252 research outputs found

    Investigating Key Techniques to Leverage the Functionality of Ground/Wall Penetrating Radar

    Get PDF
    Ground penetrating radar (GPR) has been extensively utilized as a highly efficient and non-destructive testing method for infrastructure evaluation, such as highway rebar detection, bridge decks inspection, asphalt pavement monitoring, underground pipe leakage detection, railroad ballast assessment, etc. The focus of this dissertation is to investigate the key techniques to tackle with GPR signal processing from three perspectives: (1) Removing or suppressing the radar clutter signal; (2) Detecting the underground target or the region of interest (RoI) in the GPR image; (3) Imaging the underground target to eliminate or alleviate the feature distortion and reconstructing the shape of the target with good fidelity. In the first part of this dissertation, a low-rank and sparse representation based approach is designed to remove the clutter produced by rough ground surface reflection for impulse radar. In the second part, Hilbert Transform and 2-D Renyi entropy based statistical analysis is explored to improve RoI detection efficiency and to reduce the computational cost for more sophisticated data post-processing. In the third part, a back-projection imaging algorithm is designed for both ground-coupled and air-coupled multistatic GPR configurations. Since the refraction phenomenon at the air-ground interface is considered and the spatial offsets between the transceiver antennas are compensated in this algorithm, the data points collected by receiver antennas in time domain can be accurately mapped back to the spatial domain and the targets can be imaged in the scene space under testing. Experimental results validate that the proposed three-stage cascade signal processing methodologies can improve the performance of GPR system

    The Case for Combining a Large Low-Band Very High Frequency Transmitter With Multiple Receiving Arrays for Geospace Research: A Geospace Radar

    Get PDF
    We argue that combining a high‐power, large‐aperture radar transmitter with several large‐aperture receiving arrays to make a geospace radar—a radar capable of probing near‐Earth space from the upper troposphere through to the solar corona—would transform geospace research. We review the emergence of incoherent scatter radar in the 1960s as an agent that unified early, pioneering research in geospace in a common theoretical, experimental, and instrumental framework, and we suggest that a geospace radar would have a similar effect on future developments in space weather research. We then discuss recent developments in radio‐array technology that could be exploited in the development of a geospace radar with new or substantially improved capabilities compared to the radars in use presently. A number of applications for a geospace radar with the new and improved capabilities are reviewed including studies of meteor echoes, mesospheric and stratospheric turbulence, ionospheric flows, plasmaspheric and ionospheric irregularities, and reflection from the solar corona and coronal mass ejections. We conclude with a summary of technical requirements

    Performance Analysis of Tomographic Methods against Experimental Contactless Multistatic Ground Penetrating Radar

    Get PDF
    Ground-penetrating radar (GPR) technology for underground exploration consists of the transmission of an electromagnetic signal in the ground for sensing the presence of buried objects. While monostatic or bistatic configurations are usually adopted, a limited number of multistatic GPR systems have been proposed in the scientific literature. In this article, we investigate the recovery performance of a specific and unconventional contactless multistatic GPR system, designed at the Georgia Institute of Technology for the subsurface imaging of antitank and antipersonnel plastic mines. In particular, for the first time, tomographic approaches are tested against this experimental multistatic GPR system, while most GPR processing in the scientific literature processes multimonostatic experimental data sets. First, by mimicking the system at hand, an accurate theoretical as well as numerical analysis is performed in order to estimate the data information content and the performance achievable. Two different tomographic linear approaches are adopted, i.e., the linear sampling method and the Born approximation (BA) method, this latter enhanced by means of the compressive sensing (CS) theoretical framework. Then, the experimental data provided by the Georgia Institute of Technology are processed by means of a multifrequency CS- and BA-based method, thus generating very accurate 3D maps of the investigated underground scenario

    A Novel Approach for Qualitative Imaging of Buried PEC Scatterers

    Get PDF
    A new linear approach for support reconstruction of impenetrable objects is described and tested in case of scattered field data collected in Ground Penetrating Radar measurement configuration. Starting from the considerations that in high conductivity scatterers the currents induced inside the scatterers are only localized on its boundary and that they take up only few pixels of the entire investigation domain, a sparsity promoting inversion technique is formulated. The flexibility of the approach allows to counteract the specific difficulty to work under “aspect limited” measurement configurations, as the one at hand. Examples with numerical noisy data are given to demonstrate and validate the effectiveness of the method in localizing and in retrieving the shape of the unknown objects buried in lossy soil

    Ground Penetrating Radar Imaging and Systems

    Get PDF
    The ASCE confers an overall D+ grade to American infrastructure, while the NAE lists the restoration and improvement of urban infrastructure as one of its grand engineering challenges for the 21st century, indicating that infrastructure renovation and development is a major challenge in the US. Furthermore, according to the UN World Urbanization Prospects, about 55% of the world\u27s population lives in urban areas and this percentage is set to grow, especially in Africa and Asia. The growth of urban population poses challenges to the expansion of underground infrastructure, such as water, sewage, electricity and telecommunications. Localization and mapping of underground infrastructure are fundamental for infrastructure maintenance and development. Ground penetrating radar (GPR) is a remote sensing method capable of detecting subsurface assets that has been used in the localization and mapping of underground utilities. This thesis contributes improvements of GPR systems and imaging algorithms towards smarter infrastructure, specifically: Application of GPR imaging algorithm to improve GPR data readability and generate augmented reality (AR) content; Use of photogrammetric methods to improve GPR positioning for underground infrastructure localization and mapping

    Enhanced Microwave Imaging of the Subsurface for Humanitarian Demining Applications

    Get PDF
    © Cranfield University 2020. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright ownerThis thesis presents a theoretical analysis and applied evaluation deploying ground penetrat ing radar (GPR) for landmine detection. An original contribution has been made in designing and manufacturing a light-weight, low-cost, fully polarimetric antenna system for GPR, enabling easy transportation and as sembly. This facilitates extensive use by various smaller communities in remote areas. By achieving the goal of supplying various smaller communities with advanced ground pene trating radar technology the technological standard of landmine detection can be improved beyond existing solutions such as metal detection or manual probing. The novel radar system itself allows detection of various subsurface targets of different shapes and sizes, metallic and non-metallic, in a number of different soils, such as sand, loam or gravel and therefore can be used in versatile environments. The GPR system has been realised by designing novel light-weight, 3D printed X-band horn antennas, manufactured from single piece plastic then copper electroplated. These an tennas are 50% lighter than their commercial equivalents. They are incorporated in an an tenna array as a group of four to allow full-polarimetric imaging of the subsurface. High resolution images of landmines and calibration targets were performed in the subsurface over an experimental sand test bed. For performing subsurface measurements in the near-field, four novel gradient-index (GRIN) lenses were designed and 3D printed to be incorporated in the apertures of the X band antennas. The improved target detection from these lenses was proven by scanning the test bed and comparing the imaging data of the antenna array with and without lenses attached. A rigorous theoretical study of different decomposition techniques and their effect on the imaging and detection accuracy for polarimetric surface penetrating data was performed and applied to the gathered imaging data to reliably isolate and detect subsurface targets. Studied decomposition techniques were Pauli decomposition parameters and Yamaguchi polarime try decomposition. It was found that it is paramount to use both algorithms on one set of subsurface data to detect all features of a buried target. A novel temporal imaging technique was developed for exploiting natural occurring changes in soil moisture level, and hence its dielectric properties. Contrary to the previously intro duced imaging techniques this moisture change detection (MCD) mechanism does not rely on knowledge of the used measurement setup or deploying clutter suppression techniques. This time averaged technique uses several images of a moist subsurface taken over a period while the moisture evaporates from the soil. Each image pixel is weighted by the phase change occurring over the evaporation period and a resulting B-scan image reveals the subsurface targets without surrounding clutter. Finally, a multi-static antenna set-up is examined on its capability for suppressing sur face clutter and its limitations are verified by introducing artificial surface clutter in form of pebbles to the scene. The resulting technique was found to suppress up to 30 The GPR antenna system developed in this thesis and the corresponding imaging tech niques have contributed to a significant improvement in subsurface radar imaging perfor mance and target discrimination capabilities. This work will contribute to more efficient landmine clearance in some of the most challenged parts of the world.Ph

    On the use of lateral wave for the interlayer debonding detecting in an asphalt airport pavement using a multistatic GPR system

    Get PDF
    In this paper, we focus on the detection of the interlayer debonding of the asphalt airport pavement by the Ground-penetrating Radar (GPR) system. Since the interlayer debonding usually occurs in the shallow region of the asphalt airport pavement (several centimeters), it is difficult to interpret the anomalies or the defects from the GPR signals composed of many waves under the boundary conditions. Moreover, the wavelength of the ordinary GPR system is over several centimeters. Therefore, the spatial resolution of the system is not accurate enough to consider the millimeter thickness of the debonding layer. To overcome these problems, we propose a new method based on evaluating the lateral wave behavior of common midpoint (CMP) gathers collected by a multiple static GPR system. The multi-static GPR system is a stepped frequency continuous wave (SFCW) radar system, which consists of 8 transmitting and 8 receiving bowtie antennas. The system operates in the frequency range from 50 MHz to 1.5 GHz. After the validation of the simulation, the results of the interlayer debonding detection were evaluated by a field experiment obtained at Tokyo International Airport. The proposed method can detect the debonding layers which are less than 1mm. Also, it is shown that our proposed method has a high consistency with the conventional acoustic finding method in the field measurement. It provides an innovative and effective method for the interlayer debonding detection of a partially damaged airport asphalt pavement, which is difficult to be observed by the ordinary GPR signals

    Enhanced microwave imaging of the subsurface for humanitarian demining applications

    Get PDF
    © Cranfield University 2020. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright ownerThis thesis presents a theoretical analysis and applied evaluation deploying ground penetrating radar (GPR) for landmine detection. An original contribution has been made in designing and manufacturing a light-weight, low-cost, fully polarimetric antenna system for GPR, enabling easy transportation and assembly. This facilitates extensive use by various smaller communities in remote areas. By achieving the goal of supplying various smaller communities with advanced ground penetrating radar technology the technological standard of landmine detection can be improved beyond existing solutions such as metal detection or manual probing. The novel radar system itself allows detection of various subsurface targets of different shapes and sizes, metallic and non-metallic, in a number of different soils, such as sand, loam or gravel and therefore can be used in versatile environments. The GPR system has been realised by designing novel light-weight, 3D printed X-band horn antennas, manufactured from single piece plastic then copper electroplated. These antennas are 50% lighter than their commercial equivalents. They are incorporated in an antenna array as a group of four to allow full-polarimetric imaging of the subsurface. High resolution images of landmines and calibration targets were performed in the subsurface over an experimental sand test bed. For performing subsurface measurements in the near-field, four novel gradient-index (GRIN) lenses were designed and 3D printed to be incorporated in the apertures of the Xband antennas. The improved target detection from these lenses was proven by scanning the test bed and comparing the imaging data of the antenna array with and without lensesattached. A rigorous theoretical study of different decomposition techniques and their effect on the imaging and detection accuracy for polarimetric surface penetrating data was performed and applied to the gathered imaging data to reliably isolate and detect subsurface targets. Studied decomposition techniques were Pauli decomposition parameters and Yamaguchi polarimetry decomposition. It was found that it is paramount to use both algorithms on one set of subsurface data to detect all features of a buried target. A novel temporal imaging technique was developed for exploiting natural occurring changes in soil moisture level, and hence its dielectric properties. Contrary to the previously introduced imaging techniques this moisture change detection (MCD) mechanism does not rely on knowledge of the used measurement setup or deploying clutter suppression techniques. This time averaged technique uses several images of a moist subsurface taken over a period while the moisture evaporates from the soil. Each image pixel is weighted by the phase change occurring over the evaporation period and a resulting B-scan image reveals the subsurface targets without surrounding clutter. Finally, a multi-static antenna set-up is examined on its capability for suppressing surface clutter and its limitations are verified by introducing artificial surface clutter in form of pebbles to the scene. The resulting technique was found to suppress up to 30 The GPR antenna system developed in this thesis and the corresponding imaging techniques have contributed to a significant improvement in subsurface radar imaging performance and target discrimination capabilities. This work will contribute to more efficient landmine clearance in some of the most challenged parts of the world

    FMCW Signals for Radar Imaging and Channel Sounding

    Get PDF
    A linear / stepped frequency modulated continuous wave (FMCW) signal has for a long time been used in radar and channel sounding. A novel FMCW waveform known as “Gated FMCW” signal is proposed in this thesis for the suppression of strong undesired signals in microwave radar applications, such as: through-the-wall, ground penetrating, and medical imaging radar. In these applications the crosstalk signal between antennas and the reflections form the early interface (wall, ground surface, or skin respectively) are much stronger in magnitude compared to the backscattered signal from the target. Consequently, if not suppressed they overshadow the target’s return making detection a difficult task. Moreover, these strong unwanted reflections limit the radar’s dynamic range and might saturate or block the receiver causing the reflection from actual targets (especially targets with low radar cross section) to appear as noise. The effectiveness of the proposed waveform as a suppression technique was investigated in various radar scenarios, through numerical simulations and experiments. Comparisons of the radar images obtained for the radar system operating with the standard linear FMCW signal and with the proposed Gated FMCW waveform are also made. In addition to the radar work the application of FMCW signals to radio propagation measurements and channel characterisation in the 60 GHz and 2-6 GHz frequency bands in indoor and outdoor environments is described. The data are used to predict the bit error rate performance of the in-house built measurement based channel simulator and the results are compared with the theoretical multipath channel simulator available in Matlab
    corecore