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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
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ENRIQUECIMENTO DE CARACTERÍSTICAS BASEADO EM GRAFOS

PARA DETECÇÃO DE INTRUSÃO EM LINHA EM REDES VIRTUAIS

Igor Jochem Sanz

Dezembro/2018

Orientador: Otto Carlos Muniz Bandeira Duarte

Programa: Engenharia Elétrica

O crescente número de dispositivos IoT conectados contribui para a ocorrência de

ataques distribúıdos de negação de serviço a uma escala sem precedentes. A Teoria

de Grafos, reforçada por técnicas de aprendizado de máquina, melhora a descoberta

automática de padrões de comportamento de grupos de ameaças de rede, muitas ve-

zes omitidas pelos sistemas tradicionais de segurança. Nesse sentido, a virtualização

da função de rede é uma tecnologia emergente que pode acelerar o provisionamento

de cadeias de funções de segurança sob demanda para uma aplicação. Portanto, a

repetição de testes de conformidade e a comparação de desempenho de tais cadeias

de funções são obrigatórios. As contribuições desta dissertação são separadas em

duas partes. Primeiro, é proposto um sistema de detecção de intrusão que utiliza

um enriquecimento baseado em grafos para aprimorar a detecção de ameaças on-

line. Um algoritmo de enriquecimento de caracteŕısticas é desenvolvido e avaliado

através de diferentes técnicas de aprendizado de máquina. Os resultados mostram

que o enriquecimento baseado em grafos melhora a acurácia da detecção de ameaças

até 15,7 % e reduz significativamente o número de falsos positivos. Em seguida,

para avaliar sistemas de detecção de intrusões implantados como funções virtuais

de rede, este trabalho propõe e desenvolve o SFCPerf, um framework para avaliação

automática de desempenho do encadeamento de funções de rede. Para demonstrar a

funcionalidade do SFCPerf, é implementado e avaliado um protótipo de uma cadeia

de funções de rede de segurança, composta por um sistema de detecção de intrusão

(IDS) e um firewall sobre a plataforma aberta para virtualização de função de rede

(OPNFV).
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Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

GRAPH-BASED FEATURE ENRICHMENT FOR ONLINE INTRUSION

DETECTION IN VIRTUAL NETWORKS

Igor Jochem Sanz

December/2018

Advisor: Otto Carlos Muniz Bandeira Duarte

Department: Electrical Engineering

The increasing number of connected devices to provide the required ubiquitous-

ness of Internet of Things paves the way for distributed network attacks at an

unprecedented scale. Graph theory, strengthened by machine learning techniques,

improves an automatic discovery of group behavior patterns of network threats often

omitted by traditional security systems. Furthermore, Network Function Virtual-

ization is an emergent technology that accelerates the provisioning of on-demand

security function chains tailored to an application. Therefore, repeatable compli-

ance tests and performance comparison of such function chains are mandatory. The

contributions of this dissertation are divided in two parts. First, we propose an

intrusion detection system for online threat detection enriched by a graph-learning

analysis. We develop a feature enrichment algorithm that infers metrics from a

graph analysis. By using different machine learning techniques, we evaluated our al-

gorithm for three network traffic datasets. We show that the proposed graph-based

enrichment improves the threat detection accuracy up to 15.7% and significantly

reduces the false positives rate. Second, we aim to evaluate intrusion detection

systems deployed as virtual network functions. Therefore, we propose and develop

SFCPerf, a framework for an automatic performance evaluation of service function

chaining. To demonstrate SFCPerf functionality, we design and implement a proto-

type of a security service function chain, composed of our intrusion detection system

and a firewall. We show the results of a SFCPerf experiment that evaluates the chain

prototype on top of the open platform for network function virtualization (OPNFV).
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Chapter 1

Introduction

Network attacks are one of the main threats in a fully connected world. The grow-

ing increase in Internet-connected devices brings a range of unknown vulnerabilities.

With the advent of the Internet of Things (IoT), vulnerabilities exploits affect mil-

lions of devices simultaneously. Denial-of-service attacks and probe scans on con-

nected devices are critical points for large-scale vulnerability exploitation and attack

execution. More voluminous and with a large number of devices involved, network

attacks reached the mark of ten Distributed Denial-of-Service (DDoS) attacks above

300 Gb/s in 2016 [1]. Furthermore, zombie networks composed of infected IoT de-

vices were responsible for a DDoS rate higher than 1 Tb/s [2]. In 2018, a massive

DDoS attack against Github1, which exploited a vulnerability on memcached servers

that reflect an amplified packet between 10.000 and 50.000 times its original size,

reached the peak of 1.35 Tb/s [3]. A week after, from the same exploit vector, the

DDoS peak record was set to 1.7 Tb/s against an U.S. service provider [4]. Late anal-

ysis of those events showed a massive probe scan targeting the memcached protocol

a few days before the attack [5]. Therefore, security mechanisms that accurately de-

tect and prevent attacks are necessary to the Future Internet. Detecting threats on

execution time and promptly reacting to attacks are essential to reduce the impact

of security threats [6]. Currently, security threat detection takes weeks or months,

and it is expected to reduce this time to minutes or seconds [7]. The scenario for

the future is even more adverse due to the introduction of more than 80 billion

connected devices by 2025 on a Internet of Things (IoT) world [8]. IoT devices

produce a huge volume of data, which need to be managed, processed, transferred

and stored in a safe and fast manner. Current detection methods, however, are not

designed to operate in such conditions [9]. Security systems, such as the Security

Information and Event Management (SIEM), fail in presenting satisfactory perfor-

mance, since 85% of network intrusions are detected weeks after they occur [10].

1Github is a web-based hosting service for version control using Git and the largest source code
repository in the world.
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Another crucial challenge for security systems is zero-day attacks, in which no prior

knowledge of attacks is available. It is important that the detection time of zero-day

attacks becomes the shortest possible to reduce reaction time and to be effective.

One possible solution to accomplish this goal is if the threat detection process be-

comes completely automatic. Moreover, the virtualization technology, which is the

foundation of cloud infrastructure providers such as Amazon, introduces new pos-

sibilities for attacks and poses new challenges for security systems that protect the

cloud infrastructure [11]. In this complex and challenging scenario, a promising al-

ternative to automatically detect threats and efficiently classify network traffic flows

relies on the use of machine-learning techniques.

Machine learning provides to security systems the capacity of learning and im-

proving from prior experience without being explicitly programmed for it. Machine-

learning techniques benefit from the huge amount of data generated by Big Data

sources, to infer hidden patterns which are extremely difficult to be inferred by

humans [12]. In terms of security, machine-learning techniques allow the automa-

tion of threat signature generation, which is a key aspect for reducing the period of

time zero-day threats remain effective [13]. Traditional machine-learning techniques,

however, rely on classifying stored historical datasets, which restricts real-time re-

sponse due to the high latency associated to the vast consumption of computational

resources [14]. One approach to outcome this drawback is classifying flows as soon

as they are generated. When analyzing traffic flows, simple packet filtering analysis

based on TCP/IP headers are inefficient as attackers attempt to hide themselves

from security tools by spoofing source IP addresses, dynamically changing TCP

ports and constantly changing attack patterns. Moreover, network threats such as

denial of service and port scans are disguised as benign traffic if the security system

is designed to independently classify each flow. Solutions that can correlate differ-

ent sources of flows and identify group behavior patterns of attacks in execution

time are mandatory to efficiently detect threats. Machine-learning algorithms for

online threat detection are becoming widely used by security systems as the high

capacity of distributed processing from a cluster of machines, assisted by stream

processing frameworks, allow the construction of agile and real-time algorithms to

treat huge amount of data. Therefore, there is a need for machine-learning solu-

tions that enhance security system detection capabilities adapted to online traffic

classification.

Besides proposals that enhance detection capabilities, a fundamental aspect of

maintaining the network secure is the placement of the security system. The pos-

sibility of deploying traffic monitors and intrusion detection systems anywhere in

the network is important to reduce the zero-day detection time and to accelerate

reaction to threats. Furthermore, multiple security systems allow to define secu-
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rity levels and to enrich the historical information of attacks from different sources.

The feasibility of this challenging task is acquiring maturity each year thanks to

the advent of Network function virtualization (NFV) technology. NFV achieved

notable prominence in telecommunications and security as it reduces hardware ex-

penditures and network operational complexity. By deploying network services as

software, NFV improves network flexibility and allow the development of optimized

resource allocation schemes [15]. In this paradigm, network functions such as firewall

and intrusion detection systems migrate from dedicated hardware middle-boxes to

software functions executed as virtual machines on top of commercial off-the-shelf

(COTS) hardware. Therefore, network services can be extended and controlled in

a centralized manner, dynamically migrated and deployed in the network, and tai-

lored for each application. Concerning security features, the NFV flexibility allows

deploying new policies, promoting fast updates, defining security zones, steering

traffic and isolating compromised network components [16–19]. Furthermore, ser-

vice function chaining (SFC) is a key enabler for flexible traffic management of a

service or application [20]. When deploying a network security function as part of

a chain of VNFs, the high latency or incorrect ordering of the VNFs imply failure

of packet handling policies, increase of vulnerabilities or occurrence of security inci-

dents [21]. Therefore, performing repeatable and comparable experiments through

an infrastructure-agnostic framework is essential to identify and avoid performance

bottlenecks on NFV and SFC platforms, as well as to correctly define resource con-

straints [22].

This manuscript proposes a machine-learning solution for network threat detec-

tion adapted to real-time security systems and evaluates its implementation on a

NFV scenario. Therefore, we organize our proposal in two parts. First, we propose a

feature enrichment algorithm that applies concepts of Graph Theory to online intru-

sion detection systems. Our algorithm represents a group of network flows comprised

in a time window as a graph to infer characteristics based on complex networks. The

algorithm infers different metrics from the snapshots of time windows, separated in

three classes: vertex metrics, edge metrics and component metrics. The algorithm is

evaluated under different sets of extracted features and machine-learning techniques,

including cases preceded by pre-processing methods such as feature selection and

reduction. We study the detection performance improvements as inferred metrics

are incorporated as new features to the original set of features from the TCP/IP

header. The proposed enrichment method is evaluated for three traffic datasets: a

real dataset from a Brazilian telecommunication operator, a synthetic dataset con-

structed at GTA/UFRJ lab, and a publicly available and realistic botnet dataset.

Results show improvements on the detection capabilities of distributed denial-of-

service and probe threats, as well as of botnet traces, without compromising the

3



online detection. In addition, feature selection and reduction techniques can be ap-

plied to reduce the amount of processing load without significantly impacting the

detection accuracy. For most analyzed scenarios, the evaluation demonstrates an

increase in classification accuracy when our enrichment algorithm precedes classifi-

cation. It is important to note that our algorithm is not restricted to the scenarios

and features obtained, hence it can be extended to different set of features and

machine-learning techniques available in the literature. Then, we design an archi-

tecture that incorporates the online enrichment process for online intrusion detection

systems.

In the second part of this proposal, we propose SFCPerf, a framework to au-

tomate the performance evaluation of virtual network functions, such as virtual

IDS and virtual firewall, deployed over different scenarios and conditions. Not only

restricted to security functions, SFCPerf is a framework for automating experimen-

tation of service function chaining. The framework generalizes the automation for

any virtual network function and service function chain orchestrated in a NFV envi-

ronment. The main goal of SFCPerf is to provide repeatability to experimentation

through the definition of a testing workflow. Thus, results obtained by the frame-

work allow comparison to any other service function chain configuration, as the

scenario and the experiments are strictly defined by a workflow description file. The

SFCPerf workflow is divided into three phases: setup phase, experimental phase, and

post-experiment phase. SFCPerf automates environment creation and network con-

figuration during the setup phase. Then, during the experimental phase, SFCPerf

configures data measurement, performs data collection and controls the experiment.

In the post-experiment phase, the acquired data is pre-processed and sent to pre-

liminary analysis. To demonstrate the functionality of our framework in a real use

case, we develop and evaluate the performance of a security service prototype based

on service function chaining. The prototype is composed of two security network

functions: an intrusion detection system based on machine-learning techniques and

stream processing; and an adjustable firewall with a RESTful interface. We build our

prototype on top of the European Telecommunications Standards Institute (ETSI)

NFV MANO architecture [23]. In addition, we analyze network function chaining

in compliance with RFC 7665 [24], provided by the Internet Engineering Task Force

(IETF). The prototype meets the specifications of Network Service Header (NSH) for

the SFC encapsulation. Furthermore, we use SFCPerf to evaluate the performance

of VNF chaining over different topologies and the current development level of NSH

to identify major bottlenecks. We adopt the Open Platform for Network Function

Virtualization (OPNFV) as an NFV infrastructure for our evaluation experiments.

Results from NFV experimentation show that chaining multiple functions incurs a

throughput decrease and a linear end-to-end delay increase, which are independent
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of the deployed topology.

1.1 Contributions and Publications

The main contributions of this work are summarized as following.

• An algorithm for online enrichment of machine-learning features based on a

graph-based approach.

• An architecture for online intrusion detection systems that incorporates the

online enrichment process

• A framework for automating the performance evaluation of Service Function

Chaining.

• The identification of major bottlenecks of VNF deployment in a NFV-SFC

environment using the OPNFV platform

• A proof-of-concept and prototype for an intelligent security chain composed of

a VNF IDS with a VNF firewall. The combination of both VNF provides the

automatic reaction to threats when a threat is detected by IDS, i.e., automatic

and real-time insertion of firewall rules and malicious flow blocking.

The following publications are highlighted as direct contributions from this work.

• Sanz, I. J., Alvarenga, I. D., Andreoni Lopez, M. E., Mauricio, L. A. F.,

Mattos, D. M. F., Rubistein, M. G. and Duarte, O. C. M. B. - “Uma Avaliação

de Desempenho de Segurança Definida por Software através de Cadeias de

Funções de Rede”, in Anais do XVII Simpósio Brasileiro em Segurança da

Informação e de Sistemas Computacionais - SBSeg’2017 [11].

• Sanz, I. J., Mattos, D. M. F., and Duarte, O. C. M. B. - “SFCPerf: An

Automatic Performance Evaluation Framework for Service Function Chain-

ing”, in IEEE/IFIP Network Operations and Management Symposium -

NOMS’2018 [25].

• Sanz, I. J., Andreoni Lopez, M., Rebello, G. A. F., and Duarte, O. C. M.

B. - “Um Sistema de Detecção de Ameaças Distribúıdas de Rede baseado em

Aprendizagem por Grafos”, in Anais do XXXVI Simpósio Brasileiro de Redes

de Computadores e Sistemas Distribúıdos - SBRC’2018 [26].

• Sanz, I. J., Rebello, G. A. F., and Duarte, O. C. M. B. - “GRAFFITO-IDS: A

Graph-based Algorithm for Feature Enrichment on Online Intrusion Detection

Systems”, submitted to Computers & Security.
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Moreover, the following publications were derived as indirect results from this

research.

• Sanz, I. J., Andreoni Lopez, M., Mattos, D. M. F., and Duarte, O. C. M. B.

- “A Cooperation-Aware Virtual Network Function for Proactive Detection of

Distributed Port Scanning”, in 1st Cyber Security in Networking Conference

IEEE - CSNet’2017. [19]

• Andreoni Lopez, M., Silva, S. R., Alvarenga, D. I., Rebello, G. A. F., Sanz,

I. J., Lobato, G. P. A., Mattos, D. M. F., Duarte, O. C. M. B., Pujolle,

G. - “Collecting and Characterizing a Real Broadband Access Network Traffic

Dataset”, in 1st Cyber Security in Networking Conference IEEE - CSNet’2017.

(Best paper award) [27]

• Andreoni Lopez, M., Sanz, I. J., Mattos, D. M. F., Duarte, O. C. M. B and

Pujolle G. - “CATRACA: uma Ferramenta para Classificação e Análise de

Tráfego Escalável Baseada em Processamento por Fluxo”, in Salão de Ferra-

mentas do XVII Simpósio Brasileiro em Segurança da Informação e de Sistemas

Computacionais - SBSeg’2017. (Best tool award) [28]

• Rebello, G. A. F., Alvarenga, I. D., Sanz, I. J., and Duarte, O. C. M. B. - “SIN-

FONIA: Gerenciamento Seguro de Funções Virtualizadas de Rede através de

Corrente de Blocos”, in WBlockchain’2018: Workshop em Blockchain: Teoria,

Tecnologias e Aplicações - SBRC’2018. (Best paper award) [29]

• Andreoni Lopez, M., Sanz, I. J., Lobato, A. Mattos, D. M. F., and Duarte,

O. C. M. B. - “Aprendizado de Máquina em Plataformas de Processamento

Distribúıdo de Fluxo: Análise e Detecção de Ameaças em Tempo Real”, in

Minicursos do XXXVI Simpósio Brasileiro de Redes de Computadores e Sis-

temas Distribúıdos - SBRC’2018. [30]

• Lobato, A. P., Andreoni Lopez, M., Sanz, I. J., Cárdenas, A. A., Duarte, O.

C. M. B., Pujolle, G. - “An Adaptive Real-Time Architecture for Zero-Day

Threat Detection” - in IEEE International Conference on Communications -

ICC’2018. [31]

1.2 Organization

The remainder of this work is organized as follows. Chapter 2 discusses related

work. Chapter 3 presents the graph-based enrichment proposal, the performance

evaluation results and its discussion. Chapter 4 presents the intrusion detection

system prototype for a Network Function Virtualization scenario, proposes SFCPerf
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framework and discusses results obtained from SFCPerf evaluation. Chapter 5

concludes this manuscript and provides directions for future work.
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Chapter 2

Related Work

This chapter provides a summary on the state-of-art of graph theory approaches

applied to intrusion detection systems, as well as the security concern in the network

function virtualization field. We highlight the main differences of the contributions

of this manuscript to related work available in the literature.

2.1 Graph Theory applied to Intrusion Detection

Considering graph-theory approaches for threat classification, [32] proposed GrIDS

that is a graph-based intrusion detection system, which models a computer environ-

ment as an activity graph. The system generates a directed graph and associates

extra information from events as attributes for the edges, vertices, and the global

graph, which shows effectiveness in tracking the propagation of a worm over different

hosts. The authors, however, do not focus on the online detection of a threat, in-

stead, they depend on the report of suspicious connections from multiple hosts. This

dependence implies that multiple hosts need to be previously infected to generate

a worm propagation alert, which do not prevent such attacks. Liu et al. proposed

an approach for detecting threats on HTTP communication using graph-based tech-

niques to analyze data [33]. The authors restrict their proposal for the HTTP pro-

tocol and for the identification of malicious ISP clients. Alternatively, our proposal

relies on network threat identification by combining TCP/IP stack features with

features generated through graph analysis. Iliofotou et al. proposed traffic disper-

sion graphs as a network monitoring tool [34]. The proposed tool, names Graption,

infers the nature of applications and identifies patterns in the network by combining

information from a network-wide behavior with flow-level characteristics [35]. A

key difference of their work to our proposal is that authors focus in classifying net-

work traffic among different applications. In contrast, our proposal aims to detect

network threats that are not necessarily associated to a specific application.

Concerning anomaly detection using graph modeling, Eswaran et al. proposed
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an algorithm that analyzes the sudden appearance or disappearance of large dense

directed subgraphs to detect anomalies in IP-IP communication, such as port scan

and denial-of-service attacks [36]. Many researches propose graph clustering and

partitioning techniques to leverage the efficiency and reduce the processing load of

graph analysis for large-scale datasets [37–39]. Anomaly-detection proposals often

abstract graph streaming problems, such as the replacement of the dynamism of the

Internet data traffic into consecutive static graph snapshots [40, 41]. While all the

above proposals focus on anomaly detection, which identifies deviation patterns from

benign behavior, our system focuses in the feature enrichment for classification tech-

niques. The combination of graph theory with machine-learning-based approaches

are also found in the literature to reduce false-positives [42, 43], and by extracting

graph features to perform online learning to detect botnets [44, 45].

In our security scenario, we aim to classify network flows between normal or

potentially malicious, henceforth defined as threat. Thus, to investigate the perfor-

mance of our graph-based enrichment proposal, this work focuses on the evaluation

of supervised learning techniques for threat detection. We employ three supervised

techniques frequently used in the intrusion detection literature, decision trees, naive

Bayes, neural networks [46, 47], and we include the comparison of an ensemble

learning of trees. Different set of features can be considered when a real problem

is modeled as a machine-learning problem. The choice for specific features vary

according to the level of abstraction in which the threat is modeled. In the in-

trusion detection literature, researchers parse the network traffic into 5-tuple flows

to detect application threats [48, 49], between 2-tuple of IP addresses to identify

network threats [31], or into group of packets defined by the IP source address to

identify malicious hosts [50, 51]. In our work, we aim to detect network threats

that can be performed in a distributed manner without the need for deep inspect-

ing the payload data. Thus, we aggregate 5-tuples with the same source IP and

destination IP addresses and define a flow at the network layer, also called network

flow. Considering the network flow abstraction, a 26-feature set based on TCP/IP

header information is proposed, when capturing raw network traffic between IP-IP

communication [31]. In our work, we adopt the 26-feature set as baseline for the

enrichment process, with slight adaptations and enhancements, such as the addition

of four new features, which is fully described in Section 3.2.1. Furthermore, the

enrichment increases this number by 39 new features inferred through the graph

analysis. Unlike the aforementioned work, our work proposes a graph-based enrich-

ment to support machine-learning techniques for online intrusion detection systems.

It is important to note that the enrichment proposal is independent of the employed

machine-learning technique, the selected feature set, or the flow abstraction, and is

unrestricted to the ones chosen to evaluate the proposal.
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2.2 Network Function Virtualization and Secu-

rity

Intrusion detection systems for cloud computing became a necessary defense for

threat detection in virtualized environments. These systems can benefit from emerg-

ing technologies to enhance detection capabilities, such as the flexibility of NFV and

the global view of the network from SDN. The deployment of intrusion detection

systems as virtual network functions gained attention of the community and differ-

ent techniques were proposed to aid detection performance [52, 53]. Besides, another

key aspect of deploying security systems as virtual network functions is the impact

on the network performance. Concerning this aspect, the second part of this work

focuses on assessing the performance of security systems deployed as virtual network

functions and the impact on the network for different scenarios of NFV deployment.

Different network function virtualization architectures have been proposed with

their own service function chaining approaches [54–59]. Likewise, middle-box chain-

ing are performed by using software-defined networking techniques. FlowTags is a

SFC proposal for middle-boxes that is capable of tagging headers and passing con-

text information to the subsequent middle-box while enforcing traffic policies [54].

The StEERING proposal uses multiple tables, presented in the OpenFlow 1.0 stan-

dard, instead of adding tags [55]. StEERING creates hierarchical forwarding rules

while adding metadata to the packet handling on each step and defining the next

hop in the chain.

Most proposals consider an infrastructure that combines software-defined net-

working with network function virtualization [56, 57]. The ESCAPE tool is built

upon network function virtualization standardized by ETSI [56]. The key idea is

to use ClickOS as the basis for the development of virtual network function pro-

totypes [58]. On the other hand, Cloud4NFV presents an architecture for network

function virtualization based on four planes: infrastructure, virtual infrastructure

management, orchestration, and service [57]. Though ESCAPE and Cloud4NFV

are closely related to ETSI architecture, they do not comply with the IETF service

function chaining [24].

The NetBricks proposal develops network-function packet forwarding with zero

copy [59]. Hence, the chaining of network functions uses shared memory with ref-

erence passing in the memory area. NetBricks brings considerable gains in per-

formance of virtual functions in terms of bandwidth and latency. Performance of

virtual functions chaining is also evaluated analytically and is considered as a con-

straint for optimization problems, such as the placement of VNFs over the physical

infrastructure [60]. Lopez et al., in turn, argue that the location of virtual functions

on the physical infrastructure follows a trade-off between accepting a larger number
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of VNFs and the delay of chaining on more distant physical nodes [61].

Emmerich et al. evaluate the performance of virtual switches during VNF chain-

ing. The authors conclude that optimization in core operating system configurations

and dedicated CPU utilization for the network interfaces are essential to increase

the performance of virtual switches [62]. Callegati et al. present a performance

comparison of network virtualization and the main components of the OpenStack

cloud operating system [63]. Bonafiglia et al. compare the performance of differ-

ent network function virtualization technologies [64]. They consider configurations

of virtual switches with and without Data Plane Development Kit (DPDK). The

authors also compare the performance of network chaining executed in virtual ma-

chines versus Docker1 containers. The results show the performance achieved by

virtual machines is superior to the performance of Docker containers when using

switches with DPDK support and dedicated processing cores.

Although most works focus on evaluating performance of NFV and SFC on a

given scenario, there is a need for solutions to evaluate performance of NFV use

cases, regarding the interoperability problem of the early stage of NFV [65]. In this

sense, DETER is a testbed proposal for network testing and monitoring that focuses

on security experiments [66]. Similarly, RIO is an experimentation platform to em-

ulate denial-of-service (DoS) attacks using NFV technology [67]. The objective is

to investigate DoS attack patterns and potential mitigation mechanisms. RIO also

automates the configuration and setup of network elements and proposes a language

to describe a given test scenario. Riggio et al. propose Scylla, a descriptive lan-

guage to describe virtual network functions orchestration regardless the underlying

infrastructure [68].

Unlike all aforementioned works, in this manuscript we propose SFCPerf, a

framework for automating the experimentation of performance evaluation of ser-

vice function chaining. The framework aims to be used for performance comparison

of service function chains composed of virtual network functions from different man-

ufacturers and running on distinct NFV-SFC platforms. To demonstrate SFCPerf

functionality, we study NFV scenarios that comply with the Network Service Header

(NSH) protocol to chain network functions [69] and to the most mature standard

for SFC architecture [24]. Finally, we implement a prototype of our IDS as a virtual

network function. We evaluate our VNF under SFCPerf framework to compare to

other VNF performances and NFV scenarios.

1Available at https://www.docker.com/.
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Chapter 3

Graph-based Feature Enrichment

for Online Intrusion Detection

Systems

This chapter presents and evaluates a graph-based enrichment proposal to enhance

online intrusion detection systems based in machine learning. First, we detail all

modules of the architecture for intrusion detection system (IDS) that incorporates

our proposal. Then, the algorithm for graph-based feature enrichment is presented.

Moreover, we evaluate the enrichment for different scenarios, including different

network traffic datasets and machine-learning classification algorithms. Finally, we

evaluate the case when the classification is preceded by feature selection methods.

3.1 The Proposed System Architecture

Five modules compose our proposed intrusion detection system architecture: data

capture module, enrichment module, processing module, historical database, and

visualization module. On the data capture module, distributed sensors collect data

over the network, while all other modules run in a cluster for distributed data

processing. Figure 3.1 depicts the proposed system architecture.

The data capture module consists of tools for monitoring and capturing data

traffic packets executed on distributed sensors on the network. The sensors are

instantiated as virtual machines in virtualized environments or through physical

machines with traffic mirroring from a network link. First, during the online traffic

capture, the data capture module abstracts captured packets into flows identified by

the quintuples (source IP, source port, destination IP, destination port, transport

protocol). Second, the data capture module groups flow quintuples with the same

source and destination IP addresses, abstracting in IP–IP flows to detect network
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Figure 3.1: Architecture of the proposed classification system. The architecture is
divided into five modules, data collection module, enrichment module, processing
module, visualization module and historical database.

threats, such as port scans and denial-of-service attacks. This process leads to the

extraction of 26 numerical features from the packet header and a new network-layer

flow defined by two IP addresses. A detailed description of these features is presented

in Section 3.2.1. The system publishes the abstracted features in a queue manager

before deploying in a distributed processing cluster. This system receives data from

multiple sensors placed in different locations in the network. Then, a data buffer

stores the collected features to be requested by the enrichment module.

The online enrichment module is the main contribution of this work. The en-

richment process performs a static graph analysis of the set of instances, i.e original

feature vectors, in a flow time window and infers a new graph-based feature vector.

The graph-based analysis detects coordinated and distributed threats from group

behavior analysis, which are impossible to be detected by traditional techniques in-

dividually on each flow. We detail the process of enrichment, the algorithm, and all

new extracted features in Section 3.2.

The processing module executes the detection algorithms and classifies the en-

riched samples. Our system also employs filter methods for features selection to the

input sample to reduce the complexity of the online processing. The filter is de-

fined towards predefined feature selection and dimensionality algorithms, executed

through offline and batch processing. The online classification is performed through

different machine-learning algorithms, sample per sample, implemented through dis-

tributed processing frameworks. The learning model is generated during the offline

training phase from a labeled dataset stored in the historical database. To evaluate

the performance of this proposal, we use three different datasets for the historical

database, a synthetic dataset constructed in our lab, a real traffic from a Brazilian

network operator and realistic and publicly available traces of botnet.

Lastly, the visualization module comprises an interface between the system and
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the user through the Internet. This module generates traffic alarms for suspicious

activities and a detailed analysis delivered in real time.

3.2 The Proposed Graph-based Online Enrich-

ment

The main idea of our proposed online enrichment is to model a graph-based struc-

ture from samples retrieved from a time window. In essence, a graph is an ordered

pair G = (E, V ) composed of a set of V vertices and E edges, which each edge is nec-

essary associated to two vertices. To generate graphs from a group of flow samples,

we use the concept of snapshots. We define a snapshot as a static set of samples col-

lected during a time window of captured packets. The snapshot model of a directed

graph considers the IP addresses as vertices and the data transmitted between two

IP addresses as directed edges. The direction of the edge is defined as the source

pointing to the destination of the flow. It is important to note that distributed

network attacks, such as port scan and DDoS, have malicious characteristics that

can be dissimulated when flows are individually analyzed. Thus, the graph-based

enrichment aims to infer patterns from the group behavior of such attacks. Further-

more, port scan and DDoS network attacks have the particular characteristic that

all malicious IP addresses involved are interconnected in the same graph component,

i.e., vertices connected through a finite distance, frequently interconnected through

the victim node. Figure 3.2 depicts an example of graph generated from a snapshot

of a 2-second time window.

In this example of snapshot, which comprises 30 components, there are two

threats highlighted with a circle, a distributed port scan originated from ten dif-

ferent malicious hosts and a distributed denial-of-service attack. The bigger com-

ponent that comprises most of the snapshot vertices contains only benign nodes in

this example, however, it may include malicious nodes altogether with non-malicious

nodes. Therefore, characterizing only the component that comprises the vertices is

not enough to detect threats and identify malicious hosts. Thus, we aim to charac-

terize the attack components but also the vertex and edge behavior by generating

features that are potentially correlated to a malicious activity.

In the proposed graph model, a vector of features of the TCP/IP header is

assigned to each edge. To detect distributed threats, TCP/IP features that are

related to the occurrence of these threats are selected as weights to generate new

graph features. Algorithm 1 describes the extraction and enrichment process.

We consider as input the IP-IP flows abstracted from network traffic and defined

in a time window. The first step is to create a directed and weighted graph model in
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Figure 3.2: Graph of a snapshot from a 2-second time window containing a DDoS
and a port scan. The graph is separated into 30 connected components, i.e., sub-
graphs with no finite distance among them.

Algorithm 1: Feature enrichment based in graph analysis of a set of instances
comprised in a static snapshot of a time window.

Input : X: Matrix of the original feature set
Output: Y: Matrix of the enriched feature set

G = constructGraph(X)
Components = extractComponents(G)
foreach Subgraph ∈ Components do

LocalFeatures = extractLocalMetrics(Subgraph)
foreach V ertex ∈ Subgraph do

V ertexFeatures = extractV ertexMetrics(V ertex)
end
foreach Edge ∈ Subgraph do

EdgeFeatures = extractEdgeMetrics(Edge)
end

end
foreach Edge ∈ G do

V 1 = Edge.Source
V 2 = Edge.Destination
Y [Edge] = X[Edge] + LocalFeatures+
V ertexFeatures(V 1) + V ertexFeatures(V 2) + EdgeFeatures[Edge]

end

which a vertex V represents an IP address and an edge E represents an IP-IP flow

with an initial feature vector as weight. A sample with the initial 26-feature vector

is represented as [IPsrc, IPdst, feat1, feat2..., feat26]. When a set of samples of a

time window arrives, a graph G(E, V ) of the sample set is constructed. Then, the

algorithm divides the global graph into small connected components C, through the
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function extractComponents(), which has a complexity of O(V +E), defining all the

connected components comprehended in G. Processing each extracted component

individually allows to perform a graph analysis locally in each component, circum-

venting a centralized processing load and allowing the distribution and parallelism of

the extraction tasks. The graph analysis infers new features based on graph metrics.

Each evaluated metric becomes a new feature. The graph metrics are classified in

three categories: i) local metrics; ii) vertex metrics; and iii) edge metrics. For each

component C, the algorithm extracts local metrics from the component, such as the

total number of vertices, total number of edges, total number of bytes transmitted

or even the total number of distinct TCP ports occurred in that component. Then,

the algorithm infers the metrics from vertices, such as the input or output degree,

which can be weighted or non-weighted. It is important to note that any feature

from TCP/IP header can be assigned to the edge weight to calculate a weighted de-

gree, which expands the range of possible features. Lastly, the algorithm generates

metrics from edges, such as the amount of flows, bytes and packets transmitted in

those edges compared to the totals of the component. Complex features can also

be inferred from the graph, such as centrality measures of vertices and edges. For

instance, the coefficient of a betweenness centrality measure can be incorporated to

the enriched feature vector as an edge metric. After the feature extraction process

from all three categories, each initial flow sample E is enriched with the local fea-

tures from the component C, in which the flow is part of, the features from both

vertices Vsrc Vdst that compose the flow edge, and the features from the edge E

which represents the flow. The final enriched sample set Y is sum of original sample

set X with all features generated during the enriched process. It is important to

note that a fourth category of features could be used in our algorithm, composed

of metrics from the global graph in the entire time window. This category endorses

metrics, such as total number of vertices or edges or the total bytes transmitted dur-

ing that period of time, which can produce useful information for machine-learning

techniques regarding the volume of traffic captured in the network at the moment

of a threat.

3.2.1 Features

In our modelling problem, we aim to detect network threats without reading the

application content of the packet and, therefore, our focus is not on application layer

attacks. Hence, network packets are abstracted into IP-IP flows at the network layer,

in which each flow is defined as a sequence of packets from a source IP address to

the same destination IP during a time window. Thus, we define an input sample, to

be classified between normal and threat, as an IP-IP flow comprising the initial 26
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features inferred directly from the network traffic. Table 3.1 details all 26 features

used as baseline for the enrichment evaluation.

Table 3.1: Original features abstracted from the packet header of IP-IP network
flows.

# Label Description
1 n pkt tcp Nb. of TCP packets
2 n src port Nb. of distinct source ports
3 n dst port Nb. of distinct destination ports
4 n fin flag Nb. of packets with FIN flag set
5 n syn flag Nb. of packets with SYN flag set
6 n psh flag Nb. of packets with PUSH flag set
7 n ack flag Nb. of packets with ACK flag set
8 n urg flag Nb. of packets with URG flag set
9 n pkt udp Nb. of UDP packets
10 n pkt icmp Nb. of ICMP packets
11 n pkt ip Nb. of IP packets
12 n tos Nb. of types of service (ToS)
13 mn ttl Mean time to leave (TTL)
14 mn head len Mean length of packet header
15 mn pkt len Mean length of packet
16 n do not frag Nb. of packets with Don’t fragment
17 n more frag Nb. of fragmented packets
18 n rst flag Nb. of packets with RST flag set
19 n ece flag Nb. of packets with ECE flag set
20 n cwr flag Nb. of packets with CWR flag set
21 n types icmp Nb. of distinct ICMP types
22 n codes icmp Nb. of distinct ICMP codes
23 n flows Nb. of 5-tuples
24 n flows tcp Nb. of TCP 5-tuples
25 n flows udp Nb. of UDP 5-tuples
26 n bytes flow Nb. of total bytes transmitted

The 26-feature vector contains numerical variables representing information

gathered from all generated 5-tuples and transmitted packets between two IP ad-

dresses, for instance, the mean or variance of the quantity of flags from TCP/IP

header. Thus, in our study case, each IP-IP flow has the following 26 initial fea-

tures: number of each TCP flags (8); number of packets TCP, UDP, ICMP and

IP (4); number of destination and source ports (2); mean size of packet header and

content (2); number of fragmented packets and do-not-fragment flags (2); number of

distinct ICMP types and codes (2); number of distinct service types (1); TTL mean

(1); number of bytes transmitted (1); number of established TCP connections (1);

number of unique UDP transmissions (1); and number of unique flow quintuples (1)

between the two IP addresses that defines the flow.
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Once we generate the graph model for each snapshot in a time window, as de-

tailed in Algorithm 1, the 26-feature vector from each sample is enriched with 39

metrics inferred for the graph analysis. The new features are divided in three cat-

egories and, in our study case, represents the following metrics: a) 7 local metrics:

total number of vertices (distinct IP addresses) and edges (IP-IP flows) of the com-

ponent (2), total number of bytes, flows and packets transmitted in the component

(3), total number of distinct destination and source ports occurred in the component

(2); b) 4 edge metrics: fraction of bytes, flows and packets transmitted in the IP-IP

flow in comparison to the total transmitted in the component (3), betweenness cen-

trality [70] of the edge (1); and c) 14 vertex metrics: simple input and output degree

(2), input and output degree of TCP, UDP, ICMP and IP packets (8), and input

and output degree of source and destination ports from the source and destination

vertices of the edge (4). Since one edge is strictly defined by two vertices, the ini-

tial feature vector is enriched with vertex metrics from both source and destination

vertices of the edge. When considering the enrichment with generated local and

edge metrics, this process produces 39 new features for each edge and a resultant

feature vector composed of 65 features. Table 3.2 details all features obtained in the

enrichment process.

3.3 Experimental Setup and Proposal Evaluation

To evaluate the performance of the proposed approach for intrusion detection, we

perform experiments using three different datasets. The first dataset is a synthetic

traffic elaborated in our lab, Grupo de Telefinformática e Automação (GTA/UFRJ),

composed of real normal user behavior from desktop applications and threats exe-

cuted in a controlled way. We introduce threats through the Kali linux distribution

and the Nmap tool1, comprising 36 types of threats divided into three categories:

a) 7 types of DoS: ICMP flood, land, nestea, punk, smurf, SYN flood, and UDP

flood; b) 8 types of DDoS: spoofed and non-spoofed SYN flood, teardrop, smurf,

and nestea; and c) 20 types of port scans, scan of FIN, SYN, XMAS, NULL and

ACK flags, executed in a horizontal and vertical manner, and in a distributed and

non-distributed way [11]. This process yields a dataset composed of 19,149 network

flows.

The second dataset is a real data traffic collected from a major Brazilian telecom-

munications operator [71]. The dataset contains real fixed Asymmetric Digital Sub-

scriber Line (ADSL) access information of 373 residential broadband users from the

city of Rio de Janeiro during a period of one week, from February 27th to March

5th 2017. For privacy concerns, the data is anonymized. We decapsulate the Point-

1Available at https://nmap.org/.
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Table 3.2: Set of features obtained from the graph-based feature enrichment algo-
rithm.

No. Type Description
27 Component Number of vertices of component
28 Component Number of edges of component
29 Component Total bytes of component
30 Component Total flows of component
31 Component Total packets of component
32 Component Total source ports
33 Component Total destination ports
34 Edge Fraction of bytes of the component
35 Edge Fraction of flows of the component
36 Edge Fraction of packets of the component
37 Edge Edge betweenness
38 Src. Vertex In degree
39 Src. Vertex Out degree
40 Dst. Vertex In degree
41 Dst. Vertex Out degree
42 Src. Vertex In degree weighted by source ports
43 Src. Vertex Out degree weighted by source ports
44 Dst. Vertex In degree weighted by source ports
45 Dst. Vertex Out degree weighted by source ports
46 Src. Vertex In degree weighted by destination ports
47 Src. Vertex Out degree weighted by destination ports
48 Dst. Vertex In degree weighted by destination ports
49 Dst. Vertex Out degree weighted by destination ports
50 Src. Vertex In degree weighted by TCP packets
51 Src. Vertex Out degree weighted by TCP packets
52 Dst. Vertex In degree weighted by TCP packets
53 Dst. Vertex Out degree weighted by TCP packets
54 Src. Vertex In degree weighted by UDP packets
55 Src. Vertex Out degree weighted by UDP packets
56 Dst. Vertex In degree weighted by UDP packets
57 Dst. Vertex Out degree weighted by UDP packets
58 Src. Vertex In degree weighted by ICMP packets
59 Src. Vertex Out degree weighted by ICMP packets
60 Dst. Vertex In degree weighted by ICMP packets
61 Dst. Vertex Out degree weighted by ICMP packets
62 Src. Vertex In degree weighted by IP packets
63 Src. Vertex Out degree weighted by IP packets
64 Dst. Vertex In degree weighted by IP packets
65 Dst. Vertex Out degree weighted by IP packets

to-Point Protocol over Ethernet (PPPoE) sessions of the ADSL residential clients
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with the Stripe tool2. Since it is not possible to assure that real traffic is benign

or malicious, we apply the signature-based IDS Suricata3 to classify normal traffic

and different type of detected threats. Finally, we insert the 36 types of attacks

described above, merging the IPs of the synthetic malicious traffic with the real IPs

from operator residential users. For the sake of evaluation fairness, we balance the

dataset as 50% malicious and 50% benign traffic, by randomly filtering flows from

the dominant class after the enrichment process. This process yields a balanced

dataset composed of 715,181 network flows.

The third dataset is the ISCX botnet dataset4, the most realistic and publicly

available dataset of botnet traffic [72]. We use the training data, which contains

5.26 GB of benign and botnet traffic from 7 different types of botnets, Neris, Rbot,

Virut, NSIS, SMTP Spam, Zeus, and Zeus C&C (command and control). We discard

IPV6 traffic and use a 2-second time-window to generate the final dataset. This

process results in a dataset composed of 273,797 network flows, in which 20,1%

represents malicious botnet traffic.

For the threat classification, we select three of the most common classifiers

with large utilization and well known behavior in the literature of intrusion de-

tection [46, 73, 74]: decision tree, neural network, and naive Bayes. The decision

tree, despite having a high cost of model construction due to the complexity of cre-

ating well-adjusted models, in general, presents better results over the classification

performance metrics and also create an easily-understandable model. The cost for

decision tree updates is high because slight data changes may result in a completely

different tree. Neural networks often represent an accurate black box where neu-

ron performs a activation function over the data and neuron weights are adjusted

to minimize the error. In case of data arriving as streams, neural network model

adjustment is feasible using stochastic gradient descent. Neural networks, however,

are slower for training due to iterative process of weight adjustments. The naive

Bayes, differently, uses a probabilistic model to estimate the efficiency of simple clas-

sifiers with low processing load. Naive Bayes classifiers are capable of quick training

the classification model, and therefore, present a faster reaction for detecting new

threats as the model constantly needs updates.

We employ the decision tree algorithm (DT), which is a supervised technique,

to construct a tree model that each leaf node is responsible for testing a particular

attribute of the system. Figure 3.3 illustrates the generation of a tree-based model

from a set of instances defined by network-based features. The model construction,

i.e., the training phase, occurs in an offline manner and we store the probabilities

2Available at https://github.com/theclam/stripe.
3Available at https://suricata-ids.org/.
4Available at https://www.unb.ca/cic/datasets/.
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Figure 3.3: The decision tree learning technique, which generates a tree-based model
from a set of training instances.

values of each class in the leaf nodes to serve as parameters for the decision-making.

During the training phase, on each new input sample, the algorithm runs through

the nodes evaluating the respective attributes to estimate the probability of that

sample belonging to a given class. Thus, it is not always necessary to run through

all nodes to perform the classification, which considerably reduces the processing

and classification time compared to other models. We use the C4.5 algorithm for

tree construction with the information gain ratio for tree splitting with no preprun-

ing [75]. The tree construction starts from the definition of a root node, which has

the probability of each class. Then, the root node is successively split, in which each

child represents a new sample attribute that has a new set of probabilities for each

class. This process is repeated for all nodes until the nodes reach probabilities of

100% for one class, configuring it as a leaf node. We repeat this process ten times

with different fractions of the datasets complying with the 10-fold cross-validation.

The second employed algorithm is the multilayer perceptron (MLP), which uses

a back-propagation training method to generate the coefficients of a neural network

and adjust the weight of each neuron according to the gradient of an arbitrary loss

function. Figure 3.4 shows the contents of a neural network model.

Figure 3.4: The multilayer perceptron technique, which generates a neural-network
based model that contains the appropriate neuron weights adjusted according to a
set of training instances.
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We adopted as loss function the average of the Euclidean distance between the

real and the predicted output expressed by

E =
1

2n

∑
~x

||y(~x)− y′(~x)||2, (3.1)

where n is the number of inputs for the training dataset, ~x is the evaluated input,

and y(~x) and y′(~x) are the real and predicted output values, respectively. The weight

adjustment of a neuron j from the layer i is given by the gradient descent method

∆wij = −η ∂
~E

∂wij

, (3.2)

where η is a parameter for model adjustment that controls the velocity of weight

updates. The errors Ei from each layer are propagated and the neuron weights

are adjusted according to the partial derivative related to each neuron. The back-

propagation allows the separation of classifications that are not linearly or trivially

divisible, which makes it suitable to adjust complex curves for the model. We

use a MLP model with an input layer where each neuron represents a feature of

the problem, an output layer with two neurons representing the output classes,

threat and normal, and one hidden layer composed of 10 neurons. The hidden layer

associates the output data from the previous layer to an activation function for each

neuron and produces the output data for the next layer.

The last employed algorithm is the naive Bayes (NB), which assumes the strong

premise that all features from the system are independent, i.e., one feature does not

influence other feature values. This premise reduces the complexity of the problem

and simplifies the prediction model. When a new sample ~x arrives, the algorithm

calculates for each feature the a priori probability for it to belong to each class.

From Bayes Theorem, the a posteriori probability of a feature vector ~x belonging

to the class Ck is

P [Ck|~x] =
P [~x|Ck] ∗ P [Ck]

P [~x]
, (3.3)

where P [~x|Ck] is the conditional probability a priori for feature vector ~x if class Ck is

given, P [C] the probability for a sample belonging to class C since class probability

distribution is known from the training set, and P [~x] a normalization constant for

each sample. The objective is to maximize the numerator to find the class that

better fits into the set of features of the unknown sample. Due to the independence

assumption, the product of all probabilities a priori for a given class results in the

probability a posteriori of the sample belonging to that class. Hence, the algorithm

chooses for the class with higher estimated probability P [Ck, ~x] among all classes
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given by

P [Ck|~x] =
n∏

i=1

P [xi|Ck]. (3.4)

After the enrichment process, the feature vector comprehends 65 features, which

is relatively high to obtain online and also increases the chances for over-fitting the

data. Therefore, we evaluate two algorithms that aim to reduce the number of fea-

tures: a feature selection algorithm and a dimensionality reduction algorithm. The

feature selection algorithm reduces the number of characteristics without significant

information loss. In practice, it is a three-phase process: i) to normalize the dataset;

ii) to eliminate features with zero variance; and iii) to calculate the correlation ma-

trix among the remainder variables. Since all variables considered in this manuscript

are numerical, we used the Pearson correlation, defined as

ρX,Y =
E[(X − µX)(Y − µY )]

σXσY
, (3.5)

where σX and σY are the standard deviation of each variable and µX and µY their

respective mean to define the value of correlation between each pair of variables.

Figures 3.5, 3.6, and 3.7 show the correlation matrix for each dataset. Evaluating

the most correlated features allows a quick assessment to features that do not aggre-

gate useful information and can be dismissed, reducing the classifier processing load

without loss of classification performance. Greater correlation between two features

indicates that is highly probable that increasing the value of one of them will also

increase the other. In the other hand, negative correlation indicates that one feature

will likely increase if the other decreases and vice versa. Values near zero represents

no relation between them.

We use Principal Component Analysis (PCA) to reduce the number of feature,

finding orthogonal combinations si of input features that maximize the total variance

of the projected data. The input features p are a linear combination of the k principal

components and the direction that maximizes the variance while also minimizing the

mean squared error. Therefore, the PCA not only reduces the dimensionality but

it eradicates the redundancy caused by the correlation between features xi. In this

manuscript, we define the criteria for dimensionality reduction by specifying the

minimal amount of information to be preserved as 100% for each feature. Then, by

using the most important components without loss of information, we build a good

approximation from the original data reducing the number of features from 65 to

51 in the network operator dataset, to 46 in the GTA/UFRJ dataset and to 27 in

the ISCX botnet dataset. We define these set of features as PCA-reduction set for

further evaluation.
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Figure 3.5: Correlation matrix of all features used in the Network Operator dataset.
Features from 1 to 26 are the initial features inferred from the packet headers of
IP-IP flow, and features 37 to 65 are obtained through the graph-based enrichment.
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Figure 3.6: Correlation matrix of all features used in the GTA/Lab dataset. Features
from 1 to 26 are the initial features inferred from the packet headers of IP-IP flow,
and features 37 to 65 are obtained through the graph-based enrichment.

To evaluate the performance of our classifier for the various datasets, detec-

tion algorithms and feature sets, we select standard metrics for comparison fairness.

Table 3.3 shows the metrics derived from the confusion matrix, where positive in-
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Figure 3.7: Correlation matrix of all features used in the ISCX botnet dataset.
Features from 1 to 26 are the initial features inferred from the packet headers of
IP-IP flow, and features 37 to 65 are obtained through the graph-based enrichment.

stances, i.e., feature vectors, represent benign or normal flows, and negative instances

represent malicious or threat flows.

Table 3.3: The employed metrics for performance evaluation.

Metric Description

False Positives (FP) Number of threat flows misclassified.

False Negatives (FN) Number of normal flows misclassified.

True Positives (TP) Number of threat flows classified correctly.

True Negatives (TN) The number of normal flows that are cor-
rectly classified.

True positive rate (TPR = TP
TP+FN

) Proportion of normal flows classified cor-
rectly.

False positive rate (FPR = FP
FP+TN

) Proportion of threat flows incorrectly pre-
dicted as normal.

Accuracy = TP+TN
TP+FP+FN+TN

The ratio of correctly classified flows to the
total flows.

Area under the ROC curve The ROC curve represents graphically the
trade-off between the FPR and TPR for

AUC =
∫ −∞
∞ TPR(γ)FPR′(γ)dγ every possible γ that defines the detec-

tion cut-off. The AUC quantifies the ROC
curve for numerically comparison.
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Figure 3.8: Number of features after the implementation of a linear correlation filter
for all GTA, NetOp and ISCX datasets.

3.4 Numerical Results

We implement a prototype and evaluate the gain introduced by our proposal into

classification performance. We use an Intel Xeon E5-2650 @ 2.00GHz 16-core (32)

with 512 GB memory and 21 TB hard disk. We employ a two-second time window

due to a better trade-off between time consumed and high accuracy obtained with

machine-learning offline algorithms [31]. We define five sets of features for evalu-

ation: i) the original set of 26 features from the TCP/IP header inferred online

directly from the data traffic abstraction into IP-IP network flows; ii) the set of 39

features inferred from the online enrichment from the graph-based analysis; iii) the

enriched set, which merges both aforementioned feature sets together, totaling 65

features; iv) the set of features obtained through the dimensionality reduction from

PCA method, which resulted in 51 features for the operator dataset, 46 features

for the GTA/UFRJ dataset, and 27 for the ISCX botnet dataset; and v) the set of

features obtained after the application of linear correlation filter.

To select a parameter for the linear correlation filter, we evaluate the system

performance when we apply a correlation filter prior to the classification. Figure 3.8

illustrates the amount of features that are eliminated when we decrease the corre-

lation coefficient ρ. By varying the correlation parameter ρ, we set the threshold

ρ = 0.9, as it already reduces by half the number of features to be processed by only

filtering the features near 100% correlated to others. Using this parameter selection,

we attain a set composed of 32 features for the operator dataset, 34 features for the

GTA/UFRJ dataset, and 38 for the ISCX botnet dataset.

We define different set of features to classify both datasets with the three pre-
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Figure 3.9: The k-fold cross-validation technique, which splits the dataset into k
mutually exclusive parts.

sented classification methods: decision tree, naive Bayes, and multilayer perceptron.

We perform the training phase for all algorithms using a k-fold, with k = 10 cross-

validation to better generalize the model and avoid over-fitting. Figure 3.9 illustrates

this technique, which consists of successively separating the data set in 10 random

partitions mutually exclusive, in which 9 partitions are separated for the training

phase and the remainder for the online test phase in each iteration. Thus, after 10

iterations, the mean of all training phases are considered as the final model, which

grants more confidence on the performance results.

Furthermore, we balance the classes of both datasets using a Gaussian sampling

filter on the normal traffic, obtaining a final dataset composed of 50% of normal

traffic and 50% of malicious traffic, in order to avoid a biased classification towards

the dominant class.

We consider accuracy and the area under the receiver operating characteristic

curve (AUC) as our classifier performance estimators. Tables 3.4, 3.5 and 3.6 show

the results of the evaluated scenarios for all datasets. The results show that our

feature enrichment proposal improves both accuracy and AUC on the TCP/IP fea-

ture set for all algorithms using the NetOp dataset, and for two algorithms on the

GTA/UFRJ and the ISCX dataset.

The accuracy for the naive Bayes algorithm in the ISCX dataset, however, de-

clined significantly. This is due to the overall high correlation between the graph

features for ISCX, found in Figure 3.7, which contradicts the feature independence

premise assumed by the algorithm.

Furthermore, when using a feature set composed of only the 39 graph-based

features, the classification presents higher accuracy than if using the complete en-

riched set of 65 features. This behavior suggests that, in this case, the inclusion

of particular TCP/IP features introduces noise information into the classification.

Moreover, we observe that the graph-based enrichment produces minor changes on
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the accuracy of the threat detection for the decision tree algorithm because it already

presents an accuracy near to 100% with the 26 original features TCP/IP.

Table 3.4: Classification accuracy and area under the ROC curve (AUC) for the
network operator dataset.

Decision Tree Naive Bayes ML Perceptron
Feature set (# feat.) Acc. (%) AUC (%) Acc. (%) AUC (%) Acc. (%) AUC (%)
TCP/IP features (26) 99.95 99.99 81.46 84.10 99.12 99.03
Graph features (39) 99.96 99.99 95.38 99.65 99.96 99.98
Enriched features (65) 99.98 99.99 94.61 99.88 99.99 99.99
PCA reduction (51) 99.96 99.99 96.03 99.84 99.19 99.71
Linear corr. filter (31) 99.94 99.99 94.60 99.86 99.99 99.99

Table 3.5: Classification accuracy and area under the ROC curve (AUC) for the
GTA/UFRJ dataset.

Decision Tree Naive Bayes ML Perceptron
Feature set (# feat.) Acc. (%) AUC (%) Acc. (%) AUC (%) Acc. (%) AUC (%)
TCP/IP features (26) 99.98 99.97 75.13 86.65 99.29 99.80
Graph features (39) 99.96 99.97 82.60 97.67 99.70 99.86
Enriched features (65) 99.96 99.97 80.32 98.30 99.96 99.98
PCA reduction (46) 99.96 99.94 94.65 96.47 96.53 97.52
Linear corr. filter (33) 99.96 99.98 90.24 98.93 99.95 99.87

Table 3.6: Classification accuracy and area under the ROC curve (AUC) for the
ISCX dataset.

Decision Tree Naive Bayes ML Perceptron
Feature set (# feat.) Acc. (%) AUC (%) Acc. (%) AUC (%) Acc. (%) AUC (%)
TCP/IP features (26) 99.03 99.08 85.39 89.74 95.17 96.63
Graph features (39) 99.92 99.91 82.61 84.91 98.98 99.65
Enriched features (65) 99.79 99.77 84.19 89.12 98.88 99.61
PCA reduction (27) 99.77 99.78 79.30 93.36 93.06 98.41
Linear corr. filter (38) 99.69 99.56 79.97 81.93 98.34 99.36

Considering all evaluated algorithms, naive Bayes presents the higher accuracy

gain after the enrichment process, 15.7% for the operator dataset and 9.9% for the

GTA/UFRJ dataset. Furthermore, when we introduce a linear correlation filter,

we reduce by half the number of features to be processed while the accuracy re-

mains stable. The exception for this behavior is the simple Bayesian algorithm in

the GTA/UFRJ dataset, which presented a 12% gain after the introduction of a

linear correlation filter. Therefore, the results indicate that the enrichment process

adds valuable information to the detection and is more effective for algorithms with

simpler training, such as the naive Bayes.

Table 3.7 shows the full classification statistics for the three datasets before and

after the enrichment process. We also present the difference and the ratio from
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Table 3.7: The confusion matrix containing the full statistics of all 9 enriched sce-
narios.

DT NB MLP
TP FP TN FN TP FP TN FN TP FP TN FN

Ori. 357570 83 357507 20 225071 316 357274 132519 351869 301 357289 5721
Enr. 357585 0 357590 5 316902 360 357230 40688 357586 62 357528 4
Diff. 15 -83 83 -15 91831 44 -44 -91831 5717 -239 239 -5717

NetOp

Ratio 1.00 0.00 1.00 0.25 1.41 1.14 1.00 0.31 1.02 0.21 1.00 0.00

Ori. 9572 0 9574 2 7161 2348 7226 2413 9505 66 9508 69
Enr. 9570 2 9572 4 5944 138 9436 3630 9571 3 9571 3
Diff. -2 2 -2 2 66 -63 63 -66 66 -63 63 -66

GTA/Lab

Ratio 1.00 - 1.00 2.00 0.83 0.06 1.31 1.50 1.01 0.05 1.01 0.04

Ori. 216138 1598 55015 1046 185444 8275 48338 31740 211319 7359 49254 5865
Enr. 216933 333 56280 251 198410 24511 32102 18774 216155 2035 54578 1029
Diff. 795 -1265 1265 -795 12966 16236 -16236 -12966 4836 -5324 5324 -4836

ISCX

Ratio 1.00 0.21 1.02 0.24 1.07 2.96 0.66 0.59 1.02 0.28 1.11 0.18

Table 3.8: True positive rate and false positive rate comparison for all 9 enriched
scenarios.

DT NB MLP
TPR (%) FPR (%) TPR (%) FPR (%) TPR (%) FPR (%)

Ori. 99.99 0.02 62.94 0.09 98.40 0.08
NetOp

Enr. 100.00 0.00 88.62 0.10 100.00 0.02

Ori. 99.98 0.00 74.80 24.52 99.28 0.69
GTA/Lab

Enr. 99.96 0.02 62.08 1.44 99.97 0.03

Ori. 99.52 2.82 85.39 14.62 97.30 13.00
ISCX

Enr. 99.88 0.59 91.36 43.30 99.53 3.59

the enriched (E) set of features to the original (O) set, respectively. These metrics

serve as indicators for the overall performance improvement. We aim to reduce

false positives (FP) and false negatives (FN), then, we expect negative values for

the differential E − O metric or values above 1.0 for the E/O ratio. In seven of

nine scenarios, the enrichment process reduced misclassified samples, except for the

decision tree algorithm in the GTA/Lab dataset and for the naive Bayes algorithm

in the ISCX dataset. The decision tree case is easily explained, since the original set

of features already presented a classification accuracy near 100%, it prevented any

type of performance improvement. The naive Bayes algorithm, in the other hand,

assumes strong independence among variables and from Figure 3.7, we observe that

variables from graph analysis were strongly correlated in the ISCX botnet dataset.

Then, we conclude that Naive Bayes is not a good approach for botnet detection

regarding graph-based features.

Overall, in 5 of the 7 improved scenarios, the gain in the classification perfor-

mance occurred with no trade-off. The two exceptions for this rule are the naive

Bayes algorithm for the network operator dataset, which significantly reduces the

number of false negatives by a small increase in the number of false positives, and

for the GTA/LAB dataset, which increases the number of false negative but reduces

false positives twice more. To compare the relative gain, after the enriched process,
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Table 3.8 shows the true positive rate (TPR) and false positive rate (FPR) for all

9 scenarios. Despite decision tree algorithm presents the best overall classification

performance among all algorithms, the higher performance gain occurred for the

naive Bayes algorithm in the network operator dataset, which increased the true

positive rate on 25.7% while the false positive rate remained stable. Finally, we

highlight the significant gain in the classification performance achieved for the MLP

algorithm over all evaluated datasets. The enrichment process using the MLP algo-

rithm reduced the number of false negatives for the real traffic of operator dataset

by 1430 times, by 22 times for the GTA/UFRJ dataset, and by 5.69 times for the

ISCX botnet dataset, while the number of false positive is significantly reduced in

all cases. Indeed, concerning botnet traffic detection, the enrichment with MLP

algorithm reduce the false positive rate in 9.4%.

Despite an overall gain on the majority of the evaluated scenarios, we highlight

some of the limitations faced during the experiments. First, the generation of a

realistic dataset is challenging, and there is still much effort to be done in order

to generate an up-to-date network threat dataset. The procedure of the synthetic

dataset generation aimed to use as many available attacks as possible at the moment

of the dataset construction. Therefore, some of the attacks included in our dataset

may not represent a current threat in the real world scenario. For instance, the

smurf Denial-of-service is a well-known attack that is inoffensive for modern systems

nowadays. Indeed, due to the lack of availability of recent attacks in open source

penetration tools, results obtained might not represent the reality in current network

threat scenario. To overcome this limitation, a possible solution is to build our own

botnet based on the source code of recent botnets and malware, e.g. Mirai source

code5. Second, in the real dataset, which we use real data from a network operator

to evaluate our proposal, we can never assure the real label of the network data.

To overcome this, we make a strong assumption that an open source IDS correctly

labels normal traffic as benign to conduct our experiments. Finally, we emphasize

that the experiments performed in this chapter aim to prove the concept of a graph-

based enrichment for Intrusion Detection Systems and to evaluate the performance

gain when we implement our proposal to detect network threats. Our proposal,

however, is not restricted to the attacks and datasets evaluated and the enrichment

algorithm is feasible to be implemented in other network security scenarios.

5Available at https://github.com/jgamblin/Mirai-Source-Code.
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Chapter 4

Intrusion Detection Systems in

Virtual Networks

This chapter introduces the basic concepts of network function virtualization (NFV)

and demonstrates how an intrusion detection system could benefit from this technol-

ogy to acquire flexibility on deployment and to enhance security capabilities in the

cloud. It also evaluates a prototype of a service function chaining (SFC) composed

of an intrusion detection system and a firewall. For the evaluation, we develop a

framework for automated performance evaluation of SFC named SFCPerf. There-

fore, this chapter also presents SFCperf architecture, and provide the evaluation of

some use case scenarios of NFV to identify major bottlenecks in this paradigm.

4.1 Network Function Virtualization

In the softwarization era, virtual networks became the foundation of the service

operation and management across the network infrastructure. Virtual networks use

network elements as software to virtualize applications and facilitate their migra-

tion with less service degradation over the Internet. Virtual networks paved the

way for emerging cloud architectures. To this end, the network function virtualiza-

tion (NFV) is an emergent technology which applies cloud computing concepts into

the domain of telecommunications operator [20]. The main benefits of NFV are to

reduce capital and operational expenditures, since hardware network functions are

expensive, need physical space allocation, require proper cooling and high power

consumption, and demand human resource training. The NFV also accelerates the

time-to-market for network function since its conception till the delivery to the net-

work operator. To reach similar performance of the hardware middleboxes, recent

advances in cloud computing, as multiple hypervisors, hardware-assisted virtualiza-

tion, cloud operating systems, containerization, and efficient software switches have

31



contributed to advances in the software implementation of network functions. This

implementation is called virtual network function (VNF). Software-defining network-

ing (SDN), in addition, decouples the control plane from the underlying data plane

and consolidates control functions in a logically centralized controller [76].

NFV and SDN are complementary technologies, once the network function man-

agement benefits from the logically centralized controller to configure data plane,

to chain coherent network functions, and even to balance the network load among

several virtual machine clusters [77]. Figure 4.1 shows how the network function vir-

tualization infrastructure (NFVI), according to the architecture of management and

orchestration of NFV (NFV-MANO) [23], can compose end-to-end microservices

tailored for each application. The NFVI provides the necessary abstractions for

processing, storage and networking to the virtual network functions. Furthermore,

packet forwarding and the consequent infrastructure abstraction into a graph service

function chains can be performed in a flexible manner by the SDN controller [78].

Figure 4.1: The network function virtualization infrastructure, which allows the cre-
ation of virtual links for end-to-end microservices through packet forwarding among
virtual network functions (VNF).

For the sake of simplicity, we define both network function and service function as

synonyms in this manuscript. Some researchers, however, consider a service function

as a composition of one or more chained network functions [79].

4.2 Virtual Network Function Chaining

A key aspect of service function chaining (SFC), also referred as network function

chaining (NFC), is to extend the functionality of the network service by chaining
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specific functions into the network layer. Virtual network functions (VNF) are vir-

tual machines that perform functions on the network layer to replace the numerous

hardware-specific middleboxes that currently exist. Examples of such virtual func-

tions are intrusion detection systems, firewall, proxy, NAT, switches etc.

The basic architecture of service function chaining, according to RFC 7665 [24],

is shown in Figure 4.2. Considering a multi-service environment, a classifier is

configured with specific rules to identify and specify the chain of VNFs that each

service flow must traverse. The chain is defined by a ordered and logical sequence

of VNFs called service function path (SFP). Hence, flows from different micro-

services can simultaneously traverse the same VNF, but each coursing its own service

function path. Virtual network functions may also be hosted on different physical

nodes. Therefore, the service function forwarder (SFF) is a mandatory element

in each network function virtualization infrastructure (NFVI) node to provide the

virtual links to its hosted VNFs.

In the SFC architecture, isolation between micro-service flows in the same VNF is

performed through packet encapsulation. VNFs may be aware or unaware of the SFC

encapsulation. VNFs that are unaware of encapsulation require a precedent element

to decapsulate SFC packets, called SFC Proxy, whereas SFC-aware VNFs need either

a kernel module or a software switch compatible with the SFC encapsulation. The

most consolidated proposal of encapsulation that meets the specification of SFC

architecture is the network service header (NSH) [69]. NSH performs correct packet

forwarding to the next VNF and isolation between micro-service flows thanks to two

main fields, the service index (SI) and the service path identifier (SPI). The SI is an

8-bit index representing the relative position of the current VNF in the chain. The

SPI is a 24-bit identifier associated to a specific service function path described in

a software switch. All forwarding decisions on packets tagged with NSH header are

defined by rules in the software switch and pro-actively orchestrated by the SDN

controller, without resulting in delay for the packet forwarding. Other benefit that

network operators can achieve from NSH encapsulation is the possibility to exchange

meta-data between VNFs using the context fields. This aspect is positive for the

case of mobile Internet which may contain an user identifier to execute tailored

contract-based policies [80].
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Figure 4.2: Basic elements of the service function chaining architecture. The SFC
classifier encapsulates the incoming traffic and the SF forwarder redirects the traffic
to the correct chain based on the encapsulation headers. An SFC proxy enables the
implementation of functions unaware of the SFC encapsulation.

4.3 SFCPerf: An Automatic Performance Evalu-

ation Framework for Service Function Chain-

ing

Different open source NFV platforms are currently being proposed, such as OP-

NFV [81], OpenMANO [82], ClickOS [58]. There are also other approaches for

service function chaining, such as container-based chaining [83], NetBricks [59],

Dysco [84], etc. We modularly design the SFCPerf framework to allow automated

SFC testing, agnostic to the underlying NFV-SFC infrastructure. Our testing

framework provides experiment repeatability for all scenarios, which is essential

to compare different approaches for VNF. When testing different SFC infrastruc-

ture providers, we are able to perform exactly the same experiment over the dif-

ferent infrastructures and, thus, we assure repeatability required to compare the

performance. The SFCPerf framework is illustrated in Figure 4.3 and comprises the

following main components: control, management, driver, passive and active data

collection, analysis, and visualization modules.

Control module is the main component of the architecture. It configures and

coordinates the other SFCPerf modules. The central goals of the control module

are to handle all configuration parameters setup and calibration knobs, to check the

experiment health, and to deliver the testing results to user. The control module

receives a unique document as input data containing a detailed JSON description

of the experiment. The document contains all parameters necessary to perform an

automated testing of a service function chain. The control module also assigns the

correct driver regarding compatibility into different NFV infrastructures.
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Figure 4.3: The proposed SFCPerf framework. The driver module provides an
adaptive interface between the framework and different SFC platforms. The control
module coordinates other modules to provide the environment setup, data collection
and data delivery to user.

Management module governs the NFV-SFC platform and is responsible for

orchestrating operations, such as instantiating and resizing VMs or VNFs. These

operations are instructions to the management module of the NFV-SFC platform

intermediated by the driver module. The management module also manages sensing

tools in the NFV-SFC platform by coordinating the passive data collection module.

The main difference between management and control modules is that the manage-

ment module handles NFV-SFC related operations, while the control handles the

experiment workflow.

Passive data collection module senses physical and virtual resource usage

when performing experimental evaluations of VNFs. The data include information

from telemetry modules of the NFV platform, such as disk, processing and memory

usage of virtual resources, and from a set of data gathering applications executed

on top of VNFs, e.g., tpcdump, top, iotop, free, etc.

Active data collection module consists in a set of probe applications, such

as iperf, ping and httperf that actively measures the network performance. The

applications are hosted in the endpoint VMs and generate traffic that traverses the

chain of VNFs. Thus, traffic is processed in the other termination to obtain the

evaluation metric.

Analysis module performs operations over experimental data, such as data

preprocessing, merging, correlating, and enriching. The module allows to combine

multiple sources of data in a customized manner and to enrich data with additional

information, such as geo-tagging.

Visualization module provides a user-readable interface for data visualization.

The module plots graphs and compares experimentation approaches. We conceive
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Figure 4.4: UML activity diagram of the proposed SFCPerf framework. The frame-
work user interacts with the control module, which sets up the environment, controls
the experimentation, and delivers the obtained data.

the visualization module with Kibana1, a third-party data visualization application

which is a component of the Elastic stack. Kibana implements a web interface that

allows the visualization of data and the design of new observation scenarios in a

simple and fast way. Moreover, Kibana benefits from a high-performance execution

of queries over large volumes of data to provide visualization with low-latency.

Driver module is an essential component to provide compatibility of the frame-

work to any NFV-SFC infrastructure. It provides an RPC interface between frame-

work modules and orchestration components of the NFVI. In our prototype, we use

OPNFV as NFVI platform, thus, the driver sends requests directly to Openstack,

OpenDaylight, and Tacker APIs. For OPNFV, we implement this communication

via RESTful HTTP requests.

The execution of an experiment over SFCPerf is exemplified on the activity dia-

gram, Figure 4.4. We highlight the relationship among modules and their functions.

First, the framework user loads the workflow description file into the control module,

which parses and interprets the test description and calls the appropriate functions

on the management module. All modules deal with the SFC platform through the

driver module, omitted from Figure 4.4 for the sake of simplicity. The control mod-

1Available at https://www.elastic.co/products/kibana.
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Figure 4.5: UML class diagram of the JSON structure of the workflow description
file. The description file contains all parameters to set up the environment, configure
parameters knobs and obtain the desired metrics.

ule also instantiates all data collection modules. The SFC platform hosts tools that

monitor the resource usage and feed the passive data collection module. Moreover,

active data collection takes place between source and destination of the SFC. De-

pending on the tested SFC platform, active data collection is implemented as active

measuring tools instantiated in virtual machines, or on physical machines that be-

have as SFC endpoints. After the accomplishment of measures, the data collection

modules report the gathered data to the management module. The management

module also keeps a local data repository, which is implemented as a non-structured

database (NoSQL) based on the open source Elasticsearch2. The analysis module

computes the result and reports the final metrics to the control module. Finally,

control module exports experimental results to the framework user and publishes it

on the visualization module.

We define a JSON-based description language to represent the detailed configu-

ration of an environment and the workflow of an arbitrary experiment. The workflow

description file is shown in Figure 4.5 as a UML class diagram. The diagram repre-

sents the JSON structure of the parameters defined in the workflow description file.

The parameters include information about endpoints, resource allocation, resource

placement, VNF descriptors, VNF types, VNF chaining order, and the measure-

ments to evaluate the SFC. The VNF descriptor parameter is the path to a VNF

description file based on TOSCA standards and YAML language. Moreover, the

parameters list is adaptable to comprise adjustable knobs of different VNFs.

2Available at https://www.elastic.co/products/elasticsearch.
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4.3.1 The SFCPerf Framework Implementation3

We conceive the framework as a modular object-oriented software project in which

new features are achieved by adding new modules to the framework. Thus, the

SFCPerf is built upon some basic parent classes that provides the API (Application

Programming Interface) for any new module. The driver module, for instance, as-

sures the infrastructure-agnostic property. We conceive this module as a translation

module from the experiments provided by SFCPerf and the NFV platform. For each

different platform, we develop a new driver module as an API between SFCPerf and

the CLI (command line interface) of the new platform. The new driver module inher-

its the main functions from the parent driver module. In our prototype, we develop

a driver for the Tacker VNF manager used in OPNFV. Moreover, automating the

experimentation is achieved by implementing a workflow control mechanism, which

follows the experimentation definition on a JSON file. The experiments are also

implemented as separated independent modules, which are imported and executed

in run-time according to the parameters and the sequence in the JSON file. The

automation also assures the repeatability property of the conducted experiments,

since the JSON input file fully describes the topology and conditions necessary to

orchestrate the SFC and obtain the desired metrics. Furthermore, performance com-

parison between different tests and scenarios are obtained through the execution of

a new round of experiments while inputting the same JSON description file with

slightly changes on the test or scenario configuration. It assures equality of the

experiment conditions as the workflow of the SFCPerf configures the new experi-

mentation scenario and keeps the same experiment parameters. Thus, comparing

the results of different SFC platform resides into running the same JSON file calling

the correspondent driver module of the SFC platform. Repeatability property is

achieved by a new execution of a experiment-definition JSON file. Besides, exper-

iment reproducibility is achieved by providing a copy of the experiment-definition

JSON file with all modules used during the experimentation. It is worth noting that

visualization of the results is also handled by an other module that is imported and

executed in run-time. The default visualization module of the SFCPerf exports the

experiment results to the ElasticSearch database and enables visualization through

Kibana.

4.4 The Service Chain Security Prototype

To demonstrate the functionalities of our proposed SFCPerf framework, we develop

and evaluate a service function chain prototype considering different scenarios. We

3The SFCPerf framework is written in Python language and its source code is available at
https://github.com/ijochem/SFCPerf.
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Figure 4.6: The architecture of a service function chain use case, composed of a vir-
tual intrusion detection system and a firewall, evaluated with the proposed SFCPerf
framework. The intrusion detection system VNF uses a distributed stream process-
ing cloud to analyze data traffic and set blocking rules in real time on the subsequent
firewall VNF.

use the open platform for network function virtualization (OPNFV) with an SDN

and NFV hybrid architecture to implement service function chaining. The chaining

is built upon rules in the software switch Open vSwitch, using the OpenFlow pro-

tocol. These rules are managed by the SDN OpenDaylight controller coupled with

a VNF manager and orchestrator, named Tacker.

One of the main uses for network function virtualization is correspondent to

ensure the correct, coherent and consistent application of policies to network traf-

fic [55]. The prototype to be evaluated from SFCPerf is a chain composed of two

security functions, the proposed intrusion detection system and a firewall. The

intrusion detection system analyzes packets, generates alarms, and defines packet

filtering rules, while the firewall implements the rules, creating security perimeters

on the network. Intelligent chaining of these virtual functions provides the flexibility

to instantiate complex real-time security mechanisms at any point of the network.

The key idea of our prototype is to associate the processing scalability provided

by a streaming processing cloud, realized by Spark4, with the flexibility of secu-

rity functions chaining, in order to enable a real-time response to malicious traffic.

Figure 4.6 shows the architecture of our service function chaining prototype. One

advantage of such architecture is allowing to scale the stream processing jobs along

the mirroring and flow handling in the cloud, and therefore, independent from the

network function virtualization infrastructure.

The main element of the architecture is the intrusion detection system that em-

4Available at https://spark.apache.org/.
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ploys stream processing techniques to perform real-time traffic analysis [85]. The

packets are captured through traffic mirroring by the IDS module, which acts di-

rectly in the chain. These packets are abstracted into quintuple flows, which are

defined as a sequence of packets with the same source IP, destination IP, source

port, destination port, and transport protocol, during a time window. In total 46

quintuple-flow characteristics from the open source tool Flowtbag5 are extracted and

published in a publish/subscribe message service of Apache Kafka [27]. The features

extracted at this part differ from the approach presented in Section 3.2 which we de-

fine flow as IP-IP to detect network-layer attacks. Hence, in this scenario our focus

is in detecting application-layer attacks. After the features are published in the mes-

sage service, the service operates as a filtering and data flow manipulation system

at low latency, in which flow statistics are queued and, then, consumed by the clas-

sification module. The classification module, in turn, is instantiated in a dedicated

cloud for classification and contains Apache Spark as its main processing core. We

select Apache Spark stream processing framework as the core of stream processing

due to the lowest loss rate among other stream processing frameworks [86] and to the

highest number of open-source contributors considering number of Github commits

and users, which also implies in a mature documentation publicly available. Spark is

implemented in a cluster of virtual machines on a master/slave model, which slaves

have a capacity for expansion and reduction of resources. Other stream processing

frameworks, such as Storm6 and Flink7, could also be implemented as the process-

ing core without loss of generalization. Indeed, Flink has been widely adopted in

the literature of intrusion detection due to the native stream processing capabilities

since its conception [87].

The implemented IDS uses the lambda architecture [88], composed of three lay-

ers: a data processing layer, a batch processing layer, and a service layer. The

data processing layer handles real-time flow data, such as feature selection tech-

niques to online classification algorithms [89]. A batch processing layer analyzes

a large amount of data stored through distributed computing techniques, such as

map-reduce. Finally, a service layer aggregates information obtained from the two

previous layers to create outputs of the analyzed data. The IDS classifies mali-

cious or benign flows through machine-learning algorithms based on a decision tree

classification algorithm.

A historical database of network traffic labeled as attack or as normal is used

to train the machine-learning algorithm in an off-line manner [27]. The parameters

calculated during the off-line data processing adjust the classification model in real-

5Available at https://github.com/DanielArndt/flowtbag.
6Available at http://storm.apache.org/.
7Available at https://flink.apache.org/.
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time. Thus, the system is adaptive, as parameters can be updated and adjusted

to new network behaviors. After training, the IDS performs real-time traffic clas-

sification and, by detecting malicious flows, is able to send blocking rules to the

firewall.

To evaluate and compare the performance of different virtual network functions,

we develop a VNF firewall, a prototype of an IDS, and a SFC Proxy. Our VNF

firewall implementation contains a module capable of encapsulating and decapsulat-

ing NSH packets, built upon the open-source Python application vxlan tool8. This

application is extended to support a JSON object that stores blocking rules based

on the 5-tuple of a packet. The 5-tuple stores the source and destination IP ad-

dresses, the source and destination ports and the transport protocol type. Before

forwarding the packet to the subsequent VNF in the chain, the 5-tuple is checked

over the existing set of rules. A RESTful interface is implemented to enable rule

insertions and deletions in the set.

The second evaluated security function is the IDS, which consists of the two

modules described in Section 4.4. The first module acts directly in the chain and

performs two basic functions over the traffic, to extract characteristics of the flows

in a two-second time window, and, at the same time, to forward the packets to the

next VNF. In addition, the VNF publishes the extracted characteristics in the queu-

ing and data-flow manipulation system Kafka to be read by the second processing

module, running outside the chain.

Last, we develop an SFC proxy, shown in Figure 4.7. The main goal of the proxy

is to enable the deployment of VNFs unaware of the SFC encapsulation. Hence,

we hide the NSH encapsulation from the VNF application by instantiating a pair of

user-space interfaces. The VNF application accesses the user-space interfaces like a

common network interface. It is worth noting that OPNFV implementation of NSH

also applies a VXLAN encapsulation to forward packets between the service func-

tion forwarder and the VNF. Our proxy enhances the VXLAN packet handling by

using a software switch in kernel space, which only forwards NSH-encapsulated pack-

ets to the user-space network interfaces. Our proxy deployment is based on Open

vSwitch version 2.8.9 and the NSH encapsulation and decapsulation are performed

by OpenFlow 1.4 rules implemented on user-space Open vSwitch data paths.

4.5 Evaluation and Results

We use the SFCPerf framework to evaluate the service function chaining proto-

type shown in Figure 4.6. The performance and efficiency are evaluated for different

8Available at https://github.com/opendaylight/sfc/blob/master/sfc-test/nsh-tools/
vxlan tool.py.
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Figure 4.7: The architecure of our SFC proxy implementation, in which an NSH-
unaware VNF runs on top of a pair of user-space network interfaces that decapsulate
incoming traffic and encapsulate outgoing traffic with NSH.

topologies and configurations. We implement the experiments over OPNFV Danube

2.09. The OPNFV platform deploys the NFV-MANO reference architecture based

on the cloud operating system OpenStack10. The OPNFV is built through the Fuel

installer in a scenario that provides the service functions chaining architecture ref-

erenced in RFC 7665. This scenario also deploys the SDN controller OpenDaylight,

which manages the data link layer, the VNF manager Tacker, and the software

switch Open vSwitch compatible with NSH. The aforementioned software versions

of Openstack, OpenDaylight, Open vSwitch, and Tacker, used in this work are

branches that have been adapted for integration to the OPNFV platform and are

publicly available in the Danube 2.0 version of OPNFV. It is important to emphasize

that the OPNFV platform is still in development phase, with poor documentation,

and many errors and code bugs had to be debugged and fixed. The network function

chain prototype using NSH is a pioneering implementation in Brazil.

The hardware environment consists of a controller node Intel 8-Core i7-4770

CPU 3.40 GHz processor with 32 GB RAM, and three compute nodes, Intel Xeon

8-core X5570 2.93 GHz processor with 96 GB RAM (node 1), Intel 8-Core i7-6700

CPU, 3.40 GHz with 64 GB RAM (node 2) and Intel 8-Core i7-2600 CPU, 3.40 GHz

with 32 GB RAM (node 3). All machines are interconnected through a top-of-the-

rack switch over 1 Gb/s network interfaces that comprise the five VLANs needed

for OPNFV cloud: public, private, management, storage and Preboot Execution

Environment.

The performance evaluation of the service function chaining is based on the

RFC 7665 architecture using the NSH protocol, as shown in Figure 4.2. Therefore,

SFCPerf analyzes several topologies for different parameters that affect the perfor-

mance of the chaining. The evaluated metrics include the placement of the endpoint

VMs and of the chain of VNFs, defined by each given topology, the overhead that

9Available at https://www.opnfv.org.
10Available at https://www.openstack.org.
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(a) Topology 1. (b) Topology 2. (c) Topology 3.

Figure 4.8: Topologies of the performance evaluation scenarios of the service function
chaining: a) client, server, and chain of VNFs in the same node; b) client and server
on a separated node from the node that hosts the chain; c) client, server, and chain
on three separated nodes.

each network function introduces in the chaining, and the number of virtual pro-

cessing cores requested by a VNF. In addition, the implemented service function

chaining, as well as each developed VNF, are evaluated by SFCPerf. The evaluation

considers latency, throughput and number of responded HTTP requests. Finally,

we evaluate the implemented chaining within a real scenario. We inject real net-

work traffic, which is analyzed, classified and filtered in real time. This evaluation

compares an on-line classification with the off-line classification out of the chain

for accuracy, and for the efficiency of real-time detection and automatic blocking of

malicious flows.

The chosen topologies for evaluation are illustrated in Figure 4.8. The first

topology (Topology 1), illustrated in Figure 4.8(a), uses only one compute node to

instantiate the virtual function chain and the endpoint VMs. Thus, the endpoint

VMs and the VNFs compete for network resources of the same physical node, and

there are no physical link hops between nodes. Figure 4.8(b) shows Topology 2, in

which the endpoint VMs are instantiated on the same node, and the chain of VNFs

on another node. In the third topology (Topology 3), shown in Figure 4.8(c), the

server VM, the client VM, and the chain of VNFs are instantiated in three distinct

nodes. Thus, Topologies 2 and 3 require the use of more software switches, since

each node has a local software switch (Open vSwitch – OvS) to control its network

resources.

Figure 4.9 shows the impact on performance results obtained in each topology

relative to the number of VNFs in the chain and considering a 95% of confidence

interval. It is worth mentioning that the VNFs in this specific scenario are extremely

simple network functions that only forward incoming packets to the next VNF in the

chain. The forwarding process consists in decrementing the service index field by 1

in the NSH protocol header, and then the packet is returned to the Open vSwitch,

which sends it to the next virtual function. Thus, the processing and the delay
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are practically only due to the the overhead of handling the NSH protocol. The

application responsible for these operations is a tool written in Python (vxlan tool)

for tests with the NSH header.
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Figure 4.9: Impact on the performance of network function chains considering: a)
HTTP request rate supported by the chain; b) chain round-trip time; c) chain
throughput; and d) throughput of a single VNF on Topology 1 as a function of the
number of assigned virtual cores.

Figure 4.9(a) compares the three topologies in relation to the rate of HTTP re-

quests performed from a client VM to a server VM that traverses the chain. Note

that Topology 1 provides the best rate of HTTP requests for short chains of VNFs.

The difference, however, becomes negligible when the chain length exceeds 8 VNFs.

It demonstrates that for short chains, the overhead introduced by spreading the

client, server and VNFs on different nodes is the performance limiting factor. Nev-

ertheless, longer chains introduce an overhead that exceeds this factor. Figure 4.9(b)
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shows that the round-trip time in all topologies grows linearly with the increase of

the chain length. Topology 2 presented a significantly lower latency increase than

the other two, because the client and server VMs are on the same physical node,

which decreases the packet round-trip time. The node does not share resources with

other VNFs. We conclude that the increase of physical link hops, as well as the

sharing of resources on the same node are factors that compromise the end-to-end

delay. Hence, Topology 2 presents a fair trade-off of these factors. Figure 4.9(c), in

turn, shows the maximum throughput in packets per second for each topology as a

function of the chain length. The packet size used in the experiments is 1334 bytes,

which represents the maximum transmission unit for the Ethernet packet sent by

the client, which suffers no IP fragmentation with NSH encapsulation. Topology 1

presents a better throughput in relation to the others when chaining few VNFs, due

to lower number of physical link hops between nodes. It is important to notice that

the increase of the number of VNFs in all the topologies implies resources competi-

tion on the node that hosts the chain, which considerably compromises throughput.

The major limiting factor for throughput is the vxlan tool application that decap-

sulates the NSH packets. This application, by default, operates sequentially in only

one processing core, and we extended it for parallel execution on multiple cores.

The effect of this change is observed in Figure 4.9(d), which shows the increased

throughput of a VNF in a unit-length chain in which we allocate more dedicated

virtual processing cores (vCPUs). In this way, VNF retains more processing power

and is able to perform more packet operations per second until it reaches the hyper-

visor processing limit. It is expected, however, that in the next versions of OPNFV

platform, the NSH encapsulation and decapsulation will be implemented as a kernel

module of the operating system of virtual machines to assure performance gain.

Figures 4.10(a) and 4.10(b) characterize the maximum rate of HTTP requests

and the maximum throughput from the VNF firewall when varying the number of

blocking rules configured into the firewall. We observe a linear reduction for both

metrics when we increase the number of rules. This reduction, however, impacts the

performance of the VNF only by 1% for a considerable usage of 500 rules configured

into the firewall. The increase on number of rules also did not significantly impact

the latency for the packets that traverse the firewall VNF, instead the latency kept

a mean value near 2 ms.

As SFCPerf assures repeatability, we designed a scenario and performed a com-

parison experiment of four VNF approaches. Figure 4.11 shows the performance of

one-length chains of two different simple VNFs (a forwarder, and an SFC proxy),

two virtual security functions (a firewall, and a IDS), and of the composition of the

two virtual security functions. In all chains, Topology 1 is used as a reference, pro-

viding only one virtual core for each VNF. It can be observed that the performance
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Figure 4.10: Impact on performance of (a) maximum HTTP request rate (b) maxi-
mum throughput regarding the number of rules from the firewall VNF.

of the VNF that only forwards packets is superior to the other virtual functions and,

thus, it is used as a baseline. Figure 4.11(a) and Figure 4.11(c) show similar results

regarding the maximum rate of HTTP requests and the supported throughput of

each chain. The firewall VNF presents better results than IDS VNF in both metrics,

thus the chain of both VNFs has the performance limited by the IDS, with a small

overhead due to the extra hop between the two VNFs. Figure 4.11(b), however,

shows that the latency overload introduced by each virtual security function is very

low, remaining at a similar time to the baseline threshold. The chain of firewall and

IDS increases by 50% the packet round-trip time, which was already predicted from

Figure 4.9(b). Nevertheless, this value is 33% lower in the case where the firewall

and IDS functions separately operate over the traffic. It is worth to highlight that

the forwarder, which is implemented with the Python vxlan tool, performed better

than the SFC proxy VNF. Although we deploy the NSH-unaware VNF, preceded by

the SFC proxy, as an Open vSwitch associated with a Linux Bridge, the overhead

of copying packets between user-space and kernel-space contexts slows down the

packet handling.

Finally, we use the SFCPerf framework to evaluate the chain for real-time on-

line classification of network traffic dataset of a Brazilian telecommunications oper-

ator [27]. We implement the decision tree machine-learning algorithm for the traffic

classification [27]. First, a fraction of the traffic (20%), labeled as attack or normal

by Suricata IDS11, was used to train the classifier in an off-line manner. The re-

mainder fraction is injected by the client VM in direction to the server and traverses

11Available at https://suricata-ids.org.
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Figure 4.11: Impact on the performance introduced by each virtual security function
and by the chaining of the two VNFs in relation to: (a) maximum rate of HTTP
requests; (b) packet round trip time; and (c) maximum throughput.

the two virtual security functions. Table 4.1 shows the results of the on-line classi-

fication12, comparing the flows that reach the server with those that were blocked

in the core of the network by the virtual firewall.

Table 4.1: Confusion matrix of real-time flow classification and blocking. The flows
that reach the server are represented as Normal, while those blocked by our VNF
as Attack.

TP FP TN FN
Attack 430 2277 4412795 1658973
Normal 4412795 1658973 430 2277

The results show an accuracy of 72.7% for the classification and that 0.02% of

the malicious flows were blocked before reaching the server. However, since the

proposed firewall is a reactive software defense, there is a real reduction of 15% of

the total volume of malicious traffic that reaches the server. Due to the processing

time of a machine-learning classification task, flows that have short duration time

are not feasible to be blocked in real time, since they finish before the detection

12TP: True Positives; FP: False Positives; TN: True Negatives; FN: False Negatives.
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occurs. In the other hand, results show that the chaining of IDS with a firewall was

effective on blocking malicious flows with long duration time. One example of this

malicious flows with such characteristics are connections established by attackers

when having the control of hacked devices to perform DDoS.
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Chapter 5

Conclusion

Distributed threats and coordinated malicious actions are a major concern in the

current network scenario, since most of attacks are not detected when flows are ana-

lyzed separately. Graph Theory combined with machine-learning techniques enable

the automatic identification of threat patterns that are not feasible to be detected

when social interactions among IP addresses are not analyzed. As the first part

of this manuscript, we propose a graph-based algorithm for feature enrichment in

online intrusion detection systems. The proposal enhances the detection of dis-

tributed network threats, such as distributed denial of service, port scans or botnet

traces. We propose an online intrusion detection architecture that employs an en-

richment module containing the proposed enriched algorithm to infer graph-based

features from traffic samples collected in a fixed time window. The architecture of

the IDS is composed of four other modules related to data collection, processing of

machine-learning techniques, visualization, and historical database. In the proposed

enriched process, each set of instances arrived in a time window generates a static

and directed graph. The graph model considers IP addresses as vertices and data

transmission between two IP addresses as edges. The graph of a time window is

parsed into sub-graphs composed of connected components. An algorithm, designed

to run with parallelism over connected components, infers a set of graph-based fea-

tures separated in three categories: local metrics, vertex metrics and edge metrics.

For the algorithm evaluation, we use three different datasets, a synthetic dataset

produced in GTA/UFRJ lab, a network operator dataset containing real data from

broadband users, and a realistic and publicly available botnet dataset. To assess the

impact of our proposal into different machine-learning classifiers, we employ three

distinct learning techniques, decision tree, naive Bayes, and neural network. Addi-

tionally, we evaluate the scenario in which a feature selection module precedes the

classification. Results with a linear correlation filter and a dimensionality reduction

with Principal Component Analysis showed that both techniques reduce the number

of features to be processed at a small cost in the classification performance. The
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exception for this, however, is the PCA reduction employed with the naive Bayes

algorithm, which reduced the amount of features to be processed at the same time it

improved the classification performance. For seven of nine evaluated scenarios, our

enrichment proposal showed an improvement in traffic classification compared to the

original set of features inferred by TCP/IP packet header analysis. The only excep-

tions were the decision tree in the GTA/UFRJ lab dataset, which the performance

remained stable, and for the naive Bayes in the ISCX botnet, where the assump-

tion of independent features do not represent the actually feature correlation for

the dataset. For simpler algorithms, such as naive Bayes, the proposed method im-

proved the accuracy up to 15.7%. We conclude the naive Bayes algorithm, indeed,

is more effective in detecting network threats by using only graph-based features

than if combining it with TCP/IP header features. Finally, comparing the obtained

gain among all algorithms, our proposal was better coupled with neural network

based techniques, which showed improvements in the classification performance for

all evaluated datasets. Indeed, our proposed enrichment reduced up to 9.4% times

the false negative rate for the multilayer perceptron technique. Therefore, our graph-

based feature enrichment proposal is an efficient complementary feature to detect

dissimulated network attacks that are not feasible to be detected when group behav-

ior is not analyzed. We enhanced the overall detection capabilities of coordinated

attacks, from distributed network-layer attacks to botnet C&C traces.

Network security relies not only on the threat detection scheme, but also on the

correct positioning of security solutions in the network. Network function virtualiza-

tion technology paves the way for flexible and on-demand security network function

deployment. Chaining virtual security functions enables the network administrator

to provide complex network services comprised of features developed by different

VNF manufacturers. Hence, mechanisms that automate the chaining of such net-

work functions, perform test benchmarking, and accelerate the development of VNFs

are essential. To this end, in the second part of this work we proposed SFCPerf, an

automatic performance evaluation framework for service function chaining. SFCPerf

assures repeatability for testing and comparison of different virtual network function

chains. SFCPerf is agnostic of the underlying NFV infrastructure, which is manda-

tory for evaluating different NFV proposals in the early stage of NFV technology.

We developed an automatic SFC testing workflow composed of three phases: setup

phase, experimental phase; and post-processing phase. During the setup phase,

SFCPerf orchestrates all the virtual resources and network configuration to prepare

the environment for the test execution. In the experimental phase, our framework

executes and collects the performance measurements from a set of well-defined tests

and metrics defined previously in a test configuration file. For the post-processing

phase, the framework analyzes data from all experiments from a set of desired met-
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rics. We also presented a performance evaluation of a service function chain proto-

type, described by coherent chaining of virtual security functions. We employed the

SFCPerf framework to evaluate the prototype, composed of an intrusion detection

system based on stream data processing in the cloud chained to a reactive firewall.

We construct our prototype based on the European Telecommunications Standards

Institute (ETSI) NFV MANO architecture, the current most mature standard for

NFV architecture. The employed service function chain complies to the RFC 7665,

standardized by the Internet Engineering Task Force (IETF) and to the specifica-

tions of the Network Service Header (NSH) protocol. The results provided by our

proposed SFCPerf framework showed the impact in terms of throughput, round-trip

time, and HTTP request rate of several VNF chaining scenarios. These performance

measures were obtained for different chain implementation topologies, chain lengths,

and varying number of virtual cores offered to VNFs. Our framework allowed the

comparison of the overhead introduced by each virtual function individually. The

results showed that the main impact factors on the performance were the number

of physical link hops between nodes and the competition for resources at shared

physical nodes. Furthermore, the SFC throughput is directly related to the number

of cores assigned to the virtual functions, which determines the number of packets

that each VNF is able to process. Finally, we evaluate our prototype during the

execution of security virtual functions. We tested our security prototype regarding

real-time malicious traffic detection and blocking. The evaluated scenario consisted

of a virtual IDS function automatically setting block rules to the subsequent virtual

firewall function. Results showed that the prototype was able to block 0.02% of

the malicious traffic before they reach the end server, which represented 15% of the

total malicious traffic.

5.1 Future Work

As medium-term future work, we will evaluate the impact of graph-based enrichment

for detecting network traffic anomalies as well as evaluating new set of features

inferred from graph analysis. As long term, we will port our proposed algorithm

to real production state, assisted by stream processing frameworks and distributed

processing. Furthermore, concerning the automation of NFV benchmarking, we will

evaluate the performance of the network function chaining on new topologies and

over different NFV platforms, to assess the performance bottlenecks of other network

function virtualization approaches.
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segurança em redes de computadores: Métodos e aplicações”, Minicursos

do XI Simpósio Brasileiro de Segurança da Informação e de Sistemas

Computacionais (SBSeg 2011), v. 1, pp. 53–103, 2011.

[15] KHETTAB, Y., BAGAA, M., DUTRA, D. L. C., et al. “Virtual security

as a service for 5G verticals”. In: 2018 IEEE Wireless Communications

and Networking Conference (WCNC), pp. 1–6, April 2018. doi: 10.1109/

WCNC.2018.8377298.

[16] PATTARANANTAKUL, M., HE, R., MEDDAHI, A., et al. “SecMANO: To-

wards Network Functions Virtualization (NFV) Based Security MANage-

ment and Orchestration”. In: IEEE Trustcom/BigDataSE/ISPA, pp. 598–

605, ago. 2016.

[17] DA SILVA, A. S., WICKBOLDT, J. A., GRANVILLE, L. Z., et al. “AT-

LANTIC: A framework for anomaly traffic detection, classification, and

mitigation in SDN”. In: NOMS 2016 - 2016 IEEE/IFIP Network Opera-

tions and Management Symposium, pp. 27–35, abr. 2016.

[18] REYNAUD, F., AGUESSY, F. X., BETTAN, O., et al. “Attacks against Net-

work Functions Virtualization and Software-Defined Networking: State-

53



of-the-art”. In: IEEE NetSoft Conference and Workshops (NetSoft), pp.

471–476, jun. 2016.

[19] SANZ, I. J., ANDREONI LOPEZ, M., MATTOS, D. M. F., et al. “A

Cooperation-Aware Virtual Network Function for Proactive Detection of

Distributed Port Scanning”. In: 2017 1st Cyber Security in Networking

Conference (CSNet’17), Rio de Janeiro, Brazil, out. 2017.

[20] MEDHAT, A. M., TALEB, T., ELMANGOUSH, A., et al. “Service Function

Chaining in Next Generation Networks: State of the Art and Research

Challenges”, IEEE Communications Magazine, v. 55, n. 2, pp. 216–223,

fev. 2017. ISSN: 0163-6804.

[21] SENDI, A. S., JARRAYA, Y., POURZANDI, M., et al. “Efficient provision-

ing of security service function chaining using network security defense

patterns”, IEEE Transactions on Services Computing, 2017.

[22] LUIZELLI, M. C., RAZ, D., SA’AR, Y., et al. “The actual cost of software

switching for NFV chaining”. In: 2017 IFIP/IEEE Symposium on Inte-

grated Network and Service Management (IM), pp. 335–343, May 2017.

doi: 10.23919/INM.2017.7987296.

[23] ETSI. ETSI GS NFV-MAN 001: Network Functions Virtualisation; Manage-

ment and Orchestration. Technical report, ETSI, 2014.

[24] HALPERN, J., PIGNATARO, C. Service Function Chaining (SFC) Archi-

tecture. RFC 7665, RFC Editor, October 2015. Available at: <http:

//www.rfc-editor.org/rfc/rfc7665.txt>.

[25] SANZ, I. J., MATTOS, D. M. F., DUARTE, O. C. M. B. “SFCPerf: An auto-

matic performance evaluation framework for service function chaining”.

In: NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management

Symposium, pp. 1–9, April 2018. doi: 10.1109/NOMS.2018.8406237.

[26] E MARTIN ANDREONI LOPEZ, I. J. S., REBELLO, G. A. F., DUARTE,

O. C. M. B. “Um Sistema de Detecção de Ameaças Distribúıdas de Rede
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