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SERVICE FUNCTION GRAPH DESIGN AND EMBEDDING IN NEXT GENERATION

INTERNET

by

MARYAM JALALITABAR

Under the Direction of Xiaojun Cao, Ph.D.

ABSTRACT

Network Function Virtualization (NFV) and Software Defined Networking (SDN) are

viewed as the techniques to design, deploy and manage future Internet services. NFV pro-

vides an effective way to decouple network functions from the proprietary hardware, allowing

the network providers to implement network functions as virtual machines running on stan-

dard servers. In the NFV environment, an NFV service request is provisioned in the form

of a Service Function Graph (SFG). The SFG defines the exact set of actions or Virtual



Network Functions (VNFs) that the data stream from the service request is subjected to.

These actions or VNFs need to be embedded onto specific physical (substrate) networks to

provide network services for end users. Similarly, SDN decouples the control plane from net-

work devices such as routers and switches. The network control management is performed

via an open interface and the underlying infrastructure turned into simple programmable

forwarding devices. NFV and SDN are complementary to each other. Specifically, similar

to running network functions on general purpose servers, SDN control plane can be imple-

mented as pure software running on industry standard hardware. Moreover, automation and

virtualization provide both NFV and SDN the tools to achieve their respective goals.

In this dissertation, we motivate the importance of service function graph design, and

we focus our attention on the problem of embedding network service requests. Throughout

the dissertation, we highlight the unique properties of the service requests and investigate

how to efficiently design and embed an SFG for a service request onto substrate network.

We address variations of the embedding service requests such as dependence awareness and

branch awareness in service function graph design and embedding. We propose novel algo-

rithms to design and embed service requests with dependence and branch awareness. We also

provide the intuition behind our proposed schemes and analyze our suggested approaches

over multiple metrics against other embedding techniques.

INDEX WORDS: Network Function Virtualization, Virtual Network Em-
bedding, Software Defined Networking
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CHAPTER 1

INTRODUCTION

In this chapter, we introduce the basic concepts of Virtual Network Embedding (VNE),

Network Function Virtualization (NFV), and Software Defined Networking (SDN).

Network virtualization [1, 2, 3, 4] is one of the promising technologies for the future

Internet. In network virtualization, the primary building block is Virtual Network (VN). A

virtual network consists of a number virtual nodes that are interconnected with virtual links.

Virtual Network Embedding (VNE) problem deals with the allocation of virtual resources

both in terms of nodes and links [5, 6, 7, 8, 9]. VNE is an optimization problem, which aims to

identify where the virtual networks elements (nodes and links) will be placed on the physical

substrate network. As shown in Figure 1.1, VNE allows several different virtual networks to

operate on a single physical infrastructure. Virtual network embedding problem includes two

processes: node mapping, which is the embedding of the virtual node (with computational

capacity requirement) to a physical node with sufficient computational capacity; and link

mapping, which is the mapping of the virtual link (with bandwidth capacity requirement)

to the substrate path(s) with enough bandwidth [10, 11, 12, 13, 14]. It is worth noting that

when multiple virtual nodes are embedded onto of a single physical node, the process is

called revisitation [15].

1.1 Network Function Virtualization

In today’s networks, instantiating a new network service such as firewall or deep packet

inspection is becoming increasingly difficult. This is due to the proprietary nature of existing

hardware appliances, the cost of offering the space and energy for a variety of middleboxes,

and the lack of skilled professionals to integrate and maintain these services [16, 17, 18, 19,

20]. Network Function Virtualization (NFV) provides an effective way to decouple network
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Virtual node

Physical node

Workstation

Virtual Link

Physical Link

Virtual Network 1

Virtual Network 2

Figure (1.1) An example of virtual network embedding

functions from the vendor specific hardware appliances, enabling the network providers to

implement network functions in software running on commodity hardware (i.e., standard

servers, storage, and switches). Unlike traditional enterprise networks that deploy network

services using the vendor specific proprietary hardware or middleboxes, NFV networks allow

these network services or functions to be deployed as Virtual Network Functions (VNFs).

Figure 1.2 illustrates the high-level NFV framework. The main three components of the

NFV framework are:

1. Virtual Network Function: the software implementation of a network function (e.g.,

firewall) running on the NFVI.

2. NFV Infrastructure (NFVI): general purpose physical resources that VNFs can be

implemented on.

3. NFV Management and Orchestration: which covers all the virtualization-specific man-
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Firewall IPTV Load Balancer VPN

Virtual Network Functions

Virtual
Compute

Virtual
Storage

Virtual
Network

NFV Infrastructure

Virtualization Layer

Compute Storage Network

Hardware Resources

NFV
Management

and
Orchestration

Figure (1.2) High-level NFV framework

agement tasks that are necessary in the NFV framework.

One of the major motivations of Network Function Virtualization is that NFV provides

an innovative step toward implementing a network infrastructure with lower CAPEX/OPEX

cost by consolidating networking hardware appliances and decreasing the time to market of a

new service. Figure 1.3 shows an example of transition from dedicated hardware appliances

for network services to software based NFV solutions.

Service Function Graph In the NFV environment, an NFV service request is pro-

visioned in the form of a Service Function Graph (SFG) [21]. The SFG, which can also be

in form of a chain (Service Function Chain (SFC)) [22, 23], defines the exact set of actions

or Virtual Network Functions (VNFs) that the data stream from the service request is sub-

jected to. These actions or VNFs need to be mapped onto specific physical networks to

provide network services for end users. Figure 1.4 shows an example of an SFG, a chain of
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Firewall Router VPN

CDN
Load Balancer IPTV

Traditional Network Appliances

NFV Based Approach

Virtual Appliances

General Purpose Servers

Standard Switches

Figure (1.3) Traditional to NFV based approach transition

VNFs, which consists of network functions firewall, NAT and a load balancer.

Firewall Load BalancerNAT

Figure (1.4) An example of a service function graph

1.2 Software Defined Networking

Software Defined Networking (SDN) is a networking framework that separates the net-

work’s control logic or control plane from the underlying data plane [17, 24, 25, 26, 27, 28].

With the separation of the control and data planes, network switches become simple forward-

ing devices and control plane is deployed as a centralized controller [29]. The separation of

the planes results in simplifying policy enforcement and network configuration. To separate

the control and data planes, well-defined programming interfaces (API) are used. Using API,
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the controller has direct control over the states of the devices in the data plane. Example of

such an API is OpenFlow [30]. An OpenFlow switch has one or more tables (flow tables) for

handling the incoming packets. The entries at one flow table specify rules for a subset of the

traffic and perform a certain action such as dropping or forwarding the traffic. Figure 1.5

illustrates the high-level view of an SDN framework. Northbound API provides abstraction

to the upper layer to develop applications while southbound API defines the instruction set

for the forwarding devices.

Network Application(s)

Controller Platform

Northbound API

Southbound API

Data Plane

Figure (1.5) High-level view of an SDN architecture

The rest of this dissertation is organized as follows. In Chapter II, a classified overview

of network virtualization is presented. In Chapter III, we introduce and model the service

function graph design and embedding and present the related challenges. In Chapter IV,
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V and, VI we present our recent research on the aforementioned challenges. Finally, we

highlight the impact of the overall study and conclude the dissertation in Chapter VII.
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CHAPTER 2

NETWORK VIRTUALIZATION

In this chapter, we review the related work focusing on three lines of research: virtual

network embedding, service function chain embedding and network virtualization in optical

networks.

2.1 Virtual Network Embedding

In Virtual network embedding (VNE), given a virtual network consists of virtual nodes

and virtual links, the problem is how to embed the given virtual network onto the physical

network [31, 32, 33, 34, 35, 36]. The optimization of node/link mapping in VNE has been

proven to be NP-hard [37]. Given its NP-hardness, three different types of optimization

approaches have been proposed to solve VNE.

1. Optimal: The optimal solutions solve the small instances of the problem [38, 39,

40, 41] by creating the Integer Linear Programming (ILP) solutions. Software tools,

generally known as solvers ((e.g., CPLEX [42], GLPK[43]).), are used to obtain these

optimal solutions. Chowdhury et al. formulate the virtual network embedding problem

as a mixed integer program through substrate network augmentation [44]. The authors

further propose an approach to relax the integer constraints to obtain a linear program.

Houidi et al. introduce a mixed integer program for the VNE problem [45] that aims to

minimize the embedding cost and increase the acceptance ratio rate. Hu et al. present

path based model for VNE problem, namely P-VNE [46]. By analyzing the dual

formulation of the P-VNE model, the authors propose a column generation method

[47] to offer the optimal solution. Botero et al. define the virtual network embedding

energy aware problem. The optimization goal is to embed the virtual network requests

in a reduced set of physical devices. The authors use a mixed integer program to
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optimally solve the problem. Hu et al. present a path based ILP model for the virtual

network embedding, namely P-VNE [48]. Based on the dual formulations of the P-

VNE model, the authors present a column generation process. This process can be

embedded into a branch-and-bound framework to resolve the VNE problem optimally

in practice. Hu et al. provide an optimal (or near optimal with a per-instance guarantee

on its closeness to the optimal solution) method based on iterative process enabling

feedbacks between node and link mapping processes [49].

2. Metaheuristic: As the optimal solutions are hard to find for large instances of opti-

mization problems, metaheuristics approaches such as ant colony optimization [50] or

particle swarm optimization [51] are used to find near-optimal solutions [52, 53, 54].

Fajjari et al. propose Ant-Colony-based algorithm to solve the virtual network em-

bedding problem with the goal of minimizing the physical resource usage [55] in terms

of bandwidth, power processing and memory. Zhang et al. introduce particle swarm

optimization-based VN embedding algorithm [56] via the evolution process of particles.

3. Heuristic: Heuristic-based methods do not guarantee the optimal solution but they

try to find an acceptable solution while achieving low execution time [57, 58, 59, 60,

61, 62]. Zhu et al. study on-demand VN assignment problem [63]. The virtual network

requests arrive in an online manner and are assigned to the substrate network while

minimizing the load balance on the substrate nodes and links. Yu et al. study how to

simplify the problem of virtual-link embedding [64]. The authors propose an approach

to allow the substrate network to embed a virtual link onto a number of substrate paths

with a flexible path-splitting ratio. Also, to efficiently handle the online requests, the

substrate network periodically re-optimize the mapping of existing virtual links, either

by updating the previously selected paths or using the splitting ratios for the existing

paths.



9

2.2 Service Function Chain Embedding

The problem of Service Function Chain Embedding (SFCE) has to design the topology

of a service function chain or graph together with the process of node/link mapping. The

node mapping and link mapping processes in SFCE are correspondent to the ones in the

traditional virtual network embedding problem which is NP-Hard [37]. Hence, similar to

VNE, optimization methods have been proposed to solve SFCE [65, 66, 67, 68, 69, 70, 71, 72].

1. Optimal: Luizelli et al. formulate the network function placement and chaining prob-

lem as an integer linear programming [73]. The optimization goal is to minimize the

number of VNF instances mapped on the infrastructure. The authors propose a heuris-

tic approach to solve the optimization problem based on a binary search in terms of

the number of network function instances. Three models for the topology of the chain

are considered: (i) line, (ii) bifurcated path with different endpoints, and (iii) bifur-

cated path with a single endpoint. Basta et al. investigate the virtualization of the

Serving Gateway (SGW) and PDN Gateway (PGW) in LTE networks [74]. The au-

thors study the influence of virtualizing or decomposing those two central functions

on the data-plane delay as well as the transport network load. The authors formulate

the problem as an optimization problem and propose a model for placing the network

functions minimizing the network load overheads introduced by the SDN control plane

interactions.

2. Metaheuristic: Cohen et al. address the problem of placement of VNFs in a phys-

ical network while minimizing the operational cost [75]. The authors prove that the

problem is an instance of the facility-location and generalized assignment problems.

They provide near optimal approximation algorithms guaranteeing a placement with

theoretically proven performance. Fan et al. develop an online scheme to minimize the

physical resource consumption with the guarantee of high availability for availability-

aware SFC mapping [76]. This online scheme calculates the minimum number of off-site

backup VNF service providers that are needed to guarantee a certain degree of avail-
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ability for a service chain. Rost et al. model the service chain embedding problem with

the objective of maximizing the profit by embedding an optimal subset of requests or

minimizing the costs when all requests need to be embedded [77]. The authors present

a polynomial approximation algorithm which is based on linear programming and

randomized rounding techniques. Mijumbi et al. formulate the problem of online map-

ping and scheduling of VNFs [78]. The authors propose greedy algorithms and a tabu

search-based heuristic to reduce the flow execution time. The proposed algorithms are

coordinated that is performing both mapping and scheduling at the same time.

3. Heuristic: Sahhaf et al. propose the network function decomposition for the service

chaining [79]. The network function decomposition converts a virtual function to a

number of refined or abstract functions that are interconnected as a graph. The objec-

tive is to minimize the cost of mapping for the service chain by choosing a reasonable

network function decomposition. Mohammadkhan et al. model the network function

placement and routing problem [80] as an mixed integer linear programing. The au-

thors also offer a heuristic approach to solve the problem incrementally and consider

online flows without affecting the current flows in the network. Bari et al. study the

optimization problem of VNF placement with goal of minimizing the overall network

OPEX cost [81]. The authors formulate the problem as as a multi-commodity, multi-

plant, capacitated facility location problem [82], which is an ILP model. They also

develop a heuristic algorithm based on the Viterbi algorithm [83]. Mehraghdam et al.

formulate the specification and placement of the chains [84] such that the data rate

and number of used substrate nodes for the designed chain is minimized. Bruschi et al.

introduce energy-aware Game-Theory-based approach for embedding the VNFs in an

NFV environment. In the proposed model, the VNFs are player of the problem which

compete for the substrate network node capacity pool [85], with the goal to minimize

the embedding cost.

Beside from aforementioned approaches, some works in the literature consider the online
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SFC embedding in which the NFV service requests arrive at different points of time and are

embedded upon arrival. Zhang et al. formulate the joint problem of the chain placement

and scheduling as an instance of bin-packing optimization problem [86]. The authors use

the technique of Jackson network to model the VNF chain while maximizing the average

resource utilization or minimizing the average response latency. To maximize the average

resource utilization, a priority-driven weighted algorithm is proposed. To minimize the

average response latency, a heuristic algorithm, called Reverse Complete Karmarkar-Karp,

is introduced to schedule the requests. Lukovszki et al. propose a deterministic online

algorithm which is asymptotically optimal in the class of both deterministic and randomized

situation [87]. To prove the NP-completeness, authors present an ILP formulation.

Another challenge in SFC embedding problem is that network may change dynamically

due to a number of reasons and is not always static. First, the required resources by the VNFs

may change over time. For example, when the traffic decreases DPI need less computing

resources. Second, due to the changes in service requests the Quality of the Service (QoS)

of the VNFs may change as well. For instance, VNFs can be relocated when the established

service requests require low latency. Callegati et al. use OpenFlow for steering the traffic

flow properly [88]. The authors analyze the complexity of the SDN control plane in a cloud-

based edge network implementing NFV. According to the case study, namely Layer 2 (L2)

and Layer 3 (L3) edge network function implementations, the authors claim that both L2

and L3 approaches are functionally viable to implement dynamic SFC. Wang et al. solve

the SFC embedding and scaling problem based on preplanned allocation with bandwidth

guarantee for the various workloads [89]. They also introduce concept of VNF instance

communication graph to describe the bandwidth demand of each VNF instance and explore

the placement requirement for bandwidth savings. The authors design an online heuristic

algorithm to achieve approximate optimal allocation.

In [90], we present the service graph design and mapping, in which VNF nodes can have

order dependence. In [91], we propose the Dependence Aware Service Function Chain with

Adaptive Mapping (D SFC AM) to design and map the SFC onto the substrate network
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while minimizing the resource consumption in the substrate network. In [92], we further

optimize D SFC AM and embed the SFC onto both IP and optical networks. Beck et al.

propose a heuristic algorithm that performs the chain composition design and mapping in one

coordinated step using the backtracking [93]. The proposed algorithm tries to search valid

assignments for the node and link mapping. If the assignment is not found, the algorithm

backtracks and discards the last embedding phase. Ma et al. investigate the Traffic Aware

Placement of Interdependent Middleboxes [94]. The authors propose a comprehensive study

on the optimal placement of NFV middleboxes that takes into account both traffic changing

ratio as well as different types of middlebox dependency relations.

2.3 Network Virtualization in Optical Networks

Recently, Orthogonal Frequency Division Multiplexing (OFDM)-based Elastic Optical

Networks (EONs) that can efficiently select the modulation formats and provide flexible

spectrum allocation through assigning continuous finer grained subcarriers, are viewed as

the promising candidates for next generation substrate networks [95]. Provisioning network

function over EONs has obtained attention due to EON’s high bandwidth, low cost, and

flexible spectrum allocation. For example, Xia et al. discuss the possibility of reducing the

costly Optical/Electronic/Optical (O/E/O) conversions for NFV chaining in packet/optical

datacenters [96]. Mehmeri et al. introduce NaaS (Networking as a Service) orchestration

platform called Software-Programmed Networking Operating System for service provision-

ing over packet/optical networks [97]. Riera et al. present the analytical model for the

VNFs scheduling with the objective of optimizing the execution time of the network services

deployed in an optical network [98].
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CHAPTER 3

SERVICE FUNCTION GRAPH DESIGN AND EMBEDDING

Most of the service function chain embedding approaches focus on the embedding phase

and the topology design for a given request is not considered. However, different topology

designs can result in different costs for embedding a service request. We fill this gap in

Service Function Graph Design and Embedding problem. We consider the topology design

in the form of a graph for which chain is a special case. Service Function Graph Design

and Embedding consists of interconnecting a set of network functions through the physical

network to ensure network flows are given the correct treatment. These flows must go

through end-to-end services traversing a specific set of network functions. This problem can

be decomposed into two processes: (i) design, and (ii) embedding. The design phase consists

of designing an order for the network functions. The order can be in shape of a linear chain or

graph that can satisfy the end-to-end requests. In the embedding process, VNFs are placed

onto to virtual machines running on commodity servers. Finally, the requested functions are

connected, which consists of creating physical paths that interconnect the network functions.

3.1 Substrate Network

The substrate network is modeled as an undirected graph GS = (NS, ES), where NS

and ES refer to the set of substrate nodes and links, respectively. Each substrate node in NS

is capable to host some VNF nodes while offering a certain amount of computing capacity.

We use cs ∈ Z+, (∀s ∈ NS) to represent the available computing resources (i.e., CPU) of

substrate node s. fs ⊆ F is the available network functionality of substrate node s, where F

is a set of commonly used network functions. For each substrate link (s, t) ∈ ES, (s, t ∈ NS),

Bst ∈ Z+ represents the available bandwidth. For instance, the available network functions

and computing resources for the nodes of a substrate network is shown in Table 3.1.
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3.2 NFV Service Request

An NFV service request is represented as 2-tuple NSR =< NV , BV >, where NV is the

set of VNF nodes and BV ∈ Z+ is the requested bandwidth for the network request. Each

VNF node v ∈ NV requests some computing resources cv ∈ Z+, and a network function fv.

The function fv is selected from the set of available functions F offered by the substrate

network. Without loss of generality, we assume that each VNF node requests a unique

network function. In other words, no two VNF nodes request the same network function in

an NSR. As an example, Table 3.2 shows a service request consisting of three VNF nodes

and a requested bandwidth for the NSR.

Figure 3.1 shows an example of a constructed SFC: v1 → v2 → v3, which consists

of three VNF nodes, i.e., vi (i = 1, 2, 3). These VNF nodes are connected or chained with

VNF links. Each VNF node demands a specific network function and certain computing

resources (e.g., CPU) as shown in Table 3.2. The available bandwidth of substrate link (for

the substrate network in Table 3.1) s1 − s2, s2 − s3, s3 − s4, and s2 − s4 is 15Gbps, 15Gbps,

15Gbps, and 5Gbps, respectively. Accordingly, the constructed SFC can be mapped onto the

substrate network to form a service function path s1 99K s2 99K s3 99K s4. To accommodate

the NFV service request NSR1, VNF nodes v1, v2 and v3 are mapped to substrate nodes s1,

s2, and s4, respectively. The VNF links v1 → v2, and v2 → v3 in the constructed SFC are

mapped to the physical paths s1 99K s2 and s2 99K s3 99K s4, respectively, as shown by the

dash line in Figure 3.1. Note that substrate link s2− s4 cannot be used by NSR1 due to the

lack of enough bandwidth.

Table (3.1) Substrate Network

Substrate Node s1 s2 s3 s4

Available CPU 45 55 20 35

Offered Functionality Firewall Load Balance Encryption Encryption
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Table (3.2) NSR1 = < v1, v2, v3, 10Gbps >

VNF Node v1 v2 v3

Network Function Firewall Load Balance Encryption

CPU Demand 20 25 30

VNF Node

VNF Link

Substrate Node

Substrate Link

Physical Path

Service Func!on Chain

Substrate Network

VNF Mapping

Figure (3.1) An example of an embedded NSR

3.3 Service Function Graph Design and Embedding (SFG DE) Problem

Definition of SFG DE problem: Given an NFV service request NSR =<

NV , BV >, and a substrate network GS = (NS, ES), the Service Function Graph Design

and Embedding problem can be defined as how to design a graph and map this graph onto

the substrate network GS while satisfying the following constraints:

Node Mapping Constraint Each VNF node v ∈ NV must be mapped to exactly one

substrate node s ∈ NS that has enough computing resources and the required functionality.
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We use decision variable Xij to represent the node mapping (∀i ∈ NV ,∀j ∈ VS).

Xij =


1, if VNF i is allotted to subsrate node j

0, otherwise

The following parameters are given for the network function at substrate node i.

• δfi : 1 if substrate node i offers network function f .

• ωfp : 1 if network function f is requested by VNF p.

ωfp ∗Xpi ≤ δfi , ∀p, f, i

Eq. (3.1) ensures that each VNF in a service request is allotted to only one substrate

node. Eq. (3.2) states that no more than one VNF resides in the same substrate node.

∑
j∈VS

Xij = 1,∀i ∈ NV (3.1)

∑
j∈VS

Xij ≤ 1, ∀j ∈ VS (3.2)

Link Mapping Constraint The VNF link between two consecutive VNF nodes in

the designed SFG must be mapped to a substrate link or physical path with enough band-

width in the substrate network. We use decision variable Y p,q
i,j to represent the link mapping

(∀p, q ∈ NV ,∀(i, j) ∈ Es).

Y p,q
i,j =


1, link (i, j) is on the path between the nodes used for mapping p and q

0, otherwise
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For each link in the substrate network, Eq. (3.3) ensures that the sum of the required

bandwidth of all paths using the link is less than or equal to the bandwidth capacity of the

link.

∑
∀p,q∈NV

∑
∀(i,j)∈Es

Y p,q
i,j ∗BV ≤ Bij (3.3)

SFG DE Objective An optimization objective of SFG DE problem can be minimiz-

ing the bandwidth consumption in the substrate network.

Minimize
∑
∀(i,j)∈ES

∑
∀p,q∈NV

Y p,q
i,j ∗Bp

3.4 Dependence-awareness in Service Function Graph Design and Embedding

Dependence constraints can significantly affect the system performance during the em-

bedding process. When designing the topology for the service request, if there is a depen-

dence constraint from v2 to another node v1, then v2 must be placed after the node v1 in the

constructed topology so that traffic goes through v1 before arriving at node v2. For instance,

an IPSec decryptor usually has to be placed before a NAT gateway [99], while a VPN proxy

can be placed either before or after a firewall [100]. Hence, the presence of the dependence

constraints poses new challenges to the SFCE problem. We use the following example to

further explain the importance of the dependence constraint in the SFG DE problem.

An Example of Dependence-awareness Table 3.3 shows an example of an NFV

service request NSR =< NV , BV >, where NV = {v1, v2, v3}, the dependence constraint is

f 1 7→ f 3 and BV = 20Gbps. The service request consists of three VNF nodes and there

is one dependence constraint for NSR. The amount of the requested bandwidth for the

NSR is 20Gbps. Table 3.4 depicts the available CPU and functionality at each node in the

substrate network. The available bandwidth of substrate link s1 − s2, s2 − s3, s3 − s4, and

s2−s4 is 35Gbps, 25Gbps, 30Gbps, and 45Gbps, respectively. Based on the given dependence
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constraint, two of the possible graph options (in the form of a chain) that do not violate the

constraint are: Ch1 : v1 → v2 → v3 and Ch2 : v1 → v3 → v2. One can embed Ch1 and Ch2

onto the substrate network as shown in Figure 3.2(a) and 3.2(b), respectively. The created

Service Function Path (SFP) for Ch1 and Ch2 is s1 99K s2 99K s3 and s1 99K s2 99K s3 99K s4,

respectively. One can see that the service function path for Ch2 uses more substrate links

and bandwidth than Ch1 does.

Table (3.3) NFV service request with dependence constraint NSR

VNF Node v1 v2 v3

Network Function f 1 f 2 f 3

CPU 10 30 20

Dependence Constraint f 1 7→ f 3

Requested Bandwidth 20Gbps

Table (3.4) The substrate network for embedding NSR

Substrate Node s1 s2 s3 s4

Available CPU 40 50 25 45

Offered Functionality f 1 f 2 f 3 f 2

The above example shows that different design for the service function graph can affect

the bandwidth consumption in the substrate network. In fact, how to efficiently construct the

graph and map it onto the substrate network while considering the dependence constraints

among the VNF nodes is different from the traditional SFCE and VNE. Table 3.5 shows

a comparison among VNE, SFCE, and SFG DE in terms of network topology and node

constraints.

The node mapping and link mapping processes in SFG DE are correspondent to the ones

in the traditional virtual network embedding problem which is NP-Hard [37]. Accordingly,

we propose efficient heuristic algorithms to solve SFG DE problem in the following chapters.
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Service Func!on Chain

Substrate Network

(a)

Service Func!on Chain

Substrate Network

(b)

Figure (3.2) An example of embedding an NFV service request with dependence constraints
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Table (3.5) Techniques. VNE, SFCE, and SFG DE

Is requested
virtual

topology
given?

Are there
node

dependencies?

VNE Yes No

SFCE No No

SFG DE No Yes

3.4.1 Joint Service Function Graph Design and Mapping for NFV with Priority

Dependence

How to efficiently construct the graph and map it onto the substrate network while

considering the dependence constraints among the VNF nodes is different from the traditional

SFCE and VNE. Some of the works in the literature [93] study the problem of SFG DE

with dependence in a sequential manner. That is, in the presence of dependencies, graph

is constructed (in the form of a chain) and then mapped onto the substrate network. In

chapter 4, we present Service Function Graph Design and Mapping for NFV with Priority

Dependence which considers creating the topology of the service request in the form of a

graph while embedding the request onto the substrate network.

3.4.2 Joint Dependence-Aware Service Function Chain Design and Mapping

NFV may allow the delivery of end-to-end services through service function chaining.

In other words, a service request can be provisioned in the form of a Service Function Chain

(SFC) [101, 102, 103]. The SFC defines the exact sequence of actions (i.e., VNF nodes) the

data stream from this service request is subjected to.

In chapter 5, we propose the Dependence-Aware Service Function Chain Design and

Mapping algorithm to conduct the (i) SFC design, and (ii) SFC mapping. The former

process will construct a service chain for an NFV service request. The latter process will
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map the constructed chain onto a substrate network via VNF node/link mapping. The

process of node mapping in SFC mapping allocates the substrate computing resource for

the VNF nodes. The process of link mapping finds a suitable physical path with enough

bandwidth resource for each VNF link.

3.5 Branch-awareness in Service Function Graph Design and Embedding

Most of studies in SFG design and embedding implicitly assume that the service func-

tions are ordered in a linear order to allow traffic flow passing through the chained functions

in sequence. However, as to be elaborated in chapter 6, the traffic flow could fork due to

multiple reasons (e.g., load balancing). The branching of traffic indicates that the packet

flow may be directed to multiple different paths, resulting in the need to view the service

request as a more complex mesh-like service function graph.
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CHAPTER 4

SERVICE FUNCTION GRAPH DESIGN AND MAPPING FOR NFV WITH

PRIORITY DEPENDENCE

An Example of Sequential Service Function Graph Design and Embedding

with Dependence-awareness Beck et al. propose a heuristic algorithm (CoordVNF)

that performs the chain composition design and mapping in one coordinated step using

the backtracking [93]. Figure 4.1(a) from [93] shows an VNF Request (VNFR). The initial

data rate of the flow is defined as rinit and the substrate nodes where the flow initiates

and terminates are specified A and F , respectively. drel specifies the relative processing

capacity demands of a VNF. dtotal shows the total demand that is calculated based on the

relative processing capacity and the amount of traffic that is routed to that VNF instance.

Depending on the ordering of the VNFs, bandwidth demands of the network flow change.

First the chain composition is performed and one valid VNF-FG is chosen (Figure 4.1(b)).

Second, CoordVNF is used to solve the embedding problem. CoordVNF recursively tries

to find valid assignment options for the VNF instances; if the assignment is not found, the

algorithm backtracks and discards the last embedding phase.

In the above example, the chain design and embedding are done sequentially. That

is, the chain is fixed before the embedding process. Hence, the resource information of the

substrate network is not considered in the chain design phase. However, different design for

the service function graph can affect the bandwidth consumption in the substrate network.

In this chapter, we present an approach to efficiently construct the graph and map it onto

the substrate network while considering the dependence constraints among the VNF nodes.
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(a)

(b)

Figure (4.1) Chaining of VNFs
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4.1 Substrate Network

The substrate or physical network is modeled as an undirected weighted graph Gs =

(Ns, Ls), where Ns is the set of physical nodes and Ls is the set of substrate links. Each

substrate node p ∈ Ns offers a specific amount of computation resources Cp and a unique

network function Fp. The physical link between substrate nodes u and v, euv ∈ Ls, has a

certain bandwidth capacity, denoted by Bu,v.

4.2 Network Service Request

To consider the dependence constraints among the VNFs, we model a service request

as a triplet SR =< Nv, Vfd, Dv >, where Nv represents the set of VNF nodes, Vfd is the sink

virtual node, Dv represents the dependence requirements between the VNF nodes. Each

VNF node i ∈ Nv requests a specific network function Fi, computing resources Ci, outgoing

bandwidth BWi. Unlike the VNF nodes in Nv, the sink node Vfd is designated as the last

node to be added in the virtual topology, which requires a certain network function and

computing resources, without outgoing bandwidth requirements. A VNF node can have

dependence on another node. To show the dependence between two VNF nodes, the greater

sign > is used and i > j means that traffic flow will pass through VNF node i before going

to the VNF node j. Since the traffic flow will pass through all of the nodes in Nv reaching

the sink node Vfd, we have i > Vfd for all i ∈ Nv. It is assumed that no two VNF nodes in

Nv request the same function, which means Fi 6= Fj if i 6= j for all i, j ∈ Nv.

4.3 Service Function Graph Design and Mapping for NFV with Priority De-

pendence

The problem of optimizing virtual topology design and mapping in the presence of pri-

ority dependence (SFG PD) can be defined as: given the SR request SR =< Nv, Vfd, Dv >

and substrate network Gs = (Ns, Ls), how to design and map the SFG topology onto the sub-

strate network with minimal resource consumption while satisfying the following constraints:
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(i) for each VNF node, it is mapped to a substrate node meeting the function and computing

requirements; (ii) the outgoing link of a VNF node is mapped to a substrate path meeting

the bandwidth requirements; and (iii) the service function graph is constructed meeting the

priority dependence between VNFs. Algorithm 1 show the pseudocode of SFG PD.

Algorithm 1 SFG PD mapping with dependent directional acyclic graph (SFG DAG)

Require: SR, Gs

Ensure: Mapped functions and constructed virtual topology
1: SortedNF = Sort VNFs in descending order;
2: CandidateList = Substrate candidate node list for each VNF;
3: Update SortedNF , initialize mappedFuncs and Gv, total bw cost = 0;
4: for all F in SortedNF do
5: for all v in CandidateList do
6: sum bw cost = 0;
7: Initialize shortest path list SP ;
8: if F has a dependence on a mapped node Fv (i.e., Fv > F ) then
9: Call DirectDependence();
10: else if a mapped node Fv has a dependence on F (i.e., F > Fv) then
11: Call PrecedentDependence();
12: else
13: Call NoDependence();
14: end if
15: end for
16: Get the candidate node vF with minimum sum bw cost;
17: Map F to vF ;
18: Find the corresponding virtual function nodes that are mapped to the substrate nodes

in SP ;
19: end for
20: Map the sink node to the closest substrate node;

As shown in Algorithm 1, the inputs of SFG PD algorithm are the information of

substrate network (GS) and Network Service Request (NSR). The algorithm starts with

identifying the order of VNFs to be mapped onto the substrate network. The order can

be generated based on the requested outgoing bandwidth, the requested CPU computing

resources or randomly. The sorted VNFs are placed in the SortedNF list. In Line 2, the

CandidateList for each VNF is generated based on the amount of requested computing

resources and the network function. The first VNF in this list is then mapped onto the
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substrate network by selecting a substrate node from its list of candidate nodes. Then, the

mapped VNF node is removed from the SortedNF list and is added to the list of mapped

VNF nodes (i.e., mappedFuncs) and Gv (i.e., the mapped SFG graph) is initialized, as

showed in Line 3. For any VNF node, say F to be mapped, the dependence between F and

the mapped VNFs (e.g., Fv) in mappedFuncs is checked, which yields three possible cases

as follows.

1. F has a dependence on the nodes in the mappedFuncs;

2. Some nodes in mappedFuncs have a dependence on F ;

3. F has no dependent relationship with the nodes in mappedFuncs;

Each of above cases is handled by different procedures as shown in Algorithm 2, 3

and 4. To facilitate the explanation of these algorithms, we elaborate the processes using

the example in the next section.

Algorithm 2 DirectDependence()

Require: VNF request, Gs, Gv

Ensure: Updated mappedFuncs, SortedNF
1: Identify the dependent directional acyclic subgraph SGv in Gv with Fv as the destination;

2: Find the mapped substrate subgraph SGs of SGv;
3: Find the shortest path Ps from v to SGs that has enough bandwidth;
4: Add Ps to SP ; update mappedFuncs and SortedNF ;

Algorithm 3 PrecedentDependence()

Require: VNF request, Gs, Gv

Ensure: Updated mappedFuncs, SortedNF , Gv

1: Identify the dependent directional acyclic subgraph SGv in Gv with Fv as Source;
2: Find the mapped substrate subgraph SGs of SGv;
3: Find the shortest path Ps from SGs to v that has enough bandwidth;
4: Add Ps to SP ; update mappedFuncs and SortedNF ;
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Algorithm 4 NoDependence()

Require: VNF request, Gs, Gv

Ensure: Updated mappedFuncs, SortedNF , Gv

1: Find the shortest path Ps from v to Gs that has enough bandwidth;
2: Add Ps to SP ; update mappedFuncs and SortedNF ;

4.4 An Example of SFG PD

To help explain the proposed SFG DAG in Algorithm 1, we use the sample service

request in Table 4.1 to demonstrate the process of VNF mapping and the virtual topology

construction. As shown in Table 4.1, there are four VNF nodes (i.e., F1, F2, F3, F4) and two

dependence constraints. The dependence between nodes F1 and F3 is denoted as F1 > F3,

which indicates the traffic flow should pass through F1 before going to F3. Similarly, the

dependence between F2 and F4 indicates F2 should be located ahead of F4 in the constructed

SFG. We assume that the substrate network is an undirected graph with five nodes (i.e., A,

B, C, D, E) offering the requested functions and CPU resources as shown in Figure 4.2. In

Figure 4.2, the dash line between a VNF and a substrate node denotes that the corresponding

VNF node is mapped onto the connected substrate node.

As shown in Figure 4.2(a), Node F3 is the first to be mapped and substrate node A can

accommodate it. The next VNF to be considered is F2. As F2 does not have dependence

on the mapped F3, the procedure in NoDependence() is executed, where the shortest path

[104] from the candidate substrate node of F2 (i.e., D) to node A is identified. As a result,

F2 is mapped onto D and the amount of requested BW by F2 is reserved along the physical

links of the path from D to A. In the mean time, a virtual link from F2 to F3 is added onto

the virtual SFG graph as shown in Figure 4.2(b).

In the next iteration, VNF F1 is the current VNF node to be mapped. F1 has a

dependence on the mapped F3. Thus, Algorithm 2 is called to find a directional path destined

to F3. The algorithm compares the minimum cost paths from the candidate substrate nodes

of F1 (i.e., E) to any substrate node that provides the mapping for VNFs in the directional

acyclic subgraph. In this case, the directional acyclic subgraph includes F2 and F3 and the
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corresponding substrate nodes are D and A as shown in Figure 4.2(c). The minimal cost

paths for E− > D and E− > A are compared. The path E− > D is then selected, which

subsequently adds a directional virtual link from F1 to F2 onto the virtual SFG graph.

The last VNF node to address is F4, which has a dependence from one of previously

mapped functions that is F2. Algorithm 3 is then invoked to check the dependence on the

precedent mapped functions. As shown in Figure 4.2(d), a directional acyclic subgraph

starting from F2 is identified, which includes VNF nodes F2 and F3. The corresponding

substrate nodes are D and A. As the only candidate node of F4 is B. Hence the minimal cost

paths from D or A to B are calculated. As the path from A to B in the substrate network

yields less cost than the path from D to B, VNF F4 is mapped to B. And the algorithm

adds a virtual link from the VNF node that resides in A (i.e., F3) to VNF F4 as shown in

Figure 4.2(d).

Finally, the sink node is mapped by finding the closest substrate node to all of the

substrates nodes that host a VNF node in Gv. For the example in Figure 4.2(e), the sink

node will be mapped to node C and a virtual link from F4 to sink Dv is added to the SFG

and mapped along physical path from node B to node C.

Table (4.1) A Service Request Example

SR = (F1, F2, F3, F4, Vfd)
CandidateList = (F1 : E,F2 : D,F3 : A,F4 : B)
SortedNF = (F3, F2, F1, F4)
Dependence requirements:
F1 > F3; F2 > F4;

4.5 Performance Evaluation

To evaluate the proposed SFG DAG algorithm, we implement the algorithm by using the

NSF network with 14 nodes and 21 edges as the substrate network and conduct extensive

simulations to obtain the average results as shown in Figure 4.3, 4.4 and 4.5. We randomly
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Figure (4.2) An Example of SFG DAG
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generate the virtual function service request with N VNF nodes. The function of a VNF

node is randomly selected from the functions offered by the substrate network. The depen-

dence relationships between the VNF nodes are also randomly generated. To study how the

requested resources impact the performance of the proposed SFG DAG algorithm, we vary

the amount of VNF nodes, requested maximum bandwidth (MBW), and requested maxi-

mum CPU (MCPU) resources to compare the total bandwidth consumption by SFG design

and mapping process. Accordingly, the CPU request of a VNF node and outgoing bandwidth

request are randomly generated, in the range of [0, MCPU] and [0, MBW], respectively. In

addition, to investigate the performance of the proposed SFG DAG algorithm with different

order of VNF nodes to be mapped, we sort the VNF nodes according to the following three

cases: i) randomly; ii) requested CPU computing resources; and iii) requested outgoing

bandwidth. The curves for case (i), (ii), and (iii) are denote by ”Random”, ”CPU” and

”BW”, respectively.

In Figure 4.3, 4.4 and 4.5, the Y-axis denotes the total bandwidth consumed by the

SFG DAG algorithm in the substrate network. The X-axis in Figure 4.3, 4.4 and 4.5 rep-

resents the number of VNF nodes, MCPU and MBW, respectively. From these figures, one

can see that sorting the VNF nodes based on the requested bandwidth in case (iii) yields

the best performance when compared to case (i) and (ii). This is because accommodating

virtual nodes with larger amount of outgoing requested bandwidth at the early iterations of

the SFG DAG algorithm will likely use shorter physical paths, which may lead to less total

bandwidth consumed. On the other hand, accommodating virtual VNF node with larger

amount of requested CPU resources at the early iterations of the SFG DAG algorithm may

cause some physical links lack of bandwidth to satisfy VNF nodes with high outgoing band-

width along the shortest path (during the later iterations). As a result, a longer alternative

path may have to be employed to accommodate a VNF node with large requested outgoing

bandwidth. In addition, each substrate node is equipped with limited CPU resources. Ac-

commodating the VNF nodes in a random order may force some VNF nodes to choose longer

paths due to the shortage of CPU in the closed substrate nodes. In other words, in case
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(i), the random order of processing VNF nodes may cause longer paths employed by heavy

virtual links due to the limited bandwidth and CPU resources in the substrate network. As

a result, accommodating the VNF nodes in a random order yields the worst performance.
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Figure (4.5) The Impact of Requested Outgoing BW

In this chapter, we introduced the problem of SFG design and mapping for NFV with

priority dependence. To solve the problem efficiently, we presented the SFG PD mapping

with dependent directional acyclic graph (SFG DAG) which design and embed the SFG in

one coordinated step.
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CHAPTER 5

DEPENDENCE-AWARE SERVICE FUNCTION CHAIN DESIGN AND

MAPPING

In the NFV envirment, end-to-end services are delivered through service function chain-

ing (SFC). The SFC defines the exact sequence of actions (i.e., VNF nodes) the data stream

from this service request is subjected to. In this chapter, we study the problem of SFC

design and embedding while considering the dependence constraints among the VNFs.

5.1 Substrate Network

We model the substrate network as an undirected graph Gs = (V s, Es), where V s and

Es are the sets of nodes and links in the substrate network, respectively. We use cu ∈ Z+ as

the available computing resource (e.g., CPU) of a substrate node u ∈ V s. For each substrate

link uv ∈ Es, (u, v ∈ V s), buv ∈ Z+ represents the available bandwidth of the substrate link.

5.2 Network Service Request

An NFV service request is represented as a 3-tuple NR =< B,N,D > , where B ∈ Z+

is the requested bandwidth for the service chain; N is the set of VNF nodes; and D denotes

a set of pre-defined dependence relationships between the VNF nodes in the request. Each

VNF node p ∈ N requires some computing resource cp ∈ Z+, and a requested function Fp;

Without loss of generality, we assume no two VNF nodes request the same function and each

VNF node only requests a single function.

An NFV service request is represented as a 3-tuple NR =< B,N,D > , where B ∈ Z+

is the requested bandwidth for the service chain; N is the set of VNF nodes; and D denotes

a set of pre-defined dependence relationships between the VNF nodes in the request. Each

VNF node p ∈ N requires some computing resource cp ∈ Z+, and a requested function Fp;
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Without loss of generality, we assume no two VNF nodes request the same function and each

VNF node only requests a single function.

5.3 Dependence-Aware Service Function Chain (D SFC AM)

Definition for D SFC problem: Given a service request NR =< B,N,D >, and the

substrate network Gs = (V s, Es), the Dependence-Aware Service Function Chain (D SFC)

problem can be defined as how to design the SFC and map this chain onto the substrate

network while satisfying the following constraints.

(i) Dependence-Aware SFC: In the NR, a set of VNF nodes and dependence rela-

tionships among these nodes are given. The process of dependence-aware chain design has to

construct an SFC by using all the VNF nodes in N while satisfying the node dependencies.

Specifically, if VNF node p is dependent on VNF node q, then VNF p has to be placed

behind VNF node q in the designed SFC.

(ii) Node Mapping: Each VNF node p ∈ N requires cp > 0 computing resource,

which is mapped to exactly one substrate node u ∈ V s with enough computing resource

(i.e., cp ≤ cu). No two VNF nodes from the same SFC can be mapped onto the same

substrate node.

(iii) Link Mapping: Each virtual (or VNF) link between two consecutive VNF nodes

in the SFC is mapped to a substrate link or physical path with enough bandwidth in the

substrate network.

An optimization objective of D SFC embedding can be minimizing the bandwidth con-

sumption in the substrate network. The node mapping and link mapping processes in D SFC

are correspondent to the ones in the traditional virtual network embedding problem which

is NP-Hard [63]. Accordingly, we propose an efficient heuristic algorithm, D SFC design and

resource allocation with Adaptive Mapping (D SFC AM) in the next section.

Heuristic Algorithms for D SFC Embedding In this section, we first introduce

a greedy heuristic, namely D SFC design with Topological Sorting (D SFC TS), for embed-
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ding dependence-aware service requests. Then, we propose our D SFC design and resource

allocation with Adaptive Mapping (D SFC AM) to jointly optimize the SFC design and node

mapping/linking, for embedding dependence-aware service requests.

D SFC Design with Topological Sorting (D SFC TS) In D SFC TS, the two

components, i.e., SFC design, SFC mapping, are conducted sequentially. The basic idea

of D SFC TS is to firstly construct a chain based on the topological sorting method [105]

and then map the constructed chain. In D SFC TS, the topological sorting [105] makes

sure the dependence relationships among the VNF nodes are not violated in the constructed

chain. Topological sorting output is a linear ordering of the vertices of a Directed Acyclic

Graph (DAG). Once the chain is created and the chain topology is fixed, one can treat the

constructed chain as a network and call the traditional virtual network embedding algorithms

to conduct the node mapping and link mapping. Here, D SFC TS adopts the traditional

schemes such as giving priorities to substrate nodes with larger available CPU and shorter

routing path [64].

The pseudocode of D SFC TS is listed in Algorithm 5. In Line 1, the algorithm initial-

izes several variables: TopChain holds the constructed chain from the topological sorting;

LatestMapped is the latest VNF node that is mapped; and LatestUsed indicates the latest

substrate node that is used for mapping VNF nodes. Line 3 creates a list of candidate sub-

strate nodes for each VNF node in the TopChain. Line 4 maps the first node in the chain

onto the candidate node that has the highest CPU available. In case there is more than one

choice, one node is chosen randomly. Starting Line 5, for each VNF p in the TopChain, the

shortest path is calculated from LatestUsed to all the candidates of p in Sp. The candidate

node u that is the closest to LatestUsed is chosen. In Line 9, the virtual link is mapped to

the shortest path from LatestUsed to u.

D SFC Design and Resource Allocation with Adaptive Mapping If VNF

nodes are mapped only by ordering them based on the dependence constraints (e.g.,

D SFC TS) and without considering the CPU requirement, a VNF node, say p, with more
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Algorithm 5 D SFC design with Topological Sorting (D SFC TS)

Require: Dependency Graph D
Ensure: Mapped SFC
1: Initialize TopChain, LatestMapped, LatestUsed;
2: Call topological sorting [105] with D to create SFC and save it as TopChain;
3: Create substrate candidate nodes list Sp for each VNF node p ∈ TopChain;
4: Map the first VNF node in TopChain by choosing the candidate substrate node with

the highest CPU (say v); set LatestMapped as the first VNF node; set LatestUsed as
v;

5: for each VNF p ∈ TopChain do
6: Add a virtual link from LatestMapped to p;
7: Find the shortest path from substrate node LatestUsed to each candidate node in Sp;

8: Choose the substrate node (say u) with the lowest distance to LatestUsed;
9: Map the virtual link to the shortest path from LatestUsed to u;
10: Update TopChain, LatestMapped, and LatestUsed;
11: end for

dependencies and less CPU demand may have a higher priority to be mapped in earlier it-

erations. However, the computing resources occupied by node p may cause that VNF nodes

with higher CPU demand cannot be accommodated in the latter iterations. Accordingly, we

propose a novel D SFC design and resource allocation with Adaptive Mapping (D SFC AM)

algorithm to dynamically sort the VNF nodes for the chain design based on node dependen-

cies, node CPU demand, and the updated resource information from the substrate network.

The D SFC AM algorithm employs the following three techniques: Dependence Sorting, In-

dependence Grouping, and Adaptive Resource Allocation to jointly optimize the processes of

D SFC design, VNF node mapping and link mapping.

Dependence Sorting To describe the dependence relationships among the VNF

nodes in an NFV service request, we define two operators: γ and β, as shown in Eq. 1

and Eq. 2, respectively. Specifically, if a VNF q is dependent on p, we call q ∈ γp as a

descendant of node p in Eq. 1. On the other hand, if a VNF p is dependent on q, we call
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q ∈ βp as an ancestor of p in Eq. 2.

γp = {q|(p, q) ∈ D, p, q ∈ N} (1)

βp = {q|(q, p) ∈ D, p, q ∈ N} (2)

Lemma 1: For any VNF node p, if p is placed behind p’s ancestors and ahead of p’s

descendants in the chain, then the chain does not violate the dependence constraints in D.

To ensure the dependence constraints in D while giving priorities to VNF nodes with

higher resource (i.e., CPU) demand, we set the weight of a VNF p, denoted by ζ(p), as the

sum of the CPU demands from p and p’s descendants, as shown in the following equation:

ζ(p) = cp +
∑
∀q∈γp

ζ(q), (3)

where cp > 0 is the CPU demand of node p, γp is the set of the descendants of node p.

Lemma 2: For any VNF node p, the weight of node p, ζ(p), is smaller than the weight

of p’s ancestors, and ζ(p) is greater than the weight of p’s descendants.

Lemma 3: For any two VNF nodes p and q, if ζ(p) ≥ ζ(q), placing p ahead of q in the

created chain, does not violate the dependence constraints in D.

Based on Lemma 1-3, we propose the Dependence Sorting algorithm as shown in Al-

gorithm 6, which generates a WeightList L, by sorting all the VNF nodes descendingly

according to the weight from Eq. (3). The WeightList from the Dependence Sorting algo-

rithm can be denoted as L = {v0, v1, v2, ..., vi, vi+1, ...}, where ζ(vi) ≥ ζ(vi+1).

Independent Grouping Once the Dependence Sorting algorithm calculates the

weights and sorts the VNF nodes in L = {v0, v1, v2, ..., vi, vi+1, ...}, one can naturally con-
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Algorithm 6 Dependence Sorting

Require: Dependency Graph D
Ensure: WeightList L
1: Select a VNF node p which has no descendants;
2: for each p’s ancestor q ∈ βp do
3: Update the weight of q as Eq. (3);
4: end for
5: Remove node p and the connections from p’s ancestor to p;
6: Go to step 1 till the weight for all VNFs are calculated;
7: Descendingly sort all VNF nodes based on the weight and save them in L;

struct an SFC chain with the same order as the VNF nodes in L and map the chain. However,

such a constructed chain is fixed for the processes of node/link mapping, which cannot take

advantage of the resource information in the substrate network for the SFC design and map-

ping. In fact, when checking dependence relationships between two consecutive VNF nodes

vi and vi+1, we may find VNF nodes vi and vi+1 have no dependence on each other, which

indicates we can place vi behind or ahead of vi+1 in the constructed chain. In other words,

if VNF nodes vi and vi+1 have no dependence on each other, we can either add vi → vi+1 or

vi+1 → vi to the chain without violating the dependence constraints in D.

Accordingly, we propose the Independent Grouping algorithm in Algorithm 7 to divide

the VNF nodes in L into groups. More specifically, Line 1 creates the first group G0 and

adds L’s first VNF node into G0. As shown in Line 2-9, a new group will be created if a

VNF node has any dependencies with a node in the previous group. Thus for a VNF p, with

dependence to any of the nodes in the previous group, in line 5-7, a new group is created

and p is added to the new group and also removed from WeightList L. As a result, the

independence group G = {G0, G1...Gi...} will be created. Note that VNF nodes in the group

with a lower index have higher weight and all VNF nodes in the same group are independent.

Lemma 4: For any two VNF nodes p and q in the same independence group Gi,

placing p behind or ahead of q in the chain, does not violate the dependence constraints in

D.

Lemma 5: For any two independent group Gi and Gj, if i < j, placing all the nodes
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in Gi ahead of all the nodes in Gj in the created chain, does not violate the dependence

constraints in D.

Algorithm 7 Independent Grouping

Require: WeightList L = {v0, v1, v2, ..., vi, vi+1, ...} from Dependence Sorting
Ensure: List of the groups G = {G0, G1...Gi...}
1: Set group index i = 0 , create group G0 = {v0}, and set L = L− {v0};
2: while L is not empty do
3: Set p = the first node in L ;
4: if VNF node p has a dependence on any node in Gi then
5: Set i = i+ 1; create a new group Gi;
6: Set Gi = Gi ∪ {p};
7: Set L = L− {p};
8: end if
9: end while

Adaptive Resource Allocation As the objective of the D SFC optimization is to

minimize the required bandwidth resource in the substrate network, one intuitive strategy

is to design and map the chain onto the substrate nodes that are close to each other. Based

on Lemma 4 and 5, we propose the Dependence-Aware Service Function Chain design and

resource allocation with Adaptive Mapping (D SFC AM) algorithm to adaptively create the

chain and map the VNF nodes/links based on the available resource from the substrate

network. The details of the resource allocation for D SFC AM is given in Algorithm 8. Line

1-2 will create G that contains all of the independent groups. Line 7-12 will append the

VNF node that has a candidate substrate node closest to the latest mapped substrate node,

until all the VNF nodes in an independent group Gi are accommodated. Then D SFC AM

maps the VNF nodes in the next group Gi+1, until all the VNF nodes are added into the

chain and mapped onto the substrate network.

5.4 An Example of D SFC AM

The example of D in Figure 5.1 illustrates that the service request requires seven VNF

nodes and the arrows represent the order dependencies among the nodes. For this depen-
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Algorithm 8 D SFC Embedding with Adaptive Mapping D SFC AM

Require: Substrate Network Gs and NR =< B,N,D >;
Ensure: Mapped SFC;
1: Call Dependence Sorting in Algorithm 6 to generate L;
2: Call Independent Grouping in Algorithm 7 to generate G = {G0, G1...Gi};
3: Set the mapped SFC = Ø; the latest added VNF node LatestV NF = Ø; the latest

used substrate node LatestSub = Ø; and create the list of the candidate substrate node
list for a VNF node p denoted by CL(p);

4: Map the first VNF node in G0 onto the candidate substrate node with the highest CPU;
update LatestV NF , LatestSub, and G0;

5: Add VNF node LatestV NF to the mapped SFC;
6: Set i=0;
7: for each Gi ∈ G do
8: while Gi 6= Ø do
9: Sort all the candidate substrate nodes of VNF node in Gi based on the distance to

substrate node LatestSub;
10: Set LatestV NF as the VNF node that has the candidate node S and node S has

the shortest physical path to substrate node LatestSub;
11: Add VNF node LatestV NF to the mapped SFC; Map LatestV NF to S and the

related VNF link;
12: Update Gi, LatestSub and the candidate substrate list;
13: end while
14: Set i=i+1;
15: end for
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dency relationships, V NF2 is dependent on three other VNF nodes (i.e. V NF1, V NF4

and V NF6 ), which implies V NF2 has to be located behind V NF1, V NF4 and V NF6 in

the SFC design. Without any dependencies among V NF4 and V NF6, they can be located

anywhere in the SFC before V NF2.

VNF 0

VNF 3VNF 2VNF 5

VNF 4VNF 1VNF 6

Figure (5.1) An example of dependence relationships (i.e., D)

For the given D in Figure 5.1 the CPU demands of VNF nodes are shown in Table 5.1.

The weights are sorted in Table 5.2 and L={VNF1, VNF4, VNF6, VNF2, VNF0, VNF3,

VNF5}.

Table (5.1) CPU demand of each VNF

VNF Node 0 1 2 3 4 5 6

CPU 45 40 50 35 25 30 20

Table (5.2) WeightList L

VNF Node 1 4 6 2 0 3 5

Weight 225 105 100 80 75 35 30

The results of independent grouping for VNF nodes in Figure 5.1 is listed in Table 5.3.

Specifically, based on the order of the VNF nodes in L, V NF1 is assigned to group G0.

The next node in L is V NF4 which cannot be added to G0 since V NF4 is dependent on

V NF1. Hence, a new group, G1, is created and V NF4 is added into G1. The following

node V NF6 can be in the same group as V NF4 as there is no dependency between them.

Then, for V NF2, it depends on both V NF4 and V NF6, therefore G2 is created and V NF2
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is a member. Similarly, V NF0 and V NF3 are added to G2 because there is no dependency

violation. Finally, since node V NF5 has a dependence on node V NF0 of G2, a new group

G3 is created and V NF5 is added into G3.

For the adaptive mapping, VNF1 will be firstly added to the chain and mapped onto a

substrate node S. In G1, VNF6 can be behind or ahead of VNF4 in the constructed chain

because there is no dependence relationship between VNF4 and VNF6. Hence, the proposed

D SFC AM will sort the distance from VNF6’s and VNF4’s candidate substrate nodes to

node S, and select the substrate node that is closest to node S to map either VNF6 or VNF4.

This way, instead of directly mapping VNF4 ahead of VNF6 due to the weight order, we

check to see which VNF node can be mapped closer to the latest mapped node. In other

words, for chain design and mapping, D SFC AM takes the available resource information

from the substrate network into account to adaptively construct the chain and find the closet

candidate substrate nodes for the VNF node/link mapping.

Table (5.3) Independent Grouping

Group Index i VNF

0 {1}
1 {4,6}
2 {2,0,3}
3 {5}

5.5 Performance Evaluation

In this section, we analyze the performance of D SFC design with Topological Sorting

(D SFC TS) and D SFC design with Adaptive Mapping (D SFC AM). We compare the

algorithms by using the NSF network topology with 14 nodes and 21 edges as the substrate

network. For each substrate node, the available CPU is randomly generated in the range of

[5, 40], and the available bandwidth for each link varies from 5 to 50. For an NFV request,

NR, we vary the requested bandwidth (B) in the range of [15, 35] and the CPU demand for
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each VNF node is randomly generated in the range of [10, 25]. The number of VNF nodes

in the NR (N) is from 3 to 7. The dependency relationship for VNF nodes is also randomly

generated. We conduct extensive experiments to obtain the average results as shown in

Figure 5.2.

In Figure 5.2(a), the y-axis denotes the total bandwidth usage and the x-axis represents

the requested bandwidth. From this figure, one can see that when the requested bandwidth

is increased, the bandwidth usage by D SFC TS and D SFC AM increases. D SFC AM sig-

nificantly outperforms D SFC TS until B is bigger than 25. This is because the proposed

D SFC AM can jointly optimize the chain design and VNF node/link mapping with the tech-

niques such as dependence sorting, independent grouping and adaptive resource allocation

while D SFC TS maps fixed constructed chain without effectively considering the current

status of the substrate network. The results can be further verified in Figure 5.2(b).

It should be noted that when the bandwidth request B is higher than 25, due to the

lack of available links with enough bandwidth, there is not many alternative physical paths

for D SFC embedding and hence both algorithms converged to the similar performance.

In Figure 5.2(c) and 5.2(d) the x-axis, represents the CPU demand for the VNF nodes in

the NR request. Again, D SFC AM yields better results than D SFC TS. Figure 5.2(e)

and 5.2(f) demonstrate the impact of the number of VNF nodes in the request. These

figures show that by increasing the number of VNFs in the request NR , D SFC AM uses

less bandwidth and less number of hops for the created chain. When the number of VNF

nodes exceeds 5, the performance gap between the two algorithms increases, which shows

that D SFC AM can effectively take advantages of dependence sorting, independent grouping

and the available resource information in the substrate network during the process of D SFC

design and mapping to minimize the required bandwidth in the substrate network.

5.6 Shortview Mapping

Figure 5.3 shows the results of the D SFC AM algorithm for an NFV service request

NSR that has three VNF nodes v1, v2 and v3 with the CPU requirement of 10, 20 and 15,
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Figure (5.2) The Performance Comparison between D SFC TS and D SFC AM.
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respectively. The dependence constraints for this NSR include v1 7→ v2 and v2 7→ v3. The

substrate candidates for v1, v2 and v3 are {s1}, {s2, s3} and {s4}, respectively. The number on

each substrate link represents the physical distance (or hop numbers). After the Dependence

Sorting and Independent Grouping processes for NSR, the groups are: g0 = {v1}, g1 = {v2}

and g2 = {v3}. According to the D SFC AM algorithm, first, v1 from g0 is mapped onto s1.

In g1, as s2 is the substrate candidate closest to s1 which is the tail of the created Service

Function Path (SFP), v2 is mapped onto s2. Similarly, v3 in g2 is mapped to s4. As a result,

the created SFC is v1 → v2 → v3. The mapped SFP for this NSR is s1 99K s2 99K s4 which

has the length as 7.

Figure (5.3) The constructed SFC by D SFC AM algorithm

However, if v2 is mapped to s3 (as shown in Figure 5.4), the total length of the created

SFP would be 6 and it requires less bandwidth consumption. This is because D SFC AM

algorithm uses the strategy that only takes into account the shortest connection between

two consecutive VNF nodes in the created SFP. We call this as the shortview Mapping by
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D SFC AM algorithm. This shortview Mapping may actually exist for any three consecutive

VNF nodes of the constructed SFP. Accordingly, in the next section, we propose the Tetragon

Remapping technique to further optimize the bandwidth allocation for the constructed chain.

5.6.1 Dependence-aware SFC Embedding with Group Mapping

To avoid the shortview Mapping by the D SFC AM algorithm, we propose the Tetragon

Remapping technique which tries to optimize the VNF node/link mapping for any three

consecutive VNF nodes in a chain. In specific, for any three consecutive VNF nodes vi−1 →

vi → vi+1 that are mapped to si−1 99K si 99K si+1, Tetragon Remapping tries to find if there

exists a substrate node ti for VNF node vi and the following formula is true.

distance (si−1, ti) + distance (ti, si+1) <

distance (si−1, si) + distance (si, si+1)

If such substrate nodes ti are successfully found, we will then remap vi to the substrate

node ti that yields minimum distance (si−1, ti)+distance (ti, si+1). Based on this Tetragon

Remapping technique, we propose a new D SFCE algorithm, namely, Dependence-aware

SFC Embedding with Group Mapping (D SFC GM), which employs the aforementioned

Dependence Sorting, Independent Grouping, Adaptive Mapping and Tetragon Remapping

as shown in Algorithm 9.

When applying the Tetragon Remapping process in Figure 5.3, the Tetragon Remap-

ping process starts from the node v2 which is the node right ahead of the tail node of the

constructed SFC from the D SFC AM algorithm. Here, for v2 there is another substrate

candidate s3 where the sum of the distances between s1 to s3 and s3 to s4 is less than the

existing mapped result. Hence, v2 is remapped to s3. The constructed chain after applying

the Tetragon Remapping technique for this example is shown in Figure 5.4.

In D SFC AM, Dependence sorting and Independent Grouping have the average time

complexity of O(|N |2), where |N | is the number of nodes in the graph. Next, for each node
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Figure (5.4) The constructed SFC by D SFC GM algorithm using Tetragon Remapping

Algorithm 9 D SFC Embedding with Group Mapping (D SFC GM)

Require: GS and NR =< B,N,D >;
Ensure: GM SFC: the constructed SFC, GM SFP: the constructed SFP;
1: Call D SFC AM(GS, NR) and the outputs are saved as: GM SFC = {v1, v2, ..., vn} and

GM SFP = {s1, s2, ..., sn};
2: Set i = n− 1;
3: while i > 1 do
4: for any substrate candidate node ti of vi do
5: if distance(si−1, ti) + distance(ti, si+1)

< distance(si−1, si) + distance(si, si+1) then
6: Remap vi to substrate node ti;
7: Update GM SFC and GM SFP
8: end if
9: end for
10: Set i = i− 1;
11: end while
12: return GM SFC, GM SFP;
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in a group, D SFC AM uses the Dijkstra’s shortest path algorithm and First-Fit spectrum

assignment that has the computing complexity of O(|N ||L| + |N |2 log |N | + |S||L|) [106],

where |S| is the number of spectrum segments in a substrate fiber link and |L| is the number

of links in the graph. Therefore, D SFC AM has the average computing time of O(|N |2 ∗

(|N ||L| + |N |2 log |N | + |S||L|)). In D SFC GM, Tetragon Remapping similarly has the

computing complexity of O(|N |2 ∗ (|N ||L| + |N |2 log |N | + |S||L|)). Hence, the D SFC GM

can take the average computing time of O(|N |2 ∗ (|N ||L|+ |N |2 log |N |+ |S||L|)).

It is worth noting that the NFV service requests are given from the beginning, which

represents the offline scenario. However, as the time complexity of the algorithms are poly-

nomial, they are suitable for the online scenario.

5.6.2 Performance Evaluation of D SFC GM

In this section, we compare the performance of D SFC AM and D SFC GM algorithms

with Topological Sorting (D SFC TS) algorithm [91]. In D SFC TS, the two processes of

SFC design and mapping are conducted sequentially. The basic idea of D SFC TS is to

first construct a chain by exploiting the topological sorting method [105]. Then, D SFC TS

maps the constructed chain onto the substrate network. By using topological sorting method,

D SFC TS guarantees the dependence relationships among the VNF nodes are not violated

in the constructed chain. The output of topological sorting is a linearly ordered vertices

of a Directed Acyclic Graph (DAG). Once the chain constructed by the topological sorting

is fixed, one can treat the constructed chain as a network and call the traditional virtual

network embedding algorithms to conduct the node mapping and link mapping. Here, we

use the traditional scheme that gives priorities to substrate nodes with larger available CPU

and shorter routing paths [64, 107, 108].

We use a 28-node US Backbone network [109] as the substrate IP or optical network.

Unless otherwise specified, the available computing resources of substrate nodes is in the

range of [5, 35]; the offered functionality for each substrate node is randomly generated; the

available bandwidth (or number of subcarriers) for each substrate link varies from 5 to 45;
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and there is no wavelength conversion in the substrate optical networks. Similarly, unless

otherwise specified, the number of VNF nodes (N) in an NFV service request (NSR) is set in

the range of [3, 8]; the dependent constraints among the VNF nodes are randomly generated;

each VNF node requests a computing demand in the range of [5, 25], and each NSR requests

the bandwidth (or number of subcarriers) within the range of [5, 25]. The NSR is randomly

generated and we collect the average bandwidth (spectrum) consumption for embedding a

large number of NSRs over 100 different substrate networks, which are denoted as ”Average

BW (Spectrum) Consumption” in the following figures. We compare and analyze how the

number of VNF nodes, bandwidth and computing demand in an NSR impact the performance

from the proposed D SFC GM, D SFC AM and D SFC TS algorithms.

The impact of optical constraints

Figure 5.5 shows the impact of optical network constraints (spectrum continuity and

consecutiveness). Here, we compare the performance of the three algorithms for two cases

where wavelength conversion is available in the substrate network (i.e., D SFC GM Conv)

and wavelength conversion is not provided (i.e., D SFC GM NO Conv). For this experiment,

substrate resources are limited as mentioned earlier. In Figure 5.5, the X-axis is the number

of VNF nodes in the request and the Y-axis is the average spectrum consumption. As

one can see, for all three algorithms, the average spectrum consumption is the highest for

the case that no wavelength conversion is available in the substrate network, whereas both

spectrum continuity and consecutiveness must be satisfied. When the wavelength conversion

is available only consecutiveness constraint should be satisfied. Hence, shorter paths can be

found between the nodes on the SFP which results in less spectrum consumption.

The impact of NFV service request size

To study the impact of NSR size, we set each substrate node with unlimited com-

puting resources and set each substrate link with unlimited bandwidth (or number of sub-

carriers). The NSR is randomly generated with 2 dependencies and the number of VNF



50

Figure (5.5) Impact of optical constraints

nodes in the NSR varies from 3 to 8. We set the substrate network as IP network to

obtain the results in Figure 5.6(a) and set the substrate network as optical network in Fig-

ure 5.6(b). Figure 5.6(a) and 5.6(b) show the average bandwidth (spectrum) consumption

when increasing the number of VNF nodes in the NSR. As one can see, for all three

algorithms, the average bandwidth (spectrum) consumption increases with the number of

VNF nodes in the NSR. Both the proposed D SFC GM (D SFC GM NO Conv for optical)

and D SFC AM (D SFC AM NO Conv for optical) algorithms significantly outperform the

D SFC TS (D SFC TS NO Conv for optical) in IP (optical) substrate networks. This is

because the proposed techniques including dependence sorting, independent grouping and

adaptive mapping enable D SFC GM and D SFC AM to design better SFCs. Particularly,

here, the substrate networks have abundant CPU and bandwidth (or number of subcarriers)

resources, which makes the processes of VNF node and link mapping in all three algorithms

to follow similar behavior. As a result, a better SFC design will require less bandwidth (or

number of subcarriers) along the Service Function Path (SFP) in the substrate network.

Furthermore, the D SFC GM algorithm has slightly better results than the D SFC AM al-

gorithm due to the Tetragon Remapping technique in D SFC GM. The process of Tetragon
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Remapping in D SFC GM can further optimize the VNF link mapping by identifying closer

substrate nodes that the VNF nodes can be relocated to.

(a) Substrate IP networks

(b) Substrate optical networks

Figure (5.6) Bandwidth consumption vs. Number of VNF Nodes
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The impact of NFV service request bandwidth

When investigating the impact of NSR bandwidth, we set substrate resource limited as

mentioned earlier. Each NSR is randomly generated with 6 VNF nodes and 5 dependen-

cies and the requested bandwidth for the NSR varies from 5 to 25. In Figure 5.7(a), the

y-axis denotes the average bandwidth consumption and the x-axis represents the requested

bandwidth for the NFV service request. One can see that when the requested bandwidth

increases, the average bandwidth consumption of three algorithms increases as well. In par-

ticular, D SFC AM outperforms D SFC TS because the D SFC AM algorithm can jointly

optimize the chain design and VNF node/link mapping processes by applying dependence

sorting, independent grouping and adaptive mapping techniques. As for D SFC GM algo-

rithm, it outperforms D SFC AM as D SFC GM employs the Tetragon Remapping technique

to avoid the shortview mapping in D SFC AM. It is worthy noting that when the NSR band-

width request is higher than 25, due to the lack of available links with enough bandwidth,

there is not many alternative physical paths for D SFC embedding and all three algorithms

converging to the similar performance. The results from substrate optical network in Fig-

ure 5.7(b) further verify these observations.

The impact of CPU in the substrate network

Figure 5.8 shows the impact of the available CPU resources in the substrate nodes. To

explore this impact, we set the range for available CPU resources of the substrate nodes as

shown in Figure 5.8(a) and 5.8(b). We set the available bandwidth (or number of subcarriers)

of the substrate links as unlimited. Each NSR is randomly generated with 7 VNF nodes and

4 dependencies. The CPU requirement for all VNF nodes is 12 and the requested bandwidth

(or number of subcarriers) for the NSR is set to 10. One can see that in both IP and optical

networks, the average bandwidth (spectrum) consumption decreases when the range for

available CPU resources increases. This is because more substrate nodes can satisfy the CPU

requirement of the VNF nodes when the range for available CPU resources increases, leading
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(a) Substrate IP networks

(b) Substrate optical networks

Figure (5.7) Bandwidth consumption vs. NSR bandwidth
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(a) Substrate IP networks

(b) Substrate optical networks

Figure (5.8) Bandwidth consumption vs. Substrate CPU capacity
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to possible shorter service function paths. Once again, the proposed D SFC GM yields

better results than both D SFC AM and D SFC TS. In particular, D SFC GM outperforms

D SFC AM and D SFC TS as much as 8% and 25%, respectively.

In this chapter, we introduced the problem of dependence-aware SFC design and map-

ping. To solve the problem efficiently, we presented the D SFC AM which uses techniques

such as dependence sorting, independent grouping and adaptive resource allocation to con-

struct and map the chain onto the substrate network. To further optimize the bandwidth con-

sumption in the substrate network, we presented D SFC GM which uses Tetragon Remap-

ping technique to optimize the mapping for the constructed chain.
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CHAPTER 6

BRANCHING-AWARE SERVICE FUNCTION GRAPH EMBEDDING IN

NETWORK FUNCTION VIRTUALIZATION

Traffic Flow Branching in NFV Generally, after being processed by one network

function, the given (modified) traffic flow continues to the next network function, which

leads to a straightforward linear chain. However, in reality, use cases exist that necessitate

the branching of the traffic flow, which can be classified into three major categories below.

First, certain network functions may classify traffic flows or treat flows of distinct fea-

tures in different manners. For instance, a flow classifier may separate the video and non-

video traffic, and direct them to respective proceeding network functions. An example of

such scenario is given in Figure 6.1. In Figure 6.1, the DPI has advanced classification ca-

pabilities to detect whether the traffic is video or not. The video traffic is further forwarded

to a Video Optimizer (VO) and later to the LB2 while the non-video traffic is directly sent

to LB2.

𝐋𝐁𝟏

𝐃𝐏𝐈

𝐋𝐁𝟐

𝐕𝐎

Not TCP Port 80

Video

Optimized 
Video

Figure (6.1) An example of branching in a service request

Second, flows can fork in the presence of a load balancer type of network functions.

As an example in Figure 6.1, when the incoming traffic from the gateway reaches the LB1,
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the load balancer investigates whether the traffic is of the type of TCP port 80 or not (i.e.,

web traffic). Then, the web traffic is directed to another path which contains DPI function.

While the non-web traffic is transferred to the LB2.

Third, some network functions with no dependency on each other can operate in parallel

rather than sequential, as illustrated in [110]. For example, in Figure 6.2, the functionality

of Monitor (MN) NF is to maintain the packet statistics without changing the packets.

Therefore, the traffic from VPN can go through the Monitor and the Firewall simultaneously

to reduce the end-to-end latency.

𝐕𝐏𝐍

𝐅𝐖

𝐋𝐁

𝐌𝐍

Figure (6.2) An example of parallelism in a service request

With the aforementioned branching, the traffic flow may go through a mesh graph (i.e., a

Directed Acyclic Graph (DAG)) as in Figure 6.1 rather than a linear topology. Therefore, one

can not employ the traditional SFC chaining and embedding approaches. In the literature, to

the best of our knowledge, very limited works [111, 110, 112] explicitly explore the branching

in NFV and its impact to the SFC design and embedding. These work discussed and studied

the parallelism in SFC, which corresponds to branching in the third case above. However,

their focus is on how to enable the parallelism in the SFC. It is worth noting that, the

mesh graph, which is the result of branching, is not the same as VNF Forwarding Graph

(VNFFG). The latter models how different VNFs from multiple independent chains are
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interconnected [113].

In this chapter, we define the resulting problem of Branching-Aware Service Function

Graph (B SFG) embedding and study how to efficiently accommodate user’s B SFG requests

in the substrate network while considering the constraints of function dependence, branching

requirements, computing resources of virtual nodes and bandwidth demand of the B SFG.

6.1 Substrate Network

The substrate network is modeled as an undirected graph Gp = (Vp, Ep), where each

node vi ∈ Vp, (i = 1, ..., |Vp|) is a dedicated COTS server. The amount of available computing

resources (e.g., CPU) in the server vi is denoted as cr(vi) ∈ Z+. Ψ ∈ F is the available

network function that is supported by substrate node s. For each physical link uv ∈ Ep,

buv ∈ Z+ represents the available bandwidth of the physical link.

6.2 Network Service Request

A network service request is defined as a 5-tuple NSR =< s, d,β, N,R >, where s is

the source NF node, d is the destination NF node, β is the initial outgoing traffic from s, N

is the set of network functions for the request NSR, and R is the set of policies that specify

the requirements that are applied to individual NFs or between NFs. Each NF v ∈ NSR

in the request is associated with multiple attributes: a unique network function fv; required

amount of computing resources cv ∈ Z+; and a traffic modification ratio of tv, which is the

ratio between the outgoing traffic (after applying the network function) to the incoming

traffic. We assume that no two VNF nodes in a single request demand the same network

function.

6.2.1 Service Function Graph Policy

To accommodate the branching of traffic flow as well as addressing other requirements

that need to be applied to NFs, we define a group of policies that can be utilized by the end
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user to specify the desired service features.

Dependence Policy Dependence policy expresses the need to place two NFs in the

required execution order. For instance, if there is a dependence from v2 ∈ N to another node

v1 ∈ N , then v2 must be placed after the node v1 in the constructed graph. This in turn

ensures that traffic flow goes through v1 before node v2. The dependence policy is defined

as (NF1 � NF2) to express the desired execution order of two NFs. For instance, an IPSec

decryptor usually has to be placed before a Network Address Translation (NAT) gateway

[99], which can be described with the dependence policy (IPSec decryptor � NAT). For a

service request NSR, the set D ∈ R in Eq. (6.1) is the collection of all of the dependence

polices for the network functions in the request. It should be noted that, for the dependence

policies we only need to focus on the direct dependency and exclude the transitive policies.

For example, in Figure 6.1, two of the dependencies are: (LB1 � DPI) and (DPI � V O).

Therefore, we do not need to add (LB1 � V O) to the set D .

D = {(u, v)|u � v;u, v ∈ N} (6.1)

To further describe the dependence relationships among the VNF nodes in an NFV ser-

vice request, we define two operators: γ and β, as shown in Eq. (6.2) and (6.3), respectively.

Specifically, if a VNF q is dependent on p, we call q ∈ γp as a descendant of node p in Eq.

(6.2). On the other hand, if a VNF p is dependent on q, we call q ∈ βp as an ancestor of p

in Eq. (6.3).

γp = {q|(p, q) ∈ D , p, q ∈ N} (6.2)

βp = {q|(q, p) ∈ D , p, q ∈ N} (6.3)
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Branching Policy To accommodate the branching of the traffic, we next introduce

the branching policy. We refer to the NF where the incoming traffic flow can fork as the

branching point. We associate each branch leaving the branching point with a percentage

of maximum outgoing data rate. The set of all branching points is represented by B ∈ R

in the Eq. (6.4). Each branch point is further denoted by a set, bi in Eq. (6.5), where

(NF W) is used to specify the flow branch after being processed by NF. For the elements

of the set bi, i is the node that traffic branches out after that, α specifies the percentage

of the incoming traffic out of i and into v. For example, in Figure 6.1, DPI can divide

incoming traffic into video type and non-video type. Assume that DPI sends up to 20%

of the incoming packets towards a Video Optimizer (VO) and remaining 80% non-video

packets towards LB2. Then, the branch policy for the DPI is given as the following two

elements:{(DPI W V O, 20), (DPI W LB2, 80)}.

Lemma 1: A VNF node i in a given service request is a branch point if the following

conditions in Eq. (6.4) and (6.5) hold.

B = {bi|i ∈ N ; |γi| ≥ 2} (6.4)

bi =
{

(iW v, α)|α ∈ Z+; i, v ∈ N
}

(6.5)

Merging Policy The merging policy is used to specify the merging point (if exists)

of the sub-traffic-flows along respective branch. Merge point M in Eq. (6.6) is the set of

all merging points for a service request. To represent a specific merge point, denoted by mj

in Eq. (6.7), we use (V NF ) to describe the merging point by node j. For instance, in

Figure 6.1, the LB2 is the merging point (V LB2) for three sub-traffic-flows: the web traffic,

video traffic and non-video traffic.

Lemma 2: A VNF node j is a merging point if the following conditions in Eq. (6.6)

and (6.7) hold.
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M = {mj|j ∈ N ; |βj| ≥ 2} (6.6)

mj = {(v V j)|j, v ∈ N} (6.7)

Source/Destination Policy For each service request, two of the VNFs are specified

to be the source (s) and the destination (d) of the flow, respectively.

Conflict Policy The conflict policy specifies the cases in which two VNFs cannot

be embedded onto the same physical node. For instance, when node-revisitation (mapping

multiple virtual nodes onto the same physical node) is not allowed, there is a conflict policy

for every pair of VNFs of the same request.

Free node Policy It is possible that for some of the VNFs in a service, there is no

given policy. These nodes are referred to as free nodes.

6.2.2 Example of policy definition

For the service request in Figure 6.1, the set of all policies, R = {D ,B,M }, is given

below.

D = {(LB1 � DPI), (LB1 � LB2),

(DPI � LB2), (DPI � V O), (V O � LB2)}

B = {{(LB1 W DPI, 40), (LB1 W LB2, 60)},

{(DPI W V O, 20), (DPI W LB2, 80)}}

M = {{(DPI V LB2), (LB1 V LB2), (V O V LB2)}}
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6.3 Branching-Aware Service Function Graph Embedding

In this section, we first present a general definition for the Branching-aware Service

Function Graph Embedding (B SFG), which is further classified into two categories: totally-

ordered B SFG and partially-ordered B SFG.

6.3.1 Definition of the B SFG Problem

Definition: Branching-Aware Service Function Graph Embedding (B SFG)

Given a service request NSR =< s, d,β, N,R >, and the physical network Gp = (Vp, Ep),

the B SFG problem is a decision problem that determines whether one can instantiate the

request NSR over the physical network while satisfying the following constraints:

1. Function Constraint: Each virtual network function n ∈ N is mapped to one substrate

node v ∈ Vp that has enough computing resources and supports the required func-

tionality; and nodes that are needed for supporting branching and merging are also

properly instantiated;

2. Bandwidth Constraint: Between the hosting nodes of two VNF nodes, a physical path

with sufficient bandwidth is allocated in the substrate network to connect these two

VNF nodes;

3. Dependence Constraint: VNFs are instantiated in the correct order so the traffic flow

can be navigated through without violating the dependence policies.

6.3.2 Classification of the B SFG Problem

When branching/merging points exist, note that the B SFG problem can be further

classified into two cases depending on the completeness of the given dependence policies,

which are elaborated below.

Totally-ordered B SFG In the case of totally-ordered B SFG, there is a total de-

pendency order on the VNF set in the service request which is given in the form of a DAG.
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Figure 6.1 shows one example of such service requests, as specified with the policies in Section

III.C.

Partially-ordered B SFG Partially-ordered case represents the general scenario of

a partial dependency order on the VNF set. Here, some of VNFs on one branch do not

have any dependencies on each other (e.g., a VPN proxy can be placed either before or

after Firewall [100]). In Figure 6.3, VNF 2 and VNF 3 must succeed the VNF 1 on both

branches, respectively. Similarly, VNFs 4, 6 and VNFs 5, 7 must be placed on upper and

lower branches, respectively. There is no order dependency between VNFs 4, 6 or VNFs 5,

7. As a result, there are two possible options (VNF 2 → VNF 4 → VNF 6, VNF 2 → VNF

6 → VNF 4) and (VNF 3 → VNF 5 → VNF 7, VNF 3 → VNF 7 → VNF 5) for upper and

lower branches, respectively.

It is worth noting that the source VNF has a dependence order with all other nodes in

the SFG as it has to be placed before all other nodes. Similarly, there is an order constraint

between all the VNFs and the destination node. Due to these order constraints, the SFG is

either totally-ordered or partially-ordered.

𝐕𝐍𝐅𝟖

𝐕𝐍𝐅𝟕

𝐕𝐍𝐅𝟏

𝐕𝐍𝐅𝟐

𝐕𝐍𝐅𝟑

𝐕𝐍𝐅𝟔𝐕𝐍𝐅𝟒

𝐕𝐍𝐅𝟓

Figure (6.3) An example of a partially-ordered B SFG

Hereafter, we focus on developing a solution to the first case, the totally-ordered B SFG

problem. Without loss of generality, we assume that for the totally-ordered B SFG problem,
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the amount of the bandwidth demand for each virtual link in SFG is given. To solve the

totally-ordered B SFG, one cannot directly apply the traditional VNE methods. That is

because in VNE, a fixed undirected virtual network topology is given a priori, whereas in

B SFG, only a set of VNFs with rules and the bandwidth demands for virtual links are given.

Hence, B SFG has to construct the directed SFG and jointly optimize the SFG processes of

VNF node/link mapping for an NFV service request.

6.4 Algorithms for B SFG Problem

In this section, we first introduce a solution, namely B SFG embedding with Sequential

node and link Mapping phases (B SFG SM), for embedding branching-aware service requests.

Then, we propose our B SFG embedding with Coordinated Mapping phases (B SFG CM)

to jointly optimize the SFG node mapping/linking, for embedding branching-aware service

requests.

Dependence Sorting To ensure the dependence constraints in D , we set a level (or

weight) for a VNF p, denoted by `(p), as the following equation, in which βp is the set of

the ancestors of node p.

`(p) = 1 + max
∀q∈βp

`(q), (3)

Lemma 3: For any VNF node p, if p is placed after p’s ancestors and ahead of p’s

descendants in the service function graph, then the graph does not violate the dependence

constraints in D .

Lemma 4: For any VNF node p, the level of node p, `(p), is greater than the level of

p’s ancestors, and `(p) is smaller than the level of p’s descendants.

Based on Lemma 3-4, we propose the Dependence Sorting technique to sort all VNF

nodes in ascending order based on their dependence levels, and save the sorted VNF nodes
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in a LayerList L. Specifically, each VNF in a request is labeled with a level, and the level

of a VNF p, `(p), is recursively defined as follows. The level of the entry VNF (a node

without any ancestors) is initialized to 0, and the level of every other VNF is computed as

the level of its ancestors increased by one. If a VNF has multiple ancestors with different

level values, it depends on the ancestor VNF with the maximum level value. It should be

noted that all the VNFs from the same level are independent VNFs and, therefore, can be

mapped simultaneously. For the example in Figure 6.1, after applying Dependence Sorting,

the LayerList of VNF nodes is L = {LB1, DPI, V O, LB2}.

Independent Layering To clearly distinguish the VNFs in the same level, we intro-

duce the Independent Layering technique. The details for Dependence Sorting and Indepen-

dent Layering are presented in Algorithm 10.

More specifically, Line 1-2 conducts the process of Dependence Sorting and Line 3-11

carries on the Independent Layering. Line 3 creates the first layer `0 and adds L’s first VNF

node, v0, into `0. In Line 4-10, for a VNF node vp, if there is any dependence to any node in

the previous layer, a new layer is created and vp is added to the new layer. As a result, the

independent layers L = {`0, `1...`j...} are created. As an example, the results of independent

layering process for VNF nodes in Figure 6.1 are shown in Figure 6.4.

Algorithm 10 Dependence Sorting and Layering

Require: Dependency Graph D
Ensure: List of the levels L = {`0, `1...`j...}
1: Calculate level for all VNF nodes in N based on Eq. (3)
2: Ascendingly sort all VNF nodes based on the level and save them in LayerList L;
3: Set layer index j = 0 , create layer `0 = {v0}, and set L = L− {v0};
4: while L is not empty do
5: Set vp = the first node in L ;
6: if VNF node vp has a dependence on any node in `j then
7: Set j = j + 1; create a new layer `j;
8: end if
9: Set `j = `j ∪ {vp};
10: Set L = L− {vp};
11: end while
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𝐋𝐁𝟏

𝐃𝐏𝐈

𝐕𝐎

𝐋𝐁𝟐

Level = 0

Level = 1

Level = 2

Level = 3

Figure (6.4) Independent layering for the example in Figure 6.1

6.4.1 B SFG embedding with Sequential Mapping (B SFG SM)

In B SFG SM, the two components, i.e., node mapping, link mapping, are conducted

sequentially. The basic idea of B SFG SM is to firstly map all the VNF nodes onto the

substrate network and then map the virtual links in the SFG onto the substrate network. In

B SFG SM, the Dependence Sorting and Layering ensure that the dependence relationships

among the VNF nodes are not violated. The details for the B SFG SM are presented in

Algorithm 11. More specifically, Line 3 creates L, which contains all of the independent

layers. Lines 6-13 map all VNF in each level by using the candidate with the highest CPU.

Then, the algorithm proceeds to map the VNF links by using the shortest physical path

(with sufficient bandwidth) between the hosting nodes of the two ends of each VNF link.
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Algorithm 11 B SFG embedding with Sequential Mapping (B SFG SM)

Require: Substrate Network, Service Request NSR
Ensure: Mapped Service Request
1: Initialize Embedded DAG; LatestVNF;
2: Create substrate candidate nodes list for each VNF node in the NSR;
3: Use dependence sorting and layering to generate L = {`0, `1...`j...}
4: Set the Embedded DAG =∅;
5: Set i=0;
6: for each ` ∈ L do
7: while ` 6= ∅ do
8: Map the VNF node in layer ` by selecting the candidate with the highest CPU ;
9: Add VNF node LatestVNF to the Embedded DAG;
10: Update ` and the candidate substrate list;
11: end while
12: Set i=i+1;
13: end for
14: for each VNF node ∈ Embedded DAG do
15: Map the VNF links between the VNF node and its parents using the shortest physical

path
16: end for

6.4.2 B SFG embedding with Coordinated Mapping (B SFG CM)

With sequential node and link mapping, one cannot take advantage of the resource

information in the substrate network to efficiently minimize the bandwidth consumption.

Accordingly, we propose the B SFG embedding with Coordinated Mapping (B SFG CM) in

Algorithm 12 to conduct the node and link mapping processes in one coordinated step. That

is, while the VNFs are mapped onto the substrate network, virtual links (directed edges in

the SFG) are also allocated onto the substrate network. More specifically, Line 3 creates the

independent layers. Line 8-15 map the VNF node with a candidate substrate node that is

the closest to its mapped ancestor in substrate node, until all the VNF nodes in a layer `i

are accommodated. Then B SFG CM maps the VNF nodes in the next level `i+1, until all

the VNF nodes are mapped onto the substrate network.
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Algorithm 12 B SFG embedding with Coordinated Mapping B SFG CM)

Require: Substrate Network, Service Request NSR
Ensure: Mapped Service Request;
1: Initialize Embedded DAG; LatestVNF; LatestSub;
2: Create substrate candidate nodes list for each VNF node in the NSR;
3: Use dependence sorting and layering to generate L = {`0, `1...`j...}
4: Set the Embedded DAG =∅;
5: Map the first VNF node in `0 onto the candidate substrate node with the highest CPU;

update LatestVNF, LatestSub, and L0;
6: Add VNF node LatestVNF to the Embedded DAG;
7: i=1;
8: for each ` ∈ L do
9: while ` 6= Ø do
10: Sort all the candidate substrate nodes of the VNF nodes in ` based on the distance

to their parents in the previous levels;
11: Set LatestVNF as the VNF node that has the candidate node S and node S has the

shortest physical path to substrate node that holds the parent of the current node;
12: Add VNF node LatestVNF to the Embedded DAG; Map LatestVNF to S and the

related VNF link;
13: Update `, LatestSub and the candidate substrate list;
14: end while
15: Set i=i+1;
16: end for
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6.5 PERFORMANCE EVALUATION

We use a 28-node US Backbone network [109] as the substrate IP network. Unless

otherwise specified, the available computing resource of substrate nodes changes in the range

of [5, 35]; the available functionality at each substrate node is randomly generated; and the

available bandwidth for each substrate link varies from 5 to 45. Similarly, unless otherwise

specified, the number of VNF nodes (N) in an NFV service request (NSR) is set in the range

of [3, 9]; the dependent constraints among the VNF nodes and the branching points are

randomly generated; each VNF node requests a computing resources in the range of [5, 25],

and VNF links in each NSR requests the bandwidth within the range of [5, 25]. The NSR

is randomly generated and we collect the average bandwidth consumption for embedding a

large number of NSRs, which is denoted as ”Average BW Consumption” in the following

figures.

In Figure 6.5, the y-axis denotes the average bandwidth consumption and the x-axis

represents the number of VNF nodes in the request. For this experiment, we set each

substrate node with unlimited computing resources and set each substrate link with unlimited

bandwidth. From this figure, we see the impact of NSR size on the bandwidth consumption.

As one can see, for both algorithms, the average bandwidth consumption increases with the

number of VNF nodes in the NSR. B SFG CM significantly outperforms B SFG SM. This is

because the proposed B SFG CM can jointly optimize the node and link mapping processes.

In Figure 6.6 the x-axis, represents the bandwidth demand for the VNF nodes in the

service request. Each NSR is randomly generated with 7 VNF nodes and 8 dependencies and

the requested bandwidth for the links in NSR varies from 5 to 20. One can see that when

the requested bandwidth increases, the average bandwidth consumption of both algorithms

increases as well. In particular, B SFG CM outperforms B SFG SM because the B SFG CM

algorithm can jointly optimize the VNF node/link mapping processes. It is worth noting that

when the NSR bandwidth request is higher than 20, due to the lack of available physical links

with enough bandwidth, there is not many alternative physical paths for B SFC embedding
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Figure (6.5) Bandwidth consumption versus number of VNF nodes.

and both algorithms converging to the similar performance.

Figure 6.7 demonstrate the impact of the available CPU in the substrate network. For

this scenario, we set the range for available CPU resources of the substrate nodes as shown

in Figure 6.7. We set the available bandwidth of the substrate links as unlimited. Each NSR

is randomly generated with 6 VNF nodes and 10 dependencies. The CPU requirement for

all VNF nodes is 12 and the requested bandwidth for the NSR is set to 10. One can see that,

the average bandwidth consumption decreases when increasing the range of available CPU

resources. This is because more available substrate nodes can be candidates to accommodate

the CPU requirement of the VNF nodes when the range for available CPU resources increases,

resulting in shorter physical paths. Once again, the proposed B SFC CM yields better results

than B SFC SM.

In this chapter, we introduced the problem of Branching-Aware Service Function Graph
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Figure (6.7) Bandwidth consumption versus substrate CPU capacity

(B SFG) embedding and studied how to efficiently embed the requests in the substrate

network while considering different constraints such as branching in the service function

graph.
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CHAPTER 7

SUMMARY

Network Function Virtualization (NFV) is an emerging technology that promises to ad-

dress issues in traditional middleboxes, providing service flexibility and reduced cost. NFV

decouples network functions from the proprietary middlebox hardware, thus allowing the

network providers to implement network functions on virtual machines running in standard

servers. Combining NFV with Software-Defined Networking (SDN) technology, future net-

works such as 5G, mobile networks and optical networks are expected to be operated and

utilized at lower cost and higher flexibility. To deliver end-to-end services, it is often required

to navigate the traffic to pass through a number of network functions in a pre-defined order,

which is referred to as Service Function Graph.

In this dissertation, we have resolved the fundamental problem of how to efficiently

provision user demands via resource management in the physical network. We call this

problem as Service Function Graph Design and Embedding (SFG DE). We have extensively

reviewed the related work and presented a classified overview of the literature study. More

specifically, we study variations of the SFG DE problem. First, we investigate the service

graph design and embedding in the presence of dependence constraint in the service request.

We propose a number of algorithms for designing and constructing the service function graph

taking into account the dependence requirement. Next, we consider the case where the data

stream can branch out to multiple data streams at certain network functions (e.g., a load

balancer). This branching indicates that the packet flow may be directed to multiple different

paths, resulting in a more complex mesh-like service function graph. We model this problem

and provide algorithms for embedding the request onto the physical network. In the future,

we plan to study the combination of dependence and branch requirement for a given service

request.
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