
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

12-18-2020

System Design and Implementation for Hybrid Network Function System Design and Implementation for Hybrid Network Function

Virtualization Virtualization

Xuzhi Zhang

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Systems and Communications Commons

Recommended Citation Recommended Citation
Zhang, Xuzhi, "System Design and Implementation for Hybrid Network Function Virtualization" (2020).
Doctoral Dissertations. 2061.
https://doi.org/10.7275/t03j-3g74 https://scholarworks.umass.edu/dissertations_2/2061

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2061&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2061&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/t03j-3g74
https://scholarworks.umass.edu/dissertations_2/2061?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2061&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

SYSTEM DESIGN AND IMPLEMENTATION FOR
HYBRID NETWORK FUNCTION VIRTUALIZATION

A Dissertation Presented

by

XUZHI ZHANG

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2020

Electrical and Computer Engineering

c© Copyright by Xuzhi Zhang 2020

All Rights Reserved

SYSTEM DESIGN AND IMPLEMENTATION FOR
HYBRID NETWORK FUNCTION VIRTUALIZATION

A Dissertation Presented

by

XUZHI ZHANG

Approved as to style and content by:

Russell Tessier, Chair

Lixin Gao, Member

Michael Zink, Member

Jie Xiong, Member

Christopher V. Hollot, Department Chair
Electrical and Computer Engineering

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my advisor

Professor Russell Tessier for his many years of thoughtful, patient guidance and sup-

port. I sincerely appreciate the opportunity he gave me to pursue my research under

his supervision, as well as the constant encouragement and constructive criticism to

help me improve my writing and presentation skills. I’m so grateful for his efforts in

my research work and so many valuable suggestions, which make this work possible.

He is the best advisor and teacher I could have wished for. I especially want to thank

him for his care and support to me during the most difficult time in my family.

I also would like to thank Professor Lixin Gao for her advices on my research. Her

valuable ideas and comments on my work are greatly appreciated. I want to thank

Professor Michael Zink and Professor Jie Xiong for serving as my PhD committee

members, reading the dissertation, critiquing my work and providing constructive

suggestions to make this dissertation better.

I am very grateful to my colleagues and good friends Xiaozhe Shao and Georgios

Provelengios. Thanks to them for not hesitating to share their knowledge and experi-

ence, and many useful discussions on my research. It was an unforgettable experience

to study, do research and have fun in Reconfigurable Computing Group for the past

five years. Thanks to all my former and current RCG labmates Shrikant Vyas, Naveen

Kumar Dumpala, Shivukumar B. Patil, Chethan Ramesh, Naren Prabhu, Aiden Gula,

and Lijuan Xia. Many of them have made valuable contributions towards the work

in this thesis.

Finally, this thesis is dedicated to my wife Rusi, and our lovely babies. Whenever

I feel depressed and lose my spirit, their love and smile always encourage me. My wife

iv

has been a constant source of love, encouragement and support all these years. She

was doing so well to take care of everyone in our family. Without her I could never get

my thesis done. I thank her from my heart for the love, patience and understanding.

v

ABSTRACT

SYSTEM DESIGN AND IMPLEMENTATION FOR
HYBRID NETWORK FUNCTION VIRTUALIZATION

SEPTEMBER 2020

XUZHI ZHANG

B.Sc., HARBIN ENGINEERING UNIVERSITY, HARBIN, CHINA

M.Sc., HARBIN INSTITUTE OF TECHNOLOGY, HARBIN, CHINA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Russell Tessier

With the application of virtualization technology in computer networks, many

new research areas and techniques have been explored, such as network function

virtualization (NFV). A significant benefit of virtualization is that it reduces the cost

of a network system and increases its flexibility. Due to the increasing complexity of

the network environment and constantly improving network scale and bandwidth, it

is imperative to aim for higher performance, extensibility, and flexibility in the future

network systems. In this dissertation, hybrid NFV platforms applying virtualization

technology are proposed. We further explore the techniques used to improve the

performance, scalability and resilience of these systems.

In the first part of this dissertation, we describe a new heterogeneous hardware-

software NFV platform that provides scalability and programmability while support-

ing significant hardware-level parallelism and reconfiguration. Unlike a traditional

vi

NFV system which virtualizes dedicated hardware appliances into software-based net-

work functions running on general-purpose microprocessors, our computing platform

takes advantage of both field-programmable gate arrays (FPGAs) and microproces-

sors to implement numerous virtual network functions (VNFs) that can be dynami-

cally customized to specific network flow needs. A distinctive feature of our system

for enhancing scalability is the use of global network state to coordinate NFV op-

erations. Traffic management and hardware reconfiguration functions are performed

by a global coordinator which allows for the rapid sharing of network function states

and continuous evaluation of network function needs. With the help of state sharing

mechanism offered by the coordinator, customer-defined VNF instances can be easily

migrated between heterogeneous middleboxes as the network environment changes. A

resource allocation algorithm dynamically assesses resource deployments as network

flows and conditions are updated.

In the second part of this thesis document, we explore a new session-level approach

for NFV that implements distributed agents in both FPGA- and processor-based

middleboxes to steer packets belonging to different sessions through session-specific

service chains. With our session-level approach, we support inter-domain service

chaining with both FPGA- and processor-based middleboxes, dynamic reconfigura-

tion of service chains for ongoing sessions, and the application of session-level ap-

proaches for UDP-based protocols. To demonstrate our approach, we establish inter-

domain service chains for QUIC sessions, and reconfigure the service chains across a

range of FPGA- and processor-based middleboxes. We show that our session-level

approach can successfully reconfigure service chains for individual QUIC sessions.

Compared with software implementations, the distributed agents implemented on

FPGAs show better performance in various test scenarios.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . vi

LIST OF TABLES . xii

LIST OF FIGURES .xiii

CHAPTER

1. INTRODUCTION . 1

1.1 Trends and Challenges in NFV . 2
1.2 Thesis Overview . 5
1.3 Thesis Outline . 7

2. BACKGROUND . 9

2.1 Network Function Virtualization . 9
2.2 Software-Defined Networking . 11
2.3 Overview of FPGA Technology . 13
2.4 FPGAs in NFV . 15
2.5 Service Function Chaining . 16
2.6 Hardware Virtualization and Docker Containers . 18

3. SCALABLE NETWORK FUNCTION VIRTUALIZATION FOR
HETEROGENEOUS MIDDLEBOXES . 20

3.1 System Design . 21

3.1.1 System Overview . 21
3.1.2 DE5-Net FPGA Development Kit . 24
3.1.3 Cross-Middlebox State Sharing . 25
3.1.4 Dynamic Resource Management . 26

viii

3.2 Framework Implementation . 27

3.2.1 FPGA-based Middlebox Platform . 28
3.2.2 Coordinator Implementation . 31

3.2.2.1 Coordinator and SDN Switch Initialization 31
3.2.2.2 Trigger State . 32
3.2.2.3 State Retrieval . 33

3.2.3 Dynamic Reconfiguration . 35

3.3 Scalability Considerations - Global State Table . 38

3.3.1 Background . 38
3.3.2 Global State Implementation . 39
3.3.3 Interactions with Global State Table . 39

3.4 FPGA-based Middlebox Applications . 41

3.4.1 NAT Implementation . 41
3.4.2 SQL Injection Detection . 44
3.4.3 DDoS Implementation . 46
3.4.4 Firewall Implementation . 47

3.5 Data Plane Traffic Management . 47
3.6 Evaluation . 50

3.6.1 Performance Test . 50
3.6.2 Stress Test . 52
3.6.3 Scalability Test . 54
3.6.4 Reconfiguration Test . 55

3.7 Conclusion . 58

4. PERFORMANCE-AWARE VNF DEPLOYMENT WITH
PARTIAL RECONFIGURATION . 59

4.1 Introduction . 59
4.2 The Application of Partial Reconfiguration in CoNFV 60

4.2.1 Partial Reconfiguration Process . 62
4.2.2 Partial Bitstream Generation . 65
4.2.3 Accelerating Partial Reconfiguration . 66

4.3 Performance-Aware VNF Deployment . 67

4.3.1 Performance and Resource Model for CRs . 68

ix

4.3.2 Performance-Aware VNF Allocation . 68
4.3.3 Offline Initialization . 69
4.3.4 Online VNF Instance Deployment . 70

4.4 Experimental Approach . 73

4.4.1 Comparison with Previous Approach . 73
4.4.2 Testbed Setup for Resource Scheduling and Allocation 74
4.4.3 Algorithm Evaluation . 75

4.5 Experimental Results . 77

4.5.1 Speedup by Partial Reconfiguration . 77
4.5.2 Time Cost for Resource Allocation . 78
4.5.3 Algorithm Evaluation Results . 81

4.6 Conclusion . 84

5. DYNAMIC SERVICE CHAINING FOR HETEROGENEOUS
MIDDLEBOXES . 85

5.1 Introduction . 85
5.2 Architecture . 86

5.2.1 Components and interfaces . 87
5.2.2 Service chaining of heterogeneous middleboxes 89
5.2.3 Service chain setup for QUIC sessions . 92

5.3 Dynamic Reconfiguration . 93

5.3.1 Reconfiguration protocol . 94
5.3.2 Partial reconfiguration with agents . 96
5.3.3 State migration after reconfiguration . 97

5.4 Implementation . 97

5.4.1 Framework overview . 97
5.4.2 Agent implementation on FPGA . 99
5.4.3 Dynamically reconfigurable VNFs . 101

5.5 Evaluation . 102

5.5.1 Session initiation . 102
5.5.2 Scalability test . 105
5.5.3 Dynamic reconfiguration . 106

5.6 Conclusion . 109

x

6. CONCLUSION AND FUTURE WORK . 111

6.1 Summary of Contributions . 111
6.2 Future Work . 112

BIBLIOGRAPHY . 114

xi

LIST OF TABLES

Table Page

3.1 Resource usage for NFV library cores targeted to a Stratix V
5SGXEA7N. 51

3.2 Throughput and latency comparison of VM and FPGA module
implementations without using DPDK . 51

4.1 Experimental configurations . 67

4.2 Notations used in VNF deployment algorithm . 69

5.1 Resource usage for SFC implementation cores targeted to a Stratix V
5SGXEA7N. 102

5.2 Throughput and latency comparison of software and FPGA firewall
implementations under the traffic of a total three QUIC
sessions . 107

xii

LIST OF FIGURES

Figure Page

2.1 High-level NFV framework . 10

2.2 SDN architecture concept . 12

2.3 FPGA architecture . 13

2.4 FPGA application development flow . 14

2.5 (a) Full virtualization (b) Para-virtualization (c) OS-level
virtualization . 19

3.1 Overview of the CoNFV configurable NFV system using processor-
and FPGA-based (DE5) middleboxes . 22

3.2 Middleboxes and global coordinator interaction. Middleboxes can be
either processor- or FPGA-based . 23

3.3 DE5-Net FPGA board (top) . 24

3.4 High-level overview of processor- (top) and FPGA-based (bottom)
middleboxes in CoNFV . 28

3.5 Detailed FPGA implementation for multiple middlebox packet
processors . 29

3.6 Trigger state operations . 32

3.7 State retrieval operations . 34

3.8 Multi-receiver setup for scalable NFV including dynamic FPGA
reconfiguration . 36

3.9 FPGA middlebox implementation of NAT application 42

3.10 Improved hash table implementation using CAM. 43

xiii

3.11 FPGA middlebox implementation of SQLi detection block 44

3.12 An example of the URE circuit design for the regular expression
b+ c(a|b)∗[0–9]@ . 45

3.13 An example of a rule entry in the flow table . 49

3.14 REME using DPDK: processing throughput versus number of regular
expressions . 52

3.15 Results of coordinator stress test. For each test, requests are made to
the coordinator at the fastest rate supported by the network
interface . 53

3.16 Scalability of SQLi implemented with up to 2 FPGAs (2 cores each)
and 3 servers (30 virtual machines) . 55

3.17 Reconfiguration test environment with two VM and one FPGA
(single core) middleboxes . 56

3.18 Performance of system resources during full FPGA reconfiguration 57

4.1 Partial Reconfiguration Design Flow . 63

4.2 Layout of static and partial reconfiguration regions for FPGA-based
middlebox on Stratix V . 64

4.3 The experimental testbed. Available computer resources include 4
VM and 2 FPGA-based packet processors . 75

4.4 Traffic load patterns used in our evaluation model . 76

4.5 Performance of system resources during partial FPGA
reconfiguration. Resource migration is performed between the
yellow lines in the figure. 77

4.6 Cumulative distribution function of configuration and migration
times of VNFs in CoNFV. The term scaling 1to4 indicates the
amount of time needed to scale from 1 VM to 4 VMs 79

4.7 System reconfiguration timelines of VNF migration (a) and VM
addition (b) in response to underprovisioning. 80

xiv

4.8 Resource supply vs. resource demand. Single SQLi is instantiated in
the testbed and tested respectively with four traffic load
patterns. 81

4.9 Demand for SQLi and DDoS and resource supply using FPGAs and
VMs. The processing demand and supply for DDoS are shown in
(a). The corresponding values for SQLi are shown in (b). The
resource demand curves are taken from prior work [57] 83

4.10 Demand for SQLi and DDoS and resource supply using FPGAs and
VMs . 84

5.1 An example of a inter-domain service chain established by using our
agents and the policy server . 87

5.2 A session composed of a chain of FPGA- and processor-based
middleboxes and subsessions . 89

5.3 Agents reconfigure a segment of a service chain, replacing an old path
with two middleboxes by a new path with one . 94

5.4 Control messages exchanged for reconfiguration. Red packets travel
on the old path, blue on the new path . 95

5.5 Overview of a service chain established by using our agents and the
policy server . 98

5.6 Implementation of an agent on an FPGA. The agent unit in the top
subfigure is expanded in the bottom subfigure. 100

5.7 Latency for session initiation . 103

5.8 Scalability of agents implemented with up to 2 FPGAs (3 agents
each) and 3 workstations (3 non-DPDK agents or 3 DPDK-based
agents). Six sessions were used for this experiment. 105

5.9 Testbed topolgy for the evaluation of the reconfiguration
experiment . 107

5.10 Throughput of three QUIC sessions on processor and FPGA
middleboxes. Initially, all three sessions are implemented on
processors (left). Service chain modification is performed every 5
seconds to migrate a QUIC session from a processor (container)
middlebox to the FPGA middlebox. 109

xv

CHAPTER 1

INTRODUCTION

Virtualization has revolutionized the computing and information technology (IT)

world. This technology abstracts applications, guest operating systems, networks or

data storage away from the true underlying hardware or software. It brings cost and

space savings, faster provisioning, easier backup and update, better scalability, and

flexibility. Virtualization has been applied in a diverse set of computing technologies.

For example, memory virtualization is a popular technique used in computer architec-

ture to share distributed memory resources among processes. Hardware virtualization

is the virtualization of computers as complete hardware platforms which allow mul-

tiple systems or users to share one host. Application virtualization is a software

technology that encapsulates computer programs from the underlying operating sys-

tem on which it is executed. With the popularization of virtualization technology in

various fields of IT, computer networking researchers have turned their attention to

it. New research areas include network function virtualization (NFV) [52].

NFV brings virtualization to the network by decoupling the network functions

from proprietary hardware appliances and virtualizing them into software or logic

blocks which can operate on general purpose microprocessors or reconfigurable hard-

ware. The potential benefits of NFV is significant. Virtualization of network functions

deployed on commodity hardware helps to reduce capital investment and energy con-

sumption, decreasing the time to market of a new service or product. NFV enables

operators to enforce high-level policies expressed by enterprise or service networks by

1

directing flows through appropriate network function instances, and further enables

isolation among high-level policies performed for different customers.

1.1 Trends and Challenges in NFV

As the Internet has evolved, increasingly diverse network functions, or middle-

boxes, have been deployed to provide services for business and social needs. Typical

network functions, such as firewalls, network address translations (NATs), load bal-

ancers, packet classification, and proxy caches, process packets in sophisticated ways

to ensure reliability and improve performance in enterprise, service provider, and

cloud provider networks. These services traditionally were provisioned by telecom-

munications service providers (TSPs) through the deployment of proprietary devices

and equipment for each service function. As customer requirements for more di-

verse and higher data rate services increase, TSPs must purchase, store and operate

new physical equipment. In addition, to bring new services into the networks, TSPs

must acquire a variety of middleboxes and hire skilled professionals to integrate and

maintain their services. These issues lead to high capital expenditure (CAPEX) and

operational expense (OPEX) for TSPs [52]. As a result, TSPs must find ways to build

more dynamic and service-aware networks that have reduced operating and capital

expenses and improved service flexibility.

Network function virtualization leverages virtualization technology to replace ded-

icated application specific integrated circuit (ASIC) based appliances with software-

based network functions running on generic commodity hardware. In this way, a

given service is broken down into a set of virtual network functions (VNFs) that can

be implemented in software running on one or more industry standard servers. TSPs

can easily instantiate and relocate these VNFs at different network locations with-

out purchasing and installing new hardware. NFV enables TSPs to rapidly test and

deploy newly targeted and tailored services based on customer needs.

2

Several design considerations must be examined before implementing an NFV.

The network should allow users to access the applications they need, when they need

them. Therefore, TSPs need to consider the following key factors before deploying

an NFV.

• Performance: Performance is a factor network users consider when they choose

a service provider. As network functions are decoupled from proprietary hardware

appliances and virtualized into software applications, throughput and latency may

be affected. Wang and Ng [84] illustrated that virtualization can cause significant

throughput instability and abnormal delay variations in a data center network. To

keep performance degradation as small as possible after moving a given VNF from

dedicated hardware to a NFV platform, possible solutions include leveraging mod-

ern software technologies, such as Intel’s Data Plane Development Kit (DPDK)1,

or using a form of hardware acceleration [9].

• Management: The management of a virtualized environment within an NFV

framework is a big challenge. The NFV infrastructure needs to be able to instanti-

ate VNFs in the right location at the right time. The cost and processing capacity

of resources may vary significantly between network points, which increases com-

plexity in decision making for VNF deployment. The NFV framework should also

be flexible enough to dynamically allocate and scale hardware resources to meet

new customer needs or changes in the network environment. The underprovision-

ing of network services may cause service disruption. Thus network carriers often

overprovision their services [25] to guarantee stability. To improve resource uti-

lization, NFV can exploit the elasticity feature of the infrastructure to effectively

adjust resource allocation without affecting the provision of service. This manage-

1https://www.dpdk.org/

3

ment functionality is helpful, especially when hardware resources are limited in the

network.

• Reliability: Service reliability may be affected by two aspects. As mentioned

above, the elasticity of service provisioning may require the scaling and migration

of VNFs based on traffic load and user demand. These operations are necessary

but increase the uncertainty of the system. Reliability requires consideration of

how scheduling impacts system stability. For example, a service outage caused

by VNF migration can be reduced by temporarily running the target VNF on a

third-party resource. An unexpected traffic increase or service element failure can

also influence system reliability. To increase reliability, fault tolerance capabilities

or redundancy can be added to NFV systems.

• Security: When TSPs migrate telecommunications infrastructure to NFV, secu-

rity is an important consideration. Security impacts system resiliency [77] and the

overall quality of offered services [76]. NFV can be combined with other cloud

technologies. Multiple service subscribers may share the same cloud hardware in-

frastructure which raises security concerns. Security risks include: (1) the NFV

infrastructure should be protected from subscriber services; (2) functions and ser-

vices from different subscribers should be protected and isolated from each other.

• Scalability: TSPs provide services to millions of subscribers. This level of support

requires NFV to be scalable and responsive to vast numbers of VNF requests from

service users. NFV scalability also requires the ability to scale up a VNF across

computation resources to meet performance demand. If a VNF is deployed across

multiple middleboxes, global state must be maintained.

Virtual machines (VMs) operating on general-purpose microprocessors have been

used to accommodate VNF instances. Although microprocessors are straightforward

to program and allow for fast network interfacing using toolsets such as the DPDK,

4

they are inherently sequential and specialized network functions often require signifi-

cant run time. Field programmable gate arrays (FPGAs) offer a hardware acceleration

solution that provides parallelism, specialization, and programmability. FPGA logic

blocks can be partially reconfigured which allows a part of the FPGA functionality to

be dynamically changed while the device is still in operation. This feature guarantees

NFV system flexibility and reliability.

Network functions maintain statistics about packets and flows during packet pro-

cessing. Per-flow states are maintained locally by a single middlebox. For multi-flow

states, if a single middlebox meets the requirements of a given VNF, the states still

can be maintained locally. However, if a VNF is deployed on multiple middleboxes

and each middlebox only processes a subset of flows, a state sharing mechanism is

necessary to share multi-flow states among distributed middleboxes. A feasible so-

lution involves building a global state table in the NFV orchestrator to manage the

state sharing across middleboxes.

1.2 Thesis Overview

Previous research has demonstrated the benefits of introducing FPGAs into NFV

systems [36] [79] [56]. Although comprehensive, these works do not directly discuss

global state management or how to use global state to allocate NFV resources for

available functions.

In the first part of this thesis, we describe CoNFV, a network function virtualiza-

tion platform based on FPGAs, microprocessors, and supporting software running on

commodity hardware. CoNFV is a distributed NFV environment that efficiently sup-

ports state sharing for a scalable collection of middleboxes. As the functional needs of

the network change based on link capacity or state-based triggers, a global coordina-

tor rebalances the allocation of VNFs via the creation of virtual machine threads and

the dynamic reconfiguration of FPGA modules. To demonstrate our system, a library

5

of FPGA-based and software modules has been implemented and tested for the fol-

lowing VNFs: specialized SQL attack detection, distributed denial-of-service (DDoS)

detection, packet firewall, and network address translation (NAT). These function

modules, implemented in either FPGA hardware or processor software, are swapped

into middleboxes on demand. Our system is aided by a scheduling and allocation al-

gorithm that automatically considers the performance capabilities of the target NFV

resource versus the requested function. In some cases, multiple microprocessors are

grouped together to achieve needed throughput, latency, and computer performance

levels.

A differentiating feature of our new system versus previous ones is the use of

globally-shared state in determining function allocation and scheduling. Our alloca-

tion tool periodically identifies changes in required VNF deployment, assembles the

components from available libraries, and dynamically reconfigures the component FP-

GAs and VMs that implement the network functions. Our prototype network function

virtualization environment is assessed using Intel DE5 FPGA boards, microprocessor-

based VirtualBox2 middleboxes, and a 10 Gigabit-per-second (Gbps) SDN network

switch. The system is shown to be scalable both in middlebox count and quantity of

shared state.

In the second part of this thesis, we describe a new session-level approach for

dynamic service function chaining in heterogeneous NFV systems. FPGAs provide

an ideal platform for network functions implemented in middleboxes due to their par-

allelism, specialization, and adaptability. However, integrating both processor and

FPGA-based middleboxes into a network can be a challenge. Network traffic must

be steered through these heterogeneous middleboxes in a distributed fashion at the

right time. We explore a new session-level approach to solve this challenge. Our

2https://www.virtualbox.org/

6

new approach steers traffic along middlebox service chains by deploying distributed

agents on middleboxes, which avoids reliance on a central controller. We implement

agents on both FPGA- and processor-based middleboxes. Agents steer packets of

individual sessions through corresponding service chains without any alterations to

end-host applications, middlebox applications, or IP routing. Agents can reconfigure

a service chain by inserting/removing middleboxes in the chain. The FPGA-based

agent cooperates with a partial reconfiguration IP core to manage the dynamic recon-

figuration of middlebox functions during service chain reconfiguration. We verify our

new approach with QUIC protocol sessions and show the benefits of implementing our

agents with FPGA circuits versus software-based implementations. Our session-level

approach successfully reconfigures service chains for individual QUIC sessions.

1.3 Thesis Outline

The remainder of this thesis document is organized as follows: In Chapter 2, we

introduce the motivation and necessary background material for this thesis. Back-

ground on network function virtualization, software-defined networking, FPGA ar-

chitecture, the application of FPGAs in NFV systems, and service function chaining

are described. Finally, background on hardware virtualization and Docker platform

are provided.

In Chapter 3, we introduce the first major contribution of this dissertation - a new

heterogeneous hardware-software NFV platform called CoNFV that provides scalabil-

ity and programmability while supporting significant hardware-level parallelism and

reconfiguration. We first describe the framework design and implementation of our

system, highlight the novel state sharing mechanism across middleboxes, and present

the methods and procedures to dynamically reconfigure NFV resources in response to

the network environment changes. In the next section, we detail the implementation

of four high-performance FPGA-based VNF modules. Next, this chapter presents

7

the implementation details of the global state table which is used for cross-middlebox

state sharing. Our evaluation of the system, presented in the last section, shows

that FPGA-based VNF modules have significant performance advantages over corre-

sponding software implementations. Our system is shown to be scalable for collec-

tions of network functions exceeding one million shared states. A function migration

performed with FPGA full reconfiguration and VM thread creation takes about 12

seconds in our NFV platform.

In Chapter 4, we introduce FPGA partial reconfiguration to the NFV platform.

Multiple programmable logic regions on the same FPGA chip can be individually

reconfigured to different VNF instances while the other parts of the FPGA circuit are

still functional during the partial reconfiguration process. We describe a performance

and resource model for computation resources (CRs) in an NFV system and present

our performance-aware VNF deployment algorithm which includes offline initializa-

tion and online reallocation of VNF instances. Our evaluation shows that partial

reconfiguration can accelerate the migration of FPGA-based VNF modules by a fac-

tor of 15. Our algorithm can effectively adjust the deployment of VNF instances on

available NFV resources in response to the network traffic load changes.

In Chapter 5, we introduce a new session-level approach that can be used to

establish inter-domain service chains for QUIC protocol sessions, and reconfigure the

service chains across a range of FPGA- and processor-based middleboxes. We first

present the architecture of our session-level approach. Then, we explain how to use our

approach to dynamically reconfigure a service chain. In the next section, we describe

the details of implementing this approach on an FPGA. Finally, we evaluate our

method with three experiments using both FPGA- and processor-based middleboxes.

In Chapter 6, we summarize this thesis work and provide directions for future

work.

8

CHAPTER 2

BACKGROUND

2.1 Network Function Virtualization

The term network function virtualization (NFV) was conceived in 2012 by a

specification group, part of the European Telecommunications Standards Institute

(ETSI) [14]. The concept of NFV originated from service providers who wanted to

make adding new network functions and applications easier to use and faster. NFV

provides a way to create, distribute, and operate networking services. It virtualizes an

entire class of network node (or middleware) functions into building blocks that may

be connected, or chained, together to provide a range of networking services. Typical

network functions include border controllers (such as firewalls, load balancers, and

wide-area network (WAN) accelerators) that protect a network.

The NFV framework consists of three main components: virtualized network func-

tions (VNFs), network function virtualization infrastructure (NFVI), and network

function virtualization management and orchestration architecture framework (NFV-

MANO Architecture Framework) [15]. Figure 2.1 shows the high-level NFV frame-

work. The VNFs are typically software implementations of network functions that

can be deployed on a NFVI. The NFVI is the totality of all hardware and software

components that build the environment where VNFs are deployed. The NFV-MANO

is the collection of all functional blocks, data repositories used by these blocks, and

reference points and interfaces through which these functional blocks exchange infor-

mation for the purpose of managing and orchestrating NFVI and VNFs.

9

VNF VNF VNF VNF VNF

Virtualized Network Functions (VNFs)

NFV Infrastructure (NFVI)

Virtualization Layer

Computer Storage Network

Hardware Resources

Virtual
Compute

Virtual
Storage

Virtual
Network

NFV
Management

and
Orchestration

Figure 2.1: High-level NFV framework

Prior to NFV, a network border controller typically consisted of a collection of cus-

tom hardware appliances, each of which was designed for a specific network function.

With the advance of hardware virtualization technology, it became possible to de-

compose traditional network border controller functions into virtual machines (VMs)

running different software, and eventually into reconfigurable FPGA components.

When designing and developing the software and FPGA circuits that provide VNFs,

it is possible to break operations into components and package those components into

one or more functions. To provide isolation among network functions customized for

each customer, it is important to install each component into a resource that can be

fairly shared. Programmable middleboxes are often hosted in one or more physical

nodes consisting of commodity hardware. They are connected by tunnels to satisfy

the requirements of a customer. For example, each customer might provide a policy

rule set for its firewall and install those rule sets in its own middlebox. In addition to

10

the firewall, the customer might install a wide area network (WAN) accelerator that

is installed in the same or a different middlebox.

Software-based network function virtualization has mainly focused on the control

and management of middlebox functions. Qazi et al. [62] employed software-defined

networking (SDN) principles to enforce policies for traffic steering. Sherry et al. [70]

proposed to use cloud services to perform network functions. Gember et al. [21]

aimed to provide mechanisms for tenants to specify their middlebox needs, and au-

tomatically deploy and scale middleboxes that maximize performance. A number of

studies [22, 48] have focused on designing software-based programmable middleboxes

in a virtualized environment. Although software-based middleboxes are flexible, the

parallelism and specialization of hardware may be needed for high throughput func-

tions.

2.2 Software-Defined Networking

Software-defined networking (SDN) enables fast response to network changes by

managing switch-based traffic from a centralized control console. An SDN instance

consists of three major parts: application, control plane, and data plane (Figure 2.2).

The application label indicates diverse network functions to satisfy specific demands,

such as a security mechanism [71] or a network measurement solution [89]. Applica-

tions communicate with a controller at the control plane via the northbound interface

of the control plane. The controller uses the southbound interface of the SDN-enabled

switch to connect to the data plane. The data plane is the part that supports a shared

protocol (e.g., OpenFlow [49]) with the controller and handles packets based on the

configurations that are manipulated by the controller.

SDN principles can be traced back to 2004 when the Internet Engineering Task

Force (IETF) began considering various ways to decouple the control plane of a

network from the data plane that forwards network traffic [87]. Early interest led to

11

Programmable Switches

Network Controller

Applications
E.g., Security, Network management

Data
Plane

Control
Plane

Northbound API

Southbound API
E.g., OpenFlow

Application
Layer

Figure 2.2: SDN architecture concept

the creation of OpenFlow from the Ethane project [10]. Many researchers point to

OpenFlow as being synonymous with SDN. However, OpenFlow is an open standard

for a communications protocol that enables a controller to interact with switches, as

shown in Figure 2.2. OpenFlow is not the only protocol available or in development

for SDN.

NFV is complementary to SDN but not dependent on it (or vice-versa). NFV

can be implemented without an SDN being required, although the two concepts and

solutions can be combined, and potentially greater value accrued [14]. An SDN is a

critical step on the path to a modernized network, but many services, such as routing,

wide area network (WAN) optimization and security are still tied to the underlying

hardware. NFV addresses this problem by decoupling the network function from the

hardware and virtualizing it, allowing it to be run in a virtual machine or as a recon-

figurable circuit on FPGA. For NFV, SDN can help to enhance performance, simplify

compatibility with existing deployments, and facilitate operation and maintenance

procedures.

12

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O I/O I/O I/O

I/O I/O I/O I/O

Figure 2.3: FPGA architecture

2.3 Overview of FPGA Technology

An FPGA is an integrated circuit that can be electrically programmed in the field

to become almost any kind of digital circuit or system [40]. In contrast to an ASIC

where the circuit behavior is permanently fabricated into the silicon, the behavior of

an FPGA is reconfigurable after device fabrication. This flexibility is attributed to

internal programmable logic blocks and routing circuitry [40]. Compared to ASICs,

FPGAs require less time and money to achieve an initial working design, getting

designs to market more quickly. However, the enhanced flexibility of FPGAs makes

them larger, slower, and more power hungry than their ASIC counterparts [39].

The most common SRAM-based FPGA architectures consist of configurable logic

blocks (CLBs) which implement logic functions, programmable routing to intercon-

nect these functions and I/O blocks to make off-chip connections (Figure 2.3) [40]. A

13

Synthesis

Logic Optimization

Placement

Routing

Bitstream Generation

High-Level Circuit
Description (HDL)

Configure FPGA with
Bitstream

Figure 2.4: FPGA application development flow

CLB is the basic logic resource in an FPGA. CLBs are generally composed of three

basic components: lookup tables (LUTs), flip-flops, and multiplexers [2]. FPGA

CLBs are typically interconnected with programmable routing circuitry that runs

horizontally and vertically across the device. State-of-the-art FPGAs also integrate

blocks of internal static RAM (SRAM), digital signal processing blocks (DSPs), dig-

ital clock managers (DCMs), high speed I/O interfaces and hardened networking

protocol blocks such as Gigabit Ethernet and PCI Express cores [80].

By using these pre-built CLBs and programmable routing channels, developers

can implement custom hardware functionality on FPGAs as needed. The FPGAs are

programmed and configured using a hardware description language (HDL) such as

Verilog and VHDL. After finishing the HDL design, the developer uses a computer-

aided design (CAD) tool (e.g., Quartus Prime [30] for Intel FPGAs and Vivado [86]

for Xilinx FPGAs) to translate the hardware description to an optimized technology-

14

mapped netlist. The netlist is placed and routed for the FPGA device architecture

under constraints of area, clock period and power. Finally, a bitstream is generated

for target FPGA device programming. A typical FPGA application development flow

is illustrated in Figure 2.4.

2.4 FPGAs in NFV

Reconfigurable logic provides an ideal platform for network functions due to the

parallelism, specialization, and adaptability offered by FPGA devices [82]. These

characteristics match well with the multi Gigabit-per-second throughput constraints

frequently imposed on networking infrastructure and the need for frequent updates

required by changing packet analysis and filtering metrics. As FPGAs continue to be

integrated into cloud computing environments [9] and data centers [61], their use in

network and application processing will continue to grow.

A number of FPGA-based platforms have been deployed for network applica-

tions involving performance improvement, load balancing, and reliability. Song and

Lockwood [73] demonstrated the effectiveness of using a ternary content-addressable

memory (TCAM) for data lookups in packet classification. This FPGA-based TCAM

structure was used to exactly match a series of predefined prefixes and port numbers.

A packet classifier [35] was used in a decision-tree-based, 2-D multi-pipeline architec-

ture in a Virtex 5 device to obtain up to 80 Gbps throughput. A wide range of FPGA-

based network intrusion detection systems have been implemented using CAMs [24],

shift and compare circuits [7, 60], and Bloom filters [12]. FPGA logic allows for the

implementation of a massive number of parallel matching circuits and Bloom filter

hash functions that can be customized to a changing set of matching rules, including

the entire SNORT NIDS ruleset [60]. Hardware-based functions for ruleset match-

ing can easily be synthesized from a high-level language, such as C. Although DDoS

prevention using FPGAs has received less attention than packet classification and

15

NIDS, worm identification and matching circuits have been implemented in FPGAs

that operate at line rates [46].

Over the past five years, increasingly more complex and flexible NFV systems

that support VMs and FPGAs have been developed. Kachris et al. [36] provide an

analysis of the potential use of FPGA reconfiguration to dynamically support func-

tions such as firewalls, packet parsing, IP address lookup, deep packet inspection, and

virus scanning. A comprehensive system [78] takes advantage of the flexibility and

on-the-fly reconfigurability of FPGA and CPU resources within a cloud data center.

This approach builds upon OpenStack resource management functions to dynami-

cally allocate both types of resources. The system supports application programming

interfaces (APIs) [45] and implements a collection of string-matching functions. Ge et

al. [19] also use OpenStack with partial FPGA reconfiguration to support deep packet

inspection and network address translation (NAT). Nobach et al. [57] developed a sys-

tem that can move functions between microprocessors and FPGAs on demand. State

migration is an important aspect of the work [55]. The Hyper system [75] uses a global

mediator to hide middlebox resource heterogeneity when assigning VNFs to resources.

Although these works are comprehensive and build on OpenStack resources, global

state management is not directly addressed or used to allocate NFV resources for the

available functions. State and configuration management for subnetwork FPGAs can

be limited by a lack of global state coordination support and the inability to swap

functions using network-wide information.

2.5 Service Function Chaining

Service function chaining (SFC) [27] is a method to steer traffic through a set of

intermediate services provided by diverse middleboxes to compose complex network

services. Traditionally SFC deployments are static and rely on network configurations

to stitch middleboxes together. As NFV and software-defined networking (SDN)

16

technologies mature, dynamically-composed service chains and fine-grained packet

forwarding become possible.

Previous research efforts have implemented service function chaining. A num-

ber of solutions steer network traffic by controlling network elements (e.g. switches).

Stratos [20] and E2 [59] use fine-grained forwarding rules to build static service chains

within clouds. OpenNF [22] and Split-Merge [65] provide dynamic service chaining

by updating packet forwarding rules in SDN switches. These solutions rely on log-

ically centralized controllers to install and update forwarding rules, inheriting the

shortcomings of using a central controller. It is difficult to outsource middleboxes to

the cloud since one controller cannot control the entire path. Reliance on a central

controller brings the risk that a controller failure may lead to errors in the distributed

network. When a controller updates forwarding rules due to changes in policy, topol-

ogy, or load, the paths of ongoing sessions may be changed, so that packets in the

same sessions will not be able to traverse the same middleboxes. In addition, since all

forwarding rules are determined by the central controller, middleboxes do not have

the ability to directly select a specific service chain for their outgoing packets.

The weakness of the central controller approach can be overcome by using a

session-level solution. Key session-level functions are performed by the middleboxes,

providing scalability and control decentralization. Existing protocols for session-level

service chaining include Network Service Header (NSH) [63], Segment Routing Header

(SRH) [17], and Dysco [90]. NSH supports service chaining encapsulation without the

use of forwarding rules. This protocol has received widespread attention from both

academia and industry [38, 64, 85]. Despite the popularity of the NSH protocol, it is

an intra-domain format and does not support dynamic reconfiguration.

SRH [1] encodes a list of IPv6 addresses of virtual network functions (VNFs) in

packet headers to perform SFC. This approach requires service functions to support

the header and does not support dynamic reconfiguration. Dysco is a session-level

17

protocol that steers the traffic of a TCP session through an SFC. Like our approach,

it can dynamically reconfigure the SFC without requiring changes to IP routing,

end-host applications, or middlebox applications. Dysco does not support connec-

tionless protocols or UDP-based session protocols, such as QUIC and has not been

implemented with FPGAs.

2.6 Hardware Virtualization and Docker Containers

In a traditional physical computing environment, software such as an OS or en-

terprise application has direct access to the underlying computer hardware and com-

ponents, including the processor, memory, storage, certain chipsets and OS driver

versions. This approach makes it difficult to move or reinstall software on different

platforms. Hardware virtualization [8] helps decouple software from computer hard-

ware. It provides a logical view of a physical resource to entities that require shared

access to the resource.

Three types of hardware virtualization are full virtualization, para-virtualization,

and OS-level virtualization [43]. In full virtualization (Figure 2.5(a)), the virtual

machine simulates hardware to allow unmodified guest code targeted to the same

instruction set to be run in isolation. An example of a full virtualization platform

is VirtualBox [11]. In para-virtualization (Figure 2.5(b)), the virtual machine does

not necessarily simulate hardware, but instead offers a special API that can be used

by modifying the guest OS [41]. OS-level virtualization (Figure 2.5(c)) runs applica-

tions and replicas of the same operating system on the same server. The guest OS

environments share the same instance of the OS as the host system. Thus, the same

OS kernel is also used to implement the guest environments, and the applications

running in a given guest environment view it as a stand-alone system [37].

Docker [51] is a computer program that performs OS-level virtualization. It is

designed to make it easy to create, deploy, and run applications by using containers.

18

Hardware

Virtual Machine Moniter

Application

Virtual Machine

Unmodified
Guest OS

Application

Virtual Machine

Unmodified
Guest OS

Hardware

Hypervisor

Application

Modified
Guest OS

Application

Modified
Guest OS

Hardware

Shared OS

Application

Container

Application

Container

(a) (b) (c)

Figure 2.5: (a) Full virtualization (b) Para-virtualization (c) OS-level virtualization

Containers are isolated from each other and bundle their own application, tools,

libraries and configuration files. They can communicate with each other through

well-defined channels. All containers are run by a single operating-system kernel and

are thus more lightweight than virtual machines.

19

CHAPTER 3

SCALABLE NETWORK FUNCTION VIRTUALIZATION
FOR HETEROGENEOUS MIDDLEBOXES

Over the past decade, a wide-ranging collection of network functions in middle-

boxes has been used to accommodate the needs of network users. Although the use of

general-purpose processors has been shown to be feasible for this purpose, the serial

nature of microprocessors limits NFV performance. In this chapter, we describe a new

heterogeneous hardware-software approach to NFV construction that provides scal-

ability and programmability, while supporting significant hardware-level parallelism

and reconfiguration. Our computing platform uses both FPGAs and microprocessors

to implement numerous NFV operations that can be dynamically customized to spe-

cific network flow needs. As the number of required functions and their characteristics

change, the hardware in the FPGA is automatically reconfigured to support the up-

dated requirements. Traffic management and hardware reconfiguration functions are

performed by a global coordinator which allows for the rapid sharing of middlebox

state and continuous evaluation of network function needs.

The remainder of this chapter is organized as follows. Section 3.1 presents our

scalable hardware and software system. In Section 3.2, we present the implementa-

tion details of the framework. Section 3.4 describes the details of four FPGA-based

middlebox applications. We discuss the methodologies of state sharing and traffic

management respectively in Section 3.3 and Section 3.5. Finally, in Section 3.6, we

provide an evaluation of our heterogeneous hardware-software NFV platform.

20

3.1 System Design

3.1.1 System Overview

It is common for middleboxes positioned across a subnetwork to deploy distributed

functions using commodity hardware, custom hardware, virtual machines, or recon-

figurable hardware. Information from multiple packet flows must often be utilized for

these stateful, distributed functions. Information is collected locally during packet

processing from flows that pass through the middlebox. For a variety of applications,

such as NAT and SQL injection (SQLi) attack detection, a distributed approach al-

lows for parallel analysis of multiple flows, each collecting correlated information. The

scalable CoNFV system collects global state information and shares this information

among distributed FPGA and microprocessor packet processors. The CoNFV coor-

dinator gives each middlebox access to global state information using programmable

interfaces. Subsets of this information are cached in the middleboxes for some appli-

cations.

Middlebox and coordinator functionality can be quickly updated as network func-

tion needs change. For example, many NFV operations can initially be assigned to

software for low and moderate traffic loads. As network traffic and computational

workloads increase for a function, instances can be migrated to FPGA-based hard-

ware. A traffic and workload decrease for a specific function can have the opposite

effect. The allocation of functions to middleboxes is dynamically assessed and or-

chestrated by the coordinator as state-based network conditions are processed. The

coordinator automatically reallocates resources as needed.

An overview of our global state-sharing system for heterogeneous middleboxes is

shown in Figure 3.1. Microprocessor- and FPGA-based (DE5) middleboxes are dis-

tributed across the network. The middleboxes share state information through TCP

connections to the CoNFV coordinator. As shown in Section 3.6, the coordinator is

able to handle state for a scalable set of middleboxes, with minimal packet processing

21

ProcessorProcessor

ProcessorProcessor

CoordinatorCoordinator

Firewall NAT

Firewall NAT

FPGA

FPGA

IDS

IDS

Data Server

Data Server

End UserEnd User

End UserEnd User

End UserEnd User

Control Switch
Control Plane

Data Plane

CoNFV

SDN SwitchSDN Switch

Figure 3.1: Overview of the CoNFV configurable NFV system using processor- and
FPGA-based (DE5) middleboxes

slowdown. SDN switches are used to control middlebox access and provide support

for chaining. The network setup represents a number of interconnect configurations,

including those found in data centers.

Figure 3.2 shows the framework of the system. The coordinator stores global state

values in a table as a set of key-value pairs. Each middlebox can access global state

(GV) using a key. The state manager, a software module which can be configured

for each application, can both retrieve and update state. The resource evaluator as-

sesses the current utilization of middlebox resources in response to messages and state

variables and can choose to perform middlebox resource rebalancing. The configura-

tion manager creates an entry for each enrolled middlebox in the resource table and

updates their properties according to the information collected by the resource eval-

22

Configuration
 Manager

State
 Manager

Resource
Evaluator

StateKey

State Table

Interface

Configuration
Proxy

State
Proxy

Fixed

Packet
Processor

MiddleBox 1

Configurable

Interface

Configuration
Proxy

State
Proxy

Fixed

MiddleBox N

Configurable

GS1

GS2

GV1

GV2

... ...
PropertiesID

Resource Table

0

1

St0

St1

... ...

Tp0

Tp1

...

...

Packet
Processors

Packet
Processor
Packet

Processors

SDN Switch
Controller

Coordinator
State/Config Info State/Config Info

Figure 3.2: Middleboxes and global coordinator interaction. Middleboxes can be
either processor- or FPGA-based

uator. These properties include the resource state (St idle/active) and throughput

(Tp). The configuration manager coordinates the resource assignment based on the

global middlebox information recorded in the resource table and triggers an in-line

SDN switch controller to steer traffic flows running through the SDN switch.

Each middlebox contains one or more packet processors and an associated state

proxy module. After a state request originates in the packet processor, the state

proxy module generates and sends state requests to the coordinator and receives

state updates from the coordinator. The configuration proxy module coordinates

either software thread activation/deactivation for packet processors or hardware re-

23

Figure 3.3: DE5-Net FPGA board (top)

configuration for FPGA packet processors. A control interface allows for interaction

with the coordinator. The specific functions of these modules are detailed in Sec-

tion 3.2.

3.1.2 DE5-Net FPGA Development Kit

The FPGA-based middleboxes in our system were built on the Terasic DE5-Net

FPGA board [80]. Figure 3.3 shows the top view of the board. The DE5 is empowered

with the top-of-the-line Intel 28-nm Stratix V GX FPGA. The Stratix V GX FPGA

features integrated transceivers that transfer at a maximum of 12.5 Gbps, allowing

the DE5 to be fully compliant with version 3.0 of the PCI Express standard, as well

as allowing an ultra low-latency, straight connections to four external 10G SFP+

modules. Considering the user demands of high capacity and high speed for memory

and storage, the DE5 also delivers with two independent banks of DDR3 SO-DIMM

RAM, four independent banks of QDRII+ SRAM, high-speed parallel flash memory,

and four SATA ports.

The specific version of the Stratix V FPGA we used in our project is 5SGXEA7N.

This FPGA includes 234,720 adaptive logic modules (ALMs), 2,560 20-Kbit (M20K)

24

embedded memory blocks, 256 variable precision DSP blocks, and 28 fractional phase-

locked loops (PLLs). The ALM is the basic building block of Stratix V devices.

An ALM has an 8-Input fracturable look-up table (LUT), two dedicated embedded

adders, and four dedicated registers. The hardware resources provided by the Stratix

V GX FPGA are totally sufficient for all of our designs.

3.1.3 Cross-Middlebox State Sharing

Our system relies on state sharing for two types of actions: function triggering

and state retrieval. Inspection functions evaluate network traffic and examine pack-

ets for monitoring, intrusion detection, and identification of other invasive attacks.

Manipulation functions examine and modify flows by dropping, updating or creating

new packets. State sharing for these two types of flows proceeds as follows:

Trigger state: For inspection functions, data packets are passively inspected as

they enter a middlebox for specific characteristics of attacks such as DDoS or SQLi.

If an event is observed that requires a global state update, state information both

in the middlebox and in the coordinator are updated. As the state is updated in

the centralized state table on the coordinator, it is checked by the resource evaluator

to determine if remediation elsewhere in the network is needed. In Section 3.4, we

describe how CoNFV can be used to address distributed DDoS and SQLi attacks.

A firewall or packet filter can be enabled at one or more points in the network in

response.

Retrieval state: For manipulation functions, global states are updated during

packet processing. Middleboxes that require retrieved state generally manipulate

packets. In the case of state retrieval, individual packet processors request state

information if it is not available locally. The coordinator provides a global repository

for state information and can update state as needed. A common use of state retrieval

is for NAT. When NAT receives the first packet of a flow it creates state which

25

determines the translation from an external (IP address, port) pair to an internal (IP

address, port) pair on the local subnetwork. This information must be shared across

all middleboxes performing NAT translation for the subnetwork to avoid (IP address,

port) assignment overlap. In CoNFV, translation information (global state) is stored

in the coordinator. If a middlebox receives a packet and its translation information

is not stored locally, the information can be obtained from the centralized repository.

3.1.4 Dynamic Resource Management

NFV resources must be managed using a global view of function deployment.

To manage all NFV resources in an organized manner, the coordinator creates a

resource table that records the current working state of all accessible resources in the

network. The working state is different from the sharing state we discussed in the last

subsection. It includes the operating status (i.e. idle or occupied) and the demand

versus supply of computing power for NFV resources at a particular moment. One

form of computing power is throughput.

In response to computing power mismatching or changing threats or monitoring

goals, resources are reallocated under the control of the configuration manager in

the coordinator. This unit coordinates the migration, creation, and destruction of

functions in real-time to meet functional needs. For processor-based middleboxes,

VM threads are created or destroyed in response to stimuli from the coordinator. For

FPGA-based systems, portions of the FPGA circuitry are swapped to change func-

tionality. As shown in Figure 3.2, FPGA resources are split into fixed resources that

manage function interfaces and packet processing resources that can be dynamically

reconfigured. For example, in response to the configuration proxy, portions of the

FPGAs can be swapped.

After the rebalancing of the resource assignment, traffic flows need to be steered to

corresponding middleboxes. The configuration manager coordinates the flow steering

26

in collaboration with the SDN switch controller by rewriting the flow table located in

the under-controlled SDN switch. OpenFlow, a standard protocol for enabling SDN,

is leveraged.

3.2 Framework Implementation

Our coordinator and middlebox framework includes commodity processor-based

components, FPGA boards and an SDN switch. The coordinator is implemented

using a processor-based Intel Duo server (2.66 GHz, 4GB). Processor-based middle-

boxes are implemented using a twelve-core Intel Xeon workstation (2.4 GHz, 32 GB

SDRAM, two 10 Gbps NICs, and four 1 Gbps NICs). FPGA-based middleboxes

are implemented using Terasic DE5 boards that include Stratix V FPGAs. TCP

sockets are used to enable middlebox/coordinator interactions. The communication

between the coordinator and the middleboxes is sufficiently frequent that the coor-

dinator maintains a live connection for each middlebox since it is costly to initialize

a new connection for each state operation. The SDN switch is a Netgear ProSafe

M4300-8X8F 10 Gbps switch with 16 data ports and a 1 Gbps control port. The

coordinator and SDN switch are interconnected via a 1 Gbps link.

A high-level view of processor- and FPGA-based middleboxes appears in Fig-

ure 3.4. In this configuration, network functions with the highest throughput and

lowest latency are assigned to the FPGA on the DE5 board. The DE5 contains 16

GB SDRAM, 256 MB flash, a Stratix V 5SGXEA7N FPGA and four 10 Gbps Eth-

ernet ports. Three 10 Gbps ports are used for data input and output and the fourth

is used for 1 Gbps communication with the coordinator.

When the number of needed middleboxes exceeds available FPGA hardware, ad-

ditional middleboxes can be spawned in software on the PC servers. A PC server is

sliced into virtual machines using VirtualBox which allows full virtualization of a guest

operating system. VirtualBox allows multiple isolated user spaces (virtual machines).

27

NIOS II

Shared
Memory

Packet
Processors

32 MB
SRAM

16 GB
SDRAM

256 MB
Flash

GE
MAC

10G
MAC

10G
MAC

Stratix V FPGA

GE
PHY

10G
PHY

10G
PHY

DE5-Net

1
 G

b
&

1
0

 G
b

 E
th

e
rn

e
t

In
te

rf
ac

e
Virtual

Machine

Virtual
Machine

Virtual
Machine

Linux
Kernel
Driver

S/W
Bridge

10G
NIC I/F

10G
NIC I/F

1G
NIC I/F

VirtualBox

Processor-based MiddleBox

1
 G

b
&

1
0

 G
b

 E
th

e
rn

e
t

In
te

rf
ac

e

10G
PHY

10G
MAC

Figure 3.4: High-level overview of processor- (top) and FPGA-based (bottom) middle-
boxes in CoNFV

Each virtual machine operates like a standalone server. Software middleboxes are ef-

fectively isolated from each other in separate VirtualBox VMs that guarantee a fair

share of CPU cycles and physical memory to each middlebox. Hardware and software

middlebox functions can be customized based on the designer’s specifications.

3.2.1 FPGA-based Middlebox Platform

A detailed view of the FPGA platform that can accommodate multiple packet

processing middlebox functions is shown in Figure 3.5. We build an on-chip system

by using the Qsys [32] system integration tool and instantiate necessary intellectual

28

`

CPU
(NIOS II)

1G MAC
FLASH

Interface

SDRAM
Interface

Shared RAM
(2⨯64KB) IRQ

QSYS

Packet
Processor

Packet
Processor

10G MAC
1~3

PHY
SFP+ 0

PHY
SFP+ 1

PHY
SFP+ 2

PHY
SFP+ 3

Ethernet
Interface

FLASH

SDRAM

Stratix V FPGA
DE5-Net Board

NI

B
u

ffe
r

SoC

Data
32

Addr
14 8Avalon

Streaming
Interface

Avalon
Interface

CTRL Mask

8

Figure 3.5: Detailed FPGA implementation for multiple middlebox packet processors

property (IP) functions in it. A Nios II [31] soft microprocessor is used as the inter-

face, state proxy, and configuration proxy. This resource can communicate with the

coordinator via a TCP connection implemented on a 1 Gbps link through a switch.

The interface between the Nios II and one or more middlebox packet processors takes

place via shared memory, a control register and an interrupt request (IRQ) controller

accessed with the Avalon interface [33]. The packet processors implement functions

in conjunction with a network interface (NI) that includes media access controller

(MAC) IP cores, data queues and port controllers. Incoming data from the PHY are

placed in the input queues. Processed packets are sent to the output queues from

which they are forwarded to the physical Ethernet interfaces.

Qsys is the next-generation system integration tool in Intel Quartus Prime soft-

ware. It saves significant time and effort in the FPGA design process by automati-

cally generating interconnect logic to connect IP functions and subsystems. In our

29

FPGA platform, we use Qsys to build the main body of the fixed FPGA circuitry

which includes two subsystems: the network interface (NI) subsystem and the Nios

II-based system on chip (SoC) subsystem (Figure 3.5). The NI subsystem contains

one 1G MAC IP core, three 10G MAC IP cores, and a direct memory access (DMA)

controller used to manage the data switching between the 1G MAC and the Nios II

microprocessor connected through a data buffer. Three 10G MAC cores are connected

individually to different packet processors via the Avalon streaming interface [33].

In the SoC subsystem, we utilize the Nios II soft microprocessor working as the

CPU of the system. The Nios II is a 32-bit RISC embedded-processor architecture.

To support its working, necessary hardware peripherals are required and connected to

the Nios II via the Avalon interface. Two off-chip memories (SDRAM, flash memory)

are accessed by the Nios II via memory interface controllers. SDRAM is used for data

and instructions, and flash memory is used to save the boot code and other arbitrary

data we want to keep after power off. We developd embedded software working

on Nios II microprocessor by using the MicroC/OS-II [3] and NicheStack TCP/IP

Stack [4]. The software operates as a TCP client, a state proxy and a configuration

proxy for all packet processors in one middlebox.

The implementation shown in Figure 3.5 illustrates the signal interfaces associated

with the middlebox packet processors. These interfaces include data, address, and

control connections to the shared memory and the network interface. These inter-

faces represent an effective boundary for partial FPGA reconfiguration of middlebox

functionality. For this project, four middlebox functions for NAT, SQLi detection,

DDoS detection, and packet firewall have been created with the interface, allowing

for interoperability.

30

3.2.2 Coordinator Implementation

3.2.2.1 Coordinator and SDN Switch Initialization

During system operation, middleboxes can either be active or idle. To indicate

availability, a middlebox informs the coordinator via an enroll message that includes

information about the middleboxs compute capabilities. Prior to use, a middlebox

must be registered with the coordinator and the SDN switch must be configured

to forward flows to required destination middlebox. The coordinator’s middlebox

registration function, which is implemented in the configuration manager and SDN

switch controller blocks, performs this function.

The configuration manager maintains a resource table for each middlebox. The ta-

ble contains the following per-middlebox information: device ID, device status, device

type, available NFV functions, assigned switch ports, and supply/demand processing

capacities of the current middlebox. Upon system startup, the configuration manager

sets the device status and other information in the resource table as enroll messages

from middleboxes are received. When a middlebox completes operation in response to

a message from the coordinator or an unplanned service interruption, an exit message

is sent to the coordinator.

OpenFlow protocol is used to communicate between the coordinator and the SDN

switch. The SDN switch controller in the coordinator oversees setting ports in the

SDN switch via a series of flow modification (flow-mod) messages. These messages

configure the switch by writing values into the flow table in the switch. Entries in the

table are used to route incoming packets based on header information. During system

startup, the switch sends its operational parameters to the SDN switch controller. If

a packet arrives with a header that does not match an entry in the flow table, a

default rule will broadcast the packet to the switch output ports. A reply message is

used to record input and output port information and source and destination MAC

31

StateKey

Centralized State Table

GS1

GS2

GV1

GV2

... ...
State Manager

Resource
Evaluator

State Proxy

Packet Processor

State Proxy

Packet Processor

Update State/
Create State

Check State

Update State Trigger Event

State State

Middleboxes

Coordinator

Incoming
Packets

Outgoing
Packets

Incoming
Packets

Outgoing
Packets

Figure 3.6: Trigger state operations

addresses in the flow table. Port information is also forwarded to the SDN switch

controller.

3.2.2.2 Trigger State

A state table of trigger states is located in the coordinator. Middleboxes update

trigger states through the state proxy during packet processing. Inside the coordi-

nator, the state manager updates or creates trigger states according to the received

state from middleboxes. As Figure 3.6 shows, when a packet comes into a middlebox,

the packet processor inspects the packet. According to the semantics of the network

32

function, the middlebox may send the packet out and the inspection result might lead

to a state update. Whenever the state manager updates or creates a trigger state,

a state checker in the resource evaluator is triggered to detect malicious activities

based on the new state. If a malicious activity is detected, the associated reactions,

such as logging or notification, are engaged. Other middleboxes might be triggered

by the resource evaluator to take appropriate protective measures, such as filtering

the incoming packets.

Trigger states do not directly affect the packet processing. They are maintained

to detect malicious activities. The semantics of detections are determined by the

network function designer and provided to the coordinator for use by the resource

evaluator.

3.2.2.3 State Retrieval

Asynchronous state operations used in our system allow a packet processor to

process other packets without blocking while state is retrieved from the coordinator.

However, asynchronous state operations might put packets out of order. For exam-

ple, if the processing of a packet does not need a state operation, the packet can be

processed immediately without waiting for the state return. Network functions that

satisfy this condition are not uncommon. For example, for NAT, every packet in a

flow requires the same mapping from one (IP address, port) pair to another (IP ad-

dress, port) pair. Packets with known translations can proceed while others wait for

translation information. During asynchronous state operation, the middlebox is able

to process, for instance, the next incoming packet first. When the state is returned

from the coordinator, the middlebox continues the processing of the previous packet.

Asynchronous state operations buffer packets that require coordinator lookups using

a packet buffer table. Figure 3.7 illustrates the procedure of asynchronous state op-

erations. The state proxy maintains a packet buffer table. Each packet that incurs a

33

StateKey

Centralized State Table

GS1

GS2

GV1

GV2

... ...

State Manager

Resource
Evaluator

State Proxy

Packet Processor

Retrieve State/
Update State

State

Middlebox

Coordinator

Incoming
Packets

Outgoing
Packets

Retrieve State/
Update State

PointerStateKey

Packet Buffer Table

K1

K2

... ...Retrieve State/
Update State

State & Packet

State

StateKey & Packet

Packet

Buffers

Figure 3.7: State retrieval operations

state operation is buffered in the table. Packets in the table are indexed by the keys

of global states. Then, when the state is returned, the associated packet is retrieved

from the table. If the table becomes full, an incoming packet may be dropped if it

requires a coordinator lookup.

During packet processing, state retrievals can be much more frequent than state

updates. In this case, it is beneficial to cache global states at middleboxes to reduce

remote retrieval delay. To cache states, the state proxy in each middlebox maintains

a cache table that stores the key-value pairs of states. When the packet processor

retrieves a state, the state proxy checks the cache table first. If it misses, the state

proxy retrieves the state from the coordinator. When the state returns, it is added

34

into the cache table. To record the locations of all local copies of state, the coordinator

maintains a set of locators for each state value in a duplication table.

To keep copies consistent, the coordinator collects two kinds of information: where

the copies of state are located and when the state is updated. When a state value

needs to be updated in the coordinator, an invalidation message is first sent to af-

fected middleboxes to clear stale values. Following acknowledgment messages from

the middleboxes, the new state value is written in the centralized state table. As a

result, local cache tables always either have a valid translation or must request an

up-to-date one from the global coordinator. For the NAT application, state table

invalidations only occur when the table is full.

3.2.3 Dynamic Reconfiguration

The assignment of VNFs to middleboxes is a dynamic process based on two factors,

the throughput requirements of data streams and threats, as assessed by the resource

evaluator in the coordinator. The DE5 provides a high-performance platform to

implement middleboxes. However, the choice of an FPGA platform for virtualization

does create scalability concerns. Not all middleboxes may contain an FPGA or there

may be insufficient resources to implement all needed middlebox functions in FPGAs.

As a result, our system allows for the seamless use of both hardware and software

middleboxes in the same system with the same coordinator interfaces and support

for VNF implementation of the same functions at different performance levels. Both

types of resources are considered for dynamic VNF allocation.

Although minor updates to the hardware middlebox through configuration regis-

ters can enable parallelism and provide flexibility, it may not be sufficient for substan-

tial changes in threats which require new hardware modules. As a result, techniques

are needed to trade off computation between hardware and software to best use re-

35

Source Sink

Sw
itch

Sw
itch

NIC
I/F

NIC
I/F

DE5
I/F

DE5
I/F

B
ridge

VM MiddleBox

VM MiddleBox

VM MiddleBox

B
ridge

Stratix V
FPGA

Figure 3.8: Multi-receiver setup for scalable NFV including dynamic FPGA reconfig-
uration

sources. This evaluation takes place under control of the configuration manager based

on feedback from the middleboxes.

Resource assessment - To assess the throughput performance of currently exe-

cuting VNFs, middleboxes send update messages to the coordinator with input rate

and output throughput statistics every 10 ms. The resource evaluator dynamically de-

termines the need for spawning, elimination, or migration of VNFs across middlebox

resources. The configuration manager in the coordinator may also receive a trigger

from the resource evaluator to consider middlebox resource allocation. The resource

table in the configuration manager is used to compare current resource deployment,

required middlebox computation, and the ability to accommodate triggers. A request

for VNF migration, spawning, or removal is added to a task queue in the coordinator

that is checked once every 0.1s.

Configuration update - To configure VNF functionality on a processor-based

or FPGA-based middlebox, a message is sent from the coordinator to the host system

with the required action and VNF specified. A software VNF middlebox is started in

36

an isolated VirtualBox. To support FPGA-based middlebox configuration, the FPGA

can be either partially or completely reconfigured. Both approaches are supported

in our system. Whole-chip FPGA programming on the DE5 is initiated by a trigger

signal sent from the FPGA to the MAX II CPLD used for configuration loading.

Multiple configurations for the FPGA are available in on-board flash memory. The

start address of the configuration image is specified in flash and used by the CPLD

to initiate configuration image loading into the FPGA. Before reconfiguration starts,

the Nios II can overwrite this start address so that the next FPGA image can be

changed. Once the new FPGA image has been loaded, the TCP connection between

the coordinator and the interface implemented in the Nios II is reinitialized. A more

effective approach for middlebox configuration is to swap one of the middlebox packet

processor modules in Figure 3.5, which is known as FPGA partial reconfiguration.

We will discuss this approach in detail in Chapter 4.

SDN switch configuration - Once the processor-based or FPGA-based middle-

box has been properly configured, the coordinator is notified and the configuration

manager and SDN switch controller work together to send flow modification mes-

sages to the SDN to modify source and destination port entries in the switch flow

table. These updates allow packet traffic to (or away from) the newly configured (or

stopped) middleboxes. Level 2 routing is used for packet transfer in this case.

In our system, traffic previously sent to a processor-based middlebox can be

rerouted to an FPGA-based middlebox due to an increase in required VNF through-

put. This action includes the activation of the FPGA VNF, reprogramming of the

SDN switch followed by processor-based VNF deactivation. The configuration man-

ager sends messages to the middleboxes to replace their current functions with alter-

native configurations and to the SDN switch to reroute affected traffic (Figure 3.8). A

detailed example using middlebox functionality migration is described in Section 3.6.

37

3.3 Scalability Considerations - Global State Table

3.3.1 Background

In a typical NFV system, various VNFs are deployed in networks for a variety

of purposes, e.g. monitoring, security, or performance optimization. These network

functions record the statistics or information about packets or flows during packet

processing. For the case that a network function is deployed at a single commodity or

specialized hardware, the states are maintained by the middlebox locally. However,

in a distributed middlebox environment, multiple middleboxes combine together to

work for the same network function. If the network function only requires per-flow

states for packet processing, the distributed middleboxes are able to independently

process their own flows and do not impact each other. But if the network function

requires multi-flow states that are related to the packet processing of multiple flows,

it is essential to share the multi-flow states among the distributed middleboxes.

The multi-flow states are global states. In our system, all global states are stored

in the global state table maintained by the state manager in coordinator. All middle-

boxes are able to access the state table through the APIs that are provided by the

state proxy in the middleboxes. The design and implementation of the global state

table in the coordinator are based on the work of Shao et al. [69]. Two types of state

operations (i.e. trigger and retrieval) are supported which have been introduced in

detail in Section 3.2.2. With the help of the global state table, our NFV system can

be scaled up easily. As a new hardware resource is added to the system, it is able

to use the APIs to fetch multi-flow states from the state table as it needs them. In

addition, our system also benefits from the global state table to make itself more

robust in the face of network environment changes. After resource reallocation in

response to changing threats or monitoring goals, network functions can retrieve the

flow states from the state table and quickly restore their functionality.

38

3.3.2 Global State Implementation

The global states are configured in the coordinator in response to the state con-

figuration messages sent by state proxies. The state configuration message has two

arguments: state name and state type. Different middleboxes can use the same state

name to access the same state table. The state type value determines what kind of

state operations can be performed. Three primitive states are supported: integer,

string and set.

• StateConfig (stName, stType)

The state table is abstracted as a data structure that supports the following three

state operations. Where “Key” is the state key while “State” is the update state that

is generated during the packet processing. “Op” indicates the operation identifier.

• void Check (Key, Op)

• state Update (Key, Op, State)

• state Retrieve (Key, Op)

After setting up the global state table, middleboxes can register events and set

the event trigger conditions in the coordinator via the event configuration message.

Each event has a unique name. The state name in the message indicates which state

table this event is associated with. The trigger conditions, i.e. threshold and period,

determine when and how often the event would happen. If the event is triggered, a

corresponding operation will be executed.

• EventConfig (evName, stName, Threshold, Period, Op)

3.3.3 Interactions with Global State Table

In our system, to enable the interactions between middleboxes and the coordi-

nator, we adopt TCP sockets for reliable communication. As the communication

39

between the coordinator and middleboxes is so frequent, a persistent connection with

each middlebox is maintained by the coordinator.

During packet processing, four messages are used for interactions as follows.

• StateUpdate (stName, Key, Op, State)

• StateRetrieve (stName, Key, Op)

• ReplyState (stName, Key, State)

• EventTrigger (evName, stName, Key, State)

The first two messages are sent by the state proxies to the coordinator. These

two messages use a key to update the state value of a specific entry in the global

state table or fetch the state value of the entry from the table. The type of state

value depends on the semantics of network functions. It is configured by the state

configuration message. According to the type of state value, different operations can

be executed on it. For example, if the state is an integer, the value of it can be

increased or decreased by the state update message. The operation in a state retrieve

message can have different meanings. In a NAT application case, the state proxy can

send a retrieve message to require the coordinator to create a new translation, save

it and return it, or search in the state table for an existing translation and send it

back.

The reply state message is sent by the coordinator in response to the state-retrieve

message. It includes the state value that a state proxy is querying. The event trigger

message is also sent by the coordinator. When the trigger condition of the event is

met, the event-trigger message is sent to middleboxes that use the same state name

to share a common global state table. Middleboxes can get to know the current state

value after receiving the event-trigger message and will take corresponding actions.

40

3.4 FPGA-based Middlebox Applications

For experimentation, four FPGA-based library modules which meet the require-

ments of the previous section were created and tested.

3.4.1 NAT Implementation

Network address translation (NAT) is a method of remapping one IP address

space (IP address, port) into another by modifying network address information in

the IP header of packets while they are in transit across a traffic routing device. The

original usage of this technique was as a shortcut to avoid the need to readdress every

host when a network was moved. In the face of IPv4 address exhaustion, NAT has

become a popular and essential tool in conserving global address space. It has also

been used as a mechanism for the transition between IPv4 and IPv6 addresses [74].

In our implementation, all translations are determined at the coordinator and

stored in the coordinator’s global state memory. Translation information is returned

to a requesting middlebox via a reply state message following a state fetch message.

The middlebox packet processor was implemented in FPGA logic while the state

proxy was implemented using a Nios II processor.

The blocks used in the FPGA-based NAT application are shown in Figure 3.9.

The interface signals on the left of the figure match the packet processor interface

signals shown in Figure 3.5. The NAT module allows other packets to be forwarded

while the middlebox waits for the NAT translation to arrive from the coordinator.

As a result, packet buffering is needed. In our implementation, eight 8K entry × 69

bits buffers are used for packet sizes ranging from 64 to 1,500 bytes. A buffer index

table, implemented as a hash table, is used to store the index of the buffers for specific

flows. The extraction module extracts the source address, source port, destination

address, destination port, and protocol information from the packet header to form a

key. For each flow, the key is used as the input to the buffer index table and the local

41

ARP Reply

ARP List

ARP_outside

ARP Reply

ARP List

ARP_outside

Interface with
Nios II System

Local NAT
Table

Extraction Module

Keys
NAT

Translation Buffer
Index

Flows

NAT_inbound

Buffer Index
Table

Flow Buffers
8X

Local NAT
Table

Extraction Module

Keys

NAT
Translation Buffer

Index

Flows

NAT_outbound

Buffer Index
Table

Flow Buffers
8X

ARP Reply

ARP List

ARP_inside

ARP Reply

ARP List

ARP_inside

NAT
Update

NAT
Fetch

NAT
Create

IP Flows

IP Flows

NAT

Inbound
Traffic Flows

Outbound
Traffic Flows

Control

Mask

IRQ

Rd/Wr

Addr

Data 14

32

8

8

Start/End of
Packet

Valid/Ready

Data/Empty

67
Error

Start/End of
Packet

Valid/Ready

Error

From/To
Nios II
System

Data/Empty

67

Figure 3.9: FPGA middlebox implementation of NAT application

NAT translation table (implemented as a hash table) of depth 4,096 entries. If the

translation is not found in the local NAT table, a NAT state fetch for the coordinator

is initiated by the state proxy. The round-trip time to fetch the translation from the

coordinator is about 0.2 million seconds.

A NAT update message provides the translation which is stored in the local NAT

table. Separate translation units are provided in the middlebox for inbound and

outbound subnet traffic. There is an ARP module designed for each unit. The ARP

module contains an ARP list (cache) and a reply module. The ARP list block allows

for the conversion of IP addresses to physical addresses and updates the physical

addresses for the output packets. The ARP reply block responses the ARP request

by sending a ARP reply packet which contains the link layer address mapping.

42

X3

X3

X1

X2

X3

X4

X2

X1

X4

10

10

10

00

01

00

00

H3 hash
functionkeys buckets

small CAM

Figure 3.10: Improved hash table implementation using CAM

In order to get the local NAT translation and the flow buffer index quickly, we

implemented these two tables as hash tables with a H3 hash function [66]. A hash

table uses a hash function to compute an index into an array of buckets or slots, from

which the desired value can be found. The pros and cons of a hash table are obvious,

its search speed is very fast (O(1)) but there may be hash collisions, which slow down

the search and introduce uncertainty in search time. To alleviate this problem, we

added a content-addressable memory (CAM) into the hash table module. As shown

in Figure 3.10, whenever a collision happens, the new entry will be added into the

CAM until the CAM is full, then the new entry will be added into the next empty

slot of the hash table. We add two extra bits to the head of each entry and save

them in the hash table. The first bit shows if the current slot is occupied and the

second bit shows if the entry in the current slot has been deleted. Since the search

speed of CAM is also O(1), combining the hash table and CAM does not reduce the

43

SQL Injection Detector

REME 0

REME 1

Regular Expression Match
Engines (REMEs) X4

Extraction
Module

Interface with
NIos II

Initialize

Detection
Result

Packet
Payload

Start/End of
Packet

Valid/Ready

Data/Empty

67Error

Control

Mask

IRQ

Rd/Wr

Addr

Data 14

32

8

8
From/To

Nios II
System

Traffic
Flows

REME 2

REME 3

URE

SRE

Matching
 Masks

char_in 1

REME

matchURE

URE

...
CAMCAMCAMchar_in 2 ...

URE

SRE

Matching
 Masks

char_in 1

REME

matchURE

URE

...
CAMCAMCAMchar_in 2 ...

char_in n

URE

SRE

Matching
 Masks

char_in 1

REME

matchURE

URE

...
CAMCAMCAMchar_in 2 ...

char_in n

Figure 3.11: FPGA middlebox implementation of SQLi detection block

search speed, while significantly improving the collision problem at the expense of

small additional memory resources.

The software version of the NAT middlebox implemented on a PC performs the

same functions and uses the same message sizes. The state proxy is implemented as

a separate VirtualBox module programmed with APIs.

3.4.2 SQL Injection Detection

The second function used to test our system was an SQLi detection block. Both

FPGA and processor-based implementations of this application are supported. Pro-

cessor implementations are based on Bro1. SQLi detection attempts to identify pos-

sible web-based attacks by examining packet payloads for known attack data. The

SQLi implementation uses a regular expression matching engine (REME) to find key-

words in the GET and POST request lines of an HTTP packet [88]. Figure 3.11

shows the block implementation of our SQLi dectection module on FPGA.

Regular expression matching (REM) is an important mechanism used in many

popular intrusion detection software such as Bro, to perform deep packet inspection

against potential threats. One regular expression is constructed with operators and

1https://www.zeek.org/

44

0

1

CAM

b
c
a

[0-9]
@

...

char0
in

2 3 4 5 6

E2

E1

CAM

b
c
a

[0-9]
@

...

char1
in

forward 6

F2

F1

Figure 3.12: An example of the URE circuit design for the regular expression b +
c(a|b)∗[0–9]@

characters. There are three basic operators used in the regular expression: concate-

nation (·), union (|), and Kleene closure (∗) [72]. Other common operators can be

constructed by proper arrangements of the three basic operators. In our design, we

implemented the REME on FPGA as a non-deterministic finite automaton (NFA) [18]

based on a modified McNaughton-Yamada construction [88]. One REME can take

at most 64 input characters. These characters are combined and arranged with the

three basic operators to create a specific regular expression. The REME uses this

initialized regular expression to inspect all input data.

As shown in Figure 3.11, a REME contains a CAM array and a list of unit regular

expression (URE) blocks. All CAMs in the array store the same contents which are

the characters used to build the regular expression. The CAM array helps to improve

45

the work efficiency of the REME by parallelly matching multiple input bytes with

saved characters. In a URE block, a matching circuit is created for a limited length

regular expression. Multiple URE blocks can be sequentially connected together in

the REME module to accommodate longer regular expression matching. However,

there should be no return path between connected two URE blocks. Figure 3.12

shows an example of the matching circuit for a regular expression b + c(a|b)∗[0–9]@

in a URE block. It contains six stages each of which is used for a specific matching

operation. This circuit is able to match two input bytes at the same time. A control

signal named as forward is used to extract the matching result from any stage of this

circuit.

In our system, TCPreplay2 is used to send packets ranging in size from 54 to 1514

bytes through SQLi detectors via 10 Gbps ports at varying speeds. When a detection

occurs, a 41-byte set of information is sent to the coordinator as a message. This

information includes the packet source and destination. The coordinator then sends

a 51-byte signature to a firewall on another middlebox which is either implemented

in an FPGA or a VirtualBox VM. The firewall is located between the client and the

switch input to the subnets. After activation by the coordinator, the firewall identifies

packet headers with offending source and destination addresses and ports and drops

them.

3.4.3 DDoS Implementation

An addition module used to test our system was a distributed denial of service

(DDoS) block, based on an earlier design [23, 47]. During a DDoS attack, the attacker

floods a victim’s network with SYN packets without sending the corresponding ACK

packets. Incoming packets which arrive at the middlebox are sampled and a counter

(SYN ACK CNT) is used to keep track of unmatched SYN packets for up to 1,000

2https://tcpreplay.appneta.com/

46

destination addresses. The values of the SYN ACK CNT counters are periodically

evaluated to identify deviations from expected values as determined by the mean and

standard deviation of the counters. If the values vary beyond a variable threshold

for a destination address, a possible DDoS attack is identified. This result triggers

a message for the coordinator. The coordinator can identify messages from a num-

ber of middleboxes to identify if a pattern exists for a specific destination address.

After activation by the coordinator, the software rate limiter identifies packets with

offending SYN messages and limits their transmission.

3.4.4 Firewall Implementation

The final module used to test our system was a packet-based firewall blocker. A

hardware hash table was implemented in the module to save packet blocking informa-

tion. The firewall tracks in-transit packets and filters them by source and destination

network addresses, protocol, and source and destination port numbers. When a packet

matches a set of filtering rules stored in the firewall (the packet exists in the blocking

list), it is dropped by the firewall. Otherwise it is allowed to pass. The coordinator

sends messages to add new entries to the blocking list as needed.

3.5 Data Plane Traffic Management

The data plane traffic management is necessary to support middlebox functionality

migration. For our system, the SDN controller in the coordinator was implemented

using the RYU SDN framework3 with OpenFlow 1.3 protocol used to communicate

with the NETGEAR ProSafe M4300-8X8F 10 Gbps switch. By properly setting the

flow table located in the SDN switch, the SDN controller can configure the switch to

steer the traffic flows as needed.

3https://osrg.github.io/ryu/

47

The flow table in the SDN switch is used to define what actions should be applied

to packets that enter this particular switch. These actions are saved as different

entries in the flow table. To determine which packets a particular action should be

applied to, the SDN controller needs to specify a series of match criteria for each

action in the table. These match criteria can be defined over fields in the Ethernet

header, IP header, TCP or UDP header, and potentially other header information.

For example, we can define match criteria over source IP, destination IP, protocol,

and input port fields. Actions can include dropping a packet, sending a packet out

of a particular port, sending the packet to the SDN controller, modifying packet

header fields or performing some other actions. The action and match criteria are

the two main fields used to form a rule added into the flow table. In addition, a flow

rule normally includes three other fields which are the priority, hard timeout, and

idle timeout (Figure 3.13). If the incoming packets match multiple rules in the flow

table, the action in the rule with the highest priority is executed. Two timeout fields

are associated with how the SDN switch automatically removes the rules. The hard

timeout field determines when the rule should be deleted after the rule is installed

into the flow table. The idle timeout field indicates that if no packet matches a rule

for a given amount of time, the rule should be removed.

The SDN controller we created supports three different operations to manage

input traffic flows, forwarding, copying, and splitting. By default, the SDN switch

works as a standard layer-2 switch which utilizes a MAC address to determine the

port used to forward a frame. For manipulation functions (e.g. NAT), the SDN

switch forwards the network traffic to middleboxes that perform specific functions.

The packet header is updated in the middlebox and then forwarded to its original

destination. The SDN controller adds a new rule with specific match criteria (i.e.

input port, source IP, destination IP, protocol) and action (i.e. output port) fields to

the flow table to achieve the forwarding operation. This rule has higher priority than

48

ActionsMatch Criteria Priority Hard timeout Idle timeout

Input port Src IP Dst IP Protocol

1 10.10.2.3 10.10.2.16 UDP

Src MAC

*

Dst MAC

*

Output port

6

2

20s 5s

Figure 3.13: An example of a rule entry in the flow table

the default rule, so the incoming packets will follow this rule to be forwarded to the

manipulation function instead of being sent directly to the output port. For inspection

functions (e.g. SQLi, DDoS), the packets usually do not need to be sent out after

they are examined by the functions, and multiple inspection functions may operate

in parallel in different middleboxes to monitor the same network flows. Therefore,

input packets to the SDN switch can be copied prior to transmission to inspection

functions. Copying typically does not influence the original flow direction of the input

packets. The SDN controller modifies the existing rule by adding a new output port

to the action field to make a copy of an input flow.

When the traffic volume moves beyond the processing capability of a single mid-

dlebox, the network function may be spread across multiple middleboxes. The traffic

is split by the switch and each middlebox processes a subset of flows. A weighted

round-robin load balancer was implemented in the SDN controller to guide traffic flow

splitting in the switch. As the number of middleboxes for the same network function

49

increases, the SDN controller adds new output channels to the load balancer. Each

output channel corresponds to an output port on the SDN switch which connects to

a middlebox. The round-robin load balancer forwards a network flow to the output

channel in turn. The weight of an output channel is determined by the process ca-

pability of connected middlebox minus current traffic volume in the channel. The

higher the weight, the larger the proportion of flows received by the channel. The

SDN controller creates a rule for each flow and adds it to the flow table. The output

channel is used as the action field for each rule.

3.6 Evaluation

We evaluate the performance of our system by comparing the throughput and

latency of the middlebox applications implemented both on FPGAs and VMs. We

also measure the resource usage of each function module on the Stratix V FPGA. In

addition, we analyze the scalability of the system and use a stress test to show the

ability of the coordinator to manage millions of global states. In an initial experiment,

we demonstrated the middlebox functionality migration in our system by leveraging

the full FPGA reconfiguration technology. The following sections describe some of

the techniques used to obtain experimental results.

3.6.1 Performance Test

The resource counts of the packet processor modules and the Qsys system are

shown in Table 3.1. Comparing the SQLi attack detector, the DDoS attack detector,

and the firewall module, the former requires more logic resources and defines the re-

gion size for a packet processor on the FPGA chip. All circuits operate at 156.25 MHz,

a clock speed that is derived from the data transfer rate of 10 GHz / 64. Network and

memory interface circuits consume a non-trivial amount of logic resources since data

flow control is needed. The performance benefits of using the FPGA circuits versus

50

Table 3.1: Resource usage for NFV library cores targeted to a Stratix V 5SGXEA7N

LUTs FFs Block Mem bits

NAT 40,309 54,779 24,017,920

SQLi detector 25,708 15,172 2,755,072

DDoS detector 14,608 9,979 3,004,928

Firewall 10,571 12,609 3,490,560

Qsys system 31,008 34,911 3,174,907

↪→ Nios II CPU 2,034 1,806 1,137,408

↪→ Shared memory 3 0 1,572,864

↪→ Memory interface 16,036 18,002 225,040

↪→ Network interface 12,938 15,103 239,595

Available in FPGA 469,440 938,880 52,428,800

Table 3.2: Throughput and latency comparison of VM and FPGA module implemen-
tations without using DPDK

Throughput Latency

(Gbps) (us)

VM FPGA VM FPGA

NAT 0.52 8.48 1,009.00 1.34

SQLi 0.41 9.20 10.60 1.20

DDoS 0.44 9.28 5.04 1.20

VM implementations in a 10G network were assessed by measuring the throughput

and latency of the same VNFs working on different infrastructures. The three network

functions introduced in Section 3.4 were used. The test results are shown in Table 3.2.

The dramatically reduced latency numbers and higher throughput for FPGA versus

VM indicate the benefit of FPGA usage.

To consider accelerated CPU computation we use the Intel Data Plane Develop-

ment Kit (DPDK), which gives the CPU low-level access to network interface card

drivers, bypassing the traditional network stack. We implement the software version

51

1 2 3 4 5 6 7 8
Number of Regular Expressions

0

1

2

3

4

5

6

7

8

9

10

Th
ro

ug
hp

ut
 (G

bp
s)

FPGA
VM w/ DPDK

Figure 3.14: REME using DPDK: processing throughput versus number of regular
expressions

of regular expression matching engine (REME) on Bro with DPDK, and compare

it with the corresponding FPGA implementation. Figure 3.14 shows that by using

DPDK, the throughput of software implementation is moderately less than the FPGA

version for one REME. As the number of REMEs scales, the software throughput is

attenuated by microprocessor performance limitations while the parallelism of the

FPGA allows for relatively constant throughput.

3.6.2 Stress Test

For a distributed system, the state manager in the coordinator may manage mil-

lions of global states for a VNF instance. In a second experiment, the state manager

was flooded with state requests at the maximum rate of the coordinator network

52

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

SQLi Detector DDoS Detector NAT

Th
ro

u
gh

p
u

t
(#

 o
p

s/
se

c)

1E+4 states 1E+5 states 1E+6 states

Figure 3.15: Results of coordinator stress test. For each test, requests are made to
the coordinator at the fastest rate supported by the network interface

interface to test its processing capabilities. Figure 3.15 shows the throughput of the

state manager portion of the coordinator for the three VNFs with the number of

global states growing from ten thousand to one million. As the figure shows, the co-

ordinator keeps a high processing speed of more than 100,000 operations per second

for the three functions.

From the result, it is apparent that the coordinator supports similar throughput

for SQLi states (matched patterns) and DDoS states (destination address count mis-

matches), which are both inspection functions. In both cases, the global state table

is supported with hash tables in the coordinator. As the number of states increases,

more hash collisions occur in the global state table during state insertion or up-

date which affects performance. For the NAT application, the coordinator generates

new translations when misses occur in the global state table, decreasing coordinator

throughput.

53

Based on the results in Figure 3.15, the operation processing rate of the coordina-

tor scales to support tens of high-throughput FPGA middleboxes. If a middlebox has

a 10 Gbps input rate, at most 23,148,148 and 825,627 packets per second would be

processsed for 54 and 1,514 byte packets, respectively. However, since SQLi, DDoS,

and NAT state requests are only generated at most once per thousands of packets,

on average, state processing by the coordinator is scalable.

3.6.3 Scalability Test

In a third experiment, the ability of the FPGA circuits and virtual machine-

based middleboxes to process packets for a scaled set of middleboxes was tested. To

get a comparable test result and exhibit the scalability clearly, this experiment was

performed using the 10G network. To evaluate scalability, system throughput was

measured using an increasingly large set of hardware and software middleboxes and

examining overall processing throughput using the SQLi application. Software ver-

sions of SQLi were implemented using Bro software. Three workstations sliced into

between one and ten VirtualBox middleboxes each were used to implement software

SQLi. Two DE5 boards implemented FPGA versions (two SQLi cores per FPGA).

All middleboxes were connected to the coordinator via TCP connections. A separate

PC was used to generate packets for the subnetwork using TCPreplay and to retrieve

packets. An SDN switch under coordinator control was used to steer generated pack-

ets to middleboxes. Packets used for testing range in size from 54 to 1514 bytes.

Figure 3.16 shows the scalability of our heterogeneous network system for between 1

and 34 middleboxes for the SQLi application. The first four CRs used in the system

are FPGA-based (two cores each), hence the higher slope of throughput on the left

side of the graph.

As middleboxes are scaled up to a total of 16 (12 VM and 4 FPGA), system

performance versus the ideal case initially remains nearly identical indicating the

54

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Number of resources

0

5000

10000

15000

20000

25000

30000

35000

40000

Th
ro

ug
hp

ut
 (M

bp
s)

4 FPGA
Cores

30 VMs

ideal
test

Figure 3.16: Scalability of SQLi implemented with up to 2 FPGAs (2 cores each) and
3 servers (30 virtual machines)

capability of the state manager in the coordinator to keep up with simultaneous state

requests from both FPGA and VM middleboxes. A flattening of the curve is observed

at 22 middleboxes (18 VM and 4 FPGA). At this point, all cores in each of the three

workstations hosting the VM middleboxes are assigned dedicated processes. The

addition of middleboxes causes processing limitations beyond this point, leading to

reduced throughput scaling.

3.6.4 Reconfiguration Test

The use of NFV requires the ability to dynamically reconfigure middleboxes in

response to changing networking needs. For example, it may be necessary to period-

ically change middlebox functionality between DDoS and SQLi operations. We per-

55

Nios II
Network
Interface

GE
PHY

10G
PHY

Linux
Kernel
Driver

S/W
Bridge

10G
NIC I/F

10G
NIC I/F

GE
NIC I/F

DE5 FPGA Packet Processor

DDoS SQLi

Proxy

SQLi

DDoS

VM1

VM2

Server1 3 5

2 64

Source Host
FlowGen

SDN Switch

CTRL

Sink Host
FlowCap

1 3

2 4

L2 Switch

Coordinator

Data Plane Control Plane

Figure 3.17: Reconfiguration test environment with two VM and one FPGA (single
core) middleboxes

formed an experiment with transient variations in the incoming workloads for DDoS

and SQLi. Initially, FPGA hardware is used to detect DDoS attacks and software is

used to detect SQLi attacks. Although a traffic increase targeted to the SQLi mid-

dlebox does not necessarily imply an attack, a microprocessor cannot perform SQLi

detection effectively due to throughput limitations. In this case, the microprocessor

sends a message to the coordinator indicating the desire for an FPGA middlebox

update to support SQLi. The coordinator can decide to swap FPGA NFV functions

from DDoS to SQLi attack detection during this period of high SQLi traffic if DDoS

processing is limited at the moment.

In a final experiment we determined how quickly a packet processing function can

be replaced within an FPGA by the configuration manager in a system with two VM

and one FPGA middleboxes. The test environment is shown in Figure 3.17. The

software-based flow generator on source host generates the SQLi and DDoS attacking

flows, and sends them to the sink host via the SDN switch. The SDN switch is con-

trolled by the coordinator to copy and forward flows to processor- and FPGA-based

middleboxes. The copy flows will not be sent back to the network after being pro-

56

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Time (Sec)

0

200

400

600

800

1000

1200

1400

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

DDoS DDoS

SQLi

SQLi

FPGA_FR

VM1

VM2

Figure 3.18: Performance of system resources during full FPGA reconfiguration

cessed by middleboxes. The coordinator connects with the proxy on the server and

the Nios II microprocessor via a general L2 switch. It monitors the traffic volume

changes on both FPGA- and VM-based packet processors and dynamically triggers

the reconfiguration of the packet processors in response to the situation. The steps

needed to perform the reconfiguration are described in Section 3.2.3. As seen in

Figure 3.18, initially a DDoS detector is implemented in the FPGA and an SQLi de-

tector is implemented in VM1. When input traffic rate into VM1 consistently exceeds

410 Mbps (the VM throughput limit in Table 3.2), VM1 notifies the configuration

manager in the coordinator. Since the DDoS detector throughput is less than 440

Mbps and can be handled in software, its function is migrated to VM2 and the FPGA

middlebox is reconfigured to support SQLi detection.

57

Figures 3.18 shows the delay associated with the redirection of the SQLi traf-

fic from VM1 to the FPGA and FPGA reconfiguration using full device configura-

tion (FPGA FR). Results in the graph was generated from experimentation with

FPGA and VM middleboxes in the lab. The full FPGA reconfiguration process re-

quires about 12 seconds. This delay includes the time needed to remap traffic using

the SDN switch, reconfigure the FPGA, reboot the Nios II, and reinitiate the con-

nection between the Nios II and the coordinator. The size of the entire bitstream is

31.3 MB for both SQLi and DDoS.

3.7 Conclusion

In this chapter, a new heterogeneous hardware-software approach to NFV con-

struction is demonstrated that provides scalability and programmability. The plat-

form leverages both FPGAs and microprocessors to support a range of user defined

network functions with a common interface. As the number of required functions and

their characteristics change, FPGA logic is automatically reconfigured under system-

wide control. To evaluate our approach, a series of software tools and NFV modules

have been implemented. The scalability and hardware reconfigurability of the hybrid

system is demonstrated for known network attacks.

58

CHAPTER 4

PERFORMANCE-AWARE VNF DEPLOYMENT WITH
PARTIAL RECONFIGURATION

4.1 Introduction

FPGA-based middleboxes introduced in this dissertation support strong resource

isolation. For example, the architecture shown in Figure 3.5 reserves separate logic

elements for each packet processor. The functionality of the packet processors should

be dynamically reconfigurable based on customer requirements and changes in the

network environment. In Chapter 3, we described how to update the network func-

tion of an FPGA middlebox by reconfiguring entire FPGA circuits (full reconfigura-

tion). However, if multiple packet processors are implemented on the same FPGA,

all network functions running on these packet processors will be disrupted during the

process of FPGA full reconfiguration, which means that these packet processors do

not have logical isolation. Full reconfiguration has an additional drawback that the

soft microprocessor on the FPGA needs to be resynchronized with the coordinator

after full reconfiguration which significantly increases the time spent on the function

migration process.

The first half of this chapter exploits partial reconfiguration to address the iso-

lation and reconfiguration time overhead issues associated with full reconfiguration.

Partial reconfiguration allows selective regions of the FPGA to be reconfigured while

the other parts of the device are still in operation. For example, one packet processor

in an FPGA middlebox (Figure 3.5) can be partially reconfigured while the other

packet processors, as well as the Nios II microprocessor, are still functional. Partial

59

reconfiguration makes the allocation of resources in our system more flexible since

multiple packet processors on a single FPGA middlebox can be used for different

network functions and they can be reconfigured independently.

Our CoNFV system is enhanced by a scheduling and allocation algorithm that

automatically considers the performance capabilities of the target NFV resource ver-

sus the requested function. As the functional needs of the network change based

on link capacity or state-based triggers, a global coordinator takes advantage of the

algorithm to rebalance the allocation of VNFs via the creation of VM threads and

the dynamic reconfiguration of FPGA modules. In the second half of this chapter,

we introduce our scheduling and allocation algorithm aimed at two scenarios, includ-

ing relatively slow offline initialization where could happen only occasionally, and

fast online VNF deployment, which could be triggered frequently. To evaluate the

algorithm, we designed and performed an experiment in the lab to show how the

coordinator reallocates the NFV resources for two network functions (i.e. SQLi and

DDoS detectors) when network traffic volumes change over time.

The remainder of this chapter is structured as follows. Section 4.2 presents the

details of the application of FPGA partial reconfiguration in our CoNFV system.

Next, the Section 4.3 outlines our allocation and scheduling algorithms. The experi-

mental methodology is detailed in Section 4.4 and experimental results are discussed

in Section 4.5.

4.2 The Application of Partial Reconfiguration in CoNFV

In Chapter 3, we have demonstrated that our CoNFV system supports dynamic

reconfiguration of VNFs on heterogeneous middleboxes by leveraging either software

thread activation/deactivation on VM or hardware reconfiguration for entire FPGA

circuits. A significant research contribution of this chapter is to take advantage of

the FPGA partial reconfiguration technique to speed up the dynamic reconfiguration

60

of FPGA packet processors. To achieve this, we build upon our network function

virtualization platform (CoNFV) presented in Chapter 3.

The FPGA-based middleboxes in the system are implemented on a Intel Stratix

V FPGA which is partially reconfigurable. As shown in Figure 3.5, multiple packet

processors are able to be implemented on one FPGA-based middlebox. These packet

processors can work as the hardware carriers for the same or different network func-

tions. To support packet processor isolation and facilitate partial reconfiguration,

the FPGA is divided into static and partial reconfiguration (PR) regions. The static

region holds the modules that are shared across multiple packet processors. The main

module is an on-chip system built with the Intel Qsys tool. It includes the network

interface (NI) modules and a Nios II-based SoC. The program running on Nios II

makes it working as the configuration proxy and state proxy on an FPGA-based mid-

dlebox. In addition to the Qsys on-chip system, the static region also includes other

modules, like a digital clock manager (DCM) module, a system reset module, and the

PR control and CRC blocks.

Isolated features of packet processors are implemented in PR regions. Specific

functions in these regions are determined by the network functions the designer de-

cides to implement. For example, A SQLi detector includes an packet header extrac-

tion module, an interface module, and multiple regular expression matching engines

(REMEs) (Figure 3.11). The fixed interfaces shown in Figure 3.5 guarantee an ef-

fective boundary for partial FPGA reconfiguration of packet processor functionality.

For experiment purpose, the SQLi detection function, DDoS detection function, and

packet firewall were chosen to be implemented in the PR regions. As shown in Ta-

ble 3.1, the SQLi attack detector requires more logic resources compared to the DDoS

attack detector and firewall, and defines the region size for partial reconfiguration. To

configure the PR process on Stratix V FPGA, we used the Altera PR IP core which

automatically instantiates the Stratix V PR control block and the Stratix V CRC

61

block in the design. Specific details of PR process and partial bitstream generation

are described in the following two subsections.

4.2.1 Partial Reconfiguration Process

Partial reconfiguration is based on the revision feature in the Intel Quartus Prime

software [5]. The initial design is the base revision, where the designer defines the

boundaries of the static region and partial reconfiguration (PR) regions on the FPGA.

From the base revision, the designer creates multiple revisions, which contain the

static region and describe the differences in the configurable regions. In order to

create the PR regions, the designer must organize the design into logical and physical

partitions for synthesis and fitting. A PR region can have multiple implementations.

Each implementation is called a persona. Partial reconfiguration uses personas to

pass the logic, which implements a specific set of functions to reconfigure a PR region

of the FPGA, from one revision to another. In contrast to a PR region, a static region

has a single implementation or persona.

Our FPGA-based middlebox supports the creation of multiple packet processors

on a single FPGA and the instantiation of network functions on them. Each packet

processor works as a PR region which allows its logic to be dynamically reconfigured

to different network function personas. In our current design, we create two packet

processors on the FPGA. Each packet processor has sufficient hardware resources to

support the instantiation of a SQLi attack detector, a DDoS attack detector or a

firewall. Our partial reconfiguration approach requires the definition of a partial re-

configuration boundary that consists of the 207 interface signals which could be found

on all function modules. All the nets between the static and reconfigurable regions

with the exception of clock and reset signals are connected through the boundary

interface. The clock to the PR regions is fed from global clock buffers in the static

region, while the reset signal is generated from the system reset module which is also

62

Plan PR System

Code the Design

Designate Partitions

Create PR LogicLock
Regions

Create Revisions

Compile the Design
for Each Revision

Generate PR Files

Program the device

Funcionality
is Verified?

Yes

No

Figure 4.1: Partial Reconfiguration Design Flow

implemented in the static region. All the boundary interface signals are driven to a

known value during partial reconfiguration.

We choose the design revision which has two SQLi personas implemented on both

packet processors as the base revision. A typical partial reconfiguration design flow

is shown in Figure 4.1. After finishing coding the base revision design using HDL, we

need to set up the design logic for partitioning, and determine placement assignments

to create a floorplan. We set up two LogicLock regions [5] on the Stratix V FPGA

layout using the Chip Planner tool integrated with the Intel Quartus Prime and assign

packet processor partitions to these physical placement constrained regions. Then we

need to create two other revisions. We implement two DDoS personas in PR regions

in one revision and place two firewalls at PR regions in the other. In order to get the

63

Figure 4.2: Layout of static and partial reconfiguration regions for FPGA-based mid-
dlebox on Stratix V

reconfiguration files for all personas, we need to compile the design for each revision.

After synthesis, place and route steps, we get the layout of a Stratix V device with

two packet processors located on the underside of the static region which is illustrated

in Figure 4.2. Finally, the static and partially-reconfiguration designs are assembled

and the respective bitstreams are generated.

64

The partial reconfiguration for an Intel FPGA device can be used in the SCRUB

mode or the AND/OR mode [5]. When a designer implements a design on an Intel

FPGA device, the design implementation is controlled by the bits stored in config-

uration RAM (CRAM) inside the FPGA. The SCRUB mode overwrites the CRAM

bits corresponding to a PR region with new data regardless of what was previously

contained in the region. The AND/OR mode uses a two-pass method to reconfigure

a PR region. In the first pass, all the CRAM bits corresponding to the PR region

are ANDed with ‘0’s while those outside the PR region are ANDed with ‘1’s. In

the second pass, new data is ORed with the current value of 0 inside the PR re-

gion, and in the static region, the bits are ORed with ‘0’s so they remain unchanged.

Due to this working mechanism, the designer can have two PR regions that have a

vertically overlapping column in the device by using AND/OR mode. However, the

programming file size of a PR region using the AND/OR mode could be twice the

programming file size of the same PR region using SCRUB mode, which may lead to

the doubling of the reconfiguration time. In our design, we use the SCRUB mode to

partially reconfigure the functionality of the packet processors using comparatively

small size partial bitstream files.

4.2.2 Partial Bitstream Generation

Partial FPGA reconfiguration requires a priori generation of partial bitstreams

for all personas. In our design, the partial bitstreams of six personas are generated,

which are used to configure the logic of two PR regions. Each PR region supports

the implementation of three different network functions (i.e. SQLi, DDoS and fire-

wall). We use three revisions to manage our partially reconfigurable design. When

these individual revisions are compiled in the Quartus Prime software, the assembler

produces an SRAM Object File (.sof) and two Masked SRAM Object Files (.msf) for

each revision. The .sof file has the information on how to configure the static region

65

as well as the corresponding PR regions. The .msf files are generated specifically for

partial reconfiguration, one for each PR persona. The .msf file is used to mask out

the static region so that the bitstream can be computed for the PR region.

After getting the .sof files and .msf files for all revisions, the next step is to

convert them to the Partial-Masked SRAM Object Files (.pmsf) by using the Quartus

Convert Programming File tool. The .msf file helps determine the PR region from the

associated .sof file during the PR bitstream computation. Once all the .pmsf files are

created, the PR bitstreams are processed using the Convert Programming File tool

to produce the raw binary .rbf files for reconfiguration, one for each persona. The size

of final partial bitstreams (.rbf files) for SQLi, DDoS, and firewall is 12.5 MB each.

Compared to the size of the entire bitstream (.sof file) which is 31.3 MB, the file size

of partial bitstream is less than half the size.

Partial bitstreams are converted to S-record files, which are suitable for use by the

flash programmer, by running Quartus bin2flash command. We store the S-record files

in different sections in the on-board flash memory. During partial reconfiguration,

the Nios II processor reads the required configuration from a section of the flash

memory and sends it to the PR IP core, which then assigns the configuration to

the associated packet processor region to dynamically reconfigure its functionality.

The configurations we generated for our experiments are shown in Table 4.1. Any

configuration can fit within a single PR region.

4.2.3 Accelerating Partial Reconfiguration

Fetching a partial bitstream from flash memory using a Nios II microprocessor

and triggering the reconfiguration of a PR region takes nearly 2 seconds. There are

two reasons for this delay. First, the data transfer rate between the Nios II and flash

interface controller is limited due to the low processing speed of the microprocessor.

Second, the serial nature of Nios II forces the partial bitstream to be temporarily

66

Table 4.1: Experimental configurations

Configurations Description ALMs M20Ks

I SQLi detector for PR 0 18,969/36,480 202/384

II SQLi detector for PR 1 19,612/36,480 202/384

III DDoS detector for PR 0 11,795/36,480 217/384

IV DDoS detector for PR 1 11,908/36,480 217/384

V Firewall for PR 0 10,409/36,480 262/384

VI Firewall for PR 1 10,187/36,480 262/384

stored in the SDRAM connected to the processor after it is read from flash memory.

The Nios II then forwards this bitstream to the PR IP core.

In order to accelerate the partial reconfiguration, we created an FPGA module

in Verilog. This module takes the place of the Nios II microprocessor in passing

the partial bitstream from the flash memory to the PR IP core. After receiving the

start address of the target partial bitstream stored in the flash memory, a finite state

machine (FSM) in the module is triggered to read the data from the flash and send

the bitstream data to PR core. Partial reconfiguration is accelerated by 5× versus

the NIOS II approach.

4.3 Performance-Aware VNF Deployment

Due to state sharing, CoNFV is capable of scaling capacity or migrating VNF

instances as performance requirements change within the hybrid network middlebox

infrastructure. To support this feature, a performance-aware VNF deployment al-

gorithm has been designed into CoNFV to satisfy both functional and performance

requirements from customers and dynamically-changing online traffic volumes. Since

a VNF can be performed by multiple heterogeneous compute resources (e.g. FPGA

or microprocessor) in the network, an algorithmic approach is needed to assign VNFs

to computation resources (CRs). In our system, these regions can be either virtual

67

machines executed by general-purpose processors or FPGA-based packet processors.

The VNF instantiation must satisfy performance constraints in terms of latency,

throughput, and compute capacity requirements, ideally at minimal cost.

4.3.1 Performance and Resource Model for CRs

To support our VNF deployment algorithm, a resource model for a selected VNF

and a CR operating as a specific VNF has been created. The model is based on

performance and capacity parameters. The model capacity indicates the available

computational capability in terms of processing functions. For example, for SQLi in-

jection detection, a regular expression matching engine (REME), represents a unit of

computation. For hardware CRs, the number of parallel REMEs represents the com-

pute capacity of the CR. Latency and throughput represent the processing latency and

throughput required by a VNF or available from a VNF implementation. Throughput

directly affects the achievable input and output data rate for a VNF implementation.

The requested input rate and achieved output rate for an implementation are mea-

sured in real time and periodically collected by the coordinator to guide the online

resource deployment.

4.3.2 Performance-Aware VNF Allocation

For VNF allocation, the resource allocator considers VNF performance require-

ments such as latency, throughput and compute capacity. Although some VNFs may

be constrained to a software-only implementation, we consider here that three differ-

ent implementations of the same VNF (one VM, multiple VMs, and FPGA) are avail-

able. Given the breadth of possible resource choices and VNF implementations, the

initial and dynamic assignment of VNFs to CRs is a significant issue. In the following

subsections, VNF allocation algorithms that can assign VNFs to both hardware and

software CRs are described. A goal of the algorithm is to assign VNFs to resources

that best match the required latency, throughput, and compute capacity constraints.

68

Table 4.2: Notations used in VNF deployment algorithm

R set of computation resources (CRs)

M set of customer-defined VNF instances

λm latency requirement of instance m ∈M
Λrm processing latency of computation resource r ∈ R working as VNF m

θm throughput requirement of instance m ∈M
Θrm expected throughput of computation resource r ∈ R working as VNF m

φm required processing capacity of instance m ∈M
Φrm processing capacity of computation resource r ∈ R working as VNF m

crm overall cost of computation resource r ∈ R working as VNF m

grm Binary value to designate computation resource r was used for VNF m

Based on the results presented in Section 4.5, VM (software-based) VNF implemen-

tations, although more plentiful, generally provide inferior performance compared to

FPGA (hardware-based) implementations.

Upon network system reset, an initial, offline assignment of VNFs to CRs is per-

formed using a resource-based cost function. During system operation, CRs are de-

ployed or redeployed based on changes in network traffic and triggers activated by

global state within the coordinator. VNF migration between CR resources can be

performed if the cost associated with system down time is considered in concert with

the cost benefit of more balanced resource deployment. This second, on-line algorithm

is activated repetitively in the deployed system.

4.3.3 Offline Initialization

During network reset, customer-required VNF instances must be allocated to avail-

able hardware and software CRs. The purpose of the offline deployment is to support

the performance and resource requirements of all VNF instances while minimizing

performance costs. The latency, throughput and capacity consumptions of VNF in-

stances using models determined via simulation and test execution are used to choose

69

software or hardware instances and place them at available locations in the platform.

The SDN switch is used for inter-CR interconnection.

A bin packing solution is used to minimize the overall cost while meeting VNF

resource constraints and latency and throughput requirements. Table 4.2 presents

notation for VNF instance parameters and (4.1) represents the cost of using a CR r

to implement VNF m.

crm =
λm − Λrm

λm
+

Θrm − θm
θm

+
Φrm − φm

φm

(4.1)

In general, the cost of assigning a VNF to a CR is minimized when the latency,

throughput, and computational capacity of the CR is best matched to the VNF. In

the context of VMs, computational capacity indicates the number of operations (e.g.

expression matchers) required by the VNF. Our bin packing formulation assigns a

VNF m to a CR r as indicated by the binary variable grm. Iterative improvement

progresses through a series of cost reducing swaps until further cost reductions are

not possible (4.2). For the number of resources in our system, a full enumeration of

possible assignments is possible to find the lowest cost match.

min
∑

r∈R,m∈M

crm · grm (4.2)

It should be noted that multiple resources from the set R can be grouped to

implement a VNF M . Depending on performance requirements, between one and

four VMs can be instantiated to implement a single VNF. The offline initialization

is performed infrequently. A full evaluation of minimum cost VNF implementation

takes less than one second.

4.3.4 Online VNF Instance Deployment

As network traffic volumes vary, some VNFs implemented in CRs may provide

insufficient processing capabilities. Our networking platform has the ability to assess

70

Algorithm 1: High-level allocation algorithm
Data: Num. VNFs: M , Num. CRs: R
Result: Assignment of VNFs to CRs

1 while network system operational do
2 if at least one underprovisionedrm, m ∈M then
3 Identify m with largest resource gap
4 Call underprovision(m)

5 end
6 if new VNF creation due to trigger then
7 Create VNF M + 1
8 Call underprovision(M + 1)

9 end
10 if at least one overprovisionedrm, m ∈M then
11 Identify m with largest resource gap
12 Call overprovision(decrease resource, m)

13 end
14 if trigger condition for VNF m no longer valid then
15 Call overprovision(remove VNF, m)
16 end

17 end

new traffic patterns and flow rates and update deployments via a fast online approach,

while still optimizing resource costs. The input and output traffic rates at each CR

are collected by the coordinator every 0.1s to detect network performance imbalances.

If a VNF m is underprovisioned or overprovisioned on a CR r, online redeployment

is triggered. Online redeployment can also take place if the resource evaluator deter-

mines a condition has been triggered based on an evaluation of global state (e.g. a

firewall deployment as a result of SQLi attack detection) or if the condition no longer

exists.

To handle increased traffic volumes, two strategies can be adopted: scaling up

the current deployment of VNF m by adding more of the same type of CR resources

(e.g. VMs) or migrating VNF m to a CR with additional resources and performance.

To perform scaling, the coordinator must choose available resources which satisfy the

performance and resource constraints. To support on-line deployment, new dynamic

allocation algorithms were created. The algorithms consider both the resource and

71

Algorithm 2: Algorithm to address underprovisioning
Data: VNF num. m
Result: Assignment of VNFs to CRs

1 Identify CRs (multiple VMs, FPGA) that meet performance and resource requirements
2 if at least one suitable CR is free then
3 Identify CR r with lowest cost crm in (4.1)
4 // In this case, the move is implementation in FPGA or adding another VM
5 Move m into r

6 end
7 if all suitable CRs are busy then
8 Identify suitable CRs with VNFs that are overprovisioned, set OP
9 Identify VNFs in OP that can be implemented with a free CR

10 // Determine migration cost for VNFs in OP to free resources
11 Identify CR r in OP for lowest-cost implementation of m and lowest-cost

implementation of VNF in r to a free CR
12 Perform swap

13 end

Algorithm 3: Algorithm to address overprovisioning
Data: Parameter: decrease resource or remove VNF, VNF num. m
Result: Assignment of VNFs to CRs

1 if decrease resource then
2 if CR r contains multiple VMs then
3 Remove one or more VMs implementing m
4 end
5 if CR r is a single VM or an FPGA then
6 Make no change
7 end

8 end
9 if remove VNF then

10 Remove m and deallocate associated CR r
11 end

performance costs outlined in (4.1). If a new VNF is needed or an existing one is

underprovisioned, (re)deployment can straightforwardly be performed if a suitable

free resource is available in the system. However, if a free resource is not present, it

may also be appropriate to migrate a currently deployed and overprovisioned VNF

to a lower provisioned resource to make room in the CR for the underprovisioned or

new VNF.

72

To support dynamic on-line VNF allocation, algorithms for addressing both re-

source underprovisioning and overprovisioning have been developed. VNF deploy-

ment is continually assessed in a loop by the resource manager in the coordinator

as illustrated in Algorithm 1. The coordinator monitors middlebox performance and

global state to identify resource provisioning imbalances and global state triggers. As

defined by (4.3), underprovisioning indicates that the current CR assignment for a

VNF is insufficient in throughput, latency, or compute capacity.

underprovisionrm → (λm > Λrm) or (Θrm > θm) or (Φrm > φm) (4.3)

Overprovisioned (overprovisionedrm) indicates that performance and resource

needs are met by the current CR but they could also be met by another, more resource

efficient CR. The coordinator examines all computation resources to select appropri-

ate resources, then calculates the overall deployment costs and picks the lowest cost

one to achieve the online deployment update. In the case of underprovisioning due to

a resource mismatch or a trigger, an attempt is made to commence VNF operation in

a free CR. If a free resource is unavailable, a swap with an overprovisioned resource

is performed, as shown in Algorithm 2. If a VNF is overprovisioned and contains

multiple VMs, a VM is deallocated, as shown in Algorithm 3. If an FPGA-bound

VNF that could be supported by VMs is overprovisioned, it is left intact until an un-

derprovisioned VNF requests its use. Overall, if there are n CRs, the calculation time

complexity is O(n) and allows the coordinator to quickly adapt to network dynamics.

4.4 Experimental Approach

4.4.1 Comparison with Previous Approach

In the first experiment, we make use of the same test environment (Figure 3.17)

which was used in the full reconfiguration test. But this time we make the packet

processor on FPGA partially reconfigurable. To justify the benefits of applying the

73

partial reconfiguration approach in our system, we compare this approach against the

full reconfiguration approach described in Chapter 3 by measuring the total time cost

for the function migration between different hardware resources.

4.4.2 Testbed Setup for Resource Scheduling and Allocation

The evaluation testbed comprises a NetGear 10G SDN switch, a general L2 switch,

a Terasic DE5 FPGA board, two 12-core Intel Xeon workstations (2.4 GHz, 32 GB

SDRAM, two 10 Gbps and four 1 Gbps NICs), and three Intel Duo servers (2.66

GHz, 4 GB) (Figure 4.3). We implemented a software-based flow generator tool

on the source host and used it to generate bandwidth-adjustable multi-flow network

traffic. The network traffic is able to be steered by the SDN switch to any output

port. The SDN switch can also make copies of the network traffic and forward them to

the VM- or FPGA-based packet processors. The traffic is finally captured by the sink

host. The coordinator is implemented using a separate Intel Duo server. It connects

to the control port on SDN switch, the proxy application working on the server and

the Nios II microprocessor via a general L2 switch. The coordinator monitors the

network traffic changes and accordingly manages the scheduling and reallocation of

the compute resources within the network.

The testbed totally has six heterogeneous CRs, two of which are hardware CRs

located on the FPGA middlebox, and four others are located on two servers. Two

VMs as software CRs are installed on each server. Both hardware CRs and software

CRs support the deployment of the same network function. Packet processing on

a separate CR is physically isolated due to the connection of each CR to a single

physical network interface. The processing ability of the VM- and FPGA-based CRs

are pre-measured, as shown in Table 3.2.

74

Nios II

Packet Processor
(Firewall)

Network
Interface

GE
PHY

10G
PHY

VM
(IDLE)

VM
(SQLi)

Linux
Kernel
Driver

S/W
Bridge

10G
NIC I/F

10G
NIC I/F

GE
NIC I/F

DE5 FPGA

Proxy
App

Server Group

1

3

5

2

6

4

SOURCE
FlowGen

SDN Switch

CTRL

SINK
FlowCap

1 3

2 4

L2 Switch

Coordinator

Data Plane Control Plane

Packet Processor
(DDoS)

PR region

10G
PHY

VM
(IDLE)

VM
(IDLE)

Linux
Kernel
Driver

S/W
Bridge

10G
NIC I/F

10G
NIC I/F

GE
NIC I/F

Proxy
App

Static

78

5

6

Figure 4.3: The experimental testbed. Available computer resources include 4 VM
and 2 FPGA-based packet processors

4.4.3 Algorithm Evaluation

We evaluate our resource scheduling and allocation algorithm in an NFV envi-

ronment with heterogeneous resources. There are three VNF instances (i.e. an SQLi

attacking detector, a DDoS attacking detector and a firewall) that need to be de-

ployed in the test environment. The coordinator finds suitable CRs for these VNF

instances according to their performance and capacity requirements, and initializes

the VNF deployment as shown in Figure 4.3. The DDoS detector and firewall were

placed at two packet processor cores within a single FPGA, while the SQLi detector

was allocated to a VM.

The flow generator on the source host generates two types of network attacking

flows: SQLi attacking flows and DDoS attacking flows. The coordinator controls the

SDN switch to forward a copy of the SQLi attacking flows to the SQLi detector and

forward a copy of DDoS attacking flows to the DDoS detector. All copy flows will

75

0 50 100 150 200 250
0.0

0.5

1.0

1.5

2.0
lo

ad
 (G

bp
s)

a) Heavy+Pause

0 50 100 150 200 250
time (s)

0.0

0.5

1.0

1.5

2.0

lo
ad

 (G
bp

s)

b) Light+Peak

0 50 100 150 200 250
0.0

0.5

1.0

1.5

2.0

2.5

lo
ad

 (G
bp

s)

c) Daily Pattern

0 50 100 150 200 250
time (s)

0.5

1.0

1.5

2.0

lo
ad

 (G
bp

s)

d) Random

Figure 4.4: Traffic load patterns used in our evaluation model

be consumed at the CRs and the original network flows will finally go through the

firewall to the sink host.

In our system model, the coordinator decides when to scale up/down a set of

software CRs to satisfy the requirement of a VNF instance, and when a processor-

based VNF instance must be migrated to a FPGA and vice versa. The coordinator

dynamically adjusts resource allocation to accommodate two unbalanced resource

provisioning situations, namely underprovisioning and overprovisioning. To evaluate

the online VNF instance deployment algorithm introduced in Section 4.3, we use real-

istic network workloads that have been previously used to assess NFV platforms [57]

(Figure 4.4). Pattern 4.4a is starting with a high traffic workload with a pause to

go down and then recover. Pattern 4.4b shows the network traffic augmentation and

diminution process due to the transient surge in workload. The daily pattern 4.4c

resembles a typical backbone link [28], which we have scaled to a link capacity of 2.5

Gbps. The random scheme was constructed by taking random numbers in the range

of 0 and 2500. The total evaluation time is 250 seconds.

76

0 1 2 3 4 5
Time (Sec)

0

200

400

600

800

1000

1200

1400

Th
ro

ug
hp

ut
 (M

bp
s)

DDoS DDoS

SQLi

SQLi

FPGA_PR
VM1
VM2

Figure 4.5: Performance of system resources during partial FPGA reconfiguration.
Resource migration is performed between the yellow lines in the figure.

4.5 Experimental Results

4.5.1 Speedup by Partial Reconfiguration

In order to get a performance comparison between the FPGA partial reconfigura-

tion approach and the full reconfiguration approach, we follow the same experimental

steps described in Subsection 3.6.4 to perform another reconfiguration test. Figure 4.5

shows the delays associated with the redirection of the SQLi traffic from VM1 to the

FPGA and FPGA reconfiguration using partial device (FPGA PR) configuration.

Compare to full reconfiguration, the partial FPGA reconfiguration process requires

about 0.8 second which primarily consists of partial bitstream loading from flash. The

size of the partial bitstreams for both SQLi and DDoS are 15.7 MB, which is half

of the size of the entire bitstream. The FPGA reconfiguration time is dramatically

77

reduced for partial versus full reconfiguration because, first, the partial bitstream is

smaller; second, the Nios II does not need to be resynchronized with the coordinator;

third, a dedicated hardware module implemented on FPGA takes place of Nios II to

load bitstream from flash faster. Since partial reconfiguration is much faster, we will

employ this technique in the algorithm evaluation experiment.

4.5.2 Time Cost for Resource Allocation

In preparation for examining the performance of VNF migration, the time costs

for reallocating hardware resources to deal with underprovisioning or overprovisioning

are evaluated. We have introduced two approaches in Section 4.3.4 that can be used

to handle the mismatch between performance demand and supply for a given VNF. A

VNF instance can be either migrated between a VM and an FPGA packet processor,

or deployed to multiple VMs to gain more computation power. A series of 100 tests

were conducted in the laboratory using four VMs and a DE5 board to assess the

duration of various system configuration changes for VNF deployment. Figure 4.6

illustrates the CDF of the time required to perform several system configuration

changes.

The migration of a VNF instance needs three steps: reconfiguring the new hard-

ware resource to support the VNF, steering the network flows from an old hardware

to a new one, and releasing the old resource. Similarly, scaling up the VNF deploy-

ment by adding more VM resources also has two steps. The first step is to run the

same VNF in newly added VMs. The second step is to rebalance the distribution

of workloads across the group of VM resources. The configuration manager in the

coordinator performs these processes and interacts with the SDN switch controller to

steer and balance the network flows.

As shown in Figure 4.6, migrating a VNF instance from a VM and an FPGA

packet processor (red curve) takes less time than performing migration in the opposite

78

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
duration [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

vm_to_fpga
fpga_to_vm
scaling_1to2
scaling_1to3
scaling_1to4

Figure 4.6: Cumulative distribution function of configuration and migration times of
VNFs in CoNFV. The term scaling 1to4 indicates the amount of time needed to scale
from 1 VM to 4 VMs

direction (orange curve). Thus, reconfiguring the FPGA packet processor to support

a given VNF instance is faster than launching the same VNF software on the VM

due to overheads associated with the operating system. The blue, green and yellow

curves indicate that the duration of scaling up VMs increases with the number of

VM resources added. As more VMs are added to support the same VNF instance,

the time it takes to launch the same VNF software on multiple VMs and rebalance

the network traffic load across the VM group increases accordingly. The yellow curve

shows that scaling up the VNF deployment from one VM to four VMs is significantly

slower than the other procedures. It is because two of the newly added VMs are

installed on the same workstation. Starting software VNF simultaneously in these

79

0 1 2 3 4 5 6 7 8
Time (s)

VM2

VM1

Coord

2s
< 0.1s

0.45s
0.4s

End of detecting underprovisioning

Identify suitable CR

Enable VNF on CR

Configure SDN switch

Start working.
Wait for SDN
steering traffic

500Mbps

250Mbps

250Mbps

b) Timeline for scaling up VMs

0 1 2 3 4 5 6 7 8
Time (s)

FPGA

VM2

VM1

Coord

2s
< 0.1s

0.45s
0.4s
0.4s

0.4s
0.1s

Partial reconfiguration

Wait for SDN steering traffic

Start working

Stop working

End of detecting underprovisioning
Identify suitable CRs

Enable VNF1 on VM2
Reconfigure FPGA (VNF1 -> VNF2)

Configure SDN switch

Disable VNF2 on VM1

VNF1 VNF2

VNF1

VNF2

a) Timeline for VNF migration

Figure 4.7: System reconfiguration timelines of VNF migration (a) and VM addition
(b) in response to underprovisioning.

two VMs increases the duration for reallocating the VNF instance. The Figure 4.6

also indicates that the time cost of the migration approach is not worse than the time

cost of deploying VNF on multiple VMs, which provides guidance for the coordinator

to perform online VNF instance deployment.

Based on the result shown in Figure 4.6, we provide the timeline for swapping

the VNF between FPGA and VM (Figure 4.7a), as well as the timeline for scaling

up the VNF deployment within two VMs (Figure 4.7b). The steps of the coordina-

tor performing these two operations are shown in detail in Figure 4.7. In order to

decrease the probability of false positive, the coordinator spends 2 seconds to collect

enough information from the running CRs to detect the underprovisioning. Then the

coordinator identifies the proper strategy to relieve the underprovisioned state of a

given VNF instance, either migrates the given VNF to a higher performance CR (e.g.

FPGA) or extends its deployment by adding more CRs with similar performance.

80

0 50 100 150 200 250
time (s)

0.0

0.4

0.8

1.2

1.6

2.0

2.4

lo
ad

 (G
bp

s)

Heavy+Pauseresource demand resource supply

0 50 100 150 200 250
time (s)

0.0

0.4

0.8

1.2

1.6

2.0

2.4

lo
ad

 (G
bp

s)

Light+Peak

0 50 100 150 200 250
time (s)

0.0

0.4

0.8

1.2

1.6

2.0

2.4

lo
ad

 (G
bp

s)

Daily Pattern

0 50 100 150 200 250
time (s)

0.0

0.4

0.8

1.2

1.6

2.0

2.4

lo
ad

 (G
bp

s)

Random

Figure 4.8: Resource supply vs. resource demand. Single SQLi is instantiated in the
testbed and tested respectively with four traffic load patterns.

4.5.3 Algorithm Evaluation Results

We evaluate our VNF deployment algorithm with the network traffic patterns

shown in Figure 4.4. Consider two scenarios for adjusting VNF deployment as the

load changes across the network. First, there are idle CRs available for upgrading the

performance or computer capacity of an underprovisioned VNF instance. Second, all

suitable CRs are busy when the resource underprovisioning occurs. We conducted

separate experiments on these two situations.

In the first experiment, we only deploy one VNF instance (an SQLi detector) in

our testbed. Figure 4.8 shows the change in the resource supply versus the resource

demand as the network load fluctuates. The red (blue) curve denotes the supply (de-

mand), the red and blue shaded areas depict under and overprovisioning respectively.

In the Heavy+Pause scenario, the traffic load is very high at the beginning, so the

coordinator initially deploys the SQLi detector on an FPGA packet processor. In

the Light+Peak scenario, as the traffic load increases gradually, the coordinator finds

81

that scaling up the VNF deployment on VM groups costs less than migrating the

VNF from VM to FPGA. Therefore the coordinator adds more VM resources for the

deployment of the SQLi detector. When the traffic load goes up to a point that the

SQLi detector has been rather underprovisioned on all available VM resources, the

coordinator migrates the VNF to an FPGA resource which has a higher performance

advantage. The VNF migration from VM to FPGA also happens in Daily Pattern

and Random cases when available VM resources cannot provide sufficient computa-

tion power. Before that, the coordinator narrowed the VNF deployment on multiple

VMs as the network traffic load decreased according to Algorithm 3. Due to the fact

that generally the overprovisioning is less urgent than underprovisioning, the coordi-

nator is not eager to reduce the allocation of compute resources for an overprovisioned

VNF instance. That’s why we can find in Figure 4.8 the coordinator spends more

time to identify overprovisioning situation.

In the second experiment, three VNF instances were initially deployed in the

testbed as shown in Figure 4.3. Two types of attacking flows with different load

patterns were synchronously forwarded to the SQLi detector and the DDoS detector.

Throughput demand and supply curves for one VNF of DDoS (a) and SQLi (b)

appear in Figure 4.9. Results were collected from the system hardware. As shown in

the Light+Peak scenario in Figure 4.9(b), the instantaneous surge in SQLi attacking

flows result in an increased demand for the computation power of CRs, ultimately

exceeding the processing power provided by four VMs in the testbed at around the

140 second mark. At that point, the coordinator identifies that all the FPGA packet

processors are occupied by other VNFs, but the DDoS detection function on one

FPGA packet processor is overprovisioned. Migration of SQLi to the FPGA and

DDoS to one VM takes place at this point. As DDoS traffic increases, more VMs are

allocated to the flow processing until at 235 seconds the resources are swapped back.

82

0 50 100 150 200 250
time (s)

0.0
0.4
0.8
1.2
1.6
2.0
2.4

lo
ad

 (G
bp

s)
Migration

Migration
Scaling up

a) DDoSresource demand resource supply

0 50 100 150 200 250
time (s)

0.0
0.4
0.8
1.2
1.6
2.0
2.4

lo
ad

 (G
bp

s)

Migration

Migration
Scaling up

b) SQLi

Figure 4.9: Demand for SQLi and DDoS and resource supply using FPGAs and VMs.
The processing demand and supply for DDoS are shown in (a). The corresponding
values for SQLi are shown in (b). The resource demand curves are taken from prior
work [57]

Figure 4.10 shows the traffic load variation for the same experiment from the

perspective of the FPGA packet processor and the VM group. The FPGA packet

processor provides sufficient processing power to the accommodated VNF instances.

To avoid underprovisioning, the number of VMs scales upwards based on traffic load

demand. During the VNF migration, both FPGA and VM-based CRs experienced a

brief turnoff time due to the fact that no CRs available at the time for temporarily

placing the VNF instance to be migrated.

83

0 50 100 150 200 250
time (s)

0.0
0.4
0.8
1.2
1.6
2.0
2.4

lo
ad

 (G
bp

s) DDoS SQLi

a) FPGAresource demand resource supply

0 50 100 150 200 250
time (s)

0.0
0.4
0.8
1.2
1.6
2.0
2.4

lo
ad

 (G
bp

s)

SQLi DDoS

b) VMs

Figure 4.10: Demand for SQLi and DDoS and resource supply using FPGAs and VMs

4.6 Conclusion

In this chapter, we demonstrated the benefits of using partial FPGA reconfigu-

ration to improve the logical isolation and speed up the dynamic reconfiguration of

an FPGA packet processor in our system. Partial FPGA reconfiguration is shown to

accelerate the migration of FPGA-based VNFs by a factor of 15. We also illustrated

a new performance-aware VNF deployment algorithm which autonomously adjusts

the usage of heterogeneous compute resources in an NFV system. Several experi-

ments were performed in the lab and delineated that our algorithm can effectively

use available resources to alleviate underprovisioning situation and reasonably release

resources for overprovisioned VNF instances.

84

CHAPTER 5

DYNAMIC SERVICE CHAINING FOR
HETEROGENEOUS MIDDLEBOXES

5.1 Introduction

Most NFV systems, including systems with FPGAs, use chains of functions. For

large-scale NFV systems, traffic must be steered through functions in a sequence. Al-

though early systems used a centralized controller for sequence orchestration [6, 16,

20, 62], the approach was burdened by the risk of central point failure, difficulties in

synchronizing routing table rules, and steering traffic across network domain bound-

aries. In contrast, the use of distributed agents in session-based traffic coordination

can effectively overcome these shortcomings [90]. A session is a series of interactions

between two communication endpoints that occur during the span of a single con-

nection. Packets belonging to the same session have the same source and destination

addresses. A session-level approach for service chaining steers packets belonging to

the same session through middleboxes deployed between the session endpoints. To

date, NFV based on session-level approaches has only been applied to microprocessor-

based systems due to the difficulty in dynamic traffic steering among heterogeneous

middleboxes and managing partial FPGA reconfiguration.

In this chapter, we describe a new distributed-agent NFV system that supports the

dynamic service chaining of FPGAs and microprocessors. Our new approach deploys

distributed agents in end-hosts and both FPGA- and processor-based middleboxes

and steers packets of individual sessions through corresponding service chains with-

out any alterations to end-host applications, middlebox applications, or IP routing.

85

We implement FPGA-based agents to support high-performance packet processing.

The agent cooperates with a partial reconfiguration IP core to manage the dynamic

reconfiguration of middlebox functions on FPGAs. We verify our new approach with

QUIC sessions and show the benefits of implementing our agents with FPGA circuits

to steer QUIC sessions compared with software-based implementations. To support

inter-domain routing when end hosts of the service chain are on different networks,

similar to data center setups, we implement distributed agents to steer traffic based

on the session information saved in the packet header. Agents update the packet

header at the IP and transport layers to steer packets belonging to different sessions

through corresponding service chains.

The remainder of this chapter is structured as follows. In Section 5.2, we present

the architecture of our session-level approach. In Section 5.3, we describe how to use

our approach to dynamically reconfigure a service chain. Details of the implementa-

tion are provided in Section 5.4. In Section 5.5, we evaluate our method by a series

of experiments using both FPGA- and processor-based middleboxes. Section 5.6 con-

cludes the chapter.

5.2 Architecture

A service chain is a series of connected network functions, which provides a path-

way for network traffic that includes network services. Network functions in the

chain, such as a firewall, intrusion detection system (IDS), or content cache, can be

implemented on commodity hardware, custom hardware, virtual machines (VM), or

reconfigurable hardware deployed across multiple subnetworks. In Figure 5.1, the

client and server at either end of the service chain are located in different subnet-

works. FPGA and processor resources in the local area network (LAN) and cloud are

used to deploy network functions to process in-transit data packets.

86

Gateway

FPGA
Server

Processor
Client

Content CacheContent CacheIDSFirewall

Service Function Chain

Gateway

Gateway

Gateway

Agent

Policy Server

Policy Path
Data Path

Switch

Processor

Figure 5.1: An example of a inter-domain service chain established by using our
agents and the policy server

A session is a series of interactions between two communication endpoints. In

Figure 5.1, end-hosts (i.e. server and client) communicate with each other by estab-

lishing sessions. Our approach runs agents on end-hosts, FPGA- and processor-based

middleboxes, builds a service chain while creating a session, and directs session pack-

ets through network functions in the service chain. Agents rely on basic IP routing

and high-level policies, which can be obtained from a policy server, to steer packets

between end-hosts and middleboxes located in different subnetworks.

5.2.1 Components and interfaces

A service chain for a session includes a chain of middleboxes and subsessions. Each

subsession connects an end-host and a middlebox, or two middleboxes. Agents set

up individual subsessions in the service chain. The establishment and teardown of

subsessions are synchronized with the setup and teardown of the session. An agent

can maintain multiple subsessions at the same time. Each subsession is identified by

a five-tuple (i.e. source/destination IP address, source/destination port number, and

protocol), that is used for a specific service chain. The agent on an end-host or a

middlebox in a service chain forwards packets with the original header of the session

87

to the end-host application or the middlebox application; as such, our approach works

with existing application-layer protocols. Before transmitting session packets to the

next middlebox or end-host, the agent rewrites packet headers using the subsession

five-tuple. In this way, agents steer packets through the service chain.

The first agent in a service chain (e.g., the agent on client end-host in Figure 5.1)

starts service chain creation according to a chaining policy received from a policy

server. The chaining policy specifies an ordered list of middleboxes and end-hosts

located in the service chain. Each middlebox or end-host in the policy is identified by

its IP address. For example, the policy for establishing the service chain in Figure 5.1

includes an ordered list of IP addresses for the client end-host, the first processor-

based middlebox, the FPGA-based middlebox, the second processor-based middlebox,

and the server end-host. During service chain creation, the chaining policy is passed

forward by the agents along the service chain from the first agent in the chain to

the last one. Each agent sets up a subsession to connect to the next middlebox or

end-host indicated by the policy.

Agents in a service chain can be triggered by the policy server to reconfigure the

service chain for an ongoing session. Each middlebox or end-host communicates with

the policy server via a TCP connection. In other use cases, agents can initiate the

reconfiguration of the service chain based on the current working status of middlebox

applications without the involvement of the policy server. For example, an IDS

middlebox may detect a certain type of attack and start service chain reconfiguration

to add a packet interception function (e.g. firewall) to the service chain.

In our approach, agents in a service chain can receive high-level policies from

the policy server to determine how to establish or reconfigure the service chain, but

the policy server cannot enforce policies by installing forwarding rules in network

devices. Thus, our policy server is unlike the SDN controller that centrally manages

network traffic. The establishment and reconfiguration of a service chain are carried

88

Client middlebox middlebox Server

session (A, D, p1, p8)
p1 p8

agent
end-host A

agent
FPGA B

agent
Processor C

agent
end-host Dsubsession

(A, B, p2, p3)

p2 p3 p4 p5

subsession
(B, C, p4, p5)

p6 p7

subsession
(C, D, p6, p7)

Figure 5.2: A session composed of a chain of FPGA- and processor-based middleboxes
and subsessions

out exclusively by the distributed agents running on end-hosts and middleboxes in

one or multiple subnetworks.

5.2.2 Service chaining of heterogeneous middleboxes

A service chain can be set up during session creation. One service chain can span

multiple sessions, and a session can exist for multiple service chains. As an example

of how to establish a service chain during a session, we present the case where the

service chain and the session have the same end-hosts, as shown in Figure 5.2.

In this example, the client and server run as applications on end-host A and end-

host D, respectively. A session is set up between a client and server. The service chain

consisting of end-host A, FPGA-based middlebox B, processor-based middlebox C,

and end-host D is to be established for the session. Before agents set up the service

chain for the session, session packets are transmitted between the client and server

through basic IP routing by network devices according to the source and destination

addresses in a session five-tuple. During this setup phase, the network paths used to

transfer session packets are undefined.

To ensure session packets proceed through a sequence of middleboxes in the ser-

vice chain, agents distributed on end-hosts and middleboxes must be organized to

steer session packets along the chain’s path. To achieve this goal, agents must es-

tablish subsessions along the service chain to connect the nodes (i.e. end-hosts and

middleboxes) in the chain. Agents at connected nodes rewrite session packet headers

89

with the subsession five-tuples as the packet proceeds through the chain. The session

created between the client and server has the original five-tuple represented as the IP

addresses for end-host A and end-host D, source port p1 and destination port p8, and

the session protocol. Two end-hosts, two middleboxes, and three subsessions form a

completed service chain between the client and server.

Establishment of the service chain: Session creation is achieved through

a handshake process. Different protocols require unique handshake methods. For

example, a TCP session uses a three-way handshake (i.e. SYN, SYN-ACK, ACK) to

make a connection between the client and server. A QUIC session starts a connection

through a 1-RTT (round-trip time) handshake [34]. The handshake process is usually

started by the client. Establishment of the service chain in Figure 5.2 begins when the

first packet for a handshake from the client arrives at the agent at end-host A. The

agent intercepts the packet and extracts the five-tuple from the packet header. The

source and destination IP addresses in the five-tuple are used to find a matching policy

that indicates an address list [A, B, C, D] for establishing the service chain. The agent

at end-host A then creates a subsession to connect end-host A and middlebox B. The

five-tuple of the new subsession includes the address of end-host A as the source IP

address, the address of middlebox B as the destination IP address, the new allocated

ports (i.e. p2 and p3) as the source and destination ports, and a protocol that is the

same as the original session protocol. The agent rewrites the packet header with the

new subsession five-tuple to ensure that the packet will be sent to middlebox B.

The agent at end-host A sends all packets from the client that belong to the same

session to middlebox B via the newly created subsession. Subsession packets from

middlebox B traveling in the opposite direction are sent to the client. The agent at

end-host A needs to restore packet headers using the original session five-tuple before

sending packets to the client. The agent creates two dictionary entries for mapping

between the original session five-tuple and the subsession five-tuple. Mapping entries

90

in the dictionary are saved locally. The agent rewrites the header of packets in the

same session according to these mapping entries. The address list and the original

session five-tuple are added to the payload of the handshake packet and sent to

middlebox B by the agent at end-host A. The agent on middlebox B then uses the

address list to create the subsession with the next middlebox in the chain. The

original session five-tuple (from end-host A) stored in the packet payload is used by

agents in the service chain to generate locally saved mapping entries.

When the agent on middlebox B receives the handshake packet from end-host A,

it checks to see if the payload carries an address list. If it does, the agent removes the

address list from the payload and saves the list locally, then rewrites the packet header

with the original session five-tuple also stored in the payload and delivers the packet

to the middlebox application. The agent also creates dictionary entries to map the

subsession to the session and vice-versa. When the handshake packet emerges from

the middlebox, the agent retrieves the saved address list [B, C, D] and removes its own

address to get [C, D]. It then follows the procedure above to create a new subsession

from B to C, rewrites the packet header, appends the original session five-tuple and

the address list to the packet payload, and transmits the modified handshake packet.

This process continues along the service chain until the handshake packet reaches

end-host D where it is delivered to the endpoint of the service chain. The agent at

end-host D restores the handshake packet using the original session five-tuple saved

in the packet payload and delivers the packet to the server application running on

end-host D.

When the server at end-host D replies to the handshake packet, an acknowledge

packet travels back along the chain of subsessions and middleboxes to continue the

handshake. The forward and reverse paths for session packets must go through the

same middleboxes. Between middleboxes, however, the forward and reverse network

paths traversed by subsession packets need not be the same. When the acknowledge

91

packet arrives at the client at end-host A, the service chain for the session has been

established. After the establishment of the service chain, all session packets exchanged

between the client and server will travel through the service chain. For these packets,

agents do not need to append the original session five-tuple and the address list to

the packet payload. Agents steer packets along the service chain by modifying packet

headers according to the mapping entries saved during service chain creation.

Teardown of the service chain: An established service chain allows for session

packet transmission in two directions independently. For some protocols like TCP,

one end of a session can send a FIN packet to indicate that it will send nothing more.

Agents along the service chain tear down subsessions and the service chain as they

receive the FIN, so when the TCP session is torn down normally, the chain is torn

down along with it. Other protocols may not send FIN-like packets to indicate the

end of the session. The termination of the session is achieved by the agents timing

out the subsessions along the service chain. One agent maintains a subsession by

saving the five-tuple translation between the original session and the subsession. If

the agent can no longer receive packets from the session, it deletes the translation

from its local mapping table, tearing down the subsession. With the teardown of all

subsessions along the service chain, the chain is also torn down. If necessary, agents

can use heartbeat signals to keep subsessions alive.

5.2.3 Service chain setup for QUIC sessions

QUIC [34] is a multiplexed and encrypted-by-default transport layer network pro-

tocol. It improves the performance of connection-oriented web applications by estab-

lishing a number of multiplexed connections between two endpoints over User Data-

gram Protocol (UDP) rather than Transmission Control Protocol (TCP) [50]. QUIC

uses UDP as its basis, which reduces connection and transport latency compared to

92

that of TCP. A QUIC session starts with a handshake phase, during which client and

server establish a shared secret using the cryptographic handshake protocol [81].

The secure handshake phase is completed by exchanging Initial and Handshake

packets between the client and the server [34]. To adopt our service chain setup ap-

proach for a QUIC session, we append the original session five-tuple and the address

list to the Initial packet payload without encryption. The service chain is established

after the Initial packet is exchanged between the QUIC client and server. The ter-

mination of the QUIC session is achieved by the agents timing out the subsessions

along the service chain.

5.3 Dynamic Reconfiguration

A service chain can benefit from dynamic reconfiguration to improve network

resource utilization, save resource consumption, and adjust network resources to adapt

to changes in the network environment. In our approach, reconfiguration of a service

chain can be triggered by the policy server or a middlebox. As shown in Figure 5.3,

the agents at the two ends of a segment of a service chain are the left anchor and

the right anchor. Here, we define the left anchor as the agent close to the client, and

the right anchor as the agent close to the server. Reconfiguration is initiated by the

agent acting as the left anchor.

The policy server can trigger the service chain reconfiguration by sending a policy

including a new address list to the left anchor. The new address list includes the IP

addresses of the left anchor, middleboxes, and right anchor of the new path that will

replace the old path. For example, the left anchor B in Figure 5.3 receives the address

list [B, G, E] in which B is the left anchor and E is the right anchor. The address

list [B, G, E] indicates the new path. Service chain reconfiguration is achieved by

transmitting a series of control packets between the left and right anchors to create

a new path and then switching the old path to the new path through two anchors.

93

agent
end-host A

agent
FPGA B

agent
FPGA C

agent
FPGA D

agent
FPGA E

agent
end-host F

agent
FPGA G

old path

new path

agent A agent B

agent C agent D

agent E agent F

agent G

left anchor right anchor
old path

new path

Figure 5.3: Agents reconfigure a segment of a service chain, replacing an old path
with two middleboxes by a new path with one

Control packets are used to resolve contention if multiple portions of a service chain

try to change at the same time, set up a new path for the service chain, and cancel

reconfiguration if a new path cannot be created. The protocol detail for service chain

reconfiguration follows the approach described by Zave et al. [90].

5.3.1 Reconfiguration protocol

We use a series of control messages to reconfigure the service chain segment be-

tween the left and right anchors. The control messages include lock request/lock cancel

messages for locking/unlocking states of agents on the old service chain segment and

a set of 3-way handshake messages (i.e. Initial, Initial-ACK, ACK) for establishing a

new service chain segment. To simplify the implementation and reduce additional de-

lays brought by processing control information, all control messages are implemented

as UDP packets.

Just as the agent for end-host A in Figure 5.2 needs the address list [B, C, D] to

set up the original service chain, the left anchor B in Figure 5.3 needs an address list

[G, E] to specify the new path that will replace the old one. Figure 5.4 shows the

exchange of control messages between the left and right anchors during the service

chain reconfiguration. The red packets travel on the old path to configure agents’

lock states, so they are forwarded through the agents of current middleboxes C and

94

LEFT
ANCHOR

RIGHT
ANCHOR

lock_request(leftAnchor, rightAnchor)

lock_ack(leftAnchor, rightAnchor)

Initial (original5Tuples, addressList)

Initial-ACK

ACK

lock_cancel(leftAnchor, rightAnchor)

cancel_ack(leftAnchor, rightAnchor)

Figure 5.4: Control messages exchanged for reconfiguration. Red packets travel on
the old path, blue on the new path

D. The blue 3-way handshake sets up the new path within the service chain. The

Initial packet carries an address list so that the agents can include all the addressed

middleboxes before the right anchor.

We use a previously-developed mechanism [90] to prevent conflicts caused by si-

multaneous reconfiguration of overlapping service chain segments. Each agent main-

tains three types of states: unlocked, lockPending, or locked. If the state is lockPending

or locked, the agent uses a variable requestor to hold the left anchor of the request

for which it is pending or locked. Reconfiguration starts with a lock request sent by

the left anchor, after which the left anchor changes its state from unlocked to lock-

Pending. If an agent on the old path receives a lock request from the left, the agent is

not the right anchor, and its state is unlocked or lockpending but the lock request is

from the same left anchor, then it forwards the packet to the right, while setting the

state to lockPending and requestor to the left anchor. When the right anchor receives

the lock request and its state is unlocked, it replies with a lock ack, which travels on

the old path to the left anchor, sets the state of every agent on the path to locked.

95

When an agent whose state is locked receives a new lock request, if the lock request

comes from the same left anchor, the agent replies with a lock ack directly, otherwise,

it replies with a lock nack to indicate that the agent is currently busy. A lockPend-

ing agent would send back a lock nack if it receives a lock request from a different

left anchor. Any agent receiving a lock nack from its right will change its state to

unlocked.

The 3-way handshake is used to establish a new service chain segment between

the left and right anchors. Agents on the new path use the method described in Sec-

tion 5.2.2 to set up subsessions between middleboxes for a new service chain segment.

During reconfiguration, the left anchor sends data on the old path. The left anchor

only switches the path after it receives the Initial-ACK packet from the right anchor.

The right anchor then forwards data received from the server on the new path after it

receives the ACK packet. After swapping the path successfully, the left anchor sends

a lock cancel packet on the old path to restore agents’ states to unlocked.

5.3.2 Partial reconfiguration with agents

An FPGA provides a high-performance platform to implement virtual network

functions (VNFs) with performance that is often better than processor-based middle-

boxes [91]. When the throughput of the data stream or the requirements for specific

VNFs change, the implementation of VNFs on different platforms can be dynami-

cally adjusted. Since one FPGA platform may have multiple VNFs deployed, our

approach allows an agent on an FPGA-based middlebox to partially reconfigure a

VNF implementation during service chain reconfiguration without interrupting the

operation of other VNFs on the same hardware. Agents running on processor-based

middleboxes can adjust (reconfigure) middlebox functionality by starting/terminating

VNF processes.

96

The need for a specific VNF can be included in the control packet during service

chain reconfiguration. The agent triggers the partial FPGA reconfiguration of mid-

dlebox functionality before forwarding the control packet to the next middlebox. The

session on the service chain continues to operate during reconfiguration, as session

data is still transmitted on the old path during the FPGA partial reconfiguration.

5.3.3 State migration after reconfiguration

The reconfiguration of a service chain is often accompanied by replacing one mid-

dlebox with another and migrating states between swapped middleboxes. A state

manager module [91] can be included in the policy server to handle state migration

after chain reconfiguration. The server gives each middlebox in the service chain ac-

cess to global state information via programmable interfaces. After the service chain

reconfiguration, the newly inserted middlebox in the service chain retrieve states from

the policy server via network interfaces.

5.4 Implementation

5.4.1 Framework overview

Figure 5.5 shows an overview of a service chain framework that is established

using distributed agents and the policy server. We implement our agents on both

FPGA- and processor-based middleboxes, and end-hosts. These agents establish and

dynamically reconfigure service chains of QUIC sessions across heterogeneous middle-

boxes. FPGA-based middleboxes are implemented using two Terasic DE5 boards

that include Intel Stratix V FPGAs. Processor-based middleboxes are implemented

as Docker containers working on three twelve-core Intel Xeon workstations (2.4 GHz,

32 GB SDRAM, two 10 Gbps NICs, and four 1 Gbps NICs). QUIC clients and

servers run on a 28-core Intel Xeon workstation (2.6 GHz, 128 GB SDRAM, two

97

Policy
Server

Proxy Packet Processor

MiddleBox

Packet
Processors

Agent

ph0 ph1

Config
Info

Control
Path

Data
Path

Proxy

End-Host

Client
Process

Agent

ph0

Control
Path

Data
Path

Proxy

End-Host

Server
Process

Agent

ph0

Control
Path

Data
Path

Policy Path

Control Path

Data Path

Figure 5.5: Overview of a service chain established by using our agents and the policy
server

10 Gbps NICs, and two 1 Gbps NICs). The policy server is implemented using a

processor-based Intel Duo server (2.66 GHz, 4 GB).

Our agents support FPGA- and processor-based VNFs by intercepting packets

going to/from the network. The agent on general-purpose commodity hardware (i.e.

end-hosts, processor-based middleboxes) is implemented as software running in user

space. It utilizes the host network stack to communicate with the applications running

on the host (e.g. QUIC client and server) and receive/send session packets from/to

NICs. The agent on the FPGA platform is implemented as a dedicated hardware

circuit that interacts with packet processors and network interfaces via the Avalon

streaming bus. One FPGA platform can support up to three packet processors that

operate as different network functions. The agent connects each packet processor to a

physical network port. Both FPGA and processor packet processors are dynamically

reconfigurable. The policy for reconfiguring local packet processors is obtained from

the policy server.

98

In order to communicate with the policy server, we implemented a proxy module

in each middlebox and end-host. The proxy connects to the policy server via a TCP

connection. It forwards the service-chaining polices to the agent. For processor-based

middleboxes, the proxy was implemented as a software program. On the FPGA

platform it was implemented using a NIOS II processor. Compared to data packet

transmission, communication between the policy server and proxies is infrequent.

5.4.2 Agent implementation on FPGA

The blocks used in a single agent unit are shown in Figure 5.6. The module is

pipelined and divided into five submodules: the unwrapping module, the payload

parser module, the reconfiguration manager module, the agent core, and the wrap-

ping module. For experimentation, we implemented our agent design on a Stratix V

5SGXEA7N FPGA. One FPGA platform has three packet processors deployed (top

half of Figure 5.6). The agent implemented on an FPGA contains three agent units,

each of which connects a single packet processor with an individual 10G MAC core

through the Avalon streaming bus.

The data packets from the network are fed to the unwrapping module. This

module extracts the five-tuple information from the packet header and sends it and

the payload to the payload parser module. The payload parser module uses the five-

tuple as a key to search the hash table to obtain the address of the next middlebox

and the original five-tuple of the session (before subsession modification). The module

extracts the data packet payload and the control information used for service chain

establishment and reconfiguration. When needed, the payload parser module updates

the control information according to the policy received from the proxy module and

adds an address list for constructing a service chain to the control frame. The payload

parser module stores the received data packet in a small buffer.

99

Network Bus

Control Bus

Unwrapping
Module

Wrapping
Module

Payload
Parser

Reconfig.
Manager Agent

Core

Middlebox Bus

Control
Logic

Hash Table

Buffer Bypass Ch.

Avalon_ST Avalon_ST

Avalon_ST Avalon_ST

Avalon_ST

Avalon
_ST

Avalon_STPR Control SFC Reconf.
Control

Query
(Key)

Value

Query
(Key)

Value

Insert/Del.

{Key,Value}

Pkt. Info.

HT Result

Pkt. Info.

HT Result

Agent UnitAvalon_ST

Policy

Policy SFC Reconf.
Control

Avalon_STPR Control

Data Path

Control Path

Header
Info.

Header
Info.

Agent Unit

Packet
Processor

Agent Unit

Packet
Processor

Agent Unit

Packet
Processor

Proxy

10G MAC 10G MAC 10G MAC

AgentAvalon_ST Avalon_ST Avalon_ST

Avalon_ST Avalon_ST Avalon_STPR Control PR Control PR Control

Policy

Policy

Policy

SFC Reconf.
Control

SFC Reconf.
Control

SFC Reconf.
Control

FPGA

(Zoom In)

Configurable

Figure 5.6: Implementation of an agent on an FPGA. The agent unit in the top
subfigure is expanded in the bottom subfigure.

The reconfiguration manager module responds to the SFC reconfiguration control

command received from the proxy module to generate reconfiguration control packets

and start the reconfiguration of a service chain segment. This module uses a state

100

machine to manage the various stages of the service chain reconfiguration process.

It obtains the address of the next middlebox on the service chain segment to be

reconfigured from the hash table. If not used for reconfiguration, the reconfiguration

manager module allows data packets to be passed directly to the agent core module

through a bypass channel.

The agent core module performs hash table operations, rewrites the packet headers

for data packets processed by the packet processor, forwards packets emerging from

the packet processor, and provides header information about the next subsession to

the wrapping module. The agent core module (1) inserts new entries in the hash

table to record the mapping relationship between the original session and the new

subsession during service chain establishment; (2) deletes old entries when a service

chain is torn down and; (3) updates entries to reconfigure a service chain segment.

The packet payload and header information are integrated into a complete data packet

in the wrapping module, which is sent to the 10G MAC through the network bus.

5.4.3 Dynamically reconfigurable VNFs

For experimentation, a packet-based firewall blocker was created and tested. The

firewall module was implemented in a partially reconfigurable region (PR region) on

the FPGA device. The firewall module contains a hardware hash table to save packet

blocking information. It tracks in-transit packets and filters them by source and

destination network addresses, protocol, and source and destination port numbers.

When a packet matches a set of filtering rules stored in the firewall (the packet exists

in the blocking list), it is dropped by the firewall. Otherwise it is allowed to pass.

101

Table 5.1: Resource usage for SFC implementation cores targeted to a Stratix V
5SGXEA7N

LUTs FFs Block Mem bits

Agent unit 20,976 21,948 891,770

Proxy 14,598 19,957 2,934,968

PR region 11,440 5,720 839,680

Firewall 2,822 5,283 504,960

Network interface 12,807 18,082 239,657

Available in FPGA 469,440 938,880 52,428,800

5.5 Evaluation

Three separate experiments were performed in the lab using our PC and FPGA-

board virtualization system. An open-source tool ngtcp21 was used to generate QUIC

sessions between clients and servers. We measured the latencies for session initiation

to quantify the overhead introduced by our agents in establishing a service chain.

Then, we measured the throughput of QUIC sessions in a service chain to verify the

scalability of chains with agents. Finally, we assessed the ability of the system to

reconfigure a service chain across multiple subnetworks. Results from these exper-

iments are described in subsequent subsections. The resource counts of the agent,

the proxy, the PR region for a single packet processor, the firewall module, and the

network interface are shown in Table 5.1. The size of the partial bitstream for the

PR region is 5.8 MB, while the entire bitstream for the FPGA is 31.4 MB.

5.5.1 Session initiation

In this experiment, service chains including two end-hosts and up to six middle-

boxes were created. Each chain was created for a QUIC session in a single subnetwork.

Two approaches were used: 1) (standard centralized) IP routing rules were inserted

1https://github.com/ngtcp2/ngtcp2/tree/draft-23

102

0 1 2 3 4 5 6
of middleboxes

0

1

2

3

4

5

6

7

8

9

La
te

nc
y

(m
s)

Baseline
FPGA_Agent
Software_Agent(w/o DPDK)
Software_Agent(w/ DPDK)

Figure 5.7: Latency for session initiation

in an SDN switch (Netgear ProSafe M4300-8X8F); 2) our agents were used in end-

hosts and middleboxes. For both approaches, we measured the round-trip time of the

handshake between the QUIC client and server during session initiation. We use the

service chain set up time from the first approach as a baseline to measure the latency

overhead introduced by our agents. During the experiment, only the overhead of

agents, not the VNFs, was measured.

In the baseline test case, all service chain middleboxes are FPGA-based. Each

of the two DE5 boards implements three packet processors per FPGA. No agents

are deployed in the service chain. Session packets are forwarded by the SDN switch

according to the routing rules inserted into the switch in advance.

103

The agent-based approach can establish a service chain using three formats: (1)

a hardware circuit implemented the agent and the FPGA packet processor, (2) the

agent and packet processor are implemented in software in a container that accesses

the network stack, and (3) a software agent and packet processor based on the Intel

Data Plane Development Kit (DPDK)) that directly accesses the network interface

card are implemented in a processor-based middlebox. Three workstations sliced into

two container middleboxes each are used to implement case (2). There a total of six

non-DPDK software agents and three DPDK-based software agents were tested in

the experiment. Agents running at end-hosts are software agents implemented using

DPDK. Figure 5.7 shows the latency overhead caused by different agent implemen-

tations compared to the baseline.

The bars at the left in Figure 5.7 show that the agents deployed on end-hosts speed

up the handshake process between the QUIC client and server. The agent skips the

OS kernel through the DPDK and directly obtains data packets from the network

interface card. The main source of latency overhead introduced by the agent is the

time it takes to obtain packets from network interface, query the 5-tuple mapping

table, and set up the subsession. Due to hardware parallelism, FPGA agents have

obvious advantages over software agents in processing these tasks. The latency over-

head introduced by FPGA agents (red bars) can be ignored compared with the total

duration of the handshake during session initiation. In contrast, as more software

agents are deployed in the service chain, the latency overhead caused by agents (blue

bars) will increase. By using DPDK, a software agent can get data packets from the

network interface card faster, thereby reducing the latency overhead caused by the

software agent. However, the serial nature of the processor limits the performance of

the software agent in establishing subsessions.

104

0 1 2 3 4 5 6 7 8 9
of agents

0

250

500

750

1000

1250

1500

1750

2000

Th
ro

ug
hp

ut
 (M

bp
s)

FPGA Agents Software Agents

ideal
6 FPGA + 3 Software (w/o DPDK)
6 FPGA + 3 Software (w/ DPDK)

Figure 5.8: Scalability of agents implemented with up to 2 FPGAs (3 agents each)
and 3 workstations (3 non-DPDK agents or 3 DPDK-based agents). Six sessions were
used for this experiment.

5.5.2 Scalability test

The ability of software agents implemented with/without DPDK, and FPGA

agents to forward packets for a scaled set of middleboxes in a service chain was

tested. Six QUIC sessions were run simultaneously on the same service chain. To

evaluate scalability, overall session throughput on the service chain was measured us-

ing an increasingly large set of hardware and software middleboxes. Like the session

initiation test, two versions of software agents were implemented. Software agents im-

plemented without using DPDK were run in containers installed in three workstations

(one container per workstation). DPDK-based software agents were run directly on

the host OS for three workstations. Two DE5 boards were used to implement FPGA

105

versions (three agents per FPGA). Figure 5.8 shows the scalability of our agent-based

approach working on heterogeneous middleboxes with up to nine agents deployed in

the service chain. The first six middleboxes used in the chain are FPGA-based, which

shows a higher throughput value on the left side of the graph.

As agents are scaled up to a count of six FPGA agents, shown as the green

line on the left side in Figure 5.8, system performance versus the ideal case remains

nearly identical indicating the good scalability of our agents implemented as FPGA

circuits. The pipelined structure of the FPGA agent implementation ensures the

high throughput of FPGA agents in this test. The throughput of the FPGA agent

is constrained by the overall session throughput on the service chain. The green

and blue lines on the right side of the graph show that software agents introduce

throughput degradation to the service chain. The serial nature of the processor limits

the performance of software agents during the service chain operation. For software

agents implemented without DPDK, the various levels of the network stack cause

further system performance slowdown.

5.5.3 Dynamic reconfiguration

A significant weakness of the central controller approach for service chaining is

the inability of the controller to manage the chain across network boundaries. Our

agent-based approach implements inter-domain service chaining by deploying agents

in multiple subnetworks and connecting the middleboxes and end-hosts distributed in

different subnetworks by establishing subsessions across network boundaries. In a final

experiment, QUIC clients and servers, located in different subnetworks, and FPGA

and processor-based middleboxes were connected through a level-3 router (Figure 5.9).

Each subnetwork has its own IP address domain, as shown in the figure.

QUIC is an encrypted-by-default protocol. Since the QUIC protocol implements

congestion control algorithms, loss recovery, and the packet encryption/decryption

106

Router

Container
Middlebox

FPGA
Middlebox

Client1

Client3

Server1

Server2

10.10.4.0/24 10.10.6.0/24

10.10.5.0/24

10.10.3.0/24
Client2

Server3

Figure 5.9: Testbed topolgy for the evaluation of the reconfiguration experiment

Table 5.2: Throughput and latency comparison of software and FPGA firewall im-
plementations under the traffic of a total three QUIC sessions

Software

(w/o DPDK)

Software

(w/ DPDK)
FPGA

Throughput (Mbps) 796 1157 1270

Latency (us) 115.6 85.8 3.7

function in the user space at end-hosts, rather than the kernel space, the bandwidth

of the QUIC session is limited. Previous studies have tested QUIC performance

under 120 Mbps bandwidth [42]. In this experiment, we use ngtcp2 to generate

QUIC sessions. In order to obtain the maximum QUIC session bandwidth for testing,

three QUIC clients continuously send data packets to three QUIC servers with the

maximum packet size (1400 bytes per packet). The bandwidth for three QUIC sessions

is 1270 Mbps.

107

This experiment assesses an application scenario in which clients are located on a

local network and servers are in the cloud. FPGA and processor-based middleboxes

are located in the client-server path. Initially, a service chain including three QUIC

client-middlebox-server paths are established by agents. A processor-based container

is established by the agent and used as a firewall middlebox for three QUIC sessions.

As shown in Table 5.2, the FPGA-based firewall has significantly better throughput

and latency than software versions.

During service chain operation, agents are used to modify the service chain three

times, each time migrating one QUIC session from the processor-based middlebox to

the FPGA-based middlebox. The agents on the client and server act as left and right

anchors, respectively. For a QUIC session between one client-server pair, the session

traffic is redirected to pass through the router and the FPGA middlebox rather than

the processor-based middlebox.

Figure 5.10 shows the QUIC throughput of the container-based and FPGA-based

middleboxes over time, including three session migrations to the FPGA. The time

series represents throughput measures at one-hundred-millisecond intervals. Three

QUIC sessions initially pass through the same container middlebox with a total traf-

fic rate less than 1000 Mbps (the software firewall throughput limitation shown in

Table 5.2). Service chain modification occurs at 5, 10, and 15 seconds after the start

of the experiment. The left anchor exchanges control messages with the right anchor

at each modification time point to sequentially redirect a QUIC session from the con-

tainer middlebox to the FPGA middlebox. When the first QUIC session is redirected,

the control message sent by the left anchor triggers the agent on the FPGA middle-

box to configure FPGA firewall circuit as a packet processor in a PR region. Partial

FPGA reconfiguration requires about 196 ms and requires the loading of a firewall

partial bitstream from flash. The agent stays active during the partial reconfiguration

of the firewall bitstream. The time interval between the two yellow vertical dashed

108

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

0

200

400

600

800

1000

1200

1400

1600

1800

Th
ro

ug
hp

ut
 (M

bp
s)

FPGA partial
reconfiguration

Container middlebox
FPGA middlebox

Figure 5.10: Throughput of three QUIC sessions on processor and FPGA middle-
boxes. Initially, all three sessions are implemented on processors (left). Service chain
modification is performed every 5 seconds to migrate a QUIC session from a processor
(container) middlebox to the FPGA middlebox.

lines in Figure 5.10 indicates the partial reconfiguration process of the firewall on the

FPGA middlebox. After all three QUIC sessions have been redirected to pass through

the FPGA middlebox, the overall throughput (blue line on the right) is significantly

higher than when all sessions passed through the container-based middleboxes (red

line on the left).

5.6 Conclusion

In this chapter, we have described a new session-level approach for inter-domain

service chaining of heterogeneous middleboxes. Distributed agents implemented on

109

field-programmable gate arrays and microprocessors are used to steer packets of QUIC

sessions through designated service chains. We implement a policy server to initialize

service chaining policies and trigger service chain reconfiguration. Our results show

that both the software and hardware agent implementations have good scalability, but

the hardware agent exhibits better throughput during packet processing and lower

latency for session initiation. The migration of service chains for three sessions across

multiple subnetworks is demonstrated using agents running on end-hosts and FPGA-

and processor-based middleboxes.

110

CHAPTER 6

CONCLUSION AND FUTURE WORK

The work in this thesis examined solutions in the research area of network function

virtualization (NFV). In the first part of the document, we described a new hetero-

geneous hardware-software approach to NFV construction, and addressed challenges

arising from the adoption of FPGAs in NFV, such as dynamic reconfiguration, state

sharing and resource management. In the second part, we explored a new session-level

approach for inter-domain service chaining of FPGA- and processor-based middle-

boxes, and dynamic reconfiguration of service chains for ongoing sessions.

6.1 Summary of Contributions

For our first contribution, we demonstrated techniques that integrate FPGAs in

heterogeneous network function virtualization platforms. Our system addresses state

sharing issues in previous FPGA-based NFV systems with the aid of a global coor-

dinator to collect and distribute global state information across both FPGA- and

microprocessor-based middleboxes. With the help of the state sharing mechanism

offered by the coordinator, customer-defined VNF instances can be easily migrated

from microprocessors to FPGAs and vice versa as the network environment changes.

Migration to FPGAs is supported with partial FPGA reconfiguration. A customized

allocation and scheduling algorithm has been developed to dynamically evaluate het-

erogeneous middlebox deployment based on global state information and middlebox

usage. Our evaluation demonstrates the scalability and hardware reconfigurability of

the hybrid system. We show that our deployment algorithm can successfully real-

111

locate FPGA and microprocessor resources in a fraction of a second in response to

changes in network flow capacity and network security threats including intrusion.

Second, we developed a new session-level approach that implements NFV dis-

tributed agents to establish and dynamically reconfigure service chains across net-

work boundaries without relying on a centralized controller. Agents support the

deployment on both FPGA- and processor-based middleboxes. During service chain

reconfiguration, the agent can trigger the reconfiguration of the middlebox function

on the service chain by either partially reconfiguring a VNF implementation on the

FPGA-based middlebox or starting/terminating a VNF process on the processor-

based middlebox. We evaluated our approach by establishing service chains for QUIC

sessions. Our evaluation demonstrated that our session-level approach can success-

fully establish and reconfigure inter-domain service chains for individual QUIC ses-

sions. The distributed agents implemented on FPGAs show better performance in

terms of throughput and latency overhead compared with software implementations.

6.2 Future Work

The research presented in this dissertation provides guidelines for future work in

heterogeneous network function virtualization and distributed service function chain-

ing.

Larger and more diverse VNFs: To evaluate our CoNFV system, we imple-

mented four types of VNFs on FPGAs, including an SQLi detector, a DDoS detector,

NAT, and a packet firewall. Larger and more complex network functions can also ben-

efit from FPGA implementation, such as packet classification functions [13], web data

compression/decompression functions [58], etc. FPGA support to improve software

VNF performance can also be explored. Compared with complete VNF implementa-

tions on an FPGA, an FPGA could be used to accelerate performance bottlenecks in

112

the VNF software implementation [44]. This approach could reduce the difficulty of

hardware implementation and make more effective use of FPGA resources.

Partially reconfigurable regions on a larger FPGA: With the increase in

density, decrease in power consumption, and improvement in speed, today’s FPGAs

fill a completely different set of design needs from those of the past. One FPGA has

enough resources to implement different network functions. When multiple network

functions are implemented on the same FPGA, partitioning an FPGA into partially

reconfigurable regions for function placement becomes a problem to be solved [83].

Security issues, such as side-channel attacks [67], that come with resource sharing are

also worth studying.

Advanced NFV resource scheduling and allocation algorithms: Resource

scheduling and allocation are important topics in hybrid network function virtual-

ization. NFV resource scheduling and allocation are NP -hard optimization prob-

lems [29]. Current solutions to solve these problems include linear programming

algorithms [26, 54], recursive greedy algorithms [68], and metaheuristic-based solu-

tions [53], etc. With the development of machine learning technology, deep reinforce-

ment learning provides a possibly more effective solution. The use of machine learning

for NFV is a research area worth exploring.

Applicability of the session-level approach to other network protocols:

In this thesis, we evaluated the use of our session-level approach to establish and

dynamically reconfigure a service function chain of heterogeneous middleboxes for

QUIC sessions. The session-level approach can also be applied to sessions established

by other network protocols, such as TCP-based protocols. A general agent implemen-

tation suitable for both TCP- and UDP-based protocol sessions could be developed

in the future.

113

BIBLIOGRAPHY

[1] A. AbdelSalam, F. Clad, C. Filsfils, S. Salsano, G. Siracusano, and L. Veltri,
“Implementation of Virtual Network Function Chaining through Segment Rout-
ing in a Linux-Based NFV Infrastructure,” in Proceedings of the 2017 IEEE
Conference on Network Softwarization (NetSoft). IEEE, 2017, pp. 1–5.

[2] Altera, FPGA Architecture White Paper, July 2006.

[3] ——, Using MicroC/OS-II RTOS with the Nios II Processor, May 2011.

[4] Altera, Using the NicheStack TCP/IP Stack, June 2011.

[5] Altera, Design Planning for Partial Reconfiguration, November 2013.

[6] B. Anwer, T. Benson, N. Feamster, and D. Levin, “Programming Slick Network
Functions,” in Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research (SOSR), 2015, pp. 1–13.

[7] Z. K. Baker and V. K. Prasanna, “Automatic Synthesis of Efficient Intrusion De-
tection Systems on FPGAs,” in International Conference on Field Programmable
Logic and Applications. Springer, 2004, pp. 311–321.

[8] D. Barrett and G. Kipper, Virtualization and Forensics: A Digital Forensic
Investigators Guide to Virtual Environments. Syngress, 2010.

[9] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow, “FPGAs in
the Cloud: Booting Virtualized Hardware Accelerators with OpenStack,” in 2014
IEEE 22nd Annual International Symposium on Field-Programmable Custom
Computing Machines. IEEE, 2014, pp. 109–116.

[10] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker,
“Ethane: Taking control of the enterprise,” ACM SIGCOMM Computer Com-
munication Review, vol. 37, no. 4, pp. 1–12, 2007.

[11] P. Dash, Getting Started with Oracle VM VirtualBox. Packt Publishing Ltd,
2013.

[12] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood, “Deep
Packet Inspection Using Parallel Bloom Filters,” in Proceedings of the 11th Sym-
posium on High Performance Interconnects. IEEE, 2003, pp. 44–51.

114

[13] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood, “Fast Packet Classifi-
cation Using Bloom Filters,” in 2006 Symposium on Architecture For Networking
And Communications Systems. IEEE, 2006, pp. 61–70.

[14] ETSI, Network Functions Virtualisation - Introductory White Paper, October
2012.

[15] ETSI, Network Function Virtualisation (NFV); Architectural Framework, Octo-
ber 2013.

[16] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul, “Enforcing
Network-Wide Policies in the Presence of Dynamic Middlebox Actions using
FlowTags,” in 11th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI), 2014, pp. 543–546.

[17] C. Filsfils, S. Previdi, J. Leddy, S. Matsushima, and D. Voyer, “IPv6 Segment
Routing Header (SRH),” in RFC 8754. IETF, 2018.

[18] R. W. Floyd and J. D. Ullman, “The Compilation of Regular Expressions into
Integrated Circuits,” in 21st Annual Symposium on Foundations of Computer
Science. IEEE, 1980, pp. 260–269.

[19] X. Ge, Y. Liu, D. H. Du, L. Zhang, H. Guan, J. Chen, Y. Zhao, and X. Hu,
“Openanfv: Accelerating network function virtualization with a consolidated
framework in openstack,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 4, pp. 353–354, 2014.

[20] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand, T. Ben-
son, V. Sekar, and A. Akella, “Stratos: A Network-Aware Orchestration Layer
for Virtual Middleboxes in Clouds,” arXiv preprint arXiv:1305.0209, 2013.

[21] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella, “Toward Software-Defined
Middlebox Networking,” in Proceedings of the 11th ACM Workshop on Hot Top-
ics in Networks, 2012, pp. 7–12.

[22] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das,
and A. Akella, “Opennf: Enabling innovation in network function control,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 4, pp. 163–174, 2014.

[23] H. GholamHosseini and K. Li, “Implementation of Transient Signal Detection
Algorithms on FPGA,” International Journal of Computer Applications, vol.
975, p. 8887, 2012.

[24] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, and V. Hogsett,
“Granidt: Towards Gigabit Rate Network Intrusion Detection Technology,”
in International Conference on Field Programmable Logic and Applications.
Springer, 2002, pp. 404–413.

115

[25] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The Cost of a Cloud:
Research Problems in Data Center Networks,” ACM SIGCOMM Computer Com-
munication Review, vol. 39, no. 1, pp. 68–73, 2008.

[26] A. Gupta, M. F. Habib, P. Chowdhury, M. Tornatore, and B. Mukherjee, “On
Service Chaining using Virtual Network Functions in Network-enabled Cloud
Systems,” in 2015 IEEE International Conference on Advanced Networks and
Telecommuncations Systems (ANTS). IEEE, 2015, pp. 1–3.

[27] J. Halpern, C. Pignataro et al., “Service Function Chaining (SFC) Architecture,”
in RFC 7665. IETF, 2015.

[28] A. Hassidim, D. Raz, M. Segalov, and A. Shaqed, “Network Utilization: the Flow
View,” in 2013 Proceedings IEEE INFOCOM. IEEE, 2013, pp. 1429–1437.

[29] J. G. Herrera and J. F. Botero, “Resource Allocation in NFV: A Comprehensive
Survey,” IEEE Transactions on Network and Service Management, vol. 13, no. 3,
pp. 518–532, 2016.

[30] Intel, “FPGA Design Software - Intel Quartus Prime.” [Online]. Avail-
able: https://www.intel.com/content/www/us/en/software/programmable/
quartus-prime/overview.html

[31] Intel, “Nios II Processors.” [Online]. Available: https://www.intel.com/content/
\www/us/en/products/programmable/processor/nios-ii.html

[32] Intel, “Platform Designer - Intel’s System Integration Tool.” [Online]. Avail-
able: https://www.intel.com/content/www/us/en/programmable/products/
design-software/fpga-design/quartus-prime/features/qts-platform-designer.
html

[33] Intel, Avalon Interface Specifications, September 2018.

[34] J. Iyengar and M. Thomson, “Quic: A udp-based multiplexed and secure trans-
port,” Internet Engineering Task Force, 2019.

[35] W. Jiang and V. K. Prasanna, “Scalable Packet Classification on FPGA,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 9, pp.
1668–1680, 2011.

[36] C. Kachris, G. Sirakoulis, and D. Soudris, “Network Function Virtualization
based on FPGAs: A Framework for all-Programmable network devices,” arXiv
preprint arXiv:1406.0309, 2014.

[37] K. Kolyshkin, “Virtualization in linux,” White paper, OpenVZ, vol. 3, p. 39,
2006.

116

https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://www.intel.com/content/\www/us/en/products/programmable/processor/nios-ii.html
https://www.intel.com/content/\www/us/en/products/programmable/processor/nios-ii.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/features/qts-platform-designer.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/features/qts-platform-designer.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/features/qts-platform-designer.html

[38] S. Kulkarni, M. Arumaithurai, K. Ramakrishnan, and X. Fu, “Neo-NSH: Towards
Scalable and Efficient Dynamic Service Function Chaining of Elastic Network
Functions,” in 2017 20th Conference on Innovations in Clouds, Internet and
Networks (ICIN). IEEE, 2017, pp. 308–312.

[39] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 26, no. 2, pp. 203–215, 2007.

[40] I. Kuon, R. Tessier, and J. Rose, FPGA Architecture: Survey and Challenges.
Now Publishers Inc, 2008.

[41] J. A. Landis, T. V. Powderly, R. Subrahmanian, A. Puthiyaparambil, and J. R.
Hunter Jr, “Computer System Para-Virtualization using a Hypervisor that is
Implemented in a Partition of the Host System,” July 2011, uS Patent 7,984,108.

[42] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang,
F. Kouranov, I. Swett, J. Iyengar et al., “The QUIC Transport Protocol: Design
and Internet-Scale Deployment,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, 2017, pp. 183–196.

[43] H. Lee, “Virtualization Basics: Understanding Techniques and Fundamentals,”
School of Informatics and Computing, 2014.

[44] X. Li, X. Wang, F. Liu, and H. Xu, “DHL: Enabling Flexible Software Network
Functions with FPGA Acceleration,” in 2018 IEEE 38th International Confer-
ence on Distributed Computing Systems (ICDCS). IEEE, 2018, pp. 1–11.

[45] T. Lin, N. Tarafdar, B. Park, P. Chow, and A. Leon-Garcia, “Enabling Net-
work Function Virtualization over Heterogeneous Resources,” in 2017 19th Asia-
Pacific Network Operations and Management Symposium (APNOMS). IEEE,
2017, pp. 58–63.

[46] J. W. Lockwood, J. Moscola, M. Kulig, D. Reddick, and T. Brooks, “Internet
Worm and Virus Protection in Dynamically Reconfigurable Hardware,” in Pro-
ceedings of the Military and Aerospace Programmable Logic Device Conference,
2003.

[47] K. Lu, D. Wu, J. Fan, S. Todorovic, and A. Nucci, “Robust and Efficient De-
tection of DDoS Attacks for Large-Scale Internet,” Computer Networks, vol. 51,
no. 18, pp. 5036–5056, 2007.

[48] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici, “ClickOS and the Art of Network Function Virtualization,” in 11th
USENIX Symposium on Networked Systems Design and Implementation (NSDI),
2014, pp. 459–473.

117

[49] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus
Networks,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2,
pp. 69–74, 2008.

[50] P. Megyesi, Z. Krämer, and S. Molnár, “How Quick is QUIC?” in 2016 IEEE
International Conference on Communications (ICC). IEEE, 2016, pp. 1–6.

[51] D. Merkel, “Docker: Lightweight Linux Containers for Consistent Development
and Deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[52] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba,
“Network Function Virtualization: State-of-the-art and Research Challenges,”
IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 236–262, 2015.

[53] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and S. Davy,
“Design and Evaluation of Algorithms for Mapping and Scheduling of Virtual
Network Functions,” in Proceedings of the 2015 IEEE Conference on Network
Softwarization (NetSoft). IEEE, 2015, pp. 1–9.

[54] H. Moens and F. De Turck, “VNF-P: A Model for Efficient Placement of Vir-
tualized Network Functions,” in 10th International Conference on Network and
Service Management (CNSM) and Workshop. IEEE, 2014, pp. 418–423.

[55] L. Nobach, “Seamless Flexibility in High-Performance Network Functions
Virtualization,” Ph.D. dissertation, Technische Universität, 2018.

[56] L. Nobach and D. Hausheer, “Open, Elastic Provisioning of Hardware Acceler-
ation in NFV Environments,” in 2015 International Conference and Workshops
on Networked Systems (NetSys). IEEE, 2015, pp. 1–5.

[57] L. Nobach, B. Rudolph, and D. Hausheer, “Benefits of Conditional FPGA Pro-
visioning for Virtualized Network Functions,” in 2017 International Conference
on Networked Systems (NetSys). IEEE, 2017, pp. 1–6.

[58] J. Ouyang, H. Luo, Z. Wang, J. Tian, C. Liu, and K. Sheng, “FPGA Imple-
mentation of GZIP Compression and Decompression for IDC Services,” in 2010
International Conference on Field-Programmable Technology. IEEE, 2010, pp.
265–268.

[59] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and
S. Shenker, “E2: A Framework for NFV Applications,” in Proceedings of the
25th Symposium on Operating Systems Principles, 2015, pp. 121–136.

[60] S. Pontarelli, G. Bianchi, and S. Teofili, “Traffic-Aware Design of a High-Speed
FPGA Network Intrusion Detection System,” IEEE Transactions on Computers,
vol. 62, no. 11, pp. 2322–2334, 2012.

118

[61] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray et al., “A re-
configurable fabric for accelerating large-scale datacenter services,” in 2014
ACM/IEEE 41st International Symposium on Computer Architecture (ISCA).
IEEE, 2014, pp. 13–24.

[62] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “SIMPLE-
fying Middlebox Policy Enforcement Using SDN,” in Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, 2013, pp. 27–38.

[63] P. Quinn, U. Elzur, and C. Pignataro, “Network Service Header (NSH),” in RFC
8300. IETF, 2018.

[64] P. Quinn and J. Guichard, “Service Function Chaining: Creating a Service Plane
via Network Service Headers,” Computer, vol. 47, no. 11, pp. 38–44, 2014.

[65] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield, “Split/Merge: Sys-
tem Support for Elastic Execution in Virtual Middleboxes,” in 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI), 2013,
pp. 227–240.

[66] M. Ramakrishna, E. Fu, and E. Bahcekapili, “A Performance Study of Hash-
ing Functions for Hardware Applications,” in Proceedings of the International
Conference on Computing and Information, 1994, pp. 1621–1636.

[67] C. Ramesh, S. B. Patil, S. N. Dhanuskodi, G. Provelengios, S. Pillement, D. Hol-
comb, and R. Tessier, “FPGA Side Channel Attacks without Physical Access,” in
2018 IEEE 26th Annual International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM). IEEE, 2018, pp. 45–52.

[68] R. Riggio, T. Rasheed, and R. Narayanan, “Virtual Network Functions Orches-
tration in Enterprise WLANs,” in 2015 IFIP/IEEE International Symposium on
Integrated Network Management (IM). IEEE, 2015, pp. 1220–1225.

[69] X. Shao, L. Gao, and H. Zhang, “CoGS: Enabling Distributed Network Functions
with Global States,” in Proceedings of the 2017 IEEE Conference on Network
Softwarization (NetSoft). IEEE, 2017, pp. 1–9.

[70] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar,
“Making Middleboxes Someone Else’s Problem: Network Processing as a Cloud
Service,” ACM SIGCOMM Computer Communication Review, vol. 42, no. 4, pp.
13–24, 2012.

[71] S. W. Shin, P. Porras, V. Yegneswara, M. Fong, G. Gu, M. Tyson et al.,
“FRESCO: Modular Composable Security Services for Software-Defined Net-
works,” in 20th Annual Network & Distributed System Security Symposium.
NDSS, 2013.

119

[72] R. Sidhu and V. K. Prasanna, “Fast Regular Expression Matching using FP-
GAs,” in The 9th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 2001, pp. 227–238.

[73] H. Song and J. W. Lockwood, “Efficient Packet Classification for Network In-
trusion Detection using FPGA,” in Proceedings of the 2005 ACM/SIGDA 13th
International Symposium on Field-Programmable Gate Arrays, 2005, pp. 238–
245.

[74] P. Srisuresh, “Network address translation - protocol translation (nat-pt),” RFC
2766, 2000.

[75] C. Sun, J. Bi, Z. Zheng, and H. Hu, “HYPER: A Hybrid High-Performance
Framework for Network Function Virtualization,” IEEE Journal on Selected Ar-
eas in Communications, vol. 35, no. 11, pp. 2490–2500, 2017.

[76] T. Taleb and Y. Hadjadj-Aoul, “QoS2: a Framework for Integrating Quality of
Security with Quality of Service,” Security and Communication Networks, vol. 5,
no. 12, pp. 1462–1470, 2012.

[77] T. Taleb, A. Ksentini, and B. Sericola, “On Service Resilience in Cloud-Native 5G
Mobile Systems,” IEEE Journal on Selected Areas in Communications, vol. 34,
no. 3, pp. 483–496, 2016.

[78] N. Tarafdar, T. Lin, N. Eskandari, D. Lion, A. Leon-Garcia, and P. Chow, “Het-
erogeneous Virtualized Network Function Framework for the Data Center,” in
2017 27th International Conference on Field Programmable Logic and Applica-
tions (FPL). IEEE, 2017, pp. 1–8.

[79] N. Tarafdar, T. Lin, E. Fukuda, H. Bannazadeh, A. Leon-Garcia, and P. Chow,
“Enabling Flexible Network FPGA Clusters in a Heterogeneous Cloud Data
Center,” in Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2017, pp. 237–246.

[80] Terasic, DE5-Net FPGA Development Kit User Manual, June 2018.

[81] M. Thomson and S. Turner, “Using transport layer security (tls) to secure quic,”
Internet Engineering Task Force, 2017.

[82] D. Unnikrishnan, R. Vadlamani, Y. Liao, J. Crenne, L. Gao, and R. Tessier,
“Reconfigurable Data Planes for Scalable Network Virtualization,” IEEE Trans-
actions on Computers, vol. 62, no. 12, pp. 2476–2488, 2012.

[83] K. Vipin and S. A. Fahmy, “FPGA Dynamic and Partial Reconfiguration: A
Survey of Architectures, Methods, and Applications,” ACM Computing Surveys
(CSUR), vol. 51, no. 4, pp. 1–39, 2018.

120

[84] G. Wang and T. E. Ng, “The Impact of Virtualization on Network Performance
of Amazon EC2 Data Center,” in 2010 Proceedings IEEE INFOCOM. IEEE,
2010, pp. 1–9.

[85] A. Wion, M. Bouet, L. Iannone, and V. Conan, “Distributed Function Chaining
with Anycast Routing,” in Proceedings of the 2019 ACM Symposium on SDN
Research, 2019, pp. 91–97.

[86] Xilinx, “Vivado Design Suite.” [Online]. Available: https://www.xilinx.com/
products/design-tools/vivado.html

[87] L. Yang, R. Dantu, T. Anderson, and R. Gopal, “Forwarding and Control Ele-
ment Separation (ForCES) Framework,” RFC 3746, April, Tech. Rep., 2004.

[88] Y.-H. E. Yang, W. Jiang, and V. K. Prasanna, “Compact Architecture for High-
Throughput Regular Expression Matching on FPGA,” in Proceedings of the 4th
ACM/IEEE Symposium on Architectures for Networking and Communications
Systems, 2008, pp. 30–39.

[89] M. Yu, L. Jose, and R. Miao, “Software Defined Traffic Measurement with
OpenSketch,” in 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2013, pp. 29–42.

[90] P. Zave, R. A. Ferreira, X. K. Zou, M. Morimoto, and J. Rexford, “Dynamic
Service Chaining with Dysco,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, 2017, pp. 57–70.

[91] X. Zhang, X. Shao, G. Provelengios, N. K. Dumpala, L. Gao, and R. Tessier,
“Scalable Network Function Virtualization for Heterogeneous Middleboxes,” in
2017 IEEE 25th Annual International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM). IEEE, 2017, pp. 219–226.

121

https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

	System Design and Implementation for Hybrid Network Function Virtualization
	Recommended Citation

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Trends and Challenges in NFV
	Thesis Overview
	Thesis Outline

	Background
	Network Function Virtualization
	Software-Defined Networking
	Overview of FPGA Technology
	FPGAs in NFV
	Service Function Chaining
	Hardware Virtualization and Docker Containers

	Scalable Network Function Virtualization for Heterogeneous Middleboxes
	System Design
	System Overview
	DE5-Net FPGA Development Kit
	Cross-Middlebox State Sharing
	Dynamic Resource Management

	Framework Implementation
	FPGA-based Middlebox Platform
	Coordinator Implementation
	Coordinator and SDN Switch Initialization
	Trigger State
	State Retrieval

	Dynamic Reconfiguration

	Scalability Considerations - Global State Table
	Background
	Global State Implementation
	Interactions with Global State Table

	FPGA-based Middlebox Applications
	NAT Implementation
	SQL Injection Detection
	DDoS Implementation
	Firewall Implementation

	Data Plane Traffic Management
	Evaluation
	Performance Test
	Stress Test
	Scalability Test
	Reconfiguration Test

	Conclusion

	Performance-Aware VNF Deployment with Partial Reconfiguration
	Introduction
	The Application of Partial Reconfiguration in CoNFV
	Partial Reconfiguration Process
	Partial Bitstream Generation
	Accelerating Partial Reconfiguration

	Performance-Aware VNF Deployment
	Performance and Resource Model for CRs
	Performance-Aware VNF Allocation
	Offline Initialization
	Online VNF Instance Deployment

	Experimental Approach
	Comparison with Previous Approach
	Testbed Setup for Resource Scheduling and Allocation
	Algorithm Evaluation

	Experimental Results
	Speedup by Partial Reconfiguration
	Time Cost for Resource Allocation
	Algorithm Evaluation Results

	Conclusion

	Dynamic Service Chaining for Heterogeneous Middleboxes
	Introduction
	Architecture
	Components and interfaces
	Service chaining of heterogeneous middleboxes
	Service chain setup for QUIC sessions

	Dynamic Reconfiguration
	Reconfiguration protocol
	Partial reconfiguration with agents
	State migration after reconfiguration

	Implementation
	Framework overview
	Agent implementation on FPGA
	Dynamically reconfigurable VNFs

	Evaluation
	Session initiation
	Scalability test
	Dynamic reconfiguration

	Conclusion

	Conclusion and Future Work
	Summary of Contributions
	Future Work

	Bibliography

