
 

 

 

 

Allocation of Parallel Real-Time Tasks in 
Distributed Multi-core Architectures supported 
by an FTT-SE Network 

 
 
 

 

Technical Report 

CISTER-TR-150305 
 
2015/03/24 

Ricardo Garibay-Martínez 
Geoffrey Nelissen 
Luis Lino Ferreira 
Luis Miguel Pinho 
 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47141555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Technical Report CISTER-TR-150305 Allocation of Parallel Real-Time Tasks in Distributed  ... 

Allocation of Parallel Real-Time Tasks in Distributed Multi-core Architectures 
supported by an FTT-SE Network 
Ricardo Garibay-Martínez, Geoffrey Nelissen, Luis Lino Ferreira, Luis Miguel Pinho 

CISTER Research Center 

Polytechnic Institute of Porto (ISEP-IPP) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8321159 

E-mail: rgmaz@isep.ipp.pt, grrpn@isep.ipp.pt, llf@isep.ipp.pt, lmp@isep.ipp.pt 

http://www.cister.isep.ipp.pt 

 
Abstract 
Distributed real-time systems such as automotive applications are becoming larger and more complex, thus, 
requiring the use of more powerful hardware and software architectures. Furthermore, those distributed 
applications commonly have stringent real-time constraints. This implies that such applications would gain in 
flexibility if they were parallelized and distributed over the system. In this paper, we consider the problem of 
allocating fixed-priority fork-join Parallel/Distributed real-time tasks onto distributed multi-core nodes connected 
through a Flexible Time Triggered Switched Ethernet network. We analyze the system requirements and present a 
set of formulations based on a constraint programming approach. Constraint programming allows us to express 
the relations between variables in the form of constraints. Our approach is guaranteed to find a feasible solution, 
if one exists, in contrast to other approaches based on heuristics. Furthermore, approaches based on constraint 
programming have shown to obtain solutions for these type of formulations in reasonable time. 

 

© CISTER Research Center 
www.cister.isep.ipp.pt   

1 
 



Allocation of Parallel Real-Time Tasks in
Distributed Multi-core Architectures supported

by an FTT-SE Network

Ricardo Garibay-Mart́ınez, Geoffrey Nelissen, Luis Lino Ferreira, and
Lúıs Miguel Pinho

CISTER/INESC-TEC Research Centre, ISEP/IPP
Rua Dr. António Bernardino de Almeida 431, 4200-072 PORTO, Portugal

{rgmaz,grrpn,llf,lmp}@isep.ipp.pt

Abstract. Distributed real-time systems such as automotive applica-
tions are becoming larger and more complex, thus, requiring the use of
more powerful hardware and software architectures. Furthermore, those
distributed applications commonly have stringent real-time constraints.
This implies that such applications would gain in flexibility if they were
parallelized and distributed over the system. In this paper, we consider
the problem of allocating fixed-priority fork-join Parallel/Distributed real-
time tasks onto distributed multi-core nodes connected through a Flexi-
ble Time Triggered Switched Ethernet network. We analyze the system
requirements and present a set of formulations based on a constraint pro-
gramming approach. Constraint programming allows us to express the
relations between variables in the form of constraints. Our approach is
guaranteed to find a feasible solution, if one exists, in contrast to other
approaches based on heuristics. Furthermore, approaches based on con-
straint programming have shown to obtain solutions for these type of
formulations in reasonable time.

Keywords: Constraint Programming, Real-Time, Parallel Tasks, Dis-
tributed Multi-core Architectures

1 Introduction

Modern cars are a good example of time-constrained distributed systems. They
are composed of tens of computing nodes, some of them based on multi-core
architectures interconnected by various types of communication networks. The
complexity of their workload never stops increasing, therefore, many of their
applications would gain in flexibility if they were parallelized and distributed
over the system.

The fork-join Parallel/Distributed real-time model (P/D tasks) [1], was de-
signed to consider such execution pattern. In this paper, we consider P/D tasks
and a distributed computing platform composed of multi-core nodes, and inter-
connected by a Flexible Time Triggered - Switched Ethernet (FTT-SE) network
[2]. A P/D task starts with a master thread executing sequentially, which may



2 Lecture Notes in Computer Science: Authors’ Instructions

then fork to be executed in parallel on local and remote nodes. When the par-
allel execution is completed on the local and remote nodes, the partial results
are transmitted using messages, and aggregated by the master thread. The mas-
ter thread then resumes its execution until the next fork. Since the threads are
potentially distributed over the different nodes composing the platform, we call
these operations Distributed-Fork (D-Fork) and Distributed-Join (D-Join).

Furthermore, for a given task set and a given computing platform, the main
challenge is to find a feasible allocation for the tasks in a way that all the tasks
meet their associated end-to-end deadlines. An end-to-end deadline represents
the longest elapsed time that a sequence of threads and messages composing a
task is permitted to take from the time instant at which it is activated, and the
instant at which the last thread of the task completes its execution.

Contribution. In this paper, we present a set of formulations for modeling
the allocation of P/D tasks in a distributed multi-core architecture by using a
constraint programming approach. Constraint programming approach expresses
the relations between variables in the form of constraints. Our constraint pro-
gramming formulation is guaranteed to find a feasible allocation, if one exists,
in contrast to other approaches based on heuristic techniques. Our work is close
to the one presented in [4], but with the main difference: (i) that we model fork-
join Parallel/Distributed real-time tasks executing over a distributed multi-core
architecture, and (ii) that we consider messages being transmitted through a
Flexible Time Triggered Switched Ethernet (FTT-SE) network. Furthermore,
similar approaches based on constraint programming have shown that it is pos-
sible to obtain solutions for these type of formulations in reasonable time [3,
4].

Structure of the paper. Section 2 presents the related work. In Section 3 we
introduce the system model. We introduce the constraint programming formu-
lation in Section 4. Finally, our conclusions are drawn in Section 5.

2 Related work

In this section, we briefly review work related to: (i) scheduling of fixed-priority
parallel real-time tasks, and (ii) the problem of allocating tasks and messages
in distributed systems. Nevertheless, we restrain our attention to the case of
real-time pre-emptive fixed-priority scheduling.

Research related to the scheduling of fixed-priority parallel real-time tasks has
essentially targeted multi-core architectures. In [5], the authors introduced the
Task Stretch Transformation (TST) model for parallel synchronous tasks that
follow a fork-join structure. The TST considers preemptive fixed-priority periodic
tasks with implicit deadlines partitioned according to the Fisher-Baruah-Baker
First-Fit-Decreasing (FBB-FFD) [6] algorithm. Similarly, the Segment Stretch
Transformation (SST) model was introduced in [7]. The authors converted the
parallel threads of a fork-join task into sequential tasks by creating a master
thread, but with the difference (when compared to [5]) that no thread is ever
allowed to migrate between cores. That work was generalized in [8], by allowing



Title Suppressed Due to Excessive Length 3

an arbitrary number of threads per parallel segment, and in [9] for the scheduling
of tasks represented by a Directed Acyclic Graph (DAG).

The problem of allocating sequential task in distributed systems has been
intensively studied. Related works can be divided into: (i) heuristic based, and
(ii) optimal strategies.

Related to heuristics based research, Tindell et al. [10] addressed these issues
as an optimization problem, solving it with the general purpose Simulated An-
nealing algorithm. In [11] the authors assume a set of tasks and messages that
are statically allocated to processors and networks (therefore no partitioning
phase is considered), focusing on assigning the priorities to tasks and messages.
Azketa et al. [12], addressed this problem by using the general purpose genetic
algorithms. The authors initiate their genetic algorithm by assigning priorities
using the HOPA heuristic [11], which is based on Deadline Monotonic (DM)
priority assignment [13], and iterate over different solutions. To test schedulabil-
ity they use the holistic analysis presented in Tindell et al. [14] and Palencia et
al. [15, 16] schedulability tests. In [17] we proposed the DOPA heuristic, which
simultaneously solves the problem of assigning tasks to processors and assigning
priorities to tasks. DOPA is based on Audsleys Optimal Priority Assignment
(OPA) algorithm [18] to assign priorities to tasks and messages.

Regarding optimal strategies, in [19] a solution based on branch-and-bound
was proposed, enumerating the possible paths that can lead to an allocation, and
cutting the path whenever a feasible schedule cannot be reached by following
such task assignment. The bounding step is performed by checking the schedu-
lability of each branch, based on the schedulability analysis derived by Tindell
et al. [14]. In [3] the authors propose to solve the problem of allocation of tasks
by formulating a mixed integer linear programming framework. Similarly to this
work, in [4], the authors model the task partitioning problem as a constraint
optimization programming problem. Both works assume that each thread has
its own period and deadline.

In the previous work [1] we studied the problem of scheduling fork-join tasks
on a distributed system composed of single-processor nodes and a shared bus
communication network. Distributed systems have the particularity that the
transmission delay of messages communicating threads within a task, cannot be
deemed negligible as in the case of multi-core systems [5, 7, 8]. In here, we extend
the problem of task allocation of fork-join real-time tasks presented in [1], by
considering (i) a distributed multi-core architecture, and (ii) using a FTT-SE
network for message transmission.

3 System Model

We consider a distributed computing platform composed of a setN = {ν1, . . . , νm}
of m multi-core nodes to execute tasks. Each node νr (r ∈ {1, . . . ,m}) is com-
posed of mr identical cores πr,s (s ∈ {1, . . . ,mr}). The total number of cores
in the system is therefore equal to mtot =

∑
νi∈N mr. The processing nodes

are interconnected by an FTT-SE network ρ = {SW1, . . . , SWw} of w Ether-



4 Lecture Notes in Computer Science: Authors’ Instructions

net switches. The switches and distributed nodes are interconnected through
full-duplex links.

Also, we consider a set T = {τ1, . . . , τn} of n periodic P/D tasks. Figure 1
shows an example of a P/D task τi. A task τi is activated with a period Ti,
and is characterized by an implicit end-to-end deadline Di. A P/D task τi (i ∈
{1, . . . , n}) is composed of a sequence of ni sequential and parallel distributed
segments σi,j (j ∈ {1, . . . , ni}). ni is assumed to be an odd integer, since a P/D
task should always start and finish with a sequential segment. Therefore, odd
segments σi,2j+1 identify sequential segments and even segments σi,2j identify
P/D segments. Each segment σi,j is composed of a set of threads θi,j,k with
k ∈ {1, . . . , ni,j}, where ni,j = 1 for sequential segments.

�����

�

�

�

�

�

�

�

�

�

�����

�
�

� �
�

�
�,�,�

�
�,�,�

�
�,�,�

�

�
�,�,�

�

�
�,�,�

�
�,�,�

�

�
�,�,�	

�
�,�,�

�

�

�

�

�

�

�

�

�

�

�,�

�

��,�

�

�,�

�

��,�

�

�

�,�

�

��,�

�

�

�,�

�

��,�

�

�,�

�

��,�

�

�

�,�

�

��,� �
�,�

�

,�

	�
�,	

	
	�

�,�

��/�	�	
�	��	

	�
�,�

	 	�
�,�

�

		�

�,�

�

��

��/�	�	
�	��	

Fig. 1. The fork-join parallel distributed periodic real-time task (P/D task) model.

All sequential segments of a P/D task τi belong to the master thread, there-
fore, they are assumed to execute on the same core. This means that the core
that performs a D-Fork operation (invoker core) is in charge of aggregating the
result by performing a D-Join operation. Some threads within a P/D segment
may be executed on remote node νl. Consequently, for each thread θi,j,k belong-
ing to a P/D segment, two messages µi,j−1,k and µi,j,k are transmitted between
the invoker and remote core. That is, P/D threads and messages that belong
to a P/D segment and execute on a remote core, have a precedence relation:
µi,j−1,k → θi,j,k → µi,j,k. We call this sequence a distributed execution path (de-
noted as DPi,j,k). If a P/D thread executes on the same node νl than the master
thread, the transmission time of µi,j−1,k and µi,j,k are equal to zero, since the
transfer of data through a shared memory can be considered negligible.

For each P/D segment, there exists a synchronization point at the end of
the segment, indicating that no thread that belongs to the segment after the
synchronization point can start executing before all threads of the current seg-
ment have completed their execution. Threads are preemptive, but messages are
non-preemptive. Each thread θi,j,k has a Worst-Case Execution Time (WCET)
of Ci,j,k, and each message µi,j,k has a Worst-Case Message Length (WCML)
Mi,j,k.



Title Suppressed Due to Excessive Length 5

4 Constraint Programming Formulation

The problem of task allocation can be seen as a two-sided problem: (i) finding
the partitioning of threads and messages onto the processing elements of the
distributed system, and (ii) finding the priority assignment for the threads and
messages in that partition so that the real-time tasks and messages complete
their execution before reaching their respective end-to-end deadlines.

In this section we analyze the system requirements and provide a formulation
based on a constraint programming approach similar to [4].

4.1 Parallel/Distributed Tasks

In a similar manner as in [1], we transform threads composing a P/D task into
a set of independent sequential tasks with constrained deadlines. This transfor-
mation is based on the imposition of a set of artificial intermediate deadlines
(denoted as di,j), to threads θi,j,k and messages µi,j,k, in each segment σi,j . The
following two constraints must be associated to each intermediate deadline di,j.

Even if all threads execute in parallel, the relative deadline di,j cannot be
smaller than the maximum WCET of a thread in that segment, thereby imposing
that: ∧

∀τi∈T

∧
∀σi,j∈τi

di,j ≥ max
k=1,...,ni,j

{Ci,j,k}. (1)

Also, the total execution granted to all segments constituting a task τi must
be smaller or equal than the relative deadline of τi, that is:∧

∀τi∈T

∑
∀σi,j∈τi

di,j ≤ Di. (2)

Thus, the artificial deadline di,j is the maximum time that threads of a seg-
ment σi,j are permitted to take, from the moment they are released, to the
moment they complete their execution. Therefore, the problem can be formu-
lated as to find the artificial deadlines di,j for every segment σi,j , in a way that
the Worst-Case Response Time (WCRT) of threads θi,j,k (and messages µi,j,k)
is smaller or equal to the end-to-end deadline Di. More constraints are presented
in Sections 4.2 and 4.3.

4.2 Fully-Partitioned Distributed Multi-core Systems

In this work, we assume a fixed-priority fully-partitioned scheduling algorithm.
Let us assume that each core in the system (regardless the processing node they
are part of) is assigned a unique identifier in the interval [1,mtot]. Then we
define the integer variable Πθi,j,k

, indicating the identifier of the core on which
the thread θi,j,k is mapped. By definition of the core identifier, the following
constraints apply:

Πθi,j,k
> 0, (3)



6 Lecture Notes in Computer Science: Authors’ Instructions

Πθi,j,k
≤ mtot. (4)

A constraint of the P/D task model is that all sequential segments of a task
τi must execute on the same core πr,s. This is imposed by (5):∧

∀θi,2j+1,1∈T

∧
∀θi,2b+1,1∈T

Πθi,2j+1,1 = Πθi,2b+1,1
. (5)

Let us define the variable pi,j,k as the priority of a thread θi,j,k. Although
pi,j,k could be an integer variable of the problem for which the solver finds a
valid value in its proposed solution, in a concern of drastically reducing the
number of variables and therefore the complexity of the problem, one may also
assume that priorities are assigned using DM [13], in which case pi,j,k = di,j, and
pi,j,k can be omitted in the description of the problem. Yet, it is necessary to
evaluate if a certain partitioning leads to a valid solution. We know from [20],
that the worst-case response time ri,j,k of an independent thread θi,j,k scheduled
with a preemptive fixed-priority scheduling algorithm, is given by (6):

ri,j,k = Ci,j,k +
∑

θa,b,c∈HPi,j,k

⌈
ri,j,k

Ta

⌉
Ca,b,c, (6)

where HPi,j,k is the set of threads with higher or equal priority than θi,j,k, and
executing on the same core than θi,j,k.

This can be modeled in the constraint problem as:∧
∀θi,j,k∈T

ri,j,k = Ci,j,k +
∑

∀θa,b,c∈T

IHPa,b,c
i,j,k , (7)

where IHPa,b,c
i,j,k is the interference caused by a thread θa,b,c on θi,j,k.

Higher priority relation is represented by the following boolean variable:

pa,b,c
i,j,k =

{
1 if θa,b,c has higher priority than θi,j,k (pi,j,k ≤ pa,b,c),

0 otherwise.

Because Πθi,j,k
= Πθa,b,c

indicates that the θi,j,k and θa,b,c threads execute on the
same core, the total interference over a thread θi,j,k is expressed as:

∧
∀θi,j,k∈T

∧
∀θa,b,c∈T

IHPa,b,c
i,j,k =

{
Ia,b,ci,j,k × Ca,b,c if

(
(pa,b,c

i,j,k = 1) ∧ (Πθi,j,k
= Πθa,b,c

)
)
,

0 otherwise,
(8)

where Ia,b,ci,j,k is the number of preemptions a thread θi,j,k suffers from a thread

θa,b,c. Since Ia,b,ci,j,k is an integer, the ceiling operator can be rewritten as follows:⌈
ri,j,k

Ta

⌉
= Ia,b,ci,j,k =⇒ ri,j,k

Ta
≤ Ia,b,ci,j,k <

ri,j,k

Ta
+ 1, (9)



Title Suppressed Due to Excessive Length 7

thereby, leading to the following constraints:∧
∀θi,j,k∈T

∧
∀θa,b,c∈T

(Πθi,j,k
= Πθa,b,c

) → (Ia,b,ci,j,k × Ta ≥ ri,j,k)

∧
(

(Ia,b,ci,j,k − 1)× Ta < ri,j,k

)
,

(10)

∧
∀θi,j,k∈T

∧
∀θa,b,c∈T

(Πθi,j,k
6= Πθi,j,k

) → Ia,b,ci,j,k = 0. (11)

Furthermore, in the P/D task model, some threads within a P/D segment
may be executed on remote nodes. Consequently, for each such thread θi,j,k,
two messages µi,j−1,k and µi,j,k are transmitted between the invoker and remote
node. That is, a distributed execution path is generated (µi,j−1,k → θi,j,k →
µi,j,k).

NV(θi,j,k) is a function denoting to which node νq a thread θi,j,k has been
assigned. Then, NV(θi,j,k) = NV(θa,b,c) indicates that the threads θi,j,k and θa,b,c
execute on the same node, in which case no message is transmitted through the
network. However, if NV(θi,j,k) 6= NV(θa,b,c), the WCRT rDPi,j,k

of a distributed
execution path DPi,j,k must be as follows:

∧
∀µi,j,k∈T

∧
∀θi,j,k∈T

rDPi,j,k
=

{
rmsg
i,j−1,k + ri,j,k + rmsg

i,j,k if NV(θi,j,k) 6= NV(θa,b,c),

ri,j,k otherwise,
(12)

where ri,j,k is the WCRT of thread θi,j,k obtained with (7), and rmsg
i,j−1,k and rmsg

i,j,k are
the WCRTs of messages µi,j−1,k and µi,j,k respectively, obtained with a network
dependent analysis. In this paper, we assume the network analysis presented in
[21] for FTT-SE networks. Thus, for a partition of tasks τi to be considered a
valid solution (all deadlines are met), the following condition has to be respected:∧

∀θi,j,k∈T

rDPi,j,k
≤ di,j. (13)

4.3 FTT-SE Network

The communications within a FTT-SE network are done based on fixed duration
slots called Elementary Cycles (ECs). The construction of the EC schedule is
done by keeping updated tables for synchronous (i.e., periodic) and asynchronous
(i.e., sporadic) messages. The scheduler applies a scheduling policy (e.g., Dead-
line Monotonic) over these tables, generating the ready queues for transmission
for that EC. This process is repeated until no other message fits in its respective
scheduling window for that EC (i.e., considering all messages from higher to
lower priority). For building the ECs it is important to consider:

i. the architecture of the distributed system. The architectural model must
include the full-duplex transmission links. We represent the architecture as



8 Lecture Notes in Computer Science: Authors’ Instructions

an adjacency-matrix of a graph G = (V,E). The set V = {v1, . . . , v|V |} of
vertices vi represents the set of switches ρ and the set of nodes N , and the
set E = {(v1, v2), . . . , (v|V |−1, v|V |)} of edges (vi, vj), represent the commu-
nication links, from nodes to switches, from switches to nodes or between
switches. Note that: (i) direct links between nodes do not exist, (ii) links are
directed; that is, (vi, vj) and (vj , vi) represent two different links, and (iii)
the network is full-duplex; that is, if (vi, vj) is part of the graph, then (vj , vi)
is too. Thus, the adjacency matrix representation of a graph G consists of
a |V | × |V | matrix A = (ai,j) such that:

ai,j =

{
1 if (vi, vj) ∈ E,

0 otherwise,

depending of the partitioning of threads onto the nodes νl of the system,
there exists a set PNµi,j,k

⊆ V containing the vertices (i.e., switches) that
a message µi,j,k traverses during a D-fork or a D-join operation. For deter-
mining PNµi,j,k

, we use the Breadth-First Search (BFS) Algorithm [22] for
each message µi,j,k. The BFS inputs are: the matrix A (representing the
system architecture), the origin vertex (invoker core/remote core), and the
destination vertex (the remote core/invoker core). The BFS finds the short-
est path from the origin node to the destination node. Therefore, the BFS
algorithm finds the switches that a message µi,j,k crosses during a D-fork or
a D-join operation. The set PNµi,j,k

is required for computing the WCRT of
a message µi,j,k in the FTT-SE network.

ii. the switching delays. In this paper, we consider a switching delay (denoted
as SDi,j,k) when a message µi,j,k crosses a switch SWz. SDi,j,k has two com-
ponents, the switch relaying latency (denoted as ∆), which has a constant
value related to the specifications of the switch, and the Store-and-Forward
Delay (denoted as SFDi,j,k), i.e., SDi,j,k = SFDi,j,k +∆. However, for each EC,
only the maximum switching delay SDi,j,k is considered.

iii. the EC is subdivided into time slots for transmitting different types of traffic
(e.g. synchronous window, asynchronous window, etc.). Thus, one must con-
sider the length of the specific transmission window for each type of traffic
(denoted as LW ). The length of such a window is the reserved bandwidth for
transmission in that EC, and cannot be exceeded when transmitting mes-
sages within the FTT-SE protocol. This is modeled by the request bound
function in (14), and the supply bound function (19), presented in the fol-
lowing.

Response Time Analysis for FTT-SE networks. Depending on a given
partition, we have to find the WCRT of the messages in the network to verify
if the condition in (13) is respected. We consider the work presented in [21] for
the computation of the WCRT of messages within the FTT-SE protocol, with a
slight modification.

The request bound function rbfi,j,k(t) represents the maximum transmis-
sion requirements generated by a message µi,j,k and all its higher priority mes-



Title Suppressed Due to Excessive Length 9

sages during an interval [0, t]. The rbfi,j,k(t) is computed as:∧
∀µi,j,k∈T

rbfi,j,k(t) = Mi,j,k + sni,j,k × SFDi,j,k + Wli,j,k(t) + Wri,j,k(t), (14)

where, sni,j,k is the number of switches that a message µi,j,k traverses from the
origin node to its destination node, Wli,j,k(t) is the “Shared Link Delay”, and
Wri,j,k(t) is the “Remote Link Delay”, which are explained below.

Shared Link Delay. The transmission of a message µi,j,k may be delayed by
all the higher priority messages that share a link with µi,j,k. However, such inter-
ference occurs only once, so messages that caused such interference on a previous
link are excluded from the analysis for the next links. Also, when building the
schedule for each EC, the scheduler considers the maximum switching delay SDz

(see (16)), only once. Therefore, Wli,j,k(t) is computed by separating the inter-
ference of messages from the switching-delay-effect (denoted as Isi,j,k(t)) for each
EC. The shared link delay is computed in (15):

Wli,j,k(t) =
∑

∀µa,b,c∈SLDi,j,k

⌈
t

Ta

⌉
Ma,b,c + Isi,j,k(t), (15)

where SLDi,j,k = {∀µa,b,c : µa,b,c 6= µi,j,k ∧ (PNµi,j,k
∩ PNµa,b,c

6= 0) ∧ µa,b,c ∈
hp(µi,j,k) ∧ µa,b,c ∈ WT (µi,j,k)}, where, hp(µi,j,k) is the set of messages with
priority higher or equal than µa,b,c and WT (µi,j,k) is the set of messages that are
scheduled in the same window as µa,b,c (i.e. the synchronous or the asynchronous
window). The set hp(µi,j,k) for messages µi,j,k in (15), as well as the ceiling
function, can be formulated in a similar manner as in Section 4.2.

For computing the switching-delay-effect Isi,j,k(t), it is needed to compute an
upper bound on the number of switching delays (SDi,j,k) from each message that
contributes to (15), at time t. In [21], depending on time t, a number of switching
delays are inserted into an array whenever a message crosses a switch in the
network. The array is sorted in order to consider the maximum switching delays
only. A sorting operation is not amenable to optimization solvers. Therefore,
we introduce a simpler upper bound with the cost of slightly increment the
pessimism.

The number of ECs in an interval [0, t] is given by: z(t) =
⌈

t
EC

⌉
(the ceiling

function, can be formulated as in Section 4.2), thus, in order to consider the
worst-case scenario for the computation of the WCRT, we consider the maximum
switching delay (SDmax

i,j,k ) for each message that contributes to (15), and computed
as:

SDmax
i,j,k = max

∀µa,b,c∈SLDi,j,k

{SFDi,j,k +∆}. (16)

Then, the maximum switching delay is multiplied by the number of ECs at
time t (given by z(t)). Thus, the switching-delay-effect is computed as:

Isi,j,k = SDmax
i,j,k × z(t). (17)

Remote Link Delay. A message µi,j,k can be blocked by other higher priority
messages even if they do not share a transmission link. Thus, a higher priority



10 Lecture Notes in Computer Science: Authors’ Instructions

message can delay a lower priority message even though they do not share a
transmission link [21]. Therefore, to compute the worst-case remote link delay,
it is needed to consider all messages that share links with the messages that
contributed to the shared link delay (see (15)), excluding all messages that are
already considered in (15). Hence, we have:

Wri,j,k(t) =
∑

∀µp,q,r∈RLDi,j,k

⌈
t

Tp

⌉
Mp,q,r (18)

where, RLDi,j,k = {∀µp,q,r : µp,q,r 6= µa,b,c 6= µi,j,k ∧ (PNµp,q,r ∩ PNµa,b,c
6= 0) ∧

(PNµp,q,r ∩ PNµi,j,k
= 0)(PNµa,b,c

∩ PNµi,j,k
6= 0) ∧ µp,q,r ∈ hp(µa,b,c) ∧ µp,q,r ∈

WT (µa,b,c)}.
The demand bound function is then compared with the supply bound func-

tion sbfi,j,k(t), which represents the minimum effective communication capacity
that the network supplies during the time interval [0, t] to a message µi,j,k. In
each EC, the bandwidth provided for transmitting each type of traffic (e.g., syn-

chronous or asynchronous traffic) is equal to (LW−I)
EC , where LW is an input and

represents the length of the specific transmission window and I is the maximum
inserted idle time of such window. The inserted idle time results from the fact
that the maximum window duration cannot be exceeded.∧

∀µi,j,k∈T

sbfi,j,k(t) = (
LW − I
EC

)× t. (19)

Then, the response time of a message µi,j,k is computed by introducing a
new variable ti,j,k such that: ∧

∀µi,j,k∈T

ti,j,k > 0, (20)

∧
∀µi,j,k∈T

sbfi,j,k(ti,j,k) ≥ rbfi,j,k(ti,j,k). (21)

Since it is not possible to determine the specific time of transmission of
messages inside an EC, the computation of the WCRT for a message µi,j,k is in
terms of a number of ECs, thus the WCRT of a message µi,j,k is given by:∧

∀µi,j,k∈T

rmsg
i,j,k =

⌈ ti,j,k

EC

⌉
× EC. (22)

4.4 Constraint Satisfiability

The constraints sketched above are a combination of linear and non-linear con-
straints over a set of integer and boolean variables. This implies the use of ex-
tremely powerful optimization methods. It has been shown (e.g., [4]) that such
type of optimization problems are not amenable for conventional numerical opti-
mization solvers. However, for real-time purposes, a correct solution is obtained



Title Suppressed Due to Excessive Length 11

by guaranteeing that all the constraints are satisfied, regardless of the value of a
given objective function. Thus, the optimization problem gets reduced to a Sat-
isfiability (SAT) problem, in which solutions can be obtained in reasonable time
[4]. The constrains and optimization variables are summarized in the following.

Summary. We convert a set of P/D tasks τi into a set of independent sequential
tasks, by imposing a set of artificial intermediate deadlines. The constraints for
intermediate deadline are: (1) and (2). A valid partition, in which all threads
respect their intermediate deadlines di,j, is constrained with (5) and (7). The
WCRT of a distributed execution path (DPi,j,k) depends on where the threads
in a P/D segment are executed (i.e., locally or remotely), that is modeled in
(12). If threads θi,j,k are executed remotely, the WCRT of messages transmitted
through an FTT-SE network has to be considered. That is modeled with (20)-
(21). Finally, all tasks have to respect the condition in (13).

5 Conclusions

In this paper we presented the formulations for modeling the allocation of P/D
tasks in a distributed multi-core architecture supported by an FTT-SE network,
by using a constraint programming approach. Our constraint programming ap-
proach is guaranteed to find a feasible allocation, if one exists, in contrast to
other approaches based on heuristic techniques. Furthermore, similar approaches
based on constraint program have shown that it is possible to obtain solutions
for these formulations in reasonable time.

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful comments. This work
was partially supported by National Funds through FCT (Portuguese Foundation for Science and
Technology) and by ERDF (European Regional Development Fund) through COMPETE (Opera-
tional Programme ’Thematic Factors of Competitiveness’), within project FCOMP-01-0124-FEDER-
037281 (CISTER); by FCT and the EU ARTEMIS JU funding, ARROWHEAD (ARTEMIS/0001/2012,
JU grant nr. 332987), CONCERTO (ARTEMIS/0003/2012, JU grant nr. 333053); by FCT and ESF
(European Social Fund) through POPH (Portuguese Human Potential Operational Program), under
PhD grant SFRH/BD/71562/2010.

References

1. Garibay-Mart́ınez, R.; Nelissen, G.; Ferreira, L.L.; Pinho, L.M.: On the scheduling of
fork-join parallel/distributed real-time tasks. In: 9th IEEE International Symposium
on Industrial Embedded Systems, pp. 31-40, (June 2014).

2. Marau, R., Almeida, L., Pedreiras, P.: Enhancing real-time communication over cots
ethernet switches. In: IEEE International Workshop on Factory Communication
Systems, pp. 295-302. (2006).

3. Zhu, Q., Zeng, H., Zheng, W., Natale, M. D., Sangiovanni-Vincentelli, A.: Opti-
mization of task allocation and priority assignment in hard real-time distributed
systems. ACM Transactions on Embedded Computing Systems, 11(4), 85. (2012).



12 Lecture Notes in Computer Science: Authors’ Instructions

4. Metzner, A., Herde, C.: Rtsat–an optimal and efficient approach to the task al-
location problem in distributed architectures. In: 27th IEEE Real-Time Systems
Symposium, pp. 147-158.(2006, December).

5. Lakshmanan, K., Kato, S., Rajkumar, R.: Scheduling parallel real-time tasks on
multi-core processors. In: 31st IEEE Real-Time Systems Symposium pp. 259-268.
(2010, November).

6. Fisher, N., Baruah, S., Baker, T. P.: The partitioned scheduling of sporadic tasks
according to static-priorities. In: 18th Euromicro Conference on Real-Time Systems
pp. 10-pp. (2006).

7. Fauberteau, F., Midonnet, S., Qamhieh, M.: Partitioned scheduling of parallel real-
time tasks on multiprocessor systems. ACM SIGBED Review, 8(3), 28-31. (2011).

8. Saifullah, A., Li, J., Agrawal, K., Lu, C., Gill, C.: Multi-core real-time scheduling
for generalized parallel task models. Real-Time Systems, 49(4), 404-435. (2013).

9. Qamhieh, M., George, L., Midonnet, S.: A Stretching Algorithm for Parallel Real-
time DAG Tasks on Multiprocessor Systems. In: 22nd International Conference on
Real-Time Networks and Systems (p. 13). (2014, October).

10. Tindell, K. W., Burns, A., Wellings, A. J.: Allocating hard real-time tasks: an
NP-hard problem made easy. Real-Time Systems, 4(2), 145-165 (1992).

11. Garćıa, J. G., Harbour, M. G.: Optimized priority assignment for tasks and mes-
sages in distributed hard real-time systems. In: Third IEEE Workshop on Parallel
and Distributed Real-Time Systems, pp. 124-132. (1995, April).

12. Azketa, E., Uribe, J. P., Gutirrez, J. J., Marcos, M., Almeida, L.: Permutational
genetic algorithm for the optimized mapping and scheduling of tasks and messages in
distributed real-time systems. In: 10th International Conference on Trust, Security
and Privacy in Computing and Communications. (2011).

13. Leung, J. Y. T., Whitehead, J.: On the complexity of fixed-priority scheduling of
periodic, real-time tasks. Performance evaluation, 2(4), 237-250 (1982).

14. Tindell, K., Clark, J.: Holistic schedulability analysis for distributed hard real-time
systems. Microprocessing and microprogramming, 40(2), 117-134 (1994).

15. Palencia, J. C., Gonzalez Harbour, M.: Schedulability analysis for tasks with static
and dynamic offsets. In: 19th IEEE Real-Time Systems Symposium, pp. 26-37.
(1998, December).

16. Palencia, J. C., Gonzalez Harbour, M.: Exploiting precedence relations in the
schedulability analysis of distributed real-time systems. In: 20th IEEE Real-Time
Systems Symposium, pp. 328-339. (1999).

17. Garibay-Mart́ınez, R., Nelissen G., Ferreira L. L., Pinho L. M.: Task partitioning
and priority assignment for hard real-time distributed systems. In: International
Workshop on Real-Time and Distributed Computing in Emerging Applications,
(2013).

18. Audsley, N. C.: Optimal priority assignment and feasibility of static priority tasks
with arbitrary start times. University of York, Dep. of Computer Science. (1991).

19. Richard, M., Richard, P., Cottet, F.: Allocating and scheduling tasks in multi-
ple fieldbus real-time systems. In: IEEE Conference on Emerging Technologies and
Factory Automation, pp. 137-144. (2003, September).

20. Joseph, M., Pandya, P.: Finding response times in a real-time system. The Com-
puter Journal, 29(5), 390-395. (1986).

21. Ashjaei, M., Behnam, M., Nolte, T., Almeida, L.: Performance analysis of master-
slave multi-hop switched ethernet networks. In: 8th IEEE International Symposium
Industrial Embedded Systems, pp. 280-289. (2013, June).

22. Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. (2001). Introduction to
algorithms (Vol. 2, pp. 531-549). Cambridge: MIT press.


