer. The uncontrolled cell proliferation, increased
cell survival, cell differentiation, immune surveillance, aberrant

angiogenesis, and many other metabolic events linked to cancer
are strictly associated with the oncogenic activities of mutant
KRAS, mutant p53, activation of mTOR signalling and of the
transcription factor c-MYC, among the others.11–19 Human
cancers are characterized by an extreme context-dependent
plasticity and diversity; indeed, they develop multiple metabolic
alterations, as part of a multistep process, to fulfil the
bioenergetic, biosynthetic, and reduction–oxidation (redox)
demands of malignant cells.20 The most common metabolic
alterations include: (i) cell survival and anabolic growth during
nutrient deprivation, which is sustained via the acquisition of
nutrients from the extracellular space and their conversion into
macromolecules through the core metabolic pathways, such as
glycolysis, Pentose phosphate pathway (PPP) and Tricarboxylic
acid cycle (TCA).21–24 The increased uptake of amino acids and
glucose, with consequent release of lactate and protons to the
tumour microenvironment, is further enhanced via more
mechanical processes, such as phagocytosis, macro-pinocytosis
and entosis;25–31 (ii) increased acquisition and utilization
of nitrogen, building block for the de novo synthesis of a
variety of biological compounds including nucleotides, amino
acids, polyamines, hexosamines, Glutathione (GSH), porphyrins,
ammonia, creatine, nitric oxide;32,33 (iii) extensive metabolic
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enzyme-mediated and metabolite-mediated modulation of gene
expression including methylation, acetylation, phosphorylation,
ubiquitination of histones and succinylation; (iv) balanced
Reactive oxygen species (ROS) by fine-tuning redox systems:
ROS cause DNA damage, contributing to the appearance of
oncogenic mutations, and acting as pro-growth signals thus
sustaining tumour initiation and progression as well as angiogen-
esis and metastasis. Therefore, a tumour generally depends more
than a normal tissue upon the antioxidants, including PPP-
derived Nicotinamide adenine dinucleotide phosphate (NADPH),
GSH, thioredoxin (TXN), antioxidant enzymes [i.e., mitochondrial
and cytosolic peroxiredoxins (PRXs), glutathione peroxidase
(GPXs), catalase and Superoxide dismutase (SOD)] and their
transcriptional master regulators, as the Nuclear factor erythroid
2-related factor 2 (NRF2)34–43; (v) accumulation of oncometabo-
lites, such as succinate, fumarate, and 2-hydroxyglutarate (2HG),
which have higher concentration in malignant cells as a
consequence of respectively loss-of-function mutations within

the genes encoding succinate dehydrogenase (SDH), Fumarate
hydratase (FH) or gain-of-function mutations in the Isocitrate
dehydrogenase 1 or 2 (IDH1 or IDH2) genes. The increased level
of any of these oncometabolites has been associated with a pro-
tumorigenic effect in certain tissues.44–48

The idea of targeting metabolism is not a new concept; the first
antimetabolites therapy dates back to 1947 when Dr. Sidney
Farber, the father of the modern chemotherapy, first discovered
that aminopterin administration to children affected by Acute
lymphoblastic leukaemia (ALL) may arrest tumour progression
(Fig. 1). Aminopterin is a folate analogue that inhibits the de novo
nucleotide biosynthesis by blocking the one-carbon transfer
reaction and its clinical success led to the development of an
entirely new class of drugs.49–55 The introduction of antimetabo-
lites probably constitutes one of the biggest achievements in the
field of cancer metabolism: Methotrexate (MTX, amethopterin) a
synthetic and less toxic derivative of aminopterin, the uracil
analogue 5-fluorouracil (5-FU) and the nucleoside analogues

Fig. 1 Timeline of the milestone events for cancer metabolism. The first mass spectrum of a molecule was measured by Joseph J. Thomson in
1910. In 1931 Otto H. Warburg won the Nobel Prize in Physiology or Medicine for characterizing the respiratory enzyme. In 1938 Isidor I. Rabi
detected the Nuclear magnetic resonance (NMR) for the first time in a beam of lithium chloride thus developing the methodology and further
expanded in 1946 by Felix Bloch and Edward M. Purcell for use on liquids and solids. Gas chromatography (GC)-MS was described in 1959 and
Liquid chromatography (LC)-MS was introduced in 1974. The discovery of oncogenes and tumour suppressor genes dates back to the 1980s.
In 1994 Tsutomu Nomizu and colleagues realized the first single cells MS experiment, while in 1998 Steven Oliver firstly introduced the
concept of metabolomics. 2004 is the year of Next-generation sequencing (NGS), 2006 of the Seahorse real-time cell metabolic analyser, 2007
of the first prototype of Cytometry by Time-of-flight (CyTOF) and of the first version of The Human metabolome database (HMDB). In 2009
there was the development of Single-cell RNA sequencing (scRNAseq), in 2016 of Single-cell metabolomics (SCM) and in 2017 of the In situ
metabolomics. The first genome-wide functional screening was performed in 2014 and in 2020 Emmanuelle Charpentier and Jennifer Doudna
were awarded the Nobel Prize in Chemistry for discovering the CRISPR/Cas9 system. In 2020 the flow-cytometry-based technologies Met-flow
and SCENITH have been proposed. In 2022 the deregulation of cellular metabolism was eventually recognized core hallmark of cancer by
Douglas Hanahan. This figure was created with Biorender.com
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gemcitabine and cytarabine are all notable examples of widely
used antimetabolites employed in a variety of cancer settings over
the years.56–58 Despite these successes, until now only a few
metabolic liabilities have been translated into effective therapies.
Toxicity versus normal cells and the intrinsic plasticity of cancer,
which allow cells to activate alternative pathways in response to
metabolic drugs, make particularly challenging targeting metabo-
lism in these cells thus highlighting the urgent need to further
investigate cancer biology with the final goals of the identification
of successful screening and personalized therapeutic strategies to
improve patient care.
Despite the massive effort, the metabolic reprogramming of

cancer cells remains far from being fully characterized because of
its complexity and due to technical limitations. Currently, we
recognize the multidisciplinary of cancer metabolism that sits at
the interface between numerous technical-scientific disciplines
and approaches, in particular biochemistry, immunology, genetics
and microscopy. This knowledge brought tremendous technolo-
gical advancement in metabolites characterization and quantifica-
tion, functional analysis of metabolic activities, innovative single-
cell and genetic approaches that have given researchers specific
and potent tools to untangle the complexity of cancer metabo-
lism. Selecting the best method or the combination of methods
that is more appropriate for a given study depends on equipment
availability, budget, and scientific hypothesis. The purpose of this
review is to provide an overview of the available innovative
methods to study cancer metabolism, discussing experimental
limitations, future directions and clinical applications.

METABOLOMICS: A POWERFUL TOOL IN CANCER RESEARCH
AND TREATMENT
Genomic and transcriptomic studies often fail to explain the
complexity of a biological system, thus, leaving us with a huge gap
in the map from genotype to phenotype. The approach that is
closest to fill this gap is metabolomics, first introduced by Steven
Oliver in a review article on yeast functional genomics published
in 1998, and now widely recognized as a cornerstone to all of the
systems biology4,59,60 (Fig. 1). Metabolomics is a high-throughput
study of the metabolome which includes all the small molecules
(50–1500 Da) with diverse physiochemical characteristics and
dynamic range of abundance, commonly known as metabolites,
within cells, biofluids, tissues or organisms.61 The identification of
metabolites and their concentrations, unlike other omics measure-
ments, directly represents the molecular phenotype. Metabolo-
mics, more than any other methods, significantly revolutionized
the field of cancer research; it is one of the most powerful omics
techniques, mainly employed in cancer research to effectively
detect metabolites whose level is affected by the neoplastic
progression in a biological sample with a wide range of
applications such as biomarker identification, drug discovery or
development, clinical toxicology, nutritional studies, and quanti-
tative phenotyping.62,63 As with any omics techniques, metabo-
lomics is highly dependent on the availability and quality of public
databases. In this regard, the biggest achievement in the field was
reached in 2007 with the completion of the first draft of the
human metabolome, the chemical equivalent of the human
genome (Fig. 1). The Human metabolome database (HMDB) is a
freely accessible electronic database (current version HMDB 5.0,
https://hmdb.ca/) designed with the possibility to link data to
other databases (KEGG, PubChem, MetaCyc, UniProt, and Gen-
Bank) thus combining chemical data, clinical information and
molecular biology/biochemistry models.64–68 The database con-
tains more than 220,000 metabolite entries including both water-
soluble and lipid-soluble metabolites.
However, despite increasing technological progress, none of the

current analytical platforms can completely measure the whole
metabolome. Reaching an adequate metabolome coverage

remains a major challenge, which can be achieved only through
a combination of approaches.47,69–73 The most critical step in a
metabolomics workflow is the fast quenching of all metabolic
pathways and the isolation of metabolites in order to completely
block all enzymes and chemical activities and generate a stable
extract with metabolite ratios and concentrations reflecting the
levels of endogenous metabolites from the original living cell at a
chosen time.47,74 In addition, the collection and extraction of the
samples have to maintain the original analyte concentration,
increase the instrument productivity, and lower the matrix effect
in the analysis. Sample collection and storage can depend on
target metabolites and are the source of the greatest variation;
therefore, harmonization of these procedures is mandatory for a
correct analysis.75 High-resolution spectroscopic techniques
include Mass Spectrometry (MS) and Nuclear Magnetic Resonance
(NMR) spectroscopy with specific and complementary applications
in the field that may require a prior separation step and different
ion sources75 (Fig. 2a).

Metabolomics approaches: untargeted and targeted strategies
Metabolome profiling is typically performed through two different
strategies: targeted or untargeted analysis (Table 1). The goal of
targeted (or validation-based) metabolomic approaches is the
identification and quantification of a relatively low number
(generally less than one hundred) of known analytes, while the
untargeted (or discovery-based) metabolomics is used for a more
comprehensive analysis and relative quantification of metabolites; in
this case, the analysis must be further validated with an orthogonal
approach.76 In targeted metabolomics, by using native and
isotopically labeled internal standards (IS) it is possible to reduce
the false positives, thus more accurately identifying and quantifying
the metabolites. Furthermore, the use of IS improves the matrix-
induced ionization effects, thus enhancing the sensitivity. However,
a limitation of targeted approaches is the partial metabolome
coverage, which increases the chance of a wrong interpretation of
the metabolic process of interest.77 Oppositely, the analysis with an
untargeted metabolomic approach does not need any pre-existing
knowledge or hypothesis even though, sample preparation and
analytical methods affect the subset of metabolites detected, thus
they must be chosen wisely. In untargeted metabolomics studies,
two different approaches for data acquisition can be used: Data-
dependent acquisition (DDA) and Data independent acquisition
(DIA) mode. In DDA the metabolites with the highest signal intensity
in a full-scan MS1 spectrum are selected to generate fragmentation
patterns. The DIA approach integrates full MS1 with MS/MS
fragmentation for all precursor ions, thus producing an extremely
complex spectrum of fragmentation where decoding the connec-
tion between precursor and end-products is very hard. To perform
metabolite identification, it is necessary to search the experimental
MS1 or MS/MS data into the metabolome database. To increase the
metabolome coverage, several libraries must be simultaneously
interrogated therefore requiring a massive bioinformatic effort to
reduce redundant matching. However, this process is further
challenged by the fact that the nomenclature of metabolites is
not fully standardized and varies widely across databases.76

Separation-based MS techniques for metabolites investigation
To analyse the myriad of metabolites, which constitutes a
biological sample, a separation through chromatographic systems
may be necessary.78 The separation is required to avoid ion
suppression or over-loading of the MS system, which causes a
general loss of sensitivity. The interaction between the metabo-
lites and the chromatographic system depends on the physical-
chemical proprieties of the metabolites, the stationary phase and
it determines the order of elution in the chromatographic system.
Usually, lipids, volatile organic metabolites and derivative
compounds are analysed by Gas chromatography (GC)-MS,
originally described in 1959, while the analysis of the polar

To metabolomics and beyond: a technological portfolio to investigate. . .
Danzi et al.

3

Signal Transduction and Targeted Therapy           (2023) 8:137 

https://hmdb.ca/


molecules is performed through Liquid chromatography (LC)-MS,
introduced for the first time in 1974 (Figs. 1, 2a, b).79

Gas chromatography (GC). GC coupled with MS is an analytical
technique applied in metabolomics optimal for the analysis of
small molecular substances (<650 Daltons). GC is a separative tool

to quantitively and qualitatively measure volatile and thermally
stable compounds. As a mobile carrier it uses an inert gas, such as
nitrogen, helium, or hydrogen, while the stationary phase can be a
liquid with low vapour pressure that coats the inner walls of a
capillary (Gas liquid chromatography, GLC) or a solid that exhibits
interactions with analytes by physical adsorption (Gas solid
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chromatography, GSC). Usually, the first choice is a stationary
phase with similar polarity to the analytes while increasing the
column temperature over time facilitates the elution of metabo-
lites. Since most primary metabolites with a pivotal role in cancer
metabolism such as lactic acid, pyruvic acid, malic acid, glucose,
and palmitic acid have high boiling points, a derivatization step is
necessary with the aim of making them volatile enough to be
analysed by GC-MS. Among the derivatization protocols, the more
employed ones use trimethylsilylation or thereof-like variants,
which detach acidic protons from hydroxyl-, carboxyl-, amino- or
thiol-group.80–82 The derivatization process is fast, with high yield,
carried out under mild conditions, and break the molecular proton
bridge bond making the boiling points lower and the metabolites
more stable for GC-MS.83 Due to the complexity of biological
samples, enzyme activity, and often the need to increase the
concentration of low abundant molecules, the choice of the right
procedure is dictated by the molecular target.84,85 With two-
dimensional gas chromatography (GCxGC), a second independent
separation is performed by importing the analytes eluted from the
first column into the second column increasing both the peak
capacity and the sensitivity thus facilitating the characterization of
metabolites.86,87

Liquid chromatography (LC). LC is a potent separative technique
ideal for studying complex biological matrices, and it has been
further optimized to ensure efficient, easy, and robust analysis. LC
coupled to a mass spectrometer (LC-MS) revolutionized the field,
allowing the characterization of non-volatile or thermally labile
compounds with high molecular weight that were not possible to
analyse with GC-MS. By reducing the diameter of the packing
particles (3–50 µm) in the column and by employing high pressure
to improve the mobile phase speed, it has been possible to make
LC operating in a highly efficient mode, the so-called High-
performance liquid chromatography (HPLC).88 To gain in selectiv-
ity and sensitivity some metabolomic studies have employed the
Ultra-performance liquid chromatography (UPLC) system using
columns with even smaller particle size (<2 µm) and higher

pressure. Nevertheless, the low injection volumes and short
column life do not make this technique widely used.75 A further
development is the Ultra-high-pressure liquid chromatography
(UHPLC), which is a further optimization capable of producing the
best resolution and peak capacity for liquid chromatography
known and therefore it is mainly applied to analyse complex
samples, including biofluids.88 The analysis of metabolites with
different physicochemical characteristics cannot be performed
with a single stationary phase. Given its high reliability and
robustness, Reversed-phase chromatography (RP) is one of the
most widely employed technique, thanks also to the possibility of
repeatable separations covering a broad-spectrum of chemical
compounds. In a RP chromatographic system, the stationary phase
consists of an organic species chemically bound to silica particles
that form the chromatographic support, and it has a lower polarity
compared to the mobile one. Non-polar columns, as C18, are ideal
for metabolomic analysis because of their ability to separate
semipolar compounds such as phenolic acids, flavonoids, glyco-
sylated steroids, alkaloids, and other glycosylated species. How-
ever, other types of stationary phases are reported in RP
chromatography like short alkyl chains (C8) and amides. In this
type of separation, the mobile phase is polar (water, methanol,
acetonitrile), and the elution can be isocratic (constant composi-
tion of the mobile phase) or gradient (variable composition); the
latter mode is used for heterogenous samples because it improves
separation and reduces the elution times of substances.75 Many
biofluids analysed in metabolomic studies are aqueous thus
containing many polar molecules that are almost not kept by the
RP stationary phase. The separation of these polar analytes is
mostly carried out by the Hydrophilic interaction liquid chromato-
graphy (HILIC) technique, which is a variation of the Normal phase
(NP) chromatography, that uses a highly polar stationary phase
(Fig. 2b).75 Many metabolites linked to tumorigenesis have
hydrophilic chemical proprieties; in these cases, both ion-paring
reagent-based RP chromatography and HILIC can be employed.
Reversed-phase ion-pair (RPIP) chromatography has a hydro-

phobic stationary phase and a mobile phase containing an ion-

Fig. 2 a Mass spectrometry (MS)-metabolomic workflow. 1. Samples preparation consists of metabolism quenching and metabolites
extraction. 2. Metabolites may need a separation step with Gas chromatography (GC), Liquid chromatography (LC), Capillary electrophoresis
(CE) or can be directly ionized in the Direct infusion (DI) and in the Mass spectrometry imaging (MSI). 3. Different ionization techniques can be
employed: Electron impact ionization (EI), Chemical ionization (CI), Atmospheric pressure chemical ionization (APCI), Electrospray ionization
(ESI), Matrix-assisted laser desorption ionization (MALDI) and Direct real-time analysis (DART). 4. Single (MS) or tandem (MS/MS) mass
analysers can be alternatively employed to separate ions according to their m/z: Quadrupole (Q), Quadrupole ion trap (QIT), Time-of-flight
analyser (TOF), Fourier transform ion cyclotron resonance (FTICR), Orbitrap (OT). 5. Data processing includes conversion of m/z values,
detection, filtering, normalization and identification. b Schematic depicting the most suitable techniques to separate metabolites with distinct
polarity. This figure was created with Biorender.com

Table 1. Features of untargeted and targeted metabolomics approaches

Metabolomics

Untargeted Targeted

Discovery strategy (hypothesis generating) Validation strategy (hypothesis driven)

Global and comprehensive analysis Subset analysis

High number of metabolites studied Small number of metabolites

Correlated to database/libraries Correlated to reference standards

Qualitative identification Identification of metabolites known a priori

Relative quantification Absolute quantification

Challenging data interpretation Easy data analysis and interpretation

Samples preparation requires a global metabolites extraction Samples preparation is metabolite-specific

Biomarker discovery Biomarker validation

Global/untargeted screening Pathway mapping targeted metabolomic profiling
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pair reagent, which consists of both hydrophilic and hydrophobic
residues in a single molecular structure, added at low concentra-
tion. HILIC-based separation technique uses a hydrophilic
stationary phase with which the water-soluble metabolites
interact and a hydrophobic organic mobile phase, which has a
percentage of solvent increasing over time enabling the elution of
the metabolites from the column according to their affinity. The
HILIC columns allow the retention of polar molecules and the fast
elution of lipophilic compounds, which are usually difficult to elute
from other types of columns and can therefore accumulate
causing ion suppression due to background bleeding.72,75 Super-
critical fluid chromatography (SFC) uses a supercritical fluid as
mobile phase with temperature and pressure higher than a critical
point. Among the most widely used eluents in the supercritical
state is Carbon dioxide (CO2) is non-toxic, easily handled and
environmentally friendly since it needs just little amount of
organic solvent as auxiliary solvent.89

Capillary electrophoresis (CE). CE is an analytical separative method
applicable to a broad spectrum of chemical substances, primarily
polar and charged ones (Fig. 2b). The most widely used separation
modes for metabolomic analysis are Capillary zonal electrophoresis
(CZE) and Capillary micellar electrokinetic chromatography
(MEKC).90,91 CZE separates compounds according to the different
electrophoretic mobility of the analytes, which is determined by
their charge and size; the separation occurs in a capillary that
contains a separation buffer, and it is subjected to an electric field.92

MEKC extends the functionality of CE to uncharged compounds;
thus, the separation of the analytes happens through differential
splitting between micelles and a surrounding aqueous solution. CE
allows for different selectivity and higher efficiency than HPLC as
well as shorter analysis times. However, this technique has low
concentration sensitivity compared to HPLC, and, for this reason,
sample pre-concentration is often necessary. CE-MS has great
potentiality for microscale analytical technique, meeting the need of
analytical methods to profile metabolism of (sub)microliters of
samples.93 However, the CE-MS-based metabolomics is not widely
diffused in comparison to other analytical separation approaches
described above, as it is perceived as a technically demanding
approach that suffers of low reproducibility and sensitivity.92

Separation-free MS techniques for metabolites investigation
For fast and high-throughput analysis the option of a direct MS
analysis, without any prior separation, may be particularly useful
(Fig. 2a). In Direct infusion mass spectrometry (DI-MS) samples
are directly injected or infused into high-resolution and high-
accuracy MS, without a separation step. DI-MS enables rapid
sample analysis, improving repeatability and accuracy among
samples.94–96 However, isomeric compounds cannot be sepa-
rated and contamination of the ion source by compounds
residues is tedious but overcome by using chip-based nano-
electrospray ionization (ESI, see “MS-Ion sources” paragraph
below).89 Mass spectrometry imaging (MSI) is an interesting
emerging approach to analyse metabolites in situ directly in
organs, organoids or cells. MSI utilizes several ionization
sources: Matrix-assisted laser desorption ionization (MALDI),
Secondary ion mass spectrometry (SIMS), Desorption electro-
spray ionization (DESI), and Laser ablation electrospray ioniza-
tion (LAESI). In MALDI-MSI, the laser targets the matrix-coated
tissue surface to achieve tissue scanning.97 In SIMS, first a high-
energy primary ion beam (Ar,+ Ga,+ and In+) hits the sample
surface and then the secondary ions are assembled and
analysed. DESI derives from electrospray and desorption
ionization, and it exploits the conduction of electrosprayed
charged droplets and solvent ions into the surface to analyse.
LAESI is a mix between ambient ionization source grounded on
mid-infrared laser ablation with charged droplets produced by
Electrospray ionization (ESI).89

The mass spectrometer: the metabolomics core instrument
The first mass spectrum of a molecule was measured in the 1910s
by Joseph J. Thomson, who constructed the first mass spectro-
meter98,99 (Fig. 1). Initially, mass spectrometers were mainly
employed by physicists to study the atomic weights of elements
and isotopes and their respective relative abundance.100 This
innovative technology was applied in biological settings in the
1940s, when heavy stable isotopes were used as tracers to study
CO2 production in animals.101 Since that time, technological
advances have increased the range of sample types that can be
analyzed by MS. In recent years, MS has been widely used to
investigate cancer-specific changes in the biomass composition of
human tumours, including metabolic alterations since it qualita-
tively and quantitatively measures the compounds. A mass
spectrometer is always composed by three elements: an ion
source, a mass analyser, and a detector (Figs. 1, 2a).

MS-Ion sources. The analytes are first introduced into the
ionization source, where they acquire either a positive or
negative charge. At this point, the ions pass through the mass
analyser and, on the basis of their mass-to-charge (m/z) ratio,
arrive to distinct parts of the detector, where signals are
generated and recorded by a computer system, which in turn
graphically displays these signals as a mass spectrum. A hard
ionization method like the Electron impact ionization (EI)
renders GC-MS the right approach to identify metabolites. In
EI a molecule in gaseous phase is ionized by collision with an
electron flux of typically 70 eV of energy, giving rise to an
excited molecular ion that can dissociate to generate fragment
ions related to a structure. Structural information is extrapolated
by disrupting the compounds and producing molecule-specific
fragments. Then, the pattern of unique fragments is employed
to identify metabolites by taking advantage of the available
libraries.102 Chemical ionization (CI) is also commonly used in
GC-MS analysis. It produces ions of the analyte of interest by
ion/molecule reactions from ions of a reactant gas that is
present in excess. This type of ionization is not the first choice in
metabolomics since the obtained fragments are limited as well
as the libraries for the following analysis. On the other hand, CI
uses a soft ionization by applying low energy to the molecules
and it can be used for unknown metabolite identification.103

Atmospheric pressure chemical ionization (APCI) is another soft
ionization source which gives rise to some degree of fragmenta-
tion enabling structural characterization. Ions are formed in the
gas phase using a corona discharge to ionize metabolites
present in the aerosol, then the ions released in the gas phase
are analysed with the analyser. APCI is commonly used to
analyse small polar and non-polar compounds that are poorly
ionized by ESI (see below) and it is commonly coupled with
HPLC. APCI is a useful tool for lipidomic; in particular, it
generates ions from large neutral molecules such as triacylgly-
cerols that are still a challenge to analyse with other
techniques.104–106 Electrospray ionization (ESI) is the more
widely used ion source in metabolomic studies; it generates
ions from metabolites out of a solution and it is coupled to
liquid-based separation techniques like LC, CE or DI. Its soft
ionization produces vast number of ions through charge
exchange in solution and forms intact molecular ions that aid
the initial identification. This ionization technique provides a
sensitive, robust, and reliable tool to study at femto-mole
quantities non-volatile and thermally labile analytes that are
difficult to analyse with other conventional techniques. Clusters
of charged droplets consisting of analytes surrounded by many
solvent molecules are produced by introducing a fine spray of a
liquid solution of molecules into an electric field (2–4 kV)
outstanding between the capillary and the counter electrode
of the MS inlet at atmospheric pressure. Then, a flow of nitrogen
(drying gas) enhances the evaporation and elimination of
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solvent from the charged analyte. The droplets size decreases
due to the evaporation of solvent and the charge density
increases till the coulombic explosion of the droplet. At this
point, the resulting analyte ions enter the MS via electrostatic
lenses.75,107,108 Matrix-assisted laser desorption ionization
(MALDI) is a tool for soft ionization and transfer of complex
samples, which are co-crystallized with an organic matrix on a
metal target, from the solid phase to the gas phase. A pulsed
laser excites the matrix and induces a fast heating of the
molecules and the desorption of ions to the gas phase; the
selection of the matrix is a fundamental aspect that affects the
experimental results. The most used MALDI matrices are α-
cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic
acid (DHB) and 3,5-dimethoxyl-4-hydrocinnamic acid (SA).97

This technique is suitable for high molecular weight analytes, it
is fast, consumes little amount of sample and has high tolerance
towards impurities (e.g., salts).109 By contrast, it must have low
vapour pressure and the pulsed nature of the laser limits
compatibility with the analyser. In fact, normally, the MALDI is
associated to a MS capable of measuring a full mass spectrum
without scanning a mass range.89 MALDI-MS is a potent
analytical tool and a valuable method in cancer research and
tissue imaging, due to its ease of use and high mass
resolution.110–114 Direct real-time analysis (DART) is another
recent ionization technology that allows metabolites to be
analysed without sample preparation and at atmospheric
pressure. In DART, there is first the thermo-desorption of
condensed-phase analytes by a stream of a hot gas (such as
helium, argon or nitrogen), which carries active species derived
from a plasma discharge. Then, the ionization enables the
acquisition of respective mass spectra. DART is used with small
molecular compounds with minor cross-contamination and
provides a simple and high-throughput analysis.89,115

MS analysers. Improving resolution and sensitivity is the main
goal of metabolomics studies. Nevertheless, often the two
parameters are mutually exclusive, and this remains the main
limitation of metabolomics. Single (MS) or tandem (MS/MS) mass
analysers can be alternatively employed with distinct output and
final resolution. The single-configuration mass analysers mostly
used in metabolomics are the Quadrupole (Q), Quadrupole ion
trap (QIT), Time-of-flight (TOF), Fourier transform ion cyclotron
resonance (FTICR), and Orbitrap (OT) (Fig. 1a).116 Quadrupole (Q)
has four parallel cylindrical rods, which are responsible for
filtering the sample ions based on their m/z.117 Ions are
separated according to their trajectory stability in the oscillating
electric field applied to the rods. By continuously modulating the
applied voltages, it is possible to select a particular m/z or scan
for a range of m/z values. Quadrupole ion trap (QIT) is a variant of
the quadrupole analyser with three electrodes (an annular
electrode placed between two hemispherical inlet and outlet
electrodes) to trap and accumulate ions in a small cavity, called
ion trap. The mass spectrum is obtained by varying the electric
potential so that the ions are sequentially ejected from the trap
toward the detector according to an increasing m/z value.118

Time-of-flight analyser (TOF) consists of a field-free drift chamber
held under high vacuum through which ions run. The ions are
separated according to their velocity, and they reach the
detector at separate times since they possess the same kinetic
energy but a different velocity depending on the m/z ratio. The
same analytes can be desorbed at slightly different times,
therefore, a reflectron composed of sequential electrodes is
placed at the end of the TOF resulting in an increased mass
resolution and accuracy of TOF analysers.119 Fourier transform
ion cyclotron resonance (FTICR) is a high resolution and high
accuracy but also very expensive analyser, which works by
applying a strong magnetic field (9–15 T), thus the ions assume a
circular motion in a plane perpendicular to that of the magnetic

field (cyclotron). Ions start to rotate with an angular frequency
inversely proportional to m/z. By applying a radiofrequency
voltage pulse corresponding to the angular frequency of a
specific analyte, this ion with a specific m/z value absorbs energy
and produces a cycloidal path moving with a wider orbit. The
way the excited ions move creates the image current measured
on electrodes. Since the ions oscillate as a function of their m/z,
by measuring the image current during time and using a Fourier
transform (FT), it is possible to extrapolate the m/z values. By
applying a scan of voltages, a complete spectrum is
obtained.120,121 Orbitrap (OT) traps in an electrostatic field
positive ions because of their attraction to the inner electrode
(set at about –3200 V). The ions start to rotate around the inner
electrode and together oscillate along the z-axis according to
their m/z ratios. An image current is detected and converted by a
FT to obtain a mass spectrum with the frequency and the
intensity of each ion.122,123 Quadrupole and ion trap analysers
are extremely sensitive but limited in resolution, whereas TOF,
FTICR and OT offer the highest mass resolution. Mass analysers in
a tandem configuration include diverse types of analysers.124

Triple quadrupole (TQ) and Triple-quadrupole ion trap (QTrap)
analysers, which have high sensitivity and selectivity, are the
most common MS-spectrometers coupled to LC and employed in
targeted metabolic studies. In contrast, the high mass-resolving
capacity of Quadrupole-TOF (Q-TOF), Linear-quadrupole ion trap-
Orbitrap (LTQ-Orbitrap), and FTICR analysers is ideal for globally
profile and to identify metabolites. GC is mainly coupled with
single quadrupoles or TOFs, but novel instruments also exploit
QTOF or TQ MSs.116,125,126

Nuclear magnetic resonance (NMR) spectroscopy: an alternative
approach in metabolomics
NMR spectroscopy, originally described by Isidor Rabi in 1938 and
later used for the analysis of liquids and solids by Felix Bloch and
Edward M. Purcell in 1946, is a consolidated approach for the
analysis of cancer metabolism69,127 (Fig. 1). This analytical tool
measures the chemical shifts of atomic nuclei with non-zero spin
(i.e. 1H, 31P and 13C), which are dependent on the atom
environment in a chosen analyte, and enable detecting and
elucidating the structure thanks to shifts in the magnetic
resonances.128 NMR spectroscopy allows the characterization of
new compounds and it does not require sample destruction,
chromatographic separation, sample treatment, or chemical
derivatization.
NMR is highly automatable and, if the same instruments and

analytical strategies are employed, the reproducibility between
different laboratories is guaranteed.129 Unlike other metabolo-
mic platforms, NMR is not limited to the analysis of biofluids or
tissue extracts, but it can be employed for the study of any
biological sample, including a solid or semi-solid tissue or
organ130–133 via either the solid-state NMR (ssNMR) or the
magic-angle sample spinning (MAS-NMR).134 NMR allows live
analysis coupling the imaging and the metabolic profiling with
the Magnetic resonance spectroscopy (MRS) and the Magnetic
resonance imaging (MRI). Moreover, it is widely employed to
profile metabolic fluxes in real time.129 The primary limitation of
this technique is the low sensitivity which is 10 to 100 times
lower in comparison to LC-MS and GC-MS. A significant signal
enhancement has been achieved by increasing the magnetic
field, using a cryo-probe and the processing of digital signals;
however, most of the low-concentrated small molecules are still
undetectable with NMR. In order to make NMR analysis high-
throughput, innovative fast and ultrafast multidimensional NMR
approaches have been introduced while NMR sensitivity has
been enhanced by altering the nuclear polarization with the
Dynamic nuclear polarization (DNP).
However, the NMR applications in metabolomics are limited

mainly because NMR spectrometers are more expensive than
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many other analytical instruments including mass spectrometers
and they need experienced users and vast laboratory infrastruc-
ture with ad hoc non-vibrational floors and specific area isolated
from magnetic and radio frequency interference.135

Metabolic flux analysis (MFA)
Global metabolomics analyses are robust techniques that allow
the identification of tumour-associated metabolic liabilities;
however, often they fail to reveal the plasticity and dynamism of
metabolic pathways, providing only a static snapshot of cancer
cell metabolism. Metabolic flux analysis (MFA), using stable-
isotope-labelled substrates, can determine flux rates by tracing the
isotope enrichment of particular atoms on downstream metabo-
lites, thus really connecting omics analysis and phenotypes
(Fig. 3a).72,136 As depicted in the workflow of Fig. 3b, the first
step is the design of the experimental setting that includes the in
silico identification of the optimal tracer for the highest flux
resolution and the substrate labelling. Following administration of
the stable-isotope tracer, samples are analysed both for isotopic
labelling and external rates that takes into account substrate
uptake and product secretion. The metabolite labelling can be
measured either by MS or NMR and integrated into the metabolic
network model to which the labelling measurements are fit and
must include all relevant reactions and their respective carbon
atom transitions. The network is constructed based on information
from metabolome databases.
Two different experimental settings are mainly used in MFA:

stationary or non-stationary. The stationary design deals with
metabolites at their basal state: the labelling is not linked to the
analyte’s concentration thus simplifying the flux measurement

and allowing the study of the involvement of different metabolic
routes to the final amount of a given metabolite. By contrast, to
analyse the flux to a downstream pathway a non-stationary design
should be employed. In this setting, a labelled substrate is applied
for a brief time, in order to detect the label incorporation into
downstream molecules.137 According to the pathway of interest, it
is possible to choose among substrates that can be uniformly or
positionally labelled. Generally, the first type of substrates is
employed to analyse complex fluxes, while positionally labelled
substrates allows the detection of small changes into key node of
metabolic pathways. 1,2–13C2 glucose is used to accurately
quantify glycolysis, PPP and gets a general picture of the energy
metabolism of a tumour cell, while U-13C5 glutamine is the best
substrate for the measurement of the TCA cycle.128 In cancer
metabolism research, the most common labelling is with 13C for
substrates as glucose, glutamine, pyruvic acid, lactic acid, palmitic
acid, amino acids, and acetic acid.
Carbon flux distribution into downstream and interconnected

metabolic pathways of 13C labelled substrates are determined by
MS or NMR techniques; it is thus possible to understand how
dependent the biosynthesis of a metabolite is to a specific source
of carbon and what is the flux into downstream metabolic routes.
To measure specific metabolic activities there are many tracers.
1–2H and 3–2H-glucose can be employed to quantify the
biosynthesis of NADPH from the Oxidative pentose phosphate
pathway (OxPPP)138,139 and Nicotinamide adenine dinucleotide
(NAD) synthesis-breakdown fluxes.140 MFA is an extremely useful
method to identify metabolic shifts, but both the measures and the
bioinformatics and statistical analysis are extremely complex
requiring skilled workforce and cutting-edge infrastructures.128

Fig. 3 a Fluxomics is the omics approach that gets closer to the phenotype. b Experimental workflow of a standard Metabolic flux analysis
(MFA) experiment. The first step is the experimental design and the definition of the best tracer and metabolic model by in silico analysis. Cells
or tissues are incubated with the tracer and samples are analysed by either MS or NMR. The isotope tracing is analysed considering the
metabolites external rates and the statistical value. The results are thus integrated into the original metabolic model. This figure was created
with Biorender.com
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Translational metabolomics: from bench to bedside
The substantial technological, methodological and computational
advancements in metabolomics platforms and the growing
accessibility of the technologies over the last 40 years have led
to the development of personalized metabolic profiling that in
concert with personalized genomics, represent the foundation of
personalized medicine. Metabolomics can be employed to analyse
a wide range of samples (i.e. tissue, biofluids, cells), thus spacing
outside the academic institutions and finding applications in many
different disciplines including human health, wellness and food
chemistry.141 The new metabolomic platforms have provided
opportunities for cancer screening, diagnosis and treat-
ment.63,142–145 The most successful example of application is the
employment of metabolomics to discover and validate biomarkers
for tumour progression and metastasis in different sample types
including plasma or serum,146–156 urine,157–160 saliva161–164 and
cerebrospinal fluid.165–167 Metabolomics can be used for non-
invasive diagnosis and prognostic evaluation of cancer147,168–171

and for tumour subtyping.168,172–175 Moreover, metabolomics
constitutes a cost-effective and productive platform for monitoring
anti-cancer treatment effects, both as a predictive measure of
efficacy and as a pharmacodynamic marker as well as for
evaluation of drug resistance.176–181 One of the most interesting
and recent application is the use of metabolomics as an alternative
method to the most traditional immune and biochemistry assays
to investigate the metabolic alterations in response to immu-
notherapy.182 Employing metabolic profiling by metabolomics, to
evaluate the immune responses in cancer patients, is an innovative
area of cancer research with the potential for identifying host
immune factors that would prevent the effective anti-tumour
immunity thus compromising the clinical output.183–192

EXTRACELLULAR FLUX ANALYSIS (EFA)
Extracellular flux analysis (EFA), with the Agilent Seahorse XF
analyser as leading technology counting more than 5000 peer-
reviewed publications, is the most common and feasible method
to broadly quantify the bioenergetic activity of live cells, organoids
or tissues193 (Fig. 4a). Sketchily, EFA quantifies Oxygen consump-
tion rate (OCR) as a quantitative measurement of mitochondrial
electron transport rate named mitochondrial OXPHOS and the
Extracellular acidification rate (ECAR) as a read out of glycolysis.
The instrument performs live measures of OCR and ECAR by
taking just few μL of medium from monolayer of cells in
microplates. Two sensors installed into fibre-optic probes quantify
oxygen level and medium pH for several minutes, then the
software extrapolates the OCR (pmol/minute) and ECAR (mpH/
min) quantifications. The versatility of the instrument is given by a
continuous and systematic temperature regulation that controls
the extracellular microenvironment and an integrated drug
delivery equipment for serial injection of up to four metabolic
inhibitors to each well at pre-set time points, thus allowing
measurement of metabolic capacity and adaptation.
Glycolysis is a hallmark of cancer cells and its analysis

together with the associated metabolic rewiring are considered
reliable diagnostic means for detection and prognosis of
malignant phenotypes and to lead to the identification of new
biomarkers and therapeutic strategies.194,195 The Glycolytic
stress assay is the easiest method to gain a qualitative overview
of the bioenergetic phenotype (Fig. 4a, b). In this assay, first
ECAR is measured right after incubation of the cells in a medium
in which glucose was depleted. This is followed by a first
injection of glucose until saturation causing a rapid extrusion of
protons into the medium quantified by a rise in the ECAR. This
glucose-induced response is considered as basal glycolysis rate
under normal conditions. Injection of oligomycin, a Complex V
(ATPase) inhibitor, interferes with mitochondrial respiration by
blocking the proton channel of the ATP synthase thus shifting

the cellular bioenergetics towards glycolysis, which is detected
by an increased in ECAR: the so called, cellular maximum
glycolytic capacity. The last injection is with 2-deoxy-glucose (2-
DG), a synthetic glucose analog that blocks glycolysis through
competitive binding to glucose Hexokinase (HK), which causes a
drastic decrease in ECAR and serves as positive control of ECAR
shifts as read out of glycolysis. The measurement of ECAR,
before the injection of glucose, is the non-glycolytic acidification
(due to any intracellular metabolic activity other than glycolysis)
while the difference between the glycolytic capacity and the
glycolysis rate allows the calculation of the glycolytic reserve. At
pH of 7 the physiological conversion of glucose into lactate
causes protons release and acidifies the medium, thus providing
a quantitative assessment of the glycolytic rate. However, this
quantification does not consider that the final ECAR is the result
of two processes: glycolytic and respiratory acidification. More in
detail, CO2 derived from the TCA can be spontaneously or
enzymatically hydrated to carbonic acid, H2CO3, that dissociates
to HCO3

− and H+ in a medium with physiological pH. The
conversion of one molecule of glucose into lactate yields 2
lactate− and 2 H,+ whereas the complete oxidation of one
glucose to CO2 generates molecules of HCO3

− and 6 H+

molecules; as a consequence, the extracellular acidification
when a glucose molecule is oxidized to CO2 is three times
greater than when it is converted to lactic acid. The ratio of
glycolytic and respiratory acidification is significantly affected by
the experimental conditions, such as cell type and media
composition, and it can fluctuate from nearly 100% glycolytic
acidification to nearly 100% respiratory acidification. Given the
linear correlation between O2 consumption and CO2 production
during OXPHOS, the Glycolytic rate assay implements the
previous analysis by calculating the contribution of mitochon-
dria/CO2 to extracellular acidification and subtract the CO2-
dependent acidification from the total Proton efflux rate (PER).
The resulting value, named “glycoPER”, is a quantitative and
reliable measure of protons extruded in the culture medium
during glycolysis (Fig. 4c).
Complementary, glycolytic flux can be measured by quantifying

glucose uptake and lactic acid excretion: several commercially
available methods based on colorimetric and fluorimetric read-outs
are optimized to quantify glucose and lactate levels within the
extracellular media. In addition, measurement of the activity of the
three rate-limiting glycolytic enzymes [HK, Phosphofructokinase-1
(PFK-1), and Pyruvate kinase (PK)] is crucial for understanding the
energetic metabolic status of the cells.196

The Cell mito stress test is a common EFA to fully characterize
mitochondrial respiration based on the quantification of the
OCR after interference with the complexes of the Electron
transport chain (ETC) (Fig. 4a, d). After the initial basal OCR
measurement, in the stress test, cells are exposed to oligomycin,
which affects ATP synthase, causing a drastic decrease in
mitochondrial respiration or OCR. Subsequently, electron flow
through the ETC is simulated by the injection of the uncoupling
agent Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone
(FCCP) so that oxygen consumption by complex IV reaches its
maximum. This increase in OCR is used to extrapolate the
cellular spare respiratory capacity, by definition the difference
between maximal respiration and basal respiration, which
indicates the capability of the cells to cope with stress and
respond to changes in energetic demand thus indicating the
cellular fitness. The third injection is a mixture of rotenone and
antimycin A, respectively complex I and complex III inhibitors.
The two inhibitors completely shut down mitochondrial
respiration and allow the quantification of non-mitochondrial
respiration caused by processes independent from mitochon-
dria. This assay is particularly useful in pharmaceuticals
pipelines; indeed, damages to mitochondrial function are
important indicators of drug-mediated liver, cardiac and
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neurological disfunctions. Therefore, the integration of this test
into the toxicology studies would allow a better evaluation of
the drug side effects and improve the chemical substance
synthesis upstream the later development steps.197–201

To generate ATP via OXPHOS, the nutrients taken up from the
extracellular environment are ultimately oxidized via the TCA cycle

and the ETC. The Substrate oxidation stress test is a useful method
to evaluate the contribution of the three primary substrates in
generating energy: Long-chain fatty acids (LCFAs), glucose/
pyruvate and glutamine. The assays combine the Cell mito stress
test for the interrogation of mitochondrial function (described
above in this paragraph) and anaplerotic pathway specific
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inhibitors such as Etomoxir for LCFAs by inhibiting the Carnitine
palmitoyl transferase 1a (CPT1a),202–204 UK5099 to block glucose
and/or pyruvate by interfering with the Mitochondrial pyruvate
carrier (MPC)205–207 and BPTES that blocks the Glutamine through
Glutaminase-1 (GLS-1).208,209 When we are in the situation of
substrate oxidation, the basal and especially the maximal
respiration rates are significantly affected by the capacity of the
cells to transport and utilize the available substrates revealing
dependence on a specific metabolic pathway (Fig. 4a, e).
These EFA assays have significantly facilitated the identification

of novel metabolic liabilities to genetic manipulation, pharmaceu-
tical interventions and, thanks to the screening assays that allow
the simultaneous analysis of up to 80 compounds in one plate, the
systematic analysis of metabolic dependence of cancer-derived
cells and organoids.210 However, cell media composition, cell
density, inhibitor concentration and post-run normalization
strategy (i.e., cell count or protein/DNA quantification) can
dramatically impact the interpretations of the analysis as well as
the interlaboratory standardization. OCR and ECAR analyses do
not reflect individual pathway activity, but several variables can
influence their proportionality to the metabolic processes they are
meant to represent. Therefore, the interpretation of these analyses
cannot negate the activity of secondary bioenergetic pathways;
however, these assays can be usefully employed to compare
samples and categorize the cells whether they are broadly more
glycolytic or oxidative. Moreover, OCR and ECAR analyses can be
complemented with additional techniques such as single-cell
imaging using commercially available fluorescent dyes (see
“Fluorescent metabolic probes” paragraph below) and ultrastruc-
tural morphological and morphometric analysis. For example,
Transmission electron microscopy (TEM) evaluation of mitochon-
dria (i.e., mitochondrial length, inner/outer membrane ratio,
cristae extension, width, and junction diameter) is a valuable
and complementary tool to investigate mitochondrial morphology
and functionality.211

SINGLE-CELL METABOLIC ANALYSIS
Up to date, most of the findings regarding cancer metabolism
have been achieved using cell culture models and in vivo
measurements obtained from bulk tumours. Indeed, one of the
biggest limitations of standard metabolomics and EFA is that
they do not allow the multiplexing of metabolic state and
phenotyping. The result is always shaped by genetic and
environmental factors for each cell and thus largely incompatible
with heterogeneous cellular population. Moreover, standard cell
culture media do not resemble the human physiological nutrient
milieu and nutrient availability in a tumour microenvironment
significantly modulates metabolic dependencies.212,213 The
emergence of RNA-sequencing (scRNAseq) provided the unpre-
cedented opportunity to interrogate genomic profiles of tumours
with high resolution.214–222 Detection of changes in the
expression of metabolic genes is a valuable tool to extend our
comprehension of the metabolic rewiring of cancer and to

identify metabolic vulnerabilities.223,224 For this analysis, indivi-
dual cells collected in sub-microliter droplets are sorted into
multiwell plates using microfluidic devices; after lysis, the cells
are barcoded in order to assign sequencing reads to each cell
(Fig. 5a). This technological advance was achieved thanks to the
possibility of capturing and sequencing exceptionally small
quantities of RNA. scRNAseq studies showed that malignant
cells globally up-regulate genes involved in almost all functional
categories of metabolic pathways suggesting a high metabolic
plasticity that confers great adaptability to different genetic and
environmental factors. This global transcription rewiring of
metabolic genes suggests that cancer cells reserve more
transcriptional resources for the expression of such those genes
with consequently increased fluxes for most metabolic reac-
tions.225 Single-cell, high-dimensional profiling allowed the
identification of most effective immunotherapeutic approach,
the discovery of biomarkers for early-stage of the disease and
drug-resistance mechanisms in a variety of cancer settings.
Indeed, scRNAseq analysis revealed a high-resolution snapshot of
drug-resistant cells to Immune checkpoint inhibitors (ICIs), thus
providing the rational for further investigating cell-cell commu-
nications and drug effect.226–230

The recent technological advances offered the opportunity to
analyse the complexity of biological systems at the single-cell level
also in metabolomics.231 Single-cell metabolomics (SCM) provides a
snapshot of all metabolites, intermediates, and end-products of
cellular metabolism within a biological system decoding the
biochemical heterogeneity within cells.232,233 As previously dis-
cussed for bulk metabolomics, the biggest challenge in preparing
single-cell samples is avoiding, or at least reducing, the impact on
cellular metabolism due to the sample processing. The standard
methods for single-cell sample preparation are the Fluorescence-
activated cell sorting (FACS) and the microfluidic arrays that
maintain intact cell morphology or extraction via an Atomic force
microscopy (AFM) probe that keeps only the metabolites from the
cell in the probe.234,235 Cellular metabolism should be quenched and
can be analysed by MS-based technologies (Fig. 5b). Previous
genomic analysis targeting metabolic genes at the single-cell level
has revealed that individual malignant cells have elevated metabolic
activity and variations that were not observed in bulk tumour
studies. As for scRNAseq, SCM helps in dissecting cell hetero-
geneity236; SCM is particularly useful in oncology for disease and
metastasis detection, precision drug design and drug assessment
and toxicity.237 Moreover, SCM could be employed for profiling rare
or Circulating tumour cells (CTCs)238–240 as well as for cancer
subtypes discrimination and new therapies development.225,241–244

In addition, several cytometry-based methods that combine
metabolic analysis with single-cell phenotypes have been
developed. Fluorescent metabolic probes and analogues of
metabolites can be analysed by flow cytometry or microscopy
enabling single-cell resolution and they are often used for
metabolic pre-screening assays since they are fast, relatively
cheap, and easily adaptable to different experimental settings.
Some examples are: 2-NBDG (2-(N-(7-Nitrobenz-2-oxa-1,

Fig. 4 a Key metabolic pathways governing cancer cell growth that can be measured by Extracellular flux analysis (EFA). b Glycolysis stress
assay is performed by serial injections of Glucose, Oligomycin and 2-deoxyglucose (2-DG) to get as a read out glycolysis, glycolytic capacity,
the glycolytic reserve and non-glycolytic acidification measurements. ECAR stands for extracellular acidification rate. c The Glycolytic rate
assay reports multiple key parameters, such as basal glycolysis, compensatory glycolysis achieved by shutting down mitochondrial respiration
with rotenone and antimycin A. Proton efflux rate (PER) is a quantitative measure of protons extruded into the extracellular medium during
glycolysis. d In the Cell mito stress test, mitochondrial respiration is measured by quantifying the Oxygen consumption rate (OCR). Cells are
sequentially exposed to oligomycin, Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) and rotenone and antimycin A thus
allowing the measurement of the basal and maximal respiration and spare respiratory capacity. e The Substrate oxidation stress test measures
the contribution of Long-chain fatty acids (LCFAs), glucose/pyruvate and glutamine as primary substrates that fuel mitochondrial metabolism
by using specific inhibitors in combination with a standard Cell mito stress assay. Etomoxir inhibits the Carnitine palmitoyl transferase 1a
(CPT1a), UK5099 blocks glucose and/or pyruvate through inhibition of the Mitochondrial pyruvate carrier (MPC) and BPTES inhibits glutamine
through Glutaminase-1 (GLS-1). This figure was created with Biorender.com
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3-diazol-4-yl)Amino)−2-Deoxyglucose), a fluorescent indicator
to monitor glucose uptake into living cells; BODIPY (4,4-
Difluoro-1,3,5,7,8-Pentamethyl-4-Bora-3a,4a-Diaza-s-Indacene)
employed as a synthetic precursor to a wide variety of fluorescent
phospholipids; CM-H2DCFDA, a chloromethyl derivative of 2,7-
Dichlorodihydrofluorescein diacetate (H2DCFDA), useful indicator
for ROS in cells; cystine–Fluorescein isothiocyanate (FITC) con-
jugate to monitor the uptake and accumulation of the amino acid;
Monodansylcadaverine (MDC) to track autophagic vacuoles; JC-1
(5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimi-dazolylcarbocya-
nine iodide), a carbocyanine dye that can be used as a ratiometric
indicator of mitochondrial potential and MitoTracker dyes that are
cell permeable probes containing a mildly thiol-reactive chlor-
omethyl moiety for mitochondrial labelling.245–249

In 2020, an innovative flow-cytometry-based method to profile
the energetic metabolism with single-cell resolution has been
reported (Fig. 1). Single-cell energetic metabolism by profiling
translation inhibition (SCENITH) measures metabolic profiles based
on metabolism-dependent translation rates and puromycin
incorporation into nascent proteins.250 As for EFA, incubation of
given samples with on-target inhibitors enables to functionally

estimate the glucose and mitochondrial dependence, glycolytic,
fatty acid and amino acid oxidation capacity. It is possible to
employ puromycinylation detection in combination with multi-
parametric flow-cytometry analysis thus analysing at single-cell
complex and heterogenous samples251–253 So far, SCENITH has
been applied to the analysis of ex vivo whole blood and human
tumour biopsies. Interestingly, the combination of SCENITH and
scRNAseq analysis of renal carcinomas and juxta-tumoral tissues
succeeded in the correlation of the metabolic profile and the
metabolic gene expression.250 Moreover, SCENITH can be
employed in many other tumour settings and physio-
pathological conditions including for example the comprehension
of cell death pathways that have important and multiple
connections with metabolism and redox imbalance254–259 (Fig. 5c).
Other powerful methods are based on single-cell proteomic

analysis. In 1994 Tsutomu Nomizu and his collaborators discov-
ered that it was possible to nebulize, dry and ignite individual cells
in a hot plasma in order to create ion clouds that could be
detected by emission spectrometry. This is the first real MS
experiment of single cells.260,261 Over the years the technology
had a big evolution until 2007, when Scott D. Tanner, inspired by

Fig. 5 Global overview of the cutting-edge techniques available to investigate the Tumour microenvironment (TME). a Single-cell RNA-
sequencing (scRNAseq) representative workflow: individual cells are isolated, lysed and barcoded before retro-transcription, library
amplification and sequencing. b Single-cell metabolomics (SCM) includes single cells isolation, sample processing, quenching of metabolism
and metabolomics. c In the single-cell energetic metabolism by profiling translation inhibition (SCENITH) the sample is divided into 4 and
either left untreated or treated with 2-deoxyglucose (2-DG), oligomycin and both inhibitors. The addition of puromycin allows protein
synthesis quantification coupled with flow-cytometry phenotyping. d In Cytometry by Time-of-flight (CyTOF), the cells are labelled using
stable heavy metals, nebulized, and vaporized to form ion clouds and analysed by a Time-of-flight (TOF)-MS. eWith the In situ dehydrogenase
activity assay, the activity of G6PD, GAPDH, LDH, IDH and SDH is coupled with immune-staining to distinguish single cells directly on a tissue
slide. This figure was created with Biorender.com
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the flow-cytometry technology, invented the mass cytometry, also
termed Cytometry by Time-of-flight (CyTOF), which is the most
promising technology for high-dimensional and high-throughput
protein (and metabolic) single-cell analysis (Fig. 1). CyTOF uses
non-biologically available metal isotopes, with concise mass
spectrometry parameters, in replacement to standard fluorescent
labels, normally employed in flow-cytometry. For the staining, the
cells are incubated with a mixture of probes/antibodies tagged
with unique non-radioactive heavy metal isotopes. Afterwards the
single-cell suspension passes through an argon (Ar) plasma, by
which the sample is atomized and ionized thus converting each
cell into a cloud containing ions of the elements present inside or
on that cell. Low-mass ions derived from each cloud are extruded
by a high-pass optic thus generating a cloud containing only ions
associated to the isotope-conjugated probes. Ions are then
separated by m/z in the TOF chamber, with subsequent
amplification and conversion into electrical signals. Up to 50
parameters can be studied simultaneously, overcoming all pitfalls
associated with overlapping emission spectra that are normal for
fluorescent-based analysis. Mass cytometry has tremendous
potential for the analysis of highly heterogenous clinical
samples as well as for the diagnosis and for studying the
evolution of malignant disorders.262,263 The applications include
the study of cell phenotype and function, signalling networks,
apoptosis, cell cycle analysis, and many other complex biological
processes.264–269 In addition, CyTOF analysis have been
employed in several clinical research trials around the world to
investigate multiple areas of human disease to understand and
improve prevention and therapeutics. The biggest limitation
that remains is inherent to the complexity of the data analysis
which requires advanced biostatistical and bioinformatic skills
and often makes its application in a clinical setting very
complicated (Fig. 5d).270,271

Another single-cell proteomic method is Met-flow, a high-
parameter flow-cytometry technique that uses specific antibodies
against key metabolic proteins that are crucial in their represen-
tative pathway such as enzymes and transporters of the PPP, TCA,
fatty-acid synthesis and oxidation, OXPHOS, and amino acid
metabolism. Using 10 metabolic proteins, Met-flow can define cell
subsets comparably to the resolution obtained by 500 genes by
scRNAseq.272

Cellular metabolism in the Tumour microenvironment (TME) is
affected by both genetic and environmental variables including
intrinsic features of the tissue of origin, somatic mutations that
appear during the tumour progression, the local nutrient
environment, and the complex network of interactions between
tumour, stromal and immune cells. Therefore, defining the
metabolic signatures of the cells within their native microenviron-
ment is mandatory to identify metabolic intercellular patterns. To
this aim, new methods that employ metabolic imaging to quantify
enzyme activity of single cells within tissue slices have been
developed.273 With the in situ dehydrogenase activity assay, the
quantification of the activity of five enzymes catalyzing key steps
in the main metabolic routes [Glucose-6-phosphate dehydrogen-
ase (G6PD) in the PPP, Glyceraldehyde 3-phosphate dehydrogen-
ase (GAPDH) in glycolysis, Lactate dehydrogenase (LDH) in lactate
fermentation, and IDH and SDH in the TCA cycle] is combined with
staining to distinguish and characterize cell populations. Enzyme
activities are quantified on different tumour tissue cryosections
and the amount of formed product is measured at optimal and
constant assay conditions, including saturating substrate and co-
factor levels. The resulted values depict the amount of active
enzyme in the analysed samples, associated with a phenotype and
to a localization. The interpretation of the results must consider
that the activity of these distinct dehydrogenases is quantified at
saturated substrate concentrations; therefore, they do not reflect a
precise in vivo setting but can then be used to compare different
samples (Fig. 5e).

FUNCTIONAL GENETIC SCREENING
Combining functional screening with metabolic profiling gives
the incomparable opportunity to identify context-dependent
vulnerabilities that may be therapeutically targeted. Recent
innovations in genome editing technology and the advent of
the clustered regularly interspaced short palindromic repeat
(CRISPR)/CRISPR-associated protein 9 (Cas9) system, have hugely
accelerated the functional genomic research in cancer. The first
genome-wide genetic screen in human cells was performed in
2014 by lentiviral delivery of a genome-scale CRISPR-Cas9
knockout (GeCKO) library targeting more than 18,000 genes274

(Fig. 1). Genetic screens, by introducing perturbations into genes
at a large-scale, represent an important tool to systematically
classify the human genetic elements into functional groups
and biological processes, in particular for metabolic pathways
(Fig. 6). Compared to traditional short hairpin RNA (shRNA)-
based system for performing lethality screens, CRISPR/Cas9
loss-of-function libraries provide a much greater screening
sensitivity, since incomplete knockdown by shRNA sometimes
does not produce loss-of-function phenotypes. Moreover,
CRISPR/Cas9 library screen displays less variation in the data,
less off-target effects thus resulting in a low False-discovery rate
(FDR) and better consistency across cell lines.275,276 CRISPR/
Cas9 screens have been able to identify genes essential for
OXPHOS,277,278 for redox homeostasis,279 ferroptosis280 and cell
fitness.281–283 CRISPR/Cas9 screening and MFA, allow the study
of dispensability and interactions between set of genes
encoding enzymes leading to the identification of key nodes
within glycolysis and PPP.284 By performing CRISPR/Cas9 screen
in Human plasma-like medium (HPLM) compared to traditional
media, a massive effect of medium composition on gene
essentiality in human cells has been described. Entire sets of
essential genes vary with natural cell-intrinsic heterogeneity,
suggesting that future genetic screens in HPLM will define new
targetable liabilities across diverse human cancers.285 The
advent of CRISPR screening technology now provides a rapid,
high-throughput means to perform functional characterization
of large gene sets. The functional relationships between key
enzymes, transcription factors and transporters allowed the
identification of multiple interactions within and across meta-
bolic pathways. More importantly, its wide application in concert
with the metabolome analysis allowed the annotation of many
essential metabolic genes in human tumours and the identifica-
tion of context-dependent dispensability that can be therapeu-
tically targeted.

METABOLOMICS AND BIOINFORMATIC APPROACHES IN
PRECISION MEDICINE
High-throughput approaches such as metabolomics involve, even
for the simplest assay, the processing of a huge quantity of data,
which must be manipulated and mined to get to the underlying
biological information. As for the other omics, this need is
addressed by the heavy use of computational algorithms. After
metabolite detection through the appropriate analytical approach
(discussed above), pre-processing of the raw signals is performed
to generate the correct data format for subsequent data
processing, in which data are normalized to minimize technical
and system bias, and in untargeted approaches metabolites are
identified thanks to the availability of spectral databases. Over the
last two decades, even more advanced signal processing
techniques for MS- and NMR-based metabolomics have been
proposed, including software for peak detection and alignment
(e.g. XCMS, MZmine2, Open-MS, MS-DIAL, eRah, ADAP-GC,
BinBase), which enable spectral annotations and identifications
from big and complex data.286–295 Statistical analysis, including
univariate and multivariate analysis, is used to identify significantly
expressed metabolites, which are then linked to a biological
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process by functional analysis performed with specialized tools
that map metabolites to known biochemical pathways according
to the information collected in public databases such as KEGG.296

Finally, metabolomics data may be integrated with other omics
data (transcriptomics, proteomics, or the microbiome) to fully
picture the complexity of a biological system.297,298 Thus,
computational methods are involved in metabolomics at least at
three levels: primary data production and conversion into
standardized formats, bioinformatic analysis of data collections
for prediction or classification, and integrative analysis of
metabolomics with other omics data. While the first level is
heavily linked to the specific technology used for data production,
the second and the latter approaches are applicable within a more
general analysis framework and have been increasingly employed
to the field of precision medicine. Bioinformatics is the perfect tool
for precision medicine since it enables the integration of the omics
biomarkers recognized in individuals or cohorts of patients.
According to the guidelines established by the US National
Research Council, multilayered molecular or omics data should be
deposited in the Information Commons, which is an easily
accessible repository containing also all the clinical and epide-
miological information, when available, enabling a complete
analysis of the linkages between the data layers, thus generating a
network of knowledge. This network permits a categorization of
diseases in taxonomic ranks, thus allowing precise diagnosis and
therapy design.299 Data processing and statistical analysis for

metabolomics have been extensively reviewed300–302 and are not
the scope of this manuscript. Like for several other high-
throughput disciplines, these tools are quite mature, while the
field of integrative and artificial intelligence-based analysis of
multiple datasets still poses significant challenges,303 including
the harmonization of data from different metabolomic platforms
and their combination with data from other high throughput
technologies.
Historically, genomics was the first high-throughput disci-

pline in which bioinformatic analysis was used to stratify
patients.304 Over the years, using data generated with different
omics platforms, there was the development of molecular
classifiers capable of discriminating between samples derived
from patients and normal individuals thus allowing patient
stratification. Nonetheless, all the studies tackling the develop-
ment of classifiers face the problem of multiple comparisons,
large number of parameters determined on a (relatively) small
number of cases, and the need for extensive validation to avoid
overfitting issues. Despite these challenges, studies producing
molecular classifiers are appealing to researcher in the
oncology field due to the need to subset patients’ cohorts in
potential responders and non-responders to specific treat-
ments.305 To overcome the technical issues related to molecular
classifiers, integrative analysis of multiomics data and spatially
and temporally dynamic sampling of tumours have been
suggested and attempted.306,307

Fig. 6 General workflow for screening using CRISPR/Cas9 libraries. The guide RNA (gRNA) library is synthetized after in silico optimization and
cloned into plasmids for the amplification. A library of lentiviruses is then produced and used to infect the cells harbouring or not the Cas9
enzyme. A positive or a negative selection can be applied to identify specific phenotypes and next-generation sequencing is used to
determine which genes are disrupted and which are not. This figure was created with Biorender.com
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The vast majority of approaches to integrative multiomics data
analysis relies heavily on machine learning. In the recent years, there
has been a lot of hype on the use of Artificial intelligence (AI) for
multilayered data analysis, which has somehow obscured the notion
that machine learning, an AI implementation, has been around for
several decades and have been at the core of omics data analysis
from the beginning. Certainly, the huge amount of information
produced by the “big data era” has pushed the application of these
computational techniques even further. Machine learning has been
classified primarily into supervised and unsupervised; the first one
requires labelled data (training data) to allow the model to learn the
“known” patterns underlying the labelled data and then discriminate
these patterns in data not yet seen (test data); conversely, the second
type of learning does not require labelled data and its goal is to
distinguish the underlying unknown patterns from large datasets in
an unbiased manner. The most employed supervised learning tools
are neural networks, support vector machines, decision trees,
random forests, and hidden Markov models. Classic examples of
unsupervised methods are clustering algorithms, such as hierarchical
agglomerative clustering, k-means clustering, Principal component
analysis (PCA), self-organizing map, and non-negative matrix
factorization. Machine learning has been largely used in precision
medicine, and it is now the main tool employed at the core of “deep
data integration” (i.e. integration of datasets from exploration of
interdependent systems, like gene expression and transcription
factor binding data)308 and “broad data integration” (i.e. integration
of several omics and clinical data to derive high-level properties or
subclassifications of a disease, like cancer).309 While computational
algorithms are already known, one of the major challenges in their
application is the generation of a multidisciplinary attitude between
physicians, biologists and bioinformaticians. As outlined by Duerr-
Specht et al., in order to improve precision medicine, it is now
mandatory not only to improve the organization and the
technologies in informatics and data management, but it is also
necessary (in a high sense) to focus on training of researchers.303

Indeed, the issue of combining multiomics data is more linked
to devising a proper strategy than to developing novel analytical
tools. Association analysis and classifier development, in fact, have
already been successfully employed to metabolomics data like it
was previously done on genomic, transcriptomic, or proteomic
data to discriminate tumour subtypes.310,311 Similar to genome-
wide association studies, metabolomic analysis have been
performed on biofluids or tissue with the aim of identifying
markers of susceptibility to different diseases, including breast,
prostate, lung, colorectal, ovarian, and pancreatic can-
cer.151,156,312–315 These studies, however, are restricted to a single
dimension of the sample’s biology, require validation on
independent cohorts and can only find associations between
patterns and a particular physiopathological state, which is not
proof of a cause-effect nexus. This is usually provided by searching
for specific biomarkers previously identified by the association
analysis in disease models, as exemplified by the work of
Sreekumar et al. on human and mouse prostate cancer.146 As
genomics, transcriptomics and proteomics, metabolomics can be
targeted or untargeted, and applied on biofluids, tissues, cell lines
or model organisms. This gives the chance to integrate different
layers of data from each omics platform, and to move from
association studies to the identification of causal relationship and
complex interrelations between the different levels of regulation
of gene expression and metabolism – and their dysregulation—in
cancer. As a simple example, data from genetic profiling and
subtyping derived from gene expression analysis can be
employed to perform supervised machine learning and to cross-
validate metabolic data. Deep data integration is used to combine
datasets underlying a common regulatory network (e.g. gene
expression, metabolic, and transcription factor data), whilst broad
data integration can be performed by parallel integration of
multiomics and clinical data.306,308,309 These approaches allow to

step forward from single level biology to systems biology,
revealing interactions between the different layers of data that
can be further exploited in disease models and validated in
prospective cohorts. To avoid the generation of misleading data, it
is critical to deeply characterize the disease models; as an example
of this caveat, a recent meta-analysis demonstrated that most of
the studies using JCA-1 cell line referred to it as a prostate cancer
cell line, while it was actually derived from a bladder carcinoma.316

The same caution must be applied to avoid strain variability in
both cell lines and animal models,317 and in the harmonization of
data/sample collection from patients cohorts and tissue and
biofluids biobanks.

CONCLUSION AND PROSPECT
The intrinsically dynamic nature of cancer metabolism requires an
equally dynamic research attitude.318 The recent technological
and conceptual advances discussed in this review, from
metabolomics to single-cell approaches, have significantly
broaden the research scenario making cancer metabolism one
of the most vibrant and prolific area of cancer biology research.3

Despite being the youngest and less employed omics technique,
metabolomics is the technology that has mostly driven this
change and it has demonstrated an enormous potential to
influence the future of cancer research with concrete clinical
applications in oncology. In particular, the analysis of biological
fluids, which have an easy access and require minimal sample
processing, is what is closest to be translated into a clinical setting
and it is already widely employed for biomarker discovery,
diagnosis, identification of new drug targets and for clinical trials
monitoring.319,320 However, these analyses still require a deeper
comprehension of how the read outs and the quantifications
depict a realistic picture of the human physiology and to what
extent a metabolite profile in biofluids reflects the metabolic
milieu of the tumour. Moreover, metabolomic analyses and the
underlying data processing present several challenges in the
standardization and often there is not a unique approach, but
each study is context-specific thus researchers should have deep
multidisciplinary and computational education.321 Besides meta-
bolomics, over the last 40 years, the development, the increased
accessibility, power and resolution of new technologies have
pushed cancer research as never before. In particular, the advent
of high-throughput and high-content single-cell technologies
provided unprecedented tools to investigate cancer biology at
cellular resolution (Fig. 1). The upgrade from bulk to single-cell
analysis enabled the researchers to face the pressing challenge of
elucidating the complexity of heterogeneous diseases, like
cancer, and the underlying molecular pathways driving them
thus describing the cancer framework in depth with both a
quantitative and qualitative analysis. Caution must be still taken
because none of the above-mentioned technologies, if employed
alone, can completely analyse the metabolic status of a tissue.
The choice of the most appropriate technique to extricate oneself
from a complex biological system, such as TME, must always
balance between sensitivity and resolution, cost and feasibility
(Table 2). These metabolic tools should be employed in a
complementary way, merging descriptive research to a functional
study, thus paving the way to innovative approaches to research,
diagnosis, and therapies in cancer. By combining these techni-
ques—and thus exploiting several levels of orthogonality—we
will be able to expand our understanding of the tumour and pave
the way for new anti-cancer strategies. The biggest challenge,
which everyone working in field is currently facing, is the lack of
interlaboratory harmonization strategies for analytical proce-
dures, which must be one of the next goals in the field in order
to implement the computational tools for the development of
open-source databases and ultimately advance metabolic studies
in cancer research.

To metabolomics and beyond: a technological portfolio to investigate. . .
Danzi et al.

15

Signal Transduction and Targeted Therapy           (2023) 8:137 



ACKNOWLEDGEMENTS
All figures were created with Biorender.com. This work was supported by the
Associazione Italiana per la Ricerca sul Cancro (AIRC, Project: 27080), by
NextGenerationEU (PNRR “HEAL ITALIA - Health Extended Alliance for Innovative

Therapies, Advanced Lab-research, and Integrated Approaches of Precision
Medicine”, project: PE00000019, CUP: B33C22001030006), Directorial Decree No.
1559 of 11 October 2022 and by Italian Ministry of Health, HUB Diagnostica Avanzata
PNC-E3-2022-23683266 PNCHLS-DA.

Table 2. Pros, cons and sample types of the main metabolomic technologies for the analysis of cancer metabolism

Method Pros Cons Sample types

Gas chromatography-Mass spectrometry
(GC-MS)

• High sensitivity for volatile metabolites
• High-resolution separation
• Analysis of different groups of metabolites
simultaneously
• Large linear range

• Long sample preparation (derivatization
step for non-volatile metabolites)
• Thermolabile compounds cannot be
analysed
• Slow dynamic range speed
• Slow analysis

• Cultured cells
• Supernatant
• Biofluids
• Tissues
• Organoids

Liquid chromatography-Mass spectrometry
(LC-MS)

• Simple and fast sample preparation
(derivatization not usually required)
• Wide coverage of metabolites
• Thermolabile compounds can be analysed
• High sensitivity
• Soft ionization

• Ion suppression
• Expensive
• Slow analysis

• Cultured cells
• Supernatant
• Biofluids
• Tissues
• Organoids

Capillary electrophoresis-Mass spectrometry
(CE-MS)

• Low sample volume
• High resolution
• Rapid analysis
• No derivatization required

• Affected by salt
• Low stability compared to GM- and LC-MS
• Poor reproducibility and sensitivity

• Cultured cells
• Supernatant
• Biofluids
• Tissues
• Organoids

Direct infusion-Mass spectrometry (DI-MS) • High-throughput
• Simple data processing

• Do not distinguish the isomers • Supernatant
• Biofluids

Matrix-assisted laser desorption ionization-Mass
spectrometry (MALDI-MS)

• Low sample volume
• Fast analysis
• High tolerance towards salts
• Suitable for high MW metabolites
• Non-destructive

• Low reproducibility
• Hard identification due to complex matrix

• Cultured cells
• Supernatant
• Biofluids
• Tissues
• Organoids

Mass spectrometry imaging (MSI) • In situ detection
• Preserve histological integrity

• High resolution is time-consuming
• No functional profile

• Cultured cells
• Tissues
• Organoids

Direct real-time analysis (DART) • No sample processing
• Direct analysis

• Not suitable for polar compounds • Supernatant
• Biofluids

Nuclear magnetic resonance (NMR) • No separation
• Structural information
• High reproducibility
• Fast sample preparation
• Non-destructive

• Low sensitivity
• Expensive instrument
• Some chemical classes are not detected

• Cultured cells
• Supernatant
• Biofluids
• Tissues
• Organoids

Metabolic flux analysis (MFA) • Quantitative analysis and information on
metabolites fate

• Isotope tracing is expensive
• Compartment specific flux

• Cultured cells
• Tissues
• Organoids

Extracellular flux analysis (EFA) • Real time measurement
• High feasibility
• Relatively cheap

• Bulk analysis
• Only relative and indirect measurement
• Cell purification is required

• Cultured cells
• Organoids

Single-cell RNA-sequencing (scRNAseq) • Low cell number
• High-resolution
• Unbiased gene expression analysis
• Metabolic phenotype at mRNA level

• Expensive
• Temporal discordance between mRNA and
protein/functional effect
• Do not consider post-transcriptional and
post-translational mechanisms

• Cultured cells
• Tissues
• Organoids

Single-cell metabolomics (SCM) • Low cell number
• High resolution
• High-throughput

• Challenge of combining single cells sorting
and metabolism quenching
• Need of high sensitivity and throughput
analytical platform

• Cultured cells
• Tissues
• Organoids

Single-cell energetic metabolism by profiling
translation inhibition (SCENITH)

• Functional analysis coupled to large
phenotype
• Fast and simple sample preparation and
analysis

• Only relative and indirect measurement
• Not suitable for cells with undetectable
level of protein synthesis

• Cultured cells
• Tissues
• Organoids

Cytometry by Time-of-flight (CyTOF) • High-dimensional
• High-throughput
• Metabolic phenotype at protein level

• Not suitable for weakly expressed markers
• Requires advanced biostatistics and
bioinformatics

• Cultured cells
• Tissues
• Organoids

Met-flow • Fast and single-cell analysis
• Metabolic phenotype at protein level

• Measurements are indirect
• No functional profile

• Cultured cells
• Tissues
• Organoids

In situ dehydrogenase activity assay • Single-cell analysis in native
microenvironment
• Functional profile

• Measurement at saturated substrate
concentrations

• Cultured cells
• Tissues
• Organoids

Genetic screening • Precise gene targeting (few off-targets)
• Robust signal derived by permanent gene
disruption

• Complicated to perform
• For some types of studies, it is not good
having a permanent gene disruption

• Cultured cells
• Organoids
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