63,957 research outputs found

    Diverging volumetric trajectories following pediatric traumatic brain injury.

    Get PDF
    Traumatic brain injury (TBI) is a significant public health concern, and can be especially disruptive in children, derailing on-going neuronal maturation in periods critical for cognitive development. There is considerable heterogeneity in post-injury outcomes, only partially explained by injury severity. Understanding the time course of recovery, and what factors may delay or promote recovery, will aid clinicians in decision-making and provide avenues for future mechanism-based therapeutics. We examined regional changes in brain volume in a pediatric/adolescent moderate-severe TBI (msTBI) cohort, assessed at two time points. Children were first assessed 2-5 months post-injury, and again 12 months later. We used tensor-based morphometry (TBM) to localize longitudinal volume expansion and reduction. We studied 21 msTBI patients (5 F, 8-18 years old) and 26 well-matched healthy control children, also assessed twice over the same interval. In a prior paper, we identified a subgroup of msTBI patients, based on interhemispheric transfer time (IHTT), with significant structural disruption of the white matter (WM) at 2-5 months post injury. We investigated how this subgroup (TBI-slow, N = 11) differed in longitudinal regional volume changes from msTBI patients (TBI-normal, N = 10) with normal WM structure and function. The TBI-slow group had longitudinal decreases in brain volume in several WM clusters, including the corpus callosum and hypothalamus, while the TBI-normal group showed increased volume in WM areas. Our results show prolonged atrophy of the WM over the first 18 months post-injury in the TBI-slow group. The TBI-normal group shows a different pattern that could indicate a return to a healthy trajectory

    Cortical lamina-dependent blood volume changes in human brain at 7T

    Get PDF
    Cortical layer-dependent high (sub-millimeter) resolution functional magnetic resonance imaging (fMRI) in human or animal brain can be used to address questions regarding the functioning of cortical circuits, such as the effect of different afferent and efferent connectivities on activity in specific cortical layers. The sensitivity of gradient echo (GE) blood oxygenation level-dependent (BOLD) responses to large draining veins reduces its local specificity and can render the interpretation of the underlying laminar neural activity impossible. The application of the more spatially specific cerebral blood volume (CBV)-based fMRI in humans has been hindered by the low sensitivity of the noninvasive modalities available. Here, a vascular space occupancy (VASO) variant, adapted for use at high field, is further optimized to capture layer-dependent activity changes in human motor cortex at sub-millimeter resolution. Acquired activation maps and cortical profiles show that the VASO signal peaks in gray matter at 0.8–1.6 mm depth, and deeper compared to the superficial and vein-dominated GE-BOLD responses. Validation of the VASO signal change versus well-established iron-oxide contrast agent based fMRI methods in animals showed the same cortical profiles of CBV change, after normalization for lamina-dependent baseline CBV. In order to evaluate its potential of revealing small lamina-dependent signal differences due to modulations of the input-output characteristics, layer-dependent VASO responses were investigated in the ipsilateral hemisphere during unilateral finger tapping. Positive activation in ipsilateral primary motor cortex and negative activation in ipsilateral primary sensory cortex were observed. This feature is only visible in high-resolution fMRI where opposing sides of a sulcus can be investigated independently because of a lack of partial volume effects. Based on the results presented here, we conclude that VASO offers good reproducibility, high sensitivity and lower sensitivity than GE-BOLD to changes in larger vessels, making it a valuable tool for layer-dependent fMRI studies in humans

    Cerebral atrophy in mild cognitive impairment and Alzheimer disease: rates and acceleration.

    Get PDF
    OBJECTIVE: To quantify the regional and global cerebral atrophy rates and assess acceleration rates in healthy controls, subjects with mild cognitive impairment (MCI), and subjects with mild Alzheimer disease (AD). METHODS: Using 0-, 6-, 12-, 18-, 24-, and 36-month MRI scans of controls and subjects with MCI and AD from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, we calculated volume change of whole brain, hippocampus, and ventricles between all pairs of scans using the boundary shift integral. RESULTS: We found no evidence of acceleration in whole-brain atrophy rates in any group. There was evidence that hippocampal atrophy rates in MCI subjects accelerate by 0.22%/year2 on average (p = 0.037). There was evidence of acceleration in rates of ventricular enlargement in subjects with MCI (p = 0.001) and AD (p < 0.001), with rates estimated to increase by 0.27 mL/year2 (95% confidence interval 0.12, 0.43) and 0.88 mL/year2 (95% confidence interval 0.47, 1.29), respectively. A post hoc analysis suggested that the acceleration of hippocampal loss in MCI subjects was mainly driven by the MCI subjects that were observed to progress to clinical AD within 3 years of baseline, with this group showing hippocampal atrophy rate acceleration of 0.50%/year2 (p = 0.003). CONCLUSIONS: The small acceleration rates suggest a long period of transition to the pathologic losses seen in clinical AD. The acceleration in hippocampal atrophy rates in MCI subjects in the ADNI seems to be driven by those MCI subjects who concurrently progressed to a clinical diagnosis of AD

    Longitudinal measurement of the developing grey matter in preterm subjects using multi-modal MRI.

    Get PDF
    Preterm birth is a major public health concern, with the severity and occurrence of adverse outcome increasing with earlier delivery. Being born preterm disrupts a time of rapid brain development: in addition to volumetric growth, the cortex folds, myelination is occurring and there are changes on the cellular level. These neurological events have been imaged non-invasively using diffusion-weighted (DW) MRI. In this population, there has been a focus on examining diffusion in the white matter, but the grey matter is also critically important for neurological health. We acquired multi-shell high-resolution diffusion data on 12 infants born at ≤28weeks of gestational age at two time-points: once when stable after birth, and again at term-equivalent age. We used the Neurite Orientation Dispersion and Density Imaging model (NODDI) (Zhang et al., 2012) to analyse the changes in the cerebral cortex and the thalamus, both grey matter regions. We showed region-dependent changes in NODDI parameters over the preterm period, highlighting underlying changes specific to the microstructure. This work is the first time that NODDI parameters have been evaluated in both the cortical and the thalamic grey matter as a function of age in preterm infants, offering a unique insight into neuro-development in this at-risk population

    Fuzzy Fibers: Uncertainty in dMRI Tractography

    Full text link
    Fiber tracking based on diffusion weighted Magnetic Resonance Imaging (dMRI) allows for noninvasive reconstruction of fiber bundles in the human brain. In this chapter, we discuss sources of error and uncertainty in this technique, and review strategies that afford a more reliable interpretation of the results. This includes methods for computing and rendering probabilistic tractograms, which estimate precision in the face of measurement noise and artifacts. However, we also address aspects that have received less attention so far, such as model selection, partial voluming, and the impact of parameters, both in preprocessing and in fiber tracking itself. We conclude by giving impulses for future research

    Respiratory challenge MRI: practical aspects

    Get PDF
    Respiratory challenge MRI is the modification of arterial oxygen (PaO2) and/or carbon dioxide (PaCO2) concentration to induce a change in cerebral function or metabolism which is then measured by MRI. Alterations in arterial gas concentrations can lead to profound changes in cerebral haemodynamics which can be studied using a variety of MRI sequences. Whilst such experiments may provide a wealth of information, conducting them can be complex and challenging. In this paper we review the rationale for respiratory challenge MRI including the effects of oxygen and carbon dioxide on the cerebral circulation. We also discuss the planning, equipment, monitoring and techniques that have been used to undertake these experiments. We finally propose some recommendations in this evolving area for conducting these experiments to enhance data quality and comparison between techniques

    Born too early and too small: higher order cognitive function and brain at risk at ages 8–16

    Get PDF
    Prematurity presents a risk for higher order cognitive functions. Some of these deficits manifest later in development, when these functions are expected to mature. However, the causes and consequences of prematurity are still unclear. We conducted a longitudinal study to first identify clinical predictors of ultrasound brain abnormalities in 196 children born very preterm (VP; gestational age 32 weeks) and with very low birth weight (VLBW; birth weight 1500 g). At ages 8–16, the subset of VP-VLBW children without neurological findings (124) were invited for a neuropsychological assessment and an MRI scan (41 accepted). Of these, 29 met a rigorous criterion for MRI quality and an age, and gender-matched control group (n = 14) was included in this study. The key findings in the VP-VLBW neonates were: (a) 37% of the VP-VLBW neonates had ultrasound brain abnormalities; (b) gestational age and birth weight collectively with hospital course (i.e., days in hospital, neonatal intensive care, mechanical ventilation and with oxygen therapy, surgeries, and retinopathy of prematurity) predicted ultrasound brain abnormalities. At ages 8–16, VP-VLBW children showed: a) lower intelligent quotient (IQ) and executive function; b) decreased gray and white matter (WM) integrity; (c) IQ correlated negatively with cortical thickness in higher order processing cortical areas. In conclusion, our data indicate that facets of executive function and IQ are the most affected in VP-VLBW children likely due to altered higher order cortical areas and underlying WMThis study was supported by the Spanish Government Institute Carlos III (FIS Pl11/02860), Spanish Ministry of Health to MM-L, and the University of Castilla-La Mancha mobility Grant VA1381500149

    The role of precuneus and left inferior frontal cortex during source memory episodic retrieval

    Get PDF
    The posterior medial parietal cortex and left prefrontal cortex (PFC) have both been implicated in the recollection of past episodes. In a previous study, we found the posterior precuneus and left lateral inferior frontal cortex to be activated during episodic source memory retrieval. This study further examines the role of posterior precuneal and left prefrontal activation during episodic source memory retrieval using a similar source memory paradigm but with longer latency between encoding and retrieval. Our results suggest that both the precuneus and the left inferior PFC are important for regeneration of rich episodic contextual associations and that the precuneus activates in tandem with the left inferior PFC during correct source retrieval. Further, results suggest that the left ventro-lateral frontal region/ frontal operculum is involved in searching for task-relevant information (BA 47) and subsequent monitoring or scrutiny (BA 44/45) while regions in the dorsal inferior frontal cortex are important for information selection (BA 45/46). (C) 2005 Elsevier Inc. All rights reserved.NIGMS NIH HHS [2 T32 GM 07266]info:eu-repo/semantics/publishedVersio
    corecore