964 research outputs found

    Machine Learning across the WSN Layers

    Get PDF

    Overlapped hierarchical clusters routing protocol for improving quality of service

    Get PDF
    The rapid development in communications and sensors technologies make wireless sensor networks (WSNs) as essential key in several advanced applications such as internet of things (IoT). The increasing demands on using WSNs required high quality of services (QoS) because most WSNs applications have critical requirements. This work aims to offer a routing protocol to improve the QoS in WSNs, taking in consideration its ability to prolong the lifetime of the network, optimize the utilization of the limited bandwidth available, and decrease the latency that accompanies the packets transmitted to the gateway. The proposed protocol is called overlapped hierarchical cluster routing protocol (OHCRP). OHCRP is compared with the traditional routing protocols such as SPEED, and THVR. The results show that OHCRP reduces latency effectively and achieve high energy conservation, which lead to increase the network lifetime and insure network availability

    A Novel Communications Protocol Using Geographic Routing for Swarming UAVs Performing a Search Mission

    Get PDF
    This research develops the UAV Search Mission Protocol (USMP) for swarming UAVs and determines the protocol\u27s effect on search mission performance. It is hypothesized that geographically routing USMP messages improves search performance by providing geography-dependent data to locations where it impacts search decisions. It is also proposed that the swarm can use data collected by the geographic routing protocol to accurately determine UAV locations and avoid sending explicit location updates. The hypothesis is tested by developing several USMP designs that are combined with the Greedy Perimeter Stateless Routing (GPSR) protocol and a search mission swarm logic into a single network simulation. The test designs use various transmission power levels, sensor types and swarm sizes. The simulation collects performance metrics for each scenario, including measures of distance traveled, UAV direction changes, number of searches and search concentration. USMP significantly improves mission performance over scenarios without inter-UAV communication. However, protocol designs that simply broadcast messages improve search performance by 83% in total searches and 20% in distance traveled compared to geographic routing candidates. Additionally, sending explicit location updates generates 3%-6% better performance per metric versus harvesting GPSR\u27s location information

    A Comprehensive Approach to WSN-Based ITS Applications: A Survey

    Get PDF
    In order to perform sensing tasks, most current Intelligent Transportation Systems (ITS) rely on expensive sensors, which offer only limited functionality. A more recent trend consists of using Wireless Sensor Networks (WSN) for such purpose, which reduces the required investment and enables the development of new collaborative and intelligent applications that further contribute to improve both driving safety and traffic efficiency. This paper surveys the application of WSNs to such ITS scenarios, tackling the main issues that may arise when developing these systems. The paper is divided into sections which address different matters including vehicle detection and classification as well as the selection of appropriate communication protocols, network architecture, topology and some important design parameters. In addition, in line with the multiplicity of different technologies that take part in ITS, it does not consider WSNs just as stand-alone systems, but also as key components of heterogeneous systems cooperating along with other technologies employed in vehicular scenarios

    Wireless sensors networks

    Get PDF
    After studying in depth look at wireless sensor networks are quite clear improvement compared to traditional wireless networks due to several factors as are the durability of the lifetime of the batteries, allowing greater portability of sensor nodes and that can record more events to power stay longer in some places, the routing protocols networks sensors allow gain than in durability also gain in efficiency the avoidance of collisions between packets, which also ensures a lower number of unnecessary network traffic. Because of the great features of such networks are currently using sensor networks in many projects related to different fields such as: environment, health, military, construction and structures, automotive, home automation, agriculture, etc. This type of network currently is leading a technological revolution similar to that had appearance of internet, because the applications appear to be infinite, also speaks global surveillance network on the planet capable of recording and tracking people specific goods and research projects have generated great interest for application in practice

    Towards scalable Community Networks topologies

    Get PDF
    Community Networks (CNs) are grassroots bottom-up initiatives that build local infrastructures, normally using Wi-Fi technology, to bring broadband networking in areas with inadequate offer of traditional infrastructures such as ADSL, FTTx or wide-band cellular (LTE, 5G). Albeit they normally operate as access networks to the Internet, CNs are ad-hoc networks that evolve based on local requirements and constraints, often including additional local services on top of Internet access. These networks grow in highly decentralized manner that radically deviates from the top-down network planning practiced in commercial mobile networks, depending, on the one hand, on the willingness of people to participate, and, on the other hand, on the feasibility of wireless links connecting the houses of potential participants with each other. In this paper, we present a novel methodology and its implementation into an automated tool, which enables the exercise of (light) centralized control to the dynamic and otherwise spontaneous CN growth process. The goal of the methodology is influencing the choices to connect a new node to the CN so that it can grow with more balance and to a larger size. Input to our methodology are open source resources about the physical terrain of the CN deployment area, such as Open Street Map and very detailed (less than 1 m resolution) LIDAR-based data about buildings layout and height, as well as technical descriptions and pricing data about off-the-shelf networking devices that are made available by manufacturers. Data related to demographics can be easily added to refine the environment description. With these data at hand, the tool can estimate the technical and economic feasibility of adding new nodes to the CN and actively assist new CN users in selecting proper equipment and CN node(s) to connect with to improve the CN scalability. We test our methodology in four different areas representing standard territorial characterization categories: urban, suburban, intermediate, and rural. In all four cases our tool shows that CNs scale to much larger size using the assisted, network-aware methodology when compared with de facto practices. Results also show that the CNs deployed with the assisted methodology are more balanced and have a lower per-node cost for the same per-node guaranteed bandwidth. Moreover, this is achieved with fewer devices per node, which means that the network is cheaper to build and easier to maintain.Peer ReviewedPostprint (author's final draft
    • …
    corecore