74,041 research outputs found

    Neuronal processing of translational optic flow in the visual system of the shore crab Carcinus maenas

    Get PDF
    This paper describes a search for neurones sensitive to optic flow in the visual system of the shore crab Carcinus maenas using a procedure developed from that of Krapp and Hengstenberg. This involved determining local motion sensitivity and its directional selectivity at many points within the neurone's receptive field and plotting the results on a map. Our results showed that local preferred directions of motion are independent of velocity, stimulus shape and type of motion (circular or linear). Global response maps thus clearly represent real properties of the neurones' receptive fields. Using this method, we have discovered two families of interneurones sensitive to translational optic flow. The first family has its terminal arborisations in the lobula of the optic lobe, the second family in the medulla. The response maps of the lobula neurones (which appear to be monostratified lobular giant neurones) show a clear focus of expansion centred on or just above the horizon, but at significantly different azimuth angles. Response maps such as these, consisting of patterns of movement vectors radiating from a pole, would be expected of neurones responding to self-motion in a particular direction. They would be stimulated when the crab moves towards the pole of the neurone's receptive field. The response maps of the medulla neurones show a focus of contraction, approximately centred on the horizon, but at significantly different azimuth angles. Such neurones would be stimulated when the crab walked away from the pole of the neurone's receptive field. We hypothesise that both the lobula and the medulla interneurones are representatives of arrays of cells, each of which would be optimally activated by self-motion in a different direction. The lobula neurones would be stimulated by the approaching scene and the medulla neurones by the receding scene. Neurones tuned to translational optic flow provide information on the three-dimensional layout of the environment and are thought to play a role in the judgment of heading

    Preliminary Studies on the Use of Monoclonal Antibodies as Probes for Sympathetic Development

    Get PDF
    The precise structural organization and proper functioning of the adult nervous system depend on the ability of neurones to make highly ordered synaptic connexions. To define molecules involved in the development of these connexions and to study their functional roles, we use primary cultures of dissociated rat sympathetic neurones grown in the virtual absence of non-neuronal cells. These neurones can develop adrenergic or cholinergic properties, depending on the environment in which they are grown. This ability to manipulate neuronal phenotype is being used in an attempt to identify cell surface macromolecules that are important in the development or function of adrenergic and cholinergic properties. We have produced monoclonal antibodies against the surface membranes of these neurones and are in the process of characterizing them. Results are presented on the binding specificity of one of these antibodies and on the effect of two other antibodies on neurotransmitter synthesis, uptake, and release

    Cellular mechanisms of potassium homeostasis in the mammalian nervous system

    Get PDF
    Double-barrelled ion-sensitive microelectrodes were used to measure changes in the intracellular activities of K+, Na+, and Cl- (aKi, aNai, aCli) in neurones of rat sympathetic ganglia and in glial cells of slices from guinea-pig olfactory cortex. In sympathetic neurones, carbachol and gamma-aminobutyric acid (GABA) produced a reversible decrease of aKi. The decrease of aKi during carbachol was accompanied by a rise of aNai, whereas in the presence of GABA decreases of aKi and aCli were seen. The reuptake of K+ released during the action of carbachol was completely blocked by ouabain, whereas furosemide inhibited the aKi recovery after the action of GABA. In glial cells, in contrast to the observations in the sympathetic neurones, aKi and aCli increased, whereas aNai decreased when neuronal activity was enhanced by repetitive stimulation of the lateral olfactory tract. It was found that barium ions and ouabain strongly reduced the activity-related rise of intraglial aKi in slices of guinea-pig olfactory cortex. These data show that mammalian neurones as well as glial cells possess several K+ uptake mechanisms that contribute to potassium homeostasis. Ouabain, furosemide, and Ba2+ are useful pharmacological tools to separate these mechanisms

    Involvement of cyclic AMP in multiple, excitatory actions of biogenic amines on the cardiac ganglion of the horseshoe crab Limulus polyphemus

    Get PDF
    Cyclic AMP appears to be involved in several excitatory actions of amines on neurones of the Limulus cardiac ganglion. Amines selectively increase levels of cardiac ganglion cyclic AMP with a magnitude and time course similar to that observed for amine-induced excitation of cardiac ganglion burst rate. With respect to either the physiological or biochemical effect, the apparent order of potency is octoparnine\u3eepinephrine==dopamine\u3enorepinephrine. Elevation of cardiac ganglion cyclic AMP levels by octopamine or dopamine is dose-dependent and is potentiated by the phosphodiesterase inhibitor 3-isobutyl 1-methylxanthine (IBMX). Several pharmacological agents which influence cyclic nucleotide metabolism, including forskolin, IBMX and 8-substituted cyclic AMP analogues, have amine-like effects on the Limulus cardiac ganglion. These effects include increased burst rate of the isolated cardiac ganglion and decreased burst duration, interburst interval and number of spikes per burst in follower neurones. Forskolin and IBMX increase levels of cardiac ganglion cyclic AMP, and IBMX also increases cyclic GMP levels in this tissue. Amines, forskolin and IBMX have direct effects on follower neurones pharmacologically isolated from pacemaker cell input. Octopamine, forskolin and IBMX depolarize follower neurones, while dopamine hyperpolarizes these cells. Amines, forskolin and IBMX elicit burst-like potentials in follower neurones, and increase the size of evoked, unitary junction potentials recorded in cardiac muscle fibres. These pharmacological and biochemical data suggest that multiple, excitatory effects of biogenic amines on the Limulus cardiac ganglion are mediated by simultaneous increases in cyclic AMP at several loci within this neural network

    The Organization and Role During Locomotion of the Proximal Musculature of the Cricket Foreleg : I. Anatomy and Innervation

    Get PDF
    The structure of the proximal segments of the cricket (Gryllus bimaculatus) foreleg, together with the associated musculature and its innervation are described. The morphology of 50 motor neurones involved in the control of this musculature has been revealed using backfilling techniques with cobalt, horseradish peroxidase and Lucifer Yellow. The ‘ball and socket’ pleurocoxal joint is moved by three sets of anatomical antagonists (promotor-remotor, abductor-adductor, anterior-posterior rotator muscles) inserted on each side of the three axes of rotation. The axial coxotrochanteral joint is moved by the intrinsic levator and the depressor muscles; these depressors are composed of an intrinsic (coxotrochanteral) and a ‘double’ (pleurotrochanteral) subgroup. The double depressors, and all the muscles inserting on the trochantin (promotors) or the anterior coxal rim (adductor, abductors, anterior rotators) are supplied by at least eighteen neurones, whose axons run in nerve 3. The muscles that insert on the posterior coxal rim (remotors, posterior rotators) are innervated by at least twelve similar neurones whose axons run in nerve 4. The intrinsic coxal muscles are supplied by branches of nerve 5 (ten motor neurones to the levators, two to the depressors). Three presumably common inhibitors, and one Dorsal Unpaired Median (DUM) neurone have also been found

    Development of the early axon scaffold in the rostral brain of the small spotted cat shark (<i>Scyliorhinus canicula</i>) embryo

    Get PDF
    International audienceThe cat shark is increasingly used as a model for Chondrichthyes, an evolutionarily important sister group of the bony vertebrates that include teleosts and tetrapods. In the bony vertebrates, the first axon tracts form a highly conserved early axon scaffold. The corresponding structure has not been well characterised in cat shark and will prove a useful model for comparative studies. Using pan-neural markers, the early axon scaffold of the cat shark, Scyliorhinus canicula, was analysed. Like in other vertebrates, the medial longitudinal fascicle was the first axon tract to form from a small cluster of neurones in the ventral brain. Subsequently, additional neuronal clusters and axon tracts emerged which formed an array of longitudinal, transversal, and commissural axons tracts in the Scyliorhinus canicula embryonic brain. The first structures to appear after the medial longitudinal fascicle were the tract of the postoptic commissure, the dorsoventral diencephalic tract, and the descending tract of the mesencephalic nucleus of the trigeminal nerve. These results confirm that the early axon scaffold in the embryonic brain is highly conserved through vertebrate evolution

    Comparison of Encoding Properties of Campaniform Sensilla on the Fly Wing

    Get PDF
    The wing blade of the blowfly Calliphora vomitoria (L.) carries an array of campaniform sensilla which have previously been divided into slowly and rapidly adapting classes based on their responses to step indentations. In the present study, the physiological characteristics of six sensilla of these two classes are examined within a 20–400 Hz frequency range, using a noise analysis that quantifies linear and nonlinear encoding properties. Both classes exhibit a broad response maximum near 150 Hz, corresponding to the typical wingbeat frequency of the blowfly, and display rectification, limiting the spike response to a narrow portion of a stimulus cycle. The similarity in the encoding properties between the two groups is largely a consequence of the high wingbeat frequency of flies, which precludes any individual neurone from acting as a magnitude detector. Instead, during flight the campaniform neurones might act as ‘one-shot’ detectors, firing a single action potential at a precise phase of each wing stroke cycle. An array of such detectors would be capable of monitoring the passage of a deformational wave as it travels along the wing during each wingbeat
    corecore