265 research outputs found

    Nanoimprint Lithography: Methods and Material Requirements

    Full text link
    Nanoimprint lithography (NIL) is a nonconventional lithographic technique for high-throughput patterning of polymer nanostructures at great precision and at low costs. Unlike traditional lithographic approaches, which achieve pattern definition through the use of photons or electrons to modify the chemical and physical properties of the resist, NIL relies on direct mechanical deformation of the resist material and can therefore achieve resolutions beyond the limitations set by light diffraction or beam scattering that are encountered in conventional techniques. This Review covers the basic principles of nanoimprinting, with an emphasis on the requirements on materials for the imprinting mold, surface properties, and resist materials for successful and reliable nanostructure replication.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55959/1/495_ftp.pd

    Principles of vortex light generation from electronically excited nanoscale arrays

    Get PDF
    It has recently been shown possible to directly generate an optical vortex (a beam of light endowed with orbital angular momentum) by spontaneous emission from a molecular exciton array. This contrasts with most established methods, which typically rely on the modification of a conventional beam by an appropriate optical element (for example, a q-plate) to impose the requisite helical twist of a vortex. The new procedure is achieved by nanofabricating a chiral arrangement of chromophores into a ring of specifically configured symmetry, supporting a doubly degenerate (conjugated) exciton with the appropriate azimuthal phase progression. It emerges that the symmetry elements present in the phase structure of the optical field, produced by emission from these degenerate excitons on a array, exhibits precisely the sought character of an optical vortex. The highest order of exciton symmetry, including the corresponding splitting of the electronic states, dictates the maximum magnitude of the topological charge. Work is now progressing on computer simulations aiming to reveal the detailed pattern of polarization behaviour in the emitted light, in which the vector character of the beam progresses around the phase singularity along the beam propagation axis. Significantly, this analysis points to the emission of radiation with polarization varying over the beam profile

    Fabrication and replication of re-entrant structures by nanoimprint lithography methods

    Get PDF
    In this work, the authors present and demonstrate a simple method to fabricate and mass replicate re-entrant structures. The method consists of the direct imprinting of polymer mushroomlike microstructures produced by a combination of photolithography and nickel up-plating process. In particular, they have studied the conditions to generate highly robust mushroomlike topographies and their topographical impact on the replication process. They discuss all the imprinting conditions suitable to replicate such topographies using both ultraviolet light assisted nanoimprint lithography (UV-NIL) and thermal NIL methods in two polymer films, poly(methyl methacrylate) and polypropylene, and a hybrid (organic-inorganic) UV light curable photoresist, namely, Ormocomp. Re-entrant topographies have been widely studied for liquid/oil repelling and dry adhesive properties, whereas in their experiments, they have proved evidence for their amphiphobic potential

    Multi-silicon ridge nanofabrication by repeated edge lithography

    Get PDF
    We present a multi-Si nanoridge fabrication scheme and its application in nanoimprint\ud lithography (NIL). Triple Si nanoridges approximately 120 nm high and 40 nm wide separated\ud by 40 nm spacing are fabricated and successfully applied as a stamp in nanoimprint lithography.\ud The fabrication scheme, using a full-wet etching procedure in combination with repeated edge\ud lithography, consists of hot H3PO4 acid SiNx retraction etching, 20% KOH Si etching, 50% HF\ud SiNx retraction etching and LOCal Oxidation of Silicon (LOCOS). Si nanoridges with smooth\ud vertical sidewalls are fabricated by using Si 110 substrates and KOH etching. The presented\ud technology utilizes a conventional photolithography technique, and the fabrication of multi-Si\ud nanoridges on a full wafer scale has been demonstrated

    Preparation of Au Nanostructure Arrays for Fluorometry and Biosensors Applications

    Get PDF
    The paper describes the fabrication of random and ordered gold nanostructure arrays (NSA) of different morphology using island film thermal annealing and nanoimprint lithography techniques. Structural parameters of obtained NSA were investigated using atomic force microscopy method. Spectral characteristics of obtained NSA were studied in air atmosphere, and NSA light extinction spectra exhibited an expressed plasmon peak. Spectral position of localized surface plasmon resonance can be tuned depending on geometrical parameters of nanostructures, which is an important factor for resonant investigation methods of various types of molecular structures. Proposed technological approaches can be used to implement the resonance fluorometry in electromagnetic field of nanostructures (surface-enhanced fluorescence) method and in chemical and biosensors based on localized surface plasmon resonance. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3496

    Breaking Malus’ law: Highly efficient, broadband, and angular robust asymmetric light transmitting metasurface

    Full text link
    High efficiency, broad bandwidth, and robust angular tolerance are key considerations in photonic device design. Here, a few‐layer, asymmetric light transmitting metasurface that simultaneously satisfies all the above requirements is reported. The metasurface consists of coupled metallic sheets. It has a measured transmission efficiency of 80%, extinction ratio of 13.8 dB around 1.5 μm, and a full width half maximum bandwidth of 1.7 μm. It is as thin as 290 nm, has good performance tolerance against the angle of incidence and constituent nano‐structure geometry variations. This work demonstrates a practical asymmetric light transmission device with optimal performance for large scale manufacturing.A few‐layer, asymmetric light transmitting metasurface consisting of coupled metallic sheets is reported. It has a measured transmission efficiency of 80%, extinction ratio of 13.8 dB around 1.5 μm, and a full width half maximum bandwidth of 1.7 μm. It is as thin as 290 nm, has good performance tolerance against the angle of incidence and constituent nano‐structure geometry variations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134207/1/lpor201500328_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134207/2/lpor201500328.pd

    Effective surface oxidation of polymer replica molds for nanoimprint lithography

    Get PDF
    In nanoimprint lithography, a surface oxidation process is needed to produce an effective poly(dimethylsiloxane) coating that can be used as an anti-adhesive surface of template molds. However, the conventional photooxidation technique or acidic oxidative treatment cannot be easily applied to polymer molds with nanostructures since surface etching by UV radiation or strong acids significantly damages the surface nanostructures in a short space of time. In this study, we developed a basic oxidative treatment method and consequently, an effective generation of hydroxyl groups on a nanostructured surface of polymer replica molds. The surface morphologies and water contact angles of the polymer molds indicate that this new method is relatively nondestructive and more efficient than conventional oxidation treatments
    corecore