618 research outputs found

    Network partition for switched industrial ethernet using combined search heuristics

    Get PDF
    Thesis (M.S.)--School of Computing and Engineering. University of Missouri--Kansas City, 2011Title from PDF of title page, viewed on June 6, 2011Includes bibliographical references (p. 44-46)Thesis advisor: Xiaojun ShenVitaA large industrial company needs a cost efficient telecommunication network to support heavy telecommunication needs among its different departments which are distributed in various locations. Because of the huge amount of daily communications, the network designer must partition the communicating devices into subnets each of which is supported by a high speed Ethernet. Then, the subnets are connected by a second level switch device called controller which handles inter-subnet communications. An optimization problem is how to partition n communicating devices into k groups such that the amount of intra-network traffic is balanced among the k groups and at the same time the inter-network traffic is minimized for a given traffic demand. This problem is known as the Network Partition Problem (NPP). The NPP problem has been studied by some researchers, but because of its NPhardness, only limited progress has been reported by two recent papers. The later one slightly improved on the results obtained by the previous one, and both papers used genetic algorithms. This thesis investigated the NPP problem and concluded by extensive tests that it is very difficult to improve further if we purely follow the method of genetic algorithms. Motivated by searching for new approaches, this thesis tried another evolutionary algorithm, i.e., the simulated annealing (SA) to see any hope to get a breakthrough. Encouraging results were obtained for some cases but not show overall superiority. Finally, this thesis investigated the approach that combines these two methods in searching for a better result. Extensive simulations demonstrated that this method work efficiently. By the combination of these two methods, we obtained obvious improvements on previous published results. This approach studied in this thesis can be applicable to practically solving other NP-hard problems also.Introduction -- Model description and problem definition -- Our approach -- Results -- Conclusion and future work -- Appendi

    NetGAP: A Graph-Grammar approach for concept design of networked platforms with extra-functional requirements

    Full text link
    During the concept design of complex networked systems, concept developers have to assure that the choice of hardware modules and the topology of the target platform will provide adequate resources to support the needs of the application. For example, future-generation aerospace systems need to consider multiple requirements, with many trade-offs, foreseeing rapid technological change and a long time span for realization and service. For that purpose, we introduce NetGAP, an automated 3-phase approach to synthesize network topologies and support the exploration and concept design of networked systems with multiple requirements including dependability, security, and performance. NetGAP represents the possible interconnections between hardware modules using a graph grammar and uses a Monte Carlo Tree Search optimization to generate candidate topologies from the grammar while aiming to satisfy the requirements. We apply the proposed approach to the synthetic version of a realistic avionics application use case and show the merits of the solution to support the early-stage exploration of alternative candidate topologies. The method is shown to vividly characterize the topology-related trade-offs between requirements stemming from security, fault tolerance, timeliness, and the "cost" of adding new modules or links. Finally, we discuss the flexibility of using the approach when changes in the application and its requirements occur

    A Survey of Scheduling in Time-Sensitive Networking (TSN)

    Full text link
    TSN is an enhancement of Ethernet which provides various mechanisms for real-time communication. Time-triggered (TT) traffic represents periodic data streams with strict real-time requirements. Amongst others, TSN supports scheduled transmission of TT streams, i.e., the transmission of their packets by edge nodes is coordinated in such a way that none or very little queuing delay occurs in intermediate nodes. TSN supports multiple priority queues per egress port. The TAS uses so-called gates to explicitly allow and block these queues for transmission on a short periodic timescale. The TAS is utilized to protect scheduled traffic from other traffic to minimize its queuing delay. In this work, we consider scheduling in TSN which comprises the computation of periodic transmission instants at edge nodes and the periodic opening and closing of queue gates. In this paper, we first give a brief overview of TSN features and standards. We state the TSN scheduling problem and explain common extensions which also include optimization problems. We review scheduling and optimization methods that have been used in this context. Then, the contribution of currently available research work is surveyed. We extract and compile optimization objectives, solved problem instances, and evaluation results. Research domains are identified, and specific contributions are analyzed. Finally, we discuss potential research directions and open problems.Comment: 34 pages, 19 figures, 9 tables 110 reference

    Dimensionerings- en werkverdelingsalgoritmen voor lambda grids

    Get PDF
    Grids bestaan uit een verzameling reken- en opslagelementen die geografisch verspreid kunnen zijn, maar waarvan men de gezamenlijke capaciteit wenst te benutten. Daartoe dienen deze elementen verbonden te worden met een netwerk. Vermits veel wetenschappelijke applicaties gebruik maken van een Grid, en deze applicaties doorgaans grote hoeveelheden data verwerken, is het noodzakelijk om een netwerk te voorzien dat dergelijke grote datastromen op betrouwbare wijze kan transporteren. Optische transportnetwerken lenen zich hier uitstekend toe. Grids die gebruik maken van dergelijk netwerk noemt men lambda Grids. Deze thesis beschrijft een kader waarin het ontwerp en dimensionering van optische netwerken voor lambda Grids kunnen beschreven worden. Ook wordt besproken hoe werklast kan verdeeld worden op een Grid eens die gedimensioneerd is. Een groot deel van de resultaten werd bekomen door simulatie, waarbij gebruik gemaakt wordt van een eigen Grid simulatiepakket dat precies focust op netwerk- en Gridelementen. Het ontwerp van deze simulator, en de daarbijhorende implementatiekeuzes worden dan ook uitvoerig toegelicht in dit werk

    Index to Library Trends Volume 38

    Get PDF
    published or submitted for publicatio

    Characterization of communication channels in terms of traffic and network architecture: a review

    Get PDF
    Software tools face accessibility and availability limitations in monitoring and industrial control processes when communications are affected by long distances. Likewise, real-time answers and stability are also limited by the traffic conditions in LAN network. Ethernet networks are widely-used in industrial communications due to high performance in multiswitch configuration. However, they are not the most appropriate solution for real-time applications, given the difficulty in measuring response times in data transmission, and even more so when the network topologies are different and traffic levels are permanently varying. This paper presents a review of the characterization of communication channels in terms of traffic and network architecture,  identifying  unexplored  areas  and  promoting  new alternatives that may be easily adopted by the industrial sector.  In  conclusion,  a  technique  integrated  by  architecture  and  traffic  characteristics  in  network  analysis may  performance  in  heterogeneous  systems  for  industrial applications via web.Las herramientas de software presentan limitaciones de acceso y disponibilidad en los procesos de monitoreo y control industrial, cuando las comunicaciones son afectadas por grandes distancias. Asimismo, las respuestas en tiempo real y la estabilidad también son limitadas por las condiciones de tráfico en redes LAN. Es conocido que las redes Ethernet son ampliamente usadas en comunicaciones industriales por su alto rendimiento en configuraciones de switches. Sin embargo, no han sido la solución adecuada para aplicaciones en tiempo real, dado el inconveniente de medir el tiempo de respuesta en la transmisión de datos, y más aún, cuando las topologías de las redes son diferentes y los niveles de tráfico varían permanentemente. En este artículo, se presenta una revisión del estado del arte sobre la caracterización de canales de comunicación en términos de tráfico y arquitectura de la red, donde se determinan campos que aún quedan abiertos en esta área del conocimiento, y se inquieta hacia nuevas alternativas que puedan ser fácilmente adoptables por el sector industrial. Como conclusión, se establece que una técnica integrada por la arquitectura y las características del tráfico en el análisis de redes mejora las perspectivas de rendimiento en sistemas heterogéneos para aplicaciones industriales vía web

    Design of Mixed-Criticality Applications on Distributed Real-Time Systems

    Get PDF

    Allocation of Parallel Real-Time Tasks in Distributed Multi-core Architectures supported by an FTT-SE Network

    Get PDF
    Distributed real-time systems such as automotive applications are becoming larger and more complex, thus, requiring the use of more powerful hardware and software architectures. Furthermore, those distributed applications commonly have stringent real-time constraints. This implies that such applications would gain in flexibility if they were parallelized and distributed over the system. In this paper, we consider the problem of allocating fixed-priority fork-join Parallel/Distributed real-time tasks onto distributed multi-core nodes connected through a Flexible Time Triggered Switched Ethernet network. We analyze the system requirements and present a set of formulations based on a constraint programming approach. Constraint programming allows us to express the relations between variables in the form of constraints. Our approach is guaranteed to find a feasible solution, if one exists, in contrast to other approaches based on heuristics. Furthermore, approaches based on constraint programming have shown to obtain solutions for these type of formulations in reasonable time

    FPGAs in Industrial Control Applications

    Get PDF
    The aim of this paper is to review the state-of-the-art of Field Programmable Gate Array (FPGA) technologies and their contribution to industrial control applications. Authors start by addressing various research fields which can exploit the advantages of FPGAs. The features of these devices are then presented, followed by their corresponding design tools. To illustrate the benefits of using FPGAs in the case of complex control applications, a sensorless motor controller has been treated. This controller is based on the Extended Kalman Filter. Its development has been made according to a dedicated design methodology, which is also discussed. The use of FPGAs to implement artificial intelligence-based industrial controllers is then briefly reviewed. The final section presents two short case studies of Neural Network control systems designs targeting FPGAs

    Design of Time-Sensitive Networks For Safety-Critical Cyber-Physical Systems

    Get PDF
    A new era of Cyber-Physical Systems (CPSs) is emerging due to the vast growth in computation and communication technologies. A fault-tolerant and timely communication is the backbone of any CPS to interconnect the distributed controllers to the physical processes. Such reliability and timing requirements become more stringent in safety-critical applications, such as avionics and automotive. Future networks have to meet increasing bandwidth and coverage demands without compromising their reliability and timing. Ethernet technology is efficient in providing a low-cost scalable networking solution. However, the non-deterministic queuing delay and the packet collisions deny low latency communication in Ethernet. In this context, IEEE 802.1 Time Sensitive Network (TSN) standard has been introduced as an extension of the Ethernet technology to realize switched network architecture with real-time capabilities. TSN offers Time-Triggered (TT) traffic deterministic communication. Bounded Worst-Case end-to-end Delay (WCD) delivery is yielded by Audio Video Bridging (AVB) traffic. In this thesis, we are interested in the TSN design and verification. TSN design and verification are challenging tasks, especially for realistic safety-critical applications. The increasing complexity of CPSs widens the gap between the underlying networks' scale and the design techniques' capabilities. The existing TSN's scheduling techniques, which are limited to small and medium networks, are good examples of such a gap. On the other hand, the TSN has to handle dynamic traffic in some applications, e.g., Fog computing applications. Other challenges are related to satisfying the fault-tolerance constraints of mixed-criticality traffic in resource-efficient manners. Furthermore, in space and avionics applications, the harsh radiation environment implies verifying the TSN's availability under Single Event Upset (SEU)-induced failures. In other words, TSN design has to manage a large variety of constraints regarding the cost, redundancy, and delivery latency where no single design approach fits all applications. Therefore, TSN's efficient employment demands a flexible design framework that offers several design approaches to meet the broad range of timing, reliability, and cost constraints. This thesis aims to develop a TSN design framework that enables TSN deployment in a broad spectrum of CPSs. The framework introduces a set of methods to address the reliability, timing, and scalability aspects. Topology synthesis, traffic planning, and early-stage modeling and analysis are considered in this framework. The proposed methods work together to meet a large variety of constraints in CPSs. This thesis proposes a scalable heuristic-based method for topology synthesis and ILP formulations for reliability-aware AVB traffic routing to address the fault-tolerance transmission. A novel method for scalable scheduling of TT traffic to attain real-time transmission. To optimize the TSN for dynamic traffic, we propose a new priority assignment technique based on reinforcement learning. Regarding the TSN verification in harsh radiation environments, we introduce formal models to investigate the impact of the SEU-induced switches failures on the TSN availability. The proposed analysis adopts the model checking and statistical model checking techniques to discover and characterize the vulnerable design candidates
    • …
    corecore