9,931 research outputs found

    FHL1 activates myostatin signalling in skeletal muscle and promotes atrophy

    Get PDF
    Myostatin is a TGFβ family ligand that reduces muscle mass. In cancer cells, TGFβ signalling is increased by the protein FHL1. Consequently, FHL1 may promote signalling by myostatin. We therefore tested the ability of FHL1 to regulate myostatin function. FHL1 increased the myostatin activity on a SMAD reporter and increased myostatin dependent myotube wasting. In mice, independent expression of myostatin reduced fibre diameter whereas FHL1 increased fibre diameter, both consistent with previously identified effects of these proteins. However, co‐expression of FHL1 and myostatin reduced fibre diameter to a greater extent than myostatin alone. Together, these data suggest that the expression of FHL1 may exacerbate muscle wasting under the appropriate conditions

    Myostatin dysfunction is associated with reduction in overload induced hypertrophy of soleus muscle in mice

    Get PDF
    Acknowledgements This project was also supported by Marie Curie International Reintegration Grant 249156 (A. Lionikas) and the grants VP1-3.1-SMM-01-V-02-003 (A. Kilikevicius) and MIP-067/2012 (T. Venckunas) from the Research Council of Lithuania as well as the grant from the Ministry of Higher Education of Saudi Arabia (Y. Alhind). We wish also to thank Mrs Indre Libnickiene for her excellent technical assistance provided during the project.Peer reviewedPostprin

    MANDIBULAR SHAPE IN MYOSTATIN-DEFICIENT MICE: A GEOMETRIC MORPHOMETRIC ANALYSIS

    Get PDF
    The relationship between muscle function and mandibular morphology is unclear. Manipulating the size or function of muscle and then observing the effect on adjacent bone is one way to explore this relationship. The premise is that muscles under function create stress and strain on bone, thereby altering bone morphology. Myostatin knockout (MKO) mice are hypermuscular and may be used as an animal model to study this muscle-bone association. Previous studies comparing MKO mice have used conventional cephalometric analyses to compare their skeletal morphology to wild-type controls. The objective of our study is to provide a phenotypic description of the mandible in MKO mice compared to wild-type CD-1 control mice by quantifying their shape variation at 28 days of age utilizing a geometric morphometric approach. The hypothesis proposes that epigenetic muscle-bone interactions during development cause mandibular shape changes in MKO mice compared to the wild-type controls by 28 days of age. The present sample included nine wild-type and eight MKO mice 28 days old. Eleven mandibular landmarks were recorded on each cephalogram. The landmarks were aligned using Procrustes superimposition method and new coordinates were created to perform a canonical variates analysis (CVA). Results found a significant difference in the mean mandibular shape between the MKO and wild-type groups (Procrustes statistic: 0.047; p = 0.014). The inferior border of the mandible of the myostatin-deficient mice showed increased curvature and decreased ramal height when compared to the wild-type mice. The curved mandible phenotype here may be analogous to the ‘rocker’ mandible reported to be prominent in the Polynesian population. These findings suggest that changing muscular forces altered mandibular morphology most dramatically in regions associated with masticatory muscle attachments

    Ranking of Sire Breeds and Beef Cross Breeding of Dairy and Beef Cows

    Get PDF
    End of Project ReportSummary There is general agreement across countries on the ranking of beef breeds for production and carcass traits. Differences between dairy and early maturing beef breeds in growth and slaughter traits are small, but the latter have lower feed intake and better carcass conformation. Late maturing beef breeds also have lower feed intake and better carcass conformation and in addition, have a higher growth rate, kill-out proportion and carcass muscle proportion. When factors such as age and fatness are accounted for, differences between breeds in meat quality traits are small. Differences amongst breed types in kill-out proportion can be explained by differences in gut contents (consequent on differences in feed intake), differences in the proportions of gastrointestinal tract and metabolic organs, differences in hide proportion, and differences in offal fats. Growth is an allometric, rather than an isometric, process. Some parts, organs and tissues grow relatively more slowly than the animal overall, and so become decreasing proportions over time, while others grow relatively faster and become increasing proportions. With increasing slaughter weight, the proportions of non carcass parts, hind quarter, bone, total muscle and higher value muscle decrease, while the proportions of non carcass and carcass fats, fore quarter and marbling fat all increase. Because of heterosis or hybrid vigour, the productivity of cross-bred cattle is superior to the mean of the parent breeds. While calving difficulty may be slightly higher (probably due to greater birth weight), calf mortality is much reduced in cross-breds. In addition, general robustness and growth rate are increased. There are additive effects of heterosis in the dam and the progeny. When cross-bred cows are mated to a bull of a third breed, >60 % of total heterosis is attributable to the cross-bred cows. The double muscling phenotype in beef cattle is due to the inactivated myostatin gene, but the inactivating mutation is not the same in all breeds and other genes also contribute to muscling. Compared to normal animals, double muscled animals have lower proportions of digestive tract, internal fats and metabolic organs. This explains their superior kill-out proportion. They also have a smaller hind shin that helps accentuate the muscling in the remainder of the 4 limb. There are similar degrees of muscular hypertrophy in both the hind and fore quarters. Muscle to bone ratio is about one third greater in double muscled than in normal carcasses. Piedmontese cattle with none, one or two mutated myostatin alleles were compared with normal Herefords and Limousins. In the absence of any mutated allele, Piedmontese were similar to Herefords, with one mutated allele they were similar to Limousins and with two mutated alleles they were immensely superior to Limousins. In fact, the response to the second mutated allele was about three times that to the first. If progeny approximated to the mean of the parent breeds, crossing a double muscled sire with a dairy or early maturing beef cow would result in cattle of similar characteristics to pure-bred late maturing beef breeds. This does not happen because double muscling is dependent on a homozygous myostatin genotype. The progeny of a common cow breed and normal late maturing, or double muscled, sire breeds have similar production traits

    Skeletal muscle myopenia in mice model of bile duct ligation and carbon tetrachloride-induced liver cirrhosis

    Get PDF
    Skeletal muscle myopathy is universal in cirrhotic patients, however, little is known about the main mechanisms involved. The study aims to investigate skeletal muscle morphological, histological, and functional modifications in experimental models of cirrhosis and the principal molecular pathways responsible for skeletal muscle myopathy. Cirrhosis was induced by bile duct ligation (BDL) and carbon tetrachloride (CCl4) administration in mice. Control animals (CTR) underwent bile duct exposure or vehicle administration only. At sacrifice, peripheral muscles were dissected and weighed. Contractile properties of extensor digitorum longus (EDL) were studied in vitro. Muscle samples were used for histological and molecular analysis. Quadriceps muscle histology revealed a significant reduction in cross-sectional area of muscle and muscle fibers in cirrhotic mice with respect to CTR. Kinetic properties of EDL in both BDL and CCl4 were reduced with respect to CTR; BDL mice also showed a reduction in muscle force and a decrease in the resistance to fatigue. Increase in myostatin expression associated with a decrease in AKT-mTOR expressions was observed in BDL mice, together with an increase in LC3 protein levels. Upregulation of the proinflammatory citochines TNF-a and IL6 and an increased expression of NF-kB and MuRF-1 were observed in CCl4 mice. In conclusion, skeletal muscle myopenia was present in experimental models of BDL and CCl4-induced cirrhosis. Moreover, reduction in protein synthesis and activation of protein degradation were the main mechanisms responsible for myopenia in BDL mice, while activation of ubiquitin-pathway through inflammatory cytokines seems to be the main potential mechanism involved in CCl4 mice

    Pharmacological strategies in lung cancer-induced cachexia: effects on muscle proteolysis, autophagy, structure, and weakness

    Get PDF
    Muscle wasting and cachexia are important systemic manifestations of highly prevalent conditions including cancer. Inflammation, oxidative stress, autophagy, ubiquitin-proteasome system, nuclear factor (NF)-kB, and mitogen activated protein kinases (MAPK) are involved in the pathophysiology of cancer cachexia. Currently available treatment is limited and data demonstrating effectiveness in in vivo models are lacking. Our objectives were to explore in respiratory and limb muscles of lung cancer (LC) cachectic mice whether proteasome, NF-kB, and MAPK inhibitors improve muscle mass and function loss through several molecular mechanisms. Body and muscle weights, limb muscle force, protein degradation and the ubiquitin-proteasome system, signaling pathways, oxidative stress and inflammation, autophagy, contractile and functional proteins, myostatin and myogenin, and muscle structure were evaluated in the diaphragm and gastrocnemius of LC (LP07 adenocarcinoma) bearing cachectic mice (BALB/c), with and without concomitant treatment with NF-kB (sulfasalazine), MAPK (U0126), and proteasome (bortezomib) inhibitors. Compared to control animals, in both respiratory and limb muscles of LC cachectic mice: muscle proteolysis, ubiquitinated proteins, autophagy, myostatin, protein oxidation, FoxO-1, NF-kB and MAPK signaling pathways, and muscle abnormalities were increased, while myosin, creatine kinase, myogenin, and slow- and fast-twitch muscle fiber size were decreased. Pharmacological inhibition of NF-kB and MAPK, but not the proteasome system, induced in cancer-induced cachectic animals, a substantial restoration of muscle mass and force through a decrease in muscle protein oxidation and catabolism, myostatin, and autophagy, together with a greater content of myogenin, and contractile and functional proteins. These findings may offer new therapeutic strategies in cancer-induced cachexia.Fil: Chacon Cabrera, Alba. Universitat Pompeu Fabra; España. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Fermoselle, Clara. Universitat Pompeu Fabra; España. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Urtreger, Alejandro Jorge. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Mateu Jimenez, Mercè. Universidad Carlos III de Madrid. Instituto de Salud; España. Universitat Pompeu Fabra; EspañaFil: Diament, Miriam. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología; ArgentinaFil: Bal, Elisa Dora. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Sandri, Marco. Università di Padova; ItaliaFil: Barreiro, Eshter. Universitat Pompeu Fabra; España. Universidad Carlos III de Madrid. Instituto de Salud; Españ

    Systemic Problems: A perspective on stem cell aging and rejuvenation.

    Get PDF
    This review provides balanced analysis of the advances in systemic regulation of young and old tissue stem cells and suggests strategies for accelerating development of therapies to broadly combat age-related tissue degenerative pathologies. Many highlighted recent reports on systemic tissue rejuvenation combine parabiosis with a silver bullet putatively responsible for the positive effects. Attempts to unify these papers reflect the excitement about this experimental approach and add value in reproducing previous work. At the same time, defined molecular approaches, which are beyond parabiosis for the rejuvenation of multiple old organs represent progress toward attenuating or even reversing human tissue aging

    A key role for leukemia inhibitory factor in C26 cancer cachexia

    Full text link
    Cachexia is an exacerbating event in many types of cancer that is strongly associated with a poor prognosis. We have identified cytokine, signaling, and transcription factors that are required for cachexia in the mouse C26 colon carcinoma model of cancer. C2C12 myotubes treated with conditioned medium from C26 cancer cells induced atrophy and activated a STAT-dependent reporter gene but not reporter genes dependent on SMAD, FOXO, C/EBP, NF-κB, or AP-1. Of the gp130 family members IL-11, IL-6, oncostatin M (OSM), and leukemia inhibitory factor (LIF), only OSM and LIF were sufficient to activate the STAT reporter in myotubes. LIF was elevated in C26 conditioned medium (CM), but IL-6, OSM, TNFα, and myostatin were not. A LIF-blocking antibody abolished C26 CM-induced STAT reporter activation, STAT3 phosphorylation, and myotube atrophy but blocking antibodies to IL-6 or OSM did not. JAK2 inhibitors also blocked C26 CM-induced STAT reporter activation, STAT3 phosphorylation, and atrophy in myotubes. LIF at levels found in the C26 CM was sufficient for STAT reporter activation and atrophy in myotubes. In vivo, an increase in serum LIF preceded the increase in IL-6 in mice with C26 tumors. Overexpression of a dominant negative Stat3Cβ-EGFP gene in myotubes and in mouse muscle blocked the atrophy caused by C26 CM or C26 tumors, respectively. Taken together, these data support an important role of LIF-JAK2-STAT3 in C26 cachexia and point to a therapeutic approach for at least some types of cancer cachexia.R01 AR060217 - NIAMS NIH HHS; UL1 TR000157 - NCATS NIH HHS; UL1-TR000157 - NCATS NIH HHShttp://www.jbc.org/content/290/32/19976.full.pdf?sid=936d126d-814b-4f54-961d-0e98caa31314Published versio
    corecore