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The relationship between muscle function and mandibular morphology is unclear.  Manipulating 

the size or function of muscle and then observing the effect on adjacent bone is one way to 

explore this relationship.  The premise is that muscles under function create stress and strain on 

bone, thereby altering bone morphology.  Myostatin knockout (MKO) mice are hypermuscular 

and may be used as an animal model to study this muscle-bone association.  Previous studies 

comparing MKO mice have used conventional cephalometric analyses to compare their skeletal 

morphology to wild-type controls.  The objective of our study is to provide a phenotypic 

description of the mandible in MKO mice compared to wild-type CD-1 control mice by 

quantifying their shape variation at 28 days of age utilizing a geometric morphometric approach.  

The hypothesis proposes that epigenetic muscle-bone interactions during development cause 

mandibular shape changes in MKO mice compared to the wild-type controls by 28 days of age. 

The present sample included nine wild-type and eight MKO mice 28 days old.  Eleven 

mandibular landmarks were recorded on each cephalogram.  The landmarks were aligned using 

Procrustes superimposition method and new coordinates were created to perform a canonical 

variates analysis (CVA).  Results found a significant difference in the mean mandibular shape 

between the MKO and wild-type groups (Procrustes statistic: 0.047; p = 0.014).  The inferior 

border of the mandible of the myostatin-deficient mice showed increased curvature and 

decreased ramal height when compared to the wild-type mice.  The curved mandible phenotype 
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here may be analogous to the ‘rocker’ mandible reported to be prominent in the Polynesian 

population.  These findings suggest that changing muscular forces altered mandibular 

morphology most dramatically in regions associated with masticatory muscle attachments. 
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1.0   INTRODUCTION 

The concept that skeletal form is influenced by extrinsic mechanical forces has been known for 

over a century (reviewed by Murray, 1936).  Skeletal muscles are a major source of mechanical 

loading on bones.  In the early 1960’s, based on a great deal of early experimental work in 

animal models, Moss developed the functional matrix hypothesis as a theoretical model to 

explain how muscles and other soft tissues affect skeletal form in the craniofacial complex (Moss 

and Salentijn, 1969).  Capitalizing on the muscle-bone relationship, orthodontists often attempt 

to change an individual’s pattern of craniofacial growth by altering muscle function (Wall, 

2006). 

Manipulating the size and/or function of muscle and then observing the effect on adjacent 

bone is one method for exploring the dynamic relationship between these tissues.  For example, 

an increase in muscle mass can change patterns of mechanical stress on the corresponding bones, 

thereby altering bone morphology (Raadsheer et al., 1999, Pepicelli et al., 2005, Thongudomporn 

et al., 2009).  In the craniofacial complex, changes in the size and shape of the mandible often 

occur as a consequence of primary changes in masticatory muscle function (Pepicelli et al., 

2005).  In the clinical orthodontic community, there is a great need to understand the 

mechanisms underlying growth of the facial skeleton and the factors that determine its form.  To 

what degree can orthodontists alter craniofacial growth patterns?  How important is muscle size 

and function and how should this factor into our treatment decisions?  How well can 
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orthodontists predict how a patient’s face will grow?  Predicting whether a patient will be a 

favorable or unfavorable grower may determine what treatment will serve them best.  Human 

skull morphology is multifactorial and hypermuscularity may be but one of the many factors 

involved (Menegaz et al., 2010, Vecchione et al., 2007).  Perhaps more important to 

orthodontists than skull morphology is determining the effect that muscles have on the mandible.  

Several muscles of mastication insert on the mandible making it particularly susceptible to 

masticatory forces. 

Myostatin knockout (GDF-8 myostatin-deficient) mice have been used as an animal 

model for studying craniofacial growth in relation to masticatory muscle mass and function.  

Myostatin is a negative regulator of skeletal muscle growth. Animals lacking myostatin have 

been found to have dramatically larger muscles (Walsh and Celeste, 2005, Vecchione et al., 

2007, 2010, Welle et al., 2009, Cray et al., 2011, Kneib et al., 2011).  Previous studies by 

Vecchione et al. (2007, 2010) have examined craniofacial morphology of myostatin-deficient 

mice using conventional cephalometric analysis.  These studies have noted that adult myostatin 

knockout mice were more brachycephalic and had smaller cranial vaults and maxillary lengths 

than wild-type controls (Kneib et al., 2011, Vecchione et al., 2007) especially once they were 

weaned at 28 days (i.e., switched to a hard diet) (Vecchione et al., 2010).  The mandibular shape 

of the knockout mice is different than the wild-type controls by 180 days and has been shown to 

be “rocker shape” (Vecchione et al., 2007).  These studies have focused on the entire craniofacial 

complex; the present study will elaborate on mandibular morphology.  

Traditional cephalometric analysis uses a limited set of linear distances, angles, areas of 

triangles, and ratios as parameters to quantify the form of craniofacial structures.  As a tool for 

describing morphology, however, this type of approach is rife with limitations (McIntyre and 
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Mossey, 2003).  Consequently, techniques other than conventional cephalometric analysis should 

be explored in an effort to more fully describe mandibular morphology in this mouse model and 

the role of the muscle-bone relationship in craniofacial growth. 

The main objective of this study will be to provide a more comprehensive phenotypic 

description of the mandible in myostatin knockout mice compared to wild-type CD-1 control 

mice by quantifying their shape variation at 28 days of age.  Geometric morphometrics will be 

used to analyze shape.   
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2.0  BACKGROUND AND LITERATURE REVIEW 

2.1 MUSCLE, BONE AND THE FUNCTIONAL MATRIX 

The role of muscles in the growth and development of skeletal form is very complex.  Final 

skeletal morphology results from numerous factors working in concert, including genetic, 

epigenetic and extrinsic environmental factors (Beecher and Corruccini, 1981, van Limborgh, 

1982, Renaud et al., 2010).  Intrinsic genetic factors operating inside of the cells have a local 

influence, and are the result of the DNA sequence.  The growth of skeletal elements (e.g., the 

mandible) is determined not by a single gene, but rather by complex patterns of genes controlling 

development (Cheverud et al., 1997, Klingenberg et al., 2001, Oshikawa et al., 2004).  

Epigenetic factors create a non-genetic change which alters the phenotype but not the DNA 

sequence of an organism (Renaud et al., 2010).  An example of an epigenetic factor is hormones 

which are produced in one region of the body and have an effect at a distant site.  In a study by 

Vogl et al. (1993), the impact of growth hormone on skeletal development was studied in mice.  

They found that growth hormone influenced the length of long bones and in the mandible had the 

largest effect on areas of muscle attachment.  The bone of the mandible is plastic and can be 

remodeled during postnatal growth by its interaction with muscles (Renaud et al., 2010).  

Environmental factors may also be general or local.  General environmental factors include food 

and oxygen; local environmental factors include muscle function, which produces strain patterns 



 5 

in associated bones.  In fields such as orthodontics, the goal is to modify local environmental 

factors to alter the pattern of skeletogenesis for therapeutic effect.  This fact highlights the 

importance of understanding the role that muscles, a local environmental factor, play in shaping 

the final morphology of bone.      

In general, mechanical stimulation created by the functioning muscles on bone is 

anabolic or osteo-inductive (Judex et al., 2009).  Conversely, in animals with severe muscle mass 

reduction or complete loss of muscle attachment, the required strain threshold may not be 

reached and bone atrophy may occur (Beecher and Corruccini, 1981).  This is considered disuse-

induced bone loss (Menegaz et al., 2010, Poliachik et al., 2010).  During very early development, 

a lack of proper muscle function can even result in craniofacial deformity (Schmitt et al., 2010). 

As early as 6 to 8 weeks in embryonic development, facial muscles can be observed contracting 

(Hall, 2010).  Lack of muscle functioning has been linked to ocular hypertelorism, flat zygoma 

and midface, high bridge of nose, depressed tip of nose, small and open mouth, trismus, 

microretrognathia, small tongue, and abnormal palate (Hall, 2010).  Functional loading is 

complex and its effect on bone is dependent on many factors such as: strain type, normal or 

shear; strain magnitude, dynamic or static; and the number of loading cycles, or strain frequency 

(Judex et al., 2009).  The biological response of bone to mechanical stimuli may also be 

influenced by genetics, gender, and baseline morphology (Judex et al., 2009).  A more recent 

study looked at the effect of transient muscle paralysis on adjacent bone in mice (Poliachik et al., 

2010).  The experiment isolated one muscle group in the hindlimb of mice and found significant 

cortical and trabecular bone loss within 3 weeks of muscle paralysis.  The author concluded 

“these data confirm the essential role that normal muscle function plays in the homeostasis of an 
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adjacent bone” (Poliachik et al., 2010).  Also, trabecular bone was found to be more resilient 

than cortical bone to the loss of muscle function.        

Throughout the history of the study of growth and development, various hypotheses have 

been put forth to understand the factors governing the development of skeletal morphology.  

Classically, it was thought that purely genetics alone determined skeletal growth and 

morphology (Carlson, 1999).  Based on this theory, craniofacial growth and form were 

considered immutable.  Orthodontists who believed this concept were only able to reposition the 

teeth within the patient’s genetically predetermined jaws.  With advances in developmental 

biology it has become clear that genes are not the only factor determining craniofacial growth 

(Carlson, 1999).  Theories involving bone, cartilage, and soft tissues as the primary determinants 

of growth have been suggested (Carlson, 1999; Moss and Rankow, 1968; Profitt et al., 2007).  It 

is clear through various experiments that neither bone nor cartilage are the primary factors of 

growth but rather act as secondary sites (Carlson, 1999; Profitt et al., 2007).  In the 1960’s 

Melvin Moss proposed the functional matrix hypothesis based on previous work by van der 

Klaauw (Carlson, 1999).  According to Moss’ paradigm, soft tissues were the primary 

determinant of craniofacial growth (Moss and Rankow, 1968).  Moss divided the head into 

functions (e.g. digestion) with each function being carried out by a single functional cranial 

component.  Each functional cranial component consists of both a functional matrix and a 

skeletal unit.  The functional matrix (e.g. muscles) actually carry out the function of the 

component; while, the skeletal unit’s duty is to protect and support its specific functional matrix 

(Moss and Rankow, 1968).  After experimentation Moss stated that “…the functional matrix is 

primary and that the presence, size, shape, spatial position and growth of any skeletal unit is 

secondary, compensatory and mechanically obligatory to changes in size, shape, spatial position 
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of its related functional matrix” (Moss and Rankow, 1968).  Based on this concept, bone merely 

responds to changes in soft tissues.  This emphasis on the plasticity of bone led to the possibility 

of using growth modification in orthodontics to correct facial deformity (Carlson, 1999).        

2.2 MASTICATORY MUSCLE FUNCTION AND MANDIBULAR FORM 

Numerous studies have altered masticatory forces in various ways to test their effect on 

craniofacial form.  One common approach is to manipulate the type of diet for a set of animals 

and observe changes in skeletal morphology.  The influence of a hard or soft diet alters the size 

and function of the masticatory muscle apparatus resulting in altered skeletal loading patterns, 

which ultimately affects craniofacial form (Beecher and Corruccini, 1981, Menegaz et al., 2010, 

Ravosa et al., 2007, Renaud et al., 2010).  These effects are not limited to the jaws and often 

extend to distal areas of the cranial vault.  A recent study looking at rabbits with a hard diet, and 

therefore exhibiting increased masticatory stresses, reported deeper pterygoid plates, shorter 

basisphenoid, greater face size relative to basicranial length, and increased thickening of the 

cranial vault compared to the soft-diet group (Menegaz et al., 2010).  In another study comparing 

hard and soft diet rats, the maxillary length and width, mandibular length, condyle length, body 

weight, and masseter weight appeared to be larger in the hard diet rat population (Beecher and 

Corruccini, 1981).  In general, rats raised on a hard diet have greater condylar and craniofacial 

dimensions and increased temporomandibular joint cartilage thickness (Beecher and Corruccini, 

1981, Ravosa et al., 2007).  The changes illustrated above emphasize the plasticity of the 

craniofacial complex during postnatal development in response to altered masticatory strain 

patterns.  
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Another way to investigate the model that supports muscle involvement in craniofacial 

form is to examine the relationship among muscle forces during biting, the resultant stresses on 

bone, and the ultimate changes in skeletal morphology that follow.  For example, increased 

muscle mass, based on cross-sectional area or thickness, has been shown in studies to alter bone 

morphology (Raadsheer et al., 1999; Pepicelli et al., 2005; Thongudomporn et al., 2009).  Larger 

muscle mass exerts an increased bite force magnitude on the bone.  An interaction exists among 

bite force magnitude, jaw muscle size, and craniofacial morphology (Raadsheer et al., 1999).  An 

experimental study by Thongudomporn et al. (2009) using human subjects investigated the effect 

of maximum bite force on alveolar bone morphology parameters. The results found that 

maximum bite force influenced alveolar bone thickness and shape, but not arch width.  These 

findings imply that masticatory function plays a role in determining alveolar bone morphology.  

Despite a positive association, alveolar bone thickness and shape were only found to contribute 

to 10-20% of the morphologic variation in bone (Thongudomporn et al., 2009).   Raadsheer et al. 

(1999) in a study measuring human bite force, concluded that 58% of the variance in bite force 

could be accounted for by variation in muscle size and craniofacial morphology.  Both of these 

findings suggest that factors other than maximum bite force must also be contributing to alveolar 

bone morphology. 

Humans with a strong bite force have been shown to present with brachycephalic facial 

types while those with a weaker bite force tend to display more dolichocephalic facial patterns 

(Humphrey et al., 1999, Pepicelli et al., 2005, Ueki et al., 2006, Zepa et al., 2009).  This pattern 

is not seen in children and only appears in adulthood (Humphrey et al., 1999).  According to 

Profitt and Fields (1983), something must happen after the age of 10 and before growth is 

completed that does not allow the mandibular elevator muscles of long-face children to increase 
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in strength.  It is not clear whether jaw-muscle function determines growth or vice versa 

(Pepicelli et al., 2005).  Weaker muscles have less of an effect on craniofacial morphology than 

do larger muscles, creating a greater variation among subjects with weaker muscles. The precise 

relationship between form and function is still unclear.  A large amount of research has been 

focused on understanding the factors that influence the shape of the mandible.  It is a 

morphologically complex structure, where initial form appears to be largely determined by 

genetic factors, followed by subsequent alteration via remodeling under mechanical load later in 

development (Beecher and Corruccini, 1981; Klingenberg et al., 2001; Menegaz et al., 2010).    

All of the major muscles of mastication insert on the mandible making masticatory forces in this 

region very important to final mandibular form (Cheverud et al., 1997).  Studies have shown that 

even late in postnatal development the mandible is remodeled through interactions with muscles 

and shows high plasticity (Renaud et al., 2010). 

According to Moss’ functional matrix theory previously described, the mandible can be 

divided into 6 microskeletal units: basal, condyloid, coronoid, angular, alveolar, and symphyseal 

(Moore, 1973).  Classical osteology viewed the mandible as a whole; while, Moss suggested it is 

actually composed of several relatively independent units integrated in function (Moss, 1969).  

The results of a study by Moss and Simon (1968), show that the angular process, a skeletal unit, 

changes shape with age as a result of changes in the orientation of its functional matrix, the 

masseter and the medial pterygoid muscles.  As the masseter moves from a vertical line of action 

to a more oblique orientation, the angular process flares laterally.  The postnatal development of 

the angular process is dependent on the presence of the masseter and internal medial pterygoid 

muscles (Avis, 1961).  Removal of the angular cartilage in rats has been shown to result only in 

the absence of the angular process, while growth of all other mandibular skeletal units is normal, 
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illustrating the relative independence of skeletal units (Moss, 1969).  Many other studies have 

been performed that come to the same conclusion: if a mandibular functional matrix is altered, 

there will be changes to its corresponding skeletal unit (Avis 1959, Avis 1961, Horowitz and 

Shapiro 1951, Horowitz and Shapiro 1955, Moss 1969, Riesenfeld 1969). 

Various animal and human studies have been done using different techniques to 

investigate the relationship between masticatory muscles and mandibular shape.  In a study by 

Nanda et al. (1967), the masseter muscle was unilaterally repositioned more anteriorly in dogs.  

The authors found that the masseter muscle on the experimental side was smaller and positioned 

more vertically than on the control side; however, the skeletal changes were limited and less than 

anticipated.  The authors concluded that although muscle function is important in determining 

the size and shape of facial form, there are other factors that must be involved as well.  In a more 

extreme example of altered muscle position, the effect of muscle resection was studied in an 

experiment by Yonemitsu et al. (2007). The masseter muscles were resected bilaterally in rats to 

determine the effect of masticatory force on the mandible and condylar shape.  The authors 

found that various regions of the mandible experienced decreased bone formation as a result of 

masseter resection.  Of the masticatory muscles, the masseter is one of the most important 

elevator muscles contributing to bite force magnitude (Eckhardt et al., 1997).  Unilateral 

resection of the masseter muscle in rats causes asymmetrical mandibular growth and 

malocclusion (Pratt, 1943).  These data suggest that masseter function is important in rat 

mandibular growth.   

A more current study by Renaud et al. (2010) compared the epigenetic effect of two 

different methods for inducing plastic shape variation in mice mandibles.  The authors compared 

two sources of mandibular remodeling: muscular dystrophy and food consistency.  Bone 
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remodeling is an important determinant of bone morphology but depending on the source, the 

pattern of remodeling may vary (Renaud et al., 2010).  The pattern of remodeling is dependent 

on masticatory function postnatally.  Results showed that mice with muscular dystrophy, which 

affects all muscles, causes shape changes generalized over the entire mandible; while mice with 

altered food consistency show more localized changes to the molar region and area of masseter 

insertion.  Thus, certain regions of the mandible may be more prone to remodeling than others. 

Many studies have measured patterns of muscular activity to investigate the relationship 

between malocclusion and muscles (Moss and Chalmers, 1974).  A study by da Silva and 

Cecanho (2009) studied the effect of locally applying an anabolic steroid to the masseter muscle 

of growing rats.  The authors found a strong relationship between neuromuscular activity and 

skeletal morphogenesis.  Results showed that the Frankfurt mandibular plane angle (FMA) 

decreased as did the gonial angle which were both most likely an indirect effect created by the 

increased functional force of the larger muscles (de Silva and Cecanho, 2009).  A certain subset 

of these studies use electromyography (EMG) to measure the masticatory muscle activity in 

subjects with malocclusion.  Despite advances in measuring muscle activity, there is still 

controversy over the association between masticatory muscle activity and skeletal form (Kitai et 

al., 2002).  One particular study found that the resting surface electromyography (sEMG) 

activities of the masseter and anterior temporal muscles were increased in Class III subjects 

compared to normal and Class II subjects (Tecco et al., 2007); while, another study noted that 

resting EMG levels in Class III subjects were lower than in Class II subjects (Sabashi et al., 

2009).  The precise relationship between antero-posterior mandibular position and masticatory 

muscle activity is mixed in the literature; however, most studies do agree that subjects with Class 

III malocclusion have an abnormal masticatory muscle balance compared to normal subjects 
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(Deguchi et al., 1995, Moss and Chalmers, 1974, Zepa et al., 2009).  In patients with mandibular 

prognathism, the morphology of the masseter and temporal muscles and distribution of 

masticatory forces differ from that found in normal subjects (Eckhardt et al., 1997, Kitai et al., 

2002, Ueki et al., 2006, Yamaoka et al., 2001).  If patients with Class III skeletal malocclusion 

innately have different masticatory muscle patterns when compared to normal patients, then the 

ability of such muscles to adapt after either orthognathic surgery or traditional orthodontics may 

be critical to achieving a successful treatment outcome and long-term stability (Kitai et al., 2002, 

Zepa et al., 2009).  A study by Eckhardt et al. (1997) noted that after completion of orthognathic 

surgery for Class II correction, the masseter activity approximated that of Class I subjects.  In 

contrast, Class III subjects’ post-orthognathic surgery masseter activity levels did not approach a 

normal pattern.  This lack of muscle adaptivity after surgery in Class III patients may be an 

important source of relapse. 

2.3 EFFECT OF MYOSTATIN (GDF-8) MUTATIONS ON CRANIAL AND 

MANDIBULAR FORM 

The studies previously mentioned provide evidence that muscles have a growth modifying 

potential on bone.  In addition to experimental studies involving manipulation of masticatory 

muscle function directly by the investigator, transgenic knockout mice exhibiting 

hypermuscularity can be used to model the effects of excessive loading on the craniofacial 

complex.  Growth and differentiation factor 8 (GDF-8-/-) or myostatin-deficient mice exhibit a 

doubling of muscle mass (Elkasrawy and Hamrick, 2010, Ravosa et al., 2007).  Myostatin is a 

negative regulator of skeletal muscle growth and is a member of the transforming growth factor-
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beta (TGF-β) signaling family (Vecchione et al., 2007).  Certain phenotypic characteristics have 

been associated with the loss of myostatin in mice.  For example, decreased myostatin has been 

shown to result in increased skeletal muscle mass and bone rigidity.  The increased size of 

skeletal muscle results from both cell hyperplasia and hypertrophy (Vecchione et al., 2010).  In 

addition, the diameters of some long bones in myostatin-deficient mice are widened in the 

transverse plane (Schmitt et al., 2010).  Myostatin-deficient mice have been used in recent 

studies to determine the relationship between craniofacial morphology, hypermuscularity, and 

increased bite force (Ravosa et al., 2007, Elkasrawy and Hamrick, 2010).  The exact mechanism 

by which myostatin alters the size and shape of bone is unclear.  Some uncertainty remains about 

whether the strength of masticatory muscles determines craniofacial morphology, or vice versa 

(Pepicelli et al., 2005).  In the example of myostatin knockout mice, this may cause an increase 

in muscle mass thereby influencing bone indirectly through functional loading.  Others have 

suggested a more direct effect of the absence of myostatin on bone osteogenesis (Elkasrawy and 

Hamrick, 2010).  Although the exact mechanism is still elusive, it is clear that changes to 

craniofacial muscles will create alterations to the size and shape of bone.  

Mice are often the animal model of choice in experimental studies; however, myostatin is 

also considered an important regulator of muscle growth in humans (Welle et al., 2009).  In 

addition to the hypermuscularity seen in myostatin-deficient mice, similar phenotypic findings 

have been found in cattle (e.g., the breed Belgian Blue and Piedmontese) and in hypermuscular 

children with myostatin mutations (Walsh and Celeste, 2005).  When choosing an animal model 

it is important to determine the type of information that is to be extrapolated from such a model.  

The data may be extrapolated to humans and the effect of muscles on their craniofacial 

morphology if an appropriate model is chosen.  According to Siegel and Mooney (1990), there 
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are different levels of hypothesis testing which may be used to determine the appropriate animal 

model.  According to the authors, phyletic affinity to humans is not always needed nor desired in 

an experimental study.  In the case of studying muscles and their effect on bone morphology a 

generic animal model is sufficient to provide a descriptive phenotype as long as there is no 

attempt to draw any additional conclusions beyond this level.   

In mice, myostatin alters muscles which in turn play a role in skeletal morphology.  More 

specifically, masticatory muscles have been shown to be important due to their influence on 

craniofacial morphology.  As noted by Pepicelli et al. (2005) muscles in the maxilla and 

mandible are important in the etiology and treatment of malocclusions and jaw deformities, and 

also for the stability of treatment.  Considering the importance of musculature on craniofacial 

morphology, studies describing the craniofacial phenotype of myostatin-deficient mice are 

warranted.       

Focusing on the craniofacial phenotype, Vecchione et al. (2007) compared male CD-1 

myostatin knockout mice to wild-type controls at 6 months of age.  Lateral and dorso-ventral 

radiographs were taken for both groups of mice.  The authors found that the myostatin knockout 

mice by 6 months of age already presented with altered craniofacial morphology compared to the 

controls.  Significant differences between the wild-type and myostatin knockout mice were 

found for cranial vault length, maxillary length, mandibular body length, and mandibular shape 

index.  In general, the myostatin knockout mice were larger than the wild-type mice by 6 months 

of age.  The myostatin-deficient mice had significantly greater body weight and masseter muscle 

mass as well.  They were found to be more brachycephalic and showed remodeling of the jaw 

creating a “rocker-shaped” mandible.  This was similar to the ‘rocker’ mandible found in 

Hawaiian skulls (Schendel et al., 1980).  “Rocker-shaped” mandibles are characterized by a 
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convex inferior border of the ramus, decreased gonial angle, absence of an antegonial notch, and 

no defined angular notch (Houghton, 1978).  This alteration to bone morphology may be the 

result of increased muscularity found in the Polynesian population. 

Along with the findings of a more brachycephalic facial form, the myostatin-deficient 

mice exhibited longer mandibles and a smaller mandibular height-to-length measurement.  A 

positive association was noted between masseter muscle weight and craniofacial shape.  This 

data was interpreted as a difference in bite force, resulting from increased masseter muscle mass, 

causing altered stress patterns on the mandible which lead to changes in craniofacial 

morphology.  Conventional cephalometric analyses were performed to interpret the landmarks on 

the lateral and dorso-ventral radiographs.  The results of this study are similar to those reported 

by Elkasrawy and Hamrick (2010) who found that myostatin-deficient mice were more 

brachycephalic and had an increased mandibular body length.  In addition to those findings, they 

also reported an increase in symphysis bone mineral density, masseter and temporalis attachment 

sites, condyle and condylar head bone mineral density, buccal articular cartilage thickness, and a 

decrease in buccal condylar convexity.  There also appears to be increased bone density between 

normal and myostatin-deficient mice along with different patterns of plasticity between the 

mandibular corpus and symphysis (Ravosa et al., 2007).  This data suggests the presence of a 

distinct morphologic phenotype in myostatin-deficient mice.      

After determining that mice which are myostatin-deficient are phenotypically different 

than the control mice by 6 months of age, the authors studied different age groups to establish 

whether these differences were present at birth or acquired with age.  Vecchione et al. (2010) in a 

follow-up study compared the craniofacial morphology of mice at 1 day of age to those at 180 

days of age.  Myostatin-deficient mice at 1 day of age were noted to be significantly different in 
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several important factors when compared to 180 day old mice and their respective controls.  The 

myostatin-deficient mice at 1 day of age were significantly smaller in size than the control mice.  

However, by 180 days of age they were showing significantly larger muscle mass and body size 

compared to controls.   

To find the age at which myostatin-deficient mice begin having a larger body size than 

their matched controls, Mooney et al. (2010) assessed mice at 1, 28 (weaning), 56 and 180 days 

of age.  The results showed that by 28 days of age the myostatin-deficient mice were already 

different than the 1-day-old mice.  The myostatin-deficient mice were slightly smaller skeletally 

than age-matched controls at 1 day of age.  However, by 28 days, the myostatin-deficient mice 

had significantly larger body and masseter muscle weight, greater cranial vault length and height, 

and an altered mandibular shape index.  The differences became more pronounced in the 56- and 

180-day-old mice, respectively.  In general, myostatin-deficient mice had a longer mandibular 

body length, larger body and masseter muscle weight, and shorter craniofacial length.  

Qualitatively, it was shown that the myostatin-deficient mice were more brachycephalic with 

remodeled mandibular rami and a “rocker-shaped” mandible by 180 days of age (Vecchione et 

al., 2010).  The previous studies by Vecchione et al. (2007, 2010) traced only four landmarks on 

the mandible and measured body length and mandibular shape index.  Although these studies 

provided some insight into mandibular morphology, further research is needed to provide a more 

complete description of the differences between the myostatin-deficient and the control mice.  

Using approaches other than traditional linear measurements to extract shape information will 

provide quantitative results as opposed to mere qualitative observations.  While the previous 

studies have suggested morphological differences between the mandibles of myostatin-deficient 
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mice and their respective controls, additional research in this area will provide us with the ability 

to measure the precise relationship. 

2.4 AN ALTERNATIVE APPROACH TO QUANTIFYING BIOLOGICAL SHAPE 

The most traditional method for orthodontists to measure skeletal size and shape is with the use 

of a lateral cephalogram.  In the clinical context, the two main reasons for analysis of lateral 

cephalograms are to provide descriptive and predictive information about patients (Baumrind 

and Frantz, 1971).  Despite its everyday use in clinical orthodontics, there are inherent 

limitations when basic cephalometric analyses are used to capture salient aspects of 

morphological variation.  Traditionally, cephalometric analysis is performed using traced 

landmarks on the radiograph by measuring linear distances, angles, areas of triangles, and ratios 

(McIntyre and Mossey, 2003).  However, there are limitations to the kinds of biologically 

relevant information which can be drawn from such parameters.  Namely, only the most 

rudimentary information about shape is captured.   In modern morphometrics, the term shape 

includes “…all features of landmark configurations except for overall size, position, and 

orientation” (Klingenberg, 2002).  By using this definition, it is clear that the conventional 

cephalometric approach provides limited information about craniofacial shape.  According to 

McIntyre and Mossey (2003), conventional cephalometric analysis is not very effective at 

describing irregular structures, like those that comprise the craniofacial complex.        

As a consequence of the limitations to conventional cephalometric analysis it is prudent 

to evaluate other options for evaluation of craniofacial morphology.  One such leading option 

that has been widely used in the field of evolutionary and developmental biology is geometric 
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morphometrics. Geometric morphometric emerged in the 1980’s, building on more traditional 

morphometric approaches used in the 1960’s and 1970’s (Adams et al., 2004).  These methods 

rely on multivariate statistics for the quantitative analysis of shape.  Multivariate statistics are 

essential when more than one variable is to be compared, because most likely the variables are 

not completely independent of each other and should not be treated as such (McIntyre and 

Mossey, 2003).  Morphometrics allows scientists to quantify subtle differences in shape that may 

be present on a continuum and may not be apparent through other means of analyses 

(Klingenberg, 2010).  Another advantage of geometric morphometrics is that one can represent 

shape variation, since the geometric information encoded in landmark data is preserved 

throughout the analysis (Adams et al., 2004).   

Similar to conventional cephalometric analysis, landmarks or outline methods are 

required in techniques applying geometric morphometric analyses.  However, geometric 

morphometrics attempts to extract the shape information from the data by adjusting for 

orientation, rotation, and size differences by using the Procrustes superimposition method 

(Klingenberg, 2010).  According to this method described by Klingenberg (2010), the traced 

forms are taken from their original configuration coordinates, scaled to the same size and re-

oriented to a common but arbitrary coordinate system where they are translated and rotated to an 

optimal fit.  Once the new landmark coordinate data are generated, a multivariate analysis is 

performed on the data to either examine within-group shape variation or describe the shape 

differences across multiple groups.   

Previous studies have used conventional cephalometric analysis to compare the 

craniofacial morphology of myostatin-deficient mice to wild-type controls.  However, there are 

limitations to the data provided by such analyses.  Further studies extracting shape information, 
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such as geometric morphometrics, are needed to provide a more complete phenotypic description 

of mandibular morphology in myostatin-deficient mice.  
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3.0  MATERIALS AND METHODS 

3.1 SAMPLE 

The study sample was comprised of nine wild-type (four males and five females) and eight GDF-

8 -/- myostatin-deficient mice (eight males and zero females).  A preliminary review revealed that 

sexual dimorphism was not a factor in the mice and both sexes could be grouped together.  It is 

common practice to group both male and female mice in the same group.  All mice were on a 

CD-1 background.  The myostatin-deficient mice were created by deletion of the C-terminal 

region of the myostatin gene in embryonic stem cells (McPherron et al., 1997).  These were the 

same sample of mice used by Mooney et al. (2010).  The mice were housed together and given 

food (Harlan TekLad hard rodent chow) and water as needed.  The knockout mice were housed, 

bred and killed at the Medical College of Georgia and subsequently sent to the University of 

Pittsburgh for imaging and analysis.  The wild-type CD-I mice were housed at the University of 

Pittsburgh.  The mice were killed at 28 days of age by CO2 overdose according to IACUC 

approved protocols. 

Mouse skulls were disarticulated and weighed. Masseter muscles were then dissected and 

weighed wet to the nearest 0.001g on a Mettler vacuum balance.  Heads were then fixed in 10% 

neutral buffered formalin for 24 hrs, and transferred to 70% ethanol for radiographic analysis.  

Lateral radiographs were taken using a Faxitron MX-20 (Faxitron X-Ray Corporation) at 35 kV 
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for 250 sec at 5 x magnification with X-OMAT V diagnostic film (Kodak) as described in the 

previous studies by Vecchione et al. (2007; 2010).  The same radiographs will be used in this 

present study.  Radiographs will be scanned at hi-resolution (600 dpi) on an AGFA DuoScan 

large-format flatbed scanner using AFGA FotoLook 3.2 software (Wilmington, MA, USA).   

3.2 DATA ACQUISITION 

Each scanned image was imported into Photoshop CS3 (Adobe, Inc) and adjusted for contrast 

and brightness.  Although the geometric morphometric approach includes a registration step, 

each image was adjusted for orientation prior to landmark collection.  This step was performed 

because we planned to collect points corresponding to the maximum curvature of structures, and 

the collection of such relational points can be affected by the native orientation of images.  This 

pre-orientation step involved digitally superimposing a grid over the image of the mandible and 

then rotating the image until the occlusal plane was aligned to the horizontal axis.  A set of 11 

landmarks were collected by a single investigator (F.J.) on the lateral cephalometric radiographs 

using the TPSdig2 program (see Figure 1) and the resulting x,y coordinates saved.  On the lateral 

cephalogram the following landmarks were collected: (1) the most prominent point between the 

incisal edges of the lower incisors; (2) superior-most point on incisor alveolar rim at midline 

(bone-tooth junction); (3) anterior edge of alveolar process where first molar hits alveolus at the 

midline; (4) intersection of molar alveolar rim and base of coronoid process; (5) apex of 

coronoid process; (6) the most posterosuperior point of the condylar process; (7) most concave 

subcondylar point; (8) tip of mandibular angle; (9) superior-most point on inferior border of 

mandibular ramus; (10) inferior-most point on the curvature of the body of the mandible; and 
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(11) inferior-most point on incisor alveolar rim at midline (bone-tooth junction) (Figure 1).  All 

landmarks were captured twice from each scan and assessed for intra-observer reliability by 

calculating intraclass correlation coefficients (ICC).  The resulting ICC values were above 0.80 

for all landmarks in all dimensions; thus all 11 landmarks were included in the final analysis.  

The x,y coordinates associated with the landmarks were averaged across the two sessions and 

saved for analysis. 

3.3 STATISTICAL METHODS 

A geometric morphometric approach was used to assess mandibular shape variation.  The 11 

individual landmark coordinate configurations were first aligned to one-another using the 

Procrustes superimposition method (Figure 2).  In this procedure, the original configurations are 

scaled to the same size, translated to the same location, and rotated to an optimal fit 

(Klingenberg, 2010).  This procedure results in a new coordinate data set which contains 

information only relating to the traced object’s shape.  These shape coordinates are then typically 

projected (transformed) into a linear space, allowing them to be subjected to a variety of standard 

parametric statistics. 

A canonical variates analysis (CVA) was performed on the shape coordinate variables.  

Conceptually similar to discriminant function analysis, CVA is a multivariate data reduction 

method designed to maximize the differences between two or more pre-existing groups in a 

given dataset (Zelditch et al., 2004).  In the present analysis, CVA was used to test whether mean 

mandibular shape is equivalent in wild-type and myostatin-deficient mice (i.e., are the two mean 

shapes different?); this is typically accomplished with an omnibus shape test.  Furthermore, CVA 
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can identify which specific aspects of mandibular shape variation are most important for 

distinguishing between mouse groups (i.e., where are the salient shape differences located?).  A 

hallmark of the geometric morphometric approach is the ability to visualize shape variation as 

positional shifts in the relative location of landmarks; this is possible because the variables in the 

analysis are landmark coordinates which have intrinsic geometric and spatial properties.  As a 

result, with CVA one is able to visualize the magnitude and direction of shape differences across 

groups in a straightforward manner.  

The CVA procedure was carried out in two ways: (1) with unadjusted shape variables and 

(2) with allometry-adjusted shape variables.  Removing the effects of allometry (size related 

shape) can be important because allometric effects can sometimes obscure or confound the 

variation of interest.  Allometry was removed by performing a regression of centroid size (used 

here as a general mandibular size measure) on the shape variables.  The residuals from this 

analysis (allometry-free shape variables) were then subjected to a second CVA.  The relationship 

between observed mandibular shape variation and masticatory muscle mass was assessed by 

computing the non-parametric correlation between each specimen’s score from the CVA and 

their muscle weight.  All shape analyses were performed in the program MorphoJ. 

The CVA comparing shape between 28 day old GDF-8 mutant mice and wild-types 

yielded suggestive evidence of a group difference  in mean mandibular shape (Procrustes 

statistic: 0.041; p = 0.087).  Regression analysis of centroid size on shape revealed strong 

allometry effects, with 16.79% of the shape variation in the dataset accounted for by size (p = 

0.0058).  This regression plot is shown in Figure 3.  CVA on the allometry-adjusted shape 

variables resulted in a significant difference in the mean mandible shape between the mutant and 

wild-type groups (Procrustes statistic: 0.047; p = 0.014).  The clear group separation along the 
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main canonical axis of shape variation is shown in Figure 4 .   A correlation between masseter 

muscle weight and shape was calculated to be -0.456, indicating that the shape of the GDF-8 

mutant mice get more different from the wild-types as masseter muscle weight increases.  

Mandibular wireframe deformations associated with the CVA (after adjusting for 

allometry) showed that the inferior border of the mandible of the myostatin-deficient mice had 

increased curvature and the height of the ramus was decreased when compared to the wild-type 

mice.  These wireframes are shown in Figure 5 and Figure 6.  The aforementioned increase in 

mandibular curvature was driven primarily by superior displacement of the gonial angle (ML 8) 

along with points associated with the anterior inferior body of the mandible (ML10 and ML11).  

The noted decrease in ramus height was driven principally by inferior displacement of points 

associated with the coronoid and condylar process (ML5 and ML6).  Concomitant buccal tipping 

of the mandibular incisor (ML1) was also observed in the GDF-8 mutant group.     
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4.0  RESULTS 

The CVA comparing shape between 28 day old GDF-8 mutant mice and wild-types yielded 

suggestive evidence of a group difference  in mean mandibular shape (Procrustes statistic: 0.041; 

p = 0.087).  Regression analysis of centroid size on shape revealed strong allometry effects, with 

16.79% of the shape variation in the dataset accounted for by size (p = 0.0058).  This regression 

plot is shown in Figure 3.  CVA on the allometry-adjusted shape variables resulted in a 

significant difference in the mean mandible shape between the mutant and wild-type groups 

(Procrustes statistic: 0.047; p = 0.014).  The clear group separation along the main canonical axis 

of shape variation is shown in Figure 4.   A correlation between masseter muscle weight and 

shape was calculated to be -0.456, indicating that the shape of the GDF-8 mutant mice gets more 

different from the wild-types as masseter muscle weight increases.  

Mandibular wireframe deformations associated with the CVA (after adjusting for 

allometry) showed that the inferior border of the mandible of the myostatin-deficient mice had 

increased curvature and the height of the ramus was decreased when compared to the wild-type 

mice.  These wireframes are shown in Figure 5 and Figure 6.  The aforementioned increase in 

mandibular curvature was driven primarily by superior displacement of the gonial angle (ML 8) 

along with points associated with the anterior inferior body of the mandible (ML10 and ML11).  

The noted decrease in ramus height was driven principally by inferior displacement of points 
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associated with the coronoid and condylar process (ML5 and ML6).  Concomitant buccal tipping 

of the mandibular incisor (ML1) was also observed in the GDF-8 mutant group.     
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5.0  DISCUSSION 

For many years studies have sought to understand the association between muscles and bone 

morphology.  The premise is that muscles under function create stress and strain on bone, 

thereby altering bone morphology.  Perhaps most important to orthodontists is how this 

phenomenon operates in the mandible.  The muscles of mastication, which typically include the 

masseter, medial pterygoid, lateral pterygoid, and the temporalis, insert at various locations on 

the mandible each exerting their own forces.  Of clinical significance to orthodontists is the 

relationship between muscle function and craniofacial morphology and how it affects treatment 

decisions.  It has been well documented that people with a deep bite have extensive development 

of both the masseter and the temporal muscles compared to those patients with an open bite 

(Sassouni, 1969).  However it is not well known if the muscles determine bone morphology or 

vice versa (Pepicelli et al., 2005).  In treating patients it is important to consider their facial type 

and plan treatment respecting their musculature and vertical pattern.  An example given by 

Pepicelli et al. (2005) is in the consideration of surgical Class II deep bites.  In patients who are 

brachyfacial and have a deep bite it may be more stable to level them post-surgically compared 

to trying to overcome their heavy musculature pre-surgically.  Although our job is to properly 

align the teeth we must also consider how this alignment relates to our patients’ facial harmony.   

In the absence of using a human model to study such an association, a suitable alternative 

is the mouse model.  The GDF-8 (myostatin-deficient) mice have been found to be 
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hypermuscular compared to wild-type controls in previous studies (Szabo et al., 1998, Walsh and 

Celeste, 2005, Ravosa et al., 2007, Vecchione et al., 2007, 2010, Welle et al., 2009, Elkasrawy 

and Hamrick, 2010, Cray et al., 2011). Myostatin is a negative regulator of skeletal muscle.  It 

could be hypothesized that at birth there is no difference between control mice and myostatin-

deficient mice; however, at a certain age it is expected that increased load bearing on the 

mandible would create forces which change its shape.  According to Moss and Salentijn (1969), 

“…all growth changes in the size, shape, and spatial position…of  all skeletal units are always 

secondary to temporally primary changes in their specific functional matrices.”  In this study 

there is an increase in muscularity followed by a secondary change to mandibular bone 

morphology, the skeletal unit.  Kneib et al. (2011) noted that the cranial vault, cranial base, 

mandible and face show a temporal sequence of growth related to hypermuscularity.  Previous 

studies by Mooney et al. (2010) and have found that myostatin-deficient mice 28 days old have 

larger masseter muscle weight and body size compared to the mice at 1 day of age.  They further 

described that the mandible shows a temporal sequence of compensatory growth related to 

hypermuscularity.  A comparison of myostatin-deficient mice at 1, 28, 56, and 180 days of age 

showed that skeletal changes were evident by 28 days and became more pronounced with age. 

The hypothesis of the present study proposed that epigenetic muscle-bone interactions 

during development cause mandibular shape changes in myostatin-deficient mice compared to 

wild-type controls by 28 days of age.  Previous studies have shown that myostatin-deficient mice 

are hypermuscular with increased muscle size and weight (Vechionne et al., 2007, 2010).  In 

these mice, any changes in bone are hypothesized to be mediated via their attached muscles.  The 

present study found that there was a statistically significant difference in mandibular shape 

between the mice by 28 days.  Studies by Mooney et al. (2010) reported longer mandibles, 
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shorter cranial bases, and different mandibular and cranial vault shapes by 28 days of age.  The 

present study builds on these findings and illustrates in what way mandibular shape is different 

from wild type mice by 28 days. For instance, the myostatin-deficient mice exhibited shorter 

ramal height and increased curvature of the inferior border of the mandible.  This is in contrast to 

previous studies which altered the food consistency of rats and found that ramal height was 

greatest in rats with a hard diet compared to those placed on a soft diet (Tuominen et al., 1993, 

Maki et al., 2002, Enomoto et al., 2009).  This suggests that the shortened ramus height observed 

here may not simply be a functional consequence of increased muscle loading patterns (as in 

hard diet modeling experiments), but may relate other developmental muscle-bone interactions.  

As many of the papers in this area are case reports and the results appear to be conflicting, it 

would be beneficial to see the results from a study with a larger sample size.  A study by Renaud 

et al. (2010) studied the effect of a hard diet vs. a soft diet on the shape of the mouse mandible.  

The authors found that some areas of the mandible are more prone to postnatal plastic 

remodeling than others (ie. angular process) and that by altering food consistency, the shape but 

not the size of the mandible was affected.  The changes to mandibular shape were found to be 

focused in areas related to mastication.  The study found that mice fed a soft diet had “…a less 

robust alveolar region, a dorsally shifted molar alveolar region, and less robust angular 

processes” (Renaud et al, 2010).  These results are consistent with the present study in that the 

changing muscular forces altered mandibular morphology most dramatically in regions 

associated with masticatory muscle attachments.  

The curved mandible phenotype observed here in 28 day-old myostatin-deficient mice 

may be analogous to the ‘rocker’ mandible, reported in the anthropological literature to be 

prominent in Polynesian populations.  This phenotype has been documented by Vecchione et al. 
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(2007, 2010) for myostatin-deficient mice 180 days of age.  The ‘rocker’ mandible is estimated 

to occur in approximately 50% of all Polynesian crania (Marshall and Snow, 1956).  When 

placed on a flat surface, the mandible rests on only two points of contact on a plane surface and 

is unstable when touched (Houghton, 1978).  The Polynesian facial pattern includes: shorter 

posterior facial height, larger gonial angle, and the ‘rocker’ mandible (Schendel et al., 1980).  In 

a ‘rocker’ mandible, the inferior border of the mandible is described as convex and lacks an 

antegonial notch (Houghton, 1978, Vecchione et al., 2007, 2010).  Houghton (1977) describes 

this phenomenon as a byproduct of mandibular rotations.  Polynesians possess open cranial base 

angles and a large upper facial height which creates a displacement or rotation at the condyle 

down and back; in order to maintain occlusion, rotation of the mandibular body upward in a 

closing direction is needed.  The author states that this closed ramus-body angle is the cause of 

the loss of the antegonial notch.  These findings are in contrast to our study which found that the 

myostatin-deficient mice had a larger or more open gonial angle (ramus-body angle).  This 

suggests that perhaps a different process is causing the “rocker shaped” mandible in the mice. 

In this study, the shape of the myostatin-deficient mice (Figs. 5 and 6), compared to the 

wild-type, had a shorter vertical ramus and a more convex inferior border of the mandible.  An 

important consideration is timing; when in the development of a mouse or human, do these 

morphological changes occur?  In humans, studies have found that the ‘rocker’ mandible occurs 

only in adults (Houghton, 1978, Schendel et al., 1980), suggesting a rather straightforward 

association between skeletal morphology and biomechanical forces.  Similarly, Vecchione et al. 

(2007; 2010) previously noted the presence of the rocker-type configuration in 180 day old mice.  

In the present study, however, GDF-8 mutant mice were shown to express this trait by at least 

day 28.  This fact, of course, does not rule out biomechanics as the most likely cause, since the 
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musculature is already highly overdeveloped in this model by this age.  To further pinpoint the 

origin of this trait, it will be necessary to examine time points between birth and 28 days.  A 

sample of 1 day old mice have been previously studied (Vecchione et al., 2010), and although 

the authors noted several other gross morphological changes to the mandible, they did not note 

the presence of the ‘rocker’ trait at this age.  Unfortunately, cephalograms previously obtained on 

these 1 day old mice did not allow for a sufficiently detailed morphometric shape analysis of the 

mandible.         

Preliminary statistics, which included size in the evaluation of shape, found no 

statistically significant difference in mandibular shape between the two groups of mice.  The 

dependence of shape on size is referred to as allometry (Klingenberg, 2010).  Although the 

tracing configurations are scaled during the Procrustes superimposition, size is not completely 

eliminated as a potential confounding variable.  Statistical methods (e.g., regression) must be 

employed to extract shape information that is completely independent of size.  Once statistics 

were performed to remove the allometric contribution of the shape variation, the myostatin-

deficient mice and the wild-type controls were found to be statistically significantly different.  

This suggests that body size was acting as a confounder, partially masking the shape differences.   

The predominant method for quantifying the effects of muscle function on craniofacial 

structure has been traditional cephalometric analysis of a lateral cephalogram.  Conventional 

cephalometrics employs linear distances, angles, areas of triangles, and ratios to analyze 

cephalograms (McIntyre and Mossey, 2003).  However there are limitations to the information 

that may be extracted from such data, shape being one of them.  The problems with conventional 

cephalometric analyses are two-fold:  the first involves landmark collection while the second 

pertains to the actual analysis.  The validity and reliability of accurately marking landmarks has 
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been questioned throughout the history of cephalometrics (Baumrind and Frantz, 1971, McIntyre 

and Mossey, 2003).  There are some points which are more difficult to find than others.  Another 

concern with the use of landmarks is that some are dependent on postural position of the subject 

(McIntyre and Mossey, 2003).  For instance, the location of the landmark menton (Me) is 

defined as the lowest point on the mandibular symphysis, which will change position as the 

subject’s head moves up or down (Moyers and Bookstein, 1979).  

Problems with the analysis involve the failure of angles, distances, and ratios to provide a 

valid and complete description of biological shape.  When using the conventional cephalometric 

analysis to compare two different subjects, such analyses are only able to provide a partial 

description of shape and are biased by reference structures (Halazonetis, 2004).  For instance, the 

so-called reference planes (Frankfort horizontal, Sella-nasion) may be inherently different 

between subjects and should not serve as loci for superimposition between subjects.  All 

landmarks should be weighted equally, as in the Procrustes superimposition, and no preference 

should be given to those points located on the cranial base.  Another limitation is that raw 

information from the cephalogram which rely on angles, fails to provide an adequate description 

of curved structures (Moyers and Bookstein, 1979).  The true outline of a structure defined by 

three points may vary subtlely around its landmarks.  As mentioned by the authors, an arch, a 

bulge, and a wave are three very different shapes, yet all may have the same angle.  Conventional 

analysis only describes a part of the shape.  With the well documented limitations to the types of 

information such analyses provide, the present study aimed to quantify shape differences 

utilizing a geometric morphometric approach.   

Geometric morphometrics uses multivariate statistics and is different from other analyses 

in that results “…can be visualized as shape changes and interpreted anatomically” 



 33 

(Klingenberg, 2010).  This technique is often used in biological systems to show shape variation 

and may be a more valid tool than conventional cephalometric analyses (Halazonetis, 2004).  

Jonke et al. (2007) suggests that geometric morphometrics has been proven to be a superior 

statistical test to “distance and angle-base methods.”  Due to the many benefits of using this 

analysis, it is a tool which orthodontists may be able to utilize for analyzing skeletal changes in 

their patients.  In a previous study by Halazonetis (2004), the author “… recommended that 

Procrustes superimposition and principal component analysis be incorporated into routine 

cephalometric analysis for more valid and comprehensive shape assessment.”       
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6.0  CONCLUSIONS 

1. The mandibular shape of myostatin-deficient mice (GDF-8 deficient) is statistically different 

by 28 days of age compared to the wild-type, once size is controlled for. 

 

2. Myostatin-deficient mice display increased curvature of the inferior border of the mandible 

(‘rocker shape’) and decreased ramal height compared to the wild-type control mice. 

 

3. Epigenetic muscle-bone interactions during development cause mandible shape changes in 

myostatin knockout mice compared to wild-type mice.  The myostatin knockout only directly 

affects muscle, so any changes in bone are mediated via attached muscles. 

 

4. Geometric morphometrics is a valid statistical method for analyzing biological shape and may 

have other applications in the field of orthodontics. 
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APPENDIX A 

TABLES 

Table 1: Sample 

 28 Day Old (17) 

 Male (12) Female (5) 

Wild-Type (9) 4 5 

Knockout (8) 8 0 
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APPENDIX B 

FIGURES 

 

 

Figure 1: Tracing Example 

 

 

 

 

 



 37 

 

 

Figure 2: Shape Variables Following Procrustes Superimposition 

 

 

 

Figure 3: Regression of Shape on Centroid Size 
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Figure 4: CVA Results After Removing Allometry 

 

 

 

Figure 5: Wireframe Deformations: GDF-8 Mutant Mandible Compared to Consensus Shape 
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Figure 6: Wireframe Deformations: Wild-Type Mandible Compared to Consensus Shape 
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