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    Abstract 

A linear / stepped frequency modulated continuous wave (FMCW) signal has 

for a long time been used in radar and channel sounding. A novel FMCW waveform 

known as “Gated FMCW” signal is proposed in this thesis for the suppression of 

strong undesired signals in microwave radar applications, such as: through-the-wall, 

ground penetrating, and medical imaging radar. In these applications the crosstalk 

signal between antennas and the reflections form the early interface (wall, ground 

surface, or skin respectively) are much stronger in magnitude compared to the 

backscattered signal from the target. Consequently, if not suppressed they 

overshadow the target’s return making detection a difficult task. Moreover, these 

strong unwanted reflections limit the radar’s dynamic range and might saturate or 

block the receiver causing the reflection from actual targets (especially targets with 

low radar cross section) to appear as noise.  The effectiveness of the proposed 

waveform as a suppression technique was investigated in various radar scenarios, 

through numerical simulations and experiments. Comparisons of the radar images 

obtained for the radar system operating with the standard linear FMCW signal and 

with the proposed Gated FMCW waveform are also made.   

In addition to the radar work the application of FMCW signals to radio 

propagation measurements and channel characterisation in the 60 GHz and 2-6 GHz 

frequency bands in indoor and outdoor environments is described. The data are used 

to predict the bit error rate performance of the in-house built measurement based 

channel simulator and the results are compared with the theoretical multipath 

channel simulator available in Matlab.  
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CHAPTER 1  

Introduction and Significance 

This chapter gives an overview of the thesis, highlighting the key contributions of the 

work presented here. A brief summary of the contents of each of the following 

chapters of this thesis is also given.       

 
 
 

1.1 General Overview 

The operating principle of a radar system is similar to that of a radio channel 

sounding system. The differences between both systems are mainly associated with 

their purpose and objectives [1]. In a radar system the propagated electromagnetic 

waves within an environment are detected and processed in order to locate a specific 

object (target) and possibly extracting the object related information (e.g. its range, 

speed, shape, and so on). On the other hand a radio channel sounder detects the 

electromagnetic waves within an environment (channel) which are processed in 

order to estimate the parameters that describe the time and/or frequency behaviour of 

the channel. Understanding of the channel behaviour through channel 

characterisation is of paramount importance especially for the reliable design and 

performance evaluation of a wireless communication system.  In this thesis 

primarily, issues related to active microwave radar imaging will be considered. 
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1.1.1 Radar Imaging  

In active microwave radar imaging the scenario under test is illuminated with 

microwave signals (from the transmitter) and scattered and/or incident signals are 

collected by the receiver(s) and processed to form an image map of the scenario. 

Three main microwave radar imaging applications are investigated in the thesis, 

namely: through-the-wall radar, ground penetrating radar, and medical radar 

imaging.  

Through-the-Wall radar imaging (TTWRI) has gained a great deal of interest 

lately specially within the radar research community. It aims at detecting and 

identifying objects and/or life signs within an area which cannot be directly accessed 

or seen using conventional measures. TTWRI can be used in a range of applications 

from defence and law enforcement to civilian cases. As examples in defence / law 

enforcement applications it can be used for detection and surveillance of people 

behind walls (for cases such as hostages, contraband, or firefighting operations). In 

civil applications it can be used in rescuing missions for detection of survivors 

buried under: snow (after an avalanche) or rubble (after an earthquake or landslide) 

[2, 3].  Results from numerical simulations and experiments of the TTWRI for 

detection of a human being located behind a wall will be considered in this thesis. 

Ground penetrating radar (GPR) techniques aim at detecting objects or 

interfaces buried below the surface of the earth. A variety of applications have been 

used / proposed for GPR for instance in defence – for anti-personnel or anti-tank 

landmine detection; utilities – for locating buried pipes (water or gas) and cables; 

and in geophysical investigations – mineral formation, glacier mapping, and ground 

water mapping [4]. In this thesis, consideration is given to the detection of buried 

metallic objects (e.g. land mines).         

Medical radar imaging techniques, based on microwave signals, for breast 

cancer detection have gained attention over the past decade and are currently being 

proposed within the research community as an alternative imaging modality for 

breast cancer detection and diagnoses. Encouraging clinical trial results have been 

reported in references [5-7]. The technique offers the potential for a low cost 

screening device, fast screening time, no patient discomfort or health risk. This 

technique is based on the dielectric contrast between the tissues in the breast which 

causes an incident electromagnetic signal to be absorbed or scattered differently as it 
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passes through the breast.  The received signal from around the breast is processed to 

create an energy map of the breast interior. This technique is also referred to in the 

literature as UWB microwave imaging radar.  

A common issue with the aforementioned microwave radar imaging 

applications is the needed suppression/removal of the unwanted signals (clutter) 

before the image map of the scenario under test can be created. Unwanted signals 

such as: antenna crosstalk, wall reflection (in TTWR), ground surface reflection (in 

GPR), skin reflection (in MIR) can be much stronger than that of the respective 

target reflection. Therefore if not effectively removed they compromise the efficacy 

of the overall system. Moreover, strong unwanted signals together with weak target 

return increase the needed receiver dynamic range, as the receiver must 

accommodate both signals without being saturated or allowing the stronger clutter 

overshadowing / masking the weak target return.  In this thesis a novel waveform 

namely: gated frequency modulated continuous waveform is proposed as the early 

unwanted signals suppression technique and its effectiveness in radar applications 

(e.g. TTWR, GPR, and MIR) will be investigated through numerical simulation and 

experiments.  

1.1.2 Channel Characterization  

It is well known that the fundamental limitations in the performance of a 

wireless communication system are mostly caused by the characteristics of the 

channel [8]. Consequently, understanding and characterising the channel behaviour 

is of great importance, as it aids in the development of more realistic channel models 

for validation of future wireless systems. Characterising the channel essentially 

means estimating the relevant parameters that describe the behaviour of the signals 

that propagate through it, such as the channel impulse response or frequency 

response. The realistic time-varying impulse or frequency responses of the desired 

channel are obtained through channel measurements using channel sounders.   

In this thesis an in-house built multiband channel sounder has been used in 

channel measurements for indoor scenarios in the ISM band and for indoor / outdoor 

scenarios in the millimetre wave band (60 GHz). Statistical parameters which are 

related to the channel time delay and path-loss have been estimated from the 

respective measured channel impulse responses. Moreover, multi antenna channel 
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measurement campaigns have been performed, using the conventional vector 

network analyser, in a reference environment (i.e. reverberation chamber) for 

assessment of the diversity gain and channel capacity within the 2-6 GHz frequency 

band for variable inter-element antenna spacing.  Finally, the bit error rate (BER) 

performances of the in-house built measurement based channel simulator [9], which 

uses real measurement channel data in the form of a time variant frequency function 

and that of the theoretical built-in MATLAB SIMULINK multipath fading channel 

simulator [10], which recreates the channel responses based on user’s specified 

parameters, are compared. Radio channel simulators are used to emulate the effects 

of the propagation channel under diverse repeatable testing conditions in order to aid 

in the estimation and assessment of the performance of communication systems. 

Both simulators were used in conjunction with the IEEE 802.16 physical layer 

model. The measurement channel data were obtained from the channel sounding in 

rural/semi-rural environment of Ipswich in both 3.5 GHz and 5.8 GHz frequency 

bands.   

1.2 Thesis Contributions  

• A novel methodology for implementation of the FMCW / GFMCW 

waveforms as the excitation signals in the 3D electromagnetic software (CST 

Microwave Studio). 

 

• Design and assembly of the radar demonstrator, antennas, and X-Y table 

positioning system.      

 

• Validation of the effectiveness of GFMCW waveforms as a technique for 

suppression of crosstalk between antennas and the early clutter return signal 

from wall, ground surface, and skin in TTWIR, GPR, and MIR radar 

respectively. The technique was validated through simulations and 

experiments.  
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• Measurement and analysis of the MIMO capacity and diversity gain of 

discone antennas, in a reverberation chamber, for different inter-element 

antenna spacing.  

 

• Channel measurement and characterisation in the 2.4 GHz and 60 GHz 

frequency using a frequency agile multiband channel sounder in an indoor or 

outdoor environment.  

 

• Validation of the bit error rate (BER) performance of the in-house built 

“playback” channel simulator through comparison with the BER performance 

of the stochastic multipath channel simulator.   

 

The work related to through-the-wall radar is a continuation from previous 

work reported in [11-13], to which the author contributed with the followings:  

� Implementation in Matlab of the various beamforming algorithms (e.g. DAS, 

DSI, and DMSI) used to generate the radar images.  

� Collaborating/Helping in the setting-up and running the radar experiments 

(e.g. assembling the radar on the trolley, moving the system or needed 

instruments, systems troubleshooting in case fault, and acting as the target). 

� Performing the measurements and analysis of the antennas performance (e.g. 

results shown in Figures 20-23 in reference [12]. 

In this thesis more realistic simulation scenarios (e.g. room with insulated 

cavity wall; and furnished rooms) are presented. In the simulations the GFMCW is 

shown to suppress both the direct crosstalk signal and the air-wall reflection which is 

a more realistic approach. This differs from the earlier approach adopted in [11-13] 

where the crosstalk was first removed, by subtracting from each antenna recorded 

waveform the result obtained from the empty scenario simulation, prior to the 

application of the gating sequence for the removal of the wall reflection. Moreover, 

further experimental results to detect humans behind a wall are presented.            
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1.3 Organisation of the Thesis 

The original aims of this project included the following:  

• Assess the feasibility of using Gated FMCW waveforms as a radar clutter 

suppression technique and validate its effectiveness, through numerical 

simulation and experiment, in radar scenarios (such as: through-the-wall, 

ground penetration, and medical imaging for breast cancer detection).  

• Validate the performance of the in-house built “playback” channel simulator. 

• Provide an assessment of the radio channel statistics in a number of 

environments using the in-house developed multiband channel sounder.    

As two different areas namely: radar imaging and radio channel 

(characterisation and modelling) are dealt with in the thesis, and for a coherent 

interpretation of the discussed concepts, the remaining chapters will cover primarily 

the radar imaging topic. In particular the proposed clutter suppression technique on 

radar imaging applications, namely: through-wall, ground penetrating, and breast 

cancer detection. Issues related to channel are discussed in detail in Appendix C.   

 

Chapter 2: presents the basic operating principles of radar systems together 

with the definition of the basic radar performance parameters. The different radar 

modes of operation, possible employed waveforms, and the effect of the dielectric 

material on the transmitted electromagnetic wave are also discussed. Moreover, the 

chapter introduces the image algorithm known as the “delay-and-sum imaging 

algorithm” which has been used to create the image maps of the radar scenarios 

considered in this thesis.   

 

Chapter 3:  includes a review of some of the existing clutter suppression 

techniques used in radar applications such as: through-the-wall, ground penetrating 

radar, and medical imaging radar for breast cancer detection. Moreover, at the end of 

the chapter the novel clutter suppression technique proposed in this thesis is briefly 

described.  

 

Chapter 4: presents the theoretical discussion in radar waveforms namely: 

linear frequency modulated continuous waveform (FMCW). The relationship 
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between system parameters and the methods used to extract the target range and 

Doppler information is also included. Moreover, the basic architectures of the 

proposed clutter suppression technique namely “gated frequency modulated 

continuous waveform (GFMCW)” are later presented as well as a detailed discussion 

of the range sensitivity of the gating sequences used in the work.  

 

Chapter 5: presents two hardware implementations of the proposed 

GFMCW radar system adopted in this thesis.  The overall synchronization and 

system performance results are also discussed. Furthermore, the different designed 

and in-house manufactured antennas as well as the assembled X-Y positioning table 

together with its control units are also described.  

      

Chapter 6: includes the numerical simulation results for the FMCW and 

GFMCW radar systems in scenarios, such as: through-the-wall radar imaging, 

ground penetration radar imaging, and medical imaging radar for breast cancer 

detection. The benefits of performing numerical simulation as well as the available 

numerical simulation methods are given.  

 

Chapter 7:  presents the experimental results of the proposed suppression 

technique in applications, such as: through-the-wall radar imaging, ground 

penetration radar imaging, and medical imaging radar for breast cancer detection. 

  

Chapter 8: conclusions are made and recommendations for future work are 

given. 

 

Appendix C: includes the results of multiple-input and multiple-output 

(MIMO) measurement campaign performed within a reference environment, namely 

“Reverberation Chamber” to assess the MIMO channel capacity and diversity gain 

for variable inter-element antenna spacing. Moreover the results of the channel 

measurement campaigns in both indoor and outdoor environments using a newly 

designed and developed multiband channel sounder are also presented. Finally, bit 

error rate performance results of the in-house developed measurement based channel 

simulator and the widely available theoretical Matlab multipath channel simulator 

are compared.    
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 CHAPTER 2  

Radar Principles 

This chapter presents a basic background of radar systems, their categories and the 

type of waveforms employed. The image algorithm commonly referred to in the 

literature as “delay-and-sum” imaging algorithm and often used to create the image 

map of the scenario under test from the radar received data, is also described in this 

chapter.  

 

      

2.1 Basic Radar Equations 

2.1.1 Radar Range Equation 

The word “RADAR” is an acronym for “radio detection and ranging”. 

Historically, radars were first developed with emphasis on detecting the presence of 

an approaching target (such as: an hostile aircraft or ship) and providing a measure 

of the target range [1].  Although detection and ranging are still incorporated in 

modern radar systems, these systems may also provide a high resolution image of the 

scene, target tracking, and also extract information from the target signature to aid in 

the estimation of the type of target, size, and shape.   

One of the most basic and well covered equations in radar theory is the range 

equation. This relates the scatter range to the radar system parameter and the 

environment. The range equation provides a useful relation not just for determining 
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the maximum achievable radar range but also as a starting point for understanding 

the radar operation and the basic system design [2].   

In order to derive the range equation let’s start by assuming the propagation 

medium to be lossless and that the ideal radar system has a peak transmitted power 

Pt in watts (W) to be radiated with a directive antenna of gain Gt. The power density 

PD (ratio of power per unit of area in units of W/m2) at range R (m) away from the 

radar and in the direction of maximum radiation can be written as:  

 �� = ����4��	 (2.1)  

For a target located at range R in the direction of the antenna’s maximum 

gain, the electromagnetic waves with power density given in (2.1) that impinges 

upon the target is scattered away and towards the radar direction; though some of the 

wave energy might be absorbed by the target itself. The amount of scattered energy 

will depend on the physical (shape, size, orientation) and electrical properties of the 

target. These dependencies are often described with a single target specific quantity 

called “radar cross section” (RCS).   The radar cross section ϭ, of unit square metres 

(m2),is defined as the ratio of the power scattered back towards the radar to the 

power density incident on the target [3]. The RCS can also be viewed as the target’s 

effective area or as a measure of the target’s ability to reflect the signal in the 

direction of the radar. The target backscattered power density PDt (W/m2) at a range 

R is given as:  

 
��� = ��
4��	 = ����
�4��	�	 (2.2) 

The total backscattered power received Pr, in units of watts (W), by the radar 

antenna of an effective aperture Ae in square metres (m2) is given as:  

 
�
 = ����
���4��	�	 (2.3) 

It is well known from antenna theory that the antenna effective aperture is 

proportionally related to its gain GR and the operating wavelength λ (m) [4]. 

Therefore, the radar received power from (2.3) can be written as:  
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�
 = �������	
�4�����  

(2.4) 

The maximum radar range, in units of metre (m), is the distance at which the 

receiver detects the minimum backscattered power Pmin (W), which can be deducted 

from (2.4) as:  

 
���� = ��������	
�4������� �

�/�
 

(2.5) 

The above equation suggests that in order to double the radar coverage range 

the transmitted power needs to be increased sixteen times or equivalently both 

antenna gains must be doubled. In a practical scenario the radar received signal is 

corrupted by noise therefore the target range is best described as a function of the 

received signal-to-noise ratio.  Therefore for a minimum signal-to-noise ratio SNRmin 

at the receiver and considering the noise power within the operating band to be N, in 

unit of watts (W), the maximum achievable radar range can be written as: 

 
���� = � �������	
�4����� ��!"#	��

�/�
 

(2.6) 

Equation (2.6) still assumes a lossless radar system and propagation medium. 

In reality, various other factors not explicitly included in the equation may affect the 

observable maximum radar range. Such factors include the losses and gain occurring 

throughout the radar system itself, the meteorological condition along the 

propagation path and so forth. The description of the factors and their effect on 

equation (2.6) are beyond the topic covered in this thesis. For the avid reader 

reference [1] provides detailed analysis of the effects these factors have on the 

achievable radar range.        

2.1.2 Down-Range and Cross-Range Resolution 

Resolution is a metric that describes the radar ability to distinguish or detect 

stationary or moving targets in close proximity to each other as different objects.  

The down-range resolution “∆R”, in unit of metres (m),  relates to the ability of the 

radar to resolve distinct targets positioned within the same angle but at different 
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ranges. The down-range resolution is proportional to the wave speed ʋ (m/s) in the 

medium and is inversely proportional to the waveform bandwidth B (Hz), as given in 

(2.7). Thus, if the radar waveform bandwidth is increased the smaller the down-

range resolution it achieves.     

 Δ� = &2( 
(2.7) 

The cross-range resolution ∆CR, in unit of metres (m), on the other hand 

refers to the ability of the radar to distinguish targets at the same range but with 

different angles. For a single antenna with no processing the cross-range is directly 

proportional to the antenna beamwidth ϴ, taken as the two way 3dB beamwidth in 

radians (rad), and the target range R as in the following equation [5]:  

 ΔCR = +� (2.8) 

The cross-range resolution in equation (2.8) degrades for targets at longer 

range. On the assumption that the range is restricted, the cross-range can be 

improved by increasing the operating frequency or by using an antenna with a bigger 

aperture size, as both of these decrease the beamwidth, although the latter seems 

impractical.  

A more practical way of increasing the cross-range resolution is through 

signal processing with the use of multiple antennas, which could be a physical array 

of different antenna elements or a synthetic formed array such as those formed 

through synthetic aperture radar (SAR) techniques where measurements are 

performed at different positions along the scenario under test. The SAR approach has 

been used throughout the radar experiments reported in this thesis. The cross-range 

resolution for a synthetic array of length DSAR (m) is given as [2]:     

 
ΔCR = ��2,-.� 

(2.9) 

Equation (2.9) seems to suggest that the cross-range resolution can be made 

arbitrarily small by increasing the length of the SAR array. Although theoretically 

plausible, it should be noted that in practice there are several factors that may limit 

the actual cross-range resolution as discussed in references [1, 2].  
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2.1.3 Radar Sensitivity and Dynamic Range 

Radar sensitivity for a given bandwidth defines the minimum input RF power 

that can be detected by the radar. Therefore, it provides a measure of the radar’s 

ability to detect the presence or absence of a target [6].  The dynamic range, 

normally expressed in dB, is the ratio between the strongest to the weakest signals 

the radar can handle, simultaneously. This factor is related to the number of bits in 

the receiver’s analogue-to-digital (ADC) converter [7].  

2.2 Conventional Radar Systems 

A basic radar system comprises three main units: a transmitter, a receiver, 

and antenna unit. The transmitter generates the electrical waveform that is radiated in 

the form of an electromagnetic wave by the antenna.  The antenna converts the 

electrical signal, from the transmitter, into electromagnetic wave and the incident 

reflected wave, from the scatterer, back into an electrical signal for the receiver unit. 

The receiver processes the signal to evaluate the presence or absence of a target as 

well as its features [8].  Conventional radar systems can be categorised based on 

their configuration and the employed waveform.   

2.2.1 Radar System Modes of Operations  

The radar operational mode can be classified based on the system 

deployment or on the number of antennas used. Based on the system deployment the 

radar can be either in a static or dynamic mode of operation. Static mode refers to a 

scenario where both the transmitter and receiver are fixed or stationary; contrary to 

the dynamic mode where the transmitter or receiver or both are in motion. It is worth 

mentioning that in either the static or dynamic mode of operation the scatterers, 

target(s) included, may be stationary or in motion [9].    

Depending on the number of antennas used, the radar system can be said to 

operate in monostatic, bistatic, and multistatic. Monostatic – a single antenna is used 

for both transmission and reception, simultaneously. Bistatic – use different antennas 

for transmission and reception.  Multistatic – uses multiple antennas for transmission 

or reception or for both (e.g. MIMO radar [10]).     

 



Chapter 2: Radar Principles 
 

15 
 

2.2.2 Radar Waveforms 

An essential component in the design of a radar system is the choice of the 

waveform. The radar waveform dictates the system architecture and the parameters 

that can be estimated. Some factors such as: range / Doppler resolution and 

measurement accuracy; operational prerequisite (tracking, imaging, covertness, 

applicable frequency restriction) and hardware cost; operating environment (type of 

clutter, signal interferences and target); all these influence the selection of a suitable 

waveform [9, 11]. A variety of waveforms have been in use or proposed in many 

radar applications, such as the conventional waveforms (e.g. un-modulated CW, 

pulse, synthetic pulse, and frequency modulated waveform), or more sophisticated 

waveform (e.g. noise waveforms).  

 

Un-modulated CW Waveform – this is the simplest of the radar waveforms.  

It is essentially a single tone frequency waveform. With this the radar transmits a 

continuous stable signal with known frequency fi. If the illuminated target is in 

motion then the backscattered received signal will be shifted in frequency, from the 

transmitted fi, by an amount proportional to the speed and direction of the target. The 

frequency shift caused by the target is known as Doppler frequency. Single tone 

radars are widely used for measurements of a moving target relative velocity. They 

cannot measure the target range. To overcome the single tone shortcomings on the 

estimation of range a dual-tone based radar system can be employed. In the dual-tone 

based radar two single-tones separated in frequency by ∆f are transmitted 

simultaneously or in sequence towards a target. The relative target range can be 

extracted from the received two-tone phase difference. It is worth mentioning that 

the maximum unambiguous range that can be measured with the two-tone radar is 

directly proportional to the wave speed and inversely to 2∆f [1]. 

 

Pulse waveform – a simple pulse waveform is a truncated sinusoid, in which 

one or more cycles of the sinusoid are transmitted only during the time window 

equivalent to the pulse width. Standard pulse waveforms come from ideally one of 

the derivatives of the Gaussian function, e.g. Gaussian waveform, the monocycle, or 

the doublet. Depending on the desired operating band the Gaussian based pulse can 

be carrier-free or modulated. Normally, the radar transmits a number of pulses 
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sequentially, with interval between consecutive pulses Tp being the reciprocal of the 

pulse repetition frequency. The pulse duration τw is inversely proportional to its 

bandwidth and it is directly related to the radar range resolution. Consequently 

reducing the pulse width increases the bandwidth and also the system range 

resolution. In pulse based radar, while the maximum unambiguous range is directly 

related to the pulse period Tp, the maximum unambiguous Doppler shift that can be 

measured is inversely related to Tp. Therefore when choosing the pulse period, in 

practice, a trade-off must be made between the maximum expected target range and 

the maximum expected Doppler shift [9]. As for small values of Tp high Doppler 

shift can be estimated but it might lead to ambiguity in range as the reflections from 

a far-away scatterer may arrive within the time window of a near scatterer. In 

contrast a large value of Tp covers a large range but may lead to Doppler ambiguity 

for cases of fast moving scatterers within the scenario. A major disadvantage with 

pulse waveforms is the hardware, e.g. generating short pulses with a fast rise and fall 

time is difficult; a high sampling rate ADC is needed to correctly digitize the 

received pulses; good antenna performance is desirable to avoid pulse dispersion and 

distortion; higher peak power at the transmitter to achieve a similar average power 

compared to FMCW or CW waveforms.      

 

Synthetic Pulse waveform – To avoid the hardware limitations of the 

conventional pulse waveform multiple frequencies are transmitted in sequence to 

obtain the discrete bandlimited transfer function of the scenario under test. A 

received pulse is simply synthesised, using basic signal processing techniques, 

through the inverse Fourier / chirp transform of the product of the idealised 

transmitted pulse frequency response with the measured transfer function [12, 13]. 

Measurement of the transfer function of the scenario under test is commonly 

performed using the commercially available network analyser [14].  

 

FM waveforms – In FM waveforms the waveform frequency is increased or 

decreased as a function of time over a range of frequencies defined by the bandwidth 

B within a specified modulation interval T. Within the modulation interval, the 

frequency can sweep linearly (as in linear FMCW) or in steps sequentially through 

M intermediate frequencies as in the stepped FMCW. In both cases, the transmission 

can be continuous (always ON) or gated. The waveform bandwidth is simply the 
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difference between the minimum and maximum swept frequency and the wider the 

bandwidth the finer the range resolution. Unlike pulse waveforms in FM waveforms 

the average power can be equal to the peak power especially for the cases in which 

the transmitter is always active. Moreover, FM waveforms are generally easier to 

generate than pulse waveforms. For example FMCW can be generated using a swept 

/ stepped voltage-control oscillator (VCO) or a direct digital frequency synthesiser 

(DDFS) or even using an arbitrary waveform generator [11]. Contrary to discrete 

coded waveforms the spectrum of FM waveforms (FMCW) is contained within the 

swept bandwidth and therefore filtering is not required at the transmitter. But as for 

discrete coded waveforms the received signal can be compressed through the 

matched filter or heterodyne detector. Chapter 4 provides a more detailed analysis of 

FM waveforms particularly linear FMCW and Gated FMCW waveform.  

 
Noise waveform – often referred to as pseudonoise or pseudorandom 

waveform is characterised by its Gaussian distributed amplitude and uniform power 

spectral density within the bandwidth. The target range is determined through the 

correlation of the received target’s echo with the delayed copy of the transmitted 

waveform. The correlation returns a strong peak at a time equivalent to the target 

back-propagation delay [15]. Some of the inherited advantages of noise waveforms 

are low probability of detection, anti-jamming capability, and immunity for 

interference from other sources [11]. Moreover, each noise waveform is uncorrelated 

with the others, therefore theoretically several noise radars can operate in the same 

frequency band without affecting each other’s performance [16]. The relation 

between the waveform bandwidth and the achievable range resolution for noise 

based radar is similar to that in FMCW radar.  

 

Others type of radar waveforms reported in the literature includes discrete 

coded waveforms [9, 17] – in which the carrier waveform is phase modulated by a 

known code (e.g. Barker, PRBS, or Kasami code) the target profile is determined 

through a correlation process similar to that in noise waveforms; Matched 

illumination waveforms [11, 18] – which consider the apriori information about the 

characteristics and property of the target on its design in order to  improve the target 

detection and classification; chaos modulated waveforms [19]; and orthogonal 

frequency division multiplexed (OFDM) waveforms [20].    
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Radar waveforms can be categorised, depending on their fractional 

bandwidth (FB), into three main groups namely: narrowband, wideband and ultra 

wideband.   The fractional bandwidth of a waveform is defined as the ratio of the 

waveform’s bandwidth to its centre frequency. A waveform is classified as 

narrowband if the FB is not greater than 1%, wideband if FB is within 1 – 20%, and 

ultra-wideband for FB greater than 20% [21].  

2.2.3 Radar Applications 

A radar system is a remote sensing device used in many areas ranging from 

civilian, law-enforcement, and military applications for purposes of surveillance, 

detection, tracking, or imaging. A comprehensive list of examples of radar 

applications are given in references [1, 22, 23] .  

  In this thesis three radar applications will be considered namely: through-

the-wall radar – for detection of targets (humans) behind walls or buried under 

rubble; medical imaging radar – for breast cancer detection;  and ground penetrating 

radar – detections of buried metallic objects (e.g. land mines).  A common problem 

in these applications is the “near-far problem” in which strong early unwanted 

signals (e.g. direct antenna crosstalk and the wall, soil surface, or skin reflections) 

overshadow the return signal from the desired target especially for those located far 

from the radar or with a small RCS. A novel hardware based clutter suppression 

technique is proposed in the thesis to counteract the near-far effect.   

2.3 Propagation Effects  

The propagation of electromagnetic waves is influenced by the dielectric and 

physical properties of the medium or the material with which it interacts. 

Propagation phenomenon including: variation in the wave velocity, reflection, 

diffraction, attenuation and phase distortion are some of the impairments suffered by 

the wave as it interacts or travels through the medium. The theoretical basis of these 

effects are well covered in the literature, e.g. reference [9] provides a summary 

background.  

A good understanding of the medium or material dielectric properties and 

heterogeneities are essential in order to accurately model these impairment effects 



Chapter 2: Radar Principles 
 

19 
 

and moreover find efficient ways to mitigate them [11]. Principally, in the context of 

radar systems where the main objective is detecting, classifying, and / or tracking 

target(s), with certain dielectric properties, within an environment, which also may 

contain other objects, with properties different or similar to that of the target.  

The dielectric properties of a material can be described by its parameters: 

permittivity, conductivity, and permeability which are frequency dependent. While 

permittivity describes the ability of material to store and release electromagnetic 

energy, conductivity is related to the loss (dissipation) or attenuation (absorption) the 

signal suffers as it propagates through the material. The higher the conductivity of 

the material the higher the loss or the attenuation the wave encounters.  The material 

permittivity slows the speed of the wave that travels through by a factor proportional 

to the square root of permittivity (dielectric constant).  The permeability on the other 

hand measures the ability of a material to sustain the formation of magnetic field. 

For the radar scenarios discussed in this thesis the permeability of materials is not 

considered as the materials (human tissue, soil, and wall) are non-magnetic.  

In the radar numerical simulations and experimental work presented in this 

thesis the dielectric property of the material/medium are assumed to be known or 

taken from those reported in the literature. Measurements as well as the 

characterisation of the material dielectric properties are beyond the scope of this 

thesis. For the interested reader, references [11, 24] describe measurement 

techniques as well as the dielectric properties within the microwave frequency band 

for different types of building material applicable to through-the-wall radar imaging. 

Similarly, references [25, 26] and [27, 28] give the corresponding information for 

sand / soil for GPR and breast tissues for medical imaging radar for breast cancer 

detection, respectively. 

 

2.4 Imaging Algorithms  

A number of radar imaging algorithms have been reported in the literature 

that can be applied to the raw / pre-processed received radar data and create an easy 

to interpret 2-D or 3-D graphical image of the area under test.  For the radar work 

presented in this thesis the well-known “Delay-and-Sum” (DAS) beamforming 
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algorithm has been used to create a planar (2-D) energy map of the scenario under 

test [29-31].  

The main reasons for the choice of this algorithm have been its flexibility and 

easy computational complexity. This algorithm performs well independent of the 

antenna array topology (linear or non-linear) and it can also handle data obtained 

with multistatic, or bistatic / monostatic synthetic aperture radar configuration 

(SAR). Furthermore, it can easily account for the wave speed in a multi-layered 

medium, although prior knowledge of the medium dielectric property is needed.  In 

the thesis it is assumed that the medium dielectric properties are known. The DAS 

algorithm involves the following steps [30]:  

 

• Dividing the area of interest into a spatial grid of small pixels (focal points) 

• For each focal point calculate the round trip delay from the transmitter to the 

focal point and back to the receiver.  

• Based on the evaluated time delays, estimate the received amplitude in each 

transmitter–receiver pair for each pixel. 

• The received amplitudes for each focal point are summed and squared, and 

this energy value is assigned for that pixel.  

• The process is repeated for all pixels in the spatial grid. 

• An energy map is then created from the pixels stored value.  

 

For a monostatic or bistatic radar in a SAR configuration the energy of the 

pixel located at position A(xi, yj) can be mathematically expressed in dB scaled as, 

 
/01�, 345 = 20789 :;  ��<�.��=��>

�?� : 
(2.1) 

 

where: “Sm” is the recorded signal at the mth radar position; “τmAm(r)” is the signal 

time delay from the transmitter to the pixel “A” and back to the receiver.    

 <�.��=� = @�. + ��.&     (2.2) 
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TmA is the distance between the transmitter to the focal point and RmA the distance 

from the receiver to the focal point. These distances can be estimated using equations 

(2.3) and (2.4) respectively: 

 @�. = B�1C� − 1��	 + �3C� − 3��	 (2.3) 

 ��. = B�1�� − 1��	 + �3�� − 3��	 
 

(2.4) 

For a multistatic array configuration with “N” transmitting and “M” receiving 

antennas the energy at the focal point “A” can be re-written as in (2.5). 

 

 
/01� , 345 = 20789 :; ;E���<�.��=��F

�?�
>

�?� : 
(2.5) 

It is worth mentioning that the effectiveness of the DAS algorithm relies on 

the accurate estimation of the round trip delay and also on the assumption that if the 

target is present at a particular focal point, then the signals returned for that point 

will add coherently while the return from clutter will add incoherently [32].   

 

2.5 Summary 

In this chapter background of radar systems, their modes of operation and 

waveform types was given. The detection of possible target(s) using a simple post-

processing imaging algorithm namely “delay-and-sum”, which is widely used in 

many radar applications, have been described. This post-processing algorithm has 

been used to create radar images presented in this thesis.   

 

 

 

 

 

 



Chapter 2: Radar Principles  

22 
 

2.6 References 

[1] M. Skolnik, Introduction to Radar Systems, 2nd ed. New York: MxGraw-

Hill, 1981. 

[2] M. Richards, Fundamental of Radar Signal Processing. New York: 

McGraw-Hill, 2005. 

[3] B. Mahafza, Radar Signal Analysis and Processing Using MatLab: Chapman 

and Hall/CRC, 2009  

[4] C. Balanis, Antenna Theory: Analysis and Design. Wiley-Interscience, 2005. 

[5] M. Farwella, J. Rossa, R. Luttrella, D. Cohena, W. China, and T. Dogarub, 

"Sense through the wall system development and design considerations," 

Journal of the Franklin Institute, vol. 345 pp. 570-591, 2008. 

[6] Y. Teng, H. Griffiths, C. Baker, and K. Woodbridge, "Netted radar sensitivity 

and ambiguity," IET Radar, Sonar & Navigation, vol. 1, pp. 479-486, 2007. 

[7] S. Hamran, D.  Gjessing, J. Hjelmstad, and E. Aarholt, "Ground penetrating 

synthetic pulse radar: dynamic range and modes of operation," Journal of 

Applied Geophysics, vol. 33, pp. 7-14, 1995. 

[8] N. Kinzie, "Ultra-Wideband Pulse Doppler Radar for Short Range Targets," 

PhD, Department of Electrical, Computer, and Energy Engineering, 

University of Colorado, 2011. 

[9] S. Salous, Radio Propagation Measurement and Channel Modelling. 

Chichester, UK. John Wiley & Sons, 2013. 

[10] L. Zhang, B. Lu, Z. Zhou, and X. Sun, "A wall-clutter suppression method 

based on spatial signature in MIMO through-the-wall radar imaging," 

Progress In Electromagnetics Research B, vol. 55, pp. 277-295, 2013. 

[11] M. Amin, Through-the-Wall Radar Imaging. United States: CRC Press 

Taylor & Francis Group, 2010. 

[12] I. Craddock, R. Nilavalan, J. Leendertz, A. Preece, and R. Benjamin, 

"Experimental investigation of real aperture synthetically organised radar for 

breast cancer detection," IEEE Antennas and Propagation Society 

International Symposium, vol. 1B, pp. 179-182, 2005. 



Chapter 2: Radar Principles  

23 
 

[13] J. Sill and E. Fear, "Tissue sensing adaptive radar for breast cancer detection 

- experimental investigation of simple tumor models," IEEE Transactions on 

Microwave Theory and Techniques, vol. 53, pp. 3312-3319, 2005. 

[14] A. Lazaro, D. Girbau, and R. Villarino, "Simulated and experimental 

investigation of microwave imaging using UWB," Progress In 

Electromagnetics Research, vol. 94, pp. 263-280, 2009. 

[15] T. Thayaparan and C. Wernik, "Noise radar technology basics," Defence 

R&D Canada - Ottawa Technical Memorandum 2006-266, 2006. 

[16] R. Narayanan, "Ultra-wide-band noise radar systems," SPIE Newroom, 2012. 

[17] C. Cook and M. Bernfeld, Radar Signals: An Introduction to Theory and 

Application: Academic Press, 1967. 

[18] F. Ahmad and M. Amin, "Matched-illumination waveform design for a 

multistatic through-the-wall radar system," IEEE Journal of Selected Topics 

in Signal Processing, vol. 4, pp. 177-186, 2010. 

[19] L. Xiaoxiang and L. Henry, "Through the wall imaging using chaotic 

modulated ultra wideband synthetic aperture radar," IEEE International 

Conference on Acoustics, Speech and Signal Processing, pp. 1257-1260, 

2007. 

[20] S. Sen and A. Nehorai, "Adaptive OFDM radar for target detection in 

multipath scenarios," IEEE Transactions on Signal Processing, vol. 59, pp. 

78-90, 2011. 

[21] D. Barras, F. Ellinger, and H. Jackel, "A comparison between ultra-wideband 

and narrowband transceivers," Proceedings TRLabs/IEEE Wireless, pp.211-

214, 2002. 

[22] D. Daniels, "Applications of impulse radar technology," in Radar 97 (Conf. 

Publ. No. 449), pp. 667-672, 1997. 

[23] E. Staderini, "UWB radars in medicine," IEEE Aerospace and Electronic 

Systems Magazine, vol. 17, pp. 13-18, 2002. 

[24] A. Muqaibel, A. Safaai-Jazi, A. Bayram, A. Attiya, and S. Riad, 

“Ultrawideband through-the-wall propagation,” IEE Proceedings 

Microwaves, Antennas and Propagation,vol. 152, pp. 581-588, 2005. 

[25] B. Vishvakarma and C. Rai, "Measurement of complex dielectric constant of 

sand and dust particles as a function of moisture content," 23rd European 

Microwave Conference,pp. 568-570, 1993. 



Chapter 2: Radar Principles  

24 
 

[26] V. Mironov, "Spectral dielectric properties of moist soils in the microwave 

band," IEEE Proceedings Geoscience and Remote Sensing Symposium, vol. 

5, pp. 3474-3477, 2004. 

[27] C. Gabriel, S Gabriel, and E Corthout, “The dielectric properties of biological 

tissues: I. Literature survey,” Physics in Medicine and Biology, vol. 41, pp. 

2231-2249, 1996. 

[28] M. Lazebnik, L. McCartney, D. Popovic, C. Watkins, M. Lindstrom, J. 

Harter, et al., "A large-scale study of the ultrawideband microwave dielectric 

properties of normal breast tissue obtained from reduction surgeries," Physics 

in Medicine and Biology, vol. 52, pp. 2637-2656, 2007. 

[29] X. Li and S. Hagness, "A confocal microwave imaging algorithm for breast 

cancer detection," in Microwave and Wireless Components, IEEE Letters, 

vol. 11, pp. 130-132, 2001. 

[30] L. Chen and O. Shan, "Through-wall surveillance using ultra-wideband short 

pulse radar: numerical simulation," 2nd IEEE Conference on Industrial 

Electronics and Applications, pp. 1551-1554, 2007. 

[31] M. Gonzalez-Huici, I. Catapano, and F. Soldovieri, "A comparative study of 

gpr reconstruction approaches for landmine detection," IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, 

pp. 4869-4878, 2014. 

[32] D. Byrne, M. O'Halloran, M. Glavin, and E. Jones, "Data independent radar 

beamforming algorithms for breast cancer detection," Progress In 

Electromagnetics Research, vol. 107, pp. 331-348, 2010. 

 

 

 

 

 

 

  

 



25 
 

CHAPTER 3 

Clutter Suppression Techniques – Review  

 A critical issue in radar imaging systems is the suppression/removal of clutter. 

Clutter not just obscures and interferes with the target but may also give rise to 

erroneous detection. In this chapter a review of some of the existing clutter 

suppression techniques will be given. Moreover, at the end of the chapter a novel 

clutter technique proposed in this thesis will be briefly described.  

        

 

 

In radar systems, the term clutter refers to unwanted return signals which in 

most cases do not originate from the desired target. These signals may interfere or 

even overshadow the target signature, consequently making target detection a much 

more difficult task.  

For instance in through-the-wall radar scenario, which aims at detecting and 

localizing beings (e.g. human) hidden behind a wall or obstacle, the radar’s 

transmitted signal has to propagate through the facing wall and depending on the 

physical and electric properties of the wall much of it may be reflected back. The 

part of the signal that passes through-the-wall gets scattered by any physical 

interface it encounters as it propagates in the environment. Some of these scattered 

signals may propagate back through the facing wall and are sensed by the radar.  So 

the radar received signal will be the combination of the entire sensed scattered 

signals. Differentiating the target return from other signals is not a trivial task; for an 



Chapter 3: Clutter Suppression Techniques – Review 
 

26 
 

improved radar performance suppression / removal of the unwanted signals (clutter) 

must be performed before target detection takes place.  

Some clutter may interfere with the desired target return or even be strong 

enough in magnitude to overshadow the target’s signature. As a consequence the 

resultant radar image may erroneously indicate no presence of a target, which is 

referred to as false-negative. Some of these unwanted signals if not effectively 

removed might appear as a target on the radar image therefore leading to a prediction 

of presence of a target when in fact there is no actual target in the scenario, this is 

referred to as false-positive predictions. 

Several clutter suppression techniques have been reported in the literature in 

a number of radar imaging applications, such as the applications considered in this 

thesis namely: through-the-wall imaging radar, medical imaging radar, and ground 

penetrating radar.   

In this chapter a review of some of the widely used clutter suppression 

techniques is given. These techniques are divided into two main categories namely: 

post-processing based techniques and hardware based techniques.   

The post-processing based techniques are simply algorithms which are 

applied to the acquired/received data for clutter suppression purposes. The receivers 

in this case need to have enough dynamic range and sensitivity to acquire the clutter 

signals and the desired target return. Otherwise strong clutter may saturate the 

receiver or worse cause target return particularly from those with low RCS appearing 

as noise, consequently degrading the overall performance.  On the other hand, 

hardware based techniques perform clutter suppression before signals are digitized. 

Therefore if the strong clutter is suppressed, weak signals from possible targets can 

be amplified and better acquired without the risk of saturating the receiver. Apart 

from antenna polarization techniques hardware based approaches perform some form 

of range or time gating. This means that they are able to reject signals arriving at a 

certain time or from a particular range while allowing others to pass through.         

 The next section reviews post-processing based techniques, and then 

hardware based approaches. Moreover, an introduction to the proposed hardware 

based approach is given.  
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3.1 Post-Processing Based Techniques   

3.1.1 Background Subtraction Technique 

Background subtraction (BS) is an effective method for the removal of 

mainly external clutter and has been widely applied in radar simulations and 

experiments.  The basis of the technique is to acquire data from the scenario under 

test without the presence of the target(s). These data can be viewed as the calibration 

data of an “empty scenario”. The data can then be used to subtract from the actual 

measured data the undesired reflections seen by each individual antenna. In [1] BS 

was used for the removal of antenna and the surrounding environment reflections in 

MIR for breast cancer detection. The calibration data (without the breast phantom 

present) was obtained by performing initial measurements at the pre-defined antenna 

position. These data were then subtracted from the actual measurements (with the 

phantom included). One of the assumptions with the BS technique is that the clutter 

is static and time-invariant.   

 Unfortunately, the BS technique is not practical or realistic when it comes to 

the removal of the unwanted skin, wall, or ground reflection in MIR, TTR and GPR 

applications respectively. This stems from the fact that the unwanted scatterers, for 

example: breast skin – is case dependent, with variations on its contour shape, size, 

and dielectric property. Consequently, it is hard to replicate for a specific scenario in 

order to extract the needed calibration responses.  

The BS technique can in fact be considered as an ideal case, when the 

calibration responses are acquired from the same scenario under test in the absence 

of the target. Therefore, it is mostly applied for simplicity purposes as a bench mark, 

against which other clutter removal techniques can be compared [2, 3]; or when the 

emphasis is on testing / comparing the image formation algorithms [4-6], or even at 

the early stages of development of the radar systems [7] [8].       
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3.1.2 Displacement Based Technique 

This technique, also referred to as differential or change detection, exploits 

the spatial or temporal variation of the target signature in order to suppress unwanted 

un-displaced clutter.  In [9] this technique was used to remove antenna crosstalk and 

wall reflection in a TTW radar experiment. In the reported experiment, bistatic 

measurements were performed at predefined positions along a track, forming a linear 

SAR array. Parallel to the wall a small trihedral corner reflector acted as a stationary 

target behind the wall. The removal of the unwanted reflections consisted of the 

subtraction of the consecutive signals along the array, with the assumption that these 

reflections are similar between successive measurement positions and are thereby 

removed; whereas for a target, not equidistant to both positions, the return appears 

displaced in the profiles.  

This technique is also widely used in TTW radar for the detection of life-sign 

(heartbeat and breathing) [10] or person movement [11, 12] by exploiting temporal 

changes in the received signal. This is simply done by subtracting the signals 

received at different time intervals, which is somewhat different from the above 

where the subtraction was performed between consecutive measurement positions.  

In this case for a fixed position the subtraction is performed for signals acquired at 

different consecutive [11] or non-consecutive [12] time instants. The technique can 

also be applied after the radar images have been through non-coherent detection, by 

subtracting images from different instants [13, 14].   

Displacement based techniques have also been proposed by a research group 

at the University of Bristol (U.K) and successfully demonstrated for the removal of 

skin and clutter reflections in medical imaging radar for breast cancer detection [15, 

16]. In their radar configuration a hemispherical shape antenna array surrounds the 

breast. Two measurement campaigns were performed; the first campaign with the 

array on its initial or default position and the second campaign after it is rotated (at a 

chosen angle) around its centre. The removal of unwanted clutter is performed by 

subtracting from each individual antenna its corresponding displaced or rotated 

measurement. The assumption made is that the undesired signal such as:  antenna 

crosstalk and reflection from the skin is identical and appear at the same time 

position in both measurements (normal and displaced) while tumour response 

appears at different times. So the unwanted reflections can be removed by 
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subtraction. Although the technique may suppress the strong skin reflection it does 

so at the expense of adding clutter into the tumour response. Moreover for a tumour 

located close to or at the array rotation axis, the subtraction may remove its response. 

This technique may also generate ghost targets in the image as the tumour response 

from the displaced measurement is also added back [17]. 

3.1.3 Blind Sources Separation Techniques  

Blind sources separation (BSS) techniques also referred to as subspace 

projection techniques are related to the decomposition / separation of a set of signals 

called source signals from their mixture without any prior knowledge about the 

mixing process or the sources [18, 19]. There are many BSS techniques reported in 

the literature applied to radar imaging applications for the purpose of clutter 

suppression. Some of these are: singular value decomposition (SVD), factor analysis 

(FA), principal component analysis (PCA) and independent component analysis 

(ICA). The theoretical formulations of these techniques are well covered in the 

literature. References [18-20] provide a detailed discussion and comparison of these 

techniques in different radar scenarios. 

In order to apply any of the aforementioned techniques in TTW, GPR or MIR 

radar scenarios the received radar signals from the different receiver positions are 

grouped into a matrix format M × N, also termed B-scan, where M represents the 

number of receivers and N the length of time samples. An appropriate BSS technique 

is applied to the matrix in order to decompose it into clutter, target and noise 

subspaces or matrices. Clutter subspaces, more importantly, need to be disregarded / 

removed before producing the radar images for successful target detection.  

In [21] the SVD technique was applied to through-the-wall radar experiments 

data to suppress the wall reflections. The experiments were conducted in two 

different walls, namely: plywood and brick wall, the target was a 30 x 30 cm2 

aluminium sheet in both cases. From the decomposed subspaces in both scenarios 

the author empirically concluded that the subspace of the stronger eigenvalue, the 

first subspace, represented the clutter (wall reflections) contribution and therefore 

needed removal. Only the second subspace was used to create an image of the 

scenario which successfully showed the target while the other subspaces were 

disregarded as noise. Similar conclusions regarding the subspaces representing the 
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clutter and that of the target in a through-the-wall radar scenario were reached in [19, 

20] for a monostatic antenna configuration in a SAR case and in [22] for MIMO 

antenna configuration.  

In contrast in [23] it has been shown that clutter (wall reflection) may extend 

beyond the first subspace. In fact successful wall reflection suppression and 

consequently target detection were only obtained by removing the four strongest 

eigenvalues, for the plywood wall scenario, and the seven strongest eigenvalues for 

the concrete wall scenario. In both scenarios the remaining eigenvalues are made-up 

of the contributions from the target and the noise.   

The SVD technique has also been used in MIR for breast cancer detection, to 

remove the air-skin and other internal breast tissue reflections [24, 25]. Furthermore 

this technique was reported in GPR scenarios for the suppression of the strong air-

ground reflections [18, 26] which normally overshadow the return signal from the 

buried target.      

Performance comparison amongst the different BSS techniques (SVD, PCA, 

FA, and ICA) for the purpose of clutter suppression have been performed in TTW 

[19, 20], and GPR scenarios [18, 27]. The results from the aforementioned references 

show that ICA outperforms the other techniques in terms of clutter mitigation but it 

has a higher algorithm complexity. ICA decomposes the data into statically 

independent components whereas PCA and FA represent it as uncorrelated 

components [20]. SVD is the simplest and offers the poorest performance among all 

the BSS techniques.      

Although these techniques can offer the advantages of suppressing strong 

clutter without any priori information about the target or the clutter itself, their 

drawback is that for some of the clutter with energy comparable to that of the target 

return will not be suppressed. Therefore the clutter may still appear as a false target 

in the created image [28]. Moreover, there is no robust methodology for deciding the 

number of subspaces needed to be removed in order to achieve a higher signal-to-

clutter ratio. In most related work, this has been empirically performed through trial 

and error.      
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3.1.4 Filtering Techniques 

A number of post-processing filter based techniques have been reported in 

the literature for the suppression of undesired reflections (clutter) in radar 

applications such as GPR, TTWI and MIR. As mentioned previously undesired 

reflections such as that of the skin, in breast cancer imaging (MIR), tend to 

overshadow the return of the target (cancer tumuor). Similarly, the wall return 

overshadows the target (person) behind it in TTW and air-ground reflections tend to 

mask those of deep buried targets in GPR. Some of the proposed filter based 

techniques are:  

 

- Averaged Based  

 An early example of the averaged based technique for suppression of skin 

reflections in MIR can be found in [29],  where a numerical 2-D FDTD breast model 

with cancer tumour included was used.  In the simulation the breast phantom was 

surrounded by 17 monopole antennas which were individually excited with a short 

Gaussian pulse. The backscattered responses in each case were recorded by the same 

transmitting antenna in a monostatic radar approach. The averaged based technique 

involved subtracting the average of the received signal for all antennas from each 

antenna signal.  

The main assumption with this technique is that the skin reflection is similar 

in all antenna positions (channels) and adds coherently. Consequently, when 

averaged it can be subtracted out from each channel, while the tumour response 

appears at different times at different antenna positions and it is not filtered out by 

the averaged signal. 

This simple method seems to perform well in simulations and experiments 

involving a breast phantom with skin of homogeneous dielectric and of constant 

thickness [1, 30, 31]. In reality, breast skin is a heterogeneous tissue with variations 

in its dielectric [32, 33] and thickness [34, 35] hence, in practice the skin return 

signal at different antenna positions will not be so similar.  Furthermore, the 

averaged channels internal breast clutter will be added back to the individual 

channels, consequently deteriorating the tumour response and causing possible ghost 

targets appearing in the reconstructed image. For a tumour located equidistantly from 

all/most antenna positions, a worst case scenario would be that its response will also 
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appear in the averaged signal. Therefore it will be subtracted out from the individual 

channels, leading consequently to a false negative. 

This technique has been used in [36, 37] for suppression of wall reflections in 

TTW radar. Furthermore in references [38-40] it was used and compared against 

other techniques for the removal of air-ground reflection in ground penetration radar.   

 

- Wiener Filter  

As an improvement to the averaging subtraction technique in [41] a Wiener 

filter was introduced as a means of removing the skin reflection in MIR for breast 

cancer detection. The idea here is to estimate the skin response in individual 

channels as a filtered combination of all other channels. The estimated channel’s 

skin response is then subtracted from the channel recorded signal. The filter weights 

are computed to minimise the mean square error over the channel’s skin early-time 

response. The filtering operation adds back residuals from other channels into the 

channel signal and these needs to be suppressed before imaging. A feedback filter 

was implemented in [41] to compensate for the unwanted residuals. Although this 

technique presents an improvement compared to the simple averaging based 

technique the response of targets (tumours) located on / or close to the antennas 

rotation axis could still suffer substantially.    

 

- Recursive Least Squares Filter  

The recursive least squares (RLS) filter algorithm for the estimation of the 

skin response was first proposed by Sill et al. in [42]. The RLS is an adaptive 

algorithm in which the filter weights are computed recursively and updated for every 

time step. This is contrary to the Wiener filter technique in which the computed filter 

weights are constant through the selected skin early time window [24].  

In [42] the RLS algorithm is applied on individual channels on the early part 

of the signal, corresponding to the skin response. For the remaining part of the 

signal, representing the breast interior, the Woody averaging algorithm [43] is 

applied. Both estimated signals are then concatenated and the total signal is then 

subtracted from the chosen channel signal. The duration of the skin response as well 

as the thickness were estimated using the algorithm developed in [44]. 
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3.1.5 Frequency Domain Pole Splitting  

This technique was originally proposed by Maskooki et al. [25] for the 

suppression of skin reflection in MIR for breast cancer detection. One advantage of 

this technique over the aforementioned filter based techniques is that the clutter 

(primarily skin) in each channel is suppressed independently from other channels. 

Therefore, no clutter or residual signals, from other channels, are added to the 

tumour response of the channel under consideration. The foundation of this 

technique is the representation of the channel (received radar signal) frequency 

response as a sum of complex sinusoids, where each complex sinusoid represents an 

eigenvalue (pole) of a linear system. Each pole on the other hand corresponds to a 

particular scatter in the environment as viewed by the antenna. Once the poles are 

estimated, a threshold is applied to remove the poles corresponding to the strongest 

scatterer (e.g. skin). 

As this algorithm is applied to the data in the frequency-domain both early-

time and late-time skin responses are suppressed.  Simulation results in [24, 25] 

show that with a good choice of threshold this technique out-performs other methods 

in terms of tumour to clutter response ratio.  

The drawback of the technique is that it relies on the choice of an optimal 

threshold which is difficult because the tumour return depends on many factors, such 

as: size, location, and water content. Therefore, choosing a big threshold may not 

suppress enough the unwanted reflections and also a small threshold can on the other 

hand cause the removal of the tumour return, which is something to be avoided in the 

first place. 

3.2 Hardware Based Techniques  

3.2.1 Time Gating Technique 

Time gating techniques essentially mean disabling the receiver system (or 

part of it) for a certain specified time window(s) in order to avoid unwanted 

reflection(s) being received.   This technique is widely used for the suppression of 

external clutter caused by distant objects [45, 46]. For a pulse based radar system if 

the transmitted pulse is short enough, this allows the resolution of the unwanted 
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early reflections from the wall; skin; or air-ground interface from the wanted 

reflections of the target, then the unwanted early clutter can be simply gated out. 

This can be achieved by switching on the receiver slightly after the unwanted time or 

just before the wanted target reflection. In a pulse based radar, performing time 

gating in hardware is not a trivial task as it requires: stable synchronisation and 

timing between the diverse modules (transmitter, receiver and switching 

mechanism), and a fast switch which depends on the radar application scenario.        

Due to the above difficulty, this approach is often performed through post-

processing by zeroing the undesired portion of the received signal.  This has been 

suggested for the suppression of the early strong artefacts such as skin reflections in 

MIR [47], wall reflection in TTWR [48], and ground surface reflection in GPR [49].    

It is worth mentioning that some of the materials (i.e. wall or skin) might 

exhibit a dispersive behaviour therefore distorting and broadening the reflected pulse 

and this essentially compromises the effectiveness of the technique. If the gating 

time is misjudged (by increasing it) it may cause the target’s response to be also 

zeroed.      

In [50, 51] a hybrid post-process time gating and filtering approach was 

proposed for suppression of both early and late-time clutter in MIR. Skin location 

and thickness are first estimated. Based on these estimates gating is applied to 

remove the external clutter and the early skin artefact. Once time gated the data are 

then filtered (using the Woody averaging algorithm [43]) to suppress the late time 

clutter.     

3.2.2 Antenna Polarization Technique 

It has been long understood from an electromagnetic perspective that the 

material shape affects the polarization of the waves interacting with it. As an 

example a wave reflected from a flat surface or diffracted from a straight edge of an 

object would be in co-polarization with the impinging waveform while its cross-

polarised component would be a null [52]. For an object with irregular and/or a 

curved surface shape the reflected waveform would have a non-zero co-polarised 

and cross-polarised component.   

The polarizations of the reflected wave have been explored as clutter 

suppression techniques in TTW and MIR radar. Through-the-wall radar numerical 
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simulations in [5, 52, 53] show that the human body, due to its curved and irregular 

shape, produces stronger cross polarized radar returns compared to walls or objects 

of regular, straight edged or right angled shapes.  If the comparison is made in terms 

of the co-polarised components, the wall return was much stronger than that of the 

target. These results show that by receiving with a cross-polarised antenna one can 

mitigate the wall return and further may be able to discriminate the human signature 

from the other objects of a particular shape [52]. 

By receiving in a cross-polarised mode it was shown through simulation that 

antenna crosstalk and reflection from planar surfaces (e.g. chest-wall) can be 

suppressed while enhancing the reflection of axially asymmetric breast tumour 

reflections [54]. Similar conclusions were reached in [55]  through simulation and 

experiments using a cross-polarised antenna at the receiver to that of the transmitter. 

Although, the results in the above references are promising, there are still 

practical challenges in realising this approach. A cross-polarized component/signal 

tends to be very weak, therefore if a receiving system is not sensitive enough it may 

just be perceived as noise. Designing pure cross polarised antennas operating in a 

wide bandwidth is still a challenge. Moreover, although a planar surface reflection 

can be suppressed, a breast surface outline is not planar. Consequently breast skin 

reflections may still be considerably stronger than that of the tumour, especially for 

tumours located deep in the breast.  

3.2.3 Hardware Based Filtering Techniques 

Strong reflections, e.g.: antenna crosstalk, wall, skin, or air-ground 

backscatter, affect the radar’s performance. These reflections tend to be much greater 

in magnitude in comparison to that of the desired target, therefore setting the upper 

limit of the radar dynamic range. This effectively limits the ability of the system in 

detecting weak signals such as the return of a low RCS target [56]. These strong 

undesired reflections not only may overshadow the target’s signature but may also 

lead to the weak target signal to be buried in the system’s noise floor. This makes the 

target detection more difficult even after application of the post-processing clutter 

suppression techniques. By eliminating these unwanted reflections in hardware (prior 

to the signal being recorded) the receiver can be more sensitive to the time delays 

related to possible target positions.  



Chapter 3: Clutter Suppression Techniques – Review 
 

36 
 

In [56, 57] a hardware filtering based technique was implemented for the 

suppression of wall reflection and antenna crosstalk in TTWR scenario using a 

FMCW based radar system. The operation of a FMCW based radar system is widely 

covered in the literature and is also described in detail in Chapter 4 Section 4.1. For 

the sake of understanding the implementation of the aforementioned suppression 

techniques a brief note on FMCW radar is given here.  

In FMCW radar a chirp (as it is known) or appropriately a sinusoidal signal 

with linear time varying frequency is transmitted. The received delayed copy of the 

signal is correlated with a copy of the transmitted signal resulting in a frequency tone 

signal mostly referred to as a beat-note. The frequency of the tone is related to the 

target distance. 

In through-the-wall radar scenarios the front wall interface is closer to the 

radar compared to any possible scatterer (targets) within the room. Therefore, the 

received tone related to the wall would have the lowest frequency. The antenna 

crosstalk would also produce a lower frequency tone as the distance between the 

antennas (for bistatic or multistatic mode) is still shorter than that to the target within 

the room. Consequently, the basic idea of this suppression technique is to filter out 

these undesired beat-note signals by using a suitable band pass filter. The 

performance of this technique is of course affected by the choice of the filter 

employed, as this needs to provide a steep transition from stop to pass band and 

constant pass band to suppress wall and crosstalk reflections while allowing the 

possible target signature to pass through unaffected.      

It is worth mentioning that the received beat-note frequency is not only 

dependent on the distance between the scatterer and the radar, but also on other 

system parameters such as bandwidth and the duration of the chirp. For flexibility 

purposes a tuneable oscillator was used to shift the bandwidth of the transmitted 

chirp which resulted in a shift of the received beat-note frequencies. In this mode the 

receiver had a fixed bandwidth high-Q band pass filter and the tuneable oscillator 

could then be adjusted to bring the beat-note frequencies related to crosstalk and wall 

into the filter’s stop band while maintaining those of possible targets into the filter’s 

pass band. 
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3.3 Proposed Clutter Suppression Technique  

This thesis presents “Gated Frequency Modulated Continuous Waveform 

(GFMCW)” as the proposed technique for the suppression of crosstalk and the strong 

early reflection that originates from the wall in TTWR, or breast skin interface in 

MIR for cancer detection, or soil surface in GPR application.  It is well known that 

these reflections are much stronger in magnitude than that of a desired target, 

therefore making target detection difficult.  

GFMCW signals have been used in applications such as ionospheric channel 

sounding and sea-surface remote sensing, to counter the drawbacks of a normal 

FMCW system.  In FMCW systems both the receiver and transmitter are active 

simultaneously. Consequently, for a high transmitted power the receiver is generally 

blocked / saturated as a result of antenna crosstalk in a bistatic or multistatic system 

or poor isolation of the circulator device in a monostatic system. To counter this 

effect it is necessary to provide the receiver with listening intervals, during which no 

transmission occurs. This is achieved by switching the FMCW waveforms at the 

transmitter and receiver in an on-off pattern so to ensure the transmission and 

reception are not simultaneous.  

GFMCW signals can be simply viewed as a FMCW signal that has been 

switched “on” and “off”. It can be modelled as a product of a FMCW signal with 

“on” and “off” patterns (usually referred to as a gating sequence).  The applied 

complementary gating sequences cause the radar system to exhibit range dependent 

sensitivity.  Consequently, gating sequences can be suitably designed so the receiver 

only listens to reflections from the range related possible target while suppressing 

those from range(s) (time delays) related to unwanted scatterers.   

In order to test the proposed technique on the aforementioned radar 

application scenarios numerical simulations as well as experimental measurement 

campaigns have been performed.  

For the experimental work related to the proposed technique two hardware 

radar demonstrators have been built.  The first radar system is based around two 

arbitrary waveform generators (AWG), one for the transmitter and the other for the 

receiver part, to generate simultaneously the transmitter and the receiver GFMCW / 

or normal FMCW waveforms. So no waveform switching through the hardware is 
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performed in this set-up as the AWGs can be loaded with the already gated FMCW 

waveforms. The FMCW waveforms are multiplied with the complementary gating 

sequence in software prior to being loaded into the respective AWG modules. To 

further provide flexibility and agility custom made software was created, through a 

combination of Matlab and C++, to provide control of the AWGs and give the ability 

to change all the parameters of the desired waveform. This demonstrator can 

generate a waveform with a maximum frequency range of 3.5 GHz. Therefore it was 

used in experiments involving: through-the-wall radar scenarios – for suppression of 

crosstalk and the strong wall reflections; and ground penetrating radar scenarios – for 

suppression of crosstalk and soil surface reflections.  

  The second radar system is based on a vector network analyser (VNA). The 

employed VNA is able to generate the FMCW waveform with maximum frequency 

of 8.5 GHz. In order to create GFMCW waveform fast pin diode switches were 

connected separately into the transmitter and receiver, switching the transmitted and 

received waveform on-off with complementary sequences. The switches were driven 

by the AWGs which in this case were pre-loaded with the respective gating 

sequence. This hardware demonstrator has been used in medical imaging radar 

scenarios for the suppression of crosstalk and the supposed breast skin reflection. 

The reason this demonstrator was used in this scenario was mostly due to the large 

achievable bandwidth with the VNA. Consequently, this enabled a much lower range 

resolution which is desirable in MIR scenarios.      
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3.4 Summary 

Clutter or unwanted signals negatively affect the performance of a radar 

system, as they tend to mask and overshadow the desirable target signature. If not 

suppressed effectively the detection and identification of the desirable target 

becomes more difficult.  

In this chapter a review of some clutter suppression techniques was outlined, 

with focus on those applied to TTWR, MIR, and GPR scenarios for the suppression 

of wall, breast skin, and ground surface reflection respectively. These techniques 

were divided into two main groups: post-processing based and hardware based. Post-

processing based techniques are simply algorithms that can be applied to the 

collected radar data in order to remove the clutter. The radar system in these cases 

needs to be sensitive enough to record not just the target return but also those of the 

strong unwanted reflections e.g. antenna crosstalk. It is well known that the 

unwanted reflections can be in some cases strong enough that may cause the desired 

target reflection to appear as noise in the receiver or even creating a false-positive 

which increases the difficulty in detecting the target.  

Hardware based approaches on the other hand suppress the unwanted clutter 

return in the hardware before the signal is acquired or digitised. Therefore, offering 

the advantage of avoiding the receiver being saturated by strong unwanted scatterer’s 

return and crosstalk, thus improving the system’s sensitivity towards weak returns 

such as those of targets at far distances or of low radar cross section.     

The proposed clutter suppression technique in this thesis has also been briefly 

introduced at the end of this chapter. The proposed technique termed GFMCW can 

also be classed as hardware based approach as it provides the suppression before the 

signals at the receiver are digitised. GFMCW can also be paired with other post-

processing techniques to further enhance the overall system performance in terms of 

clutter mitigation.  

 

 

 

 



Chapter 3: Clutter Suppression Techniques – Review 
 

40 
 

3.5 References 

[1] S. Salvador, and G. Vecchi, “Experimental tests of microwave breast cancer 

detection on phantoms,” IEEE Transactions on Antennas and Propagation, 

vol. 57, no. 6, pp. 1705-1712, 2009. 

[2] A. Lazaro, D. Girbau, and R. Villarino, “Simulated and experimental 

investigation of microwave imaging using UWB” Progress In 

Electromagnetics Research, vol. 94, pp. 263-280, 2009. 

[3] M. Elahi, A. Shahzad, M. Glavin, E. Jones, and M. O'Halloran, “Hybrid 

artifact removal for confocal microwave breast imaging,” IEEE Antennas and 

Wireless Propagation Letters, vol. 13, pp. 149-152, 2014. 

[4] B. Boudamouz, P. Millot, and C. Pichot, “Through the wall radar imaging 

with mimo beamforming processing - simulation and experimental results,” 

American Journal of Remote Sensing, vol. 1, no. 1, pp. 7-12, 2013. 

[5] T. Dogaru, C. Le, and L. Nguyen, “Synthetic aperture radar images of a 

simple room based on computer models,” ARL Technical Report, Adelphi, 

MD, ARL-TR-5193, 2010. 

[6] M. O'Halloran, M. Glavin, and E. Jones, “ Performance and robustness of a 

multistatic beamforming algorithm for breast cancer detection,” Progress In 

Electromagnetics Research, vol. 105, pp. 403-424, 2010. 

[7] X. He, J. Li, and C. Wu, "A novel UWB imaging system setup for computer-

aided breast cancery diagnosis," IEEE International Conference on Ultra-

wideband, pp. 260-264, 2014.  

[8] C. Dionisio, S. Tavares, M. Perotoni, and S. Kofuji, “Experiments on 

through-wall imaging using ultra wideband radar,” Microwave and Optical 

Technology Letters, vol. 54, no. 2, pp. 339-344, 2012. 

[9] M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging 

using differential SAR,” IEEE Transactions on Geoscience and Remote 

Sensing,vol. 47, no. 5, pp. 1289-1296, 2009. 

[10] B. Yilmaz, S. Demirci, E. Yigit, and C. Ozdemir, “An Experimental study of 

through-the-wall radar for lifesign detection,” PIERS Proceedings, 

Stockholm, pp. 1602-1604, 2013. 



Chapter 3: Clutter Suppression Techniques – Review 
 

41 
 

[11] B. Lu, Q. Song, Z. Zhou, and H. Wang, "A SFCW radar for through wall 

imaging and motion detection." European Radar Conference, pp. 325-328, 

2011. 

[12] F. Ahmad, and M. Amin, “Through-the-wall human motion indication using 

sparsity-driven change detection,” IEEE Transactions on Geoscience and 

Remote Sensing,  vol. 51, no. 2, pp. 881-890, 2013. 

[13] B. Lu, Q. Song, Z. Zhou, and X. Zhang, “Detection of human beings in 

motion behind the wall using SAR interferogram,” IEEE Geoscience and 

Remote Sensing Letters, vol. 9, no. 5, pp. 968-971, 2012. 

[14] A. Martone, K. Ranney, and C. Le, “Noncoherent approach for through-the-

wall moving target indication,” IEEE Transactions on Aerospace and 

Electronic Systems,vol. 50, no. 1, pp. 193-206, 2014. 

[15] T. Henriksson, M. Klemm, D. Gibbins, J. Leendertz, T. Horseman, A.  

Preece, et al., "Clinical trials of a multistatic UWB radar for breast imaging," 

in Loughborough Antennas and Propagation Conference (LAPC), pp. 1-4, 

2011. 

[16] M. Klemm, I. Craddock, J. Leendertz, A. Preece, and R. Benjamin, 

"Experimental and clinical results of breast cancer detection using UWB 

microwave radar," IEEE Antennas and Propagation Society International 

Symposium, pp. 1-4, 2008. 

[17] J. Deprez, M. Klemm, P. Smith, and I. Craddock, "Twin target correction for 

ultra-wideband radar imaging of breast tumours," IEEE International 

Symposuim on Nano to Macro, pp. 213-216, 2010. 

[18] F. Abujarad, “Ground Penetrating radar signal processing for landmine 

detection,” PhD, Institute of Electronics Signal Processing and 

Communications Engineering, University of Magdeburg, Germany, 2007. 

[19] P. Verma, A. Gaikwad, D. Singh, and M. Nigam, “Analysis of clutter 

reduction techniques for through wall imaging in UWB range,” Progress in 

Electromagnetics Research B, vol. 17, pp. 29-48, 2009. 

[20] A. Gaikwad, D. Singh, and M. Nigam, “Application of clutter reduction 

techniques for detection of metallic and low dielectric target behind the brick 

wall by stepped frequency continuous wave radar in ultra-wideband range,” 

IET Radar, Sonar & Navigation, vol. 5, no. 4, pp. 416-425, 2011. 



Chapter 3: Clutter Suppression Techniques – Review 
 

42 
 

[21] R. Chandra, A. Gaikwad, D. Singh, and M. Nigam, “An approach to remove 

the clutter and detect the target for ultra-wideband through-wall imaging,” 

Journal of Geophysics and Engineering, vol. 5, pp. 412-419, 2008. 

[22] H. Zhou, Z. Shu, and S. Tan, “Joint wall reflection suppression and 

parameters estimation for MIMO TWR imaging,” Journal of Information 

and Computational Science vol. 10, no. 17, pp. 5671-5679, 2013. 

[23] L. Zhang, B. Lu, Z. Zhou, and X. Sun, "The clutter suppression based on 

statistical techniques in TWI application," IEEE International Conference on 

Ultra-wideband, pp. 130-135, 2013. 

[24] M. Elahi, M. Glavin, E. Jones, and M. O'Halloran, “Artifact removal 

algorithms for microwave imaging of the breast,” Progress In 

Electromagnetics Research, vol. 141, pp. 185-200, 2013. 

[25] A. Maskooki, E. Gunawan, C. Soh, and K. Low, “Frequency domain skin 

artifact removal method for ultra-wideband breast cancer detection,” 

Progress In Electromagnetics Research, vol. 98, pp. 299-314, 2009. 

[26] A. Yoldemir, R. Gürcan, G. Kaplan, and M. Sezgin, “Comparative analysis 

of clutter suppression techniques for landmine detection using ground-

penetrating radar ” Proc. of SPIE vol. 8017, 2011. 

[27] B. Karlsen, J. Larsen, H. Sorensen, and K. Jakobsen, "Comparison of PCA 

and ICA based clutter reduction in GPR systems for anti-personal landmine 

detection," IEEE Workshop on Statistical Signal Processing, pp. 146-149, 

2001.  

[28] L. Zhang, B. Lu, Z. Zhou, and X. Sun, “A wall-clutter suppression method 

based on spatial signature in MIMO through-the-wall radar imaging,” 

Progress In Electromagnetics Research B, vol. 55, no. 277-295, 2013. 

[29] X. Li, and S. Hagness, “A confocal microwave imaging algorithm for breast 

cancer detection,” IEEE Microwave and Wireless Components Letters, vol. 

11, no. 3, pp. 130-132, Mar, 2001. 

[30] H. Lim, N. Nhung, E. Li, and N. Thang, “Confocal microwave imaging for 

breast cancer detection: delay-multiply-and-sum image reconstruction 

algorithm,” IEEE Transactions on Biomedical Engineering,vol. 55, no. 6, pp. 

1697-1704, 2008. 

[31] E. Fear, X. Li, S. Hagness, and M. Stuchly, “Confocal microwave imaging 

for breast cancer detection: Localization of tumors in three dimensions,” 



Chapter 3: Clutter Suppression Techniques – Review 
 

43 
 

IEEE Transactions on Biomedical Engineering, vol. 49, no. 8, pp. 812-822, 

Aug, 2002. 

[32] C. Gabriel, S. Gabriel, and E. Corthout, “The dielectric properties of 

biological tissues: I. Literature survey,” Physics in Medicine and Biology, 

vol. 41, pp. 2231-2249, 1996. 

[33] S. Gabriel, R. Lau, and C. Gabriel, “The dielectric properties of biological 

tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Physics 

in Medicine and Biology, vol. 41, no. 11, pp. 2251-2269, 1996  

[34] H. Ulger, N. Erdogan, S. Kumanlioglu, and E. Unur, “Effect of age, breast 

size, menopausal and hormonal status on mammographic skin thickness,” 

Skin Research Technology, vol. 9, pp. 284-289, 2003. 

[35] S. Willson, E. Adam, and A. Tucker, “Patterns of breast skin thickness In 

normal mammograms,” Clinical Radiology, vol. 33, pp. 691-693, 1982. 

[36] Y. Sun, and M. Amin, “Spatial filtering for wall-clutter mitigation in 

through-the-wall radar imaging,” IEEE Transactions on Geoscience and 

Remote Sensing, vol. 47, no. 9, pp. 3192-3208, 2009. 

[37] R. Solimene, and A. Cuccaro, “Front wall clutter rejection methods in TWI,” 

IEEE Transactions on Geoscience and Remote Sensing Letters, vol. 11, no. 

6, pp. 1158-1162, 2014. 

[38] R. Solimene, A. Cuccaro, A. Dell'Aversano, I. Catapano, and F. Soldovieri, 

"Background removal methods in GPR prospecting," IEEE European Radar  

Conference, pp. 85-88, 2013. 

[39] A. Mayordomo, and A. Yarovoy, "Optimal background subtraction in GPR 

for humanitarian demining," IEEE European Radar  Conference, pp. 48-51, 

2008. 

[40] I. Nicolaescu, P. van Genderen, K. Van Dongen, J. van Heijenoort, and P. 

Hakkaart, "Stepped frequency continuous wave radar-data preprocessing," 

IEEE Workshop on Advance Ground Penetrating Radar, pp. 177-182, 2003. 

[41] E. Bond, X. Li, S. Hagness, and B. Van Veen, “Microwave imaging via 

space-time beamforming for early detection of breast cancer,” IEEE 

Transactions on Antennas and Propagation,vol. 51, no. 8, pp. 1690-1705, 

2003. 



Chapter 3: Clutter Suppression Techniques – Review 
 

44 
 

[42] J. Sill, and E. Fear, “Tissue sensing adaptive radar for breast cancer detection 

- experimental investigation of simple tumor models,” IEEE Transactions on 

Microwave Theory and Techniques,vol. 53, pp. 3312-3319, 2005. 

[43] C. Woody, “Characterization of an adaptive filter for the analysis of variable 

latency neuroelectric signals,” Medical and Biological Engineering, vol. 5, 

no. 6, pp. 539-554, 1967. 

[44] T. Williams, E. Fear, and D. Westwick, "Tissue sensing adaptive radar for 

breast cancer detection: investigations of reflections from the skin." IEEE 

International Syposium on Antennas and Propagation, vol. 3, pp. 2436-2439, 

2004. 

[45] M. Zhao, J. Shea, S. Hagness, and D. Van Der Weide, “Calibrated free-space 

microwave measurements with an ultrawideband reflectometer-antenna 

system,” IEEE Transactions on Microwave and Wireless Components 

Letters, vol. 16, no. 12, pp. 675-677, 2006.  

[46] X. Li, S. Davis, S. Hagness, D. Van der Weide, and B. Van Veen, 

“Microwave imaging via space-time beamforming: experimental 

investigation of tumor detection in multilayer breast phantoms,” IEEE 

Transactions on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1856-

1865, 2004. 

[47] R. Nilavalan, A. Gbedemah, I. Craddock, X. Li, and S. Hagness, “Numerical 

investigation of breast tumour detection using multi-static radar,” Electronics 

Letters, vol. 39, no. 25, pp. 1787-1789, 2003. 

[48] W. Yazhou, and A. Fathy, “Advanced system level simulation platform for 

three-dimensional UWB through-wall imaging sar using time-domain 

approach,” IEEE Transactions on Geoscience and Remote Sensing, vol. 50, 

no. 5, pp. 1986-2000, 2012. 

[49] R. Solimene, A. D'Alterio, and F. Soldovieri, "Half-space estimation by time 

gating based strategy." 13th IEEE Conference on Ground Penetrating Radar 

pp. 1-5, 2010.  

[50] E. Fear, J. Sill, and M. Stuchly, “Experimental feasibility study of confocal 

microwave imaging for breast tumor detection,” IEEE Transactions on 

Microwave Theory and Techniques, vol. 51, no. 3, pp. 887-892, 2003. 



Chapter 3: Clutter Suppression Techniques – Review 
 

45 
 

[51] E. Fear, and J. Sill, "Preliminary investigations of tissue sensing adaptive 

radar for breast tumor detection." 25th International IEEE Conference on 

Engineering in Medicine and Biology Society, vol. 4, pp. 3787-3790, 2003. 

[52] T. Dogaru, and C. Le, "Simulated radar range profiles of a simple room as 

computed by FDTD and Xpatch", ARL Technical Report, Adelphi, MD, ARL-

TR-4420, 2008. 

[53] T. Dogaru, and C. Le, “SAR Images of rooms and buildings based on FDTD 

Computer models,” IEEE Transactions on Geoscience and Remote Sensing, 

vol. 47, no. 5, pp. 1388-1401, 2009. 

[54] S. Hagness, A. Taflove, and J. Bridges, “Three-dimensional FDTD analysis 

of a pulsed microwave confocal system for breast cancer detection: design of 

an antenna-array element,” IEEE Transactions on Antennas and 

Propagation, vol. 47, no. 5, pp. 783-791, 1999. 

[55] X. Yun, R. Johnston, and E. Fear, "Radar-based microwave imaging for 

breast cancer detection: tumor sensing with cross-polarized reflections." 

IEEE International Syposium on Antennas and Propagation, vol. 3, pp. 

2432-2435, 2004. 

[56] G. Charvat, L. Kempel, E. Rothwell, C. Coleman, and E. Mokole, “A 

Through-dielectric radar imaging system,” IEEE Transactions on Antennas 

and Propagation, vol. 58, no. 8, pp. 2594-2603, 2010. 

[57] N. Maaref, and P. Millot, “Array-based ultrawideband through-wall radar: 

prediction and assessment of real radar abilities,” International Journal of 

Antennas and Propagation, vol. 2013, pp. 1-9, 2013. 

 

 
 

 

 

 

 

 

 



46 
 

CHAPTER 4  

Gated FMCW Signal Principle   

This chapter presents the theoretical concept of linear frequency modulated 

continuous waveform used in radar and channel sounding systems. The relationship 

between system parameters and the processing method used to extract the target 

range and Doppler information is also investigated. The basic architectures of the 

gated frequency modulated continuous waveform system are later presented as well 

as a detailed discussion on the range sensitivity of gating sequences employed in this 

thesis.  

 

4.1 FMCW Signal  

The principles and theory behind FMCW signals for radar and channel 

sounding applications are well covered in many radar textbooks [1-3]. Included in 

this chapter is a brief analysis of a linear FMCW signal.  In a linear FMCW system 

the transmitted signal’s frequency is linearly swept upward or downward over a 

frequency range B during a sweep period T.  

The phase of a linear FMCW signal can be mathematically expressed as:  

 
∅�H� = �IH	 + 2�JKH																 − @/2	 ≤ H ≤ @/2 

(4.1) 

where: β = B/T is the sweep rate; and fc is the waveform centre frequency.  

Hence, the waveform instantaneous frequency fi(t) can be calculated as:  
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 J��H� = 12� N OOH ∅�H�P = IH + JK 									− @/2 ≤ H ≤ @/2 (4.2) 

           The linear FMCW signal is also commonly referred to as a “chirp waveform” 

in similarity to the sound of an audio waveform with a linearly changing frequency. 

In  (4.2) when β is positive the signal frequency ramps upward, and if β is negative it 

ramps downward [1]. Figure 4.1 shows the time-frequency relation of a linear 

FMCW signal for a positive and negative β respectively. 

 

Figure 4.1: Time – Frequency relation of a linear FMCW waveform, (left) sweeping 

upward, and (right) sweeping downward. 

Mathematically a real linear FMCW signal with constant amplitude can be 

expressed as: 

 1�H� = �C cosT∅C�H�U = �Ccos	��IH	 + 2�JKH� 			− @/2	 ≤ H ≤ @/2 (4.3) 

 

where:  AT is the amplitude and ϕT(t) the phase of the transmitted linear FMCW 

signal.  The corresponding waveform of (4.3) is shown in Figure 4.2 for a positive 

and negative β respectively. The spectrum of x(t) can be obtained from the Fourier 

transform of (4.3).  The analytical expression of the spectrum of a linear FMCW 

signal has been derived in [4-7].  For large time-bandwidth product (BT >> 10) the 

magnitude of the spectrum can be considered to be a constant across the signal 

bandwidth, and it is approximated by the following equation [4]:  

T T TimeTime

B f
c

f
cB

Frequency Frequency
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X�J� = YT1�H�U ≈ 	[ 14I 	exp	�−_ `��J − JK�	I + �4a� (4.4) 

 

Figure 4.2: Linear FMCW signal in time domain. 

It should be noted that the time-bandwidth product of linear FMCW signal 

has an effect on the signal spectrum shape or on the spectral energy confined within 

the bandwidth. Figure 4.3 shows the spectrum of a waveform with the bandwidth of 

400 Hz and a centre frequency of 200 Hz for different BT products.  As can be seen 

from the figure as BT increases the spectrum takes a more defined shape similar to a 

rectangular shape. In practice BT is usually much greater than 100, therefore more 

than 98% of the signal energy is contained within the bandwidth [2].  
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Figure 4.3: Linear FMCW signal spectrum for different time-bandwidth product. 

4.1.1 Retrieving Range and Doppler Information             

The range and the Doppler information of a chirp based system can be 

extracted from the output signal of a matched filter or a heterodyne detector 

employed at the receiver. The matched filter (MF) detector uses a filter with an 

impulse response equal to the conjugate and time reversed version of the transmitted 

signal, delayed accordingly to ensure casualty [5]. The MF detector outputs a signal 

that is compressed in time with a bandwidth similar to the chirp bandwidth. 

Consequently, for wideband chirp the digitization of the MF output signal would 

require a much higher bandwidth analogue to digital converter (ADC) to satisfy the 

Nyquist sampling criterion. The need for a high bandwidth ADC makes the matched 

filter detector less favourable in practise compared to the other approach. A detailed 

analysis of the matched filter detector can be found in the following references [1, 5, 

8]. 

In this thesis the heterodyne detector has been used to retrieve the target or 

channel information. In a heterodyne detector the incoming signal is mixed with a 

copy of the transmitted chirp, resulting in a signal that contains both the addition and 

subtraction of their frequency components. By means of a low pass filter the 

frequency components of the addition are filtered out leaving those of the 

subtraction. This signal is often referred to as beat-note. The beat-note is then 
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digitised and processed to retrieve the wanted information. Figure 4.4 provides an 

illustration of the block diagram of a heterodyne receiver.         

 

 

 

 

 

 

 

For simplicity of the mathematical analysis a stationary environment is 

assumed with zero Doppler, and the received signal is a weighted delayed version of 

the input.  The received signal r(t) for a multipath environment or for a radar 

scenario with multiple targets can be mathematically represented as given in (4.5) as 

the sum of weighted and delayed versions of the transmitted signal.  

 

																												=�H� = ;��,�
b
�?� cos0∅C�H − <��5 

																												= 	;��,�
b
�?� cos	��I�H − <��	 + 2�JK�H − <��� 

(4.5) 

 

where: AR,i and τi are the amplitude and time delay of the i th  received multipath or 

target reflected signal, and K is the number of multipath components or targets.  At 

the heterodyne detector the received signal is mixed with a copy of the transmitted 

signal x(t). Consequently, the output of the mixer y(t) can be written as:  

 

																										3�H� = =�H� × 1�H� 
																																			= 	;��,�

b
�?� �C cos0∅C�H − <��5cos	�∅C�H�� 

L

(4.6) 

 

For the multiplication of cosines the following trigonometric identity can be 

applied:     

Low Pass 

Filter 

r(t) y(t) z(t) 

x(t) 

Figure 4.4: Heterodyne receiver block diagram 
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																										d8e�f� cos�+� = 12 cos�f − +� + 12 cos	�f + +� (4.7) 

Applying (4.7) into (4.6) , and assuming AR,i AT/2 = Ai results:  

 

																		3�H� = ;��gcos0∅C�H − <�� − ∅C�H�5hb
�?�

+;��
b
�?� gcos0∅C�H − <�� + ∅C�H�5h 

(4.8) 

Without further mathematical manipulation (4.8) can be written as: 

 

												3�H� = ;�� cos N2� iIH<� +	JK<� − 12I<�	jP
b
�?�  

																	+;��
b
�?� d8e N2� iIH	 + 2JKH − IH<� − JK<� − 12IH<	jP 

 

 

(4.9) 

 

The signal y(t) is low pass filtered which removes the second term of (4.9) as 

its frequency is centred at twice the carrier fc. Therefore, the beat-note signal z(t) at 

the output of the filter can be written as:  

 												k�H� = ;�� cos N2� iIH<� +	JK<� − 12I<�	jP
b
�?�  (4.10) 

 

By assuming the transmitted signal to be periodic, as often used in practice, 

with period “T” then for each i th signal in (4.10) two different beat-note frequencies 

will be produced as illustrated in Figure 4.5. By omitting the time limits these 

frequencies can be written as [9]:  

 												J�,��H� = 12� N OOH �∅C�H − <�� − ∅C�H��P (4.11) 
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 												Jl,��H� = 12� N OOH �∅C�H − <�� − ∅C�H + @��P 
(4.12) 

Figure 4.5 shows that the beat-note frequency at the receiver output is 

proportional to the target’s time delay “τ”, or equivalently its range. This is only true 

for beat-note frequency “fa” during the time window W1 = T-τ; for frequency “fb” in 

time window W2 = τ the assumption of proportionality does not hold. Therefore, “fb” 

provides range ambiguity or false information about the target delay. In order to 

eliminate “fb” from the receiver output, one can increase the signal bandwidth, 

resulting in “β” becoming steeper and “fb” larger, therefore falling outside the low 

pass filter band. Another alternative is to make the chirp duration (T) smaller than 

the chirp repetition rate. This creates a silent interval at the receiver, at the end of the 

chirp duration.  

 

Figure 4.5: Instantaneous frequency of the transmitted and delayed received signal, 

and frequency of the beat-note at the heterodyne receiver output. 
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Following from (4.11) the beat-note frequency (fa,i) corresponding to the i th 

static target can be expressed as a function of its range Ri as:   

 J�,��H� = I<� =	I��d  (4.13) 

where: “Ri” is the target range, given as: Ri = τi/c; and “c” is the EM wave 

propagation speed in the medium, which for free space it is equal to c = 3x108 m/s.   

The maximum range Rmax that can be detected with a heterodyne receiver 

depends on the maximum beat-note frequency allowed through the low pass filter. 

Assuming an ideal low pass filter with a cut-off frequency fmax the maximum range 

can be expressed as:  

 
���� = 	d<��� = dJ���I  

(4.14) 

On the assumption that the target or the receiver is moving with a constant 

speed “v” then the time delay associated with the target will change as a function of 

time due to changes in range as in (4.15). The time varying delay associated with the 

target can be expressed as in (4.16).    

 ��H� = 	�m + nH (4.15) 

 <�H� = ��H�d = �m + nHd = <m + nHd  

 

(4.16) 

where:  Ro is the initial target range; R(t) target range as a function of time; τo is the 

initial time delay; and τ(t) is the target delay as a function of time. By assuming a 

single path the phase term in (4.11) can be written as:  

 

∅��H� = ∅C�H − <�H�� − ∅C�H� 
         																																				= 2��IH +	JK�<�H� − �I<�H�	   

(4.17) 

By substituting τ(t) from (4.16) into (4.17) and as the target or receiver speed 

is much smaller than that of light (v <<  c), some terms can be ignored and the phase 

reduces to:   
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 		∅��H� = 2�JK<m + o2�JK nd + 2�I<mp H − 	�I<m	 
(4.18) 

The beat-note frequency in this case can be defined as:  

 								J� = 12� N OOH �∅��H��P = I<m +	JK nd 
 

(4.19) 

The equation above shows that the beat-note frequency for a mobile target or 

receiver is dependent on the target range or time delay (τo) and on the Doppler shift 

caused by motion. Most often in linear FMCW systems a number of chirps (sweeps) 

are transmitted / received periodically as depicted in Figure 4.5. By analysing the 

changes in target range over N consecutive sweeps, the target time delay at the nth 

sweep would have been increased by nT, as expressed in (4.20). 

 						<� = ���H�d = <m +	n�q@ + H�d  
(4.20)  

Consequently, the beat-note frequency at the nth sweep can be found by 

substituting “τo + (v/c)nT” expression into “τo” in equation (4.19). This frequency is 

defined as [2, 9]: 

 						J�,� = I<m + JK nd 	+ 	(q nd 
 

(4.21) 

Equation (4.21) shows that only the term (Bnv/c) differs from (4.19). This 

term indicates the movement of the target from sweep to sweep.  Since the target 

speed v is assumed to be much smaller than the speed of light c, it can be assumed 

that the measured beat-note frequency on a sweep basis to be mainly proportional to 

the target’s range.  For large values of a number of sweeps and high bandwidths the 

extra term in equation (4.21) cannot be neglected [2].  

 By assuming the target to be moving with a maximum speed “vmax” the 

maximum expected Doppler shift fDmax can be related to the target speed by the 

following equation.  

 						J���� = JK n���d  
(4.22)  
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In order to avoid range Doppler ambiguity the maximum Doppler shift the 

system is expected to measure needs to be smaller than the chirp repetition rate as 

given in (4.23). This equation shows that in order to detect a fast moving target a 

short sweep duration is needed.   

 	J���� 	≤ 12@ 	↔ @ ≤	 12J���� 
(4.23) 

The mathematical analyses so far showed that in a heterodyne receiver the 

information related to target speed (Doppler), range (time delay) and relative 

amplitude can be estimated through the spectrum of the beat-note signal. While the 

target information can be retrieved by observing the detector’s output on a spectrum 

analyser; it is most common to employ an analogue to digital converter (ADC) to 

digitise the beat-note and spectrum analysis is performed through the use of the Fast 

Fourier Transform algorithm (FFT).  

In order to avoid ambiguity and therefore satisfy the Nyquist criterion, the 

sampling frequency (fs) of the ADC needs to be higher than twice the maximum 

expected beat-note frequency as given in (4.24). There are two main digital 

processing techniques used to extract the target information from the detector output 

[9], namely: single FFT technique and double FFT technique. In this work a double 

FFT technique has been used.   

 	Js 	≥ 2J��� ≡	Js ≥	2I����d  
(4.24) 

- Double FFT Processing Technique 

The double FFT technique has been widely used in channel sounding and 

radar as a processing technique to extract the time delay (range) and Doppler shift 

(due to motion) of the radar targets or multipath components in the channel. The 

earlier mathematical analysis showed that the path delay and Doppler information is 

contained in the spectrum of the beat-note signal.  With the double FFT technique 

the first fast Fourier transform is carried out on each “nth” sweep (of duration T) to 

obtain the time delay spread (range) and multipath amplitude information.  The 

second FFT is carried over N sweeps at each “mth” time delay bin to obtain the 

Doppler information [2]. 
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Assuming a multipath environment the equation of the beat-note signal for a 

single sweep “n” is of that in  (4.10), with the sweep time interval redefined so that 

the origin falls in the middle of the interval (–T/2 ≤ t ≤ T/2), the first Fourier 

transform in the double FFT technique is given as [10]:  

 	ℎ��J� = 	 w ;��,�d8e0∅�,��H�5xy4	z{�b
�?� OH				 − q@2 ≤ H ≤ q@2 	C/	

yC/	
 

(4.25) 

Without further mathematical manipulation the transform results in: 

 	ℎ��J� = 	;��,�@2 �sin	�2�0J − J�,�5@ 2⁄ ��2�0J − J�,�5@ 2⁄ � �b
�?� xy4∅�,�	�4	z{�,���K �C 

										+	;��,�@2 �sin	�2�0J + J�,�5@ 2⁄ ��2�0J + J�,�5@ 2⁄ � �b
�?� x4∅�,�y4	z{�,���K �C 

(4.26) 

Equation (4.26) suggests that the spectrum of the beat-note signal is made of 

sin(x)/x or sinc(x) functions centred at their corresponding beat frequency “fi”. 

Although, the transform has been applied on a continuous signal, in practice it is 

applied on the measured discrete samples obtained by an ADC through the FFT 

algorithm.  By assuming “M” to be the number of discrete samples used by the FFT 

per sweep, the output of the FFT will be “M” discrete frequency points in the range 

of “–fs  /2 ≤  f ≤ fs /2”, where fs is the sampling frequency.  Due to the symmetry in 

the spectrum only the positive frequencies (0 ≤  f ≤ fs /2) are retained as given in 

(4.27).  

 ℎ��J� = ;��,�@2 �sin	�2�0J − J�,�5@ 2⁄ ��2�0J − J�,�5@ 2⁄ � �b
�?� xy4∅�,�	�4	z{�,���K �C		0 ≤ J ≤ Js2  

(4.27) 

Therefore for M time samples per sweep only M/2 beat frequency points are 

used for further processing, and these can be converted into time delay or range 

using (4.13). The required number of samples “M” per sweep is given as [9, 10]:   

 � ≥	Js@	 ≡ �	 ≥ 2( ����d  
(4.28) 
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For Doppler shift and time variability analyses a number of sweeps is 

required. Thus, the complex M/2 FFT points of each successive sweep are stored in a 

row of a matrix. So for N sweeps the matrix will be of N x M/2 size as in (4.29), 

where the nth row holds the response at time “nT” and the mth column represents the 

time-delay bin or range bin, whose elements are samples of the “mth” beat-note 

frequency or delay “τ” component that are stored every T second.     

 

ℎ�H, <� =
�
���
� ℎ��		ℎ�	 	⋯	ℎ�� 	⋯		ℎ�>/	ℎ	�		ℎ		 	⋯	ℎ	� 	⋯		ℎ	> 	⁄⋮							⋮						⋱					⋮ 				⋯ 							 ⋮			ℎ��		ℎ�	 	⋯	ℎ�� 	⋯		ℎ�> 	⁄⋮							⋮						⋱					⋮ 				⋯ 							 ⋮			ℎF�		ℎF	 	⋯	ℎF� 	⋯		ℎF> 	⁄ �

���
�

 

(4.29) 

The 2D matrix “h(t,τ)” is often referred to as time-variant response due to the 

fact that for successive sweeps the amplitude and phase of the elements in the 

column may change due to the relative motion of the target or multipath. The target’s 

motion is the bases of the relative shift in the beat-note frequency (as seen in 4.30); 

this frequency shift causes both amplitude and phase variation of column samples. 

The amplitude tends to vary slowly from sweep to sweep, as demonstrated in [9]. 

The main variations within the column samples, due to target’s motion, are in fact 

the result of the phase factor [2, 9].  Therefore, the samples of the “mth” column can 

be represented as:  

 ℎ�� = �x4	z{��K�C = �x4	z{��KC� 	 (4.31) 

where: K represents the amplitude variation, and “tn = nT” represents the discrete 

time from sweep to sweep. The Fourier transform of the mth column,  (4.31), over tn 

from 0 to NT gives [10]:  

  � = ��@ sin	o2� oJ − nd JKp�@2 p
2� oJ − nd JKp�@2 			− 12@ ≤ J ≤ 12@ 

 (4.32) 

The above analysis shows that the relative motion of a mobile target causes a 

frequency displacement of the sin(x)/x function. This effect is termed as Doppler 

shift “fD = fcv/c”. For N consecutive sweeps the output of this FFT would consist of 
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N discrete number of frequency points in the interval ±1/(2T). Consequently, the 

Doppler frequency resolution would be the inverse of NT. If the FFT is performed 

on all columns of the h(t,τ) matrix, the resultant 2D matrix shown in (4.33) is called 

the Delay-Doppler spread function, “S(τ,v)”.   

 

 �<, n� =
�
���
�

 ��		 �	 	⋯	 �� 	⋯		 �>/	 	�		 		 	⋯	 	� 	⋯		 	> 	⁄⋮							⋮						⋱					⋮ 				⋯ 							 ⋮			 ��		 �	 	⋯	 �� 	⋯		 �> 	⁄⋮							⋮						⋱					⋮ 				⋯ 							 ⋮			 F�		 F	 	⋯	 F� 	⋯		 F> 	⁄ �
���
�

 

(4.33) 

The table below provides a summary of the parameters of the linear FMCW 

signal applied to a heterodyne detector and the related processing parameters in a 

radar system.                                              

Table 4.1: Linear FMCW signal and processing parameters  

Number of sweeps N 

Minimum number of samples per sweep M = fsT 

Maximum expected beat-note frequency fmax = βRmax/c 

Sampling frequency fs ≥ 2fmax 

Range / delay window 0 ≤ τ ≤  fs/(2β) 

Range resolution ∆R = c/(2B) 

Sweep duration and unambiguous Doppler  T ≤ 1/(2fDmax) 

Unambiguous Doppler window -1/(2T) ≤ fD ≤ 1/(2T) 

Doppler resolution ∆fD = 1/(NT) 
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4.1.2 Side Lobe Reduction Through Windowing  

As shown in equations (4.27) and (4.32) the amplitude of the impulse 

response and the Doppler spectrum are both sin(x)/x pulses. One disadvantage of the 

sin(x)/x pulse is that apart from the main lobe it also contains unwanted high level of 

side lobes, which can be as high as -13.4 dB below the main lobe. In a multi 

scatterers scenario these unwanted lobes present a challenge as they may be mistaken 

as targets or even overlap and overshadow the other scatterers or targets. Therefore, 

there is a need to suppress them before further processing.  

The sin(x)/x function is a direct result of the finite duration or truncation of 

the signal before the Fourier transform [5, 11]. If the signal is assumed to be infinite 

then the truncation in this case can be explained as a product of the signal with a 

weight function which is “1” within the finite interval and “0” elsewhere. This 

weight function is termed as a rectangular window and its spectrum corresponds to 

sin(x)/x.  By having a weight function that places smaller weights (values) at and 

close to the discontinuity, lower side lobes can be achieved and this is more desirable 

than the rectangular window. It is worth mentioning that although lower side lobes 

can be achieved by different windowing functions this is offset by the widening of 

the main lobe, therefore a trade-off must be sought [5].       

In this work three window functions have been used, namely: Rectangular, 

Hamming, and Kaiser window. By assuming the signal to be of length L the window 

function “w(n)”  can be written as:  

� Rectangular Window 

 ��q� = 1	; 						0 ≤ q ≤ � − 1 (4.34) 

� Hamming Window 

 ��q� = 0.54	 − 0.46 cos i 2�q� − 1j ; 			0 ≤ q ≤ � − 1 
(4.35) 

� Kaiser Window 

 ��q� = /m	�∝ B1 − �2q/��	�/m�∝� 	; 			0 ≤ q ≤ � − 1 
(4.36) 
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where: Io is the zero-order modified Bessel function of the first kind; and α is the 

Kaiser window parameter.  

Figures 4.6 and 4.7 show the weight of the chosen windows and their 

corresponding normalised power spectra. As expected the rectangular window offers 

a narrower main lobe width but stronger side lobes compared to the other chosen 

windows. Table 4.2 gives a summary of the width of the main lobes and the 

respective side lobes.  An extended analysis on window functions and their 

performances in terms of side lobe levels reduction and main beam width are given 

in references [5, 11, 12] .     

 

Figure 4.6: Window functions weights              

              

Figure 4.7: Window functions normalised spectrum 
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Table 4.2: Used window function properties    

Window Function Main lobe width (rectangular 

window as reference)  at 6dB point 

Peak side lobe 

Rectangular 1 -13.4 

Hamming 1.58 -42.5 

Kaiser (α = 6) 1.7 -43.9 

 

4.2 Gated Frequency Modulated Continuous 

Waveform 

The use of Gated Frequency Modulated Continuous Waveform (GFMCW) in 

radar systems dates back to the early 1970’s for applications such as vertical 

sounding of the ionosphere and sea-surface remote sensing [13, 14], for which a 

single antenna operating simultaneously at the transmitter and receiver was 

desirable. The increased interest in GFMCW stems from the fact that it is able to 

overcome one of the major limitations of the normal FMCW approach regarding the 

isolation of both the transmitter and the receiver. 

In FMCW based systems both the transmitter and receiver are active 

simultaneously during the chirp duration T. Consequently, the direct crosstalk signal 

between antennas (in bistatic radar) or the leakage signal due to poor circulator 

isolation (in monostatic radar) may considerably damage the receiver’s sensitivity 

[15], therefore making it harder to detect weaker return signals especially from 

targets far from the radar.  

 To counteract this problem without causing significant effect on the FMCW 

radar performance it is necessary to separate the transmission from reception period. 

This can be achieved by employing gating sequences to switch the transmitted and 

received signals and to allow the radar to operate in transmit and receive mode [16].  

As a result, no signal reception occurs during the transmission and vice versa. The 

use of switching sequences in conjunction with FMCW radar have been termed in 
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the literature as:  Gated frequency modulated continuous waveform [17]  or 

frequency modulated interrupted continuous waveform [18].      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 presents the basic block diagram of a monostatic and bistatic 

heterodyne based GFMCW radar. Although by employing gating sequences a good 

isolation between the transmitter and receiver can be achieved. It also introduces 

some drawbacks, such as: range ambiguity, blind range, reduction of the mean 

received power, and spectrum spread. These effects can be compensated by choosing 
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Figure 4.8: Basic block diagram of GFMCW radar, (a) Monostatic 

configuration; (b) Bistatic configuration 
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a suitable gating sequence and window function as in previous studies [14, 16, 18, 

19].   

One of the aspects of the GFMCW, which is of interest in this work, is the 

fact that the mean received signal from a scatterer at any range is also dependent on 

the cross correlation function of the employed gating sequence [2]. Hence, these 

sequences could be designed to provide range sensitivity, so that nearby strong 

clutter, i.e. wall reflection in TTWIR, air-ground surface reflection in GPR, and skin 

reflection in MIR, can be suppressed while improving the receiver sensitivity to 

detect distant weak targets.  The next sections will provide analyses of the 

mathematical model of the GFMCW radar as well as a discussion of the effects on 

the radar performance.  

 

4.2.1 Mathematical Model of GFMCW 

As illustrated in Figure 4.8 GFMCW signal is generated by switching “on” 

and “off” the transmitted and received signals, of a normal FMCW source, in a 

complementary pattern to ensure isolation between the transmitter and receiver.  

These gating sequences of period ‘Ts’ can be modelled through binary functions with 

‘1’ or ‘0’ representing transmit and receiving states respectively. Furthermore 

instead of switches, multipliers can be used. Therefore, it can be said that the 

GFMCW is the product of a normal transmitted and received FMCW signal with 

complementary gating sequences employed at the transmitter and receiver.   

Equation (4.37) gives the transmitted signal and (4.38) shows the received 

signal at the mixer’s input assuming a single path/scatterer in the environment.  

 1�H� = �C cosT∅C�H�U9�H� 																					− 1@ 	≤ H ≤ 1@											 (4.37) 

 

																			=�H� = ��1�H − <��1 − 9�H�� 
=	�C�� cosT∅C�H − <�U9�H − <� �1 − 9�H�� 				− 1@ 	≤ H ≤ 1@ 

(4.38) 

By using a heterodyne detector the received signal in (4.38) is mixed with a 

copy of the un-gated transmitted signal and the output is low pass filtered which 

results in the beat-note signal, given in (4.39). This signal is an interrupted waveform 
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whose frequency is related to the path delay “τ”, as in  (4.13) for the linear FMCW 

case, but with the power proportional to the time-delay sensitivity of the gating 

sequence, as analysed in the next subsection.  

 

k�H� = 9�H − <��1 − 9�H��� cos N2� iIH< + JK< − 12I<	jP				 
− 1@ 	≤ H ≤ 1@											 (4.39) 

4.2.2 Gating Sequence Effect on Mean Received Power  

In GFMCW systems the mean received signal (MRS) for a target at a 

particular range is proportional to the amount of signal that passes through the gating 

sequence over the period “Ts”. This dependency could be expressed as the cross-

correlation function between the delayed gating sequence, due to target range, and 

the sequence at the receiver [2, 14], as shown in equation (4.40). 

 �� �<� = 1@sw 9�H − <��1 − 9�H��C� OH 
 (4.40) 

In [16] the gating sequence range sensitivity was also proposed in terms of its  

“mean received power” MRP, which is the square of MRS, as expressed in  (4.41). 

By selecting the gating sequence parameters, i.e. sequence period, the number of bits 

(N), and the bit duration it is possible to design a MRP that suppresses the undesired 

return signal(s) from a certain range while allowing a return signal from another 

range to pass through with minimum or no attenuation.   This basic principle related 

to GFMCW is what will be explored to suppress the unwanted early time delay 

reflections in GPR, TTWIR, and MIR while providing minimum possible 

attenuation at time delays related to the targets in the area under test. 

 ����<� = ��� �<��	 = `1@s w 9�H − <��1 − 9�H��C� OHa	 
(4.41)  

  

Since GFMCW is gated “on” and “off” the maximum received power is 

significantly reduced, compared to a normal FMCW signal. This is due to the fact 
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that the reception is only possible during silent transmitter intervals. This power loss 

factor (XG) can be expressed in decibel (dB) scale as, 

 X� = −20 log i	H
@sj 
  (4.42) 

where: tr is the total time duration the receiver is in the “on state” during a sequence 

duration Ts. In [14] it has been shown that the square wave gating sequence with 

50% duty cycle provides the maximum power efficiency. In other words the 

minimum power reduction factor is 6 dB.   

4.2.3 Effect of the Gating Sequence Periodicity   

- Blind range 

As discussed earlier the duration of the gating sequence “Ts” is usually much 

smaller than the chirp duration “T”. Consequently, the gating sequence is made 

repetitive in order to provide the required transmitter/receiver isolation throughout 

the chirp duration. Assuming a finite gating sequence g(t) has a period “Ts”, then g(t) 

= g(t ± lTs), where l = 1, 2, 3, 4, .... For a target with back-propagation time delay τ 

= lTs the MRP from  (4.41) becomes [14, 16]: 

 ����7@s� = `1@s w 9�H − 7@s��1 − 9�H��C� OHa		 

				= 	 `1@sw 9�H��1 − 9�H��C� OHa	 =	`1@sw �9�H� − 9�H��C� OHa	 = 0 
(4.43)  

It can be stated from (4.43) that the return signal from such a target will be 

totally blocked by the receiver gating sequence. Hence, those ranges associated with 

a zero MRP are referred to as “blind ranges” as targets in these ranges are not 

detected. In order to avoid the blind ranges falling on the area of interest, the 

duration of the gating sequence should be made greater than the maximum expected 

delay, as given in (4.44).     
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 @s = �@l	 > <��� (4.44)  

In this thesis the suppression of unwanted early reflections in GPR, TTWIR, 

and MIR will be achieved by designing the gating sequence so that the blind ranges 

fall on the range associated with the unwanted reflection. 

- Range Ambiguity  

Unlike the FMCW system, the beat-note signal for a single point target in 

GFMCW is a gated sinusoid as shown in (4.39). Due to the periodicity of the gating 

sequence replicas of the spectrum of the equivalent ungated beat-note signal will 

appear at frequencies given by [20],  

 J = 	Jl ± q@s (4.45)  

where: fb is the frequency of the beat-note, Ts is the gating sequence period, and n is 

an integer. Since there is a direct proportionality between the target range and the 

beat frequency “fb” then from (4.45) it can be said that for a target located at an 

arbitrary range (Rx) it will also produce responses at other ranges (R) as shown in 

(4.46). This effect is known as range ambiguity due to the periodicity of the gating 

sequence.       

 � = 	�� ± q i d2I@sj 
  (4.46) 

The range ambiguity can be circumvented by ensuring the first spectrum 

replica caused by the gating sequence is outside the frequency range of interest. This 

is performed by choosing a sequence repetition rate “fG”, the inverse of Ts, to be 

greater than twice of the maximum expected beat frequency (fmax).  Equation (4.47) 

expresses the parameter of the gating sequence (bit duration “Tb” and number of bit 

“N”) that can be chosen as a function of the chirp parameters (bandwidth “B”  and 

sweep duration “T” ) and of the maximum achievable range “Rmax” to avoid aliasing 

or in this case range ambiguity [15, 21]. 

 	J� > 2J��� (4.47)  
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1@s = 1�@l > 2i2I����d j 			=xe�7H	8q:	@l < d@4(�����					 
In practice given a chirp duration and bandwidth a trade-off must be sought 

between the desired maximum range and the bit duration in order to satisfy both 

(4.44) and (4.47). 

4.2.5 MRP Profile of Known Gating Sequences 

A number of gating sequences have been reported in the literature, these 

include: square wave sequence with 50% duty cycle [13, 14], m-sequences [14], 16 

bit Barry sequence [16], and the 20 bit sequence and 23% duty cycle square wave 

proposed by Salous and Nattour [22].   The criteria for selecting the gating sequence 

to be used depends on the sequence MRP profile, the range of interest, and the chirp 

parameters bandwidth and chirp duration.  In this subsection, examples of the MPR 

profile of the gating sequences used in this thesis are analysed.  

- Square Wave Gating Sequence  

A square wave sequence with 50% duty cycle is the simplest form of gating 

sequence since the transmission and reception are complementary and of the same 

duration. Its length is of two bits long, g(t) = [1 0]. Figure 4.9 shows two periods of 

the sequence waveform (g(t)) and its complement (1-g(t)).   

As expected the sequence MRS is of triangular shape with maximum and 

minimum (blind range) at every odd and even multiple of the bit duration 

respectively.  One of the drawbacks of this sequence is the occurrence of a blind 

range at every “Ts”. To avoid the blind range falling within the range of interest, the 

sequence bit duration is chosen to correspond to the maximum target time delay [15].  
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Figure 4.9: Pattern of a square wave gating sequence 

 

Figure 4.10: MRS and MRP profile of square wave gating sequence 

From the MRP profile (in Figure 4.10) it can be concluded that a minimum 

attenuation of 6 dB will be suffered by a target with time-delay equivalent to “Tb”, 

and more for a target located in the profile’s ramp. For short range radar with an 

unknown target position, this can present a problem as the response of a target too 

close may be strongly suppressed by the MRP ramp for being close to the blind 

range.   
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If the suspected target position is known then the square wave gating may be 

suitable as it can be designed to have a maximum at that area of interest while 

suppressing neighbouring clutter or targets.  

- Maximum length binary gating sequence  

Maximum length binary gating sequence (m-sequence) also known as pseudo 

random binary sequence, had been proposed to overcome the blind range limitation 

of the square wave gating sequence. The length (L) of an m-sequence in bits, can be 

defined as:  

 � = 2¢ − 1	; 				£ ≥ 2	; £	¤e	¤qHx9x=   (4.48) 

The blind range of an m-sequence happens at multiples of the sequence 

period Ts = LTb. From equation (4.48) the shortest possible length is 3-bit long (k = 

2), g(t) =[1 1 0], and it is followed by (k = 3) 7-bit, g(t) = [1 0 0 1 1 1 0], and so on.   

Figures 4.11 and 4.13 show the bit pattern of the gating sequence and its 

complement for 3-bit and 7-bit m-sequences respectively. Looking at the MRS and 

MRP profiles of both sequences, in Figures 4.12 and 4.14, it can be seen that apart 

from the first and last bit, where the ramp exists, the profile is completely flat. This 

means that the target(s) with time delay or range that fall on that portion of the 

profile will suffer no additional attenuation.  

 

Figure 4.11: Pattern of 3-bit m-sequence  
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Figure 4.12: MRS and MRP profile of 3-bit m-sequence 

For a larger range of interest the m-sequence length or bit duration can be 

increased so that the blind range falls outside that range. Note that due to the ‘on’ 

and ‘off’ of the transmitted and received signals a power loss of 9.5 dB and 7.35 dB 

are expected for the 3-bit and 7-bit m-sequences respectively as given in (4.42). This 

loss of power can be compensated, if necessary, by increasing the transmitted power 

accordingly.         

 

Figure 4.13: Pattern of 7-bit m-sequence 
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Figure 4.14: MRS and MRP profile of 7-bit m-sequence  

 

4.2.6 Blind Range Extension 

In the previous subsection it was shown that the square wave gating sequence 

can enhance the detection of return signals with a time delay equivalent to the 

sequence bit duration while suppressing other signals with different time delay 

(signals on the profile ramp). The m-sequence on the other hand may cover a wider 

range with a constant attenuation while suppressing return signals with time delays 

less than a bit duration (on the first ramp).   

In practice, due to the finite bandwidth, the return signal from a scatterer 

point is not an impulse but a sinc function, (see (4.27)), which may further be 

broadened or extended in time if the scatterer is dispersive.  Moreover, the antenna 

crosstalk response may appear at a different time delay from that of the unwanted 

early clutter reflection depending on the spacing between antennas and the early 

clutter, such as: wall (in TTWR), ground surface (in GPR), or skin (in MIR).  

This presents a problem as the blind range (notch) on the MRP profile of the 

complementary gating sequence (see Figures 4.10, 4.12, and 4.14) may not provide 

enough attenuation to fully suppress those strong reflections as some of which may 
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extend onto a later part of the ramp. Furthermore, the MRP attenuation ramp is of 

one bit duration which may cause problems, as targets near the early clutter (i.e. 

wall, skin, or ground surface) may also fall onto the ramp and be attenuated. 

Therefore a compromise must be sought since the bit duration needs to be large 

enough to suppress the undesired reflections in the early part of the MRP ramp 

(where the attenuation is strongest), while a steeper ramp (short bit duration) is 

preferable to avoid attenuating reflections from targets close to the radar.        

 

One possible solution results in extending the blind range while making the 

ramp steeper. This is achieved by introducing additional “off-time” into the receiver 

or transmitter gating sequence making them non-complementary. Meaning that the 

receiver sequence is switched onto “off-state” slightly before the transmitter is 

switched onto the “on-state”, or the receiver sequence is switched onto “on-state” 

slightly after the transmitter is switched onto the “off-state”.  This is contrary to what 

has been seen in the previous section where the sequence was complementary.  

 

Assuming that the times ‘τ1’ and ‘τ2’ are the additional “off-time” durations 

employed in the receiver sequence, Figures 4.15 and 4.17  show how the pattern of a 

square wave and 3-bit m-sequence would be for different off-time values, 

respectively.   Due to these additional receiver off-times the power loss factor (XG) 

would increase as the receiver would be on for a shorter time.   



Chapter 4: Gated FMCW Signal Principle 
 

73 
 

 

Figure 4.15: Pattern of the modified square wave gating sequences with τ1 = 25% 

and τ2 = 38% of the bit duration (Tb) 

 

Figure 4.16: MRS and MRP profile of the modified square wave gating sequence 

with τ1 = 25% and τ2 = 38% of the bit duration (Tb) 
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equivalent to τ1 +  τ2. Moreover the pass band has also increased consequently causing 

the MRP slope to be much steeper compared to the case where no off-time delay is 

added (see Figure 4.10). Figures 4.17 and 4.18 show the profile and MRS as well as 

MRP of a 3-bit m-sequence with added off-time delays of τ1 = τ2 = 33.3% of the Tb.  

With added off-time delay(s) the receiver is in the “on-state” for a much 

shorter time consequently the power loss factor ‘XG’ would be higher compared to a 

normal complementary sequence. In the presented sequence, the minimum power 

loss factor of the modified square wave sequence is 14.5 dB and for the modified 3-

bit m-sequence is 19.08 dB.       

 

Figure 4.17: Pattern of the modified 3-bits m-sequence with τ1 = 33.3% and τ2 = 

33.3% of the bit duration (Tb) 
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Figure 4.18: MRS and MRP profile of the 3-bits m- sequence with τ1 = 33.3% and τ2 

= 33.3% of the bit duration (Tb) 

Table 4.3 provides a summary of the relationship between the parameters in a 

GFMCW system. 

  

Table 4.3: Summary of GFMCW parameters  

Maximum target delay ‘τmax’ to avoid blind 

ranges for a sequence of period ‘Ts’     
Ts = N.Tb > τmax 

Sequence Period to avoid aliasing  Ts < c / (4βRmax)  

Power Loss factor due to Gating  XG = -20log(tr / Ts) 

M-sequence length in bits L=2k-1; k=2, 3, 4, ... 
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4.3 Summary 

The chapter provided an overview of the linear FMCW signal as applied to 

channel sounding and radar systems. A mathematical description of this signal with a 

heterodyne detector was given. The double FFT processing technique as a method to 

extract the range delay and Doppler information from the received signal was 

examined.  

The GFMCW signal has been introduced as a technique to suppress the 

unwanted clutter signals in radar systems. Gating sequences used in the simulation 

and measurements to be presented in the next chapters have been modelled. 

Analyses of the effects such as range sensitivity, power reduction, aliasing and range 

gating due to the gating sequence have also been outlined.      
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CHAPTER 5  

Hardware Implementation 

This chapter describes the hardware implementation of the proposed GFMCW radar 

system. The system synchronization and performance is also discussed. 

Furthermore, the designed and in-house manufactured antennas for the works 

presented in this thesis as well as the assembled X-Y positioning table together with 

its controls mechanism will also be examined.       

 

 

 

Two radar systems have been built to validate the proposed hardware based 

technique (GFMCW) through experiments in various set-up scenarios, such as: 

through-the-wall life detection, buried metallic landmine detection and breast cancer 

detection.  

The first radar system is based around two arbitrary waveform generators 

(AWG) acting as the transmitter and receiver reference signal source. The AWG can 

generate a waveform with frequency up to 4 GHz and maximum duration of 0.9 ms. 

This system has been used mostly in experiments related to through-the-wall 

detection and ground penetrating radar.  

The second radar system is based around a vector network analyser (VNA) 

acting as both transmitter and receiver.  The VNA can be configured to operate with 

frequency ranges up to 8.5 GHz. Due to its higher achievable bandwidth this system 

has been used in experiments related to breast cancer detection.  
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The next sections provide more details of the radar systems block diagram, 

system’s performance and component description.  

5.1 GFMCW Radar System Based on AWG  

At the heart of the radar system shown in Figure 5.1 are two arbitrary 

waveform generators (AWG-1 and AWG-2) capable of generating predefined and 

user defined waveforms with frequencies up to 4 GHz and of maximum duration of 

0.9 ms (this is limited by the generator internal memory).  The wanted linear FMCW 

or GFMCW waveform is designed and generated in Matlab software prior to being 

transferred into the AWG memory.  The AWGs are locked to an external 4 GHz 

clock and they output the waveform samples from their memory at a rate of 8 

GSample/s (i.e. 125 ps sample interval). A replica of the 4 GHz clock is also 

generated at the AWG outputs by default. 

 

Figure 5.1: Block diagram of FMCW and GFMCW radar system based on AWG. 
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The system illustrated in Figure 5.1 operates as follows: at the transmitter the 

chirp signal generated by AWG-1 is first low pass filtered, to suppress the 4 GHz 

clock component, and then amplified, to boost the signal power before being 

transmitted through the antenna.  

The receiver side operates as a heterodyne detector (see Section: 4.1.1) where 

the reference chirp signal, generated by AWG-2, is low pass filtered, to suppress the 

clock component, and amplified (by AMP-2) to the necessary level to drive the 

mixer’s local oscillator (LO) port. This signal is multiplied with the amplified 

received signal.  The resultant mixed signal is passed through a low pass filter, to 

remove the high frequency components, producing the beat-note signal. The beat-

note is then amplified (by AMP-1), digitised by the ADC, and stored onto the PC for 

further off-line processing. As discussed in Chapter 4 the beat-note  signal carries 

information related to target position and Doppler.    

The beat-note signal is digitized using a 14 bit resolution ADC with a 

sampling rate of 20 MSample/s. The ADC 20 MHz internal clock is locked to a 

stable 10 MHz signal generated by the clock source and synchronization unit.  The 

digitized data are stored on Dell T7500 workstation, which houses the ADC in one 

of its PCI express slots. For the purposes of synchronization and stability the AWG-

1, AWG-2, and the ADC are connected to the same clock source and are all triggered 

simultaneously.    

 

 

Figure 5.2: Metallic rack housing both the transmitter and receiver components. 

The components making the transmitter and receiver side of the block 

diagram are all housed within a single metal enclosure (rack), for easy portability, as 

displayed in Figure 5.2. Table 5.1 details the operating parameters of the components 

and devices of the assembled radar system based on the AWG. 
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Table 5.1: Components specification for the radar system based on AWG 

Device  
Manufacture 

 / Model 
Frequency [GHz] Power  Other 

AWG-1,2 
Euvis /  

AWG 801 
DC-4 -4-0 dBm - 

AMP-1 
Mini – Circuit / 

ZHL – 6A 
2.5x10-6-0.5 

Max = 22 dBm 

Gain ≈ 23 dB 
- 

AMP-2 
Mini – Circuit /  

ZKL – 2R7 
0.01-2.7 

Max = 13 dBm 

Gain ≈ 22 dB 
- 

LPF-1,3 - DC-3.5 - - 

LPF-2 -  DC-0.01 - - 

LNA 
Mini – Circuit / 

ZX60 – 3011 
0.4-3 

Max = 21 dBm 

Gain ≈ 13 dB 
- 

Mixer 
Mini – Circuit / 

ZEM – 4300  

0.3-4.3 (RF and Lo) 

DC-1 (IF) 
LO = 13 dBm - 

PA 
Mini – Circuit / 

ZHL – 4240 
0.7-4.2 

max = 28 dBm 

Gain ≈ 40 dB 
- 

ADC Signatec PX14400A 0.02-0.40 - 14 bit 
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 Figure 5.3 shows the back and front view of the AWGs used in the 

experiments with one of its differential output ports terminated with 50 ohm load.   

 

 

Figure 5.3: Back and front view of the Euvis AWG. 

Tests have been carried out to identify the sensitivity of the proposed radar 

system. Sensitivity is a measure of the ability of the system to detect weak signals.  

For this test the transmitter and the receiver were connected directly, in back-to-back 

configuration, through a cable and a set of attenuators. Measurements were 

performed for various attenuator values, starting with a value of 50 dB and going-up 

in steps of 10 dB until the received signal was at the noise level. The signal used in 

the test was a linear FMCW waveform with duration of 400 µs and a bandwidth of 

1.4 GHz. Figure 5.4 shows the received signal power delay profile normalised with 

the maximum of the 50 dB attenuation profile. It can be seen from the figure that 

with 100 dB attenuation the path or target peak (at around 25.4 ns) is still 

distinguishable with a SNR around 10 dB.  For an attenuation of 110 dB the target 

peak is at the noise level. Therefore, it can be said that the sensitivity of this system 

is 100 dB with a SNR of 10 dB.  
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Figure 5.4: Radar system sensitivity test. 

A dual tone test was also performed, to validate the proposed technique, by 

splitting the transmitted signal, using a power splitter, in two ways through different 

cable lengths and combining the signals at the receiver, by using a power splitter.  In 

one of the cables an extra 12 dB attenuator was used.  

 

Figure 5.5: FMCW and GFMCW dual tone test. 

Figure 5.5 shows the results of a dual tone test with the first and second 

component positioned at time delays of 24.5 ns and 31.8 ns respectively. For a 

normal FMCW signal the first component is 13 dB above the second one. This is due 
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to cable losses and the extra attenuators employed in the second component’s cable. 

As discussed previously GFMCW signals can suppress the return signal of certain 

time delays while allowing other signals to pass through without attenuation. In this 

case a square wave gating sequence of parameters Tb = 11.5 ns and delay τ1 and τ2 

equal to 4 ns was used to suppress the first component response.  As shown in the 

same figure the dashed line for the GFMCW signal the first component has been 

suppressed to a level of 30 dB below the second component peak.  

In order to generate the GFMCW from both AWGs, the transmitted and 

receiver reference GFMCW waveforms are first generated  in Matlab by multiplying 

respectively into a normal FMCW waveform the gating sequences g(t), for the 

transmitter, and the complementary sequence (1 – g(t)), for the receiver. These 

waveforms are then loaded into the respective units and are generated once the 

devices are triggered. A similar process applies for a normal FMCW signal.  

 

5.2 GFMCW Radar System Based on VNA  

At the centre of this radar system is a vector network analyser (VNA) which 

acts as an FMCW transmitter and receiver. Network analysers have long been used 

as part of a radar system in applications such as: through-wall life detection [1, 2], 

ground penetration [3, 4], and medical imaging [5-7].   

The signal generated by a network analyser is generally a linear or stepped 

FMCW signal. The GFMCW signal is created by switching (on and off) with a 

complementary function the analyser’s transmitted signal and received signal.  

Figure 5.6 illustrates the block diagram of the proposed bistatic GFMCW 

radar system based on the VNA. In the system the VNA generates an FMCW signal 

on port-1, before it is transmitted through the antenna. This signal is gated or 

switched ‘on’ and ‘off’ by switch-A. The received signal is also switched, by switch-

B, with a sequence complementary to the one used in the transmitter, before it is fed 

to the receiver port. A basic background on the internal structures and operation of 

the network analyser can be found in references [8, 9].      

User defined gating sequences are designed in Matlab software and loaded / 

transferred onto the memory of the AWGs. The output voltage levels of the Euvis 

AWGs, which range from -0.6 V to 0 V, are insufficient to directly drive the 
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employed fast switches, these require a minimum of -3.6 V and a maximum of 0.6 V 

to switch the state ‘on’ and ‘off’. Therefore 10 Gb/s modulator drivers, referred to as 

switch drivers, have been used to act as voltage level converters for the Euvis. The 

switch driver operates with an output voltage high of 0 V and an output voltage low 

of -3.6 V. The driver’s output offset voltage control ranges from -10 V to 5.5 V was 

set to 0 V by adjusting the potentiometer on the switch driver external circuit.  

 

Figure 5.6: Block diagram of the Bistatic GFMCW radar system based on VNA. 

The AWGs have differential outputs and these are connected to the switch 

driver differential input. The driver differential outputs are connected to the switch 

differential input as shown in Figure 5.7. The switches operate as single pole double 

throw (SPDT). Thus the unused output on each switch is terminated with a 50 ohm 

load.      

 The AWGs are the same Euvis generators used in the first set up and have a 

sample interval of 125 ps. Therefore the designed gating sequence can have a 

minimum rise and fall time of 125 ps. The fast switches have a rise and fall time of 

100 ps and 90 ps respectively, and are able to operate on signals with frequencies up-
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to 50 GHz. Table 5.2 provides a brief summary of the specification and manufacture 

of the devices used in this radar set-up. 

 

Figure 5.7: Connections between switch drivers and the fast switches.  

Table 5.2: Device manufacture and specification 

Device  
Manufacture 

 / Model 

Frequency  

[GHz] 

Rise time  

[ps]  

Fall time 

[ps] 

AWG–1,2 
Euvis /  

AWG 801 
DC – 4 125 125 

Switch 

Driver 

Fujitsu / 

FMM3109PG 
- 40 40 

Switches 
Avago / AMMC-

2008 
DC – 50  100 90 

VNA Agilent / E5071A 0.3 – 8.5  - - 
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The radar system has been synchronised by having the devices sharing the 

trigger from the same source and using specified clock signals which are locked onto 

a single clock source. The clock signals as well as the trigger signal are discussed in 

the next section.  

A test has been performed to validate the radar system in using FMCW and 

GFMCW signal. The VNA was set to operate on a frequency range of 2-8.5 GHz 

with an output power of 0 dBm. A 30x30 metal plate was set 39 cm in front of both 

antennas (Tx and Rx antenna). 

Figure 5.8 presents the normalised profiles of tests with the antenna crosstalk 

appearing at a time delay of 39.20 ns and the metal plate response at 41.38 ns. As 

expected with an FMCW signal the crosstalk appears stronger than the target 

response (i.e. metal plate). With the GFMCW signal the gating sequence has been 

designed to attenuate the crosstalk response while enhancing that of the target.  The 

gating sequence used in this case was a square wave sequence with parameters Tb = 

750 ps and τ1 = τ2 = 0 s.  It can be seen that with GFMCW the target response is 11 

dB above the crosstalk.  

 

Figure 5.8: FMCW and GFMCW radar profiles. 
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5.3 Clock Source and Synchronization Unit     

Synchronisation in a radar system is vital in order to correctly estimate the 

target position and / or the velocity due to its movement. Lack of stable 

synchronisation may also create unwanted artefacts that may not be related to the 

actual target, consequently giving rise to false-positive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since for the bistatic radar systems presented in the previous subsection, the 

transmitter and receiver are collocated, for overall system stability the clock signals 

can be locked to a single source. In addition the trigger signals can be generated from 

the same module.  
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Figure 5.9: Block diagram of the system synchronisation. (a) Clock 

source; (b) Trigger Unit. 
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The crucial device in the synchronisation of the radar systems is the clock 

distribution unit shown in Figure 5.9 (a). At the core of the unit is a stable, ultra-low 

noise 10 MHz signal reference, generated by the PRS10 Rubidium frequency 

standard module from the manufacturer Stanford Research Systems.  In the clock 

distribution unit the 10 MHz signal generated by the PRS10 is divided, amplified 

and multiplied to generate pairs of output waveforms at the following frequencies: 

10 MHz sine wave, 10 MHz square wave, 20 MHz sine wave, 40 MHz sine wave 

and 80 MHz sine wave. Figure 5.10 shows a picture of the clock distribution unit 

with frequency legend on the outputs. The unit has been designed and assembled in-

house at Durham University.  

 

 

Figure 5.10: Clock distribution unit. 

From Figure 5.9 (a) a 40 MHz output sine wave signal is fed into the input of 

the PLL and up-converter unit, shown in Figure 5.11, which generates a locked 4 

GHz sine wave at its output. This signal is amplified accordingly, using a mini-

circuit ZX60-591 6M-S component, split into two, using a power splitter, and each 

output is used as a clock input signal for each AWG module, respectively. The 

internal clock rate of the AWG module is twice that of the input signal clock; 

therefore the samples stored in the module memory are outputted at a rate of 8 GS/s. 

A 10 MHz sine wave output of the clock distribution unit is used as clock 

reference for the ADC or the VNA.  
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Figure 5.11: PLL and up-converter unit (left) inn its metallic enclosure, (right) the 

unit circuit board. 

By default the AWG modules output on its SYNCO port a reference sine 

wave of 125 MHz, which constitute a division of its internal 8 GHz clock by a factor 

of 32. This signal is locked onto the external 4 GHz clock reference signal.  For the 

purpose of stability one of the AWG modules SYNCO signals is used as a clock 

signal input to the trigger unit, shown in Figures 5.9 (a) and (b).  

 At the heart of the trigger unit is a programmable FPGA component (Altera 

Cyclone II), which divides the input clock signal accordingly to generate the same 

trigger signal on its output ports. The signal generated by the trigger unit outputs are 

a square wave of TTL level (3.5 V), moreover the devices (AWGs, VNA or ADC) 

have been set to be edge triggered.  Figure 5.12 shows the hardware circuitry of the 

trigger unit.  

The user defined division factor for the FPGA input clock signal is set 

depending on the duration of FMCW / GFMCW signal. The factor is pre-set so that 

the period of the trigger signal is longer than the duration of the AWGs or VNA 

generated waveform.  

For measurements involving the radar system based on AWG, the trigger 

period was set to 500 µs equivalent to the inverse of the division of the 125 MHz 

input clock signal by a factor of 62500. The generated AWG waveform in this case 

was set to 400 µs duration.  
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For the radar system based on VNA the FPGA is programmed to use a clock 

division factor of 156.25x106. This gives a trigger signal of 1.25 s period.  To avoid 

trigger ambiguity the VNA is set to generate a sweep of 600 ms duration almost half 

of the trigger period.  Moreover, the AWGs in this configuration are loaded with a 

gating sequence of 100 µs duration and set to repeat 10000 times in a loop, for each 

trigger signal, resulting in 1s overall sequence duration, which is enough to cover the 

600 ms duration of the chirp.   

 

 

Figure 5.12: FPGA based Trigger unit. 

 

5.4 X-Y Positioner System 

An X-Y positioner system has been designed and assembled to move the 

antenna(s) and the radar system into predefined positions along two axes.  The 

positioner covers an area of 40 cm x 40 cm.  The positioner system is controlled by 

motor’s motion control software, namely Mach3 by Artisoft, which process the user 

defined G-Code and M-code.   
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 Figure 5.13 shows the block diagram of the X-Y positioner system with the 

devices interconnections.  At its heart is the software Mach3 installed on a PC which 

controls the overall system, and issues user defined commands, e.g. to move or stop 

the motors, changes speed, activates output(s) and interacts or responds to external 

input and so forth.  The PC is connected through the Ethernet with a motion 

controller device “DSPMC / IP”, manufactured by Vital Systems, this acts as an 

interface or translator, converting the digital signal instructions from MACH3 into 

analogue or the digital signal for the external devices and peripherals connected to it, 

and likewise converting input signals (from the devices and peripheral) into 

instructions for the PC.   

The DSPMC/IP is connected with the other devices and peripheral through 

opto-isolated 7535 breakout board for digital signals and 7721 breakout board for the 

analogue signal. The servo drive provides control over the motor and converts the 

DC speed control voltage (ranging from ± 10 V) from DSPMC into the required 

signal power level necessary to drive the motor at an equivalent speed. The servo 

drive and the servo motor are both manufactured by “Omron” and their model is 

R88D-UA12V and R88M-UA40030VA respectively.    

Both servo motors are able to output feedback signals in the form of 

“incremental encoder signal”. This signal carries information related to the motor‘s 

shaft rotation. This is further processed by the Mach-3 software to extract 

information such as speed, travelled distance and current position.  

The used axes are of length 40 cm; in order to avoid the axis being overrun 

by the limit switches employed at each end of the axis. Consequently, if a switch is 
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Figure 5.13: Block diagram of X-Y positioning system.  
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activated Mach-3 was configured to stop the motor motion immediately. For safety 

purposes extra E-stop (emergency stop) buttons were also employed, when activated 

the servos (drive and motor) are powered off immediately.      

 

 

Figure 5.14: X-Y positioning system. 

Figure 5.14 shows the assembled X-Y positioning system and the metallic 

cases housing the high power servo drives and the DSPMC/IP device together with 

the breakout boards.  Figure 5.15  shows the devices inside the metallic cases and 

how they are interconnected.  

 

  

Figure 5.15: Connections inside the (left) Servo drive case, (Right) DSPMC/IP case.  

In order to automate and synchronise the radar system together with the X-Y 

positioner movement, a program was written in visual basic (VB) software to 

provide control and communication of both the Mach3 (controlling the X-Y) and the 
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radar system. For GFMCW radar system based on the VNA the VB program 

operated the following way:  

 

1) VB program sends a command to Mach3 to move the antennas into a 

predefined position.  

2) Once the positioner completes the movement Mach3 reports back to 

VB program.  

3) VB sends a command to the VNA to start the measurement. 

4) Once the measurement is completed data are transferred and saved on 

the PC. 

5) Repeat steps (1) – (4) until the measurement have been completed on 

all the predefined positions.  

 

The communication between the Mach3 and VB is performed through the 

I/O ports of the VNA and of the DSPMC/IP 7735 breakout board. On Mach3 apart 

from the G-Code, which contains the coordinate and the move command, an M-code 

or micro have been written to check predefined DSPMC/IP inputs (for the VB 

program response), and to generate a signal from a predefined output (which 

indicates, to VB program, that it is the last position). The predefined inputs of 

DSPMC/IP are connected to the VNA outputs and vice versa.   

The I/O of the 7735 breakout board operates with 0 V and 24 V representing 

logic-low and logic-high, whereas the VNA operates with a TTL based I/O. As a 

straight connection is not advisable due to a difference in voltage logic levels 

between the two devices a voltage level converter circuit (marked as “A1” on Figure 

5.15) was designed, using a combination of the Darlington transistor ICs 

(ULN2803A) and Logic gate ICs (74LS04N), to convert the 24 V output of the 

breakout board into 5 V (for the VNA input) and the 3.5 V output of the VNA into 

24 V (for the breakout board).   

Although the system was working in this configuration it had been found that 

the ground potential voltage of the VNA differed from that of the 7735 breakout 

board. This was performed by measuring the difference voltage between both 

grounds. In order to protect from the ground potential imbalance both devices have 

been isolated by using a phototransistor opto-coupler IC (ACP847) which can be 

seen on the circuit boards marked as “B1”  and “B2” in Figure 5.15.     
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 For the GFMCW radar system based on AWG the automation process 

described above does not apply as the VNA is not used in this set-up. Consequently, 

for simplicity, a push button switch has been added to the X-Y positioner and the 

Mach3 M-code micro code modified to expect a single input. Therefore, once the X-

Y has completed its movement into a predefined location, the micro code runs 

checking the push button logic state; meanwhile the user can perform the 

measurement. Once completed, the user can activate the push button sending a signal 

onto Mach3 to move to the next predefined position. This procedure is repeated until 

the measurements are performed in all the predefined positions.         

5.5 UWB Antennas  

In a wireless system antennas play a crucial role. At the transmitter it 

converts the electrical signal into electromagnetic waves, whereas at the receiver it 

converts the energy from the electromagnetic waves back to an electrical signal. 

Antennas can also be viewed as a filter allowing signals within their operating band 

to radiate or receive while rejecting signals outside its band.  

An antenna is termed “UWB antenna” if the percentage ratio between its 

bandwidth and the centre frequency, known as fractional bandwidth, is no less than 

20% or it has an absolute bandwidth no less than 500 MHz, regardless of the 

fractional bandwidth. A vast number of UWB antennas can be found in the literature. 

For the interested reader, references [10-12] provide an overview of these types of 

antennas.  

Some of the classical UWB antennas have been designed and manufactured 

for the radar and channel propagation experiments detailed in this thesis. These 

include discone and tapered slot antennas (TSA). These were designed and simulated 

using the commercially available electromagnetic solver “CST Microwave Studio” 

and were manufactured using the facilities available at Durham University.    
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 5.5.1 TSA Antenna  

Tapered slot antennas also commonly known as Vivaldi antennas have been 

around since the late 70’s and are widely used in radar applications due to their wide 

operational bandwidth, directional pattern and compact size [13].   

The TSA antennas presented in this section follow from the guidelines shown 

in reference [14]. Following from the TSA geometry shown in Figure 5.16 two TSA 

(TSA-A and TSA-B) of different dimensions, substrate thickness and material have 

been both simulated and manufactured. The exponential tapering profile of the 

antennas is defined by the function in equation (5.1), where R is the taper ratio.  

 3�1� =  x�� + ¥	 
(5.1) 

The first antenna (TSA-A) of dimension 77 mm x 84 mm have been designed 

on a Roger RT6010LM substrate of permittivity 10.2 and thickness of 1.27 mm. The 

exponential tapering parameters were optimised to values S = 0.062 mm, V = 0.14, 

and R = 0.4 mm-1.  The TSA-B with size of 36 mm x 42 mm was designed on a 

Taconic Cer-10 substrate with a permittivity of 10 and thickness of 0.64 mm. In 

addition the parameters of the exponential tapering function for this antenna were: S 

= 0.14 mm, V = 0.0012 mm and R = 0.165 mm-1.  

 

 

 

     

Figure 5.16: The geometry of the proposed exponential TSA. 
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Table 5.3 gives the final dimensions of both antennas in mm scale. Figure 

5.17 shows the antennas return loss, with the TSA-A and TSA-B achieving a 

bandwidth of 3.1 GHz and 6.6 GHz, respectively, assuming -10 dB return loss as a 

reference. Figure 5.18 shows top and back view of the in-house manufactured TSA-

A and TSA-B antennas.   

Table 5.3: Proposed TSA antennas parameters  

 
W H wf Ri K Lm Ln wn wm Ra 

TSA-A 77 84 0.40 8.40 65 28 14.2 0.91 28 8.25 

TSA-B 36 42 0.30 4.60 30 16 5.15 0.40 16 4.10 

 

 

Figure 5.17: Return loss of the proposed TSA antennas. 

 

(a) 

 

(b) 

Figure 5.18: The front and back view of the fabricated antennas, (a) TSA-A; (b) 

TSA-B. 
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(a) H-plane  

 

(b) E-plane  

Figure 5.19: Normalized simulated radiation pattern of TSA-A antenna.  

 

(a) H-plane  
 

(b) E-plane  

Figure 5.20: Normalized simulated radiation pattern of TSA-B antenna. 

Figures 5.19 and 5.20 show the simulated normalised radiation pattern of 

TSA-A and TSA-B antennas at 2.5 GHz, 5 GHz and 8 GHz. The radiation pattern of 

the TSA-B is lesser directive at the lower part of the UWB frequency (2.5 GHz) 

compared to the TSA-A antenna. As the frequency increases, the TSA-B antenna 

shows considerable improvement in the radiation pattern and becomes more 

directive than the TSA-B. For the TSA-B the pattern deteriorates with many more 

extra lobes appearing as the frequency increases.  
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5.6 Summary 

This chapter provided a description of the two radar systems used in the 

measurement campaign. Both systems namely “radar system based on AWG” and 

“radar system based on VNA” can be operated with either FMCW or GFMCW 

signals. For stability purposes the clock and trigger signals of the radar system are 

locked onto a single clock source generated by a stable and ultra-low noise rubidium 

clock source.  

An X-Y positioning system has been built to move the antennas / system into 

predefined position around the area of interest.  A visual basic program as well as 

motion control program was written to make the movement and measurement 

process automatic. Consequently, once the X-Y system has moved into a new 

position, the measurement is performed without the user’s intervention.  

Classical UWB antenna namely Vivaldi antennas have been designed and 

manufactured for the radar work presented in this thesis.  
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 CHAPTER 6  

Numerical Radar Simulation  

This chapter presents the numerical simulation results of FMCW and GFMCW 

radar systems in applications such as: through-the-wall radar imaging, ground 

penetration radar imaging, and medical imaging. The benefits of performing 

numerical simulations as well as the available numeral techniques are given.  

 

 

 

 

Numerical simulation aims at replicating the operation of a system in the real 

world, through a conceptual model. It may allow a more detailed analysis of the 

performance and limitations of a complex system prior to its implementation. This is 

particularly advantageous for radar systems as successful target detection depends in 

general on a number of parameters, such as: transmitted power, waveform shape, 

duration and bandwidth, number of antenna, the type and their orientation, target 

radar cross section (RCS), and the involved scenario parameters like the number of 

clutter, their shape and electrical properties. With numerical simulations one or more 

of these parameters can be easily varied or changed allowing one to establish their 

impact on the system and moreover, gain more knowledge on the system capabilities 

as well as needed improvements.   



Chapter 6: Numerical Radar Simulation 

104 
 

Simulations save time and money, as the system performance can be 

analysed in detail prior to being built or tested. However, it requires certain 

understanding of what is intended to be simulated in order to create a realistic 

simulation scenario.         

 

Numerical radar simulations are mostly performed through the use of 

computational electromagnetic (CEM) techniques. These techniques predict the 

behaviour of the electromagnetic wave as it propagates through or interacts with the 

modelled environment and physical objects within the problem domain.  The 

numerical solutions to Maxwell’s equations provide a starting point to the operation 

of these techniques.  Various CEM techniques have been developed and reported in 

the literature. A comparative overview of the existing techniques can be found in [1-

4], and more extensive analyses are dealt with in the following textbooks [5, 6].  

        

Depending on the formulation of Maxwell’s equations the CEM techniques 

can be divided into two main methods, these are: the integral equation method (IEM) 

and differential equation method (DEM). The former method formulates the 

electromagnetic problem using the integral-form of Maxwell’s equations. This 

method includes techniques such as: Finite Integral Technique (FIT) and Methods of 

Moments (MoM).  The latter method uses the differential or the curls form of 

Maxwell’s equations and includes techniques such as: Finite Element Methods 

(FEM), Finite Difference Time Domain (FDTD) and Transmission Line Matrix 

(TLM).  

 

Both the IEM and DEM method can be applied to problems in the time 

domain or in the frequency domain, although some of the above mentioned 

techniques operate only in a particular domain. CEM techniques require the 

discretization of Maxwell’s equations quantities such as time, frequency and space. 

In this thesis, numerical simulations were performed using the commercially 

available software “CST Microwave Studio”.    
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6.1 Chirp Based Radar Simulation in CST 

(MWS) 

CST Microwave Studio (MWS) is a specialised 3D electromagnetic tool for 

the design, analysis and optimisation of components and systems operating in a wide 

range of frequencies. CST offers an accurate and efficient “full-wave” solution to 

Maxwell’s equations without any simplifying assumptions or approximations. 

Consequently, the software is able to accurately model the electromagnetic 

propagation phenomena including near and far field effects, scattering, diffraction 

and absorption. The CST MWS is based on the FIT technique with a perfect 

boundary approximation (PBA) for spatial discretization, giving it the ability to 

solve a range of electromagnetic problems in time or frequency [7].  For flexibility 

the software offers a variety of field solvers, to suit specific applications. These 

solvers include the general transient solver, frequency domain solver, and integral 

and asymptotic solver.  

 

 Transient Solver: allows real time domain simulation of the system’s 

transient behaviour in a wide frequency range in a single run. This solver is a popular 

choice in a number of EM problems including devices that are electrically large 

dimensions, non-resonant and with open boundaries, as well as applications such as 

time domain reflectometry (TDR). Being a time domain based solver the 

simulation’s frequency response of an arbitrarily fine frequency resolution can be 

obtained through the Fast Fourier Transform (FFT) without an extra computational 

cost. Therefore, it enables the capturing of the resonances inside the simulation 

spectrum [4, 7]. The modulated Gaussian waveform, which is dependent on the 

user’s specified frequency range, is the default excitation signal. The solver also 

allows arbitrary user defined signals to be fed into the simulator.   

 

Frequency Solver: operates in the frequency domain and is well suited to 

analyse electrically small or mid-sized problems as well as narrowband resonant 

structures. Unlike the transient solver, which delivers a broadband response in a 

single run, for the frequency solver a number of simulations have to be performed 

(one for each frequency point) to cover the broadband frequency range.  
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Integral and Asymptotic Solver: both solvers are mostly used in the analyses 

of the radar cross section (RCS) of electrically large structures, such as: aeroplanes 

and ships.   

 

The work reported in this chapter uses the Transient Solver in CST MWS as 

it allows imported and user defined excitation waveforms (such as FMCW signals). 

Moreover it is also the preferable choice of solver for simulations involving non-

resonant and electrically large structures such as the radar scenarios (TTWIR, GPR, 

and MIR) under consideration in this thesis.    

The transient solver in CST MWS has as default excitation “the Gaussian 

modulated pulse” whose shape depends on the user specified operating frequency.  

For an arbitrary user defined waveform such as the FMCW waveforms, the user has 

a choice of either importing from an external file the waveform in the form of an 

ASCII table file or writing the desired waveform equation(s) in the available built-in 

VBA micro.  

Although the mathematical equation that describes the FMCW and GFMCW 

waveforms is straight forward (see: Chapter 4) in order to perform a successful 

simulation with this type of waveform a series of issues have to be addressed.  

Generally, for a successful simulation the used excitation waveform in CST transient 

solver has to have a smooth transition (e.g. Gaussian excitation). For a waveform 

with sharp transition, the simulation normally becomes unstable. This causes large 

ripples to appear in the resultant time domain signals. These ripples are a result of 

the effects of the waveform’s sharp transition in the FIT technique employed by the 

solver and it has nothing to do with the response of the device or scenario under 

investigation. To bypass this software limitation, in the context of FMCW and 

GFMCW waveforms, the chirp signal is windowed before the simulation and the 

gating sequence is applied through post-processing. These two steps are discussed in 

the rest of this subsection. Numerical electromagnetic simulation of a radar system 

based FMCW or GFMCW signals is novel and has not yet been reported in the 

literature by other research groups.     
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6.1.1 Chirp Windowing Before Simulation 

The ripples due to the sharp transition on the excitation waveform may 

compromise the effectiveness and performance of the device or scenario under test. 

The user defined chirp or linear FMCW waveform can be considered as a truncated 

cosine function whose frequency varies as function of time.  The truncation of the 

FMCW signal creates sharp transitions on its amplitude, from ‘0.0’ to ‘1.0’ and from 

‘1.0’ to ‘0.0’, at the beginning and at the end of the sweep (see: Figure 4.2 in 

Chapter 4). This transition causes the aforementioned instability in the CST solver.  

A solution to this problem is to apply a windowing function to the FMCW 

signal in order to attenuate or smooth the discontinuity at both the beginning and at 

the end of the sweep. Consequently, the user excitation in CST is written as the 

product of the FMCW waveform with the windowing function. After simulation the 

received or recorded FMCW signals are correlated, through post-processing in 

Matlab software, with a copy of the windowed transmitted chirp to produce the range 

delay profile. In the radar simulations reported in this thesis the Hamming window 

was used to smooth the chirp transitions.  

6.1.2 GFMCW Signal Through Post-Processing   

Gated frequency modulated continuous waveform is the result of the product 

between a chirp waveform and a gating sequence.  The gating sequence assumes 

values of ‘0’ and ‘1’ representing the transmitter or receiver states. For the time 

interval in which the sequence is “1” the transmitter or receiver is said to be active 

and for the sequence value of “0” the transmitter or receiver is not active. Sharp 

transitions between states of the GFMCW causes the same problems highlighted in 

the previous subsection, i.e. simulation instability and unwanted ripples. 

Consequently, the user defined GFMCW signals cannot be directly simulated in 

CST.  

To get around this problem, the scenario under test is simulated using a 

normal FMCW waveform. Once the simulation is completed the recorded or 

received waveforms are loaded, together with the user defined FMCW excitation, 

into Matlab for further processing. Using a written Matlab code the GFMCW radar 

simulation is realised by multiplying the receiver gating sequence (1 – g(t)) with the 



Chapter 6: Numerical Radar Simulation 

108 
 

loaded CST recorded waveforms and multiplying the transmitter gating sequence 

g(t) with the loaded CST user defined excitation.  The resultant transmitter and 

receiver GFMCW waveforms are correlated for extraction of the beat-note or range 

profile signal.   

Realising GFMCW radar simulation through post-processing provides 

flexibility and time saving advantages. As an example: for a set of data recorded in 

the simulation of FMCW radar scenarios, different gating sequences can be applied 

in the post-processing to the same data set without the need to re-run the simulation.   

6.1.3 CST Excitation Source 

In the radar simulations presented in this chapter a “plane wave” has been 

chosen as the transmitter’s excitation source.  CST E-field probes placed at user 

specified positions within the scenario under test were used as receivers to record the 

incident and scattered electromagnetic field. A plane wave in CST is a planar 

excitation source of an electromagnetic wave with constant phase wave front parallel 

to the source and of constant amplitude. The wave direction of propagation is normal 

to the plane.   

Although antennas could have been used in place of a plane wave, their 

physical shape, size and the number required to cover the radar scenario to be 

considered would have increased the computational burden of the simulation 

resulting in longer simulation time or even quite possibly instability due to the 

limitation of the computer memory and processing power. Despite the fact that a 

plane wave is an ideal electromagnetic field source, it is mostly considered as a 

realistic approximation to the field emanating from an antenna located at a far 

distance [8], commonly referred to as “the far field”.     

   The CST E-field probes, used as receiving antennas, are able to measure 

individually the total electric field at their predefined position. This field is the 

superposition of the incident field (EINC), direct signal impinging on the probe from 

the plane wave, the scattered field (EREF), the signal reflected by the surrounding 

objects (clutter) and the target.  Equation 6.1 gives the formulation of the recorded / 

measured electric field signal by a probe.  
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ECm��§�t� = E©Fª�t� + E�«¬�t� (6.1) 

The probes recorded signal, as well as the excitation signal, were loaded into 

Matlab for post-processing, in order to extract the range profile of each probe. 

Further processing using an image algorithm was applied to the extracted range 

profiles in order to create meaningful image maps of the simulated radar scenario 

under consideration. 

6.2 Simulation Results  

The effectiveness of the GFMCW technique compared to the normal FMCW 

signal approach is shown in the form of radar energy map of the numerical 

simulations of realistic radar scenarios, such as: through-the-wall radar, ground 

penetrating radar, medical imaging radar. Issues regarding the selection of the 

appropriate gating sequence and its defined parameters for a particular scenario 

under consideration are also described.  The radar image / energy map results 

presented in this section were obtained through the post-processing of the range 

profiles using the previously described “Delay-and-Sum” image algorithm (see: 

Chapter 2).  

6.2.1 Through-the-Wall Imaging Radar Simulation 

The scenarios simulated in this section are three dimensions with the walls, 

target made of different material and electrical properties. In the scenarios the target 

is in the form of human phantom placed inside the room. For simulation speed the 

phantom is modelled as a uniform material of electrical properties (permittivity of 

36) similar to that of the reported human’s skin [9-11].  

The pre-windowed normal FMCW excitation signal is in the frequency range 

of 0.7-2.5 GHz. The transmitter (Tx) is modelled as a plane wave and it is placed 60 

cm from the wall, whereas the receiver (Rx) is a linear array of 19 E-field probes 

with 10 cm spacing between inter-element and positioned 45 cm from the wall.  
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The work presented in this section differs from the early work reported in 

references [12, 13] and in the thesis [14], by:  

 

• Crosstalk suppression: In the simulation presented here it is shown that the 

GFMCW signal can be designed to suppress both the wall reflections and the 

direct crosstalk or incident signal between the Tx and the Rx. This is relevant 

as antenna crosstalk signals can be much stronger than the target response 

therefore overshadowing it in the radar image.  In the early work the incident 

signal EINC(t) in Equation (6.1), which represents the antennas crosstalk, was 

removed from the total received field (ETotal(t)) through subtraction of two 

different simulations, one with the wanted scenario (i.e. room with target(s) 

and clutter) present and the other an empty scenario. Although, the 

subtraction removes the antenna crosstalk it is impractical, as it would require 

having antenna calibration waveforms for a combination of gating sequence 

parameters.   

 

• Realistic Scenario:  A more realistic through-the-wall scenarios are presented 

here. For example: glass window, wood door and furniture are added into the 

room to provide a cluttered scenario (similar to an office or home 

environment); moreover an insulated wall similar to what can be found in 

most houses or buildings in the UK are simulated. 

 

 

 

 

 

 

 

 

 

 



Chapter 6: Numerical Radar Simulation 

111 
 

Scenario – A: Normal Room 

Figure 6.1 shows the top and perspective view of the normal room scenario. 

The room dimension are 325 x 325 x 200 cm3 with a 20 cm thick solid wall made of 

uniform brick material with permittivity of 3.8 similar to the values reported in [15, 

16]. The floor and ceiling are made of the same material (i.e. concrete) with 

permittivity of 4.8 and the door and window are made of wood and Pyrex glass with 

permittivity of 2.25 and 4.8, respectively. The target, a human phantom, is placed 

130 cm from the front wall.  

The excitation signal (normal FMCW signal) used in this simulation has a 2.5 

µs duration. For simplicity the maximum distance to be covered is assumed to be 4 

m. In order to satisfy the anti- aliasing condition set by equation (4.46), the chosen 

gating sequence duration (for GFMCW cases) should not be greater than 13.02 ns. In 

other words for “N” bit sequence the maximum bit duration (Tb) that can be used 

without causing aliasing is 13.02/N ns.           

 

 

(a) 

 

(b) 

Figure 6.1: Scenario – A: Normal room, (a) top view; (b) perspective view 

Figure 6.2 shows the normalised range delay profiles (seen by the centre 

receiver probe) for a normal FMCW signal (No Gating) and for different GFMCW 

cases with sequences such as: square wave sequence (SQ wave)  and 3-bit m-

sequence (3-Bit Mseq and 3-Bit Mseq+) respectively. The profiles are normalised 

with respect to the peak / maximum of FMCW profile. It can be seen from the figure 

that for the normal FMCW case, the reflections from the walls (front and back) as 

well as the direct crosstalk are much stronger than the desired target reflections 

which is -30.2 dB below the peak of the unwanted crosstalk reflection.  
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By carefully designing the parameters (bit duration and off-time delays) of 

the gating sequence the unwanted reflection can be suppressed while enhancing that 

of the target. Parameters of the used gating sequence in this scenario are given in 

Table 6.1. As expected, due to the on and off of the gating sequence apart from the 

suppression, further power loss occurs which depends on the sequence duration and 

the receiver off-time. This loss can be seen in Figure 6.2 where the target peak level 

is at -30.2 dB for the normal FMCW case compared to -43.1 dB, -40.9 dB, and -48.2 

dB for the GFMCW cases with  gating sequence SQ wave,  3-Bit Mseq, and 3-Bit 

Mseq+ respectively. 

 

 

Figure 6.2:  Normalised range profiles seen by the centre probe for FMCW and 

GFMCW cases  

Table 6.1: Gating Sequence parameters and its power loss values 

Gating 

Sequence 

Tb τ1 τ2 Power Loss 

XG 

SQ Wave 12 ns 0 ns 6.5 ns 12.8 dB 

3-Bit Mseq 8 ns 0 ns 0 ns 9.5 dB 

3-Bit Mseq+ 8 ns 0 ns 5 ns 18.0 dB 
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Figure 6.3: Scenario-A radar image for FMCW (No Gating) case 
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(c) 

Figure 6.4: Scenario – A radar image for GFMCW cases, (a) SQ wave; (b) 3-Bit 

Mseq; and (c) 3-Bit Mseq+    

Figures 6.3 and 6.4 (a)-(c) show the obtained normalised radar images for the 

normal FMCW and Gated FMCW cases respectively. It can be seem from the 

FMCW case the crosstalk and front wall reflections are the strongest in the image, 

with the target reflections being totally obscured by the unwanted early reflections. 

Although the back wall is much farther from the probe compared to the target its 

reflections can also be seen in the image.  As observed in the “No Gating” profile in 

Figure 6.2 the round-trip time from the probe to the target appears at approximately 

15 ns and the unwanted wall reflections appear before the 6.5 ns and at roughly 25 ns 

(for the back wall). The parameters of the gating sequence were chosen such that the 

sequence MRP blind range coincided with the unwanted reflections, while providing 

a flat area of the MRP to cover the expected target delay so that target reflections are 

not attenuated.    

In Figure 6.4 (a, c) the target is clearly detected while the crosstalk and (front 

and back) wall reflections seem to have been suppressed. In Figure 6.4 (b) the front 

wall reflections are still stronger compared to the target, although the crosstalk and 

back wall have been suppressed. The reason for this is that the crosstalk and the back 

wall reflections fall into the deep or blind range of the MRP of the 3-Bit Mseq 

sequence but the front wall reflection on the other hand falls onto the MRP slope 

which in this case is not attenuating enough to enhance the target. By extending the 

blind range (by using the sequence delays) as is the case for the 3-Bit Mseq+  
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sequence the front wall reflections are further suppressed making the target more 

distinguishable, as shown in Figure 6.4 (c).    

 

Scenario – B: Room with Furniture 

Figure 6.5 shows the top and perspective view of the scenario in question. 

The room dimension is 375 cm x 280 cm x 200cm and is made of brick of 15 cm 

thickness. The material property of the human phantom, brick, glass window and the 

wooden door are the same as the previous scenario. The human phantom in the 

upright position is placed at approximately 160 cm from the wall. Additionally, the 

wooden furniture (table, chairs and book shelf) are placed in the room together with 

a metallic plate to provide a more realistic environment. The FMCW excitation 

signal in this case is of 4 µs duration.    

 

 

(a) (b) 

Figure 6.5: Scenario – B: Room with furniture, (a) top view; (b) perspective view 

It can be observed from the radar profile of the 12th probe (see Figure 6.6) 

that for the FMCW case the target reflection that appears at 15 ns time delay is 

weaker compared to the unwanted early and late reflections. As expected the radar 

image for the FMCW case shows a stronger energy level at the position of the 

crosstalk and wall, the target and metallic plate responses are both obscured by those 

unwanted reflections, as shown in Figure 6.7.  

In order to suppress the wall and crosstalk reflections, a 3-bit m-sequence (3-

Bit Mseq) with bit duration Tb = 9.25 ns and delays τ1 = 0 ns, and τ2 = 6 ns was used 

to suppress the first 6 ns of the range profile which falls on the first null of the MRP 

and also the back wall is removed as it falls on the MRP second null.  Radar images 
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of the GFMCW signal with the “3-Bit Mseq” sequence (displayed in Figure 6.8) 

shows indeed that the crosstalk and wall reflection energy have been suppressed.  

 

Figure 6.6: Normalised range profiles seen by the 12th probe for FMCW and 

GFMCW cases 

 

Figure 6.7: Scenario – B radar image for the FMCW (No Gating) case 

An interesting fact of this image is that it also shows the detection of the 

metallic plate. Consequently, in a cluttered environment mostly the presence of 

strong energy maps inside the area of interest may not necessarily mean a presence 

of a human as the reflected energy of a metallic object or a strong reflector may be 

significant in the image.  In [12, 13] it was showed that apart from the energy map, 
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Doppler processing can be used to extract features such as human movement or 

breathing [14]. This enables to differentiate humans from other static strong reflector 

objects (such as the metallic plate) in this case inside the room.  

By decreasing the bit duration of the 3-bit m-sequence (Tb = 8 ns) while 

maintaining the delay values unchanged the metal plate’s return energy is suppressed 

by the second null of the sequence MRP, as observed in the profile (3-Bit Mseq+) in 

Figure 6.6 and in the radar image displayed in Figure 6.8 (b).   

 

 

(a) 

 

(b) 

Figure 6.8: Scenario – B: Radar image for the GFMCW cases, (a) 3-Bit Mseq; (b) 3-

Bit Mseq+  
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Scenario – C: Room with Cavity Wall Insulation 

In most residential homes in the UK the external walls are mostly built out of 

two masonry walls with a gap or cavity [17]. For heating purposes the cavity 

between the walls are often filled with insulating material.   

 

 

(a) (b) 

Figure 6.9: Scenario – C: room with insulated cavity wall, (a) top view; (b) 

perspective view 

Figure 6.9 shows the top and perspective view of the scenario in question. 

The room’s dimensions are 338 cm x 270 cm x 200 cm with the external wall (in 

blue) made of 8 cm thick brick of permittivity value of 6, whereas the 5 cm cavity (in 

yellow) is filled with polystyrene insulating material with permittivity value of 2.6, 

and the internal wall (in purple) is made of 12 cm concrete block of permittivity 5.5.  

The wooden door, the floor and the human phantom permittivity values are the same 

as those used in scenario – A. The FMCW excitation signal is of 4 µs duration.      

Figure 6.10 shows the normalised radar profiles seen by the centre probe. As 

expected the crosstalk and wall reflections are stronger than that of the target. Figure 

6.11 shows the radar image for the case of the FMCW signal where no gating 

sequence is used. It can be seen that the target energy is overshadowed by the 

crosstalk and the (front and back) walls reflections.    

GFMCW have been used in this scenario to suppress the unwanted crosstalk 

and wall reflections, Figures 6.12 (a)-(b) shows the radar image for sequences: SQ 

wave gating sequence, with parameter Tb = 14 ns, τ1 = 2 ns, and τ2 = 7 ns, and 3-bit 

m-sequence, with parameter Tb = 9 ns, τ1 = 2 ns, and τ2 = 7.5 ns, respectively. It can 

be seen from these figures that the target is clearly visible.  
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Figure 6.10: Normalised range profile seen by the centre probe for the FMCW and 

GFMCW cases 

 

Figure 6.11: Scenario – C radar image for the FMCW (No gating) case 
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(a) 

 

(b) 

Figure 6.12: Scenario – C radar image for the GFMCW cases, (a) SQ wave, 

(b) 3-Bit Mseq 
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6.2.2 Ground Penetrating Radar Simulation 

In this section the use of GFMCW signal to suppress antenna crosstalk and 

early air-ground reflections will be analysed. The FMCW excitation signal used in 

the simulations presented in this section has a frequency range of 0.5-3.0 GHz. For 

simplicity only metallic target(s), modelled as PEC cylinder, are considered in the 

simulations to mimic landmines or metallic pipes. As in the previous section the 

transmitter is modelled as a plane wave while the receiver is a linear array of 21 E-

field probes with 5 cm inter-element spacing.   

 

Scenario – D: GPR on Uniform Soil  

Figure 6.13 shows the view of the GPR simulation scenario with three 

metallic targets buried at a depth of 12 cm, 25 cm, and 40 cm respectively. The soil 

is made of smooth surfaces with homogenous material of permittivity value of 7.  

The receiver array was placed 35 cm above the ground surface and the transmitter 

excitation signal (FMCW) was of 2 µs duration.       

 

 

(a) 

 

(b) 

Figure 6.13: Scenario – D uniform soil with 3 targets, (a) perspective view; (b) cut 

through the z-plane  

Figure 6.14 shows that the crosstalk and air-ground interface reflections 

overshadows or masks the reflected energy from the target when an FMCW signal is 

used. By gating those undesirable early reflections, using the GFMCW, the target 



Chapter 6: Numerical Radar Simulation 

122 
 

detection can be enhanced as shown in Figure 6.15, for the case of 3-bit m-sequence 

with parameters Tb = 4.2 ns, τ1 = 0 ns, and τ2 = 3.2 ns. 

 

Figure 6.14: Scenario – D radar image for FMCW (No Gating) case 

 

Figure 6.15: Scenario – D radar image for GFMCW case 

 

Scenario – E: GPR in Multilayer Ground  

Figure 6.16 shows the view of the simulated multilayer ground scenario. The 

ground is made of 8 cm thick concrete pavement, of 5.5 permittivity (as given by 

CST for the year old concrete), followed by a layer of dry soil of 2.53 permittivity.  

Two targets at a depth of 25 cm and 40 cm respectively have been included in the 

model. The receiver probes were placed 22 cm above the pavement and the 

transmitter plane wave was excited with the pre-windowed FMCW signal of 0.5 µs 

duration.  
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As expected for the FMCW case the crosstalk and pavement reflection 

overshadows the target return, as shown in the energy in Figure 6.17. By gating the 

FMCW signal, with a square wave sequence with parameters Tb = 4.5 ns, τ1 = 0 ns, 

and τ2 = 3.2 ns, the early unwanted return is suppressed while enhancing the return 

signal from the deep targets as seen in Figure 6.18.   

 

 

(a) 

 

(b) 

Figure 6.16: Scenario – E Multilayer ground with 2 targets, (a) perspective view; (b) 

cut through the z-plane 

 

 

Figure 6.17: Scenario – E radar image for FMCW (No Gating) case 
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Figure 6.18: Scenario – E radar image for GFMCW case 

Scenario – F: GPR on Inhomogeneous Ground  

Figure 6.19 shows the perspective and z-plane cut view of the scenario set 

up.  The ground is made of dry soil with permittivity value of 2.53. Materials of 

irregular shapes and of different permittivity were added into the soil to create 

inhomogeneity.  

 

 

(a) 

 

(b) 

Figure 6.19: Scenario – F Inhomogeneous ground with 2 targets, (a) perspective 

view; (b) cut through the z-plane 

The dielectric parameters of these materials, based on their colour in Figure 

6.21 (a), are: 4.55 (light blue), 8 (purple), and 17.5 (gold). The metallic targets 

placed 20 cm and 35 cm deep respectively, represented with silver colour, are 

X range [cm]

Y
 r

an
ge

 [c
m

]

 

 

-30 0 30 60

-50

-25

0

25

50 -15

-10

-5

0



Chapter 6: Numerical Radar Simulation 

125 
 

modelled as PEC.  The receiver probes are placed 20 cm from the surface and the 

duration of the excitation signal was set to 0.5 µs.  

Figure 6.20 shows the obtained radar image for the FMCW case, where it can 

be seen that the crosstalk and surface ground reflections are stronger than that of the 

target. Target – 1 is still visible in this case while Target – 2 is clearly overshadowed 

(cannot be detected). By using GFMCW both targets can be detected in Figure 6.21 

while the unwanted reflections are suppressed. The parameter of the gating sequence 

used in the GFMCW simulation is 3-bit m-sequence with Tb = 3 ns, τ1 = 0 ns, and τ2 

= 2 ns. 

 

 

Figure 6.20: Scenario – F radar image for FMCW (No Gating) case 

 

Figure 6.21: Scenario – F radar image for GFMCW case 

 

 

X range [cm]

Y
 r

an
ge

 [c
m

]

 

 

-20 0 20 40 60 70

-50

-25

0

25

50 -15

-10

-5

0

Ground 
Surface

CrossTalk Target - 1 

Target - 2 

X range [cm]

Y
 r

an
ge

 [c
m

]

 

 

-20 0 20 40 60 70

-50

-25

0

25

50 -15

-10

-5

0



Chapter 6: Numerical Radar Simulation 

126 
 

6.2.3 Medical Imaging Radar Simulation    

Medical imaging radar systems have gained a great deal of interest within the 

research community especially in issues of detection of breast cancer [18-20], brain 

haemorrhage [21, 22], and  water accumulation in human body (i.e. urine in the 

bladder or water in the lungs) [23, 24]. In this section the results of the application of 

GFMWC signal for the suppression of crosstalk and early skin reflection in breast 

cancer detection scenario will be presented. The author believes that this suppression 

technique can be applied to the other MIR scenarios.   

The adopted 3-D breast model assumes a planar configuration, representing a 

patient in supine position with the antennas scanning over the top of the flattened 

breast. Similar models have been used in references [20, 25-27]. For simulation 

simplicity the breast phantom is immersed in a medium with the same electrical 

properties as that of the normal tissue (fat) with permittivity of 9. The transmitter as 

before is modelled as plane wave while the receiver is modelled as a linear array of 

21 E-field probes with an inter-element gap of 5 mm and spaced 10 mm from the 3 

mm thick skin. In the simulations the pre-windowed FMCW excitation signal has a 

duration of 2.0 µs with a frequency range 0.5-5.0 GHz.    

Scenario – G: Homogeneous Breast Model 

Figure 6.22 shows the two layers of fat and skin of the modelled homogenous 

breast with cancer tumour included. The target / tumour was placed 75 mm from the 

skin and it was modelled as a cube of water of dimension 10 mm x 15 mm x 20 mm 

and relative permittivity value of 78. While the 3 mm thick skin was given a value of 

36, similar values of thickness and permittivity for the skin were found in references 

[9, 11, 28, 29].    

Figure 6.23 shows an energy map for the case of FMCW waveform. As 

expected, the crosstalk and skin reflections dominate and overshadow that of the 

tumour. The skin reflections are not differentiated from the crosstalk in the image 

because of the closer proximity of the probes from the skin (10 mm). This distance is 

much smaller than the range resolution. By using a gating sequence for the GFMCW 

case the unwanted reflections can be suppressed which enables the detection of deep 

tumour, as shown in Figure 6.24 for the gating 3-bit m-sequence with Tb = 1.5 ns, τ1 

= 0 ns, and τ2 = 1 ns.   
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(a) 

 

(b) 

Figure 6.22: Scenario – G Homogeneous breast, (a) perspective view; (b) top view 

 

Figure 6.23: Scenario – G radar image for FMCW (No Gating) case 

 

Figure 6.24: Scenario – G radar image for GFMCW case 
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Scenario – H: Heterogeneous Breast Model 

Breast heterogeneity was created by adding tissues of different shape and 

dielectric into the homogeneous model.  The skin is 3 mm thick but with permittivity 

of 31, whereas the tumour position, size and permittivity are the same as in the 

previous scenario. The permittivity of the added clutter / tissues, based on the colour 

in Figure 6.25, is 31 (yellow), 20 (magenta), 12 (blue), and 2.8 (green).  The normal 

tissue or fat and surrounding material have a permittivity equal to 9.  

 

 

(a) 

 

(b) 

Figure 6.25: Scenario – H Heterogeneous breast, (a) perspective view; (b) top view 

 

Figure 6.26: Scenario – H radar image for FMCW (No Gating) case  
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reflections (crosstalk and skin) were removed (as displayed in Figure 6.27) using a 7-

bit m-sequence with parameters Tb = 1.5 ns, τ1 = 0 ns, and τ2 = 0.9 ns. Although the 

target is visible in the figure, clutter reflections can also be seen. This in practical 

terms may lead to false-positive diagnosis as the information of the tumour position 

is unknown beforehand. In order to further minimise / remove the clutter within the 

area of interest further post-processing steps can be applied.     

 

 

Figure 6.27: Scenario – H radar image for GFMCW case  
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6.3 Summary 

In this chapter numerical radar simulations were presented using the 

commercial electromagnetic solver, “CST Microwave Studio” for both FMCW and 

GFMCW waveforms. The radar systems have been tested on realistic models of 

room environments for through-the-wall radar, soil for ground penetration radar, and 

breast for medical imaging radar.  

The CST simulation results have been processed using the Delay-and-Sum 

algorithm to create an energy map of the scenario under test. It has been shown that 

for the FMCW cases the unwanted early reflections such as: wall, ground surface, 

and skin combined with that of the antenna crosstalk largely overshadows the wanted 

target return signal.  By selecting a suitable gating sequence (GFMCW cases) the 

target return can be enhanced while suppressing the unwanted early clutter return 

signal.   

CST discretizes the scenario under test into small cells “known as mesh cell”. 

Table 6.2 gives a summary of the radar simulations, the excitation duration, the 

number of mesh cells, and overall time taken by CST to complete the simulation.    

 

Table 6.2: Summary of the Radar Simulations 

Scenario Radar System 
FMCW 

Duration [µs] 

Mesh Cell 

[Millions] 

Simulation 

Time [hours] 

Scenario – A TTWIR 2.5 175 140 

Scenario – B TTWIR 3 390 562 

Scenario – C TTWIR 3 383 398 

Scenario – D GPR 2 40 58 

Scenario – E GPR 0.5 16 4.5 

Scenario – F GPR 0.5 28 22 

Scenario – G MIR 2 2 6 

Scenario – H MIR 2 2.4 10 
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CHAPTER 7  

Radio Imaging Experimental Results  

This chapter presents the experimental results of the GFMCW technique in 

applications such as: through-the-wall radar imaging, ground penetration radar 

imaging, and medical imaging. The effectiveness of the technique will be given 

through a comparison of the radar images obtained from normal FMCW and 

GFMCW waveforms in various realistic scenarios.     

 

 

 

The radar experiments presented in this chapter used the AWG and the VNA 

based radars described in Chapter 5. These were used to demonstrate the 

effectiveness of the GFMCW waveform in suppressing the undesirable crosstalk and 

unwanted reflections in TTWRI, GPR and MIR scenarios.  

Both radar systems operate in a bistatic configuration (i.e. separated 

transmitter and receiver antennas) with measurements performed using the 

“synthetic aperture radar” approach in which, the measurements are taken in pre-

defined positions forming a linear or circular array. Radar images are created 

combining the measurements radar profiles from the pre-defined position using the 

known “Delay-and-Sum” imaging algorithm. The effectiveness of the GFMCW 

technique in suppressing strong clutter signals will be given through a comparison of 

the radar images using the FMCW signal and using the proposed method.   
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Measurement Methodology  

The following methodology is applied before performing GFMCW 

measurements:  

1)  Identify the time delay related to the undesired components: FMCW 

signal is initially applied onto the scenario under test in order to identify 

the time delay and peak power related to the undesired reflections, such 

as; antennas crosstalk and wall, ground surface, or skin reflection.  These 

reflections are identified by inspecting the radar profiles.  

2) Selecting a suitable gating sequence and its parameters: Once the 

undesired reflection(s) absolute time delay(s) “tr” has been identified 

from the FMCW profiles, a gating sequence of length “N” bits can be 

selected to suppress the undesired reflections. The undesired reflection is 

suppressed by setting the sequence MRS notch to fall onto the time “ tr” 

related to the undesired reflection. The notches on the gating sequence 

MRS are periodic of duration “NTb”, therefore for “tr” to fall onto the 

“kth” notch of the MRS the bit duration Tb should be selected as in (7.1). 

If a wider blind range or a steeper slope on the MRS is needed, then 

sequence delays “τ1” and “τ2” can be used.     

@l = H
£�	 (7.1) 

4) Loading into Euvis and Measurement: Once the parameters of the gating 

sequence or GFMCW signal have been defined it is then loaded into the 

Euvis modules through Matlab.  On the completion of the measurement 

the resultant radar range profile can be used in further processing to 

create an image of the scenario under test.  

 

The scenario depicted in Figure 7.1 where the metallic target is placed 1.2 m 

away from the tip of the antennas illustrates the procedure. The Euvis based radar 

system operates with a bandwidth of 1.5 GHz and chirp duration of 400 µs.  From 

the normalised radar profiles in Figure 7.2 it can be seen that for the FMCW case the 

undesired signal “antennas crosstalk” is at 25.07 ns, whereas the target response 

appears at approximately 33.5 ns at -11.5 dB.      
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Figure 7.1: Metallic target in an open environment 

 

Figure 7.2: Normalised radar profiles for FMCW and GFMCW case 

A 3-bit Msequence was used to remove the crosstalk signal while enhancing 

the target return. The sequence bit duration as given by (7.1) was chosen to provide a 

range suppression on the second (k = 2) notch of the MRP. Therefore the bit 

duration was set to Tb = 8.375 ns and the delays τ1 and τ1 set to 3.5 ns and 3 ns 

respectively.  Figure 7.3 shows two periods of the used gating sequence profile, and 

Figure 7.4 shows that the 2nd notch of the sequence MRP falls at around 25 ns. The 

target response at 33.5 ns falls onto the MRP flat part, and therefore suffers no 

suppression. The normalized radar profile for the GFMCW case is given in Figure 

7.2.   
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Figure 7.3: Profile of the used 3-bit m-sequence on transmitter and receiver  

 

Figure 7.4: MRP of the used 3-bit m-sequence 

This example illustrates the measurement methodology applied onto the radar 

experimental scenarios described in the next sections.  
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7.1 Through-the-Wall Imaging Radar  

This section presents the results of the through-the-wall radar experiments. 

The focus was on detection of metallic and non-metallic stationary targets within an 

office like environment of walls made of plywood or concrete blocks. The 

measurements were performed using the radar system based on AWG. The AWGs 

were configured to produce FMCW or GFMCW waveforms with a frequency range 

of 0.7-2.5 GHz and sweep duration of 400 µs, the system ADC was set with a 

sampling frequency of 20 MHz. Two Vivaldi antennas, operating with a return loss 

less than -10 dB across the specified band [1], have been used as transmitting and 

receiving antennas respectively and were separated by 20 cm and moved in a linear 

trajectory into 6 specified positions of 10 cm  interspace. The antennas were placed 

at the top of the trolley at 110 cm above the ground. 

7.1.1 Target Behind Plywood Wall  

The walls of the office environment in this scenario are made of plywood 

panels with air gap or cavity between the inner and outer side of the wall. The 

overall measured wall thickness is 8 cm and the assumed value for its permittivity is 

1.7. As an air gap exists between the plywood panel the wall permittivity was 

assumed as the mean between the values of air (1) and plywood (2.49) [2, 3].   

 

 

Figure 7.5: Radar system mounted on a corridor overlooking the Plywood wall 
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It is worth mentioning that the errors in the estimation of the material (wall) 

permittivity and thickness may lead to a displacement or blurring of the target energy 

in the created radar image. However the assumed values permit the target positioning 

error in the radar image to be within the system settings down-range resolution, 

which in this case is roughly 8.3 cm (1.8 GHz bandwidth). Figure 7.5 shows the 

radar system in a corridor with the antennas (placed 2 cm from the plywood wall) 

orientated towards the scenario under test. The room serves as a meeting place and 

contains furniture such as tables, chairs and computers. 

Scenario – A: Target a Metallic Plate Placed Inside a Bag 

Figure 7.6 shows the inside of the room with a 35 cm x 25 cm metal plate 

placed inside an office bag. The bag was placed on top of a 1.0 m long plastic 

cylinder, which was 1.0 m away from the wall.  

 

 

(a) 

 

 

 

 

(b) 

Figure 7.6: Plywood wall, (a) inside the room; (b) Metallic target 

Figure 7.7 shows the normalised profiles seen by the antennas, at the 2nd 

position, for the FMCW cases with and without (Empty) target and GFMCW with 

the target. From the FMCW profile it can be seen that the crosstalk and wall 

reflection peaks at 22.14 ns and 24 ns respectively overshadow that of the metallic 

target which is roughly at 30 ns. By applying the GFMCW with the chosen 3-bit m-

sequence with parameters Tb = 7.5 ns and delays τ1 = 2 ns, and τ2 = 2 ns, these 

unwanted reflections are suppressed.   
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Figure 7.7: Scenario – A: radar profiles for FMCW and GFMW Cases 

 

Figure 7.8: Scenario – A: radar image for the FMCW (No Gating) case 

 

Figure 7.9: Scenario – A: radar image for GFMCW case 
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Figures 7.8 and 7.9 show the obtained radar images for the FMCW and 

GFMCW case. It can be seen from the figures that with the GFMCW case early wall 

reflections have been suppressed and the target is more distinguishable.  

Scenario – B: Target Human Being 

In the scenario shown in Figure 7.10 the target is a human being standing 

with his back facing the wall. The target is positioned 60 cm from the wall. Figure 

7.11 shows the radar profiles seen by the antenna at the 2nd position of the array. As 

expected, early reflections are stronger than the target signal; consequently it is 

overshadowed in the radar image in Figure 7.12. By using GFMCW waveforms 

similar to the previous scenario the unwanted early reflections were removed and the 

target can be detected in Figure 7.13. 

 

Figure 7.10: View of the room with a Human as target 

 

Figure 7.11:  Scenario – B: radar profiles for FMCW and GFMW Cases 
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Figure 7.12: Scenario - B radar image for FMCW (No Gating) case 

 

Figure 7.13: Scenario - B radar image for GFMCW case 
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21 ns in the radar range profiles, therefore by using the GFMCW waveform with the 

3-bit m-sequence with parameters Tb = 7 ns and delays τ1 = 2.5 ns and τ2 = 3.5 ns, as 

well as the square wave sequence with parameters Tb = 10.5 ns and delays τ1 = 3 ns 

and τ2 =2.5 ns, the unwanted reflections are suppressed. Figures 7.16-7.18 display 

the radar image of the scenario under consideration when a GFMCW signal with the 

above mentioned gating sequences is used. Note that for the GFMCW waveform the 

target is clearly detectable and as expected the unwanted early reflections are 

suppressed.  

 

 

Figure 7.14: View of the scenario a water filled bucket behind a concrete wall 

 

Figure 7.15: Scenario – C radar image for FMCW (No Gating) case 
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Figure 7.16: Scenario – C radar image GFMCW case with 3-bit m-sequence and the 

Target 90 cm from the front wall 

 

Figure 7.17: Scenario – C radar image GFMCW case with 3-bit m-sequence and the 

Target 150 cm from the front wall  

 

Figure 7.18: Scenario – C radar image GFMCW case with SQ wave sequence 
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7.2 Ground Penetrating Radar  

This section presents the preliminary results of the ground penetrating radar 

experiments performed in the anechoic chamber at Durham University. The focus 

was on detection of a metallic target buried in the sand using the GFMCW 

suppression technique. Experiments were performed using a 42 cm x 50 cm x 48 cm 

plastic box filled with builder sand, with a measured gravimetric water content of 

7.5%, with the target buried at different depths. The gravimetric water content was 

measured as the ratio of the mass of the water to that of the dry soil.  

Two antipodal slot antennas (presented in Chapter 5 as TSA-A) separated by 

5.5 cm were used at the transmitter and receiver respectively, and were moved using 

the X-Y positioner along a linear synthetic array of 27 positions with inter position 

spacing of 1 cm. The radar system based on the AWG was used throughout the 

measurement campaign. The system was configured to operate with a frequency 

range of 1.4-3.5 GHz, a sweep repetition rate of 0.4 ns, and with 20 MHz sampling 

frequency.  Figure 7.19 shows part of the experimental set-up used in this section,  

 

 

Figure 7.19: Ground penetrating radar experimental set-up 

Scenario – D: Target Metallic Plate 

Figure 7.20 shows the view of the target, which is a 20 cm x 15 cm metallic 

plate. The target was buried 30 cm deep and the distance from the antennas tip to the 

soil surface was set to 10 cm.  As expected in the radar profile shown in Figure 7.21 
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early reflections, such as antenna crosstalk and ground surface, are much stronger 

than the target reflection, which is approximately -19 dB below the main peak.  

 

 

Figure 7.20: View of the metallic plate target on this scenario 

 

Figure 7.21: Scenario – D radar profiles for FMCW (No Gating) and GFMCW cases 

Figure 7.22 shows the radar image for the case of FMCW signal. On which it 

can be seen that the target is overshadowed by those unwanted early responses. By 

using the GFMCW with 3-bit m-sequence (MSeq) of parameters Tb = 5.875 ns and 

delays τ1 = 2 ns and τ2 = 2 ns; and a square wave (SQ Wave) sequence of parameters 

Tb = 4.375 ns and delays τ1 = 1.5 ns and τ2 = 1.5 ns the unwanted reflections were 

suppressed as can be seen in their respective profiles in Figure 7.21 and in the 

corresponding computed radar images in Figures 7.23 and 7.24. 
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Figure 7.22: Scenario – D radar image for FMCW (No Gating) case 

 

Figure 7.23: Scenario – D radar image for GFMCW (Mseq) case 

 

Figure 7.24: Scenario – D radar image for GFMCW (SQ Wave) case 
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Scenario – E: Target a Metallic Disk 

In this scenario, the target was a 13 cm diameter plastic disk wrapped in 

aluminium kitchen foil, as shown in Figure 7.25. The target was buried 13 cm deep 

and the antenna to ground surface spacing was similar to the previous scenario of 10 

cm.     

 

 

Figure 7.25: View of the metallic disk target on this scenario 

The measurement with FMCW signal shows that the peak(s) of unwanted 

early reflections is at roughly 34 ns, whereas the target reflection is at 36.5 ns and is 

-16 dB below the strongest peak in the profile, as seen in Figure 7.26.  

 

 

Figure 7.26: Scenario – E radar profiles for FMCW (No Gating) and 

GFMCW case 
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A 3-bit m-sequence with parameters Tb = 4.375 ns and delays τ1 = 1.5 ns and 

τ2 = 1.5 ns have been chosen to provide the suppression. Figures 7.27 and 7.28 show 

the radar image when FMCW and the proposed GFMCW signal is used. For the 

FMCW signal the target is overshadowed by the early crosstalk and air-ground 

reflection. By using the GFMCW signal these unwanted reflections are suppressed 

and the target is clearly visible in the image.    

  

 

Figure 7.27: Scenario – E radar image for FMCW (No Gating) case 

 

Figure 7.28: Scenario – E radar image for GFMCW case 
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7.3 Medical Imaging Radar  

Research in microwave radar imaging techniques for breast cancer detection 

has been going on for well over a decade, with recently reported clinical trials in [4-

6] showing good potential for the technique as breast cancer screening modality. 

Although, the technique offers the potential for a low cost screening tool, a number 

of challenges still remain.  One of which is the suppression or elimination of clutter 

reflections due to crosstalk, skin, chest wall, equipment around the screening area 

and other internal breast tissues (i.e.: glandular) all of which tend to overshadow the 

tumour response.   

In this section, a preliminary experimental result on the use of GFMCW 

signals for the suppression of early unwanted reflections (crosstalk and skin) in 

microwave medical imaging radar systems for breast cancer detection will be 

presented.  

The experimental set-up presented in this section is made up of: the radar 

system, breast phantom, and for a particular antenna configuration the X-Y 

positioner.  The radar systems based on VNA have been the preferable choice in 

these experiments due to its wide bandwidth compared to the other radar system with 

a frequency range limited to 4 GHz. The wider bandwidth enables the resolution of 

closer targets. The system was operated in a bistatic mode with both the transmitter 

and receiver antennas sequentially moved into pre-defined positions, either 

physically or through the X-Y positioner, to form a synthetic array. Two different 

synthetic antenna array configurations namely planar and circular arrays have been 

used throughout the experiment. The first had been initially developed by Hagness et 

al. in [7] and the latter by Paulsen et al. in [8].  The definition of the antenna 

configuration is based on the relative orientation of the patient in relation to the 

location of the array [9].   

For a planar array configuration the patient can be orientated in supine 

position (face upward) while the array scans across the naturally flattened breast. On 

the other hand for a circular configuration the patient is orientated or lying on the 

table in prone position (chest down and back up) with the breast comfortably 

extended through an opening on the examination table while the circular antenna 

array is placed around the breast. The radar system used in this work operates in a 
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bistatic mode and the antenna array (in planar or circular configuration) is created by 

moving both antennas into predefined measurement positions around the breast 

phantom creating in this away a synthetic array through post-processing, similar to 

the measurement procedure reported in [10-14].  

The breast phantom is mostly built, to mimic real breast electrical properties, 

by using a liquid mixture or solid materials with dielectric properties comparable to 

or of a ratio similar to that of the real breast tissues. Immersion medium mostly 

referred to coupling medium can also be used to reduce the dielectric mismatch 

between the phantom and the external environment [12]. Normally, the coupling 

medium of similar electrical properties of the normal tissue (fat) is chosen [5].  

The experiments presented in the next sections, the antennas and the phantom 

were separated by air. A simplistic homogenous breast phantom made of sunflower 

oil (εr = 2.6), representing the fat tissue, metallic object or water (εr = 75), 

representing the tumour tissues, and Vaseline body lotion (εr = 40), representing the 

skin tissue, was used in the experiments related to the planar antenna configuration.  

For the case of circular antenna configuration the skin was represented by the plastic 

cylinder surface whereas the breast fat and tumour tissue were made of oil and water 

respectively. Breast cancer detection experiments involving homogenous breast 

phantom made out of similar material have also been reported in references [10, 12, 

13, 15-17]. 

 

7.3.1 Measurements with Planar Antenna Configuration 

Figure 7.29 shows a view of the breast phantom for the planar antenna 

configuration. A 2 mm non-uniform layer of body lotion contained in a 1 mm thick 

plastic container represents the breast skin, a plastic box filled with sunflower oil 

represents the breast fat layer, whereas the tumour is represented with either a water 

filled cylinder or a plastic bar wrapped in metallic kitchen foil. 
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Figure 7.29: View of the Breast phantom for the planar antenna configuration 

 

Figure 7.30: View of the breast phantom under the antenna positioning table 

The breast phantom was placed under the X-Y antenna positioner (as shown 

in Figure 7.30) with the taper slot antennas (TSA - B) fixed 50 mm above the skin 

material. The network analyser was set–up to negative edge trigger and operates with 

a frequency range of 2-8.5 GHz, an output power of 0 dBm, and a sweep duration of 

502 ms. Both Euvis modules, used to generate the gating sequence, were also set to 

operate as negative edge triggered and the trigger signal generator (FPGA board) 

was programmed to generate a trigger signal with a period of 1.2 s.  

The antennas were moved into predefined positions along the Y axis and 

measurements were performed at each location with a total of 40 predefined 

positions spaced 5 mm apart.  
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Scenario – F: Target a Plastic Wrapped in Aluminium Kitchen Foil 

In this scenario the target representing the tumour is a 50 x 100 mm2 plastic 

bar wrapped in kitchen foil, as shown in Figure 7.31.  The target was placed 90 mm 

deep, from the skin.  

 

 

Figure 7.31: View of the used metallic target 

 

Figure 7.32: Scenario – F radar image for FMCW (No Gating) case 

Figure 7.32 shows the radar image with FMCW signal. From the figure it can 

be seen that the target is completely overshadowed by those unwanted early 

responses (i.e. antennas crosstalk at the origin on the V-axis). By using GFMCW 

with sequences: square wave (SQ wave) sequence of parameters Tb = 1.75 ns and 

delays τ1 = 0 s and τ2 = 0.75 ns or the 3-bit m-sequence (Mseq) of parameters Tb = 

2.50 ns and delays τ1 = 0.5 ns and τ2 = 0 s these unwanted reflections are suppressed 

as depicted in Figures 7.33 (a)-(b) respectively.  With a square wave sequence some 

residual from the crosstalk remains visible in the image whereas with the 3-bit m-

sequence the crosstalk has been fully suppressed at the given threshold. 
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(a) 

 

(b) 

Figure 7.33 Scenario – F radar image for GFMCW case, (a) SQ wave, (b) 

Mseq 

Scenario – G: Target Water Filled Plastic Cylinder  

The target representing the tumour is a 30 mm thin plastic cylinder filled with 

water was placed inside the breast phantom at a depth of 80 mm from the skin (as 

depicted in Figure 7.29).  Figure 7.34 shows the radar image for the case of FMCW 

and GFMCW signals. As expected the antenna crosstalk dominates and overshadows 

the tumour response in the FMCW case. By using a GFMCW signal with the 3-bit 

m-sequence (with Tb = 2.50 ns and delays τ1 = 0.5 ns and τ2 = 0 s) this early 

reflection is attenuated (as shown in Figure 7.34 (b)) and the target energy can be 

clearly identified.   
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(a) 

 

(b) 

Figure 7.34: Scenario – G radar image for (a) FMCW, (b) GFMCW case 

7.3.2 Measurements with Circular Antenna Configuration 
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previous one, two of the VNA ports (A and B) are connected individually to the 

input port of a two-way switch, respectively.  Two switches were used one for each 

VNA port. One of the outputs of each switch was connected to the respective 

antenna (TSA-B) and the other was terminated with 50 ohm load.  The switches 
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user-defined gating sequences. The clock distribution unit was responsible for 

synchronizing the devices.  

 

Figure 7.35: Experimental set-up for circular antenna configuration 

 

Figure 7.36: Target container 

The used homogeneous breast phantom was made of 130 mm diameter 

plastic cylinder filled with sunflower oil representing the normal breast tissue. The 

tumour was represented by water contained in a 10 mm diameter plastic tube, shown 

in Figure 7.36. In this configuration the skin was represented by the thin layer of the 

plastic cylinder. The antennas were spaced 40 mm apart from each other and were 

roughly 15 mm from the phantom surface. Measurements were performed in 36 

positions around the phantom. After each measurement the phantom was manually 

rotated in 10° steps. 
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In this scenario the target (water filled plastic tube) was placed on the first 

quadrant of the cylindrical phantom. As expected the antenna crosstalk energy 

dominate the radar image and overshadows the target return signal, as shown in 

Figure 7.37.  By using the GFMCW signal with gating sequence such as: SQ wave 
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(with Tb = 875 ps and delays τ1 and τ2 both set to 0 s) or 3-bit m-sequence (with Tb = 

1.625 ns and delays τ1 = 0 s and τ2 = 125 ps) the antenna crosstalk signal was 

attenuated as can be seen in Figures 7.38 (a)-(b).   

 

Figure 7.37: Scenario – H radar image for FMCW (No Gating) case 
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(b) 

Figure 7.38: Scenario – H radar images for GFMCW cases with sequence (a) 

SQ wave, (b) 3-bit m-sequence 

Scenario – I: Target Water Filled Plastic Tube – II  

In this scenario the water filled plastic tube target was placed on the second 

quadrant of the cylindrical phantom. Antenna crosstalk reflection, as expected, 

overshadows the desired target return signal as seen in the radar image presented in 

Figure 7.39.  

 

Figure 7.39: Scenario – I radar image for FMCW (No Gating) case 
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GFMCW cases with similar gating sequence parameters as in the previous scenario.  

Although the target energy can be clearly seen, in both images, spurious components 

are also present which can be mistaken as targets.  One way to remove these 

components from the area of interest could be to further apply a post-processing 

clutter removal technique to the received GFMCW signals.  

 

 

(a) 

 

(b) 

Figure 7. 40: Scenario – I radar images for GFMCW cases with sequence (a) SQ 

wave, (b) 3-bit m-sequence 
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7.4 Summary 

In this chapter, the experimental validation of the proposed GFMCW 

technique in scenarios involving TTWRI, GPR and MIR has been presented.  The 

effectiveness of the technique was shown through radar images of the scenarios 

under-test when a normal FMCW or GFMCW waveform with a propriety gating 

sequence is used. The presented radar images were obtained through the post-

processing of the received signal using the delay-and-sum algorithm discussed in 

Chapter 2.  

 Two radar systems have been used in the measurements. These are, namely: 

“GFMCW radar system based on AWG” – which was used in through-the-wall 

imaging radar with targets such as metallic plate, human beings, and water filled 

plastic bucket being placed in office like environment behind realistic walls. Also 

this system was used in the ground penetration radar experiments which involved 

detecting metallic objects buried under different depths on a layer of builder soil 

with a 7.5% gravimetric water content. The “GFMCW radar system based on VNA” 

– which achieves a wider bandwidth (in excess of 6.5 GHz) was used in medical 

imaging experiments for the detection of breast cancer tumour. Preliminary breast 

phantoms with the fat tissue represented by sunflower oil, the skin by body cream 

and the tumour by water or metallic object were built for the experiments. 

The scenarios images showed that the strong unwanted (i.e. crosstalk plus the 

wall, air-ground, or skin) reflections obscure the desired target in the images when 

the FMCW waveform is used. On the other hand when the GFMCW waveform with 

an appropriate gating sequence is used those unwanted reflections are suppressed 

which allow the target energy to be clearly visible in the image.                
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CHAPTER 8  

Conclusions and Further Work 

 

8.1    Conclusions 

In microwave radar imaging the scenario under test is illuminated with an 

electromagnetic wave, from different locations. The collected backscattered signals 

are then processed in order to create an image map of the scenario and target 

detection. Three microwave radar imaging applications have been considered in this 

work namely: through-the-wall radar, ground penetrating radar, and medical imaging 

radar.  Through-the-wall radar aims at detection of targets (e.g. human beings) 

located behind wall structures or buried under rubble. Whereas, ground penetrating 

radar (GPR) aims at detecting objects (e.g. land mine, archaeological artefacts) 

buried below the surface of the Earth. Microwave medical imaging radar has been 

considered for detection of breast cancer.  

      

A common problem in the aforementioned microwave radar imaging 

applications is the need to effectively suppress the undesired scatter reflections from 

the received signal before target detection or formation of the radar image. 

Undesired signals such as: antenna crosstalk, wall reflections (in TTWR), ground 

surface reflection (in GPR), and skin reflection (in MIR) are stronger in magnitude 

than that of the actual target reflection. Consequently, if not suppressed, these strong 
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reflections may overshadow the target signature, especially those with low radar 

cross section, therefore making detection a difficult task. Furthermore, these strong 

unwanted reflections may limit the receiver’s instantaneous dynamic range and in 

the worst case cause it to saturate, therefore making weak signals appear as noise. 

 

 In this thesis, the effectiveness of a proposed clutter suppression technique in 

the aforementioned radar applications have been successfully validated through 

numerical simulations and experimental campaigns. The proposed technique, known 

as gated frequency modulated continuous waveform, has being used in the past in 

applications such as ionospheric channel sounding and sea-surface remote sensing to 

provide isolation between transmission and reception, as the use of single antenna 

(i.e. monostatic radar operation) was desirable back then. The use of GFMCW in 

TTWR, GPR, and MIR applications as unwanted signal suppression technique is a 

novelty. In GFMCW, the transmitter and receiver are switched “on” and “off” in 

complementary function, resulting on the radar system to be range sensitive. 

Consequently, signals from certain ranges, depending on parameters of the gating 

sequence, are blocked or at least attenuated while others are received unaltered.       

 

In Chapter 3, a non-exhaustive review of other techniques reported in the 

literature for the removal of undesired signals in TTWR, GRP and MIR applications 

was given. Chapter 4 gave a detailed mathematical analysis of the proposed 

GFMCW technique with a focus on gating sequences used in the experiments and 

numerical simulations, their corresponding range sensitivity profiles, in the form of 

MRS and MRP, and the influence of sequence parameters (sequence length, bit 

duration, and receiver’s sequence duty cycle variation) on the sensitivity and overall 

system performance.      

    

Numerical radar simulations, presented in Chapter 6, have been performed to 

evaluate the performance of GFMCW approach using commercially available 3D 

electromagnetic solver software (namely: CST Microwave Studio). To avoid 

potential instability in the CST software that gives rise to large ripples appearing in 

the recorded waveform, due to sharp transitions in the user chosen or defined 

excitation waveform, a methodology involving windowing and gating through post 

processing have been adopted throughout the simulation. Thus, in the simulations, 
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the excitation signal was defined as a Hamming windowed FMCW waveform. Once 

a simulation was completed the computed received raw data was loaded into Matlab 

and corresponding user specified gating sequence was applied to it before further 

processing. The adopted methodology brought both flexibility and time saving 

benefits as for the same simulation the computed raw data can be tested with a 

number of user specified gating sequences without the need of re-running the 

simulation every time. In the simulated scenarios for the respective TTWR, GPR, 

and MIR radars the dielectric properties of the included materials (walls, soils, breast 

tissues) were chosen appropriately.  

 

Two radar systems, one based on AWG and the other on VNA, both  capable 

of generating FMCW and GFMCW waveforms have been built and used on the 

TTWR, GPR, and MIR experimental campaigns. The block architecture of both 

systems was described in detail in Chapter 5. The AWG based radar system is able to 

generate a waveform with maximum frequency of 3.5 GHz and of duration of 0.9 

ms. This system was primarily used in TTWR and GPR measurements as the 

available bandwidth is sufficient for these applications. It essential to point out that 

with this system GFMCW are created without the need of extra circuitry, e.g. gating 

sequence generator together switches or multiplier, but rather the desired waveform 

(FMCW or GFMCW) is realised in software (Matlab) and loaded into the respective 

AWGs memory for generation. The VNA based radar system on the other hand has a 

waveform frequency limit up to 8.5 GHz, and this system was used mainly in MIR 

experiments due to higher achievable range resolution compared to the former. On 

the system extra hardware (fast switches, switch drive, and gating sequence 

generator) were employed to create the GFMCW waveform.  

 

In order to ensure the different devices or hardware on the radar systems 

were synchronised, and thus avoid jittering and possible unwanted artefacts on the 

profile, all the necessary clock signals were locked onto a single stable rubidium 

clock source. Two distinct Vivaldi antennas models have been specifically designed 

and manufactured to operate with the radar systems. Moreover, an X-Y positioner 

system has also been assembled to automatically move the antennas into pre-defined 

positions. The experimental campaigns, described in Chapter 7, were performed 

within the facilities of the School of Engineering and Computing Sciences at 
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Durham University. For the TTWR radar the scenarios involves office-like room 

made of concrete or plastered wall and the target, within it, being a human, a plastic 

bucket filled with water, or a metallic object. Whereas, for the GPR radar 

experiment, builders sand with gravimetric water content of 7.5% was used, with 

metallic target (mimicking land mine, or pipe) buried on it at different depths.  

Meanwhile, in MIR the breast tissue phantoms were represented by oil (fat), body 

lotion (skin), and water or metallic object (target).    

     

In both numerical simulation and experimental campaign scenarios, the 

normal FMCW and the GFMCW waveforms were used. Comparisons of the 

resultant radar images clearly show the potential of the GFMCW waveform, opposite 

to the normal FMCW, in successfully suppressing or at least attenuating the 

undesired strong signals (from antenna crosstalk and wall, ground surface, or skin 

reflections) and thus enhancing the detection of the target. In comparison with post-

processing based clutter suppression techniques, GFMCW offers the potential of 

mitigating unwanted clutter on the hardware, that is before the digitization of the 

signal, thus avoiding the reduction of the system’s dynamic range and the risk of 

blocking the receiver. Moreover, GFMCW neither needs prior information about the 

about the clutter type, shape, or electrical properties nor is susceptible to modelling 

error, unlike some post-processing based approach.  

 

 It worth mentioning, that although the proposed approach “GFMCW” can 

suppress the strong early unwanted reflections, clutter within the latter part of the 

signal may still overshadow the target signature and making a much harder task for 

detection. The latter clutter signal could be originated from a scatter within the 

scenario or even ringing on the waveform caused by certain type of material (e.g. 

wall with internal cavity, skin). Furthermore, the gating sequence parameter needs to 

be carefully chosen to ensure that while the blind range covers the unwanted 

reflections, it does not extend into time delays (range) related to possible target, 

especially if shallow target is involved. In any case, GFMCW waveform can be used 

in combination with existing post-process based method, such as those described in 

Chapter 3, for an overall clutter suppression performance.      
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8.2    Further Work 

From the experience gained in the radar imaging work discussed in this thesis 

the following improvements can be suggested for future work: 

  

Regarding the hardware:  

• The radars currently operate in a bistatic mode and the system / antennas had 

to be physically moved into different predefined measurement locations 

(creating a SAR) with the assumption that the targets are stationary. It would 

be more beneficial replacing both antennas with a physical antenna array to 

reduce the measurement processing time and also to give the ability of 

forming a MIMO radar system. Due to the limited number of transmitters and 

receivers in the system having a physical array would also require 

implementing a switching network together with control and synchronisation 

circuitry to select the distinct pairs of transmitting and receiving antennas 

during the measurement.  

• The small memory of the Euvis limits the duration of the waveform or group 

of waveforms that can be loaded onto it.  It would be beneficial having it 

increased or making Euvis access an external memory (of larger capacity) in 

which waveforms of different gating sequences can be stored and accessed 

without the need for having to re-load the waveforms. 

• In the VNA based radar, the isolation of the switches limits the level of 

attenuation caused by a gating sequence therefore hindering the system 

performance. An alternative can be using mixers instead.  

• In the VNA based radar the expensive AWG units that generate the gating 

sequences (for the transmitter and receiver respectively) could be replaced by 

lower cost FPGA devices.    

• The receiver of the AWG based radar has a fixed gain baseband amplifier. 

This unit can be replaced by an “automatic gain and control unit”, such as 

those in-house developed units used in the receiver of the multiband channel 

sounder.  These units offer variable gain / attenuation which are adjusted 

based on the incoming signal level so that it is within the ADC requirements 

when digitised. 
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• In both radar systems, the computer radar images are the result of off-line 

processing of the received waveform through Matlab. So instead of off-line 

processing and data having to be transferred into Matlab, it would be 

beneficial to use “specifically programmed or designed FPGA and display 

units” to deliver real-time processing and graphical interface of the scenario 

under test. 

  

Regarding the measurement scenarios: 

• The MIR experiments were conducted with simple homogeneous layered 

phantoms. Assessment of GFMCW technique on a more heterogeneous 

phantom composed of material that better mimic the dielectric properties of 

the breast tissues would be beneficial.  

• GFMCW can be extended for detection of non-metallic targets in GPR.  

 

Regarding the signal processing:  

 
• The square complementary gating sequences employed in this work have a 

slow rising slope, of one bit duration, on its MRP. Targets close to the 

undesired scatter may also be attenuated / affected by the slope. Further 

investigation could be made on the effects of pulse shaping of the sequence 

MRP.     

• Although the early undesired reflections were successfully mitigated with 

GFMCW approach, late undesired reflections which also influence the target 

signature are not suppressed. Further work can be made to combine the 

GFMCW approach with a post-processing technique described in Chapter 3 

with a view of improving the overall system’s performance. 
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Appendix   

Appendix A: Radar Matlab Codes  

A.1 Extracting the Radar Range Profile  

The Matlab script below “MySignatecReader_GPR.m” reads the raw data 

recorded by the ADC used in the “GFMCW Radar System Based on AWG” and 

convert it into range profiles / channel impulse response. On each measurement the 

sweeps were saved in a single file as a long stream. The program reads the data from 

this file and breaks the data into sweeps / segments and the range profile / channel 

response for each segment is extracted via FFT (see extracting the range profile on 

Chapter 4). After the channel responses have been obtained the mean response for 

that measurement is saved to be used in further processing.  

 

MySignatecReader_GPR.m 

clear all     

clc 

 Tch= 400e-6; %Chirp Duration 

BW= 2.1e9; %Chirp Bandwidth 

Fsam=20e6; %Sampling frequency of ADC 

LastSampFirstSeg = 13034; % Last sample number of the First sweep 

FirstSampSecSegment = 15034; % First sample of the second sweep 

EndSize=2000-1; %  

FirstData = 5034; % First sample number of the First sweep  

numPos=1; 
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for posindex=1:1:numPos 

   filename=horzcat('C:\Users\xavier\Desktop\GPR\Dec 12\Gated\testg'); 

   filename = [filename '.rd16']; 

   fid=fopen(filename); % Open the file 

   rawdata = fread(fid,'uint16'); % Reads the file containing the raw data  

   fclose(fid); 

   ch1data= rawdata(1:length(rawdata));  

         % Convert data values in Volts 

   R=2.2; %This is the pk-pk range in the ADC 

   if ch1data>=32768;  

        ch1data = (R/2) + ((ch1data/65532)*R); 

        else ch1data = (-R/2) + ((ch1data/65532)*R); 

   end; 

   SegSize=Fsam*500e-6; % Number of sample per sweep or segment size 

   BeginSize=1;   

   aax = [ posindex ] 

   EndSize = LastSampFirstSeg - FirstSampSecSegment -1; 

   ch2data = ch1data(FirstData+1:end); % swapeed channels in Xavi's measurements 

   for k=1:floor(length(ch2data)/SegSize)-1 

       ch2dataTime(:,k)=ch2data(BeginSize+SegSize*(k-1):SegSize*(k)-EndSize); 

   end   %ch2dataTime is a matrix with column representing sweep number  

          %ch2dataFreq is a matrix with the FFT of each sweep for each column 

   NFFT = 2^(nextpow2(size(ch2dataTime,1))+1); 

   win = repmat(hamming(size(ch2dataTime,1)),1,size(ch2dataTime,2));%Hamming 

   ch2dataFreq= fft(ch2dataTime.*win,NFFT); 

       %Cut the image frequency (MATLAB artefact) and plot the AVG of the FFT 

   ch2dataFreq=ch2dataFreq(1:round(size(ch2dataFreq,1)/2-1),:); 

   freqaxis=linspace(0,Fsam/2,size(ch2dataFreq,1)); %up to half the sampling freq 

   time = freqaxis * Tch/BW ; 

   figure % Plot the mean impulse response 

   plot(time*1e9,20*log10(mean(abs(ch2dataFreq'))),'k'); 

   axis([5 70 -20 40]) 

   xlabel('Time [ns]', 'FontSize', 16) 

   title('Average Range Profile [dB] - Hamming win', 'FontSize', 16) 
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   grid on 

   ch2dataFreqAvg(:,posindex)=mean(ch2dataFreq'); 

end 

Test_gated = ch2dataFreqAvg; 

save ('C:\Test_gated', 'Test_gated','freqaxis','BW','Tch','Fsam','-v7.3'); 

 

A.2 Delay-and-Sum Image Algorithm  

The Code below is an example of the implemented delay-and-sum image 

algorithm (discussed in Chapter 2) used to create an image map of the radar scenario 

under test when FMCW or GFMCW waveform is used.   

 

%% On this code quasi-monostatic so Tx-Rx is collocated is considered 

clear all; close all; clc  

Ant_InterSpace = 55; % Space between antennas 

skin_thickness = 0;  % The Thickness of the skin   

dgap  = 100;  % Space between antenna tip and the Phamton 

tau_ant = [33.5]*1e-9;    % Relative Zero delay 

Per = 2.5^2; % Medium Permitivity 

Per_Ski = [30]; % Skin Permitivity 

C = 3e8;  %Speed of light on free space in [m/s] 

C = C*1e3;  % Speed of light on free space in [mm/s]      

 

       %% Load the Range Profiles Data 

file_locat = 'C:\Disk Metal\Profiles\MSeq3bit_Disk_Metal_I';     

fileToRead  = horzcat(file_locat,'.mat'); 

rawData2 = load(fileToRead);  % Load the processed measurement data 

 

S21_time = rawData2.Disk_Metal_I; %Extract the profile data 

time =  (rawData2.freqaxis * rawData2.Tch)./rawData2.BW;  % Time axis   

      %% Creating the Pixel Grid 

 beggrid  = -20;       

 xp1 = beggrid:2:dgap;  % Grid beginning to the soil surface 
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 xp2 = dgap+2:2:450; % Soil surface to the end   

 yp = [-170:2:170]; % Pixel grid on Y - direction 

 Xp = horzcat(xp1,xp2); % Pixel X – direction 

 

    %% Transmitter and Receiver Position  

 yr = (-130:10:130)+(-Ant_InterSpace/2);  

 yt = (-130:10:130)+(Ant_InterSpace/2); 

 xt = 0; xr = 0; 

 id = length(yt); % Number of transmitter 

  

  %% Reshaping geometrical data for efficient MATRICIAL approach 

XP1 = repmat(xp1,[length(yp) 1  length(yr)]);   

XP2 = repmat(xp2,[length(yp) 1  length(yr)]);    

YP1 = repmat(yp',[1 length(xp1)  length(yr)]);    

YP2 = repmat(yp',[1 length(xp2)  length(yr)]); 

yr_aux = reshape(yr,1,1,length(yr));    

yt_aux = reshape(yt,1,1,length(yt));   

YR1 = repmat(yr_aux,[length(yp) length(xp1) 1]); 

YR2 = repmat(yr_aux,[length(yp) length(xp2) 1]); 

YT1 = repmat(yt_aux,[length(yp) length(xp1) 1]); 

YT2 = repmat(yt_aux,[length(yp) length(xp2) 1]); 

 for ixb = 1:length(tau_ant) 

 

     % Compute the delay from Tx - Pixel and Pixel - Receiver 

    TOAtx1 = (sqrt((XP1-xt).^2)+sqrt((YP1-YT1).^2))./C;  

    TOArx1 = (sqrt((YP1-YR1).^2+(XP1-xr).^2))./C; 

    dair1 = dgap./(cos(atan((sqrt((YT2-YP2).^2))./(sqrt((XP2-xt).^2))))); %in [mm]  

    dair2 = dgap./(cos(atan((sqrt((YR2-YP2).^2))./(sqrt((XP2-xr).^2))))); %in [mm] 

    TOAtx2 = (sqrt((YP2-YT2).^2+(XP2-xt).^2)*sqrt(Per) - dair1.*(sqrt(Per)-1))./C -   

skin_thickness.*(sqrt(Per_Ski)-1)./C; 

    TOArx2 = (sqrt((YP2-YR2).^2+(XP2-xr).^2)*sqrt(Per) - dair2.*(sqrt(Per)-1))./C - 

skin_thickness.*(sqrt(Per_Ski)-1)./C; 

   delay = horzcat(TOAtx1+TOArx1,TOAtx2+TOArx2)+tau_ant(ixb); % Delay 
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Antmatrix = abs((S21_time));   

   for i=1:id  % For each Measurement Position    

        aaa = Antmatrix(:,i);        

        imag_matrix(:,:,i) = interp1(time,aaa,delay(:,:,i),'cubic'); % Image matrix 

end 

 

imag_matrix = sum((imag_matrix),3);  % Sum pixels 

imag_matrix_log = 20.*log10(abs(imag_matrix)); % Energy in log scale 

    imag_matrix_log = imag_matrix_log - max(max(imag_matrix_log)); %Normalize 

    im_dynamic_range = 15;  % Assign a dynamic range for the image 

    ampl_clim = [max(max(imag_matrix_log))-im_dynamic_range 

max(max(imag_matrix_log))];  

 

figure 

    imagesc(Xp/10,Yp/10,imag_matrix_log,ampl_clim) % image in logscale 

    xlabel('Down Range [Cm]');    ylabel('Cross Range [Cm]'); 

    title('Image of Pixel Logscale') 

grid;  

hold on; 

    rectangle('Position',[22,-6.5,0.5,13],'Curvature',[0,0],...    

              'LineWidth',2,'LineStyle','--')  

 end     
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Appendix B: X-Y Positioner and Code     

In Chapter 5 the hardware of the X-Y positioner systems and the control 

mechanism were introduced. The commands controlling the motion of the positioner 

axis are so called G-code and the control of the input or output systems are through 

the so called M-code (written in the VBA language). Both codes are loaded and run 

on the commercially available machine control software known as Mach-3, Figure 

B.1 shows the Mach-3 software environment.  

 

 

Figure B.1: Mach – 3 software  

The basic synchronisation protocol between Mach-3 and radar system based 

on VNA have also been described in Chapter 5. Figure B.2 shows the graphical 

interface of the written visual basic program controlling the VNA. This program sets 

the VNA into trigger waiting mode. Once the VNA completes the measurement the 

program requests the measured data and saves it in a user’s specified location in the 

PC in sequence. Furthermore, the VB program communicates with Mach-3 through 

some of the VNA input and output ports which are connected with the X-Y 

positioner I/O ports, respectively. Therefore, while the positioner is moving no 
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measurement takes place and vice versa. The input and output signals on Mach-3 are 

generated or read through the M-code.  

 

Figure B.2: Graphic interface of the VB script controlling the VNA 

 

B.1 Example-1 of the Mach-3 G-code and M-code 

In the example below the X-Y positioner is to move into coordinates (in mm) 

(0, 0); (40, 40); (100, 40); (100, 80); in sequence and radar based on VNA 

measurement is performed at each location.  

F800        ' Sets the motor Speed   

G1 X0 Y0    ' Move to point P(0, 0) 

M692        ' Tells VNA that X-Y Move Completed     

M691        ' Check VNA Finished Measurement  

G1 X40 Y40  ' Move to point P(40, 40) 

M692        ' Tells VNA that X-Y Move Completed     

M691        ' Check VNA Finished Measurement  

G1 X100     ' Move to point P(100,40) 

M692        ' Tells VNA that X-Y Move Completed     

M691        ' Check VNA Finished Measurement  

G1 Y80      ' Move to point P(100, 80)  

M692        ' Tells VNA that X-Y Move Completed 
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B.2 The M-code Script for M692 

Option Explicit 

Dim In1, In2 As Boolean ' Variable definition 

Dim Res, LCK_vna, ACK_vna As Integer ' Variable definition 

 

LCK_vna =0 ' Variable assignment to test the input of MACH3 

ACK_vna = 1 ' Variable assignment to test the input of MACH3 

 

Call SendFinish   ' MACH3 tells VNA that it finished moving 

sleep(500)        ' Stays dormant for 0.5 s 

Call getIn   'Scans the Input ports 

While Res <> ACK_vna ' Checks for the VNA acknowledgement  

 sleep(500)     ' Stays dormant for 0.5 s 

 Call getIn  ' Scans the input signal 

Wend    ' Repeat the while loop until test is true 

Call SendUnLCK      'Mach3 sends the Unlock command (VNA free to measure) 

sleep(500)        ' Stays dormant for .5 s 

Call getIn       'Scans the Input ports 

While Res <> LCK_vna     ' Check if the VNA as LCK (VNA in Measurement) 

 sleep(500)  ' Stays dormant for 0.5 s 

 Call getIn  ' Scan the input signal 

Wend   ' Repeat the while loop until test is true  

 

Sub getIn()  ' Scans the inputs Subroutine 

 In1 = IsActive(Input1)  ' Get Input – 1 state 

 In2 = IsActive(Input2) ' Get Input – 2 state 

 If In1 = False And In2 = False Then Res  = 0  

 If In1 = False And In2 = True Then  Res  = 1  

 If In1 = True And In2 = False Then  Res  = 2  

 If In1 = True And In2 = True Then   Res  = 3   

End Sub ' End of the Subroutine 

 

Sub SendFinish()  ' Mach-3 finished moving Subroutine   
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       deactivateSignal(OUTPUT1) ' Deactivate Output – 1  

       activateSignal(OUTPUT2)    ' Activate Output – 2 

       activateSignal(OUTPUT3)   ' Activate Output – 3 

End Sub     ' End of the Subroutine 

      

Sub SendUnLCK()     ' Mach-3 Tells VNA can Measure Subroutine   

       deactivateSignal(OUTPUT1)      ' Deactivate Output – 1 

       deactivateSignal(OUTPUT2)      ' Deactivate Output – 2 

       activateSignal(OUTPUT3)        ' Activate Output – 3 

End Sub     ' End of the Subroutine 

  

B.3 The M-code Script for M691 

' This Macro Is for the Mach-3 start of Movement, the following is done:  

 ' 1 - Checks for the Move command  from the VNA and ACK once it is received   

 ' 2 - Checks for the Unlock command from the VNA once received Sends a Lock  

 

Option Explicit 

Dim In1, In2 As Boolean ' Variable definition 

Dim Res, Move_vna, UnLCK_vna As Integer  ' Variable definition 

 

Move_vna = 2  ' Variable assignment to test the input of MACH3 

UnLCK_vna = 3   ' Variable assignment to test the input of MACH3 

 

Call getIn   ' Scans the input signals 

While Res <> Move_vna ' Check if the VNA as sent a Move command 

 sleep(1000)  ' Stays dormant for 1s 

 Call getIn  ' Scans the input signal 

Wend   ' Repeat the while loop until test is true  

 

Call SendACK    ' Send an Acknowlodgement 

sleep(500)  ' sleep for 500ms 

Call getIn  ' Scans the input Signals 

While Res <> UnLCK_vna ' Check if the VNA as sent the UnLCK command 
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 sleep(1000)  ' Stays dormant for 1s 

 Call getIn 'Scans the input Signal 

Wend   ' Repeat the while loop until test is true 

Call SendLCK   'Lock or go into Busy state to start the Moving Command    

sleep(500)  ' Stays dormant for 0.5s 

Call getIn  ' Scans the input Signals 

While Res <> Move_vna ' Check if the VNA as sent the UnLCK command 

 sleep(1000)  ' Stays dormant for 1s 

 Call getIn 'Scans the input Signals 

Wend ' Repeat the while loop until test is true 

        

Sub getIn()    ' Scans the inputs Subroutine 

 In1 = IsActive(Input1)  ' Get Input – 1 state 

 In2 = IsActive(Input2)  ' Get Input – 2 state 

 If In1 = False And In2 = False Then Res  = 0  

 If In1 = False And In2 = True Then  Res  = 1  

 If In1 = True And In2 = False Then  Res  = 2  

 If In1 = True And In2 = True Then   Res  = 3   

End Sub 

 

Sub SendAck()  ' Send Acknowledgement Subroutine  

activateSignal(OUTPUT3)     ‘Activate Output – 3               

activateSignal(OUTPUT1)    ' Activate Output – 1 

       deactivateSignal(OUTPUT2) ' Deactivate Output – 2 

End Sub     ' End of the Subroutine 

      

Sub SendLCK()  ' Mach-3 Ready to Start moving Command Subroutine  

       activateSignal(OUTPUT3)  ' Activate Output – 3 

       activateSignal(OUTPUT1)    ' Activate Output – 1 

       activateSignal(OUTPUT2)    ' Activate Output – 2 

End Sub     ' End of the Subroutine 
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 B.4 Example-2 of the Mach-3 G-code and M-code 

The following is the example code to move the X-Y positioner into 

coordinates {in mm} (0, 10); (30, 10); (60, 20) in sequence with the positioner 

controlled by the user action (button pressed) to move onto next location. This was 

used for measurement experiments that do not involve the VNA, such as the on GPR 

scenarios where the X-Y positioner and radar based on AWG were used. 

 

F800        ' Sets the motor Speed   

G1 X0 Y10    ' Move to point P(0, 10) 

M650        ' Check User actions     

G1 X30    ' Move to point P(30, 10) 

M650        ' 'Check User actions     

G1 X60 Y20     ' Move to point P(60, 20) 

 

 B.5 The M-code Script for M650 

Option Explicit 

Dim In3 As Boolean ' Variable definition 

Dim Res, MoveXY As Integer  ' Variable definition 

MoveXY = 1  ' Variable assignment to test the input of MACH3 

sleep(500)  ' sleep for 500ms 

Call getIn  ' Scan the input Signal 

While Res <> MoveXY ' Check button has been pressed 

 sleep(500)  ' sleep for 500ms 

 Call getIn 'Scan the input Signal 

Wend ' Repeat the while loop until button is pressed true 

MsgBox("Ready to Move") 'Pop-up box and program waits until ok is pressed 

Sub getIn()  ' Scans the inputs Subroutine 

 In3 = IsActive(Input3)         ' Get Input – 3 state 

 If In3 = False Then Res  = 0  

 If In3 = True Then  Res  = 1  

End Sub   ' End of the Subroutine 
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Appendix C: Channel Characterization and 

Performance Prediction  

As the need for higher data rate and the number of wireless technologies increases it 

is foreseen that future wireless systems and networks will rely on some or a 

combination of techniques, such as: ultra-wideband, multiple antennas techniques 

(MIMO, SIMO, MISO), and multiband spectrum usage, to mitigate impairments and 

to cater for the high speed demand.  This chapter starts by presenting the results of 

MIMO measurement campaign performed within a reference environment, namely 

“Reverberation Chamber” to assess the channel capacity and diversity gain of UWB 

Discone antennas with variable inter-element spacing.  Furthermore, results of the 

channel measurement campaigns in both indoor and outdoor environments using a 

newly designed and developed multiband channel sounder will also be presented. 

The bit error rate performance comparison of the in-house developed measurement 

based channel simulator with the widely used Matlab multipath channel simulator 

will be given. At the end of the appendix, numerical simulation results of the 

designed UWB Discone antenna will be detailed.  

 

 

C.1 Reverberation Chamber MIMO Channel Characterization  

A reverberation chamber is a room designed to create a diffused or random 

incidence electromagnetic wave. Unlike the anechoic chamber, in which the walls 

are made of absorbing structure or material, the reverberation chamber is normally 

an enclosed room of highly reflective material in which the inside is equipped with 

paddles of asymmetric shapes fixed on one or more turntables. Due to the large 

echoes produced in the chamber any movement or rotation of the turntable causes 

the behaviour of the electromagnetic field strength within the chamber to change. In 

fact, the field strength may change, at any point within the chamber, from a 

maximum to a minimum (or vice versa) as the movement of the stirrers change the 

boundary conditions [1, 2]. Reverberation chambers offer the advantage of providing 

a reference and controlled environment in which repeatable Rayleigh fading statistics 

can be created easily. As previously reported in the literature the electromagnetic 
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fields inside the reverberation chamber have characteristics similar to that of a 

multipath fading environment associated with mobile communication in indoor and 

urban scenarios [1-3]. 

It is well known that the radio propagation channel, especially where 

multipath exists, negatively affects the performance of the mobile communication 

system. It is envisaged that future wireless systems will rely on multiple antenna 

techniques (such as MIMO) in order to mitigate the impairments caused by 

multipath propagation [4, 5]. Therefore, there is still a need to fully understand and 

characterize the figure of merit of the implementation of MIMO in a multipath 

environment such as that provided by the reverberation chamber. In this section a 

2x2 MIMO figure of merit, such as diversity and capacity, for UWB (ultra-

wideband) antennas with different inter-element spacing are analysed.  Related work 

on MIMO figures of merit in a reverberation chamber have been reported in [3, 6, 7], 

but unlike the work reported here, those measurements involved narrowband 

antennas.   

Selection combining diversity, which involves monitoring all the Tx-Rx 

antenna links and selecting the link exhibiting the highest signal-to-noise ratio at its 

output, was adopted in this section to evaluate the multi-antenna element diversity 

gain. The choice of using selection combining technique is merely due to its 

simplicity and also as a proof of concept. The diversity gain in this case relates to the 

enhancement / increase in the SNR due to the combination of the received signals. 

The UWB MIMO capacity was estimated as the average of the narrowband 

capacity using equation (C.1):  

 
­®¯° = 1�{ ;789	 ±OxH i/�² + ³qC �́ �́µj¶

F·

�?�  
(C.1) 

where: ρ is the signal-to-noise ratio (SNR), Nf  number of sub channels, nR and nT 

number of antennas at the receiver and transmitter respectively, det( . ) matrix 

determinant, Hi is the nR x nT matrix containing the sampled channel transfer 

function for each sub-channel i, and (.)H is the complex transpose of the matrix. The 

MIMO channel matrix used in (C.1) was normalised with the Frobenious 

normalization, described in [8], to provide an average gain of unity.  
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C.1.1 Measurement Methodology 

Measurements were performed within the National Physical Laboratory’s 

(NPL) reverberation chamber using a four-port vector network analyser (VNA).  

Figure C.1 shows the MIMO LOS measurement set-up inside the chamber.  The 

dimensions of the chamber are equal to 6.55 m x 5.85 m x 3.5 m and the operating 

frequency range is between 0.17 GHz up to 18 GHz.  Four UWB discone antennas 

connected to individual ports of the VNA through long SMA cables were used 

throughout the measurements.  The VNA was set to operate in the frequency range 

of 2-6 GHz with 25 MHz steps resulting in a total of 161 frequency points across the 

band. Moreover, the transmit power was configured to 0 dBm. Before the desired 

measurements were carried out the VNA was calibrated to compensate for the cable 

and connector losses. The transmitting and receiving antennas were set in the LOS 

and Non-LOS configuration with a distance between the masts shown in the diagram 

in Figure C.2. The heights of the masts were 135 cm for A and 150 cm for B, 

respectively.    

A number of LOS and NLOS 2x2 MIMO measurement scenarios were 

created by changing the inter-element spacing between antennas on the same mast. 

The possible inter-element antennas spacing were 5.5 cm, 11 cm, and 16.5 cm 

designated as small, medium and large respectively.  In each scenario, measurements 

were performed for each of the 200 chamber’s stirrer position which allows adequate 

statistics to emulate a Rayleigh fading process.   

 

 

Figure C.1: Line of sight 2x2 MIMO configuration in the reverberation chamber 
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C.1.2 Results and Analyses  

For statistical fitting purposes the four individual single input single output 

(SISO) channels of the 2x2 MIMO matrix were merged into a single data pool and 

the goodness of fit to a Rayleigh distribution were tested using the Kolmogorov-

Smirnov (K-S test) function available in Matlab. The results and the test give a good 

fit to the Rayleigh distribution in both LOS and NLOS scenarios as presented in 

Figure C.3 (a)-(b) for the Small – Small antenna separation at frequencies 2 GHz, 4 

GHz and 6 GHz respectively.  
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Figure C.2: Antenna mast distances and measurement topology in the chamber 
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(a) 

 

 

(b) 

Figure C.3: CDF of the Small – Small measurement channels and its 

Rayleigh fitting in (a) LOS case, and (b) NLOS case 

 

The 2x2 MIMO channels were arranged to create SIMO (1x 2) and MISO 

(2x1) channel configurations. The apparent antenna diversity gain was computed for 

both channel configurations for LOS and NLOS scenarios using the selection 

combining technique. Figure C.4 (a)-(b) gives the CDF of the received signal 

strength for the 2x1 channel configurations, in which the diversity branch is created 

by selecting the strongest signal between the two antenna links, in both LOS and 

NLOs scenarios for large – large (LL) inter-element antenna separation at 2 GHz. 
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The diversity gain is estimated as the difference between the diversity branch and the 

strongest link taken at 50 % of the CDF value.    

 

(a) 

 

 

(b) 

Figure C.4: CDF of MISO channels for LL antenna spacing at 2 GHz (a) LOS and 

(b) NLOS 
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(a) 

 

(b) 

Figure C.5: Diversity gain for LL antenna spacing in (a) LOS and (b) NLOS 

 

Table C.1 gives the overall summary of the MISO and SIMO median 

diversity gain for the different antenna configuration cases at frequencies 2, 4 and 6 

GHz as well as the average value across the frequency band. It can be seen from the 

table that the apparent diversity gain using selection combining technique is between 

1.4-2.7 dB.  

Figure C.6 (a)-(b) display the normalised 2x2 MIMO channel capacity for 30 

dB SNR for the LOS and NLOS cases in the reverberation chamber.  Table C.2 gives 

a summary of the capacity values at 90% CDF for the different antenna spacing at 

both the transmitter and receiver. The values are seen to be similar as both LOS and 

NLOS sets of data in the reverberation chamber exhibited Rayleigh fading. 
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Table C.1: Diversity gain for different inter-element antenna spacing  

 
Diversity Gain [dB] at CDF = 50% 

2 GHz 4 GHz 6 GHz Mean  

Case LOS NLOS LOS NLOS LOS NLOS LOS NLOS 

MISO 

(L,L) 
2.04 2.24 2.22 2.60 2.56 2.66 2.27 2.32 

SIMO 

(L,L) 
1.48 2.10 1.51 1.75 1.45 1.99 2.02 1.96 

MISO 

(L,M) 
1.91 1.71 2.39 2.15 2.10 2.63 2.3 2.30 

SIMO 

(L,M) 
2.32 2.43 1.51 2.36 1.92 2.36 1.97 2.00 

MISO 

(L,S) 
2.26 2.25 2.40 1.85 2.44 2.53 2.28 2.29 

SIMO  

(L,S) 
2.12 2.42 1.76 1.86 1.81 1.94 1.95 1.99 

MISO 

(M,M) 
2.38 2.28 2.63 2.30 2.79 1.44 2.27 2.29 

SIMO 

(M,M) 
2.09 2.28 2.35 1.69 1.26 1.62 1.97 2.00 

MISO 

(M,S) 
2.13 2.58 2.08 2.37 1.64 2.62 2.26 2.28 

SIMO  

(M,S) 
1.90 1.64 2.68 2.16 2.07 1.73 1.92 1.92 

MISO 

(S,L) 
2.56 2.43 2.32 2.22 2.38 2.55 2.27 2.32 

SIMO 

(S,L) 
1.85 1.68 2.04 1.67 1.74 1.56 1.89 1.94 

MISO 

(S,S) 
2.43 2.43 2.63 2.25 2.19 2.66 2.27 2.30 

SIMO 

(S,S) 
2.38 2.13 2.24 1.80 2.12 2.56 1.99 1.93 
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(a) 

 

 

(b) 

Figure C.6: 2x2 MIMO channel capacity for different antenna separation in (a) LOS 

and (b) NLOS 

 

Table C.2: 2x2 MIMO capacity [B/s/Hz] at CDF = 90% 

 SS SM MM SL LS LM LL 

LOS 16.20 16.19 16.26 16.24 16.19 16.18 16.20 

NLOS 16.23 16.23 16.26 16.28 16.20 16.22 16.27 

 

 

15.5 15.7 15.9 16.1 16.3 16.5
0

0.25

0.5

0.75

1

Channel Capacity [b/s/Hz]

C
D

F

 

 
Small-Small
Small-Large
Medium-Medium
Medium-Small
Large-Large
Large-Small
Large-Medium

15.5 15.7 15.9 16.1 16.3 16.5
0

0.25

0.5

0.75

1

Channel Capacity [b/s/Hz]

C
D

F

 

 
Small-Small
Small-Large
Medium-Medium
Medium-Small
Large-Large
Large-Small
Large-Medium



Appendix 

189 
 

C.2 Multiband Channel Characterization  

This subsection presents the channel characterization results in terms of delay 

spread and path loss parameters obtained through indoor and outdoor channel 

measurements in the 2 GHz and 60 GHz bands using a newly in-house developed 

multiband chirp based channel sounder.   

C.2.1 Multiband Chirp Sounder 

Figure C.7 shows the basic block diagram of the multiband channel sounder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The developed multiband channel sounder is based on FMCW or chirp signal 

technique (see: Chapter 4 for theoretical discussion on FMCW signal). At the 

transmitter side the chirp parameters (duration and frequency range) are user-defined 
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Figure C.7: Basic block diagram of the in-house built Multiband Chirp Sounder 
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and programed into the direct digital synthesiser (chirp source) which is clocked at 

2.15 GHz generated by PLL / oscillator (P.O – 1) source.  The synthesiser generates 

baseband signals up-to a frequency of ~ 1 GHz.  Its output is first low pass filtered in 

order to remove the high frequency components which the synthesiser generates by 

default.  The filtered signal is used as output (output – A) for channel measurements 

in the lower frequency band up to 1 GHz. The same signal is up-converted into 2.2-

2.95 GHz by mixing it with a 3.2 GHz clock generated by the PLL / local oscillator 

(P.O – 2) and band pass filtering (BPF – 1) the resultant product with a filter of 750 

MHz bandwidth. The up-converted signal is also used as output (output – B) for 

channel measurements. For higher frequency measurements the up – converted 

signal is further multiplied by two to generate a signal with a maximum bandwidth 

of 1.5 GHz in the 4.4-5.95 GHz band (used as output - C) and furthermore this is up 

– converted to 14.5-16 GHz band (used as output - D) using the PLL / oscillator 

(P.O – 3) of 20.45 GHz clock source and a band pass filter (BPF – 2).  The main 

sounder unit and its synchronisation unit are shown in Figure C.8.  

The 14.5-16 GHz signal output also serves as input into the mm wave unit in 

which the signal is quadrupled to generate an output (output – E) signal of 6 GHz 

maximum bandwidth in the 60 GHz band.  Figure C.9 shows a picture of the “mm 

wave sounder unit” with horn antennas connected to its output.  

 

 

Figure C.8: Transmitter part of the Main Sounder Unit together with its Control Unit 
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Figure C.9: The transmitter part of the 60 GHz unit 

The receiver has similar architecture with the additional heterodyne mixer 

and low pass filter to generate the beat-note. The beat-note signals are digitised for 

off-line processing. The frequency bands up to 14.5-16 GHz are currently based on 

single input single output architecture with the possible use of a fast RF switch for 

multiple antenna applications. On the other hand the 60 GHz band has two parallel 

transmitters which are switched on and off sequentially every sweep and two parallel 

receivers for simultaneous acquisition. The minimum chirp or sweep duration in the 

sounder is 204.8 µs. The computation of the RMS delay spread and the path loss 

exponent were performed using equations 3.74 and 5.43 presented in reference [9].  

 

C.2.2 Measurement and Results in the 2 GHz band  

Radio channel propagation measurements at 2 GHz band were performed 

under the Open Call – 1 of the Cognitive Radio Experimental World (CREW) 

project in three test beds, namely: office environment at the Technical University of 

Berlin (TUB), air cabin in EADS, and semi – shielded industrial environment in 

iMinds.  SISO channel measurements were conducted with the sounder set to a 

centre frequency of 2.475 GHz, a bandwidth of 0.55 GHz and chirp repetition rate of 

~1.1 kHz.  The sounder’s transmit power was set to 26 dBm. The antennas were 

placed (were possible) in close proximity to the node(s) in the test beds. In the case 

of TUB the transmitting / receiving antennas were placed either at the ceiling level 

(2.6 m) or at 1.5 m with the measurements performed in the office and corridor 

environments. In iMinds both antennas were mounted at similar height to the nodes 

at about 1.5 m, whereas, for the air cabin in EADS the antennas were mounted at a 

different height to replicate the scenario such as access point to access point, ceiling 

60 GHz Unit 
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to laptop, and ceiling to trolley.  Measurements were taken at various positions of Tx 

/ Rx distances within the scenario under consideration. At each position, 

measurements were recorded for one second duration. Figure C.10 shows example of 

the normalised 1s average power delay profile (PDP) in the semi-shielded 

environment in iMinds. Table C.3 provides a summary of the RMS delay spread 

presented in Figure C.11.    

Comparing the results of the office environment at 2.6 m and 1.5 m, the RMS 

delay spread for the lower antenna height is generally higher when the antenna is 

placed at 1.5 m. This is due to the higher attenuation experienced at the ceiling level 

due to the construction of the building which had beams below the ceiling. Overall, 

the semi-shielded environment at iMinds presents the highest RMS delay spread. 

This is mainly due to the large number of metallic structures such as pipes therefore 

leading to a large number of reflections. 

 

 

Figure C.10: Channel PDP in iMinds semi-shielded environment 
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Figure C.11: The CDF of the RMS delay spread in different scenarios 

 

Table C.3: Obtained RMS delay spread for different values of CDF 

 Technical University of Berlin iMinds EADS 

CDF 

level 

Office 

Tx/Rx @ 2.6 m 

Office 

Tx/Rx @ 1.5 m 

Corridor 

Tx/Rx @ 1.5m 

Semi 

shield 

Air 

Cabin 

10 % 8 ns 10.74 ns 8.49 ns 51.5 ns 7.98 ns 

50 % 11 ns 13.74 ns 18.53 ns 69.2 ns 11.89 ns 

90 % 12.5 ns 20.15 ns 25.16 ns 87.2 ns 14.47 ns 

 

In addition to the RMS delay spread the path loss for the TUB measurement 

with both transmit and receive antennas at ceiling height (2.6 m)  and for the iMinds 

environment were computed as shown in Figure C.12 (a)-(b). The path loss 

coefficient factor ‘n’ which is a measure of the loss rate of change as a function of 

distance was estimated by the gradient of the empirical loss polynomial fit line. The 

estimated path loss coefficients for these two environments were found to be n = 4.4 

for the office environment when the antennas are placed close to the ceiling and n = 

3.3 in the semi-shielded environment where a large number of reflectors are present 

due to the metallic structures. 

 

 

0 25 50 75 100 125
0

0.25

0.5

0.75

1

rms delay spread [ns]

C
D

F

 

 

EADS
Corridor
Office
Ceiling
iMinds



Appendix 

194 
 

 

(a) 

 

 

(b) 

Figure C.12: Estimated path loss coefficient in (a) TUB and (b) iMinds 
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C.2.3 Measurement in the 60 GHz Band 

Currently, there is a great deal of interest within the research community in 

using the mm wave band e.g. the 60 GHz band to provide short range high speed 

communication in both indoor and outdoor environments [10-12]. This interest is 

mainly fuelled by the limited bandwidth and spectrum overcrowding in the lower 

frequency bands. Consequently, the millimetre wave band is viewed as a solution for 

higher data rates in future short range wireless communication systems, such as: 

wireless LAN, on-body communication, back-haul and outdoor lamp-post to user 

content delivery. In this sub-section results of the RMS delay spread and path loss of 

the measured channel using the in-house built multiband channel sounder in the 60 

GHz band in both indoor and outdoor scenarios are presented. The sounder was 

configured for a bandwidth of 4.4 GHz, a transmit power of 7 dBm and chirp 

duration of 0.82 ms. To enable the 2x2 MIMO measurements two-way switching at 

the transmitter was used while receiving in parallel. Directional horn antennas were 

used in both the transmitter and receiver. Measurement data were recorded using a 

14 bit ADC for one second at each location while the receiver was stationary. 

Indoor Scenario and Results 

In this scenario, the receiver was held in a fixed location with the 60 GHz 

unit mounted close to the ceiling at 2.35 m whereas the transmitter was moved at 

pre-defined positions with its antenna height of 1.46 m, as shown Figure C.13. 

 

  

Figure C.13 Indoor scenario (left) receiver unit set-up, (right) transmitter unit set-up 
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Figure C.14: Indoor measurement scenario 

The measured environment is shown in Figure (C.14) where it can be seen to 

consist of workstations with computers, a light well on the right hand side and 

offices on the opposite side. The measurements were taken along a path starting from 

a distance of ~9.4 m to a distance of 35 m. Recorded measurement data were 

analysed to estimate the RMS delay spread for different threshold values and the 

path loss exponent. Figure C.15 displays the power delay profile of one of the Tx – 

Rx links in the last measurement position.   

 

Figure C.15: PDP for the antenna Tx2 – Rx2 link 

As the SNR in all the measurement positions is at least 40 dB the RMS delay 
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The resulting RMS delay spread for the four channels combined at different 

threshold levels is shown in Figure C.16. Taking the median values (50 % CDF) 

gives an RMS delay spread of 0.42, 5.13, and 8.46 ns for the 20, 30, and 40 dB 

thresholds respectively and corresponding 90% values equal to 1.33, 10.74 and 14.46 

ns.  

 

 

Figure C.16: CDF for the combined links RMS delay spread 

 

 

Figure C.17: Estimated channel path loss coefficient for the combined links 
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the space and the glass door which led to a highly reflective surface. Figure C.17 

shows the channel path loss for the four MIMO channel links combined.  The value 

of 1.86 was estimated as path loss coefficient from the polynomial fitting line. A 

lower coefficient than that of free space path loss (n = 2) was expected as the 

scenario resembles a wide corridor.   

Outdoor Scenario and Results 

Like the previous scenario the receiver was fixed while the transmitter mounted 

on a trolley was moved in predefined positions. The heights of the antennas were 1.50 m 

and 2.35 m for the transmitter and the receiver respectively. Measurements were 

performed over a distance from 28 m up to 178.42 m in almost a straight line. The data 

were calibrated and analysed for RMS delay spread and path loss. Figure C.18 shows a 

view of the scenario in question with the stationary receiver system with a computer 

positioned close to the car barriers outside the building, housing the Engineering and 

Computing Sciences Department, and the mobile transmitter system just away from it. 

Figure C.19 provides a representation of the trajectory of the transmitter unit 

(represented with black triangle) on the university campus map, while the receiver unit 

(represented in black circle) remained fixed. 

 

 

Figure C.18: Outdoor measurement scenario 
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Figure C.19: Representation of the Transmitter trajectory on campus map 

 

 

Figure C.20: PDP for the Tx2 – Rx2 

 

Figure C.20 displays an example of a SISO link measured power delay profile at 

a particular location. The dynamic range for most of the measured profiles exceeded 25 

dB hence the RMS delay spread channel parameters were estimated for two threshold 

levels: 20 dB and 25 dB down from the peak. The data from the four channels were 

processed to estimate the RMS delay spread and the path loss from the area under the 

power delay profile. Figures C.21 and C.22 show the RMS delay spread and path loss of 

the combined SISO links. The results of the RMS delay spread for 20 dB and 25 dB 

threshold are summarised in Table C.4 for 50 % and 90% value as obtained from the 

CDF curves. The path loss coefficient (n) was estimated as 1.93 a value which is much 

closer to the free space path loss.  
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Figure C.21: CDF for the combined links RMS delay spread 

 

Table C.4: Summay of the RMS delay spread for 20 and 25 dB threshold 

 
Individuals Tx – Rx channels Combined Tx – Rx channels 

SNR = 20 dB SNR = 25 dB SNR = 20 dB SNR = 25 dB 

50 % CDF 1.00 – 1.28 ns 1.42 – 1.96 ns 1.67 ns 1.70 ns 

90 % CDF 1.91 – 2.29 ns 2.42 – 3.32 ns 2.12 ns 2.79 ns 

 

 

 

Figure C.22: Estimated channel path loss coefficient for the combined links 
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C.3 Radio Channel Performance Prediction  

There are many ways in which to predict the performance of the radio 

system, these could be: analytically through theoretical models, or by the use of a 

software simulator or hardware emulator. Alternatively, one can also predict the 

system performance by re-creating the channel from the parameters estimated from 

the measurements or by using the actual channel measurements data of a typical 

environment [9].   

Radio channel simulators are used to emulate the effects of the propagation 

channel under diverse repeatable testing conditions in order to aid in the estimation 

and assessment of the performance of communication systems. The simulators can 

be constructed either in the time domain using the finite impulse response transversal 

filter, commonly referred as the tapped delay line, or in the frequency domain using 

the channel time variant frequency function T(f,t) [13, 14].  The output signal of a 

tapped delay line model is a linear convolution of the channel delay spread function 

and the input signal in time, whereas for the frequency domain simulator the 

convolution is performed in frequency through point wise multiplication of the input 

signal spectrum and the channel frequency response. 

In this chapter, the performance, in terms of bit error rate (BER) comparison, 

of the ‘playback’ based channel simulator designed in [13, 15], which uses the actual 

channel measurements in the form of time variant frequency function, with the 

standard tapped delay line multipath fading channel simulator built-in in MATLAB 

SIMULINK [16], which recreates the channel responses based on the user’s 

specified parameters, have been validated.  In this case the user’s specified 

parameters were estimated from the same measurement data used in the playback 

simulator. 

Both simulators were used in conjunction with the IEEE 802.16 physical 

layer model designed in [15]. The performance of the channel simulators were 

computed with the physical layer model configured with 256 OFDM carriers, a 

modulation order of 16 QAM and with ¾ rate channel coding. In the simulations the 

transmitted OFDM signal is fed into the channel followed by an addition of a 

complex Gaussian noise and the resultant signal is fed into the receiver for 

demodulation, detection and BER estimation.   
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The used channel measurement data were obtained from the channel 

sounding in rural / semi-rural environment around the city of Ipswich (U.K) in both 

3.5 GHz and 5.8 GHz frequency bands. The method of moment and the complex 

based estimator were used to extract the necessary parameters needed to configure 

the Matlab multipath channel simulator. 

C.3.1 Channel simulators 

Multipath fading Channel Simulator 

This subsection gives a brief overview of the simulator and a more in-depth 

explanation can be found in reference [16]. The multipath fading channel simulator 

is based on the tapped delay line model and it is able to simulate both the channel 

time selectivity due to Doppler spreading and frequency selectivity due to time 

spreading. The simulator requires user specified channel parameters such as:  the 

relative time delay and amplitude of the multipath component(s), as well as the 

maximum Doppler frequency and the Doppler spectrum type. For a Rician channel 

the multipath component(s) K-factor (K), line of sight (LOS) Doppler shift and initial 

phase are also needed.  

The effect of time selectivity of the propagation channel is created by 

generating (independently) an interpolated complex Gaussian fading process with 

the desired spectral properties and average power for each user defined multipath. 

The desired spectral property (Doppler spectrum shape) of the i th multipath 

component is achieved by filtering the zero-mean and unit variance complex 

Gaussian noise process with the component’s pre-selected Doppler filter. 

Interpolation of the fading process is performed to match the higher sampling rate of 

the input signal. After interpolation the samples are scaled accordingly to obtain the 

specified component average power gain. The complex discrete path gain “h[n] ” for 

the i th multipath component is obtained using equation (C.2), 

 
ℎ�q� = [ �Ω� + 1x4�	z{¹�C�º¹� +[ Ω� + 11�q�	 (C.2)  

 

where: K is the Rician K-factor defined as the ratio of the power between the LOS 

and the scattered component; Ω is the averaged path power gain Ω=E[|h[n]| 2];  f0 is 
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the Doppler frequency of the LOS component, ϕo is the initial phase of the LOS 

component, x[n]  is the interpolated Doppler filtered complex Gaussian random 

process representing the diffuse scattering component; and T is the input signal 

sampling rate. 

In general the envelope of h[n] has a Rician probability density function (pdf) 

but for a particular case of K = 0 it exhibits a Rayleigh pdf. For computational speed 

and efficiency of the simulator the time spreading effect of the channel is replicated 

by transforming the channel impulse response (tapped delay line with variable 

differential delays) into a band-limited impulse response (tapped delay line with 

equally spaced symbol delay) before convolution with the input signal. 

Measurement Based “Playback” Channel Simulator 

Different from the multipath fading channel simulator the “playback” 

channel simulator does not recreate the channel from user defined parameters, but 

rather it imports the channel frequency response directly from the Matlab workspace. 

Consequently, real channel time variant frequency functions can be used. The 

operation of the simulator is illustrated in Figure C.23. The simulator was 

implemented in MATLAB SIMULINK using digital signal processing (DSP) 

techniques [15]. 

The simulator operation is as follows: During the set-up phase the measured 

channel impulse responses are pre-processed to a minimum SNR of 20 dB and time-

aligned to start at zero time delay. The responses are bandlimited (using equation 

(18) in [16]) to match the simulator input signal sample rate. Subsequently, the 

responses are zero padded (up-to the length of 512 samples) and then the FFT is 

applied to obtain the bandlimited time variant frequency response of the channel 

H(f,tn) which is stored in the Matlab workspace. 

Throughout the simulation phase, the channel frequency responses are 

individually imported into the simulator and held constant for a period equivalent to 

the measurement acquisition rate. This is enabled by the use of the “First Order 

Hold” and the “Re-sample” blocks in the simulator. The convolution with the input 

signal is performed by point wise frequency multiplication of the channel response 

with the zero padded (up-to 512 samples in length) input signal frequency response. 
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The product of the multiplication is converted back into the time domain (through 

the use of IFFT) and the excess samples are removed to produce the output signal. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C.3.2 Channel Measurement and Statistic Estimators 

The channel measurements were performed in a rural/semi-rural area of 

Ipswich with a multiband chirp sounder which is able to operate simultaneously on 

centre frequencies 2.5 GHz, 3.5 GHz and 5.8 GHz with a bandwidth of 10 MHz. The 

data were collected for the duration of one second and with a sweep repetition rate of 

250 Hz. The transmitter and receiver antennas were kept stationary during the 

measurement. Consequently, any measured Doppler shift must have been due to the 

changes in the environment caused from cars driving by, people walking, and 

moving trees. Figures C.24 (a)-(c) and C.25 (a)-(c) show the results of the one 

second average power delay profile, the time variant frequency response and delay 

Doppler function for the 3.5 GHz and 5.8 GHz bands respectively. 
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Figure C.23: Playback or measurement based channel simulator 
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(a) 

 

(b) 

 

(c) 

Figure C.24: 3.5 GHz measurement data (a) Normalised PDP; (b) Time variant 

frequency response; and (c) Normalised Delay – Doppler function 
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(a) 

 

(b) 

 

(c) 

Figure C.25: 5.8 GHz measurement data (a) Normalised PDP; (b) Time variant 

frequency response; and (c) Normalised Delay – Doppler function 
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A detailed explanation of the architecture of the channel sounder used in 

these  measurements as well as further measurement results can be found in  

references [13, 17].  

The multipath fading channel simulator regenerates the channel based on user 

specified parameters of the corresponding multipath components. In both 

measurements the number of multipath components was obtained from the delay 

Doppler function and the power delay profile by assuming a threshold of -20 dB. 

Taking the peak at 0 µs delay as the reference (first) multipath component any 

relative path delay(s) with an average gain and a peak Doppler spectrum within the 

threshold were considered in the simulation.  Consequently, 6 and 4 discrete 

multipath components at delay times [0 1 2 3 4 5]*381 ns  and [0 1 2 3]*381 ns for 

the 3.5 GHz and 5.8 GHz measurements respectively were estimated. In this 

simulator the rounded Doppler spectrum type was chosen with a maximum Doppler 

shift set to 2.5 Hz as it provided a better approximation to the measured components 

Doppler spectrum. Figure C.26 (a)-(b) shows the normalised PSD of both the 

Doppler and rounded Doppler fitting for the 3.5 GHz and 5.8 GHz bands 

respectively. The rounded Doppler spectrum is also recommended in the 

IEEE802.16 standard [18] as a better approximation to the scattered component’s 

Doppler power spectrum density (PSD) for fixed wireless channels [16]. The next 

sub-sections provide a description of the statistical estimators used to estimate the 

parameters, for the individual multipath components, needed to configure the 

multipath fading channel simulator.  
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(b) 

Figure C.26: Normalised Doppler spectrum and Rounded Doppler fit for 

 (a) 3.5 GHz band and (b) 5.8 GHz band 

Method of Moment Statistic Estimator 

Various methods of moment (MoM) estimators, also referred to as envelope 

based estimators, for the evaluation of the fading statistics (mainly K-factor) have 

been reported in the literature. In this work, the method of moment estimator 

proposed in [19] was used. The parameters estimation was performed on each 

discrete multipath component time-bin independently. The estimator uses the first 

and second moment’s statistic of the component power samples to estimate both the 

K–factor (K) and the averaged power (Ω).  Assuming the magnitude and the phase of 

the i th discrete multipath component at time “n” to be given as in equations (C.3) and 

(C.4) respectively, then the first moment (µ1) of the received power time-series can 

be computed as in equation (C.5). 

 

 =� =	»0ℎ
��§,�5	 + 0ℎ���¼,�5			 (C.3) 

 
+� = 	½=dH½q `ℎ���¼,�ℎ
��§,� a (C.4) 
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¾� = 	ET=	U = 1�	; =�	Fy�

�?¿ 			 (C.5)  

The second moment (µ2) of interest relates to the variance of power samples 

around its mean µ1 and is given by:  

 

¾	 =	 gET�=	 − ¾��	Uh� 	À = Á1�	;�=�	 − ¾��	Fy�
�?¿ 	Â

� 	À 	
(C.6) 

Using equations (C.5) and (C.6) the mean power of the deterministic LOS 

component (|A|2) and of the scattered component (2σ
2) are given by equations (C.7)  

and (C.8) respectively: 

 

 
|�|	 =	 �¾�	 − ¾		�� 	À 			 (C.7) 

 


	 = 12 Ä¾� − �¾�	 − ¾		�� 	À Å	 
(C.8) 

Finally, the K–factor using the method of moment is estimated as follows: 

 

� = |�|		2
	  
(C.9)  

  The technique described above relies solely on the samples envelope to 

estimate the component K–factor and does not utilize the additional phase 

information provided by the samples. Tables C.5 and C.6 give the estimated results 

of the K-factor and averaged power for the discrete multipath components of the 3.5 

GHz and 5.8 GHz bands respectively. 

 

Table C.5: MoM estimated statistic for the 3.5 GHz band 

Path Path 1 Path 2 Path 3 Path 4 Path 5 Path 6 

K 46.09 3.24 6.05 10.42 5.23 30.97 

Ω [dB] 0.00 -5.49 -13.08 -11.98 -18.89 -13.23 
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Table C.6: MoM estimated statistic for the 5.8 GHz band 

Path Path 1 Path 2 Path 3 Path 4 

K 27.15 3.04 5.11 42.77 

Ω [dB] 0.00 -6.58 -11.08 -4.85 

 

Note that the parameters “fo”  and “ϕo”  of equation (C.2) cannot be estimated 

with the method of moment, as the estimator only uses the envelope of the signal to 

compute the fading parameters. Consequently, unless stated for the simulations 

configured with the parameters estimated from the MoM the multipath components 

parameters “fo”  and “φo”  were set to zero. 

Complex Based Estimator 

Unlike the MoM, the complex based estimator, also known as I/Q estimator, 

estimates parameters related to equation (C.2), based on the envelope and phase 

provided by the complex samples of the multipath components.  In this study the 

complex based estimator algorithm detailed in [20] was used. A brief theoretical 

analysis of it is provided in this subsection. It has been shown in [18, 20] that the I/Q 

estimator outperforms the method of moment estimator as it uses additional 

information provided by the phase of signal samples. The CBE performance relies 

on the accurate estimation of the line of sight Doppler frequency component “fo”. 

This is obtained by locating the peak value in the Doppler spectrum as shown in 

(C.10). 

 

Jm =	½=9Æ½1{ 	:1�	; ℎ�xy4	z{C�Fy�
�?¿ 	: 

(C.10) 

For a practical sample size, the N-point FFT may not provide enough 

resolution to reliably estimate the specular frequency and this can lead to significant 

errors in the estimation of the K–factor. One improvement could be to zero pad, by 

appending M-N  zeros (with M=16N) the complex vector “h” prior to computing the 

Fast Fourier transform (FFT) and finding the peak, may result in a high 

computational complexity. Consequently, the peak search frequency estimator 
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developed in [21] was used to locate the LOS Doppler frequency. This algorithm has 

an advantage compared to the previous method as it only requires N-point FFT. 

Using equations (C.3) and (C.4) and the estimated “fo” the average powers of 

the LOS (|A|2), the scatter components (σ2) and the initial phase (φ0) of the LOS can 

be estimated as:  

 

|�|	 = :1�	; =�x4�Ç�y	z{¹C��Fy�
�?¿ 	:			

(C.11) 

 

2
	 =		 :1�	; =�	 −Fy�
�?¿ 	|�|	: 

(C.12) 

 

	Èm = 	½=dH½q	 É∑ =�Fy��?¿ e¤q�+� − 2�J¿@q�∑ =�Fy��?¿ d8e�+� − 2�J¿@q�	É	 (C.13) 

The Rician K–factor and the total average power taking into account the 

finite number of samples is given by equations (C.14) and (C.15), respectively. 

 
� = 1� ��� − 2� |�|	2
	 − 	1�		 

(C.14)  

 

Ë = |�|	�� + 1�� = 				 2
		�� + 1� 
(C.15)  

Table C.7: CBE estimated statistic for the 3.5 GHz band 

Path Path 1 Path 2 Path 3 Path 4 Path 5 Path 6 

K 46.78 8.14 11.12 16.67 2.70 34.15 

Ω [dB] 0.00 -5.90 -13.37 -12.14 -20.16 -13.27 

f0 [Hz] -0.38 -0.41 -0.39 -0.34 -0.27 -0.38 

Φ0 [rad] 0.32 0.08 -0.27 -1.07 0.75 0.51 
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Table C.8: CBE estimated statistic for the 5.8 GHz band 

Path Path 1 Path 2 Path 3 Path 4 

K 19.46 4.15 6.32 22.74 

Ω [dB] 0.00 -6.20 -10.88 -4.88 

f0 [Hz] -0.56 -0.58 -0.52 -0.60 

Φ0 [rad] 1.15 -1.50 0.61 0.82 

 

Table C.7 and C.8 present a summary of the estimated parameters using the 

complex based estimator for the 3.5 GHz and 5.8 GHz measurement bands 

respectively. 

C.3.3 BER performance comparison  

In this sub-section the bit error rate results of the IEEE 802.16 physical layer 

model using the Playback channel simulator and the multipath fading channel 

simulator are presented and compared. In oder to match the input signal sampling 

rate in the Playback channel simulator, as described in sub-section Measurement 

Based “Playback” Channel Simulator, the measured channel impulse responses 

were bandlimited to 3.56 MHz bandwidth prior to the simulator set-up phase.  

The BER results of the simulators in the 3.5 GHz and 5.8 GHz band are 

presented in Figures C.27 (a) and (b), respectively. In these figures the “Playback” 

curve marked as a solid line with rectangle represents the results from the 

measurement based channel simulator; the “MoM” curve marked as dashed line with 

a solid triangle  represents the results from the multipath channel simulator when 

configured with channel parameters estimated from the method of moment 

estimator; the “CBE” curve marked as dashed line with rectangle represents the 

results from the multipath channel simulator when configured with channel 

parameters estimated from the complex based estimator. 
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(a) 

 

 

(b) 

Figure C.27: BER performance for the (a) 3.5 GHz band and (b) 5.8 GHz band 

 

The results in the figures show good agreement between the measurement 

based channel simulator and the multipath simulator configured with parameters 

estimated from the complex based estimator.  This closer approximation was 

expected, since the complex based estimator  provides an estimation of all the 

necessary parameters in equation (C.2). Consequently, the multipath fading 

simulator is able to recreate a channel with much closer approximation of the real 

measured channel [16, 18, 20]. On the other hand, Figure C.27 (a) shows comparable 

agreement between the “Playback” curve and the MoM curve. However, large BER 
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differences between the “Playback” curve and the multipath simulator, with 

parameters estimated from the MoM can be noticed in Figure C.27 (b). This 

difference could be attributed to the fact that although the MoM estimates the K-

factor and the average power from the measured channel path(s), it fails to provide 

an estimation of the path(s) LOS component intial phase and Doppler frequency. 

Consequently the multipath fading simulator may not, in this case, regenerate the 

channel responses with characteristics similar to those of a non-zero “f0”  and “Φ0” 

measurement channel.   

In order to understand the effect of the LOS Doppler and initial phase on the 

BER curves, simulations in the Matlab multipath simulator for the cases of the 

measurement parameters (K-factor and average power) estimated from CBE but with 

the LOS Doppler and intial phase set to zero and the case of the parameters (K-factor 

and average power) estimated from the MoM and “f0”  and “Φ0” estimated from CBE 

were performed.   

In Figure C.28 (a)-(b) the CBEN curve marked as a dashed line with a circle 

represents the result from the multipath channel simulator for the case in which the 

K-factor and average power are estimated from the CBE estimator but the LOS 

Doppler (f0) and intial phase (Φ0) are set to zero;  MoMw curve marked as dashed 

line with cross represents the case where the channel parameters (K-factor and 

average power) are estimated from the MoM estimator and the LOS Doppler (f0) and 

intial phase (Φ0) are estimated from the  CBE estimator.  
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(b) 

Figure C.28: BER performance effect of the LOS initial phase and Doppler 

frequency for (a) 3.2 GHz and (b) 5.8 GHz 

 

The results in Figure C.28 (b) show that the BER perfomance of the complex 

based estimator (CBEN curve) is similar to that of the method of moment estimator 

(MoM curve) as in this case both estimators intial phase (Φ0) and LOS Doppler (fo) 

information were set to zero. Furthermore, with the channel parameters (K-factor 

and average power) estimated from the method of moment and the intial phase (Φ0) 

and LOS Doppler (fo) estimated from the complex based estimator the BER result 
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observed for the 3.5 GHz measurement in Figure C.28 (a).  
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C.4 Discone Antenna  

Discone antennas have been designed and manufactured for the channel 

sounding measurements in the 2-8 GHz frequency band detailed on previous 

subsection. This type of antenna has been widely used in UWB applications due to 

its wide impedance bandwidth and an omnidirectional radiation pattern (uniform on 

azimuth-plane) across the frequency band.  

Figure C.29 shows the geometry of the proposed antenna. The antenna 

consists of three main parts: the top shaped disc acting as a radiator with its centre 

connected to the feed line of a coax; the cone which is connected to the ground; and 

the insulator which ensures that the disk and cone are not in short circuit.   

 

             

 

 

Table C.9: Proposed Discone antenna parameters dimension 

Parameter L1 Da CL CD Db Dd Df L2 g 

Dimension 179 39 50 50 2 7 3.18 13 3 

 

The antenna was designed and optimised in CST software to operate over a 

frequency range from 2-8.5 GHz. Table C.9 provides the final dimension of the 

proposed antenna.  The antenna shows a return loss better than -10 dB across the 

desired frequency band, as displayed in Figure C.30. As expected, the antenna 

exhibits a uniform omnidirectional pattern in the H-plane across the frequency range, 

as shown in Figure C.31.  
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Figure C.29: Geometry of the proposed Discone antenna 
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Figure C.30: Simulated return loss of the proposed Discone antenna 

 

 

(a) H-plane 

 

(b) E-plane 

Figure C.31: Normalised simulated radiation pattern of the discone antenna 
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C.5 Summary 

The characterization of the electromagnetic signal propagation through the 

environment is essential for the understanding of the effects of the environment on 

the wireless systems performance. This appendix presented the results of channel 

measurement campaigns conducted at different frequency bands and in different 

environments: namely: reverberation chamber, indoor (offices and corridor like 

scenarios), and outdoor. Also, BER performance validation of the “Playback” 

channel simulator was presented for an outdoor measurement scenario around 

Ipswich City in the 3.5 GHz and 5.8 GHz frequency bands.  

Measurements in a reverberation chamber were performed using a VNA with 

ultra-wideband Discone antennas connected to its ports. Measurements in this 

environment were performed to obtain reference figures of merit for the assessment 

of the diversity gain and MIMO capacity with different antenna separations. The 

computed apparent diversity gains across the band in this environment for 1x2 and 

2x1 antenna configurations were on the order of 1.5-2.5 dB and the achievable 

normalised channel capacity for both LOS and NLOS cases were in the region of 

16.18-16.27 b/s/Hz. 

A brief overview of the architecture of the newly developed multiband 

channel sounder, at the Centre of Communication Systems at Durham University 

(U.K), has been presented. Results of the delay spread and path loss exponent in the 

2.475 GHz and 60 GHz frequency bands for both indoor and outdoor environments 

using the newly built sounder have been presented.   

Bit error rate performance comparisons of the measurement based channel 

simulator against the theoretical Matlab built-in multipath fading channel simulator 

have been performed, for the IEEE 802.16 physical layer model. The measurement 

based simulator imports the real channel measurement directly from the Matlab 

workspace; whereas the multipath fading simulator regenerates a theoretical channel 

response based on the user’s specified channel parameters. In the study, real channel 

measurements obtained from channel sounding in a rural / semirural environment in 

the 3.5 GHz and 5.8 GHz frequency bands were used. The parameters for the 

multipath fading simulator have been extracted from the measurement channel data 

using two different estimators namely the method of moment and the complex based 

estimator.  
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With parameters estimated from the method of moment, the BER 

performance of the multipath fading simulator were found to be much different from 

that of the measurement based simulator. A reason for these differences could be 

down to the fact that the measurement profiles contain non-zero LOS Doppler 

frequencies and initial phases and the method of moment estimator only provides the 

estimations of the K-factors and average powers. Consequently, with an assumption 

of zero LOS initial phases and zero Doppler frequencies, the channel responses 

regenerated by the multipath fading simulator might not fully represent the 

measurement channel. This is reflected in the BER performance curves.  Differently, 

the complex based estimator not only estimates the K-factor and average power from 

the measurement channel but also estimates the initial phase and Doppler frequency 

of the LOS component. Consequently, the multipath fading simulator configured 

with parameters from this estimator offers a BER performance which fits best to that 

of the measurement based simulator. 
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