
Electric Power Quality Disturbance Classification Using

Self-Adapting Artificial Neural Networks

J.V.Wijayakulasooriya BSc Eng. (Hons)

G.A.Putrus BSc, MSc, PhD, CEng, MIEE

P.D.Minns BSc, PhD, CEng, MIEE

Power and Control Research Group

School of Engineering

University of Northumbria at Newcastle

Ellison Building

Newcastle upon Tyne NE1 5RD

UK

Tel. 0191 227 3107

Fax. 0191 227 3684

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/4146136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Electric Power Quality Disturbance Classification Using Self-Adapting

Artificial Neural Networks

Abstract

The issue of power quality is now recognised as an essential feature of a successful

electric power system. This is mainly due to the rapid increase of loads, which generate

noise and, at the same time, are sensitive to the noise present in the supply system. As a

result, power quality monitoring has become an important issue in modern power

systems.

This paper presents a technique for classifying electrical power quality disturbance

events. The technique is based on a novel Self-Adapting Artificial Neural Network

(SAANN), which has the unique capability of adapting to new disturbance features.

In the proposed technique, distinctive feature vectors from disturbance events captured

are extracted using Fast Fourier Transform (FFT) and Discrete Wavelet Transform

(DWT). The feature vectors are then fed to two SAANN based classifiers, which

classify the captured events into different categories of power quality disturbances. The

proposed technique is tested using a number of disturbance events and results are

presented.



1. Introduction

In a typical power quality monitoring system, the voltage and/or current waveforms at

certain buses are recorded and then analysed to identify known power quality

disturbance signatures[1,2]. If the process of power quality monitoring is fully

automated, it will enable the utilities to respond more effectively to customer

complaints.

Many of the techniques proposed in the literature are designed to reflect the knowledge

and experience of an engineer for disturbance classification by using artificial

intelligence in the form of Artificial Neural Networks (ANNs), Fuzzy logic, etc [3-5].

These techniques use feature vectors derived from the captured waveforms to classify

the disturbances, as shown in Figure (1). However, the main problem seen with these

techniques is that they are not able to adapt to new types of disturbances.
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Figure (1)

Block diagram of a typical disturbance classification system

One of the approaches that have been investigated is to use an unsupervised ANN, such

as Self-Organising Map (SOM) for disturbance classification [3]. The advantage of

SOM is that, it tries to identify significant patterns in the disturbance feature vectors and

assign them to different disturbance classes [6,7]. This is done based on a similarity

criterion. However, there are no straightforward techniques for determining the best

structure of a SOM. In some cases, a number of neurones in the SOM may be redundant

after the learning process, whereas in other cases it may not be enough to classify the



entire set of feature vectors. In case of power quality disturbance classification, this will

affect the correct classification, as the features of different disturbance classes vary

when new types of disturbance sources are added to the system. Therefore, a neural

network with a flexible structure is required for this purpose.

An ideal power quality disturbance classification scheme should be able to classify

presently known disturbances as well as be able to adapt to new features of

disturbances. In addition, it should be able to improve its existing ‘knowledge’ while it

is in operation. The Self-Adapting Artificial Neural Network (SAANN) based technique

proposed in this paper provide these features.

2. The Self Adapting Artificial Neural Network (SAANN)

Basically, the structure of the proposed SAANN is similar to that of a SOM. It has an

input layer and a competitive layer consisting of several nodes referred to as neurones,

as shown in Figure (2). A distinctive feature vector (FV) representing an event to be

classified is fed into the input layer and the competitive layer assigns the feature vectors

to different disturbance classes, C1, C2…Cj.
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Figure (2)
Structure of the SAANN



During the learning process of the SAANN, each of these neurones is selected to

represent a group of feature vectors (FV) belonging to a particular disturbance class and

having similar features. However, it should be noted that a particular disturbance class

might have one or more neurones associated with it depending on its features. The

weight vector  N21 w......,w,wW  at the input of each neurone has a dimension

that is equal to the dimension of FV. It contains the mean value of a group of feature

vectors represented by the corresponding neurone. Therefore, weight vector W(G), of a

certain feature vector group (G) with NG feature vectors, could be obtained by

calculating the mean value of all the feature vectors in that group, as given by equation

(1).
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In the proposed SAANN, in addition to W, another vector referred to as deviation

vector  N21 d.........,d,dD is introduced for each neurone. It contains information about

how particular groups of feature vectors are scattered around its centre value. The

deviation vector D is calculated using equation (2).
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Each neurone of the SAANN also has a counter  N21 p......ppP  , which

contains the number of feature vectors represented by the corresponding neurone. One

of the main differences between the SAANN and other ANNs is that it does not have

any neurones initially. Neurones are added during the learning process of the SAANN

by looking for similar groups of feature vectors. Each time a feature vector FV is fed to

the SAANN, a parameter denoted by C(n) is calculated using equation (3), which



represents the closeness of FV to all the weight vectors [W(n) , n=1,2,…..N] of the

existing neurones in the SAANN,
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The maximum value of C ( C(max) ) is compared with a threshold  . If C(max)  , it

means that all the feature vector groups represented by the neurones in SAANN are

distant from FV. In other words, FV does not fit into any of the existing feature vector

groups. In such case, a new neurone is added to the system.

If C(max)  , the corresponding neurone is referred to as the winner neurone and the

input feature vector could be classified into the disturbance associated with the winner

neurone. In addition, FV is added to the group of feature vectors represented by the

winner neurone. This is done by adjusting the corresponding weight vector W(G) and the

deviation vector D(G) of the winner neurone.

A flow chart to illustrate the above algorithm is shown in Figure (3).

During the learning process, some of the neurones may become redundant. That is, the

group of feature vectors represented by these neurones is better represented by another

close neurone. In such a case a neurone merging procedure is used to combine closely

related neurones and eliminate the redundant neurones.

In the neurone merging process, the weight vectors of each neurone are fed to the

SAANN and the corresponding values for C(n) are calculated. By finding the maximum

value of C(n), the corresponding closest pair of neurones are identified and replaced with

a new neurone combining the properties of both neurones.



Figure (3)

A flow chart of the SAANN algorithm

3. Disturbance classification using SAANNs

3.1. Pre-processing of disturbance signals

The captured waveform is first processed using a suitable technique to distinguish

steady-state events from transition events. The steady-state event is that where the

incoming signal waveform does not change during a predefined time period (typically 1
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minute). Examples of such event are harmonic distortion, under voltage, over voltage,

etc. The normal operating condition with no disturbances is obviously considered as a

steady-state event. Other events are termed as transition events where the signal

waveform is different from one cycle to another. Examples of transition events are

transients, voltage sags and swells. In order to classify these events, distinctive feature

vectors from each disturbance event waveforms have to be extracted.

For steady-state events, the frequency components of the signal are sufficient to

describe the event uniquely. Therefore, a steady-state event is represented by the

magnitudes of its Fourier coefficients, which are calculated using the Fast Fourier

Transform (FFT) [8]. A feature vector of 2 elements is extracted, which contains the

magnitude of the fundamental frequency component as one element and the sum of

energy in all other frequency components as the other element.

In case of transition events, the frequency components of the signal vary within one

cycle period. Therefore, the Discrete Wavelet transform (DWT) is used for extracting

features from waveforms captured during transition events [9,10]. The DWT transforms

a signal from the time domain into a time-frequency domain, where both the frequency

components of the signal and their variation with the time are obtained. In the proposed

technique, a feature vector with 63 elements (calculated using the DWT) is

implemented.

3.2. Training of the SAANN

The SAANN, unlike other neural networks, always learn and adapt itself to new

environments. When it is initially installed in a power system, it will classify most of

the events as unclassified. At this stage, the operator should give the classes of events to

the SAANN. With more and more disturbances experienced, the SAANN eventually



learns to classify events correctly and its overall classification accuracy increases. In

this learning method, the classifier takes a long time to achieve an acceptable accuracy

level. Therefore, before installing the classifier on a real power system, it is desirable

that the SAANN be trained using some known disturbance signals selected from each

disturbance class. This will make the classification task easier than starting from zero

level. In addition, this will minimise the effect of frequency of occurrence of a certain

disturbance type on the accuracy of that type. Also, it will prevent the network

‘forgetting’ the features of a type that occurs infrequently.

Training data need not necessarily be real disturbance signals, as they only provide a

basis to start with. Once the classifier is connected to a real system, it adapts itself to the

real data. So there is always room for improving the performance. The neurones trained

using simulation data will be always updated using the real event data. If there are any

real feature vectors which considerably differ from the simulated feature vectors, the

SAANN automatically adds new neurones to cope with such events. Using this method,

the classification task becomes easier than starting from zero level.

In the work presented in this paper, two SAANNs (SAANN-1 and SAANN-2) are

trained for classifying steady-state events and transition events, respectively. For

SAANN-1, 25 feature vectors are used from each disturbance class. In addition, 100

feature vectors are used to represent harmonic distortion. In order to train SAANN-2, 50

feature vectors from each disturbance class are used. In case of oscillatory transients,

100 feature vectors are used. The feature vectors are continuously presented to the

corresponding SAANN until the number of neurones converges to a constant value.



4. Results and Discussion

The proposed feature extraction technique is applied to waveforms recorded during

different types of disturbance events such as impulsive transient, oscillatory transient,

etc. Figure (4) and Figure (5) show the time-domain waveforms captured and the

corresponding feature vector in the form of a scalogram during an impulsive transient

event and oscillatory transient event, respectively. The darkness of a cell in the

scalogram represents the energy of the signal in a particular frequency range and a

particular time period.

Figure (4)

Captured voltage waveform during an impulsive transient and its corresponding

scalogram



Figure (5)

Captured voltage waveform during an oscillatory transient and its corresponding

scalogram

The SAANNs are trained using a number of feature vectors collected during various

disturbance events. The variation of number of neurones in SAANN-1 and SAANN-2

with each iteration of the learning process is shown in Figure 6(a) and 6(b),

respectively. It can be seen that, during the early stage of the learning process, neurones

are added to the network at a higher rate as compared to the later stage where the

number converges to a constant value.

After the number of neurones converges to a constant value, a neurone merging

algorithm is applied to eliminate the redundant neurones. In the proposed work, the

sizes of the SAANN-1 and SAANN-2 were reduced from 62 to 59 neurones and 158 to

90 neurones, respectively.

Both SAANN-1 and SAANN-2 have been tested using data sets, obtained from both

experimental tests and computer simulation. The percentage classification accuracy

obtained from SAANN-1 and SAANN-2 are listed in Table 1 and Table 2, respectively.
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Type
(%) accuracy

(before merging)

(%) accuracy

(after merging)

Normal condition 88 88

Supply interruption 80 80

Under voltage 88 88

Over voltage 100 100

Supply interruption 97 97

Over all accuracy 93 93

Table 1: Classification accuracy of SAANN-1

Type
(%) accuracy

(before merging)

(%) accuracy

(after merging)

Impulsive transients 100 98

Oscillatory transients 96 94

Voltage swell 98 94

Voltage sag 98 96

Supply interruption 100 100

Over all accuracy 98 96

Table 2: Classification accuracy of SAANN-2

The results obtained show that the overall classification accuracy is 98% and 93% for

transition event and steady-state events, respectively. This is comparable with the

percentage accuracy of the techniques proposed by Ghosh and Lubkeman [3] (95%),

Damrala, et al [4] (>70%). However, it was observed that 2.5% and 1.33% events are

unclassified in steady-state and transition events, respectively. New neurones can be

added to the SAANN in case of unclassified events increasing the classification

accuracy further. It should be noted that some events have similar classification

accuracy which is due to the fact that such events have similar distribution in the feature



space. Also, it is not only the number of feature vectors that determine the accuracy of

classification but also the characteristics of these vectors that make them distinctive.

The results also show that removing the redundant neurone does not have any effect on

the classification accuracy for steady-state event classification. In case of transition

event classification, the overall accuracy is reduced from 98% to 96%. However,

considering the large number of neurones removed from the SAANN (43%), this

reduction in accuracy is insignificant.

5. Conclusions

A disturbance classification technique employing new SAANNs has been developed

and is described in this paper. Unlike other neural networks, the SAANN always learn

and adapt itself to new environments. This makes the classification accuracy of the

SAANN dependent upon the frequency of occurrence of a certain event. However, this

problem can be overcomed if the SAANN is trained using known disturbance signals

selected from each disturbance type before installing the classifier on a real system. The

advantage of the SAANN is that training data need not be real disturbance signals, as

they only provide a basis to start with. Once the classifier is connected to a real system,

it adapts itself to the real data.

The features associated with power quality disturbances vary from time to time as new

types of disturbance sources may be added to the power system. The proposed

technique has the capability of adapting to new disturbance features by its self-growing

technique. In addition, it learns the statistical properties of known disturbances by self-

tuning the weight vectors with every input disturbance. This makes the proposed

SAANN technique ideally suited for power quality disturbance classification.
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