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Abstract

For next generation core networks, it is anticipated to integrate communication, stor-
age and computing resources into one unified, programmable and flexible infrastructure.
Software-defined networking (SDN) and network function virtualization (NFV) become two
enablers. SDN decouples the network control and forwarding functions, which facilitates
network management and enables network programmability. NFV allows the network func-
tions to be virtualized and placed on high capacity servers located anywhere in the network,
not only on dedicated devices in current networks. Driven by SDN and NFV platforms,
the future network architecture is expected to feature centralized network management,
virtualized function chaining, reduced capital and operational costs, and enhanced service
quality.

The combination of SDN and NFV provides a potential technical route to promote
the future communication networks. It is imperative to efficiently manage, allocate and
optimize the heterogeneous resources, including computing, storage, and communication
resources, to the customized services to achieve better quality-of-service (QoS) provisioning.
This thesis makes some in-depth researches on efficient resource allocation for SDN/NFV-
enabled core networks in multiple aspects and dimensionality. Typically, the resource
allocation task is implemented in three aspects. Given the traffic metrics, QoS require-
ments, and resource constraints of the substrate network, we first need to compose a virtual
network function (VNF) chain to form a virtual network (VN) topology. Then, virtual re-
sources allocated to each VNF or virtual link need to be optimized in order to minimize
the provisioning cost while satisfying the QoS requirements. Next, we need to embed the
virtual network (i.e., VNF chain) onto the substrate network, in which we need to assign
the physical resources in an economical way to meet the resource demands of VNFs and
links. This involves determining the locations of NFV nodes to host the VNFs and the
routing from source to destination. Finally, we need to schedule the VNFs for multiple
services to minimize the service completion time and maximize the network performance.

In this thesis, we study resource allocation in SDN/NFV-enabled core networks from
the aforementioned three aspects. First, we jointly study how to design the topology
of a VN and embed the resultant VN onto a substrate network with the objective of
minimizing the embedding cost while satisfying the QoS requirements. In VN topology
design, optimizing the resource requirement for each virtual node and link is necessary.
Without topology optimization, the resources assigned to the virtual network may be
insufficient or redundant, leading to degraded service quality or increased embedding cost.
The joint problem is formulated as a Mixed Integer Nonlinear Programming (MINLP),
where queueing theory is utilized as the methodology to analyze the network delay and
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help to define the optimal set of physical resource requirements at network elements. Two
algorithms are proposed to obtain the optimal /near-optimal solutions of the MINLP model.

Second, we address the multi-SFC embedding problem by a game theoretical approach,
considering the heterogeneity of NFV nodes, the effect of processing-resource sharing
among various VNFs, and the capacity constraints of NFV nodes. In the proposed re-
source constrained multi-SFC embedding game (RC-MSEG), each SFC is treated as a
player whose objective is to minimize the overall latency experienced by the supported ser-
vice flow, while satisfying the capacity constraints of all its NFV nodes. Due to processing-
resource sharing, additional delay is incurred and integrated into the overall latency for
each SFC. The capacity constraints of NFV nodes are considered by adding a penalty term
into the cost function of each player, and are guaranteed by a prioritized admission con-
trol mechanism. We first prove that the proposed game RC-MSEG is an exact potential
game admitting at least one pure Nash Equilibrium (NE) and has the finite improvement
property (FIP). Then, we design two iterative algorithms, namely, the best response (BR)
algorithm with fast convergence and the spatial adaptive play (SAP) algorithm with great
potential to obtain the best NE of the proposed game.

Third, the VNF scheduling problem is investigated to minimize the makespan (i.e.,
overall completion time) of all services, while satisfying their different end-to-end (E2E)
delay requirements. The problem is formulated as a mixed integer linear program (MILP)
which is NP-hard with exponentially increasing computational complexity as the network
size expands. To solve the MILP with high efficiency and accuracy, the original problem is
reformulated as a Markov decision process (MDP) problem with variable action set. Then,
a reinforcement learning (RL) algorithm is developed to learn the best scheduling policy
by continuously interacting with the network environment. The proposed learning algo-
rithm determines the variable action set at each decision-making state and accommodates
different execution time of the actions. The reward function in the proposed algorithm is
carefully designed to realize delay-aware VNF scheduling.

To sum up, it is of great importance to integrate SDN and NFV in the same network
to accelerate the evolution toward software-enabled network services. We have studied VN
topology design, multi-VNF chain embedding, and delay-aware VNF scheduling to achieve
efficient resource allocation in different dimensions. The proposed approaches pave the way
for exploiting network slicing to improve resource utilization and facilitate QoS-guaranteed
service provisioning in SDN/NFV-enabled networks.

KEY WORDS: Core network, network function virtualization, software-defined net-
working, VN topology design, VNF chain embedding, VNF scheduling.
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Chapter 1

Introduction

With the prevalence of Internet-of-Things (IoT), the communication networks are envi-
sioned to accommodate a proliferation of connected devices and diversified services, with
largely increased traffic volume and differentiated quality-of-service (QoS) demands [1],
[2]. These rapid-growing and on-demand services require efficient and effective network
organization and configuration to achieve fast service provisioning. To realize service ori-
ented networking, significant changes are to be made in the currently deployed networking
architecture and a number of technical challenges arise for resource management [3]. Core
networks as the central element of current communication networks can provide customized
services to end users connected by the access networks. Software-defined networking (SDN)
and network function virtualization (NFV) are two promising and complementary tech-
nologies to reduce the function provisioning cost and improve the heterogeneous resource
utilization for customized end-to-end (E2E) service deliveries [4]. In this chapter, we pro-
vide an overview of SDN and NFV, followed by the new challenges of resource allocation
in SDN/NFV-enabled core networks. Finally, we present three key components/stages for
efficient resource allocation in SDN/NFV-enabled core networks.

1.1 Overview of NFV and SDN for Next Generation
Networks

The fifth generation networks (5G) and beyond, which are commercially available in 2020,
will unlock the possibilities to enhance people’s life while bringing in many new opportu-
nities and user experiences. Massive number of intelligent devices (e.g., sensors, vehicles,
wearable devices) are expected to be connected to accommodate various newly emerging

1



services [5] [6], including ultra-reliable and low-latency communication (URLLC) services,
massive machine-type communication (mMTC) services, and enhanced mobile broadband
(eMBB) services [5], [7]. These new services demonstrate highly diversified traffic char-
acteristics and differentiated quality-of-service (QoS) requirements [8] in terms of latency,
security, reliability, and complexity [9]. In particular, URLLC is crucial to many prospec-
tive applications, such as industry automation, autonomous driving, and remote surgery,
which require a low end-to-end (E2E) communication delay in the order of milliseconds.
Meanwhile, the reliability requirements of URLLC services can be higher than 99.999%
[8]. mMTC services usually have to support massive number of devices with low mobility,
thus having less stringent requirements on connection delay and reliability. In contrast,
eMBB services require high data rates (up to the order of Gbps) supported on moving de-
vices over a wide coverage area. Typical applications include 4K /8K ultra-high definition
video streaming, virtual reality, and augmented reality. In addition, in the 5G era, new
requirements arise for the evolving network paradigm, including 1) cost-effective network
deployment for seamless device access, 2) enhanced resource utilization to accommodate
high traffic volume, and 3) flexible function placement for service customization [10][11].
The current one-type-fits-all network is not able to provide customized services with various
quality-of-service (QoS) requirements well.

Therefore, how to satisfy diverse and stringent E2E QoS requirements for multiple
services remains a significant challenge. Moreover, to accommodate the aforementioned
differentiated services, heterogeneous resources should be intelligently integrated into 5G
networks with efficient allocation [9]. The physical resource pool manifests high hetero-
geneity, ranging from radio access networks (RANs) to core networks (CNs). For the RAN
segment, spectrum and time slots are the major resources that can be allocated by opera-
tors, while for the CN segment, the resources include computing, storage and networking
resources at each CN element (nodes and links). In addition, to support massive connected
intelligent terminals and provide seamless connectivity, macro-cells, small cells, and femto-
cells are expected to be densely deployed, which composite heterogeneous multi-tier access
networks in 5G networks and beyond [12]. Various wireless access technologies (e.g. LTE,
Wi-Fi;, WCDMA, etc.) will coexist and cooperate with each other to better utilize network
resources. Through efficient integration, the service quality is expected to be enhanced.
The heterogeneity in services, resources, and access technologies increases the complexity
of 5G networks, leading to high costs of deployment and maintenance. Second, to provide
customized services, the strict service isolation is a necessity when considering the dynam-
ics of one service, such as the topology changes and traffic fluctuations. Last, to better
support the heterogeneity of services without increasing the network deployment cost, it
is expected to have a unified framework to integrate computing, networking, and storage
resources for more efficient global resource allocation. Therefore, the development of 5G
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Figure 1.1: A high-level overview of SDN/NFV-enabled core networks.

networks is not simply an inheritance from the current 3GPP mobile network, but an evo-
lution of the network architecture. The B5G networks are expected to feature enhanced
mobile broadband, massive machine-type communication, and ultra reliable low latency.
A scalable, delay-optimal, highly adaptable and flexible network architecture is desired,
which has attracted great attentions from both the industry and the academia.

Software-Defined Networking (SDN) and Network Function Virtualization (NFV) are
recognized as the two most promising technologies to address the aforementioned challenges
[4], [13]. SDN decouples the network control and forwarding functions, which facilitates
network management and enables network programmability. NFV allows the network
functions to be virtualized and placed on high capacity servers located anywhere in the
network, not only on dedicated devices in traditional networks. Fig. 1.1 illustrates a
typical SDN/NFV-enabled core network scenario. Each customized service is supported by
chaining several virtual network functions (VNFs) and embedding the VNF chain onto the
substrate network. To support the diversified services, a SDN-based hierarchical controller
is employed to manage virtual networks on top of a NFV infrastructure. The logically



centralized controller has a global view of the whole network to monitor the network states
and manage the traffic flows. Additionally, the central controller also helps to achieve
better load balancing in both control plane and data plane. In this way, different services
are strictly isolated and can be managed and operated independently. Bringing SDN
and NFV into 5G mobile communication creates unique benefits, such as flexible service
deployment, reduced costs, and enhanced service quality.

In the following sections, I illustrate the fundamental concepts of network virtualiza-
tion (NV), network function virtualization and software-defined networking. The typical
network architectures as well as the the main network features enabled by the three tech-
nologies are provided.

1.1.1 Network Virtualization/Slicing

Network virtualization (NV), or network slicing, holds a great potential to support various
services by logically partitioning the network resources into multiple virtual slices for cus-
tomized services [14], [15] [16] [17]. For 5G core networks, with network virtualization, each
Internet service providers (ISPs) is decomposed into two network entities: the infrastruc-
ture provider (InP) and the virtual network operator (VNO). InPs take charge of deploying
and maintaining network infrastructures. Each VNO partitions the computing /bandwidth
resources on network elements (i.e., network servers, routers, and transmission links) to cre-
ate different virtual network slices, a. k. a. wvirtual networks (VNs), for supporting different
customized end-to-end (E2E) services over a physical substrate network. As shown in Fig.
1.2, NV creates multiple VNs on top of a common physical substrate network. Each of the
VN5 represents a customized end-to-end service and is composed of a set of virtual nodes
interconnected by virtual links. Each virtual node (virtual link) is physically operated on
a network server/switch (transmission link) and occupies a portion of physical comput-
ing (bandwidth) resources. Through NV, multiple VNs coexist on a common substrate
network and their resources are logically isolated and managed independently by different
VNOs, which not only allows efficient resource sharing among heterogeneous services but
also improves resource utilization and provide more flexibilities for the network.

1.1.1.1 Virtual Network Embedding

A VN typically consists of several virtual nodes interconnected via (either wired or
wireless) virtual links. Those virtual nodes and links form a virtual topology. By virtual-
izing both node and link resources of a SN, multiple VNs can be co-hosted and existing on
the same physical hardware. The problem of embedding multiple virtual networks onto a
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Figure 1.2: Network virtualization environment.

common substrate network is the main resource allocation task in network virtualization
and is usually termed as Virtual Network Embedding (VNE). Efficient VNE algorithms
can dramatically maximize physical resource utilization via resource sharing. There are
various metrics to measure the optimality of VNE algorithms, such as the acceptance ratio,
revenue, and revenue-to-cost ratio, etc.

VNE algorithms deal with the allocation of virtual resources in both nodes and links, so
it can be divided into two sub-problems, i.e., Virtual Node Mapping (VNoM) and Virtual
Link Mapping (VLiM) [18]. VNoM deals with how to allocate virtual nodes in physical
nodes while VLiM focuses on how to map the virtual links connecting these virtual nodes
to paths connecting the corresponding physical nodes. The node mappings are usually
achieved by employing greedy methods, while the link mappings are typically obtained
using shortest path, k-shortest paths [19], and multi-commodity flow algorithms [18]. Both
of these two sub-problems are NP-hard problems [18], and can be jointly studied to achieve
better mapping strategy but with increased complexity.

In last few years, many research efforts have been devoted to the development of VNE
approaches for different scenarios. In what follows, we give a brief overview of the seminal
works. A comprehensive survey of existing VNE approaches can be found in [18]. The
authors of [20] first introduced path splitting and path migration to VNE. The original VNE
problem is first divided into two sub-problems, i.e., the node mapping problem and the link



mapping problem, then the two sub-problems are solved independently. The coordination
in node mapping and link mapping was first illustrated by the approach presented in [21],
[22]. The node mapping is solved by a relaxed MIP formulation. The substrate nodes
are chosen in a way so that the mapping cost for the virtual links are likely to be low. It
is widely recognized that the end-to-end delay requirement is one of the most important
QoS requirements for customized services in B5G networks. The satisfaction of the delay
requirement of each VN remains an important aspect of VNE. There exist some works in
the VNE literature that try to consider the delay requirement as a constraint for the VNE
problem, such as [23] and [24]. In [23], the VNE problem with node and link resource
constraints and path delay constraint has been considered for evolving networks. The
problem has been formulated as integer programming then solved by a heuristic algorithm.
In [24], an optimization framework that minimizes the end-to-end delay for VNE in mobile
networks has been proposed.

1.1.2 Network Function Virtualization

Network services provided by operators can be considered as chains of network functions
(NFs). Various NFs, such as firewall, deep packet inspection, data monitoring, encryption
and decryption, have specific hardware requirements and configurations. Currently, these
NFs are implemented on physical middleboxes (hardware appliances). Due to the explo-
sive development of mobile Internet and Internet of things, the number of diversified new
services will prominently increase in B5G networks [25]. High capital and operational ex-
penditures are demanded for network operators to deploy, maintain, and upgrade physical
middleboxes when new network services are offered.

Network function virtualization, which was initiated in October 2012 [26], is a promising
technology to address the aforementioned challenges. As the home of the Industry Specifi-
cation Group for NFV, the European Telecommunications Standards Institute (ETSI) has
proposed a number of use cases driven by NFV since its initiative [27]. The new use cases
include a variety of novel applications not only for individual customers but also for the
evolved core network.

The basic concept of NFV is to decouple the functions from the hardware equipment
on which they run [28]. In NFV, the NFs, which can only run on dedicated devices in
traditional networks, are virtualized to be placed on high capacity servers located anywhere
in the network. By implementing NFV, the physical resources in the network can be
virtualized to allow efficient resource sharing among different services. The customized
services can also be accommodated in a cost-effective, agile and flexible manner [10].
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Figure 1.3: Network function virtualization architecture.

1.1.2.1 NFV Architecture

As presented in Fig. 1.3, the NFV architecture has three key components: NFVI, VNFs,
and NFV Management and Orchestration (MANO) [29]. NFVI contains all the hardware
and software resources which are utilized to run the VNFs. The physical resources may
include computing, storage and networking resources. Through a virtualization layer, the
physical resources are abstracted as virtual resources.

Network functions (NFs) are functional building blocks implemented on specific net-
work elements (middleboxs), which have well-defined interfaces to end users and specific
functional behaviors. In the NFV environment, a network service is a set of chained VNF's,
defined by its types of VNFs, their respective order in the chain, and the resource alloca-
tion of the chain in the NFVI. Network services can be supported by chaining the VNF's to
form VNF chains then embedding the resultant chains onto an NFV-enabled infrastructure
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[30] [31]. VNF chain is in fact an ordered list of network function instances that traffic
traverses through. It can be considered as a novel service chain deployment model in NFV
and SDN environment.

The role of the NFV MANO is to fulfill all the tasks for virtualizing the network func-
tions and the infrastructure [29]. Specifically, those tasks include orchestrating and man-
aging the resources (including hardware and software) for virtualizing the infrastructure
and executing the VNFs, and also include defining the interfaces to allow communications
between different network elements in the NF'V infrastructure.

1.1.2.2 Benefits of NFV

As a new network architecture, network function virtualization enables network func-
tions to be implemented through software running on general-purpose high volume servers.
These network functions were traditionally implemented on dedicated hardware such as
middleboxes or network appliances. The key benefits brought by NFV can be summarized
as follows [26],[32]

1. Increased Deployment Flexibility

In the core network domain of the current network architecture, a set of dedicated
middleboxes is deployed for each specific network service. When new services are
required, new middleboxes have to be deployed, while increasing the number of net-
work elements for service customization. With NF'V, one can use commodity servers
to host VNFs and deploy a new service by installing VNFs on commodity servers
instead of adding new hardware devices. In this way, flexible function placement can
be achieved for service customization.

2. Reduced Capital Expenditure (CAPEX) and Operational Expenditure (OPEX)

With increased deployment flexibility and agility to integrate new network services,
significant reductions in CAPEX and OPEX are expected to be obtained. With
the help of software, NFV allows a common physical network to support multiple
customized services simultaneously. Improved hardware upgrading and maintaining
efficiency also leads to reduced CAPEX and OPEX.

3. Faster Service Life Cycle

Compared with the time-consuming and costly function update process in an existing
network, in an NFV-enabled network, adding new functions is much easier. The
function update can be completed by only updating the software. Because of this,



the life cycle of VNFs can be much shorter and services deployment time can be
greatly reduced.

4. Better Network Function Provisioning and Isolation

In the NFV framework, traditional middleboxes are managed and orchestrated in
the form of VNFs, which are in fact software modules that can be installed on
general-purpose commodity servers. This allows programmability and isolation of
each function, so they can be managed independently.

5. Improved Resource Utilization

Through network virtualization, the whole network is sliced into multiple virtual
networks. Each VN is used to support a customized service in a specific scenario.
Multiple VNs are mutually isolated and can coexist in the common infrastructure
sharing the same physical resource pool. The heterogeneous resources are virtualized
to allow resource sharing among different VNs and to improve resource utilization in

both RANs and CNs.

1.1.3 Software-Defined Networking

1.1.3.1 Conventional SDN

In the traditional networking approaches, most network functionalities are implemented
using dedicated hardware, i.e., router, switch, and firewall. In the contrast, SDN net-
working architectures aim to separate the network control plane from data plane, so that
hardware products can be standardized and the whole network can be made directly pro-
grammable. As a result, enterprises can get rid of hardware restrictions of the network
architecture. Network adjustment, expansion and upgrade can be completed by installing
and upgrading the software. Both the capital and operational costs are reduced while sim-
pler management and more flexible control are achieved. Fig. 1.4 shows the illustration
of a conventional physical SDN network, where network applications (Appl, ..., Appn)
interact through the Northbound Interfaces (NBIs) with the SDN controller, which in turn
interact with the physical SDN network through Southbound Interfaces (SBIs) [33].

1.1.3.2 Combining NV and SDN

In the last a few years, network virtualization and software-defined networking have
been the two hottest topics in networking. They both have their own distinct advantages



Applications Examples: security, QoS, monitoring

APP, | | APP, || APP, || APP, || APPs

LR APPn

Control Plane
Centralized SDN

Controller

\ Southbound Interfaces (SBIs)
S ol

Data Plane

Openflow Switch

Figure 1.4: Conventional (non-virtualized) SDN network.

and can be combined to enable more powerful technologies for future networks. Different
from NV, SDN requires the construction of new network where the control and data layers
are decoupled. In other words, SDN modifies the physical network, while NV can reside
on the servers of the existing network. SDN creates network abstractions to enable faster
innovation, open innovation creates competitive supply of innovative applications by third
parties, while NV reduces CAPEX, OPEX, space and power consumption.

One of the enablers for future networking technologies is virtual SDN networks, in which
a hypervisor is incorporated between the physical SDN network and the SDN control
plane [33]. The hypervisor has a global view of the whole physical SDN network and
interacts with it via the Southbound API. The physical SDN network is virtualized to create
isolated virtual SDN networks, which are controlled by different virtual SDN controllers.
Each virtual SDN controller is able to perceive the status and interact with the virtual
SDN network under its management. An illustration of the concept of SDN network
virtualization is shown in Fig. 1.5.
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Figure 1.5: Virtualization of the SDN network.

1.1.3.3 Benefits of SDN

SDN enables the programmability of networks such that operators are able to support
services with finite network resources [34]. The biggest promise of SDN is that it will cen-
tralize and simplify the control of network management by separating the network control

plane from data plane. Below we summarize some highlights of the specific advantages of
SDN [34]-[35]:

1. Centralized Control Provisioning

SDN provide a centralized view of the whole network, which enables easier centralized
network management and provisioning. Through separating the control and data
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planes, SDN is able to facilitate service delivery and offer more agility in provisioning
both virtual and physical network resources at a central location.

. Comprehensive Infrastructure Management

Many new applications and virtual machines have to be set up in order to accom-
modate new processing requests such as big data. SDN allows IT teams to be able
to run experiments with network configurations without causing any effects to the
network. Moreover, in SDN, there exists a single centralized controller that manages
physical and virtual switches and network equipment. This cannot be achieved with
simple network management protocol (SNMP).

. Reduced Capital and Operational Expenditures (CAPEX and OPEX)

The implementation of SDN makes the optimization of existing network devices eas-
ier. Existing hardware can be re-purposed with the instruction given by the SDN
controller. In addition, since all the intelligence of new devices are centered at the
SDN controller, new devices actually becomes “white box” switches and less expen-
sive hardware can be deployed. On the other hand, the operating expenditures can
also be reduced due to administrative efficiency, centralized management, and better
control of virtualization.

. Guaranteed Data Delivery

One of the primary advantages of SDN is the ability to shape and control data traffic.
The QoS requirements of multimedia services can be better guaranteed as SDN is
able to direct and automate data traffic.

. Enhanced Security

SDN centralizes security control into one entity, such as the SDN controller. By doing
this, SDN can be used effectively to manage security throughout the whole network
provided that it is securely and properly implemented.

1.1.4 Relationships Between NFV and SDN

NFV and SDN share a lot of similarities as they both pursue the openness of network and
the use of standard network hardware. Both of them attempt to exploit virtualization and
automation to achieve their own potential goals. Actually, they are highly complementary
to each other and may be combined to enable more beneficial networking technologies.
NFV is able to support SDN and vice versa. The performance of NFV can be enhanced
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via SDN-based approaches and vice versa, though most of the advantages coming from
combining the two technologies have not been observed in practice.

On the other hand, there are also significant differences between SDN and NFV since
they are different concepts. One of the differences is that, SDN aims to separate the control
and forwarding planes and orchestrate the network-wide resources via a centralized con-
troller. On contrary, NFV focuses on optimizing network services themselves by replacing
the expensive dedicated middleboxes with generic servers that can provide a number of
different VNF's through software. Another difference is that, NFV can be implemented
on the servers of an existing network and thus does not require the construction of new
network. On contrary, the deployment of SDN relies on decoupled control and data layers,
therefore, it requires the construction of a new network architecture.

It is possible and important to integrate SDN and NFV in the same network to accel-
erate the evolution toward software-enabled network services. NF'V promotes the diversity
of network functions offered by service providers [36]. SDN has been recognized as a key
technology for the realization of a more efficient and flexible data center infrastructure,
which enables network services to be dynamically deployed among shared NF'V nodes. It
is also a key driver for the development of edge computing and cloud computing. With
the help of SDN, it becomes easier for the service provider to support diversified services
with the most cost-effective resources.

1.2 Resource Allocation in Core Networks

As mentioned above, SDN and NFV are able to create more efficient and centralized
networking management, reduce operational costs, and enable other new technologies.
Thus, integrating SDN and NFV into the design of next generation networks remains a
hot research topic in recent years. However, one important yet challenging problem of
implementing SDN and NFV is how to manage and allocate the physical resources in
an efficient and cost-effective manner, which is usually referred to as the NFV resource
allocation (NFV-RA) problem.

Traditionally, network infrastructure are managed and maintained by different network
operators independently. In this business model, to deploy a network service for each net-
work operator, the data traffic needs to flow through a certain fixed group of middleboxes,
such as firewall, DNS (Domain Name System), and IDS (Intrusion Detection System), in
a predetermined order [37]. The problem of choosing the set of required middleboxes and
deciding the corresponding routing paths is called “middleboxes orchestration.” In an ex-
isting network, this task is manually executed through a “trial-and-error” approach, which
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Figure 1.6: Global resource management and allocation via centralized SDN controller in
core networks.

is very costly and time-consuming. Furthermore, once placed, it is costly and impractical
to change the location of a middlebox according to the variations of network conditions.

In the context of SDN/NFV-enabled core networks, a network service can be formed
with a set of chained virtual network functions (VNFs). Therefore, a network service is
typically defined by the types of the VNF's chained, the processing order of the VNFs in
the chain, and the embedding of the chain onto the network function virtualization infras-
tructure (NFVI). Fig. 1.6 illustrates the transition from traditional network to SDN/NFV-
enabled core network. Note that the function-specific middleboxes are replaced by com-
modity servers to host VNFs. A logically centralized SDN controller, which has a global
view of the whole network, is used to manage and allocate the resources in the network. By
doing this, new services can be deployed by installing VNF's on commodity servers instead
of adding new hardware devices to the network, leading to reduced CAPEX and OPEX.
Such a network service has its specific time-varying and stochastic properties in terms
of traffic volume and user distribution. Additionally, to accommodate the differentiated
network services with diverse QoS requirements, heterogeneous resources (i.e., computing,
storage and networking resources) need to be allocated to the services simultaneously and
efficiently. There exist significant challenges in achieving a fast, efficient, and dynamic
resource allocation scheme to accommodate multiple network services since efficient algo-
rithms are desired to (1) compose the VNFs chain for a network service; (2) embed the
chained network functions onto the substrate network (SN); and (3) schedule the VNFs
of the network service to minimize the execution time and obtain improved performance.
Through virtualizing network functions, new services can be accommodated by updating
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the software on the network servers instead of deploying new devices. In this way, the
service provisioning cost can be reduced while the resource utilization can be improved.
On the other hand, the use of SDN facilitates the realization of network openness and pro-
grammability. Despite the benefits brought by NFV and SDN, one of the main challenges
in SDN/NFV-enabled core networks is, how to efficiently manage, allocate, and optimize
the heterogeneous resources, including computing, storage, and networking resources, to
the customized services for better QoS provisioning [38].

1.3 Research Motivations and Contributions

In the 5G era, new requirements arise for the evolving network paradigm, including 1) cost-
effective network deployment for seamless device access, 2) enhanced resource utilization to
accommodate high traffic volume, and 3) flexible function placement for service customiza-
tion [3], [11]. However, the heterogeneity in services, resources, and access technologies
increases the complexity of 5G networks. Therefore, heterogeneous resources should be
intelligently integrated into 5G networks with efficient allocation. On the other hand, the
centralized networking management offered by SDN and the increased service deployment
flexibility provided by NFV create new opportunities for the development of resource allo-
cation schemes for 5G networks. Therefore, resource allocation becomes one of the most
crucial problems that calls for in-depth investigations for deploying SDN/NFV-enabled 5G
networks. With efficient and dynamic resource allocation algorithms, the advantages ob-
tained from existing hardware service can be maximized. In addition, optimally dynamic
resource allocation helps the network to provide QoS-guaranteed services and accommodate
services in a flexible, agile, and cost-effective manner.

The objective of this research is to develop efficient resource allocation schemes for
SDN/NFV-enabled core networks to improve resource utilization, enable better QoS provi-
sioning, and increase the network capability of accommodating customized services. Specif-
ically, we will focus on the following three problems:

e In a single-service scenario, we investigate how to design the VN topology (i.e.,
reasonably allocate physical resources to the virtual nodes and virtual links) and
embed the resultant VN onto substrate network to guarantee that the embedding
cost is minimized and the QoS requirement can be satisfied. The objective is to find
the optimal VN topology design and embedding solutions that can assign optimal
physical resources for VNFs and virtual links so as to reduce the deployment cost
and to increase the number accommodated services in the long run.
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e In a multi-service scenario, we devise a game theoretical approach to address the
multi-VNF chain embedding problem taking into account the additional latency in-
crease introduced by processing-resource sharing and the node capacity constraints.
The objective is to minimize the overall latency experienced by the traffic flow asso-
ciated with each VNF chain so as to facilitate QoS-guaranteed service provisioning.
An efficient embedding algorithm can not only find the optimal VNF placement and
traffic routing strategies but also achieve fairness among NFV nodes to realize load
balancing.

e In a multi-service scenario, we develop a reinforcement learning based VNF' schedul-
ing scheme to minimize the completion time of network services while satisfying their
different E2E delay requirements. The original formulation of VNF scheduling falls
into the class of NP-complete problems. To make it tractable, we reformulate it as an
MDP and leverage a modified RL approach to solve it with reduced complexity and
high accuracy. An efficient scheduling algorithm can minimize service completion
time to improve the resource utilization.

1.4 Thesis Outline

The remainder of the thesis is organized as follows: Chapter 2 presents a comprehensive
background and overview of related works of resource allocation in SDN/NFV-enabled
core networks. We introduce the RA task from three aspects, i.e, VNF chain topology
design, VNF chain embedding, and VNF scheduling. In Chapter 3, we jointly study how
to design the topology of a VN and embed the resultant VN onto a substrate network with
the objective of minimizing the embedding cost while satisfying the QoS requirements.
In Chapter 4, a game theoretical approach is proposed to address the multi-VNF chain
embedding problem. Then, two iterative algorithms are designed to find the NE of the
proposed potential game. routes. In Chapter 5, the VNF scheduling problem is investigated
to minimize the makespan (i.e., overall completion time) of all services, while satisfying
their different E2E delay requirements. Then, a reinforcement learning based approach is
developed to learn the best scheduling policy by continuously interacting with the network
environment. Finally, Chapter 6 concludes the thesis and presents future works.
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Chapter 2

Background and Literature Survey

In SDN/NFV-enabled core networks, a network service has its specific time-varying and
stochastic properties in terms of traffic volume and user distribution. To accommodate the
differentiated network services with diverse QoS requirements, heterogeneous resources
(i.e., computing, storage and networking resources) need to be allocated to the services si-
multaneously and efficiently. Moreover, both the number and the types of network services
will grow exponentially in the evolution of 5G networks. There exist significant challenges
in achieving a fast, efficient, and dynamic resource allocation scheme to accommodate mul-
tiple network services. The resource allocation task (also referred to as network function
virtualization resource allocation, NFV-RA) is implemented in three steps [32], i.e., given
the traffic metrics, QoS requirements, and resource constraints of the substrate network,
we first need to compose a VNF chain to form a virtual network (VN) topology. Then
virtual resources allocated to each element (VNF or virtual link) need to be optimized in
order to minimize the provisioning cost and to satisfy the QoS requirements. This process
is usually referred to as VINF' chain topology design. Next, we need to embed the virtual
network (i.e., the VNF chain) onto the substrate network. During this stage, we need to
assign the physical resources in an economical way to meet the resource demands of virtual
nodes and links. This involves determining the locations of NFV nodes to host the VNF's
and the routing from source to the destination. This process is referred to as VNF' chain
embedding. Finally, we need to schedule the VNFs for multiple services to minimize the
service completion time and maximize the network performance. In other words, when
multiple VNF's are embedded on the same NFV node, each of them should be assigned an
optimal time slot. This process is referred to as VNF scheduling [39]. The main outcome
for each step can be summarized as follows [32]:

1) VNF chain topology design: Given the traffic metrics, QoS requirements, and re-
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quired VNFs of the service, we need to determine the required physical resources of the
VNFs and virtual links, and chain them together to form a VNF chain; A optimized topol-
ogy design can assign optimal physical resources for VNFs and virtual links to reduce
deployment cost.

2) VNF chain embedding: Given the VNF chain and the resource constraints of the
substrate network, we need to first determine the locations of NFV nodes onto which
the VNFs should be placed, then determine the corresponding routing from source to
destination in the NFVI. An efficient embedding algorithm can not only find optimal VNF
placement and traffic routing strategy but also achieve fairness among VNFs embedded
onto the same NFV node to realize load balancing.

3) VNF scheduling: When multiple VNFs are placed on the same NFV node, the
execution time of each VNF needs to be scheduled to minimize the total execution time
and achieve efficient resource sharing. An efficient scheduling algorithm can minimize
service completion time to improve the resource utilization.

In what follows, we provide a detailed description of the three steps, along with some
research challenges and existing approaches proposed in the literature.

2.1 VNF Chain Topology Design

In the NFV environment, a network service request, or a VNF request (VNFR), is an
entity composed by a number of VNFs in a predetermined order [29]. This means, the
data traffic should pass through a given number of VNFs in a given order to complete
the execution of the network service. Different from an existing network where network
functions are run on dedicated hardware appliances which have fixed locations, VNF's
are software with much higher deployment flexibility, leading to increased complexity in
composing the VNF chains. Therefore, it is crucial to investigate the chain composition
process so that VNF chains can be efficiently composed to deploy customized and dynamic
NFV-enabled network services.

For a given network service request, the following information is typically known:
e Set of VNFs in the request and the dependencies between them:;

e Fixed substrate nodes of initial and terminal points for the traffic flow, denoted as
ns and ng, respectively;

e Initial data rate of the traffic flow, denoted as d,;
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Figure 2.1: Example of (a) a VNFR and (b) two possible VNF chain topology design
results.

e The ratio of outgoing to incoming data rate of each VNF;

e The processing capacity demand per bandwidth unit of each VNF.

Fig. 2.1(a) shows an example of a VNFR, where the number of required VNFs is 5 and
the initial date rate entering the chained functions is 1 Gbps. The percentage (indicated
as blue) beside each VNF represents the ratio of outgoing to incoming data rate for each
VNEF. For example, when d, = 1, the capacity demand for processing f; = 10 units. The
outcome data rate of f; is 0.8 Gbps. The dependencies between multiple VNF's are denoted
by dashed arrows. For example, the dashed arrow from f, pointing to f; indicates that
f1 must be processed after f,. Two possible VNF chain topology design based on the
VNFR information are shown in Fig. 2.1(b). The numbers on the links represent the
bandwidth requirements (in GBps) while the numbers in the rectangles indicate the CPU
requirements.

19



2.1.1 Problem Description

The task of allocating physical resources to a service request consists of two major parts,
i.e., composing a VNF chain for the VNFR in an optimal way and embedding the resultant
VNF chain onto the substrate network efficiently. Specifically, the following five aspects
have to be taken into consideration:

1) Design the objective function for optimization
Let C(G") represent the embedding cost of the VNF chain. C(G’) can be defined as

follows [22] ,
CE)=ad) Y 0 +8> cn) (2.1)

l'eLl’ leL n’eN’

where b represents the total amount of bandwidth resource allocated on the substrate link
[ for virtual link I, @ and (8 are parameters to weigh the contributions of node and link
resources to C'(G’). To allow efficient resource sharing among customized services, C'(G’)
should be minimized.

2) Determine the order of VNFs in the chain

The inputs of the problem in the preliminary study are static VN topologies in which
the nodes order are fixed and pre-determined. As the inputs are changed to network service
requests composed of several VNFs. The order of the VNFs needs to be determined where
the dependencies between any two VNF's should be respected.

3) Determine the optimal resources allocated to each VNF and virtual link in the VNF
chain

Given the end-to-end delay requirement D, initial data rate entering the chained func-
tions d;n;, and the ratio of outgoing to incoming data rate r(f;) of each VNF f;, we need
to find the optimal physical resources allocated to each VNF and virtual link to minimize
the overall embedding cost C'(G’) while satisfying the delay requirement. This work can
be solved together with VNF ordering.

4) Find the locations of NFV nodes to host the VNFs in the chain

The VNF chain embedding process need to consider both the host ability and resource
constraints of each NFV node. During the node embedding process, we try to find a
embedding M”Y : N’ — N from the virtual nodes to substrate nodes, such that for all
n' € N’

MYy e N
subject to

" e H(MN(n')) (2.2)
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c(MN (") > c(n). (2.3)

Constraint (2.2) ensures that the VNF corresponding to n’ can be hosted by the sub-
strate node to which n’ is embedded, while constraint (2.3) ensures that the CPU require-
ment of n’ can be satisfied.

5) Determine the routing from source to destination, passing through all the deployed
VNFs

In the link embedding step, one aims to find a mapping M’ from the virtual links to
substrate paths, such that for all I’ € L’

ML) € P

subject to

b(ME(1)) > (1) (2.4)

Constraint (2.4) ensures that the bandwidth requirement of I’ can be satisfied.

Some other constraints also need to be included in formalizing the optimization. For
example, routing constraints have to be satisfied, which ensures that there is a path from
the source to the first VNF, from each VNF to its consecutive VNF, and from the last VNF
to the destination. Also, the delay constraint has to be satisfied, which guarantees that
the total end-to-end delay does not violate the delay requirement. The delay analysis need
to consider both the propagation and transmission delay over the links and the processing
delay on the NFV nodes. In terms of the objective function, it should include the binary
variables indicating whether a node is used to host a specific function, and the binary
variables indicating whether a link is used to forwarding the data traffic between source
and destination.

There are many factors that increase the complexity and hardness of the VNF chain
topology design problem: First of all, the ordering of VNFs are flexible and has to respect
the dependencies of the VNFs. Different ordering of VNFs may result in different physical
resources requirements (which is related to the embedding cost) for the resultant VNF
chain. This flexibility increases the searching space of the optimal VNF chaining. Secondly,
traffic splitting may be required in situations where the residual physical resources of a node
(or a link) are not enough to support the network service. In such scenarios, some VNF
has to be instantiated on multiple NFV-enabled nodes and the data traffic has to traverse
through different VNF instances running on multiple nodes. This will further increase the
hardness of the VNF chain topology design problem. Thirdly, once the order of VNFs
is determined, we need to determine the set of physical resources allocated to the VNFs
and virtual links, to minimize the embedding cost while achieving QoS-guaranteed service
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provisioning. Lastly, as the physical resources of the substrate network is limited, it is also
important to take the substrate network condition, more specifically, the substrate node
locations, residual capacities and host abilities into the VNF chaining process to improve
the overall network performance. This will make it even harder to obtain the optimal
solution to the VNF chain topology design problem.

2.1.2 Related Works

As mentioned earlier, the performance of a network service relies on how its VNF chain is
composed and in which order the VNFs are processed. However, most of existing studies
neglect this stage of NF'V-RA while focusing on the second and the third stages. One of
the pioneering works that focuses on the VNF chain topology design problem is presented
in [40]. The authors design a context-free language to formalize the requests for chaining
several VNF's together. Then, a heuristic was used for choosing one of the possibilities to
compose the VNF chain. The heuristic attempts to minimize the total data rate of the
resultant VNF chain by assigning higher priority to VNFs with a smaller “inflation factor”
(i.e., smaller ratio of outgoing to incoming data rate) when chaining the VNFs together.
In this way, the total cost of deploying the service request is expected to be minimized.

Some previous studies have been conducted in literature that tackle with the VNF
chain topology design and embedding together, such as those in [37], [40], [41], [42], [43],
[44], [45], [46], [47]. For example, in [40], the VNF chaining and placement problem has
been considered as an extension of VNE. The problem of finding the optimal placement of
VNFs and chaining them together has been formulated as a Mixed Integer Quadratically
Constrained Program (MIQCP) and solved accordingly. In [41], a coordinated approach
which deals with the first two stages of NF'V-RA has been proposed, where VNF chains are
composed and embedded simultaneously. The resultant VNF chain from VNF chain topol-
ogy design is prepared to optimize VNF chain embedding, leading to a higher probability of
successful embedding. In [46], it has been shown how traditional VNE optimization models
can be modified to cope with the virtual core network function placement and topology
optimization. A novel ILP formulation has been presented with the objective of minimiz-
ing the cost of occupied link and node resources. In our work [37], a two-stage approach
is proposed to jointly optimize the chaining and embedding of virtual network functions
(VNFs), to obtain feasible composition and embedding results with low complexity, while
the average embedding cost is minimized and the total revenue is increased. In the first
stage, the VNF chaining order is optimized based on the location and functionality of sub-
strate nodes, and the ratio of outgoing data rate over incoming data rate for each required
VNF'. In the second stage, we allocate the physical resources based on the preliminary
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VNF ordering under the resource capacity constraints. A node splitting mechanism is also
employed to improve the resource allocation fairness and increase the service acceptance
ratio for the substrate network.

However, most previous studies on VNF' chain embedding assume that the virtual re-
sources allocated to the VNF instances and virtual links are pre-defined and further assume
that QoS-guaranteed services can be provided once the given virtual resource requirements
are satisfied. Without optimization, the physical resources required by each VNF chain
may be redundant or insufficient, leading to increased embedding cost for the network
operator or degraded QoS for end users. Therefore, to provide end users with guaran-
teed service quality in a cost-effective manner, VNF chain topology design and embedding
should be solved in a combined way, while considering the optimization of the physical
resources allocated to the VNF chain.

2.2 VNF Chain Embedding

Once the VNF chain is composed via the chain composition process, the input to the sec-
ond stage of NF'V-RA is obtained. The VNF chain embedding process is to place the VNFs
on NFV nodes in the NFVI in the most suitable way, considering multiple network service
requests. The VNFs should be consolidated in a way such that the physical resources are
optimally allocated to the VNF chains with respect to a specific network operator’s ob-
jective (e.g., maximizing the total revenue). The problem of embedding VNF chains onto
the network function virtualization infrastructure is another challenging resource alloca-
tion task in the implementation of NFV. Through dynamic mapping VNFs onto physical
hardware, the advantages obtained from existing hardware service can be maximized. This
calls for algorithms to determine onto which substrate nodes in the NFVI the VNF's should
be placed.

2.2.1 Problem Description

The left side of Fig. 2.2 shows three basic types of VNF chains. Note that they may be
combined with one another to form more complex requests. The right side of Fig. 2.2
shows the physical infrastructure as well as an example of VNF deployment on it to fulfill
a number of service requests [42].

VNF chain embedding shares many similarities with virtual network embedding (VNE),
which can also be divided into two sub-problems: virtual node mapping and virtual link
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Figure 2.2: Illustration of VNF chain embedding, the left side shows three basic types of
VNF chains, while the right side shows the physical NFV-enabled infrastructure and the
VNF chain embedding results.

mapping [48]. Nevertheless, different from VNE where only the ability of processing and
switching data packets are considered for all the substrate nodes, in VNF chain embedding,
each substrate node can host a set of VNF's of different types. Since each VNF uniquely
requires specific physical (computing, storage or networking) resources, a VNF can only
be assigned onto a substrate node that has the ability to host it. This makes it harder to
embed a VNF chain onto an NFVI than to map a virtual network onto a substrate network
in the NV environment. Furthermore, the VNF chain embedding stage needs to deal with
dynamic/changing networking condition and varying service description. That is to say,
(1) With new services arriving and old services leaving the network, the existing VNF
placement scheme may need to be modified to accommodate the newly coming service
requests and improve resource utilization; (2) When the data rate entering an existing
function chain changes, the orchestrator should notice that and trigger an adjustment
algorithm to re-embed the corresponding VNF chain and re-allocate the physical resources
to achieve better overall network performance. Lastly, as the middle stage of the NFV-RA
problem, VNF chain embedding is closely related to the other two stages. It is particularly
important to study VNF chain topology design and VNF chain embedding jointly, VNF
chain embedding and VNF scheduling jointly, and even the three stages jointly to obtain
the optimal resource allocation solution for the NFV environment, though the problem
complexity would also greatly increases.
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2.2.2 Centralized Approaches to VNF Chain Embedding

Due to the importance of VNF chain embedding in NFV, many research efforts have been
devoted to the development of efficient VNF chain embedding algorithms. A centralized
approach usually addresses VNF chain embedding by formulating the embedding process
as an optimization problem [39]. The objective can be: 1) to maximize the number of
accommodated VNF chains; 2) to minimize the average long-run embedding cost; and 3)
to minimize the E2E latency of the flow corresponding to each VNF chain, to name a few.

For example, in [42], the VNF chain embedding problem has been formulated as an
ILP with the objective of minimizing the number of VNF instances deployed onto the
substrate network. In order to improve the scalability of their approach, a binary search
based heuristic algorithm has been presented to quickly obtain feasible and high-quality
solutions to the ILP model. In [45], VNF placement has been modeled as a combination
of the facility location problem and the generalized assignment problem. The objective of
their optimization model is to minimize the total system cost which includes the cost for
function setup and the cost for traffic delivery. The linear relaxation technique is used to
address the NP-hardness of the established ILP model. In [49], the VNF chain embedding
problem has been formulated as an integer programming model with the objective of
minimizing the latency.

While most of existing studies focused on the VNF chain embedding problem only, some
other works address VNF chain embedding with other phases of NFV-RA in an coordinated
manner. In [50], the problems of VNF chain topology design and embedding for multiple
service requests are jointly studied with the objective of minimizing the total bandwidth
consumption. A heuristic algorithm was proposed to coordinate the two processes using
the feedback from mapping the key sub-modules of a VNF chain. In [43], a coordinated
approach has been studied to jointly optimize VNF chain composition, embedding, and
scheduling, where the former two phases are jointly formulated as an MILP with the
objective of minimizing the total cost, while the last phase is addressed by a one-hop
scheduling algorithm with low-complexity.

The existing centralized approaches face the challenges of how to deal with the compu-
tational complexity which increases exponentially as the network size expands. Moreover,
the availability of a centralized entity collecting the information of all SFCs existing in
the entire network needs to be stated. In reality, different SFCs could be controlled by
different operators from different network domains, which motivates researchers to rethink
the SFC embedding problem and investigate the possibility of performing SFC embedding
in a distributed manner, as will be discussed in the next section.
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2.2.3 Distributed Approaches to VNF Chain Embedding

Among all the distributed approaches for SFC embedding, game theoretical approach is
the most widely adopted one due to its great potential to model the strategic interaction
among a number of decision-makers. Recently, some research activities have been carried
out to develop game theoretical approaches for SFC embedding [52]-[54].

In [52], the process of NFV servers providing network functions to users has been
modeled as a two-stage Stackelberg game, where the servers and the users are considered
as leaders and followers of the game, respectively. Similar to [52], the authors of [57] have
leveraged a mixed-strategy gaming approach to facilitate SFC provisioning over inter-
datacenter elastic optical networks, where resource brokers and users play the leader game
and the follower game, respectively. In [55], the work in [57] has been extended from a
single-broker scenario to a multi-broker scenario. In [56], the SFC embedding problem has
been envisioned as a cooperative graph partitioning game and a heuristic algorithm has
been designed to achieve the NE corresponding to the optimal solution.

On the other hand, the SFC embedding problem has also been formulated as a con-
gestion game in [51]-[54]. D’Oro et al. first modeled the SFC embedding problem as a
weighted congestion game in [51]. The game has been proved to be a weighted potential
game which admits at least one pure strategy NE. Following the study in [51], Bian et al.
have proved in [53] that, with the consideration of user and resource failures in the NFV
system, the weighted congestion game is still a weighted potential game whose NE can be
obtained with their proposed distributed algorithm. In [54], Le et al. have developed a
congestion game with player-specific (CGPS) utility functions which has been proved to
be a weighted potential game. They then applied CGPS to model the SFC embedding
problem where different traffic flows have different priorities.

Some machine learning based approaches that adapt to dynamic environment and un-
certain network conditions have also been proposed in the literature [106], [58]. For ex-
ample, in [58], a decentralized optimization framework that addresses multi-domain SFC
embedding for wireless networks has been presented. The framework exploits a recently
reported Alternating Directions Dual Decomposition (AD?) algorithm to achieve consensus
among different operators quickly with guaranteed convergence and stability.

2.2.4 Processing-Resource Sharing

The E2E delay requirement is one of the most important metrics for NFV-enabled service
provisioning in next generation communication networks. Under this consideration, some
approaches have been developed to achieve latency-aware VNF chain embedding from
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different aspects. In [44], the latency for a given traffic flow is calculated from the aggregate
propagation delay of all the links the traffic passing through. The network OPEX then
consists of a penalty for service level objective (SLO) violation, i.e., if a traffic experienced
more than the maximum allowed propagation delay. A similar way to deal with the latency
constraint in the VNF chain embedding context can be found in [40] and [59]. In [42], the
propagation delay of links and the processing delay of network functions are considered
as constants. Both of the delays are then involved in the formulation of VNF chaining
and placement to ensure that the end-to-end latency constraints of a specific service is
satisfied. As an extension to [46], the work in [60] include processing, queueing as well as
propagation delays into the optimization of virtual mobile core network function placement
and topology design.

Almost all the existing VNF chain embedding approaches neglect one important impact
on the latency of a service caused by placing multiple VNFs on the same substrate node.
Due to processing-resource sharing, additional latency penalties are introduced to the ex-
ecution of network services which have multiple VNFs running on the same NFV-enabled
node. This impact is not desired as services have their specific latency requirements to
be satisfied. Thus, the impact of processing-resource sharing on VNF placement needs to
be evaluated and taken into consideration when dealing with the VNF chain embedding
problem.

Compared with its single-service counterpart, the VNF chain embedding problem in a
multi-service scenario has additional challenges. One practical yet challenging aspect of
multi-service VNF' chain embedding is to take into consideration the impact of processing-
resource sharing on VNF placement. Suppose that every NFV-enabled node is equipped
with a multi-core CPU and is able to run multiple VNF's (either in the same or in different
service chains) simultaneously. Then multiple services can share the processing resources
of a same NFV node by placing a VNF to the same NFV node. In such a scenario, signaling
overhead among different VNFs and synchronization overhead among different cores may
result in additional latency for each service.

Efficient management of physical resources and control of flow latency are two of the
most crucial yet challenging tasks for SDN/NFV-enabled 5G networks. Placing multiple
VNFs on the same NFV node equipped with multi-core CPU may result in performance
degradation due to processing-resource sharing. The degradation effects reflect in an in-
crease in the latency caused by the NFV node and a reduction of the actual processing
resources that can be used to host VNFs of the NFV node. Therefore, to manage the
physical resources efficiently as well as to achieve better latency control of flows, the degra-
dation effects mentioned above should be taken into account when solving the VNF' chain
embedding problem.
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2.2.5 Challenges of Multi-VNF Chain Embedding

The embedding of multiple services faces three challenges: (1) The impact of processing-
resource sharing on the VNF chain embedding process is difficult to be evaluated. Two
types of penalties related to the processing-resource sharing among multiple VNFs can
be identified, i.e., the context switching costs and the upscaling costs [61]. The former
is due to multiple VNFs running on the same NFV node while the latter is caused by
performing load balancing for one VNF running on a NFV node with multi-core CPU. In
[61], the context-switch costs are modeled as linearly related to the number of VNFs sharing
the NFV node, and the upscaling costs are modeled as linearly related to the number of
CPU cores among which the traffic is balanced. However, the linear relationship may
not be a practical assumption. To estimate the two types of costs accurately, a more
advanced modeling method needs to be investigated. The model will be utilized to help
formalize the VNF chain embedding problem; (2) The objective function of the VNF
chain embedding problem should be carefully designed. In [61], the paper minimizes the
number of active NFV nodes in deploying a network service. However, by minimizing
the number of active NF'V nodes, the embedding cost can be reduced but the additional
latency penalty is also increased. Thus, there is a trade-off between reducing the number of
active NF'V nodes and satisfying the latency requirements. Moreover, simply minimizing
the number of active NF'V nodes may lead to unbalanced load among the NFV nodes in the
network. Therefore, the objective function should be devised in a way that by minimizing
the objective function one can achieve load balancing among NFV nodes and reduce the
embedding cost while satisfying the latency requirement; (3) The optimization problem
can be formulated as an ILP/MILP model, which is NP-hard. To obtain a suboptimal
solution in a shorter time, heuristic algorithms need to be designed. The performance of
the heuristic algorithms should be comparable with the ILP/MILP model when evaluated
in various network scenarios.

2.3 VNF Scheduling

The last stage of NFV-RA is the VNF scheduling process. Given the embedding results
of VNF chains, this process is to find a proper scheduling of VNFs’ execution on each
substrate node to minimize the “makespan” (i.e., the final completion time of the last
VNF of the last executed network service). The results of a VNF scheduling process is
closely related to the VNF' chain embedding stage. The embedding process should aim to
maximize the performance of the VNF scheduling stage. Therefore, it is desired to solve the
VNF chain embedding and VNF scheduling problems in a coordinated way. Alternatively
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Figure 2.3: Ilustration of static VNF scheduling.

for simplicity, the two problems can also be solved independently where the results of VNF
chain embedding are taken as the input of VNF scheduling [62].

2.3.1 Static VNF Scheduling

Fig. 2.3 illustrates an example of VNF scheduling. There are three network services
composed of several VNFs. The processing of Sy, Sy, S3 begin immediately on their
arrivals at time ¢y at node 2, node 3 and node 4, respectively. Thereafter, the processing
of each of the subsequent functions in a network service cannot start until the processing
of its preceding function is finished. The processing of S; ends when its last function has
been processed at time ¢; at node 5. The total flow time of S; is given by ¢; — ¢y, and is
equal to the sum of processing times of the VNFs at multiple substrate nodes. The VNF
scheduling process is to determine the time slots for the VNFs of all network services to
be executed over a given set of servers.

The VNF scheduling process is related to the embedding process. The embedding
should maximize the performance of the VNF scheduling stage. To illustrate, if we mini-
mize the flow time of network services as one objective in the embedding stage, the service
delays due to queuing for both processing and transmission can be minimized [43], [63].
To minimize the flow time of network services and achieve maximum resource utilization,
the embedding and VNF scheduling problems should be jointly considered.
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2.3.1.1 Related Works

VNF chain embedding problems are studied extensively to either maximize the number
of accommodated services or minimize the average long-run embedding cost under the
assumption that each NFV node can support multiple network functions [32], [42], [43].
When multiple VNF's are embedded onto an NFV node, a new and challenging research
issue is how to properly schedule the embedded VNFs to minimize the overall completion
time of packets processing for all service requests. Compared with the research on VNF
chain embedding, the investigations focusing on VNF scheduling remain limited.

As the first study on VNF scheduling, Riera et al. formulate a joint VNF assignment
and scheduling problem as a job-shop problem (JSP) which can be solved in two separate
stages [64]. Another seminal work on VNF scheduling can be found in [63], where VNF
chain embedding and VNF scheduling are heuristically solved in a coordinated way. The
authors introduce the time to execute each VNF for a specific service and include a con-
straint that forbids a substrate node to execute more than one VNF at a certain time as
part of the embedding phase. Three greedy heuristic algorithms and a tabu search meta-
heuristic algorithm are presented to solve the problem with the objective of minimizing
the total flow time (i.e., the final execution time of the last VNF in the last executed
network service). On the other hand, an uncoordinated approach solves VNF chain em-
bedding and VNF scheduling separately. In the VNF' chain embedding stage, the goal is
to find where to allocate the VNFs in each network service in the NFVI in a suitable way,
without considering the optimality for the scheduling process. The embedding results are
then considered as an input to the VNF scheduling stage. Then, in the VNF scheduling
stage, the goal is to find the time slots for the VNFs composing different network services
to be executed on the servers to which they have been assigned. A good example of such
approach can be found in [62], where the VNF assignment sub-problem is first solved to
allocate VNF's of each network service to substrate nodes. Then, a genetic algorithm (GA)
based heuristic algorithm is presented to obtain local optimal solutions, without QoS con-
sideration. Wang et al. present a one-hop greedy scheduling algorithm, which is part of
the NFV-RA optimization framework [43]. In [65], Alameddine et al. study the deadline-
aware VNF scheduling problem and present an MILP formulation for the joint problem
of VNF chain embedding, traffic routing, and VNF scheduling based on a discrete-time
model. To address the MILP, a tabu search-based heuristic algorithm is provided to obtain
the near-optimal solutions. In [66], Pham et al. present a matching game based approach
to address deadline-aware VNF scheduling. Although the existing heuristic algorithms can
help to find local optimal solutions, the optimality gaps of the algorithms are difficult to
validate, and the delay requirements are yet to be taken into account.

Recently, the reinforcement learning (RL) approach has been applied to solving combi-
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natorial optimization problems [67], [68], including standard JSP [69]-[71]. Specifically, in
[69]-[71], various multi-agent RL algorithms have been presented to solve the JSP problem
in different scenarios, where a centralized control of network states is hard to be instan-
tiated. The job scheduling problem has been formulated as a decentralized MDP with
changing action sets, and then been solved in a distributed manner with inter-agent coor-
dinations. However, the optimal scheduling results may not be achieved with only local
network information, as the restrictions imposed on the learning agents degrade the accu-
racy of the solutions [72]. Also, when E2E delay constraints are considered in dealing with
VNF scheduling, both the makespan evaluation and the delay constraints verification re-
quire the status information of the VNFs in the whole system. For decentralized learning,
each agent only has a local view of the system and thus may not optimize the makespan
with satisfied delay constraints well. Introducing inter-agent coordination to exchange
necessary information among all the agents can introduce some overheads into the learn-
ing process. To address this issue, in our work [73], we leverage the SDN/NFV-enabled
network architecture, where global network state information is collected to enhance the
performance of VNF scheduling. By introducing a single scheduling agent placed in the
SDN control module, the agent is able to make network-wide scheduling decisions and
learn the optimal VNF scheduling policy. Moreover, a specific reward function is designed
to incorporate the E2E delay requirements of diverse services into the VNF scheduling
process.

2.3.2 Dynamic VNF Scheduling

A simple illustration of the dynamic VNF mapping and scheduling process is shown in Fig.
2.4 [74]. Suppose that there are three VNF chains of network services Sp, Sz, S3 (labeled
by different colours) to be scheduled. On each NFV node, the VNF scheduling sequence
has to be determined to minimize the makespan. The VNF chain embedding results are
shown in Fig. 2.4(b). In Fig. 2.4(c), packet batches start traversing the VNFs of S, S,
and S3 at nodes ny, ny, and ng, respectively, from time instant 0. Packet batch processing
time at each scheduled VNF is also displayed by different colours. Time instant ¢; indicates
the makespan of one VNF scheduling cycle.

In the form of a sequence of VNFs, service requests dynamically arrive at the system
with a set of resource and E2E delay requirements. The substrate network is limited
in resources, including processing capacity, buffer capacity, etc. Through dynamic VNF
instantiation, we aim to find the optimal VNF mapping and scheduling strategies for the
services to maximize the acceptance ratio of service requests and service provider’s profit
in the long run.
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Figure 2.4: Hlustration of dynamic VNF scheduling.

Fig. 2.4 shows an example of dynamic VNF mapping and scheduling process containing
two service requests, i.e., S1 = {fi1 — fi2 = fis, D1} and Sy = {fo1 — fa2 — fo3, Do}.
Fig. 2.4(a) shows the capabilities of different nodes to support VNFs, in which n; can
support fi1 and fo1, ne can support fia, ns has the capability to support fis and fa,
and n4 can support fo3 and fi3. S7 arrives at the system at time ¢ = 0 with E2E delay
requirement Dy = 15 (time units), while Sy arrives at the system at time ¢ = 3 with
E2E delay requirement Dy = 8 (time units). The initial VNF mapping for S; at ¢ = 0
is shown in Fig. 2.4(b). Sy arrives at ¢ = 3 with initial VNF mapping results shown in
Fig. 2.4(c). According to the VNF mapping results in Fig. 2.4(c), the service completion
time of Sy is ¢ = 12, which violates the delay requirement. Therefore, Sy will be rejected
in the static VNF mapping and scheduling algorithms such as those in [65] and [63]. For
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dynamic VNF mapping and scheduling considered in this paper, when the initial scheduling
for S5 is failed, the proposed Tabu search-based algorithm is triggered to remap and/or
reschedule the existing VNFs in the system. An example of VNF rescheduling strategy
is illustrated in Fig. 2.3(d) (For illustration purpose, additional delay incurred by VNF
re-instantiation is not shown explicitly.). After switching the processing sequence of fi3
and fo3, which are both mapped onto server ng, the delay requirements of S; and S5 can
be satisfied simultaneously. Fig. 2.3(e) illustrates an example of VNF remapping, where
fi3 of S; is re-instantiated on ny. As a result, fi3 and fs3 can both start processing at
t = 8. Additionally, VNF remapping reduces the completion time of Sy, compared with
that of VNF rescheduling only solution in Fig. 2.3(d).

Clearly, by performing dynamic VNF mapping and scheduling, we are allowed to 1)
increase the acceptance ratio of the substrate network to accommodate more services,
thus obtain a higher profit; 2) potentially reduce the completion time of the customized
services, which enhances the QoS; and 3) balance the traffic load among the NFV nodes
in the system.

2.3.2.1 Related Works

Recently, dynamic VNF mapping approaches that allow VNF remapping (also referred
to as VNF migration) mechanisms have emerged as a hot topic in the literature [75]-
[81]. For instance, in [76], the authors highlight that the E2E delay of services will be
affected once a VNF is migrated (or re-instantiated) from one hosting server to another.
In addition, they establish a mathematical model to help determine if the VNF's in a given
VNF chain should be migrated or re-instantiated for a better mapping strategy with shorter
E2E delay. In [80], the problem of dynamic VNF chain deployment and readjustment is
investigated to maximize the service provider’s profit. In [81], a hybrid service provisioning
algorithm that combines an online heuristic algorithm and an offline mixed integer program
based optimization has been presented. The online heuristic algorithm maps VNF chains
greedily to achieve fast deployment of network services while the offline optimization is
running in the background to periodically re-optimize the mappings of several VNF chains
at once. Nevertheless, none of these works considers the problem of VNF rescheduling
after remapping existing VNFs onto new NFV nodes, which makes their studies different
from ours. How to readjust the current mapping and scheduling strategies together to
achieve enhanced performance of service provisioning in an online scenario has not been
fully investigated yet. In our work [74], dynamic VNF mapping and scheduling are jointly
investigated. Specifically, to achieve load balancing with QoS guarantee, we first formulate
the VNF mapping and scheduling problem as a mixed integer linear programming (MILP).
We then propose a two-stage online algorithm to address the NP-hardness of the MILP. In
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particular, when new service arrives, we map and schedule the VNFs on a VNF chain by
greedily minimizing the waiting time of VNFs. If the delay requirement cannot be satisfied
after the first stage, a delay-aware rescheduling scheme is triggered, in which selected
existing VNF's are remapped and rescheduled. The proposed dynamic approach achieves
more flexible function placement and higher service acceptance ratio in comparison with
its static counterpart.
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Chapter 3

Joint VN Topology Design and
Embedding for Service-Oriented
Core Networks

Network virtualization is a promising technology to efficiently allocate and manage hetero-
geneous resources for service customization in fifth generation (5G) core networks. In this
chapter, we study how to jointly determine the virtual network (VN) topology, composed
of virtual nodes and virtual links, and embed the resultant VN onto a physical substrate
network. An optimization problem is formulated to minimize the VN embedding cost while
satisfying the end-to-end (E2E) packet delay constraints for different service requests. The
E2E packet delay for each service is evaluated as a function of resources allocated to the
embedded virtual nodes and virtual links, by employing the network queueing theory. The
formulated problem is a mixed integer nonlinear program (MINLP) with binary and con-
tinuous variables, nonlinear objective, and nonlinear constraints to be dealt with. An
enhanced brute-force search algorithm is proposed to obtain the optimal solutions. To re-
duce the computational complexity and improve the scalability of the algorithm, we further
propose a low-complexity heuristic algorithm to determine a set of near-optimal solutions
for large-scale networks. Simulation results demonstrate the effectiveness of both algo-
rithms and indicate that the low-complexity heuristic algorithm can reduce the running
time significantly.
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3.1 Introduction

The 5G networks are envisioned to accommodate a proliferation of connected devices
and diversified services, with largely increased traffic volume and differentiated quality-of-
service (QoS) demands [4]. Network virtualization (NV) and software-defined networking
(SDN) hold great potentials to realize service-oriented networking in both wireless and
wired domains [25], [82], [83]. One of the fundamental research issues in NV is how to
determine the amount of physical resources allocated to each VN (VN topology design)
and embed the resultant VN onto a substrate network (VN embedding, VNE) [17], [18].
Specifically, given traffic statistics, QoS requirements of different services, and physical
network resource constraints, it is desired to compose virtual nodes and virtual links to
form a VN topology. The physical resources allocated to each virtual node and virtual link
need to be optimized to reduce the potential embedding cost with differentiated service
requirements being satisfied. Then, we need to embed the VN onto the substrate network
in an economical way while satisfying the resource requirements of virtual nodes and vir-
tual links. Many existing works study the VN embedding (VNE) problem considering two
objectives: 1) to minimize the VN embedding cost or to maximize the number of accom-
modated VNs in the long run, and 2) to provide QoS-guaranteed services by satisfying
the resource requirements of virtual nodes and virtual links specified by VNOs. Most of
the studies assume a VN topology with predefined resource demands on virtual nodes and
virtual links [20], [84]-[89]. However, resource allocation (RA) for each VN is not optimized
for customized QoS requirements. To improve network resource utilization and provide end
users with guaranteed service quality in a cost-effective manner, the VN topology design
and VN embedding should be jointly studied, where the amount of resources allocated to
each virtual node and virtual link are determined for each VN to satisfy differentiated E2E
QoS requirements.

To support time-critical services in 5G core networks, F2E delay modeling for traffic
passing through each embedded VN needs to be considered. Most existing approaches
only take into account link propagation delay for E2E delay modeling, while neglecting the
queueing delay on each virtual node [90]-[92]. Therefore, a more comprehensive analytical
E2E delay model is required to optimize the resource allocation for the VNE problem.
In this chapter, we study a QoS-guaranteed VNE problem in which the packet-level E2E
delay is considered as the QoS metric. Both traffic routing configuration and resource
allocation for each VN are jointly optimized in the problem. The objective is to minimize
the embedding cost while satisfying the E2E delay requirements of different services and
the resource constraints of the physical network. Towards this objective, we present an
NV-based network architecture to support E2E service deliveries in the 5G core networks,
where the data traffic from different access networks are aggregated and grouped by traffic
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aggregation points (TAPs). Based on the NV architecture, we formulate a QoS-guaranteed
VNE problem as a mixed integer nonlinear program (MINLP), where the E2E packet delay
of each service is analyzed as a function of the amount of resources allocated to the VN.
The main contributions of this chapter are four-folded:

1. Existing VNE problem formulations only consider the VN to physical network map-
ping without optimizing the physical resources set allocated for each VN. Different
from those formulations, we formulate the joint VN topology design and embedding
problem as an MINLP to solve the VN resource allocation and VN embedding prob-
lems together. In this way, the resource utilization is improved and differentiated
QoS requirements are guaranteed.

2. We design a cost function for utilizing physical resources to balance the load over the
network in the long run. By using the designed cost function, substrate nodes and
links with scarce resources will be less likely chosen in the VN resource allocation
and embedding process.

3. We propose an enhanced brute-force search algorithm to solve the MINLP for optimal
VN embedding solutions. To improve the scalability in large-scale substrate network
scenarios, a low-complexity heuristic algorithm is further designed to obtain near-
optimal solutions with low computational overhead.

4. Compared with propagation-only delay models, we analyze the E2E packet delay
using the queueing network theory, in which both packet processing delay on each
virtual node and packet transmission delay over each virtual link are considered.
The proposed analytical E2E packet delay model is used as a constraint in the VNE
problem to achieve QoS-guaranteed embedding results.

3.2 Related Works

Network virtualization is one of the key technologies for the development of future service-
oriented 5G core networks. As an essential part of NV, VNE tackles the problem of virtual
resource allocation in both nodes and links. Therefore, it naturally consists of two sub-
problems: virtual node mapping and virtual link mapping. The former deals with how to
embed virtual nodes on physical infrastructures while the latter focuses on how to embed
the virtual links between virtual nodes on physical paths. The node mappings are usually
achieved by employing greedy methods, while the link mappings are typically obtained
using k-shortest paths and multi-commodity flow algorithms [18].
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Many research works have been carried out on the VNE problem in different scenarios.
A comprehensive survey can be referred to as in [18]. Existing studies on VNE can be
classified into two main categories, i.e., the uncoordinated ones [20], [84]-[86] which solve
the two sub-problems separately, and the coordinated ones [21], [87]-[89] which solve the
two sub-problems in one stage. In [20], Yu et al. have investigated the VNE problem with
the consideration of path splitting and path migration to increase the VN acceptance ratio.
For tractability, the formulated VNE problem has been divided into node embedding and
link embedding sub-problems which are solved independently. Later, several node ranking
approaches based on topological attributes have been developed to improve the quality of
node mapping solutions [84]-[86]. The lack of correlation between node and link embedding
may increase the embedding cost and lead to a low VN acceptance ratio. To tackle with
this issue, the dependency between the two sub-problems has been considered [21],[84]-[89].
For example, in [87], the authors have conducted in-depth investigations on the complexity
of the location-constrained (LC-VNE) problem. By using graph bisection, it has been
proved that LC-VNE is NP-complete. With the concept of compatibility graph (CG), two
heuristic algorithms have been designed to facilitate coordinated node and link mapping.
In [89], a particle swarm optimization (PSO)-based coordinated VNE algorithm has been
presented. The algorithm exploits a step-by-step updating rule of particle positions to allow
a combination of node and link mapping, outperforming the existing two-stage approaches.

In all the aforementioned VNE problem formulations, the set of physical resources
required by a VN is predefined, and it is assumed that the QoS of each service can be
guaranteed with the allocated physical resource set. This makes these existing works
different from our study, in which the set of physical resources allocated to each VN is
optimized. Moreover, to achieve QoS-aware VN embedding, we establish an analytical
model between the QoS metric (i.e., E2E packet delay) and the resources allocated to each
VN, which is then incorporated in our VNE problem formulation.

On the other hand, there exist some VNE formulations that consider the E2E packet
delay of each service as constraint functions [90]-[92]. For example, in [90], the VNE
problem has been investigated in the context of a multicast service-oriented network with
the consideration of delay and jitter constraints, and a sliding window-based heuristic
algorithm has been devised to solve the problem. In [23], the authors have studied the VNE
problem for evolving networks where reconfiguration of the virtual network infrastructure
is allowed. The problem is formulated as an integer program with delay constraints, and
is then solved by a heuristic algorithm that greedily migrate virtual nodes if the delay
constraint is violated. In [24], a VNE optimization framework has been established to
minimize the E2E packet delay in mobile networks taking into account user mobility.
However, most existing approaches only consider the link propagation delay when analyzing
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Figure 3.1: The NV-based network architecture to support E2E service deliveries in 5G
core networks.

the E2E packet delay. In this study, to achieve a comprehensive delay modeling, we also
take into account the packet processing delays on each virtual node and transmission delay
on virtual links, and propagation delay. Moreover, we use the E2E packet delay model as
a constraint in our problem formulation to achieve delay-aware VNE. To sum up, existing
VNE studies either assume predefined physical resources required by a VN or only consider
the link propagation delay when analyzing the E2E packet delay for a VN. How to jointly
solve the VN topology design and VN embedding to achieve E2E delay guaranteed service
provisioning needs further investigation.

3.3 System Model

3.3.1 Network Architecture

We consider an NV-based network architecture to support E2E service provisioning in the
5G core networks, as shown in Fig. 3.1. Network resources are sliced for different VNs
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to achieve service customization and improves the physical resource utilization through
inter-VN resource sharing. The E2E network architecture consists of 1) radio access net-
works (RAN), where end devices connect to different wireless access points (WAPs) with
their traffic aggregated at traffic aggregation points (TAPs) [46], and 2) the core network,
where VNOs slice the physical network resources to create different VNs for customized
services and the SDN controller orchestrates the network-wide resources. For RAN, we
consider the inter-working of heterogeneous wireless access technologies, e.g., long-term
evolution (LTE), WiFi, direct short range communications (DSRC), where different WAPs
are deployed to support massive device access. In the core network, each VN is managed
by a VNO and any dynamics of the VN do not influence other VNs. In this way, the
resource management for each VN becomes more flexible as VNs are conceptually isolated
for customized QoS guarantee, and are managed by the associated VNOs.

3.3.2 Traffic Aggregation and Traffic Grouping

For E2E service deliveries, traffic from heterogeneous RAN are aggregated at TAPs de-
ployed between WAPs and the edge of the core network (CN), as shown in Fig. 3.1. Each
TAP is connected to one edge node in the CN. All traffic aggregated at a TAP is for-
warded to the CN through the edge nodes connected to it. After traffic aggregation, traffic
grouping is performed by each TAP based on the destination edge nodes in the CN. The
packets belonging to the same service type and the same source-destination edge node pair
is grouped as one traffic flow (or one service flow).

3.3.3 Service Request

After traffic aggregation and grouping, multiple service requests are formed in different
VN of different VNOs. A service request consists of a source-destination (S-D) node pair,
traffic arrival rate at the source node, and E2E packet delay requirement. We consider that
a certain amount of CPU processing/bandwidth resources are allocated to each virtual
node/link to process/transmit the data packets. The optimal set of physical resources
allocated to the virtual nodes and virtual links can be determined through the minimization
of the embedding cost for leasing physical resources from InPs, while satisfying the E2E
packet delay requirement of each service. We give two service request examples at the top
of Fig. 3.2, where service request #1 is with a delay requirement of 10 ms and an arrival
data rate of 150 packets/s, while service request #2 is with a delay requirement of 20 ms
and an arrival data rate of 250 packets/s.
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Figure 3.2: Illustration of the substrate network and two E2E VN requests. The joint VN
topology design and embedding problem includes determining the set of physical resources
for the VN and embedding the resultant VN onto the substrate network.

3.3.4 Substrate Network

We describe the substrate network (i.e., the CN) as an abstracted undirected graph, de-
noted by G = (N, L), where N is the set of physical nodes (i.e., network servers/switches),
and L is the set of undirected physical transmission links. All the physical nodes have
the ability of processing and forwarding data packets. Let C,, denote the available CPU
processing rate for each node n € N. Let B; represent the available transmission rate for
each link | € L. Each link has a constant propagation delay d;. The set of neighboring
nodes of node v € N is denote by N, , where node u is in N, if the direct link [ = (u,v)
between u and v exists in L. In Fig. 3.2, we show an example of a substrate network,
where the numbers over each link represent the available link bandwidth and the constant
propagation delay (the number in brackets), respectively. The numbers beside the physical
nodes represent the available CPU processing rates.



3.3.5 Embedded VN Topology

An embedded VN topology is obtained after embedding a service request onto a substrate
network. Denote an embedded VN by G’ = (N, L), where N’ C N is a set of physical
nodes used to operate (embed) the virtual nodes in the VN, and L' C L contains all
the links connecting the embedded virtual nodes. We consider single-path traffic routing
between embedded virtual nodes of each VN. The S-D node pair for a VN indicates the
physical nodes where a traffic low starts and ends in the core network. We denote the
source and destination nodes of a VN as s € N" and d € N’ \ {s}, respectively. Let A and
D be the arrival data rate and the E2E delay requirement of the VN, respectively. At the
bottom of Fig. 3.2, we show an example of two service requests being embedded onto the
substrate network. The circles in each embedded VN represent the intermediate network
switches used to forward the data traffic from source to destination nodes.

3.4 Problem Formulation

Given traffic statistics and service demands supported by each VN, how to determine the
amount of resources allocated to virtual nodes and virtual links of the VN, and embed
the resultant VN onto the substrate is referred to as the QoS-guaranteed VNE problem.
The formulation should take into account the physical resource constraints, the routing
constraints, and the E2E packet delay constraints. In addition, the coupling of VN topol-
ogy design and VN embedding should be considered, as the embedding results affect the
amount of available physical resources that can be allocated to each VN. In this chapter, we
consider that the service requests are accommodated in a First-Come-First-Serve (FCFS)
manner. Therefore, the problem formulation for different service requests remains in the
same form. In this section, we provide the formulation of the joint problem for a single
service request. Table 3.1 provides a summary of important symbols that are used in the
following formulation. Table 3.2 summarizes a list of decision variables for the problem.

To formulate the problem, we first identify the set of constraints that need to be con-
sidered, including physical resource constraints, traffic routing constraints, and E2E delay
constraints. The amount of bandwidth resources, Bl/, allocated to link [ € L' of a VN is
upper bounded by B;. That is,

B, < By, Viel. (3.1)

As traffic splitting is not considered and all the nodes are without traffic inflation and
deflation, the link bandwidth demands for any [ € L’ are assumed the same. We denote
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Table 3.1: Summary of Important Symbols

Notation Description
Cy Available CPU processing rate of node n
B Available bandwidth resource of link [
0 Propagation delay of link [
S Source node
d Destination node
N, Neighboring nodes of physical node v € N
A Arrival data rate of the traffic flow
D E2E delay requirement
Pn Unit cost of CPU resource at physical node n
Duv Unit cost of bandwidth resource at physical link (u, v)
T, Average queueing delay from source to destination
T Total delay from source to destination

Table 3.2: Decision Variables

Decision variable Description

C) CPU resource demand at node n

B, Bandwidth resource demand at each link I’ € L'

. Binary variable indicating whether or not node n is used
" to forward the traffic from source to destination

” Binary variable indicating whether or not link (u, v) is used
uv

to forward the traflic from source to destination

this bandwidth requirement as B.;. Thus, Constraint (3.1) is written as:
' < B, Vel (3.2)

Let C! be the CPU processing rate allocated to a virtual node embedded on physical node
n. C! is upper bounded by C,,, given as

C' <C,, VYneN. (3.3)

For E2E delay modeling, we establish a network of queues to analyze the packet delay
of a service flow passing through an embedded VN. An example is shown in Fig. 3.3, where
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ny and ny represent the network servers operating the embedded source and destination
nodes, respectively. The network also contains a number of intermediate network servers
and transmission links for traffic forwarding. A customized service flow enters the network
at the source node n; and leaves the network at the destination node ns. We assume traffic
arrivals of one service flow at a source node follows a Poisson process. For VN embedding,
when multiple service flows are placed over a common (or a partially common) network
path, both CPU processing rate at each network server and transmission rate over each
physical link along the path, need to be properly shared among the flows. This sharing is
typically made according to a certain multi-resource sharing policy (e.g., dominant-resource
generalized processor sharing [93]). Based on a proper resource sharing, a comprehensive
E2E delay model can be established for each embedded service flow [94], which, on the
other hand, complicates the VNE problem formulation. To simplify the resource sharing
for problem tractability, we assume that CPU processing rates and link transmission rates
allocated to each service flow are independent and exponentially distributed random vari-
ables [95]. In this way, both packet processing at an embedded virtual node and packet
transmission over an embedded virtual link are modeled as an M/M/1 queue system [95]-
[97]. Consequently, the queueing process of a service flow traversing an entire embedded
VN is modeled as an open Jackson queueing network. We use A to denote the arrival rate
of the traffic low at the source node of a VN. For each processing node in the embedded
VN, the traffic intensity is given by

pn=M/C), <1, VYneN. (3.4)
For each transmission link, the traffic intensity is given by
p=NDB.,<1 Viel. (3.5)

Let T,, denote the packet waiting time at the processing queue of node n € N'. Let T,
denote the packet waiting time at the transmission queue of link [ € L'. For the M/M/1
queues at equilibrium, the expectation of T, and T} are given by [97]

1

E[T,] = N (3.6)

and
1

Bl,— X\

Thus, the average packet queueing delay for the entire queueing network is given by [97]

E[T) = (3.7)
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By considering the propagation delay d; at each link [ € L', we calculate the average packet
delay of traffic passing through the embedded VN as [97]:

T=T,+> 4. (3.9)

To satisfy the E2E delay requirement of the accommodated service, we have
T<D. (3.10)

To describe the VNE problem formulation, we define binary variables z,, (n € N), where
x, = 1if physical node n operates a virtual node of an embedded VN, and x,, = 0 otherwise.
We further define binary variables y,, (u,v € N) to indicate whether the link [ = (u,v)
is chosen to forward the traffic from s to d (yu, = 1) or not (y,, = 0). For each physical
node and physical link, we have

YuwBhy < By, V(u,v) € L, (3.11)
2,C, < C,, ¥n € N. (3.12)
By introducing z,, and y,,, Equation (3.8) and (3.9) can be transformed into the following

forms: ) .
T, = nor T Ay N 3.13

nenN leL §
T=T,+ > Yubu- (3.14)
(u,w)eL
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Substituting Equation (3.13) and (3.14) into Constraint (3.10) yields

1 1
Pra— e E— < D. 1

neN (u,v)€EL

The traffic routing constraints at the source node s, destination node d, and each
embedded node in between are given, respectively, by [98]

Z Ysv — Z Yvs = 1 (316)

’UENs UENS

ue./\fd uENd
Y Yo=Y Yu, Yu€N\{sd}. (3.18)
vEN, veEN,

where constraint (3.16) ensures that at least one node v from N needs to be selected with
Ysy = 1; Constraint (3.17) indicates that at least one node u from Ay needs to be selected
with y,q = 1; For every other node u € N, constraint (3.18) indicates that whether physical
node u is chosen for embedding on the path from s to d.

The objective of joint VN topology design and embedding problem is to minimize the
embedding cost C, which consists of the costs of utilizing substrate links and substrate
nodes:

C= w1 Z mnpnC;L + wa Z YuvPuv ;d' (319)

neN (u,w)eL

C), and B!, represent the allocated CPU resources at node n and the allocated bandwidth
resources over each link for traffic forwarding from s to d, respectively. p, represents
the unit cost of allocating CPU resources at physical node n, while p,, denotes the unit
cost of bandwidth resources over physical transmission link (u,v). w; and wy are two
weighting factors used to reflect the importance of node embedding and link embedding in
contributing to the total embedding cost. It is seen from (3.19) that the embedding cost
is calculated as a weighted summation of the physical resources allocated to the virtual
nodes and virtual links in the VN. The weighting factors are the unit prices (depending on
the residual resources) of utilizing the physical resource on each node/link. By minimizing
the cost of embedding each VN, the resource utilization among the substrate nodes/links
can be better balanced. This helps to reduce the congestion level of the bottleneck nodes
in the system. Consequently, the substrate network is able to accommodate more services
and the ISPs’ total profit can be increased in the long run [20], [22], [89].
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Design of the unit cost of physical resources: In the design of p,, and p,,, we take the
following three aspects into consideration:

e Intuitively, the unit cost of utilizing the CPU (bandwidth) resources at a node (link),
Pn (Puw), should be a function of the available physical resources at the node (link);

e D, (puw) should be a monotonically decreasing function so that physical nodes and
links with more remaining resources have smaller unit costs and are more likely
embedded to achieve load-balancing in the long run [21];

e It is expected that the unit cost remains steady for physical nodes (links) with suf-
ficient resources, while p,, (py,) changes more significantly as C,, (B,,) varies for the
nodes (links) with less remaining resources.

Based on these considerations, we define p,, and p,, as

Cn_cmin

p?’L = ei K 9 (320)
Bi—=Bmin

Duv = € K ) (321)

where C,,;,, and B,,;, are the minimum residual CPU resources at a node and the minimum
residual bandwidth resources over a link for the entire network, respectively. K is a positive
constant which represents the changing rate of the unit cost at a node/link when its physical
resource is rare. Fig. 3.4 gives an illustration of p,, where C,,;, = 600. Clearly, with
different values of K, the impacts of the proposed unit cost function on load-balancing can
be different.

Now, we formulate the joint VN topology design and embedding problem as an MINLP,
given by

(P].) min w1 Z $’npn07l-b + wo Z yuvpuvB;d

@nyue:CnBig neN (up)eL
st (3.4),(3.5), (3.11) — (3.18) (3.22)
z, €{0,1}, Vn € N
Yuo € {0,1}, V(u,v) € L

By minimizing the total embedding cost in (P1), an embedded VN topology from the source
node to the destination node can be found, with the set of optimal resources allocated to
each embedded virtual node and virtual link to satisfy the E2E delay requirement.
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Figure 3.4: An illustration of the exponential unit cost function for utilizing substrate node
resources.

Remark. Note that problem (P1) involves continuous variables C/, and B.,, as well as
binary variables x,, and y,,. It contains a nonlinear objective function and a constraint in
fractional form with x,, and y,,, as numerators, and C/, and B!, as denominators. Therefore,
(P1) is an MINLP which is NP-hard [99]. It is challenging in handling nonlinearities in
(3.22) with a large number of combinatorial variables, and thus it is computationally
complex to determine the optimal solution by solving the problem directly, especially for
large-scale substrate networks.

3.5 Problem Transformation and Optimal Solutions

Although (P1) involves nonlinear constraints for the decision variables, it is possible to
make it tractable by transforming it into a nonlinear programming (NLP). Recall that
x, and y,, are variables indicating the intermediate nodes and links chosen to form the
routing path. Therefore, (P1) can be transformed into an NLP if the routing path can be
found in a certain way so that binary variables x,, and y,, can be set as constants. Based
on these intuitions, in this section, we propose an enhanced brute-force search algorithm,
which can compute the optimal solution to (P1) but with relatively high computational
overhead. In the algorithm, the substrate network is pruned in a way that the search space
of the algorithm is reduced. In subsequent section, we further develop a low-complexity
heuristic algorithm to improve the scalability of the algorithm.
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3.5.1 Enhanced Brute-Force Search Algorithm

We first find alternative routing paths for embedding a VN to fix z, and y,, in (P1).
In this way, the MINLP in (P1) is simplified as a NLP. Then, we determine the optimal
physical resources allocated to embedded virtual nodes and links on the alternative paths by
solving the NLP using an existing solver. By using this idea, we present an enhanced brute-
force search algorithm, which is able to calculate the optimal solution to the MINLP, but
with relatively high computational complexity. The algorithm enumerates all the possible
substrate paths from the source node to the destination node. As shown in Algorithm 1, to
reduce the computational complexity of searching for the optimal path, we first prune the
substrate network based on constraints (3.4) and (3.5). Let G = (N, L) be the substrate
network after pruning, where N = {n|n € N,C, > X}, L = {l|l € L, B; > A\}. Next, a
brute-force search process is performed in the pruned substrate network. Specifically, we
find in G all the substrate paths from s to d, along which the aggregate propagation link
delay is smaller than D. Let P denote the set of these substrate E2E paths. Then,

P={R| Y & <Dhk=1- K (323)

1eL(Py)

where K is the total number of path candidates, and L(P;) represents the set of substrate
links corresponding to the kth path P,. P, P, --- , Px are considered as the routing path
candidates among which the one with the minimum embedding cost is chosen to forward
the data traffic of the embedded VN from s to d.

Let N'(P;) and L'(Py) represent the set of substrate nodes and the set of substrate links
corresponding to the kth path candidate, respectively. Then, we solve the following NLP
to obtain the set of optimal physical resources and the embedding cost for path candidate
Pki

(P2) min C(Py) = wy Z PnCy, + w2 Z B,
e neN'(Py) €L/ (Py)
st. C <C,, VneN(P) (3.24)
1< B, VleL(P)

1 1
> =5t Z)B;d—)\+ > 6<D.

neEN'(Py) ™ leL' (P, leL!(Py)

In (P2), the objective of this constrained optimization problem is to minimize a linear
function with a nonlinear inequality constraint and linear constraints. The interior-point
or active-set algorithm can be applied to solve the problem to obtain the set of optimal
allocated resources that achieve the minimal embedding cost for P.
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Algorithm 1: Enhanced Brute-Force Search Algorithm
Input :G=(N,L),s,d,\,D
Find the pruned substrate network G based on Constraints (3.4) and (3.5);

=

2 Find the set of all the path candidates P = {P,, Py, - -- , Pk} in G based on (3.23);

3 for P, € P do

4 Fix the values of z,, and y,, corresponding to Py;

5 Solve the NLP (3.24) to obtain the optimal set of physical resource
requirements and the embedding cost C(Py);

6 Compare the embedding costs of all the path candidates C(Py), k € {1,..., K};

~

Choose the path with minimum embedding cost as the optimal routing path, i.e.,
P} = arg H}inC(Pk);
k

(0]

Impose the corresponding set of physical resource requirements on substrate nodes
and links on the selected routing path P;;
Output: Physical resource requirements C,, and B/,
The routing path from s to d

Finally, we compare the embedding costs of all the path candidates, C(Py), k =
1,--- K. The path with the minimum embedding cost is chosen as the optimal path.
Let P} represent the optimal path. Then, this step can be denoted as

P = argrrllDinC(Pk), ke{l,2,--- K} (3.25)
k

Then, the corresponding set of optimal physical resources are allocated to each embedded
virtual node and virtual link.

3.6 Low-Complexity Heuristic Algorithm

The enhanced brute-force search algorithm can be used to find the optimal solution to (P1)
with high computational complexity, which is not scalable in a large-scale network. For
example, in a substrate network with 50 nodes and 123 links, the number of path candidates
to embed a VN (with the E2E delay requirement of 40 ms) is 445 and it takes around 14.8
min (with 2.20 GHz CPUs) to find the optimal path with the minimum embedding cost.
In reality, service requests arrive randomly independent of other requests, and the VN
embedding process has to be executed faster than the service request arriving rate. In the
following part, a heuristic algorithm is proposed to obtain near-optimal solutions to (3.22)
with low computational complexity.
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Algorithm 2: Low-Complexity Heuristic Algorithm
Input :G=(N,L),s,d,\,D
1 Find the pruned substrate network G based on constraints (3.4) and (3.5);

2 Define and compute a new weight w,, for each link (u,v) in G = (N, L) using
(3.26);
3 Find the routing path from s to d using shortest path algorithms;
4 Fix the binary variables z,, and y,, in (3.22) corresponding to the shortest path;
5 Solve (3.22) with the fixed binary variables to obtain the set of physical resource
requirements and the embedding cost;
Output: Physical resource requirements C;, and B/,
The routing path from s to d

3.6.1 Single-Service Scenario

On the arrival of a service request, the enhanced brute-force search algorithm enumerates all
the possible routing paths from source to destination. The main advantage of the heuristic
algorithm is that it finds one routing path without losing too much optimality of the
solution. The algorithm contains two steps: First, a substrate path with low embedding
cost from the source node to the destination node is found; Then, the set of physical
resources allocated to each virtual node and virtual link are determined for the path found
in the previous step.

The details of the low-complexity heuristic algorithm is given in Algorithm 2. In the
first step, the substrate path is chosen in a way that the path is likely to support a VN
with low embedding cost. To achieve this, a new weight is assigned to all physical links.
Then, the shortest path from s to d is found using the k-shortest path algorithm [19]
and chosen as the routing path from source to destination. In the second step, the set
of physical resources allocated to each virtual node and virtual link is determined on the
chosen routing path. Similar to the enhanced brute-force search algorithm, the original
substrate network is first pruned based on constraints (3.4) and (3.5). After that, a weight
Wy, is computed for each link (u,v) in the pruned substrate network G' = (N, L) as follows

Buv—Byin _ Cu—Cmin Cv—Cimin

Wyy = Nibuy +Ne(e” K +e K +e K ) (3.26)

where 9., and B,, are the propagation delay and available bandwidth resource over link
(u,v) € L, respectively. C, and C, are the available CPU resources of node u € N
and node v € N, respectively. 1y and 7, are weighting coefficients, with 1y + 7. = 1.
Equation (3.26) indicates that physical links with smaller propagation delay and larger
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amount of bandwidth resources, and physical nodes with larger amount of CPU resources,
are preferred in selecting the routing path from s to d. In this way, a low embedding cost is
expected to be obtained after solving (P1). For example, ; = 1 means that the path with
minimum aggregate link propagation delay from s to d is chosen, while 7. = 1 indicates
that the path with the most physical resources is selected. In practice, n; and 7. should be
set as different values for different scenarios, depending on network conditions and service
types. After the routing path is found by the shortest path algorithms, the set of optimal
physical resource resources allocated to the embedded VN are obtained by solving (P1).

Complexity Analysis: Here we provide the complexity analysis of Algorithm 2. The
algorithm starts with pruning the original substrate network G to be G, whose complexity
is O(|N| + |L|). The next step is to compute the weight for each link in G using O(|L|)
time. The complexity of finding the routing path from source to destination using the
Dijkstra’s algorithm is typically O(|J\7 |?). The last step in Algorithm 2 is to solve an NLP
once using the interior-point method.

3.6.2 Handling Online Service Requests

The low-complexity heuristic algorithm is able to perform VN topology design and embed-
ding with low computational overhead. Therefore, it can be extended to embed multiple
service requests in an online scenario !, where the VN requests arrive and leave the sub-
strate network consistently over time. Fig. 3.5 illustrates the overall online VN embedding
procedure. The low-complexity heuristic algorithm is invoked each time a new VN request
arrives for VN topology design and embedding. If the topology of the service request is
successfully designed and embedded, it will be accommodated on the substrate network
until its lifetime expires. At the same time, the status of substrate nodes and links is
updated. Otherwise, the service request will be rejected. When the lifetime of an existing
service request expires, the resources occupied by the embedded VN are released and the
status of the substrate nodes and links is updated.

3.7 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithms through extensive
simulations. There are two main components in the simulation setting: 1) Generation of

Tt is not efficient to apply the enhanced brute-force search algorithm in online scenarios due to its high
complexity, as will be shown in Section 3.7.
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Figure 3.5: Online VN topology design and embedding procedure.

the substrate network and service requests; 2) Evaluation of the proposed algorithms in
static/online scenarios. The square-grid shaped substrate network and service requests are
generated using the GT-ITM tool [100]. We have implemented a discrete-event network
simulator developed by C++ to evaluate our proposed algorithms. The simulator allows
efficient customization of the substrate network and service requests. The capacities of all
substrate nodes and links are randomly generated following a certain uniform distribution.
The link propagation delay is proportional to the distance between two end nodes. The
value of K in the unit cost function is set as 60.0. The weighting factors in (3.19) are set
as w; = 0.1 and wy = 0.1. We set ny = 0.4 and n. = 0.6 for the proposed low-complexity

heuristic algorithm.
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For comparison purposes, we choose the following two benchmark algorithms: 1)
Capacity-based greedy link embedding with equal-delay resource allocation, in which the
substrate path with the maximum residual resources is chosen as the routing path to for-
ward the traffic from source to destination. Then, the CPU/bandwidth resource demands
imposed on the nodes/links along the routing path are determined by setting the packet
queueing delay over each node/link equal; 2) Shortest path link embedding with equal-delay
resource allocation, in which the routing path is chosen by the shortest path algorithm [20],
and the set of CPU/bandwidth resource demands is determined by performing equal-delay
resource allocation. In the following, we first evaluate the performance of the proposed al-
gorithms in VN topology design and embedding for a single service. Then, we demonstrate
the advantages of the proposed low-complexity heuristic algorithm over the benchmarks in
online scenarios.

3.7.1 Single-Service VN Topology Design and Embedding

3.7.1.1 Embedding cost

To compare the performance between the proposed algorithms and the two benchmarks
in terms of the embedding cost, we perform VN embedding for a service request over a
substrate with 50 nodes and 130 links. The capacities of all substrate nodes and links
are uniformly distributed in range of [600 packets/s, 800 packets/s]. The traffic arrival rate
of the service request is set as 150 packets/s, while the delay requirement is varied from
20 ms to 50 ms. The source and destination nodes are randomly chosen from the substrate
nodes. Fig. 3.6 compares the embedding costs between the four algorithms. It can be seen
that for all the four algorithms in comparison, the cost increases as the delay requirement
becomes stringent. This is due to the fact that more CPU processing and link bandwidth
resources are consumed to satisfy a more stringent delay requirement, leading to a higher
embedding cost. Also, the embedding cost of the low-complexity heuristic algorithm and
that of the brute-force search algorithm stay the same for all the cases, and are both
lower than those of the two benchmarks. Moreover, the gap between them becomes more
significant as the delay requirement becomes more stringent. The reason is that in the
proposed algorithms, the optimal set of resource demands imposed on the nodes/links is
optimized. In contrast, in the two benchmarks, the set of resource demands imposed on
the nodes/link is determined based on equal-delay RA.

Next, we perform VN embedding for the same service request with fixed delay require-
ment and varying traffic arrival rates. Fig. 3.7 shows the cost comparison among the
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Figure 3.6: Comparison of VN embedding costs between the four algorithms under dif-
ferent delay requirements over the 50-node substrate network (traffic arrival rate is set as
150 packets/s).

four algorithms. It can be seen that, except for the case where the arrival data rate (\)
is 200 packets/s, the cost of the proposed low-complexity heuristic algorithm remains the
same with that of the brute-force search algorithm, and keeps lower than those of the two
benchmark algorithms. The embedding costs for the two benchmarks are not obtainable
when A = 200 because the delay requirement cannot be satisfied and the request is re-
jected. We can also observe that, for all the algorithms in comparison, the embedding cost
increases with the traffic arrival rate.

Lastly, we present the allocation of CPU processing rate at various substrate nodes
from source to destination for the given VN in Fig. 3.8. It is observed that two substrate
nodes are chosen as the intermediate network servers to route the traffic from source to
destination, and the optimal CPU processing rates allocated at each node along the routing
path have different relationships with the arrival data rate. The difference between them
is caused by their different unit costs of CPU resource. A similar tendency can be observed
in Fig. 3.9, where the optimal transmission rates allocated over two consecutive substrate
links along the routing path manifests a nearly linear relationship to the arrival data rate.

3.7.1.2 Time complexity
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Table 3.3: Parameters of The Three Substrate Networks

Parameter Substrate I | Substrate II | Substrate 111
Number of nodes 50 75 100
Number of links 130 335 552

We analyze the running time of the two proposed algorithms over three different sub-
strate network scales, as shown in Table 3.3. Different service requests are considered to
be embedded over different substrate networks. For each service request, the traffic ar-
rival rate and delay requirement are random numbers within the range of [150, 250] and
[20ms, 50 ms], respectively. The source and destination nodes are randomly chosen from
the substrate nodes.

Table 3.4 shows the running time between the two algorithms. For each substrate
network, the running time of the low-complexity heuristic algorithm stays steady around
1.5 seconds. This is because the running time depends on the number of intermediate
nodes along the weighted shortest path. For Substrate I, the running time of the enhanced
brute-force search algorithm ranges from 2.95s to 10.31s under different delay requirements,
which is 2-5 times than that of the low-complexity heuristic algorithm. For Substrate II
(Substrate III), the running time of the brute-force search algorithm is around 10-300 times
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Table 3.4: Comparison of the Running Time Between the Two Algorithms Over Three
Substrate Networks

Running Substrate I Substrate 11 Substrate 111
time | Enhanced Low- Enhanced Low- Enhanced Low-
Delay brute-force | complexity| brute-force | complexity| brute-force | complexity
requirement  search heuristic search heuristic search heuristic
30ms 2.95s 1.41s 13s 1.07s 85s 1.17s
35 ms 5.89s 1.45s 103 s 1.14s 408 s 1.21s
40 ms 7.37s 1.45s 346 s 2.04s 1358s 1.25s
45 ms 10.31s 2.08s 7205 2.13s 2306 s 1.58s

(60-1400 times) than that of the low-complexity running time, which indicates that the
low-complexity heuristic algorithm has significantly better scalability than the enhanced
brute-force search algorithm. The reason is that the low-complexity heuristic algorithm
finds the weighted shortest path, while the running time of the enhanced brute-force search
highly relies on the number of candidate routing paths.

3.7.2 Online VN Topology Design and Embedding

The effectiveness of the proposed low-complexity heuristic algorithm is further validated
in online scenarios. The VN requests are generated by the VNOs and arrive to the system
following a Poisson process. The average arrival rate is 4 VNs per second. The lifetime
of each VN request has an exponential distribution with an average of 10 seconds. The
total simulation time is 45 seconds. We adopt the VN acceptance ratio as the performance
metric, which is defined as the number of accepted VN requests over the number of all the
requests arrived to the system. In the following, we investigate the impacts of different
factors on the performance of the proposed low-complexity heuristic algorithm and its
advantages over the two benchmarks.

3.7.2.1 Impact of Arriving Data Rate
We first investigate the impact of arriving data rates (A) of VN requests. For this
purpose, we consider three cases of online VN topology design and embedding over a 50-

node substrate network. For all the three cases, the delay requirement of the VN requests
is uniformly distributed between 30ms and 45ms. The ranges of arrival data rate for
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Figure 3.10: Performance comparison between the proposed low-complexity heuristic al-
gorithm and the two benchmarks from different aspects: (a) Varying average arrival data
rate of VN requests, (b) Varying average delay requirement of VN requests, (c¢) Average
node/link capacities of the substrate network.

the service requests for the three cases are [150, 250], [200, 400], and [400, 500] (all in
packets/s), respectively. Fig. 3.10 (a) compares the performance of the three algorithms in
terms of service acceptance ratio. It can be seen from the figure that the proposed algorithm
achieves the highest acceptance ratio for all the cases. For all the three algorithms, the
acceptance ratio decreases as the average arrival data rate increases. This is because when A
becomes larger, more CPU/bandwidth resources on nodes/links are consumed to guarantee
a shorter packet queueing delay, which leads to a higher chance of rejecting a new service.
It can be also observed that the performance gap between the proposed algorithm and the
two shortest path based algorithms increases with A\, demonstrating the superiority of the
proposed algorithm when the physical resources in the substrate network are scarce.

3.7.2.2 Impact of Delay Requirement

Next, we investigate the impact of delay requirements (D) of VN requests. Three
cases are considered for online VN topology design and embedding over the same 50-node
substrate, where the ranges of the delay requirement for the service requests are [20, 30],
[30, 45], and [45, 60] (all in ms), respectively. The arrival data rates for the service requests
are uniformly distributed between 150 and 250 (packets/s). The performance comparison
of the three algorithms is shown in Fig. 3.10 (b). We can see that the proposed algorithm
performs the best. On average, the proposed algorithm can achieve around 10% more
service requests than the two benchmarks. In addition, the acceptance ratio increases as
the average delay requirement become loose for all the three algorithms. This is reasonable
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Figure 3.11: Performance comparison between the proposed heuristic algorithm and the
two benchmarks over different substrate networks: (a) Substrate I, (b) Substrate II, (c)
Substrate III.

o

since a loose delay requirements can tolerate a longer packet queueing delay, which means
less amount of node/link processing and propagation resource consumption. Hence, the
substrate network can accommodate more services.

3.7.2.3 Impact of Delay Requirement

The impact of node/link capacities is investigated by setting the average node/link
capacities in the 50-node substrate network to different values. Three cases are considered,
where the ranges of the node/link capacities are [400, 600], [600, 800], and [800, 1000},
respectively. The delay requirement of the VN requests are uniformly distributed in the
range of [20, 30] ms, while the arrival data rates for the service requests are uniformly
distributed in the range of [150, 250] packets/s. Fig. 3.10 (c) compares the performance
between the three different algorithms. As can be seen, in all the three cases, the proposed
algorithm achieves a higher acceptance ratio than the other two algorithms. The main
reason is that the set of resources allocated to the virtual nodes and links is optimized,
which holds the potential to balance the load among substrate nodes/links. Additionally,
the acceptance ratio increases as the node/link capacities become large, which is reasonable
since more available physical resources in the network allows more service requests to be
accommodated.

3.7.2.3 Performance Comparison over Different Network Scales
We next compare the performance between the proposed low-complexity heuristic algo-
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rithm and the two benchmarks over different substrate networks, i.e., Substrate I, II, and
I1T as given in Table 3.3. For all the three substrate networks, the available CPU resources
and bandwidth resources are uniformly distributed in the range of [600, 800]. The ranges
of delay requirement and arrival data rate for the VN requests are [20, 30] (ms) and [150,
250] (packets/s), respectively. Fig. 3.11 compares the service acceptance ratio over time
for the three network scales. The highest acceptance ratio is achieved by the proposed
algorithms for all three network scales. The main reason is that the resources allocated to
each VN in the proposed solution is optimized to guarantee that the QoS requirement can
be satisfied and to avoid resource redundancy for supporting each VN. Consequently, the
resource utilization of the substrate network is greatly improved.

3.8 Summary

In this chapter, the VN topology design and VN embedding problems have been jointly
studied to improve service customization and resource utilization in 5G core networks. A
joint optimization problem has been formulated to minimize the VN embedding cost while
satisfying the E2E packet delay requirements for differentiated services. The E2E delay
has been analyzed as a function of the allocated physical resources for embedded virtual
nodes and virtual links. Two algorithms have been proposed to solve the problem for
small and large scale substrate networks, respectively. Simulation results have shown the
effectiveness and efficiency of the proposed algorithms for both single-service and online
scenarios. For future work, an algorithm will be developed to adjust the weighting factors
(nq and n.) adaptively for the proposed low-complexity heuristic algorithm.
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Chapter 4

Multi-VNF Chain Embedding

Virtual network functions (VNFs) are mapped onto substrate networks as service func-
tion chains (SFC), which provides customized services and guaranteed quality-of-service
(QoS) for network function virtualization (NFV) enabled networks. In this chapter, we
address the multi-SFC embedding problem by a game theoretical approach, considering
the heterogeneity of NFV nodes, the impact of processing-resource sharing among various
VNFs, and the capacity constraints of NFV nodes. In the proposed resource constrained
multi-SFC embedding game (RC-MSEG), each SFC is treated as a player whose objective
is to minimize the overall latency experienced by the supported service flow, while satis-
fying the capacity constraints of all its NFV nodes. Due to processing-resource sharing,
additional delay is incurred and integrated into the overall latency for each SFC. The ca-
pacity constraints of NFV nodes are considered by adding a penalty term into the cost
function of each player, and are guaranteed by a prioritized admission control mechanism.
The proposed game is proved to be an exact potential game that admits at least one pure
Nash Equilibrium (NE) and has the finite improvement property (FIP). We then design
two iterative algorithms, namely, the best response (BR) algorithm with fast convergence
and the spatial adaptive play (SAP) algorithm with great potential to obtain the best NE
of the proposed game. Simulations are conducted to validate the proposed approach.

4.1 Introduction

To achieve high network performance with load balancing in the next generation mobile
communication, network slicing is one of the most promising solutions. Through network
slicing, the whole network is sliced into multiple virtual networks (VNs). Each VN is used
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to support a customized service in a specific scenario. Multiple VNs are mutually isolated
and can coexist in the common infrastructure sharing the same physical resource pool.
The heterogeneous resources are virtualized to allow resource sharing among different VNs
and to improve resource utilization in both access and core networks. Network function
virtualization (NFV) is one of the key components for network slicing. NFV allows the
network functions to be virtualized and placed on high capacity servers located anywhere
in the network, not only on dedicated devices in current networks. As a result, One
virtual network is modeled as a service function chain (SFC) composed of virtual nodes
and virtual links. Driven by NFV platform, the future network architecture is expected to
feature virtualized function chaining, reduced capital and operational costs, and enhanced
service quality [38].

Efficient management of physical resources is one of the most crucial issues for NF'V-
enabled networks. Specifically, given the traffic statistics, QoS requirements of heteroge-
neous services, and resource constraints of the substrate network, SFCs are embedded onto
the substrate network (referred to as SFC embedding), during which the physical resources
need to be allocated efficiently to meet the resource and QoS requirements of each SFC
[39]. SFC embedding determines the routing path from source to destination and finds
the locations of NFV nodes to host the virtual network functions (VNFs) along the path,
which increases the resource utilization with guaranteed QoS requirements [37].

Existing research efforts devoted to the SFC embedding problem can be generally cat-
egorized into two categories. In centralized approaches, a centralized entity holds a global
view of the whole substrate network and orchestrates the VNFs to support all the SFCs
[42]-[50]. These works either seek for optimal solutions through the optimization with
high computation complexity, or attempt to obtain near-optimal solutions by propos-
ing heuristic algorithms. Centralized approaches are typically developed from a service
provider to achieve the network-wide optimization without considering competitive and
non-cooperative behaviors. Moreover, centralized approaches usually suffer from high com-
plexity, which makes them not scalable to large-scale networks. Distributed approaches,
however, do not require a centralized controller, and allow each SFC to find its own em-
bedding strategy independently [51]-[58]. Among these approaches, game theory has been
recognized as a powerful tool to solve the SFC embedding problem for rational entities
with conflicting objectives. Once the system reaches the Nash equilibrium (NE), no player
has the intention to change the strategy unilaterally. In that sense, the SFC embedding
problem is usually formulated from the user’s perspective in a distributed manner with
the objective of minimizing/maximizing their individual costs/payoffs. Compared with
centralized approaches, performing SFC embedding in a distributed manner requires less
information exchange between the centralized controller and the users, thereby greatly re-
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ducing the signaling overhead. However, the global optimality of the solution is not easy
to be guaranteed. Therefore, distributed approaches can be used to balance the trade-off
between computation complexity and optimality, especially for complex and large-scale
network scenarios.

In this chapter, we propose a game theoretical approach for multi-SFC embedding,
considering the effect of processing-resource sharing among different VNFs and the capacity
constraints of different NF'V nodes. In the proposed game, each SFC is treated as a player
aiming to minimize the overall latency experienced by the traffic flow traversing the SFC.
The proposed game is a resource-specific congestion game in that the NFV nodes are
considered to be heterogeneous in terms of the ability of hosting VNFs, the time for
processing data traffic of each VNF, and the latency parameter used to evaluate the effect
of processing-resource sharing. Our main contributions are four-fold:

1. We formulate the multi-SFC embedding problem as a resource-specific congestion
game, which is proved to be an exact potential game. In the proposed multi-SFC
embedding game (MSEG), the effect of processing-resource sharing among SFCs is
considered. Considering the additional delay due to processing-resource sharing, we
have established an accurate end-to-end (E2E) delay model for each SFC with delay
satisfaction;

2. To guarantee the capacity constraints on different NFV nodes, we formulate a new
resource constrained multi-SFC embedding game (RC-MSEG) where a penalty term
is added into the original cost function of each player. Both MSEG and RC-MSEG
are proved to be exact potential games admitting at least one pure NE;

3. To obtain the NE of RC-MSEG, we design two iterative algorithms, namely, the best
response (BR) algorithm with fast convergence and the spatial adaptive play (SAP)
algorithm with great potential to obtain the best NE of the proposed game. The two
algorithms correspond to local and global optimal solutions to the original problem,
respectively;

4. To further guarantee the capacity constraints of NFV nodes as well as to achieve
better load-balancing, we propose a prioritized admission control mechanism where
the maximum number of embedded SFCs is predicted. Then, the size of the original
SFC set is adjusted to accommodate the maximum set of SFCs with relatively high
bit rates, while all capacity constraints are satisfied.
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Table 4.1: Summary of Important Notations

Notation Description
N set of players (SFCs)
N number of players (SFCs) in the system
F; set of VNFs in SFC ¢
M set of VNF types in the whole system
M, set of VNF types in SFC ¢
My type of jth VNF in SFC 1
V set of NFV nodes in the system
V number of NFV nodes in the system
V(m) set of NFV nodes that can support VNF type m
Ai bit rate of player i € N
d(v1,v2) link propagation delay over the link between v; € V and v, € V
Ly maximum service rate of NFV node v € V
unit bit rate processing time for VNF type m € M on NFV node

Pom vey
p(v, fij) processing time for VNF f;; on NFV node v € V
K, context-switching latency parameter for v € V
1T, | number of SFCs that chooses server v to support a certain VNF
dl(-pmp) (51) Zotal link propagation delay experienced by traffic flow 7 in strategy
J#ro0) (51) total VNF processing delay experienced by traffic flow ¢ in strategy

7 ? gi

(cs) /- additional context switching delay experienced by traffic flow ¢ in
dz’ (Si, S,i) _

strategy profile (5;,s_;)

4.2 System Models and Game Formulation

In this section, we present the system models and the game formulation for the multi-SFC
embedding problem. Table 4.1 summarizes the important notations used in this section.
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4.2.1 Network Model

We consider an NFV system with a set of NFV nodes/servers denoted by V, where V =
{1,2,...,V}, and a set of SFCs denoted by N, where N = {1,2,..., N}. Let M be the
set of VNF types available in the whole system, where M = {1,2,..., M}. Each SFC
i € N is composed by a set of VNFs F; = {fi, fi2,. .., fir} corresponding to a set of
VNF types M; = {mi1,mia, ..., myp,}, where m;; € M and j =1,...,|F;|. Each SFC is
also associated with a bit rate \; (i € N). Each NFV node is capable of hosting multiple
VNF's of different types. Let M(v) C M be the set of VNF types that can be supported
by NFV node v € V. Each VNF type m € M can be hosted by a set of NFV nodes,
denoted by V(m) C V. Let p,,, be the unit bit rate processing time for a certain VNF
type m € M on NFV node v € V(m). Accordingly, the processing time of VNF f;; on
node v € V(my;) is given by

p(Uv fzy) = pv,mij/\i- (41)
Note that different NF'V nodes have different abilities of processing VNFs of the same type.
Denote the maximum service rate that NFV node v can offer by p,. Let (v, vq) represent
the link propagation delay over the link between NFV nodes v; and vy, where v; € V and
Vg € V.

4.2.2 Multi-SFC Processing-Resource Sharing Model

To reduce the VNF provisioning cost, we consider that multiple VNF's belonging to different
SFCs can be embedded onto a common NFV server. However, embedding multiple VNFs
on the same NFV node may result in performance degradation due to context switching
among different VNFs [61]. The performance degradation is reflected in an increased VNF
processing latency, referred to as the context switching delay. Therefore, to manage the
physical resources efficiently and to achieve a better latency control over the traffic flows,
the effect of processing-resource sharing should be taken into account when dealing with
the multi-SFC embedding problem.

Let d°® (v) denote the additional context-switching delay imposed on the processing of
all the VNFs embedded onto v. According to [61], this additional delay can be modeled as

d) (v) = |T,| K., (4.2)

where |1, | represents the number of SFCs that chooses server v to support a certain VNF;
K, is the context-switching latency parameter of node v € V.

Fig. 4.1 gives an example of embedding multiple SFCs onto the same substrate network,
where multiple VNFs from different SFCs can share the processing resources of a common
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Figure 4.1: Illustration of multi-service SFC embedding, where different VNF's can share
the physical resources of a common NFV node and different SFCs can share the same VNF.

NFV node. In the figure, we assume that all the substrate nodes are NF'V nodes equipped
with multiple CPU cores. Suppose that we have two SFCs to be embedded onto the
substrate network. For a given service, the source and the destination nodes in the substrate
network are known. Let S} = {s1, f1, f3, f1,d1} and Sy = {sq9, f1, fo, f3, fa,d2} denote the
first and the second SFCs, respectively (other available information associated with the
SFC are omitted for brevity). f; in both SFC 1 and SFC 2 are embedded on the NFV
node v;. They will share the processing and other physical (such as storage and disk)
resources of v;. The impact of this resource-sharing among different VNF's is an increase
on the end-to-end latency of both services. On the other hand, f3 in SFC 1 and f; in SFC
2 are both embedded onto NFV node vy, which also leads to latency increase for the two
services.

4.2.3 Delay Models and Capacity Constraints

We refer to the ith SFC as player ¢ with its embedding strategy being denoted by ;.
Specifically, 5; = (sﬂ, Si2, - - 5 Si| Fi|)7 where s;; € V represents the NF'V node chosen by
player ¢ to process f;;, j = 1,...,|F;|. Let S; represent the strategy set of player i.
In this work, we assume that different VNFs from the same SFC cannot be embedded
onto the same NFV node. Therefore, the total number of elements in S; is given by

|Si| = [V(ma)| x [V(ma)| x - x [V(mir)]-
For any player i« € N and any strategy 5, € S;, the total link propagation delay
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experienced by the traffic flow corresponding to player ¢ is given by

|Fi]—1

A7) Z 8(84j, Siji1)s (4.3)

where 0(s;;, s; j+1) represents the link propagation delay between the two NEFV nodes s;;
and s; j41.

Based on (4.1), the overall delay for processing all the VNF's in SFC i in strategy s; is

given by
|Fi

d(proc Z Ps”,m” . ( n 4)

Let s_; be the set containing all the strategies chosen by the players in the set N\ {i},
ie, s_; = {8,8,...,81,541...,5y}. Considering that multiple VNFs managed by
different players can be embedded onto the same NFV node, we define Y, (5;,s_;) as the
set containing the players that chooses server v to execute a certain VNF. Specifically,

T (517 ) - {Z S N 3] S {1 ’Fi/|}78’i/j = 'U’
sij € S, 5y € (8i,8-4)}. (4.5)

According to (4.2), the additional delay experienced by the traffic flow of player i due
to context-switching is given by

di 327 —l Z|T Slv —l U (46)

VES;

where | - | represents the cardinality of a set.

Finally, to satisfy the capacity constraint of each NFV server, the total bit rates of
different SFCs embedded onto the same server should not exceed the maximum service
rate that can be provided by that server, i.e.,

Z Air < fhy, YV € V. (4.7)

€Ty (§i,S,¢)
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4.2.4 Game Formulation

The objective of player ¢ is to minimize the overall latency experienced by its flow, while
satisfying the capacity constraints of all the NFV nodes, i.e.,
in D;(Si, s
pig Dilsi o)

s.t. Z A<, VoV

JEY T, (givs—i)

(4.8)

where D;(8;, s_;) represents the overall latency experienced by the traffic flow managed by
player i under strategy profile (5;,s_;). The overall latency for an embedded SFC consists
of the total link propagation delay, the total processing delay, and the total additional
context-switching delay imposed on all the VNF's in the SFC, i.e.,

Dy(5;,5_;) = AP (5;) + d79(5;) + d) (5;, 5_,). (4.9)

Accordingly, the multi-SFC embedding problem without considering the capacity con-
straints can be formulated as a congestion game: G = {N,V, S, (D;(5;, 8_;))ien}, Where
N represents the set of players, V the set of NFV servers, and D;(5;,s_;) the cost func-
tion of player ¢ as given in (4.9). S denotes the set of all the possible strategy profiles,
e, S=5Q SR - @ Sy. We refer to G as the multi-SFC embedding game (MSEG)
in this chapter. Notably, MSEG is a resource-specific congestion game in that different
NFV nodes have different ability of hosting VNFs (M(v)), different processing times for
the same VNF type (pym), different maximum service rates (u,), and different context-
switching latency parameters (K,).

To relax the capacity constraints of NFV nodes, we modify the original cost function
of each player by adding a penalty term to it as follows [112]-[114]

Di(gi; S—i) = Dl(g'u S—i) + U)P(gz, 8_1'>, (410)

where w is the weighting parameter for the penalty term P(s;,s_;). The penalty term
reflects the violation degree of the capacity constraints for all the NF'V nodes, given by

P(5;,8) va Si,8_4), (4.11)

veV
where p,(5;, s_;) is defined as:
M if " = Air > ™
pu(5i,8-4) = o SYo(oi,0-s) : (4.12)
0 otherwise.
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Here M is a positive number used to penalize the strategy §; if the capacity constraint on
server v is violated. Based on (4.10)-(4.12), we reformulate the multi-SFC embedding prob-

lem subject to the capacity constraints as a new congestion game: G = {N, V., S, (D;(5:, 5_;) )ien'},
where D;(5;,8_;)) is the modified cost function given by (4.10).

Definition 1. A strategy profile (57,55,...,5y) € S is a Nash Equilibrium (NE) if and
only if,
D( ) <D(SZ, 7)7 ViEN, Vs; € S;, (413)

which means that (87,55, ..., 5}‘\,) is a strategy profile where no player has the incentive to
change its strategy since its overall latency cannot be decreased unilaterally.

Definition 2. A game is an exact potential game if there exists a function, ®, that satisfies
the following condition

Di(a,s_;) — Di(b,s_;) = ®(a,s_;) — ®(b, s_;), (4.14)

where D; is the cost function of player i, while @ and b are two strategies chosen by player
7. The function ® is called the exact potential function of the game.

Theorem 1. The original game MSEG (G) is an exact potential game which admits at
least one pure strategy NE.

Proof. Define the potential function ® for game G as follows:

[T (83,5
(s, 8-) = di(s:)+> Y. nk, (4.15)
ieN veY n=1
where |1, (5;, 5_;)| represents the number of players that choose v to process a certain
VNF, and d;(5;) is defined as

di(s1) = d" (5;) + d"* (53). (4.16)

Suppose that player i changes its strategy from a to b, while other players remain their
current strategies. From (4.9), we obtain the change of the cost function for player i as

D;(a,s_;) — Dy(b,s_;)
= di(a) — d;(b) + d\* (@, s_;) — d') (b, 5_;)
= di(a) — d;(b) (4.17)
+) (@ 5-)| Ky = Y [Tu(b, s-) | K,
vea vEbD



From (4.15), we obtain the change of the potential function ® between two strategy
profiles (a, s_;) and (b, s_;) as

®(a,s-;) — ®(b,5-)
= di(a) - Z d; (D)
ieN ieN (4.18)
1T (a,5-i)] Yo (b,5—4)]
+ Z( Z nk, — Z nk,).
veY n=1 n=1

Define F,_j as the set containing the VNFs of player i that are processed by different
NFV nodes between a and b, i.e., F,_; = {f;; € F; : a(fi;) # b(fi;)}, where a(f;;) and
b( fij) are the NFV nodes chosen to support f;; in strategy a and b, respectively. Define
Vap as the set of NFV nodes that are chosen to process the VNFs in F,_; in strategy a,
Le, Vap = {a(fyy) €V : fij € Fa_p}. Similarly, define V;; as the set of NFV nodes that
are chosen to process the VNFs in F,_j in strategy b, i.e., Vjz = {b(fi;) €V : fij € Fop}-
Fig. 4.2 illustrates the definitions of F,_3, V3, and V4, using a simple example with
|F;|] =3 and V =4.

We can rewrite the change of the cost function of player ¢ in (4.17) into

_ (4.19)
+ 3 (@ s )K= Y [Tu(b s2i)|K,.

vEVa\p vEVR &

And the change of the potential function ® given by (4.18) can be now expressed as

= d;(a) — d;(b) (4.20)
[Tw(@,s—s)] ITo(b,s—3)]

D VI I ST Shtts

vEVa\gUVE\d n=1 n=1

Now, let Vo = V3 U Vi Then, Vy can be considered as the union of three disjoint
sets, i.e., Vo = V1 U Vg U Vg, where V1 = Vz‘z\l_; ﬂVE\C—L, VQ = V,—l\g\Vl, and Vg = VE\& \ Vl. Flg
4.3 illustrates the relationships between the sets Va5, Vi\a, Vi, Vo, and V3. Given an NFV
node v € Vy, depending on which subset (among V;, Vs, and V3) v belongs to, we have the
following three cases to describe the relationship between |Y,(a, s ;)| and |T,(b, s_;)]:
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fi f, fa
~ @
7 &—&— —S,,
e NFV node
_ f1 f3 f2
- - - -
b &—; &, S

‘ET—B :{fz, fs} Vg\g ={V2,V3} VB\a :{VZ,V4}

Y ={v,} V, ={vs} Vi ={v,}
Figure 4.2: Illustration of the definitions of F;_z, V3, and Vi,

Case 1: v € V), i.e., the NFV server v is chosen by player i in both @ and b, but
to process two different VNFs. For the example shown in Fig. 4.2, V; = {ve} and this
case refers to the NFV node vy. In such case, the number of VNFs received by v in

the old strategy a and that in the new strategy b are the same. Accordingly, we have
o, s0)] = [To(b, 5.

Case 2: v € Vs, i.e., the NFV server v is chosen by player ¢ to process a certain VNF in
the old strategy a, but that VNF is moved to a different server in the new strategy b. As
for the example shown in Fig. 4.2, this case refers to the NFV node v3. In such case, the
number of VNFs received by v in strategy a is one more than that in strategy b. Therefore,
we have |1, (@, s_;)| = |To(b,5_;)| + 1.

Case 3: v € Vs, i.e., in the new strategy b, player ¢ places a certain VNF on server v,
which was not chosen by the old strategy a. This case refers to the NFV node v, for the
example shown in Fig. 4.2. In this case, the number of VNFs received by v in a is one less
than that in b. i.e., |Y,(a@, s_;)| = |Yo(b, s_;)| — 1.

With the three cases above in mind, we obtain the change of the potential function ®
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Vv ZA

Figure 4.3: Illustration of the relationships between the sets V3, Vpa, V1, Va2, and V3.

in (4.20) as follows

= di(a) — di(b)
+ Z To(a, s—i)| Ky — Z T (b, )| K,
vEV? vEV3

+ ( |To(@, i) | Ky + Z T.(a, 8—2)|Kv)
vEV2 vEV] (421)
_ (E T(b, si) [ Ky + > T4 (0, s_z)|Kv)
veVY vEV3
= d;(a) — d;(b)
+ |To(@, s-3)| Ky — Z T (b, s-)| K,

Therefore, the potential function ® is an exact potential function for the original game G.
This completes the proof. O

Now, based on the previous proof, we will show that the RC-MSEG @ is also an exact
potential function with the following potential function:

O(5;,8-;) = ©(5,8-;) +wP(5;,5-), (4.22)
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where the definitions of P(5;,s_;) and p,(S;, s_;) are given by (4.11) and (4.12), respec-
tively.

Proof. Suppose that the strategy of player ¢ is changed from a € S; to b € S;, then, the
change of the modified cost function D;(s;, s_;) is given by

®(a,s_;) — B(b, s_;) + w(P(a s_;) — P(b,5_;)) (4.24)

That is, the potential function ® is an exact potential function for the new potential game
G. This completes the proof. O]

4.3 Algorithm Design

There are two main properties for potential games, i.e., every finite ordinal potential game
has a pure strategy equilibrium, and every finite ordinal potential game has the Finite
Improvement Property (FIP). Therefore, in this section, we first employ the best response
(BR) algorithm to seek for an NE. The BR algorithm can in general achieve an NE quickly,
but may result in a local optimal solution at which the potential function is not maximized.
To improve the solution quality at NE, we further propose a learning algorithm, i.e., the
spatial adaptive play (SAP) algorithm, to find the best NE.

4.3.1 Best Response Iterative Algorithm

For finite ordinal potential games, it is well-known that an equilibrium point exists and
that every maximal improvement path must terminate at an equilibrium point. With the
FIP property, the basic best response algorithm can be employed to find the NE of the
proposed potential game G. The BR algorithm is executed in a round-robin manner. In
each round, one player is chosen to update its strategy to the best strategy such that
the cost function is minimized, while other players keep their strategies unchanged. The
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Algorithm 3: Best response algorithm to find the NE

1 Initialize the round counter r < 0;

2 for i in N do

3 Randomly select a strategy from the whole strategy set to initialize §;(0);

4 Execute the initial strategy;

5 Set r <+ r+1;

6 while stopConditionNotMet() do

7 | foriin N do

8 Keep s_; unchanged, i.e., s_;(r) = s_;(r — 1)

9 Loop all the possible strategies of player i to find the best response strategy
57, e

10 5F = argming, D;(5;,8_4(r)),V5 € S;;

11 Set 5;(r) = 5};

12 Execute the best response strategy s7;

13 Update the round counter r <— r + 1;

algorithm is terminated once the stopping criterion is met (e.g., the value of potential
function does not change for a number of successive rounds, or the maximum number of
rounds is reached). The details of BR algorithm is shown in Algorithm 3.

Due to the FIP feature of ordinal potential game, after a finite number of rounds, the
BR algorithm can convergence to a stable solution which corresponding to an NE. The
solution obtained from BR is at least locally optimal.

4.3.2 Spatial Adaptive Play Algorithm

We now present a learning algorithm, i.e., the SAP algorithm [116]-[118], to find the best
NE of our game G. In the SAP algorithm, an exploration parameter is used to determine
the probability of escaping from a local minimum/maximum of the potential function.

The strategies of the players are updated in a round-robin manner. Let (5;(r), s_;(1))
be the strategy profile at round r. Initially (r = 0), each player selects a strategy from S;
following a uniform distribution p; ;(r = 0) = 1/|S;|, where j = 1,...,|S;| and p; ; is the
probability of player i selecting the jth strategy from S;. At round r + 1, one player (say
player i) is to update its strategy from §;(r) to S;(r+1). The new strategy is selected from
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Algorithm 4: SAP algorithm to find the best NE

1 Initialize the round counter r < 0;
2 Initialize the exploration parameter j3;
3 Initialize the probability vector p; j(r = 0) = 1/|S;|, Vi e N, Vj =1,...,|Si];
4 for i i N do
5 Select an initial strategy from the whole strategy set according to p; ;(r = 0);
6 Execute the initial strategy;
7 Setr+nr+1;
8 while stopConditionNotMet() do
9 for i in N do
10 Keep s_; unchanged, i.e., s_;(r) = s_;(r — 1);
11 Loop all the possible strategies of player i to calculate D;(3;, s_;(r)),
12 Update the probability vector:
exp(—BD;(5;,5,8—4i(r
13 pig(r) = zei( efp<—(55i<§i,j(,s)z)i<r>>> ?
14 Select the new strategy s;(r) according to the updated probability vector
pij(r);
15 Execute the updated strategy $;(r);
16 Update the round counter r <— r + 1;

whole strategy set S; according to the following probability distribution p; ;(r + 1):

exp(—fDi(54, 5-i(r)))
255 eXP(—=BD; (515, 8-4(r)))’

pij(r+1)= (4.25)

where 5; ; represents the jth strategy in Si; D;(8;;, 8_;(r)) is the cost when the strategy
profile is (5; ;,s_;(r)); 8 > 0 is the exploration parameter. A large § will force the players
to select the best response strategy with high probability, while a small § in general leads
to slower convergence. The SAP algorithm terminates if the stopping criterion is satisfied
(e.g., the maximum number of rounds is reached). The details of the SAP algorithm is
shown in Algorithm 4.

Theorem 2. The proposed SAP can converge to the following stationary distribution 7(s)

exp (—5(s)2(s)

m(s) = o
- Ywesexp (—O(s)

(4.26)
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Proof. Following similar proofs in [109], [115]-[118], let us denote the network state at
the rth round as s(r) = (51(r), 52(r),...,Sn(r)), where §;(r) represents the strategy of
player i. Obviously, s(r) is a discrete time, irreducible, and aperiodic Markov process,
which has a unique stationary distribution. Let s; € S and s, € S represent any two
arbitrary network states. Specifically, let s; = (S1,...,8m-1,5m, Smi1---,5n) and 8y =
(51, 8m_1,8,,8ms1---,8n), where m € N is the player chosen to change her strategy
between states s; and s,. Denote the transition probability from s; to ss by P(ss|s1). To
prove that the unique distribution of s(r) must be (4.26), we only need to prove that the
following balanced equation holds

7(s1)P(s2]s1) = m(s2)P(s1]s2). (4.27)
Given s; and sy defined earlier, the L.H.S. of above equation is given by
(1) P(s2s1)
_ on(BR(s))  exp(=BDu(5 8 ) o)
D es XP(=BP(s1)) Doy e, XP(=BDm(S),, 8-m))
= nexp{—B(®(s1) + Dn(5,, 5-m))}
where the parameter 7 is defined as

n=1/{)_ exp(=$®(s1)) - D exp(—BDu(5,, s-m))}-

$1€S 5 ESm

In a similar manner, we can also obtain the R.H.S. of Equation (4.27) as follows
m(82) P(s1]82) = nexp{—p(®(s2) + Din(5m, $-m)) } (4.29)

Considering that from s; to s, there is only one element (i.e., player m’s strategy) changed,
and that the proposed game is an exact potential game, we have

D(s1) — ®(82) = D (5my 8-m) — Din(5,,, 8 m)- (4.30)

According to (4.28)-(4.30), we can conclude that the stationary distribution shown in (4.26)
satisfies the balanced equation (4.27) and therefore is the unique stationary distribution of
the proposed SAP algorithm. O

Complezity Analysis: In each round of the SAP algorithm, one player ¢ is chosen to
calculate the potential cost over the whole strategy space .S;. The computational complexity
is O(|Si]) = O(|V(mi1)| x [V(mag)| % - - - X |[V(myjg,)|), which is upper bounded by O(V1#i),
where |F;| is the number of VNFs managed by player i. Let the maximum number of
rounds be 7,4, Then the total complexity of SAP is given by O(rqe - V).

Optimality Analysis: As for optimality, given sufficiently large [, the SAP algorithm
can achieve the global optimal solution with an arbitrarily large probability [116]-[118].
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Algorithm 5: Proposed prioritized admission control mechanism

1 Calculate N,,q, using (4.31);

2 if N > N,,.. then

3 Sort NV in descending order according to A;;

4 L Choose the first Ny,q, players in A to form N;
5 else

6 L Set N« N;

7 All players in A play game G to obtain an NE s*;
g8 if P(s*) =0 is true then

9 if N > N,,.. then

10 while P(s*) =0 is true do

11 Set s4¢ « s*;

12 Add one more player to N, i.e.,

13 i :argminiGN\N)\i;./(/’:./\NfU{i*};

14 All players in A re-play the game G to obtain a new NE s*;
15 Remove the lastly added player from N

16 return s4¢, /\7;

17 else

18 Set s4¢ « s*;

19 return s4¢, ./\7;
20 else

21 while P(s*) =0 is false do

22 Remove one player from N, i.e.,

23 i* = argmin, g \i; N = N\ {i*};

24 All players in A re-play the game G to obtain a new NE s*;
25 Set s4¢ « s*;

26 return s4¢, N;

4.3.3 Proposed Prioritized Admission Control Mechanism
When the physical resources are scarce or the traffic load is high, simply adding a penalty

term to the cost function may not be able to ensure the capacity constraints of NFV nodes.
Therefore, we further design an admission control (AC) mechanism to address over-loaded
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scenarios where the capacity constraints of NF'V nodes are difficult to be guaranteed. The
details of the proposed AC mechanism is shown in Algorithm 5.

First, given the statistical characteristics of the NFV system and the SFCs, the maxi-
mum allowed number of SFCs that can be embedded, N,,.., is estimated as

E(ﬂv) -V
E(N) - E(IF])’

Nmax ~

(4.31)

where E(u,) denotes the expectation of the service rate of an NFV node, E()\;) denotes the
expectation of the bit rate of a VNF chain, and E(|F}|) is the average number of VNFs in a
VNF chain. In (4.31), the numerator approximates the total amount of physical resources
available in the whole system, while the denominator approximates the amount of physical
resources demanded by an VNF chain. Next, the mechanism checks if the actual number of
VNF chains to embedded (V) is greater than N,,q.. If we have N < N,,4., all the players
in A/ are sorted in a descending order according to their bit rates ()\;). Then, the first
Nnae players form the set of VNF chains (denoted by N ) that are chosen to be embedded
(Line 2-4). Otherwise, we keep the original VNF chain set N unchanged (Line 5-6). After
that, all the players in A" play the game G (with either BR or SAP algorithm) to obtain
an NE s* (Line 7). If all the capacity constraints are satisfied and we have N < Naz,
the AC mechanism terminates and outputs the final accommodated SFC set A and their
corresponding embedding strategies s4¢ (Line 17-19). Otherwise, the mechanism attempts
to find the maximum number of SFCs that can be accommodated. Each time the player
with the smallest bit rate is chosen and added into A, and the game is replayed to find a
new NE (Line 9-16). Similarly, if at least one capacity constraint is violated, one player is
removed from A each time and the game is re-played until all the capacity constraints are
satisfied (Line 20-26). Notably, by executing the proposed admission control mechanism,
a maximum set of SFCs with relatively high bit rates are accommodated by the system
where all the capacity constraints of NFV nodes are satisfied.

4.4 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithms in various scenarios.
The parameters in the penalty term in the cost function is set as w = 1.0 and M = 10.0.
Detailed simulation parameters are provided in Table 4.2.
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Table 4.2: Parameters Used in Simulations

Parameter Minimum | Maximum

Total number of VNF types | M| 10 10
Number of VNF types in each SFC | M| 3 5

Service rate i, 100 200
Latency parameter K, 0.1 0.5
VNF processing time p(v, m;;) 0.5 1.0
Link propagation delay §(vy, vo) 10.0 20.0
Bit rate A; 10.0 20.0

4.4.1 Optimality at Convergence of the Proposed Algorithms

We first validate the optimality at convergence of the proposed algorithms. The exhaustive
search (ES) algorithm is used as the benchmark to obtain the global optimal solution. To
make the comparison feasible, we consider a small network instance with 5 NFV nodes
and 4 SFCs. Each SFC is associated with 3 VNFs. We consider that each NFV node can
support all the VNF types in the system, i.e., M(v) = M, Vv € V. Then, the size of search
space for the ES algorithms is |S| = (5 x 4 x 3)* = 12,960, 000. For the SAP algorithm, the
exploration parameter (3 is selected from [0.5,1.0,6.0]. The maximum number of rounds
is set as 100. The parameters of the penalty term in the cost function are set as w = 1.0
and M = 10.0. The convergence behavior of the proposed BR and SAP algorithms is
shown in Fig. 4.4. As can be seen from the figure, after a small number of rounds, both
BR algorithm and SAP algorithm (with § = 6.0) converge to the global optimal solution
found by the ES algorithm. Notice that for this small network scenario, the SAP algorithm
converges to the global optimal solution as quickly as the BR algorithm does. On the other
hand, after 100 rounds, the SAP algorithm with § = 0.5 or # = 1.0 has not converged.
To achieve convergence, a larger number of rounds are needed. Notably, a larger value of
exploration parameter (J) leads to a faster convergence of the SAP algorithm.

4.4.2 Performance Comparison Between Proposed Algorithms

Next, the performance of the two proposed algorithms are compared in terms of the ability
of finding the best NE. Consider an NFV system with 8 nodes and 20 SFCs (i.e., V = 8
and N = 20). The number of VNFs in each SFC is a random number chosen from [3, 4, 5].
The parameters in the penalty term are set as w = 1.0 and M = 10.0. For both algorithms,
the total number of rounds is set to be 250 to ensure convergence. For the SAP algorithm,
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Figure 4.4: Performance of the BR and SAP algorithms at convergence, where N = 4,
V =5, and |Fj| =3, Vie N.

the initial value of the exploration parameter is chosen from [0.5,1.0,2.0,4.0]. Fig. 4.5 and
Fig. 4.6 compare the performance of minimizing the potential function and the sum of
SEFCs’ latency between the two algorithms, respectively. To achieve an NE of the proposed
game, the BR algorithm takes about 50 rounds, while the SAP algorithm (with § = 2.0 or
B = 4.0) requires about 110 rounds. However, the values of the potential function and the
sum of overall latency achieved by SAP are both smaller than that achieved by BR, which
demonstrates that the SAP algorithm has greater potential to achieve the best NE of the
proposed game. Moreover, it is seen that a larger value of § leads to a faster convergence
of the SAP algorithm.

Fig. 4.7 and Fig. 4.8 show the dynamic evolution of the costs of five chosen players (i.e.
Player 1, 3, 5, 7, and 9) for BR and SAP (with § = 4.0) algorithms, respectively. From
Fig. 4.7, we can see that, with BR algorithm the costs of the five players keep decreasing
as the round index increases, reaching to an equilibrium after about 50 rounds. The final
cost of each player, which corresponds to the total delay experienced by each SFC, at the
NE depends on the final embedding strategy chosen by the SFC. A similar tendency can
be observed from Fig. 4.8, where the cost of each player oscillates at the initial phase and
converges to a stable value after 100 rounds.

Fig. 4.9 and Fig. 4.10 illustrate the evolution of the VNF embedding strategies of two
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Figure 4.5: Comparison between BR and SAP algorithms in terms of the value of potential
function.
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Figure 4.6: Comparison between BR and SAP algorithms in terms of the sum of overall
latency for all the SFCs.
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Figure 4.7: Dynamic evolution of the costs of the five chosen players when using the BR
algorithm for the scenario N =20, V =8, and |F;| € {3,4, 5}.

selected players (i.e., player 1 and player 6) using BR and SAP algorithms, respectively.
Both players are associated with three VNFs. With the BR algorithm, it can be seen
that the VNF embedding strategies of both players keep unchanged after 40 rounds. With
the SAP algorithm, it is shown in Fig. 4.10 that the strategies of both players remain
unchanged after about 150 rounds. These results further demonstrate that both algorithms
are able to obtain an NE of the proposed multi-SFC embedding game.

To show that the proposed game can effectively handle capacity constraints, we present
the dynamic evolution of the penalty term (i.e., P(s;, s_;)) for BR and SAP algorithms in
Fig. 4.11 and Fig. 4.12, respectively. A larger value of penalty term indicates a higher
violation degree of the capacity constraints of the NFV nodes. It can be observed from Fig.
4.11 that the capacity constraints of two NFV nodes (we set w = 1.0 and M = 10.0) are
violated with the initial strategies of the players. After 15 rounds, the BR algorithm finds
an embedding strategy where the capacity constraints of all the NF'V nodes can be satisfied
(i.e., P(S;,s_;) = 0). For the SAP algorithm, we can see from Fig. 4.12 that the number
of NFV nodes with violated capacity constraints fluctuates between 0 and 2, and stabilizes
at 0 after about 120 rounds for all the three exploration parameter settings. These results
demonstrate that our proposed approach is able to ensure the capacity constraints of NF'V
nodes effectively.
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Figure 4.8: Dynamic evolution of the costs of the five chosen players when using the SAP
algorithm with 8 = 4.0 for the scenario N = 20, V' =8, and |F;| € {3,4,5}.
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Figure 4.9: VNF embedding strategy evolution using the BR algorithm.
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Figure 4.10: VNF embedding strategy evolution using SAP algorithm (5 = 4.0).
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Figure 4.11: Dynamic evolution of the penalty term of the BR algorithm.
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Figure 4.12: Dynamic evolution of the penalty term of the SAP algorithm.

4.4.3 Performance Verification of the Proposed Admission Con-
trol Mechanism

To validate the effectiveness of the proposed prioritized AC mechanism, we consider another
network scenario where the number of SFCs to be embedded is 22. We adopt the resource
utilization ratio at each NFV node (defined as the ratio of total traffic load on the NFV
node over the service rate of that node) as the performance metric. Fig. 4.13 compares the
performance between the BR algorithm with the proposed AC mechanism and that without
AC mechanism. By using the AC mechanism, 20 SFCs are embedded at the NE point. It
can be seen from the figure that, without the AC mechanism, there are three NFV nodes
whose the capacity constraints are violated at the NE. With the AC mechanism applied,
all the NFV nodes have their capacity constraints satisfied at the NE, demonstrating the
effectiveness of our proposed AC mechanism. Moreover, with the proposed AC mechanism,
the resource utilization ratios of all NF'V nodes are quite similar to each other and close to
100%, which demonstrate better traffic load balancing among NFV nodes for the proposed
approach.
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Figure 4.13: Comparison of resource utilization ratio between the BR algorithm with
admission control and that without admission control.

4.5 Summary

In this chapter, we have proposed a game theoretical approach to deal with the multi-SFC
embedding problem whose objective is minimizing the E2E latency for each service while
satisfying capacity constraints of NF'V nodes. The problem is formulated as resource-
specific congestion game, where a penalty term is added to the cost function of each player
to involve the impact of capacity constraints. The proposed game RC-MSEG is proved
to be an exact potential game which admits at least one pure strategy NE. Two iterative
algorithms are devised to find the NE of RC-MSEG, which corresponds to the local/global
optimal solution for the multi-SFC embedding problem. A novel prioritized admission
control mechanism is proposed to handle over-loaded scenarios where the violation of the
capacity constraints is avoided. Simulations are carried out to validate the effectiveness of
the proposed approach. The proposed approach achieves low latency for SFC provisioning
with reduced computational complexity in an NFV-enabled future network.
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Chapter 5

Delay-Aware VNF Scheduling

Software defined networking (SDN) and network function virtualization (NFV) are the
key enabling technologies for service customization in next generation networks to support
various applications. In such a circumstance, virtual network function (VNF) scheduling
plays an essential role in enhancing resource utilization and achieving better quality-of-
service (QoS). In this chapter, the VNF scheduling problem is investigated to minimize
the makespan (i.e., overall completion time) of all services, while satisfying their different
end-to-end (E2E) delay requirements. The problem is formulated as a mixed integer linear
program (MILP) which is NP-hard with exponentially increasing computational complexity
as the network size expands. To solve the MILP with high efficiency and accuracy, the
original problem is reformulated as a Markov decision process (MDP) problem with variable
action set. Then, a reinforcement learning (RL) approach is developed to learn the best
scheduling policy by continuously interacting with the network environment. The proposed
learning algorithm determines the variable action set at each decision-making state and
accommodates different execution time of the actions. The reward function in the proposed
algorithm is carefully designed to realize delay-aware VNF scheduling. Simulation results
are presented to demonstrate the convergence and high accuracy of the proposed approach
against other benchmark algorithms.

5.1 Introduction

With the fast evolvement of communication technologies, the 5G wireless networks are an-
ticipated to accommodate a massive number of Internet-of-Things (IoT) devices with highly
diversified quality-of-service (QoS) requirements [1], [9]. Conventional network functions
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are placed at function-specific network servers or middleboxes, which are cost-ineffective for
differentiated service customization since a large number of servers need to be augmented
to support different types of services. In addition, the traffic routing paths among network
elements are distributedly calculated with considerable overhead, which is not efficient
in achieving high network performance with load balancing [25], [38]. Integrating SDN
and NFV for future networking is expected to feature centralized network management,
virtualized service function chaining, reduced costs, and enhanced service quality [10].

One of the fundamental research issues in NFV is how to efficiently and fairly allocate
physical resources in the substrate network to support the embedding of multiple VNF
chains, referred to as the NFV resource allocation (NFV-RA) problem [32]. The NFV-RA
problem typically consists of VNF composition, VNF chain embedding, and VNF schedul-
ing on embedded NFV nodes. During the embedding process, multiple VNFs can be
placed onto a common NFV-enabled network commodity server (i.e., NF'V node) to reduce
function provisioning cost and improve physical resource utilization. In VNF scheduling,
the execution timings of embedded VNFs on NFV nodes are scheduled to minimize the
makespan (i.e., the time period from the execution of the first VNF to the completion of
last VNF among all the scheduled VNFs for all the services). Existing studies have shown
that the classical VNF scheduling problem can be formulated as a job-shop problem (JSP)
[64], [121], which is an NP-hard combinatorial optimization problem [122]. To obtain its
near-optimal solutions, a number of heuristic/metaheuristic algorithms have been devel-
oped [62]-[66], [123]. These heuristic algorithms (e.g., greedy algorithms) are in general
fast and easy to implement, but their performance highly depends on the characteristics
of the problem and may deteriorate as the network size expands. On the other hand,
the metaheuristic algorithms such as particle swarm optimization (PSO) and genetic algo-
rithm (GA) may suffer a low convergence rate in the iterative process, leading to increased
computational cost and operational time. Their performance also relies on the initializa-
tion of parameters and may converge prematurely, falling into a local optimum especially
for complex problems. Moreover, strict E2E delay requirements are important to 5G ser-
vice provisioning. The incorporation of E2E delay constraints for different services in the
standard JSP problem poses additional challenge to conventional VNF scheduling. With
different E2E delay requirements, the existing heuristic algorithms for standard JSP need to
be carefully adjusted to achieve delay-constrained VNF scheduling. This requires manual
designs for appropriate rules of reducing the search space for the heuristic algorithms.

Recently, reinforcement learning (RL) has emerged as a promising approach to solve
combinatorial optimization problems with reduced complexity and high accuracy [67]-
[72],[124]. In RL approaches, a learning agent learns the best policy iteratively by directly
interacting with the environment, and multiple objectives can be supported simultane-
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ously by designing an appropriate reward function for the learning system. In this way,
the useful information for solving the problem at hand can be automatically extracted.
The delay-aware VNF scheduling problem has a long-term objective which is to minimize
the overall makespan. Also, the task of scheduling the VNFs in the system can be con-
sidered as a sequential decision process where the future status of the system depend on
the current status and decision only. Therefore, the VNF scheduling problem can be nat-
urally modeled as a Markov decision process (MDP). This motivates us to employ RL
to obtain near-optimal/optimal solutions to delay-aware VNF scheduling with reduced
computational complexity.

In this chapter, the delay-guaranteed VNF scheduling problem is first formulated as
a mixed-integer linear program (MILP) which is NP-hard. To solve the MILP with high
efficiency and accuracy, the original problem is reformulated as a Markov decision pro-
cess problem. Then, we develop an RL framework to address the VNF scheduling problem
with E2E delay guarantee. With the SDN/NFV-enabled network architecture, the logically
centralized VNF scheduler has global network information and makes scheduling decisions.
Based on this, we propose a centralized learning algorithm to solve the VNF scheduling
problem. The action of the agent (i.e., the VNF scheduler) is improved through continu-
ously interacting with the network environment. Different from conventional decentralized
approaches for standard job-shop problems [69]-[71], the centralized RL improves the so-
lution accuracy of the VNF scheduling, thanks to the global view of the whole system.
Also, without the coordination message overhead between multiple agents, the solution
complexity is reduced [72]. In the proposed RL approach, the action set for each state
is finite, state-dependent, and fixed for a given state. At each decision-making state, a
feasible/admissible action set is updated with the consideration of VNF dependency. Each
action can take varying amount of time to complete, i.e., the length of the time period
between two decision-making states is not fixed, depending on both states and actions
taken. The effectiveness of our proposed scheduling algorithm is evaluated under different
network scales and is compared with other heuristic algorithms. The main contributions
of this work are four-fold:

1. We formulate the VNF scheduling problem as an MILP, considering the E2E delay
requirements of differentiated services. To solve it, we transform the formulation
into a discrete-time problem, where the VNF scheduling decisions are made at the
beginning of each time slot;

2. A novel Q-learning based VNF scheduling algorithm is developed, in which system
states, actions, variable action set, reward functions are designed for the learning
algorithm. In conventional RL approaches, the feasible action set for the agent is
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state-independent and the execution time for all the actions are identical. However, in
VNF scheduling, the action set for the agent are state-dependent since a VNF can be
traversed only after its previous VNF has been passed through by the packet batch,
and each action can take a varying amount of time to complete. Thus, our proposed
@-learning algorithm determines the variable action set at each decision-making state
and accommodates diverse execution time of the actions;

3. The RL approach efficiently guarantees the QoS requirements for different services
via a customized reward function that is composed of two parts. The first part
reflects the makespan, where a short makespan leads to a large reward; The second
part reflects whether the E2E delay requirements of the services are satisfied. If
the delay requirement is satisfied for a given service, a positive reward is fed back
to the agent. By iteratively accumulating the reward, the agent learns the optimal
scheduling policy that results in the minimal makespan with E2E delay guarantee.

4. Extensive simulations are conducted to demonstrate the convergence of the proposed
RL algorithm and to compare the performance of the proposed approach with those
of several heuristic/metaheuristic algorithms and the decentralized approach. Sim-
ulation results show that our proposed approach can address the delay-aware VNF
scheduling problem effectively with reduced complexity and high accuracy, and that
the RL approach outperforms the benchmark algorithms in comparison.

5.2 System Model

Consider an SDN/NFV-enabled network architecture as shown in Fig. 5.1, where the
control plane is decoupled from the data plane and migrated to a centralized SDN control
module. The SDN controller is logically centralized and can be physically deployed in
a decentralized way, in which case some information change between different local SDN
controllers is required. The control module orchestrates the placement of VNFs from
different VNF chains and configures traffic routing between consecutive VNFs for load
balancing in the data plane. Through open southbound Interface (SBI) between the control
module and the substrate network, the state information from the underlying substrate
network can be collected. Multiple types of services, e.g., machine-type services with
stringent E2E delay requirements and data services with non-stringent delay requirements,
are considered and supported by different VNF chains. These services manifest different
levels of delay requirements [3]. In the SDN/NFV-enabled network architecture, service
customization and isolation should be achieved by embedding different VNF chains onto the
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Figure 5.1: An SDN/NFV-enabled network architecture.

same physical substrate network. VNF scheduling is periodically performed by the VNF
scheduler (as a sub-module integrated inside the SDN control module) as service requests
arrive. All the arrived service requests are scheduled simultaneously at the beginning of
every scheduling period. Important parameters and variables of the system model are
listed in Table 5.1.

Substrate mnetwork — The substrate network under consideration is represented by
a directed graph G = (V, L), where V denotes the set of physical nodes in the network and
L represents the set of physical links connecting any pair of nodes. Define N'(C V) as the
set of NFV nodes, and NFV node nj, € N (k € N, where N = {1,2,...,|N|'}) is capable
of hosting multiple VNF's of different types. Denote the CPU processing capacity of n; for
a VNF f as cx(f).

VINF chain— A network service is composed of an ordered sequence of VNFs, referred
to as a VNF chain. Suppose that there are |R| services, denoted by Si,Ss,..., S|, and

1. | represents the cardinality of a finite set.
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Table 5.1: Summary of Important Notations and Decision Variables

Notation Description

R set of network services

S; 1th network service

D, processing time deadline of S; for one packet batch

F set of VNFs in all the services

F; set of VNFs in S;

N set of NFV nodes

nL kth NFV node

L set of NFV nodes that can support VNF f;;
Pijk packet batch processing time at f;; € F; on node ny
Yijk binary constant indicating if f;; is assigned to node ny
T total number of time slots

T duration time of a time slot

M overall makespan

M a big positive number

Decision variable Description
2 time when the packet batch of S; starts processing at f;;
o binary variable indicating whether or not .S; starts being
supported on n; at the tth time slot
zfjm binary variable indicating whether f;; starts execution before f,q,
if f;; and f,q are both embedded onto ny

define R = {1,2,...,|R|}. Denote the set of VNFs in S; by F;. Let f;; represent the jth
VNF in F;, where j € F; and F; = {1,2,...,|F;|}. Let Z;; be the set of NFV nodes that
can support VNF' f;;.

Traffic model — Each NFV node is assumed to have a number of processing queues,
where each packet from a specific service is buffered for processing at certain VNF embed-
ded onto the NFV node. Packets of service S; arrive at one of the processing queues at
the first NFV node of an embedded VNF chain as a Poisson process with arrival rate \;
(packet/s). When multiple VNFs are embedded at a common NFV node, it is required
to determine the scheduling sequence of VNFs for packet processing since each VNF is
scheduled for packet processing one at a time. In a real system, the computing resources
on each NFV node are indivisible. Each NFV node can only support at most one VNF at a
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time and all the computing resources are allocated to the VNF for packet batch processing
[32], [62], [66], [125]. To reduce the switching overhead for VNF scheduling, we assume
that a VNF is scheduled for packet processing only if its associated buffer occupancy is
above a threshold B. The number of packets to be processed for one-time VNF scheduling
is B, which is also called one packet batch. Thus, the processing time of one packet batch
at f;; on node ny (ny € Z;;) for service S; is given by

piji. = B/ck(fij)- (5.1)

VNF scheduling - VNF scheduling is performed cyclically. We define the makespan
of one VNF scheduling cycle as the time duration that all embedded VNFs are scheduled
once for processing a single packet batch. For simplicity, we assume that the processing
queue occupancy of a subsequent VNF on an NFV node is above the threshold B once
the previous VNF scheduling completes?. For the first scheduling cycle, we assume that
VNFs at different NFV nodes start to be scheduled at the same time instant (i.e., the
time instant 0 in Fig. 5.2(c)). The scheduling starting and completion time for a packet
batch of S; traversing fi; in a scheduling cycle are represented by ¢;; and ¢f;, respectively.
Between ¢j; and t7 ., the packet batch waiting time can exist due to packet queueing on
the NFV node where f; ;11 is embedded. The packet batch of S; has to be processed at
a chain of VNFs in a predefined order, with the duration of (tf| 7| T Pi 7 k) for traversing
all services’” VNFs in a scheduling cycle. The scheduling results include two parts: 1) For
service S;, we determine the time when a packet batch starts being processed at f;;; 2)
For NFV node ng, we determine the scheduling sequence of all embedded VNFs. Let D;
denote the maximum acceptable processing time for a packet batch of S; passing through
the VNF chain in one scheduling cycle. The VNF scheduling process is to jointly determine
the scheduling sequence and the starting time for packet processing for the VNFs of all
services to minimize the makespan. By conforming to an optimal scheduling sequence,
each cycle of VNF scheduling proceeds repeatedly to reduce the overall processing delay
of packets traversing each VNF chain.

A simple illustration of the VNF scheduling process is shown in Fig. 5.2. Suppose that
there are three VNF chains of network services Sp, Sa, S3 (labeled by different colours) to
be scheduled at each scheduling cycle. On each NFV node, the VNF scheduling sequence
has to be determined to minimize the makespan. The VNF chain embedding results are
shown in Fig. 5.2(b). In Fig. 5.2(c), packet batches start traversing the VNFs of 51, Sy,
and S3 at nodes ny, ny, and ng, respectively, from time instant 0. Packet batch processing

2Dynamic VNF scheduling by considering the buffer occupancy status will be studied in our future
work.
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Figure 5.2: A simple example to illustrate the VNF scheduling process.

time at each scheduled VNF is also displayed by different colours. Time instant #; indicates
the makespan of one VNF scheduling cycle.

5.3 Problem Formulation

In this section, the delay-aware VNF' scheduling problem is presented by a continuous-
time formulation, in which the timings of the scheduling process are clearly described. For
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the continuous-time representation, additional binary variables are required to indicate
the processing sequence of the scheduled batches, which complicates the mathematical
formulation and the way of solving the problem. Hence, we transform the continuous-
time formulation into a discrete-time interpretation in a time-slotted system, where the
VNF scheduling decisions are made at the beginning of each time slot [126]. For both
formulations, we incorporate delay constraints to achieve E2E delay guaranteed service
provisioning.

5.3.1 Continuous-Time Formulation

Objective — The objective of the VNF scheduling problem (P1) is to minimize the makespan
M, which is expressed as
min M (5.2)
5. z]?. zk L.
13°713,pq°7Pq,1]
where the makespan M is the time duration of one VNF scheduling cycle for all services,
given by

M= max {5+ > yikpiji}- (5.3)

i€R,j€lF;
! Nk EIZ']'

In (5.3), binary parameter y,j is introduced, where y;;;, = 1 indicates f;; is embedded at
server ny; otherwise, y;;r = 0.

Constraints — The following constraints are imposed to guarantee the feasibility of the
VNF scheduling:

1) If any two VNFs (e.g., fi; and f,,) are embedded onto the same NFV node, it is
required that the packet batch processing at one of the two VNFs cannot start before
the processing at the other one finishes [64]. To impose these constraints, we define an
auxiliary binary variable zfj’pq as

1 if f;; starts packet batch processing before
zfj,pq = fpq on NF'V node ny,
0 otherwise.

Then, the constraints ensuring that preemption is not allowed at any time on any NFV
node are expressed as

k k
t55 7+ Zijpq Z YijkPijk < tpy + 2pg.i; M, (5.4)
npeN
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tpg + ’qu ij Z YpakPpak < T5; + szj,qua (5.5)
nkGN
Zmpq + qu,lj =1 (5-6)

where p € R, ¢ € F,, p # i or ¢ # j and M is a big positive number [98]. Note that

since M is large, constraint (5.4) is non-restrictive when 2, = 0 and 2}, ;; = 1 (i.e., when
fpq starts packet batch processing before f;;), and constralnt (5.5) is non-restrictive when

=0 (i.e., when f,, starts packet batch processing after f;;).

2) The specified processing sequence of the VNFs in each service, fi1 — fiz,..., = fiiz|,
Vi € R, is enforced by [64]

f,j—i-l - tfj > Z YijkPijk, Vi€ R,j €. (5.7)

Nk EIZ‘J‘

Constraint (5.7) guarantees that the processing of a packet batch at a subsequent VNF
cannot start until the processing at its previous VNF is completed.

3) The duration time for a packet batch passing through the VNF chain of S; in one
scheduling cycle should satisfy

tfm\ + Z YiFkpPFR < Di,  VieR. (5.8)
nkEN

Therefore, the continuous time formulation for the delay-guaranteed VNF scheduling prob-
lem (P1) is presented as an MILP program, given by

mm M
s k
tl]’ iJ,Pq qu iJ

st (5.4) — (5.8),
t?, >0,

szq € {O 1}
W € {0,1}.

5.3.2 Discrete-Time Transformation

The continuous—time formulation presented above requires additional binary variables (i.e.,
zfj’pq and zpq w) to indicate the packet batch processing sequence for scheduling VNFs.

This makes both the mathematical formulation and the way of solving the problem more
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complicated. In addition, the difficulty of the algorithm design increases when continuous
variables are involved. To overcome this problem, a discrete-time transformation of the
continuous-time formulation is presented in this section.

Time is divided into T" time slots of equal and fixed duration time 7 [65]. It is assumed
that a packet batch can only start processing at one VNF at the beginning of a certain
time slot, and the processing time is an integer multiple of one time slot. We define binary
variable zf, to indicate the packet batch processing state of service i on NFV node ny,
where zf, = 1 indicates the packet batch of service S; starts being processed at the VNF
embedded on NFV node ny, at (the beginning of) time slot ¢, and x}, = 0 otherwise. The
discrete time formulation for the VNF scheduling problem (P2) is presented as follows:

Objective — The objective is to minimize the makespan of packet batch processing for all
services, given by

mtin M (5.9)
Tik
where
N T
M = %%RX{; ;xikg/zlﬂlk((t D7 + piF )} (5.10)
Constraints:
Thyge+ Y @y <1, VieRVjeF,VkeN, (5.11)
i ER, i’ i

vt t' e 1,T],t <t <t+ Z YijkPijk

nkEZZ‘j
Wl T Wl T
Z i Yig+r — Yigr) (E = 1T =2 Z Z TikYihPighs

k=1 t=1 k=1 t=1

Vie R,YjeF\ {|F]} (5.12)
R]
 ah <1, Ve[l T],VkeN (5.13)
=1
Wl T
SN by =1, VieRYjeF, (5.14)
k=1 t=1
Wl T
SN dhyimw((t = )7+ pazp) <Dy, VieR (5.15)
k=1 t=1
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Figure 5.3: Hlustration of reducing JSP to JSSD.

where T is the total number of time slots, and is a large number to ensure the completion
of one packet batch processing for all services. [1, 7] represents the set of integers between
1 and 7. Constraint (5.11) indicates that packet batch processing is conducted for only
one VNF at a time on an NFV node [65]; Constraint (5.12) indicates that a packet batch
processing at a VNF cannot start until its previous VNF completes the processing; Con-
straint (5.13) guarantees that at any time slot ¢, the packet batch of at most one service is
processed by a NFV node; Constraint (5.14) ensures that the packet batch processing at a
VNF will not be repetitively conducted; Constraint (5.15) is the processing time deadline
constraint of one packet batch for each service.

From (5.2)-(5.8), it is observed that Problem (P1) involves continuous variables ¢;; as
well as binary variables 2, and zf . Therefore, (P1) is an MILP. The objective is to
minimize the overall makespan while respecting the precedence relations between VNF's
and satisfying the delay requirements of the services. In fact, the formulation of (P1) falls

into the category of job-shop scheduling problem with deadlines (JSSD).
Remark. JSSD is NP-hard.

Proof. The classical JSP is NP-complete [138], and it cannot be solved in polynomial
time. In our work, we will show that JSP with deadlines (JSSD) is NP-hard, if JSP is
NP-complete, i.e.,

(JSP ¢ P)= (JSSD ¢ P). (5.16)

where P represents the class of problems that can be solved in polynomial time. We
will prove the contrapositive:

(JSSD € P) = (JSP € P). (5.17)
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Assume that we have access to a polynomial time subroutine JSSD (N, R,D;,...,Dig/).
The inputs to the subroutine are a set of NFV nodes N, a set of services R, and their
corresponding delay constraints D;, i = 1,...,|R|. The output of this subroutine is true
if a feasible schedule exists such that the makespan is smaller than or equal to M (where
M is a positive integer) and all the delay constraints are satisfied, and is false otherwise
[139]. Obviously, a problem instance (N, R) for JSP can be transformed in polynomial
time into an instance (N, R,Dy,...,Dyg|) for JSSD (see Fig. 5.3). We can also observe that
both problems need to answer whether a schedule exists such that the makespan is smaller
than or equal to M. Let Dy, Ds, ...,Dyg| all be equal to M. Then, the outputs of JSP and
JSSD are consistent. Suppose (towards a contradiction) that a polynomial time algorithm
for JSSD exists, we could use this algorithm to solve JSP in polynomial time. Therefore,
(5.17) is true, and as the contrapositive of (5.17), (5.16) is also true. This shows that the
JSSD can be reduced from JSP in polynomial time and thus is NP-hard. m

5.4 A Single Agent QQ-Learning Algorithm

In this section, we reformulate the VNF scheduling problem (P2) in Section 5.3 as an MDP
problem with variable action set. An MDP is typically composed of five parts, denoted
by (S,A,P,R,v), where S represents a set of system states, A a set of actions, P the
state transition probabilities, R a reward function, and « the discount factor. In what
follows, we provide their specific representations in the context of VNF scheduling, based
on which a single-agent RL approach is proposed to allow the agent to learn the optimal
decision policy for the MDP. Fig. 5.4 shows the overall reinforcement learning framework
for VNF scheduling. At each time slot ¢, the agent (i.e., VNF scheduler) first finds the
feasible action set based on the current system state s(t), then chooses an action A(t) from
the feasible action set according to the current scheduling policy. The reward obtained
from the network environment, R(s(t), A(t)), is fed back to the agent for updating the
scheduling policy through the RL algorithm.

5.4.1 System State

The system state is captured at the beginning of each time slot ¢ (€ [1,7T7]), and is defined as
s(t) = [M(t), F(t)], where M (t) = [m(t), ma(t),...,mr(t)] denotes the states of NFV
nodes and F(t) = [£1(t), &(1), . . ., & 7((t)] represents VNF states. F is the set of VNFs to
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Figure 5.4: Reinforcement learning framework for VNF scheduling.

be scheduled for all network services. At time slot ¢, the definitions of my () and &(t)3
with £ € N and [ € F are given by

0, if n;, is not processing packets,

mi(t) = oL pTOFES P (5.18)
1, if n; is processing packets,
0, if f; is waiting to be traversed,

) =141, if f; is being traversed, (5.19)
2, if f; has been traversed.

At the initial time slot, all the NFV nodes are idle and the VNF's in all the services are
waiting to be traversed. Let the initial and completion states of one VNF scheduling
process be s;,; and S, respectively. According to (5.18) and (5.19), we have s;,; =

(0,...,0,0,...,0) and ser = (0,...,0,2,...,2).

3We sort all VNFs to be scheduled according to the processing time of a packet batch at each VNF.
There exists a one-to-one mapping between f; and f;;, where f; represents the [th VNF in the sorted
VNFs.
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5.4.2 Action and Variable Action Set

In our problem, due to the dependency of VNFs, not all the actions are feasible for all
the states. Therefore, it is useful to introduce an additional mapping which assigns the
set of feasible/admissible actions to each state [127]. An action of the VNF scheduler
(i.e., the agent in RL) at state s(t), A(t), indicates the VNFs chosen to be traversed at
state s(t) on all the NFV nodes, and is represented by A(t) = [a1(), az2(t), ..., an(t)],
where ag(s;) is the action to take at s, on NFV node ny. For example, A(t) = (1,5,2,7)
indicates that at state s(t), the VNFs chosen to be traversed on ny, no, ns, and ny are fi,
fs, f2, and f7, respectively. The feasible action set of the agent at state s(t) is denoted by
A(se) = Ai(sy) ® Aa(s) @ -+ @ Ap(se), where Ay (sq) is the feasible action set of NFV
node ny, at state s(t), and ® denotes the Cartesian product. Ag(s;) contains the indices
of all the VNFs that can be traversed on NFV node n, at s;. Note that since the packet
processing time at different VNFs can be different, the length of the time period between
two states that have scheduling decisions to be made is not fixed. If n; does not have any
VNF waiting to be traversed at state s;, we set Ax(s;) = {0} and ax(s;) = 0. We refer to
them as a null feasible action set and a null action, respectively. A system state with a
non-null feasible action set is called a decision-making state. For notation convenience, let
Anun(se) = {(0,0,...,0)}. Since a null action is available for any state s;, Anu(s¢) C A(st)
is always true.

The feasible action set A(s;) depends on each state, and can be obtained without
observing the environment. Therefore, in this paper, the feasible action set is finite, state-
dependent, and fixed for a given state. This state-dependent feasible action set imposes
additional challenge for designing the learning algorithm. Since the feasible actions are
continually changing as the state changes, a specific algorithm has to be devised to find
all the feasible actions for the VNF scheduler at a given system state. Then, the VNF
scheduler can choose an action from the feasible action set before taking an action. Note
that the feasible action set remains constant for each state, so it only needs to be found
once before learning. The details for finding the feasible action set for the agent at state
s¢ is shown in Algorithm 6. At the beginning of the algorithm, all the idle servers are
found and added to the set Nge(s;). For busy servers, let their feasible action set contain
a null action only (Line 1 - Line 5). Then, the algorithm finds all the VNFs currently
waiting for being traversed on each idle server (Line 7) and adds feasible actions (i.e., VNF
indices) to the action set Ay (s;) with the consideration of VNF dependency (Line 8 - Line
14). Finally, the feasible action set for the VNF scheduler is determined by the Cartesian
product of the feasible action set of all the servers (Line 15).

Complezity Analysis for Algorithm 6: For a given system state s;, the task of finding its
feasible action set contains two steps. The first step is to find all the idle NFV nodes and
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Algorithm 6: Algorithm for finding the feasible/admissible action set at s,

Input: Current system state s;
Output: Feasible action set A(s;)
1 for all ni, € N do

2 if ny s idle at time slot t then

3 ‘ Add ny, to Nige(s:);

4 else

5 | Set Ag(s;) < {0};

6 for all ny € Nige(s;) do

7 Fi(sy) < findWaitingFunctions(ng, s;);
8 if Fi(s¢) is empty then

9 | Set Ai(se) + {0};

10 else

11 Add {0} to Ag(s:);

12 for all f;; € Fi(s) do

13 if j=1 or &;_1(t) =2 then
14 L L Add f;; to Ak(se);

15 Set A(s,) — Au(s0) ® As(s,) @ - @ A (5):

add them into Nge(s;), which has a computational complexity of O(JA/|). Then, for each
idle NFV node ny € Nge(s;), we find all the waiting functions on it (denoted by F(s;)) and
add all the feasible ones into Ay(s;), whose complexity is O(|N;ae(s¢)| | Fr(s¢)]). Therefore,
the total computational complexity of finding feasible action set is O(max(JN|, [N (s¢)| -
|Fx(t)])), upper-bounded by O(JN] - |F|). Note that Algorithm 6 is performed only once
for a given state during the whole learning process. Once the admissible/feasible action
set is found for a given state, the mapping between feasible action set and state does not
need to be found again for that state.

5.4.3 State Transition

At time slot ¢ = 1, the system is in its initial state, i.e., s(1) = $;,;. Then, the system
state is updated at the beginning of each time slot until it reaches the completion state
Ster- The state transitions include the transitions of server state M (t) and function state
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F(t). The state transitions for M (t) are given by

O, if ak(t) = O,mk(t) = 1, Qk(t =
mk(t + 1) =<1, if ak(t) #0, mk(t) =0, Qk(t) > 1 (520)

my(t), otherwise

~—

where 0 (t) denotes the remaining packet batch processing time at the VNF being traversed
on server ng at time slot ¢. In (5.20), the first condition indicates that the state of ny transits
from the packet batch processing state into the idle state if nj takes a null action, and the
remaining packet batch processing time at the VNF is exactly one time slot; The second
condition indicates that the state of n; transits from the idle state to the packet batch
processing state if the node takes a non-null action at time slot ¢ and the packet batch
processing time at the VNF chosen to be traversed is more than one time slot. On the
other hand, the state transitions for F'(t) are given by

1, if &(t) =0,1€ A(t),n(t) > 1
. 2, if fl( ) 0 € A(t),Tl(t) =1
S =1, if &) =1,m(t) =1
& (1), otherwise

(5.21)

where 7;(t) denotes the remaining packet batch processing time at f; at time slot ¢. In
(5.21), the first condition indicates that the state of f; transits from waiting for being
scheduled to being traversed if the agent starts the packet batch processing at time slot
t and the corresponding packet batch processing time is greater than one time slot. The
second condition indicates that the state of f; transits from waiting for being scheduled
to scheduling completion if the agent starts packet batch processing at time slot ¢t and
the function traversing time is exactly one time slot. The third condition indicates that
& transits from being traversed to scheduling completion if the remaining packet batch
processing time at f; is one time slot at time slot ¢.

5.4.4 Reward Function

The objective of VNF scheduling is to minimize the overall makespan M, while satisfying
the delay requirements for different services. When an RL approach is applied to achieve
delay-aware VNF scheduling, it is required that the accumulated reward (which is the
feedback to the agent during the learning process) is consistent with the objective of VNF
scheduling.
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However, the makespan and the completion time instants of all services are not acces-
sible until the system reaches the completion state. Therefore, instead of providing the
agent with an instant reward after an action is taken at each time slot, we calculate the
accumulated reward for continuous state-action pairs before an episode (i.e., a sequence of
agent-environment interactions between initial and completion states) ends. In this study,
we follow the reward feedback mechanism used/discussed in [128]-[130], where the reward
for a state-action pair is received by the end of an episode. Although this mechanism may
slow down the overall learning process, other advanced RL techniques such as reward shap-
ing and parallel computation can be employed to speed up the overall learning process.
The accumulated reward is then fed back to the agent to help improve its VNF scheduling
policy. Specifically, we design an accumulated reward for a series of state-action pairs in
an episode, given by

R

R(s;, Ar) = co/ M+ > cidi, V(sy, Ay) € Q (5.22)
=1

where M is the makespan for current episode, () is a set containing all the state-action
pairs in the episode, and d; is a binary variable indicating if the delay requirement of S; is
satisfied (§; = 1) or not (&; = 0). ¢y and ¢; are weighting coefficients reflecting the rewards
obtained from minimizing the makespan and satisfying delay requirements, respectively.

If the packet batch processing of service S; is finished before its deadline, the scheduling
agent obtains an additional reward c¢;. In this way, the scheduling agent tries to maximize
the accumulated reward by scheduling the services to be completed before their deadlines.
Setting cg = 1 and ¢; = 0 implies that one only considers to minimize the overall makespan
and ignores the delay requirements of the services, while setting ¢g = 0 and ¢; = 1 means
that one aims to have all the delay requirements satisfied no matter how long the makespan
is. By setting proper values for ¢y and ¢;, we minimize the makespan while having all the
delay requirements satisfied. Note that the value of ¢; also reflects the priority of services,
and high priority services should have large ¢;. For delay non-sensitive services, ¢; should
be set to a small value (or even zero), since the additional reward from satisfying the delay
requirement can be obtained. For delay-sensitive services, ¢; should be set as a large value
to satisfy the delay requirement.

5.4.5 Q-Learning Algorithm for Optimal VNF Scheduling

Given the system states, actions, and reward functions, we develop an RL approach for the
scheduling agent to learn the optimal scheduling policy 7* that maximizes the accumulated
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reward over time, given by

T = max Z R(st, At). (5.23)
te[lvThA(st)?é»Anull

Q-learning [131] is adopted to allow the VNF scheduler to learn the optimal scheduling
policy through continuously interacting with the system. During the learning process, a
scheduling policy table (also called @-table) is maintained and the entries in the @Q-table
(called @-values) are updated iteratively by [131]

Q(st, Ar) = (1 = )Q(st, Ar) + [ R(se, Ar) + 7 max Q(spr1, Apr1)] (5.24)

Ait1

where « is the learning rate, v is the discount factor, and both a and ~ are real numbers
set between 0 and 1. The @-value at time slot ¢, Q(s;, A;), represents the expected reward
for the state-action pair (s;, A;), and thus can be interpreted as the probability of the
agent taking action A; at sate s;. It is demonstrated in [133] that ()-learning can be used
to achieve an optimal policy for discounted reward problems. Suppose that the Q-table
converges to its optimum Q* after sufficiently large number of episodes [134], then the
optimal policy 7* can be obtained based on a greedy exploration. That is,

* = “(s,. Ay). 5.5
m argrf413§<62(st, ¢) (5.25)

Since the VNF scheduling problem is transformed as an MDP with variable action set,
the agent can take null actions at some time instants. Therefore, the general )-value
iterative equation in (5.24) cannot be directly applied to our problem. To make it adapt
to the varying time period between two decision-making states, we modify (5.24) as

Q(st, Ar) = (1 = @)Qs1, Ar) + a[R(sp, Ay) + 7 max Q(seyar, Aryar)] (5.26)

t+At

where t+ At denotes the next time slot when the decision-making state occurs, At depends
on both the system state and the packet batch processing time at the VNF's being traversed
at time slot ¢. Between any two consecutive decision-making states, At is same for all the
NFV nodes. Note that in the implementation of large networks, the logically centralized
VNF scheduler can be physically decentralized. In such a circumstance, if we apply @-
learning centrally (i.e., maintain the @-table in a single server), then some information
exchange among different servers will be required.
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Algorithm 7: Q)-learning algorithm to find the optimal scheduling policy

1 Initialization:
2 Initialize episode counter n as 0;
3 Initialize Nz, o, €, 7;

a4 Set t < 0;

5 while n < n,,,, do

6 Set sy < Sini;

7 Set Q,, < 0;

8 while s; # s;.,. do

9

Ay < chooseAction(s;, Q,t);
10 Add (s, At) to Qp;
11 Si11 < TakeAction(sy, Ay, t);
12 while True do
13 t+—t+1;
14 if s, = 54, then
15 L break;
16 A(s;) + findFeasibleActionSet(sy,t);
17 if A(s;) # Apuu then
18 ‘ break;
19 else
20 L Sir1 < NullAction(sy, t);
21 n<n+1;
22 for all (s¢, A;) € ©,, do
23 Calculate R(s;, A;) according to (5.22);
24 | Q(s6, Ap) « (1 — a)Q(s¢, Ar) + a(R(st, Ap) +ymaxa,, ., Q(St1at, Arrar));

The detailed Q-learning algorithm to determine the optimal scheduling policy is given
in Algorithm 7, where n denotes the episode counter; n,,,, denotes the maximum number
of episodes for ()-learning; and 2,, represents the set containing all the state-action pairs
in the nth episode. At the beginning of each episode, the system state is initialized as
Sini and €, is empty (Line 6 - Line 7). In each episode, the agent takes an action by
using the e-greedy algorithm at the beginning of each time slot (Line 9 - Line 11). The
detailed algorithm for the agent to take an action at each state is given in Algorithm 8.
If an action is a null action, the system state keeps transiting over time until the next
decision-making state occurs (Line 12 - Line 20). Whenever the agent takes a non-null
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Algorithm 8: Algorithm for choosing action at each state
Input: System state s;, (Q-table
Output: The action to take A,
1 A(sy) « findFeasibleActionSet(s;);
2 Niaie(s¢) < findIdleServers(s;);
3 for all ny & Na(s;) do
4 L Set a(t) < 0;
5 for all ny € Nge(s;) do
6 | if Ag(t)={0} then
7 | Set ay(t) + 0;
8
9

else
L With probability € to choose a random action ay(t) from Ag(s;);

10 Otherwise, choose ay(t) = argmaxg, ) Q(s¢, Ar);

11 Sgt Ay = lai(t),as(t), ..., apn (D))

action, the state-action pair (s;, A;) is added to €2, (Line 10). When an episode ends, we
calculate the accumulated reward for all the state-action pairs in this episode according to
(5.22) (Line 23) and update Q-values according to (5.26) (Line 24).

Complexity Analysis: In each episode, the agent first chooses an action at each state
using Algorithm 8 and then execute it. The worst-case complexity of this operation is
O(IN||F|). The state evolves until the completion state s, is reached. Let m represent
the maximum number of steps in an episode. Then, the complexity of running an episode
is O(m - |N|-|F]|). Finally, the worst-case running time of updating the Q-table for the
state-action pairs in each episode is O(m). Therefore, the total complexity in each episode
of RL is upper-bounded by O(|S|-|N|-|F|). The total number of episodes required by RL is
Nmaz- S0 the overall complexity of Algorithm 7 is upper-bounded by O(n,,4.|S| - [N - | F|)-

Convergence Analysis: As shown in Algorithm 6, we introduce an additional mapping
which assigns the set of feasible/admissible actions to each state. Each state s(¢), where
s(t) = [M(t), F(t)], consists of the states of NFV nodes and the states of VNFs. The
feasible action set A(s;) depends on each state and can be obtained without observing the
environment. Therefore, A(s;) is finite, state-dependent, and fixed for a given state. The
MDP under consideration has stable state-action pairs. When the state and action spaces
are finite and stable, various proofs exist that the tabular )-learning does converge to
the optimal @-function Q* (s, A;), under very mild conditions [131]-[134]. In particular, a
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Table 5.2: Parameter Ranges in Simulation for Different Network Scales

Parameter | Small-scale | Medium-scale | Large-scale
V] [1,5] 6,10] [10,20]
IR| [1,5] 6,15] [16,30]
| 7] [2,5] [2,5] [2,5]
Pijk [175] [175] [1,5]

()-learning algorithm with the update rule

Q(St,At) = (1 - Oét(St,At))Q(St,At)
+ a(se, A [R(se, A) + 7 Inax Q(se4at, Arrat), (5.27)

converges with probability one to the optimal @-function as long as [134]

Zat(st,At) = oo and Zaf(st,At) < 00, (5.28)
t t

V(sy, Ar) € S x A, where ay(s;, Ay) represents the learning rate at state-action pair (s;, A;).
Since 0 < oy < 1, (5.28) requires that all the state-action pairs can be visited infinitely

often. For example, when ay(s:, A;) = HLI, the conditions in (5.28) can be guaranteed.

5.5 Performance Evaluation

In this section, we first verify the convergence of the proposed RL approach then compare
its performance with other benchmark algorithms. In the following simulations, three
different network scales (small, medium and large) are considered, which reflects different
numbers of supported NFV nodes, network services, and VNFs. The parameter ranges
in the simulation of the three network scales are listed in Table 5.2. For all the three
network scales, the VNFs are randomly embedded onto the NFV nodes. The number of
VNFs for each network service is a random integer between 2 and 5, while the packet batch
processing time (in terms of number of time slots) at a VNF is a randomly selected integer
from 1 to 5. Note that the size of a problem instance is sampled from parameters in Table
5.2 and remains constant across episodes during the whole learning process.
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5.5.1 Convergence of the Proposed RL Approach

We first use a medium-scale network with 8 NFV nodes and 10 services to verify the con-
vergence of the proposed RL approach. For all the simulations presented in this section, we
consider all the services as delay non-sensitive ones except for S3, Sg, and S19. Accordingly,
we set the coefficients in the reward function as ¢y = 600, c3 = 1.0, ¢g = 1.0, ¢ = 1.0, and
¢ =0(=1,2,4,5,7,8,9). The corresponding delay constraints are specified as D3 = 18,
Dg = 20, and D;g = 21 (all in time units).

5.5.1.1 Impact of learning rate («) and exploration rate (¢)

Fig. 5.5 illustrates the convergence of the learning process with different parameters.
The discount factor 7 is set to be 0.8. We consider a constant learning rate (o = 0.05,0.2)
and a decayed one (decaying from 0.8 to 0.1 with a decay rate of 0.999) and compare
their performance. From the figure, we can see that a decayed learning rate helps the RL
approach converges faster than a constant one does. This is because a decayed « allows
the learning algorithm to take bigger steps during the initial phase to have a fast learning,
but to take smaller steps as learning approaches convergence.

On the other hand, the choice of the value for € reflects the trade-off between exploration
and exploitation [131]. Two cases of € values are considered, i.e., ¢ = 0.1 and € decays from
1.0 to 0.1 with a decay rate 0.99 (referred to as “e decay”). It is observed that the RL
approach with a decayed € has a higher convergence rate. This is because a decayed € has
a higher chance do exploration at the beginning but decreases the possibility dedicated for
exploration as time goes by. Fig. 5.5 also shows that the proposed RL approach converges
after about 1000 episodes with the optimal set of learning parameters among the four cases
presented.

5.5.1.2 Impact of network scale

Next, we demonstrate the convergence of the proposed RL algorithm over all the three
network scales, as shown in Fig. 5.6. The selected small-scale network is with 4 NFV nodes
and 5 network services, while the selected large-scale network is with 15 NFV nodes and 20
network services. For the small-scale network, we set the coefficients in the reward function
as ¢g = 350, ¢; = 1.0, ¢ =0, c3 = 1.0, ¢4, = 0, and ¢5 = 1.0. The delay constraints are
specified as Dy = 18, D3 = 17, and D5 = 8 (all in time units). For the large-scale network,
we set ¢g = 2000, cg = 1.0, ¢15 = 1.0, ¢;7 = 1.0, and ¢; =0 (i = 1...20,4 # 9,15,17). The
delay constraints are specified as Dy = 17, D15 = 41, and D7 = 20 (all in time units).
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Figure 5.5: Convergence of the proposed RL approach over the medium-scale network.

For each network scale, we first tune the RL parameters to approach the optimum, and
then apply to different maximum number of episodes n,,,, to observe a convergence. For
each value of n,,,,, we run the RL approach 50 times and calculate the average reward and
makespan per run for each network scale. These rewards and makespans are then used
to find the ratios to optimality of different learning configurations. The optimal solutions
are found by solving the ILP model given by (P2) using Gurobi solver. Fig. 5.6(a) and
Fig. 5.6(b) show the convergence of the RL algorithm in terms of average reward per run
and average makespan per run, respectively. As can be seen from figures, the proposed
RL approach is able to produce the optimal solution after a certain number of learning
episodes. Also, the convergence rate of the RL approach decreases as the size of problem
instance expands. Specifically, RL converges to the optimal solution after around 400,
1000, and 2000 episodes for the small, medium, and large problem instances, respectively.
The reason for this is that a large problem instance has a bigger size of solution space, and
thus the RL agent needs more episodes to explore the optimal policy.
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Figure 5.6: Convergence of the RL algorithm over the small-scale, medium-scale and large-
scale networks: (a) Average reward ratio to optimal, and (b) Average makespan ratio to
optimal.

5.5.2 Verification of Delay-Guaranteed VNF Scheduling Using
the Proposed RL Approach

We focus on the medium-scale network to verify the proposed RL approach in guaranteeing
the delay constraints. To this end, we consider two types of services, i.e., delay sensitive
ones and delay non-sensitive ones, and two cases of service type assignments. In Case 1, S5,
Sg, and Sy are considered to be delay sensitive services, and all the remaining services are
considered to be delay non-sensitive services. Accordingly, the coefficients in the reward
function are set as ¢ = 1.0, ¢¢ = 1.0, ¢;0 = 1.0, and ¢; = 0 (i = 1,2,4,5,7,8,9). The
corresponding delay constraints are specified as D3 = 18, Dg = 20, and Dy = 21 (all in
time units). In Case 2, however, S, Sy, and S; are considered to be delay sensitive services,
soset ¢ = 1.0, ¢4 = 1.0, ¢, =1.0,and ¢; =0 (i = 2,3,5,6,8,9,10). The corresponding
delay constraints are specified as Dy = 19, Dy = 18, and D7; = 12 (all in time units). For
both cases, we set ¢y = 600, and run the RL approach for 1000 episodes (nm,q, = 1000) to
allow a guaranteed convergence.

The detailed VNF scheduling results for the two cases are presented in Fig. 5.7, where
the interval between two vertical lines represents a time slot, the bricks in the same color
represent the VNFs in a network service, and the vertical dashed lines represent the delay
constraints of the delay sensitive services. As can be seen from the figure, the scheduling
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Figure 5.7: Verifying delay-guaranteed VNF scheduling using the proposed RL approach
over the medium-scale network: (a) Case 1 with ¢3 = 1.0, ¢g = 1.0, ¢ = 1.0, and (b) Case
2 with ¢; = 1.0, ¢4 = 1.0, ¢; = 1.0.

outcomes of the two cases have the same makespan but the detailed scheduling sequence
of the VNFs are different. In both cases, the proposed RL approach is able guarantee the
delay constraints of delay sensitive services, while achieving the optimal makespan. This
demonstrates that the proposed approach achieves delay-aware VNF scheduling effectively
and can support services with different priorities.
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Table 5.3: Running Time Comparison Between RL Approach and MILP

Proposed RL Approach MILP Model
Problem Instance | Number of CPU time CPU time
episodes | (Average reward) (Reward)
1 0.0039s
Medium 10 0.0486s (26.321)
_ _ 100 0.3462s (27.924) 5.4103s
(IN]=8, [R[=10) 500 1.9865s (29.590) (30.273)
800 2.6526s (29.928)
1000 3.0028s (30.115)
2000 5.0022s (30.128)
1 0.0109s
Large 10 0.1052s (44.967)
B B 100 137305 (48.102) | 41.3272s
(IV]=15, |R[=20) 1000 10.7934s (50.497) (51.780)
2000 20.7799s (50.892)
4000 40.2382s (51.063)
5000 52.9593s (51.369)
10000 106.6593s (51.780)

5.5.3 Running Time Comparison

We first compare the running time between the proposed RL approach and the MILP model
to illustrate the time efficiency of the proposed approach. For the MILP formulation, we
employ the Gurobi optimization solver to determine the optimal solution. For the RL
approach, we tune its parameters to approach the optimal values. Table 5.3 compares the
running times, number of episodes, and the corresponding average reward of the proposed
RL approach with those of solving the MILP model. Both methods are run on a Intel i5-
7200U CPU @2.5GHz. We can find that, for the medium-scale network, solving the MILP
model using Gurobi solver takes about 5.4s with a reward of 30.273 (calculated using the
same reward function as RL). In comparison, the solutions from the proposed RL approach
after 500 (or 1000) episodes are only 2.26% (or 0.52%) worse than the optimality, while the
running times are both lower than that of the MILP model. As for the large-scale network,
the solution from the RL approach with 2000 episodes already has a very small gap (1.71%)
to the optimality, while the running time is almost half of that of the MILP model. It
is also noticed that the advantage of the RL approach becomes greater as the problem
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Figure 5.8: Performance comparison of the four methods in terms of the average reward and
average makespan over the three scale networks: (a) small-scale network, (b) medium-scale
network, and (c) large-scale network.

instance size expands. In summary, we can conclude that the proposed RL approach is
time-efficient with negligible loss.

5.5.4 Performance Comparison with Heuristic Algorithms

In this section, we compare the performance of the proposed RL approach with the optimal
solutions obtained from the Gurobi solver and those from classical heuristic/metaheuristic
algorithms. In particular, we consider four greedy algorithms [135]: 1) Greedy fast pro-
cessing (GFP) in which the VNF with the shortest processing time is always selected first;
2) Earliest due date first (EDD) in which the VNF with the earliest due time is always se-
lected first; 3) Minimum slack first (MS) which always selects the VNF with the minimum
slack (defined as D; — t., — pij, Where ., is the current system time); and 4) Random
policy (RP) in which the agent randomly schedules a feasible VNF for processing at each
time slot. In addition, we also consider a particle swarm optimization (PSO) based algo-
rithm [136][137] for the purpose of comparison. According to [137], we modify the way
to evaluate the fitness function for each particle by adding a penalty term. For a given
particle, if one delay constraint is not satisfied, a penalty is added to the fitness function.

We compare the performance of the seven methods in terms of the (average) reward
and the (average) makespan over the three scale networks. For the proposed approach,
we set Npae to be 400 (0.343's), 1000 (3.0025s), and 2000 (20.78s) for the small, medium,
and large problem instances, respectively, to allow the RL approach to converge. For
the PSO-based algorithm, the number of particles, the number of iterations, and the cor-
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responding running time for the three network scales are (100, 200, 0.65s), (300, 1000,
10.11s), (500, 1000, 32.377s), respectively. The performance comparison for the seven
methods are shown in Fig. 5.8. It is seen that for all the three problem instances, the
average reward and makepsan from the RL approach stay very close to the optimal ones
obtained from MILP, which indicates that in most cases the minimum makespan is found
and the delay constraints are all satisfied. In contrast, using the PSO algorithm, in the
small-scale network, the minimum makespan can be found with a delay constraint being
violated. Note that the maximum reward can only be achieved when the PSO parameters
are increased to (500, 200, 3.04s), which indicates that the minimum makespan is found
and the delay constraints are all satisfied. A similar conclusion can be drawn for the large-
scale network. With 500 particles and 1000 iterations, PSO cannot obtain the maximum
reward (with two delay constraints being violated). Even if we use 1000 particles and 2000
iterations, which takes 116.14 s, the minimum makespan still cannot be found with all the
delay constraints being satisfied. This demonstrates that the proposed RL approach can
achieve the minimum makespan while satisfying all the delay constraints using a shorter
time than the PSO-based algorithm.

As for the other four heuristic algorithms, we observe that their solution qualities de-
pend on the objective of the problem, and for different problem instances their performance
cannot be guaranteed. Among the four heuristic algorithms, the MS algorithm performs
the best in all the three network scales. The reason is that the MS algorithm aims to
minimize the maximum lateness and takes the delay constraints into consideration when
selecting the VNF for processing. However, performance gap exists between the solution
from the MS algorithm and the optimal solution, and this gap increases as network scale
becomes larger. Considering that the optimality gap between the RL solutions and the
optimal ones are consistently small, we can conclude that the proposed RL approach out-
performs classical heuristic algorithms, and also well competes with the MILP model over
all of the three networks. In addition, the performance gaps between the RL approach and
the heuristic algorithms in terms of the reward are bigger than those for the makespan
for all the three network scales. This is because the RL approach achieves delay-aware
VNF scheduling where not only the makespan is minimized but also the delay constraints
are satisfied. Therefore, the additional rewards for satisfying the delay constraints are
be obtained. Note that the makespan differences in Fig. 5.8 indicate the packet batch
processing time gaps between RL and the heuristic algorithms in one scheduling cycle.
Once the scheduling sequence is found, each cycle of VNF scheduling proceeds repeatedly
for future packet batch processing, which accumulates the gap and leads to a consider-
able performance difference between the RL approach and the other five algorithms in
comparison.
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Figure 5.9: Comparison between the proposed centralized approach and the decentralized
approach in terms of makespan.

5.5.5 Performance Comparison with Decentralized Solution

In this section, we compare the proposed centralized approach and the decentralized one
[69]. For the decentralized approach, we attach to each NFV server an agent which improves
its VNF scheduling policy independently with the help of RL. Each agent only has a local
view of of the system, which contains the status of the NF'V node it is associated with and
the status of all the VNFs on that node. Similar to [69], the immediate cost C(s;, a;) for
taking action a, at state s; is given by

VI
C(se,ap) == Z I{ fi;| fi; is queued at NFV node ny}|. (5.29)

k=1

Similar to the reward function R(s;, A;) in this chapter, this cost function C(s;,a;) is
utilized in updating the @-table maintained within each learning agent. The intuition
behind this cost function is that a high utilization of the resources (i.e., NFV nodes)
implies a minimal makespan.

Since delay constraints are not considered in the decentralized approach, we set ¢; = 0
(1 =1,...,|R|) in the reward function in our approach and compare the performance in
terms of makespan only. Fig. 5.9 shows the comparison between the two approaches over
three scale networks. It can be seen that the proposed centralized approach outperforms
the decentralized one. Our centralized approach has improved performance by taking
advantage of a global view of the status of NF'V nodes and services in the whole system.
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5.6 Summary

In this chapter, we have investigated a VNF scheduling problem under an SDN/NFV-
enabled network architecture, with the objective of minimizing the overall makespan of
services while satisfying differentiated E2E delay requirements. The problem was formu-
lated as an MILP and then reformulated as an MDP problem. A reinforcement learning
approach has been proposed to obtain near-optimal solutions to the VNF scheduling prob-
lem with high efficiency and accuracy. Simulation results have been presented to demon-
strate that the proposed approach outperforms other heuristic algorithms and can achieve
near-optimal solutions. The proposed approach facilitates QoS-guaranteed service provi-
sioning in SDN/NFV-enabled networks. Since the Q-table was learnt and applied on one
fixed problem instance, as our future work, we will investigate a more general RL approach
which can learn on a set of training problem instances but apply to unknown instances
with similar patterns. We will also consider stochastic arrivals of service requests in the
formulation of the VNF scheduling problem.
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Chapter 6

Conclusions and Future Research

In this chapter, we summarize the main contributions and impacts of the presented works
and highlight future research directions.

6.1 Main Research Contributions

In this thesis, we make some in-depth researches on efficient resource allocation for SDN/NFV-
enabled core networks in multiple aspects and dimensionality.

e First, we jointly study how to design the topology of a VN and embed the resul-
tant VN onto a substrate network with the objective of minimizing the embedding
cost while satisfying the QoS requirements. In VN topology design, optimizing the
resource requirement for each virtual node and link is necessary. Without topology
optimization, the resources assigned to the virtual network may be insufficient or re-
dundant, leading to degraded service quality or increased embedding cost. The joint
problem is formulated as a Mixed Integer Nonlinear Programming (MINLP), where
queueing theory is utilized as the methodology to analyze the network delay and help
to define the optimal set of physical resource requirements at network elements.

e Second, we propose a game theoretical approach to address the multi-VNF' chain
embedding problem with the impact of processing-resource sharing and node capacity
constraints being considered. In the proposed game, each VNF chain is treated as
one player whose objective is to minimize the overall latency experienced by its
flow, while satisfying the capacity constraints of all the NFV nodes. The additional
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delay introduced by processing-resource sharing is modeled and used in analyzing
the overall latency for each VNF chain, while the node capacity constraints are
handled by adding a penalty term to the cost function of each player. The proposed
game is proved to be an exact potential game which admits at least one pure Nash
Equilibrium (NE) and has the finite improvement property (FIP) property. We then
design two iterative algorithms, i.e., the best response (BR) algorithm and the spatial
adaptive play (SAP) algorithm, to find the NE of the game, which corresponds to a
locally /globally optimal solution to the original problem.

e Third, the VNF scheduling problem is investigated to minimize the makespan (i.e.,
overall completion time) of all services, while satisfying their different end-to-end
(E2E) delay requirements. The problem is formulated as a mixed integer linear pro-
gram (MILP) which is NP-hard with exponentially increasing computational com-
plexity as the network size expands. To solve the MILP with high efficiency and
accuracy, the original problem is reformulated as a Markov decision process (MDP)
problem with variable action set. Then, a reinforcement learning (RL) approach is
developed to learn the best scheduling policy by continuously interacting with the
network environment. The proposed learning algorithm determines the variable ac-
tion set at each decision-making state and accommodates different execution time of
the actions. The reward function in the proposed algorithm is carefully designed to
realize delay-aware VNF scheduling.

6.2 Future Research

Some possible future research directions based on the extension of the approaches proposed
in this thesis are identified as follows:

e Dynamic VNF scheduling: One of the future research directions is to consider the
dynamic VNF scheduling. Most of previous studies consider static scenarios, where
the possibility of VNF remapping and rescheduling is not contemplated. However,
to adapt to varying network conditions and service characteristics, it is also criti-
cal to consider dynamic scenarios where VNF live migration, VNF re-instantiation,
and VNF rescheduling are allowed. The attempt of remapping and rescheduling
can increase the possibility of admitting new services and thus increases the service
provider’s profit through a quick readjustment of the mapping and scheduling strate-
gies of existing VNFs. However, the operational cost and additional delay incurred
by VNF live migration and re-instantiation should be carefully modeled.
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e Cost-efficient resource allocation/slicing: To fully unleash the potential of the
SDN/NFV-enabled core network framework, it is imperative to design a multiple
time-granularity resource slicing scheme to balance the network performance and the
slicing cost. In particular, both the communication frequency between the SDN con-
troller and NFV nodes, and the information exchange frequency among NFV nodes
have significant impact on the performance of the slicing framework. Moreover, the
amount of information required to be exchanged among different network entities
for updating the slicing results also affect the slicing accuracy. Higher interaction
frequency between different network elements leads to better adaptiveness, but in-
evitably increases the slicing cost. Therefore, it is required to develop a multi-time-
granularity slicing solution to balance the trade-off between slicing cost and slicing
accuracy.

e Prediction-based proactive VINF chain embedding: Nowadays, with the devel-
opment of 5G networks, the services show high diversity not only in QoS requirements
but also in traffic patterns. The pre-allocated resource for different services are highly
related to their traffic patterns and service types. In our proposed schemes, we al-
ways assume that the service arriving follows Poisson process as most existing works,
given the assumption that the traffic patterns are well characterized by the models.
However, the uncertainty of traffic features and service types becomes more domi-
nant in a increasingly complex 5G and beyond 5G environment, which decreases the
accuracy of model based methods. For future works, a learning based traffic predic-
tion can be designed to determine the resource allocation. Leveraging the emerging
deep learning technologies, such as long short term memory neural network (LSTM)
and deep Q-network (DQN), dynamic traffic and service types, heterogeneous QoS
requirements are trained and predicted accurately with low complexity, upon which
proactive resource allocation actions can be learned in an online manner.
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