222 research outputs found

    Network functions virtualization: the long road to commercial deployments

    Get PDF
    Network operators are under pressure to offer efficient network-based services while keeping service deployment costs to a minimum. Network functions virtualization (NFV) can potentially revolutionize network-based services bringing low-deployment costs for network operators. The NFV has been introduced to ultimately extend the non-proprietary and open-standard-based model to network and service deployments, significant improvements to today’s proprietary locked implementations. Notwithstanding the continuous efforts of both academia and industry to support the NFV paradigm, the current NFV solutions offered are still in its infancy. In this survey, we provide a detailed background of NFV to establish a comprehensive understanding of the subject, ranging from the basics to more advanced topics. Moreover, we offer a comprehensive overview of the NFV main concepts, standardization efforts, the benefits of NFV, and discussions of the NFV architecture as defined by the European telecommunications standardization institute (ETSI). Furthermore, we discuss the NFV applicability and current open source projects. We then highlight NFV requirements, design considerations, and developmental architectural impairments and barriers to commercial NFV deployments. Finally, we conclude enumerating future directions for NFV developmentpublishe

    Definition and specification of connectivity and QoE/QoS management mechanisms – final report

    Get PDF
    This document summarizes the WP5 work throughout the project, describing its functional architecture and the solutions that implement the WP5 concepts on network control and orchestration. For this purpose, we defined 3 innovative controllers that embody the network slicing and multi tenancy: SDM-C, SDM-X and SDM-O. The functionalities of each block are detailed with the interfaces connecting them and validated through exemplary network processes, highlighting thus 5G NORMA innovations. All the proposed modules are designed to implement the functionality needed to provide the challenging KPIs required by future 5G networks while keeping the largest possible compatibility with the state of the art

    IWQoS 2017

    Get PDF
    Producción CientíficaThe promises of SDN and NFV technologies to boost innovation and to reduce the time-to-market of new services is changing the way in which residential networks will be deployed, managed and maintained in the near future. New user-centric management models for residential networks combining SDN-based residential gateways and cloud technologies have already been proposed, providing flexibility and ease of deployment. Extending the scope of SDN technologies to optical access networks and bringing cloud technologies to the edge of the network enable the creation of advanced residential networks in which complex service function chains can be established to provide traffic differentiation. In this context, this paper defines a novel network management model based on a user-centric approach that allows residential users to define and control access network resources and the dynamic provision of traffic differentiation to fulfill QoS requirements.Ministerio de Economía, Industria y Competitividad (context of GREDOS project TEC2015 -67834- R, TEC2014-53071- C3 -2P and Elastic Networks TEC2015-71932- REDT

    Resource Allocation in SDN/NFV-Enabled Core Networks

    Get PDF
    For next generation core networks, it is anticipated to integrate communication, storage and computing resources into one unified, programmable and flexible infrastructure. Software-defined networking (SDN) and network function virtualization (NFV) become two enablers. SDN decouples the network control and forwarding functions, which facilitates network management and enables network programmability. NFV allows the network functions to be virtualized and placed on high capacity servers located anywhere in the network, not only on dedicated devices in current networks. Driven by SDN and NFV platforms, the future network architecture is expected to feature centralized network management, virtualized function chaining, reduced capital and operational costs, and enhanced service quality. The combination of SDN and NFV provides a potential technical route to promote the future communication networks. It is imperative to efficiently manage, allocate and optimize the heterogeneous resources, including computing, storage, and communication resources, to the customized services to achieve better quality-of-service (QoS) provisioning. This thesis makes some in-depth researches on efficient resource allocation for SDN/NFV-enabled core networks in multiple aspects and dimensionality. Typically, the resource allocation task is implemented in three aspects. Given the traffic metrics, QoS requirements, and resource constraints of the substrate network, we first need to compose a virtual network function (VNF) chain to form a virtual network (VN) topology. Then, virtual resources allocated to each VNF or virtual link need to be optimized in order to minimize the provisioning cost while satisfying the QoS requirements. Next, we need to embed the virtual network (i.e., VNF chain) onto the substrate network, in which we need to assign the physical resources in an economical way to meet the resource demands of VNFs and links. This involves determining the locations of NFV nodes to host the VNFs and the routing from source to destination. Finally, we need to schedule the VNFs for multiple services to minimize the service completion time and maximize the network performance. In this thesis, we study resource allocation in SDN/NFV-enabled core networks from the aforementioned three aspects. First, we jointly study how to design the topology of a VN and embed the resultant VN onto a substrate network with the objective of minimizing the embedding cost while satisfying the QoS requirements. In VN topology design, optimizing the resource requirement for each virtual node and link is necessary. Without topology optimization, the resources assigned to the virtual network may be insufficient or redundant, leading to degraded service quality or increased embedding cost. The joint problem is formulated as a Mixed Integer Nonlinear Programming (MINLP), where queueing theory is utilized as the methodology to analyze the network delay and help to define the optimal set of physical resource requirements at network elements. Two algorithms are proposed to obtain the optimal/near-optimal solutions of the MINLP model. Second, we address the multi-SFC embedding problem by a game theoretical approach, considering the heterogeneity of NFV nodes, the effect of processing-resource sharing among various VNFs, and the capacity constraints of NFV nodes. In the proposed resource constrained multi-SFC embedding game (RC-MSEG), each SFC is treated as a player whose objective is to minimize the overall latency experienced by the supported service flow, while satisfying the capacity constraints of all its NFV nodes. Due to processing-resource sharing, additional delay is incurred and integrated into the overall latency for each SFC. The capacity constraints of NFV nodes are considered by adding a penalty term into the cost function of each player, and are guaranteed by a prioritized admission control mechanism. We first prove that the proposed game RC-MSEG is an exact potential game admitting at least one pure Nash Equilibrium (NE) and has the finite improvement property (FIP). Then, we design two iterative algorithms, namely, the best response (BR) algorithm with fast convergence and the spatial adaptive play (SAP) algorithm with great potential to obtain the best NE of the proposed game. Third, the VNF scheduling problem is investigated to minimize the makespan (i.e., overall completion time) of all services, while satisfying their different end-to-end (E2E) delay requirements. The problem is formulated as a mixed integer linear program (MILP) which is NP-hard with exponentially increasing computational complexity as the network size expands. To solve the MILP with high efficiency and accuracy, the original problem is reformulated as a Markov decision process (MDP) problem with variable action set. Then, a reinforcement learning (RL) algorithm is developed to learn the best scheduling policy by continuously interacting with the network environment. The proposed learning algorithm determines the variable action set at each decision-making state and accommodates different execution time of the actions. The reward function in the proposed algorithm is carefully designed to realize delay-aware VNF scheduling. To sum up, it is of great importance to integrate SDN and NFV in the same network to accelerate the evolution toward software-enabled network services. We have studied VN topology design, multi-VNF chain embedding, and delay-aware VNF scheduling to achieve efficient resource allocation in different dimensions. The proposed approaches pave the way for exploiting network slicing to improve resource utilization and facilitate QoS-guaranteed service provisioning in SDN/NFV-enabled networks

    Graph-based feature enrichment for online intrusion detection in virtual networks

    Get PDF
    The increasing number of connected devices to provide the required ubiquitousness of Internet of Things paves the way for distributed network attacks at an unprecedented scale. Graph theory, strengthened by machine learning techniques, improves an automatic discovery of group behavior patterns of network threats often omitted by traditional security systems. Furthermore, Network Function Virtualization is an emergent technology that accelerates the provisioning of on-demand security function chains tailored to an application. Therefore, repeatable compliance tests and performance comparison of such function chains are mandatory. The contributions of this dissertation are divided in two parts. First, we propose an intrusion detection system for online threat detection enriched by a graph-learning analysis. We develop a feature enrichment algorithm that infers metrics from a graph analysis. By using different machine learning techniques, we evaluated our algorithm for three network traffic datasets. We show that the proposed graph-based enrichment improves the threat detection accuracy up to 15.7% and significantly reduces the false positives rate. Second, we aim to evaluate intrusion detection systems deployed as virtual network functions. Therefore, we propose and develop SFCPerf, a framework for an automatic performance evaluation of service function chaining. To demonstrate SFCPerf functionality, we design and implement a prototype of a security service function chain, composed of our intrusion detection system and a firewall. We show the results of a SFCPerf experiment that evaluates the chain prototype on top of the open platform for network function virtualization (OPNFV).O crescente número de dispositivos IoT conectados contribui para a ocorrência de ataques distribuídos de negação de serviço a uma escala sem precedentes. A Teoria de Grafos, reforçada por técnicas de aprendizado de máquina, melhora a descoberta automática de padrões de comportamento de grupos de ameaças de rede, muitas vezes omitidas pelos sistemas tradicionais de segurança. Nesse sentido, a virtualização da função de rede é uma tecnologia emergente que pode acelerar o provisionamento de cadeias de funções de segurança sob demanda para uma aplicação. Portanto, a repetição de testes de conformidade e a comparação de desempenho de tais cadeias de funções são obrigatórios. As contribuições desta dissertação são separadas em duas partes. Primeiro, é proposto um sistema de detecção de intrusão que utiliza um enriquecimento baseado em grafos para aprimorar a detecção de ameaças online. Um algoritmo de enriquecimento de características é desenvolvido e avaliado através de diferentes técnicas de aprendizado de máquina. Os resultados mostram que o enriquecimento baseado em grafos melhora a acurácia da detecção de ameaças até 15,7 % e reduz significativamente o número de falsos positivos. Em seguida, para avaliar sistemas de detecção de intrusões implantados como funções virtuais de rede, este trabalho propõe e desenvolve o SFCPerf, um framework para avaliação automática de desempenho do encadeamento de funções de rede. Para demonstrar a funcionalidade do SFCPerf, ´e implementado e avaliado um protótipo de uma cadeia de funções de rede de segurança, composta por um sistema de detecção de intrusão (IDS) e um firewall sobre a plataforma aberta para virtualização de função de rede (OPNFV)

    Service Function Graph Design And Embedding In Next Generation Internet

    Get PDF
    Network Function Virtualization (NFV) and Software Defined Networking (SDN) are viewed as the techniques to design, deploy and manage future Internet services. NFV provides an effective way to decouple network functions from the proprietary hardware, allowing the network providers to implement network functions as virtual machines running on standard servers. In the NFV environment, an NFV service request is provisioned in the form of a Service Function Graph (SFG). The SFG defines the exact set of actions or Virtual Network Functions (VNFs) that the data stream from the service request is subjected to. These actions or VNFs need to be embedded onto specific physical (substrate) networks to provide network services for end users. Similarly, SDN decouples the control plane from network devices such as routers and switches. The network control management is performed via an open interface and the underlying infrastructure turned into simple programmable forwarding devices. NFV and SDN are complementary to each other. Specifically, similar to running network functions on general purpose servers, SDN control plane can be implemented as pure software running on industry standard hardware. Moreover, automation and virtualization provide both NFV and SDN the tools to achieve their respective goals. In this dissertation, we motivate the importance of service function graph design, and we focus our attention on the problem of embedding network service requests. Throughout the dissertation, we highlight the unique properties of the service requests and investigate how to efficiently design and embed an SFG for a service request onto substrate network. We address variations of the embedding service requests such as dependence awareness and branch awareness in service function graph design and embedding. We propose novel algorithms to design and embed service requests with dependence and branch awareness. We also provide the intuition behind our proposed schemes and analyze our suggested approaches over multiple metrics against other embedding techniques
    corecore