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ABSTRACT 

 

 

Ground penetrating radar (GPR) has been extensively utilized as a highly efficient 

and non-destructive testing method for infrastructure evaluation, such as highway rebar 

detection, bridge decks inspection, asphalt pavement monitoring, underground pipe 

leakage detection, railroad ballast assessment, etc. The focus of this dissertation is to 

investigate the key techniques to tackle with GPR signal processing from three 

perspectives: (1) Removing or suppressing the radar clutter signal; (2) Detecting the 

underground target or the region of interest (RoI) in the GPR image; (3) Imaging the 

underground target to eliminate or alleviate the feature distortion and reconstructing the 

shape of the target with good fidelity. 

 

In the first part of this dissertation, a low-rank and sparse representation based 

approach is designed to remove the clutter produced by rough ground surface reflection 

for impulse radar. In the second part, Hilbert Transform and 2-D Renyi entropy based 

statistical analysis is explored to improve RoI detection efficiency and to reduce the 

computational cost for more sophisticated data post-processing. In the third part, a back-

projection imaging algorithm is designed for both ground-coupled and air-coupled 

multistatic GPR configurations. Since the refraction phenomenon at the air-ground 

interface is considered and the spatial offsets between the transceiver antennas are 

compensated in this algorithm, the data points collected by receiver antennas in time 

domain can be accurately mapped back to the spatial domain and the targets can be 

imaged in the scene space under testing. Experimental results validate that the proposed 

three-stage cascade signal processing methodologies can improve the performance of 

GPR system. 
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CHAPTER 1: INTRODUCTION 

1.1. Non-destructive Testing Problem 

According to a 2012 Federal Transit Administration report [1], one-third of the 

nation’s transit assets are at or have exceeded their expected useful life. More than 40% 

of bus assets and 25% of rail transit assets are in marginal or poor conditions. The level 

of capital investment required to attain a state of good repair in the nation’s transit assets 

is projected to be $77.7 billion. Rail transit assets exceeding their useful life can result in 

asset failures, which can increase the risk of catastrophic accidents, disrupt service, and 

strain maintenance departments.  

The United States also contains a road network dating to 1940 with more than 

570,000 bridges in service. With 3.8 trillion vehicle-kilometers per year, the US roadway 

infrastructure is considered one of the largest in the world [2]. The average interstate 

bridge is roughly 40 years old while most bridges are more than 50 years old. In 2013 

American Society of Civil Engineering (ASCE) report [3], the accumulated GPA of 

America’s Infrastructure is rated as D + only, which indicates that “the infrastructure is 

in poor to fair condition and mostly below standard, with many elements approaching 

the end of their services life. A large portion of the system exhibits significant 

deterioration. Condition and capacity are of significant concern with strong risk of 

failure”. It is also reported that one in nine of the nations’ bridges are rated as structurally 

deficient. By 2030, that number will double without substantial bridge replacement. The 

Federal Highway Administration (FHWA) estimates that to eliminate the nation’s bridge 

deficient backlog by 2028, $20.5 billion annually investment is needed, while only $12.8 
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billion is being spent currently. For roads improvements, $170 billion in capital 

investment would be needed on an annual basis, while the current level is only $91 

billion.  

Infrastructure can suffer from various defects, such as cracks, spalling, scaling, 

honeycomb, voids, delamination, insufficient cover, corrosion of rebar, etc. Early and 

accurate detection, localization and assessment of damages or defects in infrastructure 

are of great values for scheduling maintenance and rehabilitation activities, and can 

significantly reduce the damage progression and maintenance costs. To secure the 

transportation infrastructure safety and cut the maintenance cost, it is critically important 

to develop effective and efficient testing technologies for the infrastructure structural 

condition inspections.  

Conventional techniques for infrastructure condition assessment, including 

drilling testing, core sampling, corrosion (half-cell) potentials, acoustic/hammer testing 

and chloride ion measurements, etc., are destructive, low efficient, low coverage, labor 

intensive, time consuming, and disturbing to normal traffic. These drawbacks limit their 

applications for infrastructure inspection during the construction and lifetime 

maintenance.  

Presently, innovative non-destructive testing (NDT) technologies are 

increasingly adopted by many transportation agencies. Among all non-destructive testing 

(NDT) techniques, Ground Penetrating Radar (GPR) is deemed as one of the most 

effective and promising tools enabling subsurface structural characterizations [4]-[5]. As 

an easily deployed and highly efficient NDT methodology, GPR has been explored in 
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various case studies, such as rebar detection [6]-[7], bridge deck inspection [8]-[9], soil 

moisture assessment [10]-[11], railroad ballast monitoring[12]-[14], underground utility 

mapping [15]-[16], asphalt pavement inspection [17]-[18], etc. Figure 1.1 shows some 

testing scenarios of GPR applications for transportation infrastructure inspection. 

   

(a) (b) (c) 

  

(d) (e) 

Figure 1.1: GPR explored in various case studies for non-destructive underground infrastructure 

inspection: (a) asphalt pavement inspection; (b) bridge deck inspection [19]; (c) rebar detection; 

(d) underground utilities mapping for smart city; (e) railroad ballast condition assessment. 

1.2. Background of Ground Penetrating Radar 

1.2.1. History and Applications 

GPR is a geophysical method that uses radar pulses to image the subsurface [20]. 

The most common form of GPR measurements deploys a transmitter and a receiver in a 

fixed geometry, which are moved over the surface to detect reflections from subsurface 

features [4]. 
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The first use of electromagnetic signals to determine the presence of remote 

terrestrial metal objects is generally attributed to Hiilsmeyer in 1904. The first patent for 

a system designed to use continuous-wave radar to locate buried objects was submitted 

by Leimbach, G. and Löwy, H. in 1910 [21]. A patent for a system using pulsed 

techniques rather than continuous waves was filed in 1926 by Hülsenbeck [22], leading 

to improved depth resolution. A glacier's depth was measured using GPR in 1929 by 

Stern, W. [23]. 

Pulsed radar were further developed from the 1930s as a subsurface sensing 

methodology for glacier [24], ice [25], salt deposits [26], desert formation [27], tunnel 

rocks [28] and coal layer [29]. Renewed interests and developments in this field were 

generally starting from the 1970s, when military applications began driving research and 

the lunar investigations were in progress. From the 1970s until the present day, the range 

of applications has been expanding steadily. Commercial applications followed and the 

first affordable consumer equipment was sold in 1985 [23]. 

Recent research progress has been continuously driving and expanding the 

applications of GPR. Now the GPR techniques and methodologies have been used widely 

in the following applications: archaeological investigations [30], borehole inspection 

[31], bridge deck analysis [32], building condition assessment [33], detection of buried 

mines (anti-personnel and anti-tank) [34]-[37], evaluation of reinforced concrete [38], 

geophysical investigations [39], earthquake and snow avalanche victims detection [40]-

[42], underground utilities detection and mapping [43]-[46], planetary exploration [47], 
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rail track and bed inspection [48], road condition survey[49], security applications [50]-

[51], snow, ice and glacier [52]-[53], timber condition [54], tunnel linings [55], etc. 

1.2.2. Operating Mechanism 

In GPR’s operation, the GPR transmitter antenna radiates the electromagnetic 

(EM) wave into the subsurface structure under testing. The EM wave traveling velocity 

in the structure is determined primarily by the permittivity or dielectric constant of the 

subsurface material. When the EM wave hits features or objects that have electrical 

properties differing from the surrounding medium, it will be reflected and received by 

the receiver antenna. The reflection coefficient at the interface of two media is 𝑅21, which 

equals the ratio of the electrical fields of the reflection wave and the incident wave. The 

𝑅21 value is determined by the following equation [5]: 

 𝑅21 = √𝜀1−√𝜀2

√𝜀1+√𝜀2
 (1.1) 

where 𝜀1 is the dielectric constant of the upper media and 𝜀2 is the dielectric constant of 

the lower media. The dependence of signal traveling velocity and amplitude on the 

material electrical properties will result in different reflection waveforms. By analyzing 

the reflection signals, the subsurface structural features can be effectively characterized. 
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Figure 1.2: Model depicting the various scattered signals in impulse ground penetrating radar and 

the scattered signals shown in time domain [56] 

An example is illustrated in Figure 1.2. GPR signal transmitted from a transmitter 

antenna penetrates into the underground media consisting of two layers, a surface layer 

and a base layer. The reflection signal back from the media is picked up by a receiver 

antenna. At each interface between two adjacent layers, some of the signal is reflected, 

while some of the signal penetrates into the next layer. The reflection signal in this 

example comprises of following four types of echoes: 

 𝐴0: the signal directly propagates from the transmitter antenna to the receiver 

antenna, which is called direct coupling signal or end reflection signal. 

 𝐴1: the signal reflected from the top surface of the first layer or the surface layer. 

 𝐴2: the signal reflected from the interface between the surface layer and the base 

layer. 

 𝐴3: the signal reflected from the bottom surface of the base layer. 
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The amplitude and the time delay of the various reflection pulses 𝐴1, 𝐴2 and 𝐴3 

are determined by the dielectric constant and thickness of the media. Therefore, by 

measuring the amplitude and time delay of different echoes, the dielectric constant of the 

material, thickness of the layer and depth of the target can be calculated. 

During the GPR inspection, the transmitter antenna and receiver antenna move 

over the underground target. At each scanning position, the receiver antenna collects a 

1-D signal. This 1-D signal is called A-Scan trace. As the GPR inspection goes on, a 

group of A-Scan traces is collected along the scanning direction. Upon assembling all 

the A-Scan traces, a B-Scan image is produced. Finally, if multiple parallel B-Scan 

images are collected when moving the antennas over a regular grid, a 3-D data matrix 

can be recorded, which is called a C-Scan. 

1.2.3. System Architecture: Impulse Radar, SFCW Radar and FMCW Radar 

From GPR imaging scheme aspect, impulse radar, stepped frequency continuous 

wave (SFCW) radar and frequency modulation continuous wave (FMCW) radar are three 

typical architectures for GPR system [56]. 

Figure 1.3 shows a basic diagram of an impulse radar system. An ultra-wideband 

(UWB) pulse is generated by UWB pulse generator and transmitted out of the transmitter 

antenna (TX). The pulse penetrates into the ground and reaches out to the target. Some 

of this pulse scatters back from the target and travels back to the receiver antenna (RX). 

The received pulse is amplified by a low noise amplifier (LNA) and sampled by an 

analog-to-digital converter (ADC) unit, such as oscilloscope or digitizer. The digital GPR 

pulse is then stored and processed by a host computer. By measuring the time difference 
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between the time instances of transmitting the pulse and receiving the pulse, the down 

range of the target can be calculated. 

 

Figure 1.3: Block diagram of basic impulse GPR system [57]. 

 

Figure 1.4: Block diagram of SFCW radar system [58]. 

Figure 1.4 illustrates the block diagram of SFCW radar system. Continuous wave 

radar transmits a frequency sweep over a fixed bandwidth. In frequency domain, the 
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continuous wave changes by fixed step ∆𝑓. The received signal is acquired as a function 

of frequency by the data acquisition unit. To achieve an ultra-wide bandwidth, all the 

frequencies are swept from a set beginning to an end frequency. The amplitude and phase 

of the received signal at each frequency tone are compared with the transmitted signal to 

obtain the frequency response of the underground targets. Then the frequency response 

data is processed by a window function and transformed to time domain signal by inverse 

Fourier transformation. 

 

Figure 1.5: Simplified block diagram of a coherent linear FMCW radar system [57]. 

Figure 1.5 depicts the simplified block diagram of a FMCW radar system. The 

FMCW radar transmits the continuous wave which is frequency modulated with a linear 

sweep. The sweeping carrier frequency is controlled by a voltage-controlled oscillator 

(VCO) over a chosen frequency range. At the receiver end, the backscattered wave is 

mixed with the emitted wave. The difference in frequency between the transmitted and 

received wave is a function of the depth of the target. By characterizing the frequency 

difference, the range to the target can be calculated. 
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1.2.4. Height of Antenna: Ground-Coupled GPR and Air-Coupled GPR 

From the height of antennas aspect, GPR system can be classified as ground-

coupled GPR and air-coupled GPR.  

For the ground-coupled GPR system, antennas are installed at close proximity to 

the ground surface. For this type of GPR, it has higher detecting sensitivity and low signal 

loss. However, the antennas may hit the ground obstacles and even may not be 

deployable for hazardous areas like landmine detection scenario. Figure 1.6(a) shows the 

GSSI SIR-30 GPR system [59] under ground-coupled configuration as an example of 

ground-coupled GPR. 

 
(a) 

 
(b) 

Figure 1.6: GPR antenna configuration: (a) GSSI SIR-30 ground-coupled GPR system; (b) UVM 

air-coupled impulse GPR system. 
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For the air-coupled GPR system, large standoff distance exists between the 

antennas and ground surface. Such configuration makes the system’s movement has 

higher flexibility, so the air-coupled GPR is easily deployed and good for high-speed 

survey. Moreover, since the antennas do not touch the ground, the risk of entering 

dangerous or hazardous areas for radar operators is reduced. However, due to the large 

standoff distance above the ground surface, the signal loss is large during the propagation 

in the air. Figure 1.6(b) provides an example of air-coupled GPR system, an air-coupled 

high-speed dual-channel impulse ground penetrating radar [60] designed by UVM. 

1.2.5. Spatial Offset between Antennas: Monostatic, Bistatic and Multistatic 

From the number of antennas and separation distance between antennas aspect, 

the GPR system can be categorized as monostatic GPR, bistatic GPR and multistatic 

GPR. 

Figure 1.7 illustrates the antenna configuration of those three types of GPR 

systems. Monostatic GPR is a GPR system in which the transmitter and receiver are 

collocated [61]. Bistatic radar is the GPR system comprising a transmitter antenna and a 

receiver antenna that are separated by a distance [62]. The separation distance should be 

comparable to the expected target distance, otherwise such bistatic GPR can be simplified 

to a monostatic GPR. Multistatic GPR system contains multiple spatially diverse 

monostatic radar or bistatic radar components with a shared area of coverage [63]. For 

example, the multistatic GPR shown in Figure 1.7 has two transmitter antennas and two 

receiver antennas, so it contains 2 × 2 = 4 components pairs. Each of the components 

pairs involves a different bistatic angle and target radar cross section. Upon the data 
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fusion between each component pair, the spatial diversity afforded by the multistatic 

GPR system allows for different aspects of a target being viewed simultaneously. 

Information gained from various antenna pairs and multiple radar cross sections can give 

rise to a number of advantages over conventional monostatic or bistatic GPR systems 

[64], such as higher signal-to-noise ratio (SNR), lower shadowing effects, high detection 

rate, better robustness, etc. 

 

Figure 1.7: Antenna configuration of monostatic GPR, bistatic GPR and multistatic GPR. 

1.2.6. Critical Specifications 

Range resolution and penetrating depth are two critical specifications for a GPR 

system. 

Range resolution for a GPR system is defined as the minimum detectable or 

observable distance difference between two targets [57]. For the impulse radar system, 

targets separated by half of the pulse width time 𝑇𝑝 can be distinguished. The theoretical 

range resolution of an impulse GPR system can be calculated by: 

 𝜌𝑟 =
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦×𝑇𝑝

2
=

𝑐𝑇𝑝

2√𝜀𝑟
 (1.2) 
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where 𝑐 is the speed of light in air and 𝜀𝑟 is the dielectric constant of the subsurface 

media. Therefore, the narrower the width of the pulse is, the better range resolution an 

impulse GPR system has. 

For a continuous wave (SFCW or FMCW) GPR system, the range resolution is 

determined by the bandwidth 𝐵𝑊𝑡𝑥 of the transmitting signal instead of the pulse width, 

which can be calculated by the following equation: 

 𝜌𝑟 =
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

2𝐵𝑊𝑡𝑥
=

𝑐

2𝐵𝑊𝑡𝑥√𝜀
 (1.3) 

Therefore, a GPR system with larger signal bandwidth has a better range resolution. 

Furthermore, according to Eq. (1.2) and Eq. (1.3), for a specific GPR system, the 

same transmitting signal has a better resolution when the subsurface media has a larger 

dielectric constant. Thus, when scanning a subsurface region with larger dielectric 

constant, to decrease the hardware cost while achieve the certain range resolution, a GPR 

system with smaller bandwidth can be deployed. 

The second critical specification of a GPR system is the penetrating depth, which 

is determined by central frequency of the GPR system. According to EM wave theory, if 

the GPR signal’s frequency is high, the penetrating depth is low. On the contrary, if the 

GPR signal’s frequency is low, the penetrating depth increases. Therefore, the tradeoff 

between the range resolution and penetrating depth exists when choosing the GPR signal 

and antennas. 

The higher the frequency of the GPR signal and the antenna, the shallower into 

the ground it will penetrate, while it can see smaller targets, for instance, the rebar in 

bridge deck. Conversely, a GPR system with low frequency signal and antenna is good 
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for deep but big targets, such as underground utility pipes. Thus, choice of antenna and 

signal frequency is one of the most important factors in GPR survey design. Table 1.1 

provides a reference for various transportation infrastructure applications and 

corresponding appropriate choices of GPR signal and antenna. 

Table 1.1: Antenna frequency, approximate depth penetration and appropriate application [66]. 

Appropriate Application 

Primary 

Antenna 

Choice 

Secondary 

Antenna 

Choice 

Depth Range 

(Approximate) 

Structural Concrete, Roadways, 

Bridge Decks 
2600 MHz 1600 MHz 0-0.3 m (0-1.0 ft) 

Structural Concrete, Roadways, 

Bridge Decks 
1600 MHz 1000 MHz 0-0.45 m (0-1.5 ft) 

Structural Concrete, Roadways, 

Bridge Decks 
1000 MHz 900 MHz 0-0.6 m (0-2.0 ft) 

Concrete, Shallow Soils, 

Archaeology 
900 MHz 400 MHz 0-1 m (0-3 ft) 

Shallow Geology, Utilities, 

UST's, Archaeology 
400 MHz 270 MHz 0-4 m (0-12 ft) 

Geology, Environmental, 

Utility, Archaeology 
270 MHz 200 MHz 0-5.5 m (0-18 ft) 

Geology, Environmental, 

Utility, Archaeology 
200 MHz 100 MHz 0-9 m (0-30 ft) 

Geologic Profiling 100 MHz 
MLF (16-80 

MHz) 
0-30 m (0-90 ft) 

Geologic Profiling 
MLF (16-80 

MHz) 
None 

Greater than 30 m 

(90 ft) 
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1.3. GPR Signal Processing Problems and Methodologies 

In this section, general and conventional GPR signal processing problems and 

methodologies are introduced. Methodologies that are more sophisticated will be 

described and discussed in further chapters when specific GPR signal processing 

problems are addressed and investigated. 

Cassidy, N. J. in 2009 [67] summarized the typical GPR data processing flow by 

11 steps. Considering the GPR research has kept progressing since 2010s and the focus 

of this dissertation is GPR signal processing instead of general data processing, we 

emphasized a few of the steps in Cassidy’s flow, added some new steps into it and 

reorganized the sequence with each of the steps in their most relevant order as: (1) Editing 

and Rubber-banding; (2) Dewow; (3) Time-zero correction; (4) Range Filtering and 

Cross-Range Filtering; (5) Deconvolution; (6) Migration; (7) Attribute analysis; (8) Gain 

Adjustment; (9) Image analysis; (10) Region of Interest Detection. Each of these signal 

processing steps will be elaborated in this chapter. 

1.3.1. Trace Editing and Rubber-banding 

In GPR survey, caused by overenthusiastic triggering, external noise sources, 

equipment failure or malfunction, occasional traces may be corrupted or missed. 

Existence of bad traces will impair the processing results of further GPR signal 

processing steps. The “editing” is to correct the bad or poor data and reorganize the A-

Scan traces in the data file. Interpolation between good traces is often performed to 

compensate the missed traces or replace the corrupted traces [68]-[69]. 
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Similarly to trace editing, rubber-banding is also a process to modify the A-Scan 

traces, which corrects the GPR data to ensure spatially uniform increments in GPR 

scanning direction. For distance triggered GPR system, equidistant data collection is 

required for subsequent signal processing steps, such as migration. To ensure the good 

data registration, a series of marker points at know distances are recorded during the GPR 

survey. If the traces corruption or missing happens, the corrupted section is interpolated 

between to known marker points and then resampled to produce a good section with 

equally spaced traces [70]-[72]. 

1.3.2. Dewow 

‘Wow’ is caused by the swamping or saturation of the recorded signal by the 

strong direct coupling wave or air-ground surface reflection signal. If the DC signal bias 

exists in the A-Scan trace, the low-frequency component will distort the spectrum of the 

A-Scan in frequency domain, which affects the subsequent spectral processing steps in 

frequency domain [73]. Dewowing step reduces the DC bias or the low-frequency 

components from the GPR signal and adjusts the mean of the A-Scan trace to zero. This 

process can be implemented in two ways. In the first way, the DC bias or component is 

calculated as the average of the data points on the A-Scan trace and then subtracted from 

the A-Scan trace. Alternatively, a high-pass filter with a cut-off frequency that is below 

the bandwidth of the recorded signal is performed to filter out the low frequency or DC 

component in the A-Scan trace [74]-[75]. 
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1.3.3. Time-zero correction 

If the antenna platform is fixed, the arrival time instance of direct coupling signal 

in each A-Scan trace should be identical. However, thermal drift, electronic instability, 

cable length differences and variations in antenna air-gap can cause shifting in the time 

instance of direct coupling signal [76]. The misalignment of the time-zero correction has 

an effect on the position of the ground surface reflection and the target reflection, thus, 

it is necessary to adjust the A-Scan traces to a common time-zero position before 

subsequent processing steps are performed. Typically, the direct coupling signal in one 

A-Scan trace is chosen as the reference. The time shifting between the direct coupling 

waves in different A-Scan traces are calculated by cross-correlation [77]-[78]. Then the 

time shifting is compensated to each A-Scan trace so that all the A-Scan traces are 

matching with a common time-zero position.  

1.3.4. Range Filtering and Cross-Range Filtering 

Generally, GPR filtering can be classified into two types: range filtering along 

individual A-Scan trace and cross range filtering across a number of A-scan traces.  

The goal of the range filtering is removing the noises in A-Scan traces to improve 

the SNR of GPR signal. Moving average filter [79] is one of the typical temporal filters. 

The moving average is calculated as the weighted mean of data points within a specified 

window. The moving average filter is good for removing excessive higher-frequency 

noise from the data such as radio frequency interference from communication devices 

[67]. Median filter [80]-[82] is a nonlinear digital filtering technique, often used to 

remove spikes and salt and pepper noise from GPR A-Scan trace. The median filter runs 
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through the signal point by point, replacing each data point with the median of its 

neighboring data points across a specified window. While moving average filter and 

median filter are both attempted in time domain, low-pass filter (LPF), high-pass filter 

(HPF) and band-pass filter (BPF) are the other type of range filter along A-Scan traces 

performing in frequency domain [83]-[86]. The LPF can remove the high-frequency 

noise, and the HPF can suppress the DC bias and low frequency noise. The BPF can be 

considered a cascade combination of the LPF and HPF performing on the GPR A-Scan 

signal. The cutoff frequency of each filter can be determined based on bandwidth of the 

transmitting signal. Joint time-frequency (JTF) analysis [87]-[88] is also applied to 

suppress the noise components in GPR A-Scan trace. As one of the JTF analysis methods, 

wavelet transform [89] decomposes the GPR A-Scan into the combination of various 

signal atoms, eliminates the noise components and reconstructs the GPR signal with the 

residual signal components. 

Radar clutter is the undesired receiving signal other than the scattering signal 

from the target. Cross-range filtering is aiming to improve the signal-to-clutter ratio 

(SCR) of GPR signal by suppressing the radar clutter in GPR image. Time gating [90]-

[92] is one of the earliest clutter removal methods. In the time gating method, a 

windowing function is defined to null the signal segments over the time intervals where 

different signal traces exhibit a high similarity, which facilitates clutter signal removal. 

Average (or background) subtraction [93]-[94] is a widely used method to remove the 

ground reflection. Assuming the clutter in each A-Scan shows high similarity, the 

average subtraction method calculates the average of the first several A-Scan waveforms 
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as the background and then subtracts this average value from the B-Scan image. Spatial 

filtering method [95]-[96] utilizes the same assumption to filter out the clutter data 

corresponding to the ground surface reflection. Considering the reflection signal from 

the buried object with limited spatial extent varies in different A-scan traces, a spatial 

filter is thus applied along the antenna moving direction to mitigate the spatial zero-

frequency and low-frequency components corresponding to clutter. Principal component 

analysis (PCA) [97]-[99] and independent component analysis (ICA) [100]-[101] are 

also conventional clutter removal methods. PCA and ICA uses the mathematical 

modeling principle to decompose the signal into different components, and then finds out 

the components corresponding to object and clutter respectively. The subspace projection 

approach [102] is based on the reflection energy difference between the ground surface 

and the buried object. Singular value decomposition (SVD) is performed on the data 

matrix to identify and remove the ground surface electromagnetic signature. 

Differing from the aforementioned GPR signal processing steps (editing, rubber-

banding, dewow, time-zero correction and range filtering) which already have well-

developed conventional methodologies, the cross-range filtering or clutter removal 

filtering is still an open research problem. On the other hand, since the SCR of the GPR 

data is the key to target detection, while GPR signal is heavily contaminated by clutter, 

clutter removal is also one of the primary objectives in GPR signal processing [21]. 

Therefore, exploring of clutter removal methodologies that can efficiently and effectively 

eliminate or suppress the clutter signal component under complex GPR testing scene is 

still a challenge research topic. 
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1.3.5. Deconvolution 

Deconvolution is a temporal process that removes the effect of the source wavelet 

from the recorded A-Scan trace and compresses the recorded GPR wavelet into a narrow 

and distinct form [103]-[105], which is similar to the idea of pulse compression in general 

radar signal processing [106]. The deconvolution can effectively improve the resolution 

of the reflection signal if two primary assumptions can be met extremely. The first 

assumption is the subsurface is horizontally layered and homogeneous. The second one 

is the propagating signal should be plane-wave. For GPR testing scene, these are very 

restricting assumptions as the subsurface is complex and usually inhomogeneous. 

Moreover, the GPR is a short-range system [57] when scanning some shallowly buried 

targets, so the GPR signal propagates in near field and can not be modeled as plane-wave. 

Therefore, the effectiveness of deconvolution technique is not assured if no special 

handling is performed [107]-[108]. Regularized deconvolution with calibration testing 

on directly coupling signal [109], metal plate reflection signal in free space [110], and 

attenuation model [111] is more practical for GPR inspection scene. 

1.3.6. Migration 

Since the GPR antenna receives the field scattering while moving above the 

buried object along the inspection direction, the EM waves reflecting back from the same 

object have different travel times to the GPR antennas at different positions. For instance, 

as demonstrated in Figure 1.8, for a ground-coupled monostatic GPR system, when the 

antenna is at location 1, the distance between the target and the antenna is 𝑅1. 

Correspondingly, the two-way travel time for the EM wave is 𝑡1 = 2𝑅1 𝑣⁄ , where 𝑣 =



 

21 

𝑐/√𝜀𝑟 is the propagation velocity of the EM wave in subsurface media. While antenna 

moves to the position right above the target, its range to the target is 𝑅2 and the two-way 

signal travel time is 𝑡2 = 2𝑅2 𝑣⁄ . In GPR B-scan image, the object pattern shows a 

hyperbolic distortion, which impairs the shape of buried target and decreases the cross-

range resolution of the GPR B-Scan image. Therefore, one of the most important GPR 

signal processing steps is to migrate the distorted GPR image to a focused one and 

reconstruct the true shapes and locations of buried targets. 

 

Figure 1.8: Hyperbolic distortion in GPR image: (a) geometrical layout of GPR inspection; (b) 

hyperbolic distortion in GPR B-Scan image [112]. 
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The concept of migration was originally proposed for processing seismic images 

[113]-[114], and introduced to the GPR imaging thanks to the likenesses between the 

acoustic and EM wave equations [112]. Conventional migration methods for GPR 

imaging include the hyperbolic summation, Kirchhoff’s migration, phase-shift 

migration, frequency-wavenumber (𝜔-𝑘) migration, and back-projection migration. 

Hyperbolic summation (HS) migration [115] is a GPR version of the diffraction 

summation method [116] that has been successfully applied in seismic data processing. 

The HS migration method assumes the B-Scan image can be modeled as the contribution 

of finite number of hyperbolas that correspond to different points on the targets. It is 

implemented as a summation of the diffraction energies along a hyperbolic trajectory 

operating on spatial domain [117]. 

Kirchhoff’s migration [118] is also known as reverse-time wave equation 

migration whose aim is to find the Kirchhoff solution of the wave equation within the 

propagating medium based on Huygen’s principle [119]-[120]. The Kirchhoff’s 

migration can produce a good reconstructed radar image for monostatic GPR setup. 

However, the Kirchhoff’s migration is derived from the zero-offset exploding reflector 

model [121], so it does not account for the spatial offset between the transmitter antenna 

and receiver antenna, which make it infeasible for bistatic GPR or multistatic GPR. 

Phase-shift migration [122] method iteratively compensates a phase-shift to 

migrate the wave field to the exploding time of 𝑡 = 0 such that all the scattered waves 

are mapped back to target scene. The main objective of the phase-shift migration method 

is to calculate the wave field at 𝑡 = 0 by extrapolating the EM wave in range direction 
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with a phase factor [112]. The concept and assumption of the phase-shift migration is 

similar to Kirchhoff’s migration [123], therefore, it is only designed to work for 

monostatic GPR configuration. 

Frequency-wavenumber (𝜔-𝑘) migration technique is based on the phase-shift 

migration algorithm, which was first proposed for seismic imaging applications [124] 

and then adapted to the synthetic aperture radar (SAR) imaging [125]-[130]. This 

algorithm is also called as seismic migration algorithm, 𝑓-𝑘 migration algorithm, or Stolt 

migration algorithm (SMA) by different researchers. For simplicity, we call it SMA in 

this dissertation. The main idea of the SMA is the interpolation operation in the 

wavenumber-wavenumber domain to obtain the reconstructed image in the scene space. 

The SMA works faster than the aforementioned migration techniques. Unfortunately, the 

traditional SMA also fails to consider the spatial offset between the transmitter antenna 

and receiver antenna, so it can only work for monostatic GPR imaging. Some modified 

or improved SMAs were proposed in [131]-[132] for multiple-input multiple output 

(MIMO) radar system claiming the separation between the transmitter antenna and 

receiver antenna was considered, nevertheless, those modified SMAs are formulated 

from the models of transmitted signals in air or free space medium. Thus, they do not 

perform well in subsurface lossy medium [133] for GPR applications. 

Back-projection algorithm (BPA) was first introduced as a seismic migration 

method [113] and then further developed for SAR imaging applications [134]-[137]. The 

BPA algorithm characterizes the differences in the two-way EM wave propagating 

distance at different antenna locations and projects the collected data points from the 
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recorded time instances back to their true spatial locations in scene space. The primary 

advantage of BPA is its flexibility in handling the configuration of radar systems. 

Theoretically, once the exact location of the antenna is measured and the propagating 

path of the EM wave is determined, BPA can reconstructed the target from the radar 

image. Therefore, BPA has the potential to be extended to air-coupled bistatic and 

multistaic GPR system. Secondly, since each of the A-Scan traces is serially processed 

and back-projected to the entire GPR image independently, the BPA does not require a 

straight and uniformly sampled synthetic scan aperture [112]. This “independently 

processing” property of BPA also implies its capability of the real-time imaging as the 

GPR scanning is undergoing. Thirdly, the BPA can project the GPR time-domain data 

points back to a specific sub-region of the scene space. For GPR applications where the 

approximate location of the buried target or the region of interest (RoI) is a priori-

knowledge, the BPA can directly imaging the RoI instead of the whole subsurface region. 

Therefore, using some RoI detection algorithms as the pre-processing, the GPR imaging 

efficiency of BPA can be improved dramatically. 

1.3.7. Attribute Analysis 

Attribute analysis extracts the information about the relative reflectivity, 

amplitude, frequency, phase relationships and statistical features to aid GPR data 

interpretation. 

The basic attribute analysis is performed on the whole A-Scan signal, e.g. mean 

amplitude, peak amplitude and time delay between two peaks, which can be used for 

many GPR applications, such as, estimating the dielectric constant of the subsurface 
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media [5], [138], the density of the asphalt pavement [139]-[141], the thickness of the 

asphalt pavement [142]-[143]. Some attribute analysis methods operate on the data points 

within a time window, e.g. instantaneous amplitude, instantaneous phase and 

instantaneous frequency. Those instantaneous features have been utilized for estimation 

of water content [144], detection of subsurface contaminant [145]-[146], detection of 

fouling railroad ballast [147], etc. Recently, joint time-frequency techniques considering 

both the temporal features and frequency features have been explored for analyzing and 

interpreting GPR data, which include empirical mode decomposition (EMD) [148]-

[151], short-time Fourier Transform (STFT) [152]-[154], wavelet transform [155]-[157] 

and curvelet transform [158]-[159], etc. 

1.3.8. Gain Adjustment 

Gain adjustment modifies the signal amplitude to improve the visualization of the 

GPR image. Since the data values are manipulated, the relative amplitudes information 

or phase relationships within the GPR image are changed. Therefore, we would like to 

perform the gain adjustment as the last GPR signal processing step. 

To eliminate the signal attenuation during transmitting in subsurface media and 

enhance the target scattering signal, a scaling function 𝐴(𝑑) is multiplied to the 

amplitudes of received signal at different depths. Typically, a deeper 𝑑 corresponds to a 

larger value of 𝐴(𝑑). Theoretically, for the visual purpose, the scaling function 𝐴(𝑑) can 

be arbitrary function defining by the GPR operator or user. However, we have to admit 

that gain adjustment manipulates the data values, so the bias from GPR operator is 
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inevitable. Moreover, since the gain is applied to all the data points in the GPR image, 

both the target signal and noises are amplified simultaneously in an indiscriminate way. 

 Here, a practical gain function based on characterizing the signal propagating 

loss in the subsurface media [10], [13] is described as an example. For the signal 

penetration in a uniform or homogeneous media, the attenuation is linearly proportional 

to the penetrating depth. The gain function of signal transmitted in the media can be 

characterized as 

 𝑔(𝑚) = 𝑔(1) +
𝑔(𝑀)−𝑔(1)

𝑀−1
(𝑚 − 1), 𝑚 = 1,2, … , 𝑀 (1.4) 

where 𝑚 represents the index of the sample along the range direction (penetrating depth) 

in B-Scan image while 𝑔(𝑚) (unit: dB) indicates signal attenuation. Assuming the 

incident signal voltage amplitude at the ground surface is 𝑉(0) and the voltage amplitude 

at depth 𝑑 is 𝑉(𝑑), we have 

 20 log (
𝑉(0)

𝑉(𝑑)
) = 𝛼 · 𝑑 (1.5) 

where 𝛼 is the attenuation coefficient (unit dB/meter) and 𝑑 is the penetrating depth. 

𝑉(𝑑) can be derived as 

 𝑉(𝑑) = 𝑉(0) × 10−
𝛼·𝑑

20  (1.6) 

The value of 𝛼 can be determined by [160]: 

 𝛼 = 𝜔√𝜀𝜇 {
1

2
[√1 + (

𝜎

𝜔𝜀
)

2
− 1]}

1 2⁄

 (1.7) 

where 𝜎 is the electrical conductivity of the media, 𝜇 is the permeability of the media, 

𝜇 = 𝜇0 = 4𝜋 × 10−7henry/m, 𝜔 = 2𝜋𝑓, 𝜀  is the dielectric permittivity. 
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When the penetrating depth increases by 𝑑 meters, the signal round trip 

transmission distance increases by 2𝑑 meters. If the signal attenuation/transmitting 

distance ratio is 𝛼 dB/meter, the round trip signal attenuation is thus 2𝛼 dB. An 

exponential parameter 𝐴(𝑑) can be multiplied to 𝑉(𝑑) to compensate signal transmission 

attenuation and make it outstanding from the background. The scaling function 𝐴(𝑑) can 

be derived based on Eq. (1.6): 

 𝐴(𝑑) = 10
2𝛼𝑑

20 = 10
𝛼𝑑

10  (1.8) 

1.3.9. Image analysis 

Recently, computer vision techniques have drawn the attention of GPR research 

community for analyzing, interpreting and understanding the GPR image. Machine 

learning techniques were adopted for buried target detection [161]-[163] and signal 

classification [164]-[165]. Pattern recognition techniques [166]-[167] were utilized to 

detect the hyperbolas representing the buried targets in the GPR image. The popular and 

sparking deep learning methodologies were also explored by GPR researchers for buried 

target detection [168]-[172] and classification in GPR image [173]-[175]. The accuracy 

of the detection and classification by machine learning or deep learning techniques is 

primarily dependent on the amount of the training data. However, differing from 

computer vision applications, the images or datasets for radar applications are not often 

open to the academia community. Therefore, the limitation of the data source as training 

dataset could be an obstacle to the transition of deep learning application from computer 

vision to radar imaging. 
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1.3.10. Region of Interest Detection 

For the aforementioned GPR signal processing steps, the algorithm 

computational cost is always an issue, especially for GPR field test data whose data size 

could be extremely large. In a large radargram, the targets or the scatters of interests are 

typically distributed sparsely in the imaging region. Therefore, reducing the data scope 

to sporadically distributed singular regions or region of interest (RoI) can facilitate 

sophisticated post-processing. The RoI detection can be integrated into any GPR signal 

processing steps as a pre-processing. Then the specific algorithm is only performed on 

the sub-regions of the GPR image, which can leverage the computation efficiency and 

minimize the space cost of the algorithm. For instance, for back-projection imaging 

algorithm, if the RoI is a prior knowledge, the BPA can just be performed on the RoI as 

the scene space instead of the whole GPR scanning region. 

1.3.11. Summary 

In this section, the typical GPR signal problems are introduced and the 

corresponding methodologies are reviewed. Among those problems, trace editing, 

rubber-banding, time-zero correction and gain adjustment already have standard 

processing methodologies and protocols. They have already been standardized and 

integrated into some commercial GPR signal processing software products, such as 

RADAN by GSSI [179], ObjectMapper by MALA [180], etc. For dewow, deconvolution 

and attribute analysis, even though no so-called standard algorithm or methodology 

exists, the state-of-the-art research results can already handle these problems well. Most 

of well functional methodologies have already been implemented and included in a free 
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GPR data processing tool, the MATGPR [181]. However, the clutter removal filtering, 

region of interest detection and image migration are still open questions lacking of very 

effective and efficient methodologies. Therefore, they are the major GPR signal 

processing problems that will be addressed in the following chapters of this dissertation. 

Please note, image analysis is actually a problem more relevant to computer vision and 

machine learning research areas, so it is not included in the topics of this dissertation 

even though it is essential and challenging. 

1.4. Objective and Scope 

The objective and focus of this dissertation is to investigate the key techniques to 

tackle with GPR signal processing from three perspectives: (1) Removing or suppressing 

the radar clutter signal; (2) Detecting the region of interest (RoI) in the GPR image; (3) 

Imaging the underground target to eliminate or alleviate the hyperbolic distortion and 

reconstructing the shape of the target with good fidelity. 

The first part of this dissertation, consisting of Chapter 2 and Chapter 3, tackles 

with the clutter removal problems in through-the-wall radar (TWR) imaging and GPR 

imaging respectively. In Chapter 2, for TWR imaging, in-wall clutter data from rebars or 

pipes inside the wall is modeled as a low-rank matrix, while the data from the foreground 

target under testing is modeled as a sparse matrix that lies on top of the in-wall clutter. 

The in-wall clutter suppression problem for TWR image processing is then transformed 

into a low-rank and sparse representation optimization problem. A low-rank and sparse 

representation method is explored and developed to mitigate the in-wall structure 

reflection so as to leverage behind-wall object detection effectiveness in TWR image 
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processing. In Chapter 3, this low-rank and sparse representation based approach is 

improved and extended to remove the clutter produced by rough ground surface 

reflection for GPR imaging applications. For rough or non-flat ground surface, the 

surface clutter components in different A-Scan traces are not aligned on the depth axis. 

To compensate for the misalignments and facilitate clutter removal, the A-Scan traces in 

a GPR data matrix are aligned using cross-correlation method. The low-rank and sparse 

representation technique is then developed to decompose the aligned GPR data matrix 

into two sub-matrices: a low-rank matrix whose column data records the ground clutter 

in A-Scan traces, and a sparse matrix that features the subsurface object. 

The second part, consisting of Chapter 4 and Chapter 5, explores the methodology 

for detecting the region of interest (RoI) in the GPR image. Chapter 4 proposes the 

utilization of two-dimensional (2-D) entropy analysis to narrow down the data scope to 

the interested regions, which can considerably reduce the computational cost for 

sophisticated post data processing steps. Joint time-frequency analysis using Short Time 

Fourier Transform (STFT) is then performed for singular region location detection and 

refinement. Chapter 5 improves the entropy-based algorithm to automate and facilitate 

the detection of suspicious fouling ballast regions or Regions of Interest (ROI) within big 

GPR survey data sets. An analytic method using Hilbert Transform is developed to 

extract the pulse signal envelope and characterize the scattering signal power. 

Furthermore, an automatic layer identification method based on signal decomposition is 

implemented to detect and isolate the ballast region from the ground surface. Finally, the 

2-D entropy analysis is performed on the scattering data corresponding to ballast region. 
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Such data processing approaches leverage the performance of 2-D entropy analysis and 

eliminate the need of STFT for singular region identification. The improved 

methodology can effectively facilitate the post processing and interpretation for large 

volume of GPR ballast inspection data. 

In the third part, Chapter 6, a back-projection imaging algorithm is designed for 

both ground-coupled multistatic GPR and air-coupled multistatic GPR configurations. 

Since the refraction phenomenon at the air-ground interface is considered and the spatial 

offsets between the transceiver antennas are compensated in this algorithm, the data 

points collected by receiver antennas in time domain can be accurately mapped back to 

the spatial domain and the targets can be imaged in the scene space with good fidelity. 

Comparing to the monostatic GPR imaging and bistatic GPR imaging, the multistatic 

GPR imaging can produce higher signal-to-noise ratio (SNR), lower shadowing effects, 

high detection rate and better robustness for GPR infrastructure inspection applications. 

Chapter 7 concludes that the proposed three-stage cascade signal processing 

methodologies can improve the performance of GPR system. The further work based on 

this dissertation is also remarked in Chapter 7. 
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CHAPTER 2: IN-WALL CLUTTER SUPPRESSION BASED ON LOW-RANK 

AND SPARSE REPRESENTATION FOR THROUGH-THE-WALL RADAR 

Abstract 

For Through-the-Wall radar (TWR) signal processing, there exist extensive 

studies on removing the wall surface reflection signal, while how to eliminate/alleviate 

the in-wall structure reflection is not well addressed. In many building structures, a layer 

of reinforced steel bars and utility pipes exist inside the wall which can cause strong 

clutter to overwhelmingly mask the reflection signal from the targets under test behind 

the wall. Such clutter cannot be mitigated using the conventional wall clutter removal 

methods. Thus, a new effective technique to remove the strong inside-wall rebar or pipe 

reflection is indispensable. Considering the correlated features of the in-wall rebar or 

pipes, and the spatial sparsity of the behind-wall targets under test, a low-rank and sparse 

representation model based in-wall clutter suppression algorithm is developed in this 

letter for target feature enhancement and detection. Experiments on both simulation data 

and field test data are performed for performance evaluation and validation. 

Keywords: Through-the-wall radar; in-wall clutter suppression; low-rank 

representation; sparse representation. 

2.1. Introduction 

Through-the-Wall radar (TWR) system is widely used to detect the targets behind 

walls or map the structure of a building. It allows security agents, rescue personnel, first 

responders, and defense forces to detect, identify, classify and track the whereabouts of 

humans and moving objects [1]-[4]. 
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In the TWR imaging, the strong clutter due to wall reflection often overwhelms 

reflection signal from the stationary targets under test behind the wall or inside the 

building. Many methods have been developed to mitigate the wall clutter, including 

subspace projection approach [5], time gating based on entropy criterion [6], spatial 

filtering [7]-[9], etc. The subspace projection approach [5] is based on the strength 

difference between the exterior wall reflection and the behind-wall targets reflection. It 

applies singular value decomposition to the data matrix to identify the wall subspace. 

Orthogonal subspace projection is then performed to remove the wall electromagnetic 

signature from the data matrix. Ref. [6] observes that the field reflected from a layered 

background medium has a strong similarity over different sensor positions. Then, an 

entropy-based windowing function is defined as to null the signal over instants of time 

where different traces exhibit high similarity. Spatial filtering method [7], [9] utilizes the 

strong similarity between wall EM responses from different antennas. Considering that 

reflection signal from targets with limited spatial extent vary from sensor to sensor, a 

spatial filter across the antenna scan axis is applied to mitigate the spatial zero-frequency 

and low-frequency components which correspond to wall reflections. 

The above wall clutter removal methods are generally based on two assumptions: 

(1) The wall surface responses are much stronger than that of the behind-wall targets; or 

(2) The wall surface reflection are relatively constant signals at each antenna scan 

position while the target reflection is a varying signal. However, for many building 

structures, a layer of reinforced steel bars or utility pipes exist inside the wall, which also 

produce strong clutters. Such strong interference reflection may overwhelmingly mask 



 

47 

the reflection signal from the targets under test behind the wall. However, such clutters 

are stronger than target responses while weaker than wall clutter. It is infeasible to 

determine a perfect threshold for the subspace projection approach [5] without any prior-

knowledge. On the other hand, such type of clutters is also varying at each scan position, 

thus it cannot be distinguished from the behind-wall targets through entropy based time 

gating [6] or spatial filtering [7]-[9]. Therefore, a new effective method to remove the 

strong in-wall rebar and pipe reflection is necessary and valuable for TWR image 

processing. 

In TWR scan, the wall surface clutter forms the stationary background signal 

while the behind wall target signal is considered as the foreground signal. Multiple rebars 

or pipes inside the wall generally show similar image patterns that are highly correlated 

among each other, which is the correlated background signal and named the in-wall 

clutter in this letter. The objective of this study is to investigate how to mitigate the in-

wall clutter and enhance the feature of targets in a TWR image. 

As the conventional TWR wall clutter removal methods are not effective for the 

in-wall clutter mitigation, the possibilities of several foreground image feature 

enhancement or detection methods that have been developed for ground penetrating radar 

(GPR) and TWR imaging systems are examined. In Ref. [10]-[11], an exponential scaling 

method is developed to compensate for the signal attenuation loss along the radar scan 

range. However, if the target is closely attached to the wall, the reflection signal of the 

target behind the wall and the clutter reflection due to the in-wall object are both 

enhanced, which inadvertently increases the difficulty of feature isolation. A pattern 
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matching method based on the calculation of cross-correlation [12] in the TWR image 

can deal with the difficult case when targets and the in-wall clutter overlap in time 

domain. In the data processing, the signature image pattern of the in-wall object, such as 

rebar, is utilized as the reference for correlated matching pattern search and 

identification. However, when the target under test is a cylinder object of similar size 

with the rebar or pipes inside the wall, it results in a similar image pattern that is hard to 

be isolated in the detection. 2D entropy analysis [13], [14] is developed to detect the 

abnormal region in the radar image by characterizing the statistical distribution of the 

reflection signal energy distribution assuming rebars or pipes are regularly and uniformly 

located in the region under inspection. However, for tests where such assumptions do not 

hold, the effectiveness of 2D entropy analysis is degraded. 

The latest mathematic theory low-rank and sparse representation [15]-[16] is able 

to decompose a matrix 𝐷 as a superposition of a low-rank matrix 𝐿 (few non-zero singular 

values) and a sparse matrix 𝑆 (few non-zero entries). It has been applied to some research 

areas, such as hyperspectral image denoising [17], hyperspectral image classification 

[18], batch image alignment [19], and foreground extraction in video surveillance [20], 

etc. In TWR imaging scheme, the in-wall clutter data from rebars or pipes inside the wall 

forms a low-rank matrix, while the data from the foreground target under test produces a 

sparse matrix that lies on top of the in-wall clutter. The in-wall clutter suppression 

problem for TWR image processing can be transformed into a low-rank and sparse 

representation optimization problem. In this letter, we explore to utilize and develop low-
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rank and sparse representation algorithm to mitigate the in-wall structure reflection so as 

to leverage behind-wall object detection effectiveness in TWR image processing. 

The reset sections of this chapter are organized as: Section 2.2 describes the 

principle of low-rank and sparse representation. Section 2.3 models the in-wall clutter 

suppression in TWR imaging as a low-rank and sparse representation. Section 2.4 

demonstrates experiments on both the simulation data and field test TWR data. Section 

2.5 summarizes the concluding remarks. 

2.2. Low-Rank and Sparse Representation 

The low-rank and sparse representation interprets the observed data matrix 𝐷 ∈

ℝ𝑚×𝑛 as a superposition of a low-rank matrix 𝐿 ∈ ℝ𝑚×𝑛 and a sparse matrix 𝑆 ∈ ℝ𝑚×𝑛, 

where 𝐿 represents the correlated background, while 𝑆 models the foreground target 

features on top of the correlated background. The mathematical expression is 𝐷 = 𝐿 +

𝑆. 

Decomposing the test data matrix 𝐷 into 𝐿 and 𝑆 is an optimization problem [15]. 

Through Lagrangian reformulation, it can be expressed as: 

 min
𝐿,𝑆

𝑟𝑎𝑛𝑘(𝐿) + 𝜆‖𝑆‖0    𝑠. 𝑡.   𝐷 = 𝐿 + 𝑆 (2.1) 

According to Ref. [12], in the general rectangular case, where 𝑚 ≥ 𝑛, if 

 𝑟𝑎𝑛𝑘(𝐿) ≤ 𝜌𝑟
𝑛

(log 𝑚)2 (2.2) 

and 

 ‖𝑆‖0 ≤ 0.1 ∗ 𝑚𝑛 (2.3) 

with the probability at least 𝑝 = 1 − 𝑐𝑚−10, matrix 𝐿 and 𝑆 can be uniquely recovered 

by solving Eq.(2.1). In Eq. (2.2) and (2.3), 𝜌𝑟 and c are positive numerical constant 
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coefficients. Eq. (2.2) restricts the rank of the matrix 𝐿, while Eq. (2.3) defines the 

sparsity requirement for the matrix 𝑆. In other words, Eq. (2.2) and Eq. (2.3) specify the 

conditions of the matrix decomposition in Eq. (2.1). 

Unfortunately, Eq. (2.1) is a highly nonconvex optimization problem with no 

efficient solutions. In essence, Eq. (2.1) subsumes both the low rank matrix completion 

problem and the 𝑙0-minimization problem, both of which are NP-hard [21]. By replacing 

the 𝑙0-norm with the 𝑙1-norm, and the rank of 𝐿 with the nuclear norm ‖𝐿‖∗ = ∑ 𝜎𝑖(𝐿)𝑖 , 

a tractable optimization problem can be obtained [15] 

 min
𝐿,𝑆

‖𝐿‖∗ + 𝜆‖𝑆‖1    𝑠. 𝑡.   𝐷 = 𝐿 + 𝑆 (2.4) 

where ‖𝐿‖∗ is the nuclear norm or sum of singular values of matrix 𝐿, ‖𝑆‖1 is the 𝑙1-

norm or sum of absolute values of the entries of 𝑆, and 𝜆 is a tuning parameter that 

balances the contribution of the  𝑙1-norm term relative to the nuclear norm term. The 

mathematical analysis in [16] proves that the choice of 𝜆 = 1 √max (𝑚, 𝑛)⁄  for matrices 

of size 𝑚 × 𝑛 is universal for solving the optimization problem in Eq. (2.4). 

The solution of the optimization problem in Eq. (2.4) is unique and the problem 

is well posed if the low-rank component is not sparse, and vice versa if the sparse 

component does not have low rank [16]. Such condition indicates the incoherence 

between the matrix 𝐿 and 𝑆. Under such condition, the optimization problem in Eq. (2.4) 

can be solved utilizing the mathematical toolbox TFOCS [22]. 

2.3. In-Wall Clutter Suppression for See-through-wall Radar 

The TWR imaging scenario is depicted in Figure 2.1. The transceiver antennas 

move along the wall for imaging the object behind the wall. Generally, four types of 
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reflection signals are collected by the receiver antenna. As shown in Figure 2.1, 𝑎1 is the 

reflection signal from the exterior wall surface, 𝑎2 is the reflection signal from the rebar 

or pipes inside the wall, 𝑎3 is the reflection signal from the interior wall surface, and 𝑎4 

is the reflection signal from the object. Typically, the wall is modeled as a laterally 

homogeneous layer in TWR imaging scheme [6]. Thus, both the reflection signals 𝑎1 and 

𝑎3 are both stationary background signals. The rebars or utility pipes inside the wall 

produce similar image patterns, while their distributions along the antenna scanning axis 

can be irregular. The reflection signal 𝑎2 is called the in-wall clutter in this letter. 

 

Figure 2.1: TWR imaging scenario 

Based on above description, the signal collected at the 𝑛th observation position 

can be modeled as 

 𝑥𝑛(𝑡) = 𝑏𝑛(𝑡) + 𝑙𝑛(𝑡) + 𝑠𝑛(𝑡) (2.5) 

where 𝑏𝑛(𝑡) is the static background signal reflected from the wall, 𝑙𝑛(𝑡) is the correlated 

background signal produced from the in-wall rebar or pipes, and 𝑠𝑛(𝑡) is the object signal 

under detection. In TWR researches [5]-[9], various clutter removal methods have been 

developed to mitigate or remove the background signal 𝑏𝑛(𝑡). The resulting signal model 

upon clutter removal can be expressed as 
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 𝑑𝑛(𝑡) = 𝑙𝑛(𝑡) + 𝑠𝑛(𝑡) (2.6) 

In this chapter, a low-rank and sparse representation based approach is investigated to 

suppress the correlated background signal, i.e. in-wall clutter 𝑙𝑛(𝑡) so as to enhance the 

object signal 𝑠𝑛(𝑡). 

For TWR data processing, 𝑑𝑛(𝑡), 𝑙𝑛(𝑡) and 𝑠𝑛(𝑡) are recorded as 𝑀 × 1 vectors 

𝒅𝒏, 𝒍𝒏, and 𝒔𝒏 respectively. 𝑀 is the number of samples collected at each scan position. 

Assembling the data of all 𝑁 scan positions lead to the following 𝑀 × 𝑁 data matrices: 

 𝑫 = [𝒅𝟏, 𝒅𝟐, 𝒅𝟑, … , 𝒅𝑵] (2.7) 

 𝑳 = [𝒍𝟏, 𝒍𝟐, 𝒍𝟑, … , 𝒍𝑵] (2.8) 

 𝑺 = [𝒔𝟏, 𝒔𝟐, 𝒔𝟑, … , 𝒔𝑵] (2.9) 

According to Eq. (2.6), 

 𝑫 = 𝑳 + 𝑺 (2.10) 

Since 𝑳 contains the correlated background data, the rank of 𝑳 matrix is low. 

While for the object data matrix 𝑺, the object features are spatially sparse, therefore 𝑺 is 

a sparse matrix. As shown in Figure 2.1, the object behind the wall is at different range 

distance from the rebar or pipes inside wall, the data matrix 𝑫 can thus be inherently 

represented as a superposition of the low-rank matrix 𝑳 and the sparse matrix 𝑺. Based 

on the analysis elaborated in Section 2.2, as long as the target is sparser than the in-wall 

clutter, the object signal 𝑺 can be extracted through suppressing the correlated 

background signal 𝑳 by solving Eq. (2.4). The procedures are summarized below:  

1. Pre-processing: Remove the stationary exterior and interior wall background signal 

using a 2-D high pass filter [9]. 
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2. Decompose the processed TWR data matrix 𝑫 ∈ ℝ𝑀×𝑁 into a low-rank matrix 𝑳 ∈

ℝ𝑀×𝑁 and a sparse matrix 𝑺 ∈ ℝ𝑀×𝑁 by solving Eq. (2.4) with tuning parameter 

𝜆 = 1 √max (𝑀, 𝑁)⁄ . 

3. Extract the object matrix 𝑺 after in-wall clutter suppression. 

2.4. Experimental results 

In order to validate the proposed TWR in-wall clutter suppression using low-rank 

and sparse representation technique, experiments are conducted. The test utilizes the data 

set synthesized with the simulation program GprMax [23], and field test data collected 

utilizing a commercial MALA CX radar system. 

2.4.1. Experiment with the Synthetic Data  

The geometry structure set up for producing the synthetic data is shown in Figure 

2.2(a), where the TWR transceiver antennas are 2.5 cm distant from the exterior surface 

of the wall. The wall is modeled as a homogeneous layer of 15 cm thickness which 

contains 8 rebars of 1.25 cm radius unevenly placed inside. The target behind the wall is 

another cylinder object of 1.25 cm radius. The distance between the target and interior 

wall surface is 5 cm. 

In the FDTD simulation, the TWR radiation signal is generated as a Ricker 

waveform (i.e. the normalized second derivative of a Gaussian pulse) with its center 

frequency being 900 MHz. During the scan, TWR data at 115 positions are uniformly 

collected from left to right along the horizontal direction in Figure 2.2(a). The raw B-

scan image is plotted as Figure 2.2(b) and the size of the data matrix is 2036 × 115. In 

the raw image, the exterior wall reflection shows as a horizontal line, and the rebars inside 
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the wall show hyperbolic features. In this setup, the hyperbolas in TWR image are 

repeatedly but not periodically distributed. The reflection signal from the target is 

invisible in the raw TWR image for being masked by the strong background signal. 

  

(a) (b) 

Figure 2.2: Synthetic data: (a) Geometry structure; (2) Raw TWR image. 

After applying the stationary background removal [9], the wall surface reflection 

signal is eliminated, and the pre-processed TWR is shown as Figure 2.3(a) where the 

target is still not visible. 

For this test data processing, the tuning parameter in Eq. (2.4) is calculated as 

𝜆 = 1 √max (2036, 115) ≈ 0.022⁄ , and the sparse object matrix is extracted from the 

pre-processed TWR data. The processed TWR image upon the in-wall clutter 

suppression is depicted as Figure 2.3(b), where the target feature clearly stands out. 
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(a) (b) 

Figure 2.3: Processed synthetic data: (a) Pre-processing – stationary background removal; (b) In-

wall clutter removal with low-rank and sparse representation technique. 

To quantitatively evaluate the performance of the in-wall clutter suppression 

method, signal-to-clutter ratio (SCR) is used as a metric for characterizing the power 

ratio between the backscattering signal from the targets under test and the clutter. Let 𝑐𝑡,𝑛 

be the in-wall clutter data at the time index 𝑡 and scan axis 𝑛, and 𝑠𝑡,𝑛 be the target 

reflection data at the time index 𝑡 and scan axis 𝑛. The in-wall clutters are within the 

region 𝑅𝑐 = {(𝑡, 𝑛)|𝑡 ∈ (𝑡1, 𝑡2), 𝑛 ∈ (𝑛1, 𝑛2)}, and the target reflection signals are within 

the region 𝑅𝑠 = {(𝑡, 𝑛)|𝑡 ∈ (𝑡3, 𝑡4), 𝑛 ∈ (𝑛1, 𝑛2)}. The SCR is calculated as 

 SCR = 20 log10
∑ ‖𝑠𝑡,𝑛‖

2
𝑅𝑠

∑ ‖𝑐𝑡,𝑛‖
2

𝑅𝑐

 (2.11) 

For the pre-processed TWR image in Figure 2.3(a) consisting of correlated 

background and object signal, the SCR is calculated as -4.22 dB. While for the correlated 

background removed TWR image in Figure 2.3(b), the SCR is improved to 26.36 dB. 

To further evaluate the algorithm performance, comparison with the cross-

correlation based pattern matching method [12] is made on the synthetic data. Figure 2.4 
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is the TWR B-scan image obtained using pattern matching method corresponding to the 

synthetic data. In the TWR imaging scheme, the in-wall rebars show hyperbolic features 

in the TWR image. When the distance between two adjacent rebars is small, their 

hyperbolic patterns overlap. When the in-wall rebars are unevenly distributed inside the 

wall, the overlapping areas vary which results in different image patterns for different 

rebars. However, during the pattern matching, the same hyperbola pattern is used as the 

reference for cross-correlation calculation, the matching accuracy is thus not high, and 

undesired noises and distortions are produced upon background signal subtraction. For 

the processed TWR image, its SCR is calculated to be 6.00 dB only, which is much lower 

than 26.36 dB SCR value obtained with our proposed method. 

 

Figure 2.4: Processed simulation data using pattern matching. 

2.4.2. Experiment with the Field Test Data 

To further evaluate the performance of the proposed in-wall clutter suppression 

method, a real field TWR sensing data set is collected using a MALA CX radar system. 

Shown in Figure 2.5(a), in the test, a computer hard disk is put on a wood shelf leaning 
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to the interior surface of a wall as the detection target. As depicted in Figure 2.5(b), the 

TWR scan is performed on the other side of the wall. 

  

(a) (b) 

 

 

(c) (d) 

Figure 2.5: Field test data: (a) A hard disk attached on the wall; (b) TWR scanning from the other 

side of the wall; (c) MALA concrete imaging system; (d) Raw TWR image. 

The radar system used in the test is MALA Concrete Imaging System coupled 

with a MALA 2.3 GHz HF Antenna, which is shown in Figure 2.5(c). TWR data are 

uniformly collected along the exterior wall surface at every 2.54 mm space. The raw 

TWR image is plotted in Figure 2.5(d). The data matrix size is 312 × 884. In the raw 

TWR image, the exterior wall reflection shows as a horizontal line at 1 ns, and the rebars 

inside the wall are displayed as hyperbolic features locating between 1 ns and 3 ns. The 
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reflection signal from the hard disk at cross-section of 3 ns and 0.5 m is barely visible in 

the raw TWR image for being masked by the strong background signal. 

The pre-processed TWR is shown as Figure 2.6(a). In the pre-processed TWR 

image, the wall surface reflection has been removed, however, the hard disk object 

feature is still obscure comparing with the strong in-wall clutter, i.e. the repeated 

hyperbolic features. 

To solve the low-rank and sparse representation optimization problem to suppress 

the correlated background data, tuning parameter 𝜆 = 1 √max (312, 884) ≈ 0.034⁄  is 

substituted into Eq. (2.4). As shown in Figure 2.6(b), the target feature is enhanced upon 

in-wall clutter suppression. 

  

(a) (b) 

Figure 2.6: Processed field test data: (a) Pre-processing – stationary background removal; (b) In-

wall clutter suppression. 

To quantitatively analyze the in-wall clutter suppression result, SCRs of the TWR 

images in the field test are calculated. For the pre-processed TWR image in Figure 2.6(a) 

consisting of correlated background and object signal, the SCR is -18.20 dB. While for 
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the correlated background suppressed TWR image in Figure 2.6(b), the SCR becomes 

17.75 dB. Apparently, the low-rank and sparse representation based in-wall clutter 

removal method improves SCR by 35.95 dB comparing with the pre-processed TWR 

image. The quantitative analysis results corroborate the effectiveness of the low-rank and 

sparse representation based in-wall clutter suppression in TWR data processing. 

Similar to the simulation data processing, the field test data in Figure 2.6(a) is 

processed by the pattern matching method as well. The resulting image is plotted in 

Figure 2.7. Due to the unevenly distribution of the in-wall clutter and the test 

environmental noises, the in-wall clutter cannot be mitigated effectively utilizing the 

pattern matching approach. The SCR of the processed TWR image is as low as -13.41 

dB. 

 

Figure 2.7: Processed field test data using pattern matching. 

In sum, the proposed in-wall clutter suppression method based on low-rank and 

sparse representation is more robust to the uneven distribution of the in-wall rebars or 

pipes. Further, the proposed method does not produce fake scattering and undesired 

image distortion comparing with the cross-correlation based pattern matching method. 
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2.5. Conclusions 

In this letter, the correlated TWR image background suppression using low-rank 

and sparse representation algorithm has been investigated, where the distribution of 

targets under test is significantly sparser than that of the in-wall clutter. The proposed 

method can automate the suppression of in-wall clutter, without the need of prior 

knowledge about the target under test. Also, comparing with the conventional cross-

correlation based background subtraction methods, the proposed approach is insensitive 

to the distribution of the correlated background matrix, which makes it effective for 

practical use. Experiments with both the synthetic data and the field test data indicate 

that the proposed in-wall clutter suppression technique can effectively improve the SCR 

of the TWR image. 
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CHAPTER 3: AIR COUPLED GROUND PENETRATING RADAR CLUTTER 

MITIGATION FOR ROUGH SURFACE SENSING 

Abstract 

Ground penetrating radar (GPR) is a non-destructive evaluation technique 

specifically effective for detecting buried objects. Due to the signal propagation loss, the 

scattering from buried objects is much weaker than the clutter signal produced by the 

ground surface. To extract the weak scattering from the subsurface object, removal of the 

strong ground surface clutter is an issue of predominance. This chapter explores a low-

rank and sparse representation based signal decomposition technique to remove the 

clutter produced by rough ground surface for air-coupled GPR, where the time instance 

and the amplitude of surface clutter components in each A-Scan trace vary. The 

performance of the proposed clutter removal method is evaluated through simulations 

and laboratory experiments. 

Keywords: ground penetrating radar, clutter removal, low-rank representation, sparse 

representation, cross-correlation, non-destructive evaluation. 

3.1. Introduction 

GPR is a non-destructive evaluation technique specifically effective for detecting 

buried objects [2]-[5]. Based on antenna configurations, GPR system can be typically 

classified as ground-coupled GPR and air-coupled GPR. Comparing with the ground-

coupled GPR system, the air-coupled GPR sensing provides the benefit of high survey 

speed due to the large standoff distance between the antennas and the ground surface. 

Whereas the large standoff distance leads to significant propagation losses [1], the 
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reflection signal amplitude from the subsurface object is greatly reduced. In order to 

extract the weak scattering from the subsurface object, removal of the strong ground 

surface clutter is an issue of predominance for air-coupled GPR signal processing.  

Many clutter removal methods have been investigated in the literature, which 

generally deal with relatively flat ground surfaces. These methods include average 

subtraction [7], spatial filtering [8]-[9], etc. Assuming the clutter in each A-Scan shows 

high similarity, the average subtraction method calculates the average of different A-

Scan traces as the background signal, which is then subtracted from each A-Scan to 

remove the clutter while enhance the target scattering signal. Spatial filtering method 

utilizes the same assumption to filter out the clutter data corresponding to the ground 

surface reflection. Considering the reflection signal from the buried object with limited 

spatial extent varies in different A-scan traces, a spatial filter is thus applied along the 

antenna moving direction to mitigate the spatial zero-frequency and low-frequency 

components corresponding to clutter. When the ground surface conditions are 

complicatedly rough, the effectiveness of average subtraction and spatial filtering clutter 

removal algorithms is degraded. Some other clutter removal methods can deal with rough 

ground surfaces, such as subspace projection approach [5], principal component analysis 

(PCA) [11], independent component analysis (ICA) [12], time gating [13], etc. The 

subspace projection approach is based on the reflection energy difference between the 

ground surface and the buried object. Singular value decomposition (SVD) is performed 

on the data matrix to identify and remove the ground surface electromagnetic signature. 

Unfortunately, it is infeasible to determine an appropriate threshold value for the 
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subspace projection when no prior-knowledge about the underground structure is 

available. PCA and ICA methods also decompose the GPR data into subspace 

components, and then select a subset of components containing buried object 

information. However, the components selection process is performed with intensive 

human interventions. In the time gating method, a windowing function is defined to null 

the signal segments over the time intervals where different signal traces exhibit a high 

similarity, which facilitates clutter signal removal. However, the accuracy of time gating 

method is low when the target is shallowly buried where the ground clutter and target 

scattering overlap.  

To tackle such problems, in this chapter, a low-rank and sparse representation 

based signal decomposition technique is explored to remove the clutter produced by 

rough ground surface reflection. The low-rank and sparse representation method has been 

proved to be effective in modeling the ground clutter data in GPR B-Scan images [14]-

[18]. Those methods assume the clutter components in A-Scan signals are at the same 

depth level. In other words, they only deal with relatively flat ground surface. For rough 

or non-flat ground surface, the surface clutter components in different A-Scan traces are 

not aligned on the depth axis. To compensate for the misalignments so as to facilitate the 

clutter removal, in this chapter, the A-Scan traces in a GPR data matrix are aligned using 

cross-correlation method. The low-rank and sparse representation technique is then 

developed to decompose the aligned GPR data matrix into two sub-matrices: a low-rank 

matrix whose column data record the ground clutter in A-Scan traces, and a sparse matrix 

that features the subsurface object. This chapter is an extension of the work presented in 
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a previous SPIE conference [19], where the preliminary study was performed. In this 

chapter, a Renyi entropy based analysis is developed to fine tune the clutter removal. 

More quantitative analysis on the methodology and experimental results are also 

conducted. Simulations and actual lab measurements are performed to evaluate the 

effectiveness of the proposed method. 

The rest sections of the chapter are organized as followings. Sec. 3.2 models the 

clutter on rough ground surface as a low-rank and sparse representation problem, and 

Sec. 3.3 describes the proposed clutter removal methodology. In Sec. 3.4, the 

effectiveness of the proposed method is evaluated using finite-difference time-domain 

(FDTD) simulation and real lab experiments. Sec. 3.5 summarizes the concluding 

remarks. 

3.2. GPR B-Scan Image Model 

In GPR survey, the signal collected at the 𝑛th observation position can be modeled 

as 

 𝑑𝑛(𝑡) = 𝑙𝑛(𝑡) + 𝑠𝑛(𝑡) (3.1) 

where 𝑑𝑛(𝑡) is the received A-Scan signal, 𝑙𝑛(𝑡) is the clutter due to ground surface 

reflection, and 𝑠𝑛(𝑡) is the reflection signal from the buried target.  

For GPR imaging, 𝑑𝑛(𝑡), 𝑙𝑛(𝑡) and 𝑠𝑛(𝑡) are recorded as 𝑀 × 1 vectors 𝒅𝒏, 𝒍𝒏, 

and 𝒔𝒏 respectively. 𝑀 is the number of samples collected at each scan position. 

Assembling the data of all 𝑁 scan positions leads to the following 𝑀 × 𝑁 data matrices: 

 𝑫 = [𝒅𝟏, 𝒅𝟐, 𝒅𝟑, … , 𝒅𝑵] (3.2) 

 𝑳 = [𝒍𝟏, 𝒍𝟐, 𝒍𝟑, … , 𝒍𝑵] (3.3) 
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 𝑺 = [𝒔𝟏, 𝒔𝟐, 𝒔𝟑, … , 𝒔𝑵] (3.4) 

In Eq. (3.2) – Eq. (3.4), 𝑫 ∈ ℝ𝑀×𝑁 is the observed GPR B-Scan image data matrix, 𝑳 ∈

ℝ𝑀×𝑁 is the data matrix featuring the ground clutter, and 𝑺 ∈ ℝ𝑀×𝑁 is the data matrix 

featuring the buried target, where 𝑀 represents the number of data points in each A-Scan 

trace, and 𝑁 represents the total number of A-Scan traces. According to Eq. (3.1), it has 

 𝑫 = 𝑳 + 𝑺 (3.5) 

For rough or non-flat ground surface, the surface clutter components 

𝒍𝟏, 𝒍𝟐, 𝒍𝟑, … , 𝒍𝑵 in different A-Scan traces 𝒅𝟏, 𝒅𝟐, 𝒅𝟑, … , 𝒅𝑵 are not aligned on the depth 

axis. To compensate for these misalignments so as to facilitate clutter removal, the cross-

correlation technique is applied. 

The first A-Scan signal 𝑑1(𝑡) is selected as the reference trace, and the cross-

correlation between 𝑑1(𝑡) and 𝑑𝑛(𝑡) is calculated to specify the time offset between the 

ground reflection of 𝑑𝑛(𝑡) and 𝑑1(𝑡) on the depth axis [20]. Assuming the optimal time 

offset computed from the cross-correlation analysis is ∆𝑡𝑛, the alignment operation on 

the 𝑛th A-Scan trace can be defined as 

 𝑑𝑛
′ (𝑡) = 𝑑𝑛(𝑡 − ∆𝑡𝑛) (3.6) 

Substituting Eq. (3.6) into the signal model in Eq. (3.1), the resulting signal model upon 

alignment can be expressed as 

 𝑑𝑛
′ (𝑡) = 𝑙𝑛

′ (𝑡) + 𝑠𝑛
′ (𝑡) (3.7) 

In this transformed model, 𝑙𝑛
′ (𝑡) is the clutter signal upon alignment adjustment, and 

𝑠𝑛
′ (𝑡) is the target scattering upon alignment adjustment. Since the alignment adjustment 

is a linear operation, the following relation between 𝑠𝑛(𝑡) and 𝑠𝑛
′ (𝑡) exists: 
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 𝑠𝑛
′ (𝑡) = 𝑠𝑛(𝑡 − ∆𝑡𝑛) (3.8) 

In this chapter, the low-rank and sparse representation technique is utilized to separate 

the correlated background clutter 𝑙𝑛
′ (𝑡) and the target signature 𝑠𝑛

′ (𝑡). 

Upon the alignment adjustment, the corresponding GPR B-Scan image model in 

Eq. (3.5) can be expressed as 

 𝑫′ = 𝑳′ + 𝑺′ (3.9) 

Since each column of 𝑳′ is the ground clutter upon alignment adjustment, the rank of 

matrix 𝑳′ is low. For the buried small and spatially sparse targets, it results in 𝑺′ being a 

sparse matrix. 

3.3. Low-Rank and Sparse Decomposition Based Clutter Removal 

The low-rank and sparse representation [21] interprets the data matrix 𝑫′ as a 

superposition of a low-rank matrix 𝑳′̂ ∈ ℝ𝑀×𝑁 and a sparse matrix 𝑺′̂ ∈ ℝ𝑀×𝑁, where 𝑳′̂ 

represents the correlated clutter,  while 𝑺′̂ models the target features on top of the 

correlated clutter. The mathematical expression is 𝑫′ = 𝑳′̂ + 𝑺′̂.  

Decomposing the data matrix 𝑫′ into 𝑳′̂ and 𝑺′̂ is an optimization problem. 

Through Lagrangian reformulation, it can be expressed as: 

 min
𝐿,𝑆

𝑟𝑎𝑛𝑘(𝑳′̂) + 𝜆‖𝑺′̂‖
0

   𝑠. 𝑡.   𝑫′ = 𝑳′̂ + 𝑺′̂ (3.10) 

Unfortunately, Eq. (3.10) is a highly nonconvex optimization problem subsuming both 

the low rank matrix completion and the 𝑙0-minimization, which are both NP-hard. By 

replacing 𝑙0-norm with 𝑙1-norm, and the rank of 𝐿 with the nuclear norm ‖𝐿‖∗ =

∑ 𝜎𝑖(𝐿)𝑖 , a tractable optimization problem can be obtained [21]: 

 min
𝐿,𝑆

‖𝑳′̂‖
∗

+ 𝜆‖𝑺′̂‖
1

   𝑠. 𝑡.   𝑫′ = 𝑳′̂ + 𝑺′̂ (3.11) 
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where ‖𝑳′̂‖
∗
 is the nuclear norm or sum of singular values of matrix 𝑳′̂, ‖𝑺′̂‖

1
 is the 𝑙1-

norm or sum of absolute values of the entries of 𝑺′̂, and 𝜆 is a tuning parameter that 

balances the contribution of the  𝑙1-norm term relative to the nuclear norm term. Choice 

of 𝜆 = 1 √max (𝑀, 𝑁)⁄  is universal for solving the optimization problem in Eq. (3.11). 

According to Ref. [22], in the general rectangular case, where 𝑀 ≥ 𝑁, if 

 𝑟𝑎𝑛𝑘(𝑳′) ≤ 𝜌𝑟
𝑁

(log 𝑀)2 (3.12) 

and 

 ‖𝑺′‖0 ≤ 0.1 ∗ 𝑀𝑁 (3.13) 

matrix 𝑳′ and 𝑺′ can be uniquely reconstructed by solving Eq. (3.11), which means 𝑳′ =

𝑳′̂ and 𝑺′ = 𝑺′̂. In Eq. (3.12), 𝜌𝑟 is a positive constant coefficient, which means the rank 

of 𝑳′ is of the order of 
𝑁

(log 𝑀)2. 

Upon the decomposition, the matrix 𝑳′ contains the clutter and some subsurface 

background information. The subsurface background information are of interest for GPR 

applications, such as pavement subsurface characterization [2],[23], layer thickness 

measurement [24]-[25], subsurface dielectric property analysis [26], soil moisture 

estimation [27], etc. Since the proposed clutter removal method only aims to eliminate 

the clutter produced by the ground surface, the subsurface background information can 

be preserved and extracted in conjunction with the sparse target matrix 𝑺′. 

A Renyi entropy-based time gating method [5],[13],[28] is applied to extract the 

ground surface clutter components in the matrix 𝑳′. In the low-rank matrix 𝑳′, the signal 

envelope along the range direction is calculated with the Hilbert Transform and the 
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produced envelope matrix is denoted as 𝐿𝑒. The data in 𝐿𝑒 are normalized alone the radar 

cross-range direction (or the GPR scanning direction) as: 

 �̃�𝑒(𝑚, 𝑛) =
|𝐿𝑒(𝑚,𝑛)|2

∑ |𝐿𝑒(𝑚,𝑛)|2𝑁
𝑛=1

 (3.14) 

Upon the normalization, the Renyi’s entropy [29] along the radar cross-range 

direction is calculated as: 

 𝐸𝛼(𝑚) =
1

1−𝛼
log𝑒(∑ �̃�𝑒(𝑚, 𝑛)𝛼𝑁

𝑛=1 ) (3.15) 

where 𝐸𝛼(𝑚) is the entropy quantification and 𝛼 is the entropy order. According to the 

experiments and analysis in Ref. [5], 𝛼 = 3 is the optimal configuration for GPR 

applications. As the ground surface clutter signal components have similar shapes, they 

result in large values of 𝐸𝛼(𝑚) [13],[28]. Therefore, a windowing along the range 

direction that marks the ground surface clutter signals region can be determined as [28]: 

 𝑊(𝑚, 𝑛) = {
0, 𝑖𝑓 𝐸𝛼(𝑚) ≥ 𝛽 log𝑒 𝑁
1,                     𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (3.16) 

𝛽 is the tuning parameter that accounts for the measurement noise in the GPR signal, 

which is optimized at 𝛽 = 0.97 for radar applications according to the analysis in Ref. 

[28]. Denoting the window function 𝑊(𝑚) ranges between time instance 0 and 𝑡𝑑, based 

on the entropy analysis, the signals of time instances within 0 and 𝑡𝑑 are considered as 

the ground surface clutter signals, whose values are set as zero, and the resulting matrix 

is recorded as 𝑳𝒔𝒖𝒃
′ : 

 𝑳𝒔𝒖𝒃
′ (𝑚) = 𝑳′(𝑚, 𝑛)𝑊(𝑚, 𝑛) (3.17) 

In this way, the nulling is only performed on matrix 𝑳′ featuring the clutter signal, 

while the matrix 𝑺′ featuring the buried object scattering is preserved. Comparing to 
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traditional time gating [13] method that nulls the whole data matrix 𝑫′, the proposed 

method does not smear the scattering data of the buried object when the object is close 

to the ground surface. 

The overall subsurface data matrix can be expressed as: 

 𝑺𝒑𝒓𝒐𝒄
′ = 𝑺′ + 𝑳𝒔𝒖𝒃

′  (3.18) 

Once matrix 𝑺𝒑𝒓𝒐𝒄
′  is obtained, the matrix of the original object matrix𝑺 can be 

reconstructed by reversing the alignment adjustment process using the time offset value 

obtained with Eq. (3.8). 

 

Figure 3.1: Ground clutter removal process 

Finally, the clutter removal procedures for rough ground surface are summarized 

below:  

1. Alignment: Align each A-Scan trace in the B-Scan image 𝑫 using cross-correlation 

criterion to obtain a processed B-Scan image 𝑫′. 
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2. Decompose the processed GPR B-Scan data matrix 𝑫′ ∈ ℝ𝑀×𝑁 into a low-rank 

matrix 𝑳′ ∈ ℝ𝑀×𝑁 and a sparse matrix 𝑺′ ∈ ℝ𝑀×𝑁 by solving Eq. (3.11) with tuning 

parameter 𝜆 = 1 √max (𝑀, 𝑁)⁄ . 

3. Calculate the envelope of the signal in matrix 𝑳′ along the range direction. Determine 

and null the clutter region whose depth is above 𝑡𝑑 based on Renyi entropy analysis 

to obtain matrix 𝑳𝒔𝒖𝒃
′  as illustrated in Figure 3.1. 

4. Compensate the subsurface medium information in matrix 𝑳𝒔𝒖𝒃
′  to the sparse matrix 

𝑺′ following Eq. (3.18). 

5. Revere time alignment adjustment of the sparse matrix 𝑺𝒑𝒓𝒐𝒄
′   to reproduce the buried 

target features in the B-Scan image. 

3.4. Experimental results 

To evaluate the proposed clutter removal method for rough ground surface 

inspection, experiments are conducted with two sets of test data. The first set of data is 

synthesized with the GPR simulation tool GprMax [30]  while the second one is the 

laboratory experimental data collected using a step-frequency continuous wave radar 

(SFCW) system. The optimization problem in Eq. (3.11) is solved utilizing the 

mathematical toolbox TFOCS [31]. 

3.4.1. Simulation Data 1: Oblique Ground Surface 

In this section, two sets of simulation data are created using GprMax program. In 

the first simulation setup: the ground is modeled as a homogeneous layer with oblique 

surface whose dielectric constant is 6.0. The slope of the oblique surface is 5°. The buried 

target is modeled as a cylinder of 1.25 cm radius with 4.0 dielectric constant. The test 
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geometry detail for this test case is depicted in Figure 3.2(a). The GprMax program is 

developed with FDTD technique. In our simulation,  the GPR waveform is generated as 

a Ricker waveform (i.e. negative normalized second derivative of a Gaussian pulse) with 

its center frequency being 900 MHz. GPR A-Scan traces are collected uniformly from 

left to right along the horizontal direction every 2 cm distance in air-coupled mode. The 

standoff distance between the transceiver antennas and the ground surface is 30 cm. The 

separation distance between the transmitter antenna and the receiver antenna is 2.5 cm. 

The size of the data matrix is 962 × 46.  

The raw GPR B-scan image is plotted in Figure 3.2(b), in which the strongest 

reflection between 0.5 ns and 1.3 ns time interval is the clutter due to the ground surface 

reflection, and the weak hyperbolic curve at 2.5 ns is the reflection signal from the buried 

target. Correspondingly, some A-Scan traces selected at different scan positions from the 

B-Scan image are plotted in Figure 3.3. As shown, the strongest peak in each A-Scan 

trace is the ground surface clutter, whose time index shifts among different traces. For 

these misaligned ground surface clutter signals in A-Scan traces, they cannot be 

eliminated using traditional clutter removal method, i.e. average subtraction [7]. Figure 

3.2(c) shows the average subtraction method fails to improve the target feature in the B-

Scan image. 
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(a) (b) (c) 

Figure 3.2: Synthetized oblique ground surface: (a) Geometry data; (b) Raw B-scan image; (c) 

Average subtraction from raw B-Scan. 

 

Figure 3.3: Synthesized oblique ground surface: A-Scan trace at various locations along scan axis. 

By applying the alignment adjustment, the resulting GPR B-Scan image is plotted 

in Figure 3.4(a). Figure 3.4(b) and (c) depict the processed B-Scan images upon average 

subtraction and the proposed clutter removal to the aligned B-Scan image respectively. 

As shown in Figure 3.4(b), the average subtraction can enhance the target features, 

however, the residual clutter still exists around time instance 1 ns. Since the alignment is 

performed on the digitized data, the finest time resolution for adjustment equals the 

sampling time interval of the data acquisition unit (or analog-to-digital converter), which 

is ∆𝑡 = 6 ps in this simulation test case. As the radar clutter is produced from the ground 
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surface reflection and the radar wave propagation velocity is 𝑐 = 3 × 108 m/s in the air, 

the achievable depth resolution for alignment is ∆𝑑 = (∆𝑡/2) ∗ 𝑐 = 0.9 mm. In other 

words, the alignment algorithm cannot fix the depth displacement smaller than 0.9 mm.  

   

(a) (b) (c) 

Figure 3.4: Synthetic oblique ground surface: (a) Aligned B-Scan; (b) Clutter removal using 

average subtraction; (c) Clutter removal using proposed method. 

With our proposed clutter removal method, the smaller-than-resolution 

displacement can be processed as a low rank component within the data matrix, which 

can be separated and removed from the reflection signals of the underground target. 

Figure 3.4(c) illustrates the B-scan image upon clutter removal. As can be observed, the 

hyperbolic pattern corresponding to the burying cylinder is much more pronounced.  

3.4.2. Simulation Data 2: Rough Ground Surface 

In the second simulation setup, the ground is modeled as a homogeneous layer 

with wiggly surface. The heights of the wiggles vary randomly between 3 cm and 7 cm. 

The layer’s dielectric constant is 6.0. The buried target is a reinforce bar of 2.5 cm radius 

and its burying depth is 10 cm. The test geometry for this test case is depicted in Figure 
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3.5(a). In the FDTD simulation, the same GPR waveform and scan along the horizontal 

direction as Simulation 1 are utilized. The data matrix dimension is 972 × 46. 

The raw GPR B-scan image obtained is plotted in Figure 3.5(b), in which the 

strongest reflections between 0.5 ns and 1.2 ns time interval are the ground surface 

clutter, and the weak hyperbolic curve at 2 ns features the reflection signal from the 

buried rebar. Selected A-Scan traces at different scan locations are plotted in Figure 3.6. 

The foremost strong pulse in each A-Scan trace is the ground surface clutter with varying 

amplitude and position. Without alignment adjustment, it is infeasible to suppress such 

ground surface clutter. For instance, the clutter removal result with the traditional average 

subtraction [7] method is depicted in Figure 3.5(c). As can be observed, the hyperbolic 

feature is enhanced, however the clutter components remain between 1 ns and 2 ns time 

interval. 

   

(a) (b) (c) 

Figure 3.5: Synthetic rough ground surface: (a) Geometry data; (b) Raw B-scan image; (c) 

Average subtraction from raw B-Scan. 
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Figure 3.6: Synthesized rough ground surface: A-Scan trace at various locations along scan axis. 

After the alignment adjustment, the resulting GPR B-Scan image is plotted in 

Figure 3.7(a). Figure 3.7(b) and (c) illustrate the processed B-Scan images upon average 

subtraction and proposed clutter removal. As shown in Figure 3.7(b), the average 

subtraction improves the target features, however is not able to remove the clutter. After 

applying the proposed clutter removal method, as shown in Figure 3.7(c), the hyperbolic 

pattern is enhanced and the clutter is largely eliminated.  

   

(a) (b) (c) 

Figure 3.7: Synthetic rough ground surface: (a) Aligned B-Scan; (b) Clutter removal using average 

subtraction; (c) Clutter removal using the proposed method. 
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3.4.3. Experiment with Lab Test Data 

The proposed clutter removal method is also evaluated using real experimental 

data collected via a step-frequency continuous wave GPR system. In this GPR system, 

the transmitter and data acquisition unit employed is Keysight N9917A FieldFox 

Microwave Analyzer whose operating frequency spans from 30 kHz to 18 GHz. The 

transceiver antennas are a pair of customized horn antennas [32] whose bandwidth spans 

from 600 MHz to 6 GHz. The test setup is depicted in Figure 3.8(a). A metal plate is 

buried in a sandbox as the target under test. The metal plate is 0.64 cm thick, 30.5 cm 

long, 20.3 cm wide and is buried 8 cm deep. Water is sprayed on sand surface to emulate 

moisture in real field GPR test scenario. The transmitter and receiver antennas are set 71 

cm above the sand surface. The angle of incidence and angle of reflection are both 45 

degree. The scan is performed along the longitudinal direction. The dimension of GPR 

data matrix is 400 × 152.  

The raw GPR B-scan image is plotted in Figure 3.8(b), in which the strongest 

reflection at 0.45 ns is the sand surface clutter, and the hyperbolic feature at 1 ns is the 

reflection from the buried plate. Figure 3.8(c) shows the clutter removal result using 

traditional average subtraction [7] method, which even makes the target feature worse in 

the B-Scan image. 
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(a) (b) (c) 

Figure 3.8: Lab sandbox test: (a) Geometry data; (b) Raw B-scan image; (c) Average subtraction 

from raw B-Scan. 

Upon the alignment, the resulting GPR B-Scan image is plotted in Figure 3.9(a). 

Figure 3.9(b) shows the processed B-Scan image with average subtraction, where the 

sand surface clutter is removed, whereas additional clutter is induced around 1 ns depth 

as the dark horizontal line. Figure 3.9(c) shows the processed B-Scan using the proposed 

clutter removal method. Comparing to the average subtraction method, the proposed 

method can suppress the sand surface clutter while not produce any fake scattering 

features.  

   

(a) (b) (c) 

Figure 3.9: Lab sandbox test: (a) Aligned B-Scan; (b) Clutter removal using average subtraction; 

(c) Clutter removal using the proposed method. 
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3.4.4. Quantitative Analysis on the Processed Data 

To quantitatively evaluate the clutter removal method performance, signal-to-

clutter ratio (SCR) is used as a metric for characterizing the power ratio between the 

backscattering signal from the buried object under test and the clutter in each test case.  

The SCR of raw B-Scan images, the processed B-Scan image using average subtraction 

and the processed B-Scan image using the proposed clutter removal are calculated for all 

three test cases. The SCR calculation results are summarized in Table 3.1. The quantitative 

analysis results indicate that the proposed clutter removal method can dramatically enhance 

the buried object features in GPR B-Scan image, and outperforms the traditional average 

subtraction method. 

Table 3.1: SCR of each B-Scan Image. 

Test Case 

SCR of 

Raw B-

Scan (dB) 

SCR of Processed B-Scan 

using Average Subtraction 

(dB) 

SCR of Processed B-

Scan using Proposed 

Method (dB) 

Simulation 

Data 1 
-22.86 6.23 14.86 

Simulation 

Data 2 
-3.75 8.75 14.58 

Lab 

Experiment 

Data 

2.60 7.85 23.08 
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3.5. Conclusions 

In this chapter, a low-rank and sparse representation based clutter removal 

technique has been investigated. In the observed data matrix upon alignment, the clutter 

component produced by the rough ground surface are modeled as a low-rank matrix, and 

the scattering from the buried objects are modeled as a sparse matrix. The convex 

optimization is applied to decompose the observed data matrix into the low-rank matrix 

and the sparse matrix, to extract the weak scattering features from the strong clutter 

signal. Since the proposed method characterizes the rank of the clutter components in the 

data matrix instead of merely the amplitude of the clutter signal, the proposed clutter 

removal method can effectively suppress the clutter generated by rough ground surface 

in GPR field inspection. Experiments with the simulation data and lab testing data are 

conducted for performance validation. In the first simulation test, the proposed clutter 

removal method improves SCR by 37.72 dB. In the second simulation test, the proposed 

method improves SCR by 18.33 dB. For the lab experimental data, 20.48 dB SCR 

improvement is achieved.  
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CHAPTER 4: 2-D ENTROPY AND SHORT-TIME FOURIER TRANSFORM 

TO LEVERAGE GPR DATA ANALYSIS EFFICIENCY 

Abstract 

Accurate detection of singular region using Ground Penetrating Radar (GPR) is 

very useful in assessing roadway pavement, bridge deck concrete structure and railroad 

ballast conditions. To locate object within the large radargram, it involves extensive 

computational resources and time, especially when the data of interests only possess a 

small portion of the whole big data set. Therefore an efficient GPR signal processing 

technique is highly demanded. This chapter proposes the utilization of two-dimensional 

(2D) entropy analysis to narrow down the data scope to the interested regions, which can 

considerably reduce computational cost for more sophisticated post data processing. 

Joint time-frequency analysis using Short Time Fourier Transform (STFT) is then 

performed for singular region location detection and refinement. The proposed 

methodology is tested with different laboratory setups. The analysis results show good 

agreements with physical configurations. 

Keywords: Radar; Signal processing; Entropy; Radar detection; Nondestructive testing. 

4.1. Introduction 

Impulse Ground penetrating radar (GPR) has been proven to be an effective tool 

in inspecting transportation infrastructures, including bridge deck [1]-[4], highway 

pavement and railroad ballast [5], [6], for its ability to extract subsurface information in 

a nondestructive manner. For GPR, one important and challenging design factor is signal 

processing, whose objective is to effectively analyze and extract meaningful information, 
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and accurately interpret the measurement results. In this chapter, a new signal processing 

approach is developed to leverage GPR data analysis efficiency with a specific focus on 

singular region detection.  

For transportation infrastructure survey, detecting sporadically located singular 

regions, such as embedded rebars is one of the basic functions for GPR subsurface 

structure examination. Many data processing techniques have been developed for rebar 

detection. In Ref. [1], an energy function is used to model and detect rebar hyperbolic 

signature pattern and iterative hyperbola curve fitting is applied. Although this method 

is effective, the long computation time limits its applicability only to small volume radar 

data set. Moreover, the curve fitting method is only applicable when the characteristic 

pattern is pre-known, and is not valid for detecting a singular region of an arbitrary shape. 

In Ref. [2], an approximate linear scattering model is developed utilizing the sparse 

nature of scatters to reconstruct the reflection signal. The reconstruction model is a 

double integral, and a minimization algorithm is implemented by loops of matrix 

multiplication. This method can precisely locate rebar. However the processing 

procedures are relatively complicate. In Ref. [3]-[6], rebar GPR B-scan image signature 

curves are characterized through a series of image processing algorithms such as image 

segmentation, arc detection and curve fitting. The same processing steps are performed 

throughout the entire scanning data even though the interested rebar data only populate 

a small portion of the dataset. While such approaches are meticulous, they are both costly 

and time consuming. Therefore to develop a method to automate the detection of 
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sporadically distributed singular regions of arbitrary shapes for facilitating sophisticated 

post-processing is highly desired.  

In this chapter, two-dimensional (2D) entropy analysis algorithm is developed to 

effectively reduce the data scope to the singular regions within the large background. In 

information theory, entropy is a measure of the uncertainty associated with a random 

variable [7]. It has been applied in several application fields such as biomedical 

engineering [8], [9], speech [10], information data mining [11], front wall clutter 

rejection [12] and color image enhancement [13]. However to date, there has been no 

literature utilizing entropy analysis on GPR image for detecting the sporadically 

distributed features. In this chapter, 2D entropy processing algorithm is developed for 

object extraction from the stationary background. As a result, the distinctive areas of 

interests can be rapidly identified, and the size of the data for post-processing can be 

significantly reduced.  For GPR data post-processing, one important analytical approach 

is spectrum characterization with Fourier transform. However the main limitation is that 

the signal time information is lost in transforming to the frequency domain. For a 

stationary signal analysis, where the processed signals do not change with time, this 

limitation is not an issue. While in GPR scans, the premise of stationary signal does not 

hold. During GPR operation, the scanning antennas move continuously, thus the 

subsurface features under inspection change dynamically, which lead to non-stationary 

reflection signals being collected. In order to obtain time and spectrum information from 

GPR signals, the joint time-frequency (JTF) signal decomposition is employed. JTF 

signal decomposition is a special form of spectral analysis that aims at precise tracking 
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frequencies of non-stationary time-varying signals. However the application of JTF 

analysis for GPR signal processing is very limited. A major barrier is the computational 

cost associated with the large data size, typically over tens of Giga-bytes (GBs). Directly 

performing complicate JTF analysis on such big data set is inefficient.  In this chapter, 

with the aid of entropy characterization to narrow down the data scope, the sophisticated 

JTF analysis cost is considerably reduced. In the literature, there exist a variety of JTF 

analysis approaches, such as Gabor, wavelet, etc. [14], [15], that can achieve high time 

and frequency characterization resolution and accuracy. Since singular region detection 

does not require extremely high characterization resolution, we choose to use the basic 

Short Time Fourier Transform (STFT) to fulfill the application goal, which produces 

marginal resolution but at a relatively lower computational cost. In this chapter, the STFT 

analysis is applied upon 2D entropy analysis to identify the right singular region while 

eliminate the false ones. Even though we use GPR rebar region detection and ballast 

moisture region assessment as the study cases, the proposed method can be extended and 

combined with other processing approaches to improve processing performance for other 

applications.  

This chapter is an extension of the work presented in [16]. In [16], preliminary 

study is performed to show that entropy and STFT analysis feasibility.  However there 

are three critical limiting factors not addressed: 1). The entropy curve obtained contains 

high frequency noise; 2). The determination of entropy threshold values for detecting 

singular regions is manual and subjective; 3). Upon 2D entropy analysis, false singular 

region detection might be resulted. In this chapter, solutions are developed to resolve 
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these issues. Firstly, moving average method is applied to alleviate entropy noise and 

smooth out entropy curve. Secondly, OTSU’s thresholding algorithm [17] is developed 

so that singular regions identification is automated without requiring human intervention, 

which makes threshold determination an objective, generic and efficient process. Thirdly, 

STFT analysis is performed to identify the correct singular region while eliminate the 

false region that are not distinguishable with entropy characterization.   

The remaining sections of this chapter are organized as follows: Section 4.2 

introduces data acquisition, including experimental setups and data pre-processing 

procedures. Section 4.3 describes in detail of two computational algorithms in use: 2D 

Entropy analysis and Short Time Fourier Transform. Section 4.4 shows experimental 

results. The concluding remarks are drawn in Section 4.5. 

4.2. Data Acquisition 

4.2.1. System Setup 

In this chapter, the experimental data are collected with our impulse GPR system 

developed in [18], [19], [20] and [21]. Figure 4.1(a) illustrates the system diagram. As 

shown, the GPR system hardware consists of five major functional units: (1) RF 

transmitter; (2) Ultra-wideband antennas; (3) Data acquisition unit comprising of a high 

speed real time digitizer, high speed data transmission and storage unit; (4) Quard-core 

computer (Intel core i7 3.4 GHz) (5) FPGA digital controller along with a wheel encoder. 

The RF transmitter comprises of an ultra-wide bandwidth (UWB) pulse generator 

that generates high amplitude (up to 18 volts) 1 ns wide Gaussian pulse (Figure 4.1b) 

whose pulse repetition frequency (PRF) is set to 30 KHz. The digitizer employed is a 
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high speed real-time data acquisition unit (Agilent Acqiris U1065A module) of 8 Gsps 

sampling rate and 10-bit resolution operating in simultaneous multi-buffer acquisition 

and readout (SAR) mode. The digitizer configuration details can be found in [18], [19]. 

For impulse signal transmission and receiving, two identical tapered wideband horn 

antennas, as shown in Figure 4.1(c), are designed. The antennas’ operating frequencies 

span from 0.6 GHz to 6 GHz and S11 measurement result is contained in Figure 4.1(d).  

 

Figure 4.1: GPR system diagram: (a) High Speed UWB GPR System; (b) UWB Pulse Generator; 

(c) UWB Horn Antenna; (d) Reflection Loss of the UWB Horn Antenna. 

4.2.2. Test Setups 

In order to evaluate the performance of our GPR data analysis approaches, GPR 

singular region detection experiments are conducted with two types of setups. One is for 

rebar detections, while the other one is for ballast moisture region discovery. 

 For rebar detections, two different configurations are implemented: (1) A 30 mm 

diameter rebar is positioned in air and is placed 220 mm below antennas as shown in 

Figure 4.2(a); (2) Two 20 mm diameter rebars spaced by 500 mm are buried 108mm and 
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98.6 mm deep inside a concrete slab as shown in Figure 4.2(b). Transmitter and receiver 

antennas (Figure 4.2(c)) are packed inside a box which is placed 100 mm above the top 

surface of the concrete slab.  

 

Figure 4.2: Measurement setup (a) rebar in air; (b) rebar in concrete; (c) Two horn antennas. 

For ballast moisture region assessment, experiment is configured with 

contaminated ballasts. Figure 4.3(a) shows the test platform developed emulating the 

railroad structure. One portion of the ballast region is contaminated with soil and water. 

Figure 4.3(b) illustrates the subsurface structural configuration: (1) The ballast layer 

above the soil is 0.3 m thick; (2) 0.75 m apart from the left end of the platform, a region 

(highlighted in blue) of 0.45 m width and 0.2 m depth is filled with contaminated ballast 

mixed with soil and 2-gallon water, which is the fouled ballast region for GPR detection 

validation. 
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Figure 4.3: Ballast Test Configuration: (a) Test Platform; (b) Subsurface Construction. 

4.2.3. GPR Data Pre-Processing 

 

Figure 4.4: Raw B-scan images of (a) rebar in air; (b) Two rebars in a concrete slab. 
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Figure 4.5: Rebar-in-Air B-scan images after preprocessing: (a) Reference trace subtraction and a 

LPF filtering; (b) Reference trace subtraction, LPF filtering and trace averaging operations. 

During rebar scan test, GPR antennas are moved horizontally above the rebar for 

reflection signal collection. The obtained raw B-scan images are plotted in Figure 4.4. In 

these B-scan images, X-axis indicates scan distance while Y-axis specifies the radar 

signal travel time. The raw images contain significant background noise including floor 

surface reflection signal and transmitter/receiver antennas direct coupling interference 

signal located between time indexes 0 ns and 2 ns.  To remove these undesired signals, 

the following data pre-processing steps are implemented: (1) Subtracting the first 

sampling trace from all subsequent traces to eliminate the stationary systematic 

interference signal. (2) Applying a 5th order 1 GHz FIR (Finite Impulse Response) low 

pass filter to remove off-band noise. Using rebar-in-air image as the example, the 

resulting images upon these processing are demonstrated in Figure 4.5(a). (3) Applying 

averaging operations (stacking) among every 100 traces to further alleviate random noise 

and to improve signal to noise ratio. The final image is illustrated in Figure 4.5(b). Note 
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the averaging factor of 100 is selected for its effectiveness in removing noise while 

maintaining good image resolution. 

 

Figure 4.6: B-Scan images for ballast setup: (a) Raw B-Scan image; (b) B-Scan image upon 

preprocessing. 

For the ballast setup configuration, Figure 4.6(a) is the raw image, and Figure 

4.6(b) is the image obtained upon pre-processing. For all test configurations, 2D entropy 

and STFT analysis described below are applied to detect the singular regions, which are 

rebar region and fouled ballast region respectively. 

4.3. Computational algorithms: 2-D Entropy and Short-Time Fourier Transform 

4.3.1. Windowing 2D Entropy Method   

In information theory, entropy is a measure of the uncertainty associated with a 

random variable. It quantifies the expected value of the information contained in a 

message. For our GPR data processing, entropy characterization is explored to identify 

the singular region within a large data set. In particular, a high entropy value indicates 

high degree of data similarity while a low entropy value highlights high degree of data 

singularity. Below we will elaborate our GPR data entropy analysis algorithm.  
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The received GPR reflection signal 𝑌(𝑡) can be modeled with the following 

equation:  

 𝑌(𝑡) = 𝐷(𝑡) + 𝑆(𝑡) (4.1) 

where 𝐷(𝑡) represents the reflection signal from the object of interest; 𝑆(𝑡) models 

interference and noise, including reflection signals from the background such as the 

concrete slab surface, and transmitter and receiver antennas direct coupling signals, etc. 

In calculation, power normalization is first performed with the summation of the power 

of the same time index data points on different traces. The normalization equation is 

expressed as 

 𝑦𝑖(𝑡) =
‖𝑌𝑖(𝑡)‖2

∑ ‖𝑌𝑖(𝑡)‖2𝑀
𝑖=1

 (4.2) 

where 𝑦𝑖(𝑡) is the normalized signal, 𝑖 denotes the trace index and 𝑀 is the total number 

of traces included; 𝑡 specifies time index of pulse data on each reflection trace waveform.  

Upon power normalization, a generalized Renyi’s entropy [22] is applied to 

assess data singularity: 

 𝐸𝛼(𝑡) =
1

1−𝛼
loge〈∑ [𝑦𝑖(𝑡)]𝛼𝑀

𝑖=1 〉 (4.3) 

𝐸𝛼(𝑡) is the entropy quantification. 𝛼 is the entropy order. When 𝛼 = 1, Eq. (4.3) 

transforms to the basic Shannon entropy. For analysis demonstration, Figure 4.7 shows 

different trace waveforms for scanning rebar-in-air setup. The scanning trace indexes are 

𝑖 = 1000, 1200, 1400, 1600, 1800, 2000 and 2200 respectively. Note, since rebar is a 

metal structure, comparing with background objects, it produces the strongest reflection 

corresponding to the peak pulse point on each trace waveform.  
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Figure 4.7: Pulse peak point shift on different trace index = 1000, 1200, 1400, 1600, 1800, 2000, 

2200. 

As the scanning trace index increases from 𝑖 =1000 to 2200, the rebar reflection 

causes the time index of  the peak point to initially shift toward the lower numbers and 

then shift back to higher ones. The lower index implies shorter signal travel distance 

between rebar and transceiver antennas. As antennas move away from the rebar, the pulse 

peak shifts to higher time indexes, indicating longer travel time. In order to identify the 

time index region that contains singular features such as peak shifting, entropy values are 

computed using Eq. (4.2) and Eq. (4.3) with 𝑀 = 4088 scanning traces, where 𝛼 is set 

to 3 [8], [22]. The resulting entropy curve is plotted in Figure 4.8. 
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Figure 4.8: Entropy data of One Rebar in Air B-Scan. 

4.3.2. Entropy Curve Smoothing Using Moving Average 

To alleviate entropy value fluctuations, moving average (SMA) operation is 

performed to smooth out the entropy data [23]. Denoting the entropy value at index 𝑛 as 

𝐸(𝑛) in entropy data sequence, SMA calculates the mean of every m data points. In this 

chapter, 𝑚 is selected to be 5% of the number of data points in 𝐸(𝑛), i.e. 𝑚 = 𝑛/20. 

 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑛) =
1

𝑚
∑ 𝐸(𝑖)𝑛

𝑖=𝑛−𝑚+1  (4.4) 

4.3.3. Adaptive Entropy Threshold Determination 

Depending on the data homogeneity, the B-scan image can be segmented into 

three classes of regions: singular region, stationary background region and the transition 

region in-between. The classification process can be made through assessing region’s 

entropy values against two selected thresholds 𝑘1 and 𝑘2, where 𝑘1 < 𝑘2. The singular 

region entropy values are lower than threshold 𝑘1, the stationary background region 
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entropy values are higher than 𝑘2. While for the transitioning region, its entropy values 

are between these two thresholds.  

In order to appropriately determine threshold values 𝑘1 and 𝑘2, the automatic 

OTSU’s thresholding method [17] is employed. OTSU’s method is a classic image 

segmentation technique for extracting an object from its background. In principle, an 

image can be divided into non-overlapping regions by evaluating region’s homogeneity 

through intensity values (i.e. pixel magnitude) variance assessment. For region 

classification, the intra-class intensity values are close to each other with small variances; 

while the inter-classes intensity values are significantly different with large variances. 

OTSU’s method performs statistical analysis to identify appropriate thresholds so as to 

segment image into different regions accomplishing the criteria: the intensity values 

variances of the same region is minimized while the variances of different regions are 

maximized.  

When applying OTSU’s method to determine GPR B-scan image segmentation 

thresholds, the entropy is chosen as the intensity value.  Recording the number of entropy 

points whose values are 𝐸𝑖 as 𝑛𝑖, the total number of entropy points is 𝑁 =

∑ 𝑛𝑖𝐸𝑖∈[𝐸𝑚𝑖𝑛,𝐸𝑚𝑎𝑥] , where 𝐸𝑚𝑖𝑛 and 𝐸𝑚𝑎𝑥 specify the minimum and the maximum entropy 

values respectively. Statistical normalization is then performed: 

 𝑝𝑖 =
𝑛𝑖

𝑁
, 𝑝𝑖 ≥ 0,     ∑ 𝑝𝑖𝐸𝑖∈[𝐸𝑚𝑖𝑛,𝐸𝑚𝑎𝑥] = 1 (4.5) 

where 𝑝𝑖 specifies 𝐸𝑖 value occurrence frequency or the normalized probability. With 

two thresholds 𝑘1 and 𝑘2, the entropy data set is divided into three subgroups: group C0: 
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[𝐸𝑚𝑖𝑛, 𝑘1], group C1: (𝑘1, 𝑘2), group C2: [𝑘2, 𝐸𝑚𝑎𝑥]. The occurrence frequency of each 

subgroup can be calculated as: 

 𝜔0 = 𝑃(𝐶0) = ∑ 𝑝𝑖𝐸𝑖∈[𝐸𝑚𝑖𝑛,𝑘1]    

 𝜔1 = 𝑃(𝐶1) = ∑ 𝑝𝑖𝐸𝑖∈(𝑘1,𝑘2)  (4.6) 

 𝜔2 = 𝑃(𝐶2) = ∑ 𝑝𝑖𝐸𝑖∈[𝑘2,𝐸𝑚𝑎𝑥]    

and the group mean values are: 

 𝜇0 = ∑ 𝐸𝑖𝑃(𝐸𝑖|𝐶0)𝐸𝑖∈[𝐸𝑚𝑖𝑛,𝑘1] = ∑ 𝐸𝑖
𝑝𝑖

𝜔0
𝐸𝑖∈[𝐸𝑚𝑖𝑛,𝑘1]    

 𝜇1 = ∑ 𝐸𝑖𝑃(𝐸𝑖|𝐶1)𝐸𝑖∈(𝑘1,𝑘2) = ∑ 𝐸𝑖
𝑝𝑖

𝜔1
𝐸𝑖∈(𝑘1,𝑘2)  (4.7) 

 𝜇2 = ∑ 𝐸𝑖𝑃(𝐸𝑖|𝐶2)𝐸𝑖∈[𝑘2,𝐸𝑚𝑎𝑥] = ∑ 𝐸𝑖
𝑝𝑖

𝜔2
𝐸𝑖∈[𝑘2,𝐸𝑚𝑎𝑥]    

The overall entropy mean equals 

 𝜇𝑇 = 𝜇(𝐿) = ∑ 𝐸𝑖𝑝𝑖𝐸𝑖∈[𝐸𝑚𝑖𝑛,𝐸𝑚𝑎𝑥]  (4.8) 

The intra-class variances can be calculated as 

 𝜎0
2 = ∑ (𝐸𝑖 − 𝜇0)2𝑃(𝐸𝑖|𝐶0)𝐸𝑖∈[𝐸𝑚𝑖𝑛,𝑘1] = ∑ (𝐸𝑖 − 𝜇0)2 𝑝𝑖

𝜔0
𝐸𝑖∈[𝐸𝑚𝑖𝑛,𝑘1]    

 𝜎1
2 = ∑ (𝐸𝑖 − 𝜇1)2𝑃(𝐸𝑖|𝐶1)𝐸𝑖∈(𝑘1,𝑘2) = ∑ (𝐸𝑖 − 𝜇1)2 𝑝𝑖

𝜔1
𝐸𝑖∈(𝑘1,𝑘2)  (4.9) 

 𝜎2
2 = ∑ (𝐸𝑖 − 𝜇2)2𝑃(𝐸𝑖|𝐶2)𝐸𝑖∈[𝑘2,𝐸𝑚𝑎𝑥] = ∑ (𝐸𝑖 − 𝜇2)2 𝑝𝑖

𝜔2
𝐸𝑖∈[𝑘2,𝐸𝑚𝑎𝑥]    

The inter-class variance can be measured by the following discriminate criterion 

 𝜎𝐵
2 = 𝜔0(𝜇0 − 𝜇𝑇)2 + 𝜔1(𝜇1 − 𝜇𝑇)2 + 𝜔2(𝜇2 − 𝜇𝑇)2 = 𝜔0𝜔1(𝜇0 − 𝜇1)2 

 +𝜔1𝜔2(𝜇1 − 𝜇2)2 + 𝜔2𝜔0(𝜇2 − 𝜇0)2 (4.10) 

which is a function of threshold variables  𝑘1 and 𝑘2. The optimal thresholds 𝑘1
∗ and 𝑘2

∗ 

can be determined by maximizing 𝜎𝐵
2 [17]: 
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 𝜎𝐵
2(𝑘1

∗, 𝑘2
∗) = max

𝑘1,𝑘2∈[𝐴𝑚𝑖𝑛,𝐴𝑚𝑎𝑥]
𝜎𝐵

2(𝑘1, 𝑘2) (4.11) 

The adoption of these two optimal thresholds can maximize inter-group entropy variance. 

In the meantime, the intra-group entropy values variance is minimized [17].  

4.3.4. Short Time Fourier Transform (STFT) 

 In essence, STFT implements local Fourier Transform on data that are evenly 

divided into smaller time windows. Mathematically, STFT algorithm is expressed as 

below: 

 𝑋(𝜏, Ω) = ∫ 𝑥(𝜏)𝑤(𝜏 − 𝑡)𝑒−𝑗Ω𝜏𝑑𝜏
∞

−∞
 (4.12) 

where 𝑥 is the received GPR signal, Ω is the radial frequency whose resolution (∆Ω =

2𝜋 𝑁⁄ ) is determined by the number of points (𝑁) adopted for FFT computation. In this 

analysis, 𝑁 = 256. 𝜏 is the time resolution. Since our GPR digitizer’s sampling 

frequency is 8 Gsps, 𝜏 equals 125 ps. 𝑤(𝑡) is the window function. Here a Hamming 

window is employed. In STFT analysis, there exists a tradeoff between time and 

frequency resolution when determining the window size. Through a series of iterative 

experiments, we select 1/10 the total number of time index to set the window size, which 

is proven effective in achieving a good balance between frequency and time resolution 

for rebar detection. 

4.4. Experiment Results and Discussion 

4.4.1. Rebar Test Results 

Based on entropy and STFT characteristics analyzed above, this chapter proposes 

to perform 2-D entropy analysis first to narrow down data scope to distinctive regions, 

and then utilizes STFT to refine true singular region detection. For rebar in-air setup, 
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entropy analysis Eq. (4.3) with 𝛼 = 3 is first applied to B-scan image along Y-axis, as 

shown in Figure 4.9. The obtained smooth entropy curve is plotted in Figure 4.9(b). Using 

OTSU’s thresholding method, two threshold values 𝑘1
∗ = 28.96 and 𝑘2

∗ = 31.08 are 

calculated. The region between 0 and 𝑘1
∗ is the singular region, while the region between 

𝑘1
∗ and 𝑘2

∗ is the transition region. In this study, in order not to miss detecting the areas 

of interests, we take a conservative approach by searching for both the singular region 

and the transition region, where both regions have entropy values below the higher 

threshold 𝑘2
∗ = 31.08. As illustrated in Figure 4.9(b), there are two regions whose 

entropy values are below this threshold. One locates between 𝑡 = 1.625 ns and 5.75 ns 

and the other one locates between 𝑡 = 7.75 ns and 8.625 ns.  

Subsequently, Renyi’s entropy calculation is applied to scanning traces along X-

axis. Figure 4.10(b) plots the entropy curve. Using OTSU’s thresholding method, two 

threshold values 𝑘3
∗ = 10.25 and 𝑘4

∗ = 12.01 are obtained to identify the distinctive data 

region in X-direction. Like the analysis along Y-axis, the region containing rebar 

reflection information is within the region below threshold 𝑘4
∗, which is found between 

𝑥 = 0.55 m and 𝑥 = 1.95 m. 



 

101 

 

Figure 4.9: Entropy analysis along pulse time index (Y-axis) of rebar in-air data: (a) B-Scan image; 

(b) Entropy data. 
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Figure 4.10: Entropy analysis along trace index (X-axis) of rebar in air B-scan: (a) B-Scan image; 

(b) Entropy data. 

By combining both x-axis and y-axis entropy analysis results, the intersection 

regions are obtained. For rebar-in-air setup, the extracted regions are illustrated in Figure 

4.11(a); while for rebars-in-concrete-slab setup, the extraction regions are highlighted in 

Figure 4.11(b). In both cases, a false region below 7 ns is also extracted. STFT analysis 

is then performed to refine the extraction result and eliminate the false region.  
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Figure 4.11: 2D entropy analysis for B-scan images of a) rebar in air and b) rebars in concrete. 

For one-rebar-in-air data, STFT analysis is performed on the selected signal trace 

at 𝑥 = 1.1 m across the extracted regions in Figure 4.11(a). The obtained time-spectrum 

is plotted in Figure 4.12(a). As shown, no strong reflection occurs between 8 ns and 10 

ns, which means the second region (8 ns ~ 9 ns) in Figure 4.11(a) is the false singular 

region that should be eliminated. The corrected singular region extraction result is plotted 

in Figure 4.13(a). Similarly for two-rebar in concrete slab data, STFT analysis on the 

signal trace locating at x=1.5m is performed and the result is displayed in Figure 4.12(b). 

As shown, no strong reflection exists between 6 ns and 10 ns, which indicates the second 

region (between 7 ns and 9 ns) in Figure 4.11(b) is also a false region and should be 

eliminated. The corrected singular region extraction result is displayed as Figure 4.13(b). 

In both cases, the extracted rebar region comprises less than 40% of the entire scanning 

data volume. 
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Figure 4.12: STFT analysis to correct the singular region detection: (a) STFT result of one rebar 

data at x=1.1m; (b) STFT result of two rebar data at x=1.5m. 

 

Figure 4.13: Final singular region for B-scan images of a) rebar in air and b) two rebars in 

concrete. 

Further, STFT is operated on trace signals selected from the left side, the middle, 

and the right side of the rebar region respectively. The corresponding STFT analysis 

results are shown in Figure 4.14(b), Figure 4.14(c), and Figure 4.14(d). 
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Figure 4.14: (a) Rebar in air B-scan image; 2D entropy and STFT analysis results of traces at (b) 

left side, (c) middle and (d) right side of rebar area. 

In Figure 4.14(b), a strong peak occurs at 2.8 ns on the trace of 𝑥 = 0.75 m when 

antennas are on the left side. Figure 4.14(c) shows when the antennas are right above the 

rebar (the trace of 𝑥 = 1.1 m), a strong peak pulse is produced at 1.9 ns. Figure 4.14(d) 

depicts a strong peak at 2.8 ns on trace of 𝑥 = 1.5 m when antennas are on the right side. 

In our experiments, we are able to find out that the 2.8 ns peak pulse is the reflection 

signal from the floor surface underneath rebar with the utilization of a large metal sheet. 

By covering the floor surface with a large metal sheet, a stronger reflection pulse is 

observed occurring at exactly the same time instant (2.8 ns), which validates the floor as 

the reflection source. With reference to Figure 4.4(a), the distance between antennas and 
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the rebar can be determined through the following calculations: (1) Subtracting the time 

offset between antennas direct coupling pulse (𝑡 = 0.5 ns) (The transmitter antenna and 

receiver antenna are packed together inside of a box, the direct coupling pulse time is 

thus used as the reference time point) and the strongest STFT peak point (𝑡 = 1.9 ns), 

obtains time offset ∆𝑡 = 1.4 ns; (2) Inserting ∆𝑡 to the following equation 

 𝑉 = 𝑑/(
Δ𝑡

2
) (4.13) 

where 𝑑 is the distance, 𝑉 is the speed of light in air (3x108 m/s), and (∆𝑡/2) indicates 

one way signal travel time from rebar to the receiver antenna. The distance 𝑑 is thus 

calculated to be 210 mm, which agrees well with the physical setup described in section 

4.2.1, where antennas are placed 220 mm above the rebar.  

For two rebars in a concrete slab setup, Figure 4.15(a) extracts the intersected B-

scan image section that focuses on rebars. Both STFT images of the left side trace (the 

trace at 𝑥 = 1.25 m) (Figure 4.15(b)) and right side trace (the trace at 𝑥 = 1.7 m) (Figure 

4.15(c)) show two strong peaks (in red color) at 1.75 ns and 3.125 ns. These peak time 

values are used to compute rebars burying depths inside the concrete slab. The radar 

signal two-way travel time between concrete and rebars is calculated to be 3.125 ns – 

1.75 ns = 1.375 ns. The electromagnetic (EM) wave travel velocity 𝑉𝑐 inside concrete 

needs to be taken into account, which equals: 

 𝑉𝑐 = 𝑉/√𝜀𝑐 (4.14) 

𝜀𝑐 is the relative dielectric constant of the concrete which equals about 4.1 according to 

our measurements conducted in [18], [19], [20] and [21]. 𝑉 is the speed of light in air. 𝑉𝑐 

is calculated to be 1.48x108 m/s. Using Eq. (4.13) with ∆𝑡 = 1.375 ns, the rebar burying 
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depth from concrete surface is computed to be 102 mm approximately, which is in good 

agreement with the physical setups (98.6/108 mm depths) described in Section 4.2.  

 

Figure 4.15: (a) Rebars in concrete B-scan image; 2D entropy and STFT analysis at (b) left rebar 

and (c) right rebar. 
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4.4.2. Ballast Test Results 

 

Figure 4.16: Entropy analysis of ballast data: (a) Entropy along Travel time index (Y-axis); (b) 

Entropy along Scan Axis (X-axis). 

For ballast platform setup, entropy analysis is first applied to the B-scan image 

along Y-axis, as shown in Figure 4.16(a). Using OTSU’s thresholding method, two 

threshold values 𝑘1
∗ = 5.08 and 𝑘2

∗ = 5.92 are calculated. The singular regions have 

entropy values below threshold 𝑘1
∗. As illustrated in Figure 4.16(a), there are three regions 

whose entropy values are below this threshold. The first one locates between 𝑡 = 5.125 
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ns and 6.00 ns, the second locates between 𝑡 = 11.00 ns and 12.50 ns, and the third one 

locates between 𝑡 = 14.25 ns and 17.50 ns. 

Subsequently, Renyi’s entropy is computed along X-axis. Figure 4.16(b) plots the 

obtained curve. Using OTSU’s thresholding method, two threshold values 𝑘3
∗ = 4.88 and 

𝑘4
∗ = 5.43 are obtained. Similar to the analysis along Y-axis, the singular region is below 

threshold 𝑘3
∗, which locates between 𝑥 = 2.35 m and 𝑥 = 2.75 m. By combining both 

the x-axis and y-axis entropy analysis results, the intersection regions in the B-scan image 

are obtained. For the ballast platform setup, the extracted region is illustrated in Figure 

4.17. 

 

Figure 4.17: 2-D entropy analysis for B-Scan image of ballast platform. 

To refine region identification, windowing STFT analysis is performed on a trace 

signal across three regions locating at 𝑥 = 2.5 m. The corresponding STFT analysis 

result is shown in Figure 4.18.  
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Figure 4.18: STFT analysis result of trace at x = 2.5 m. 

As shown in Figure 4.18, a strong peak occurs only between 11 ns and 12 ns. This 

result indicates that region 2 in Figure 4.17 is the true singular region while regions 1 and 

3 are false ones. Combining the results of entropy analysis and STFT analysis, the correct 

fouled ballast region is singled out in Figure 4.19. In this test case, the extracted region 

comprises less than 5% of the entire scanning data volume. 

 

Figure 4.19: Final moisture region detection result based on entropy and STFT analysis. 



 

111 

To validate the detection result, the fouled ballast region depth is computed in a 

similar way as the rebar test. The ground surface reflection signal locates at 𝑡 = 8.5 ns 

in Figure 4.6(a), and the detected region top side locates at 𝑡 = 11.0 ns, therefore the 

two-way travel time of radar incident signal between ground surface and moisture region 

is 11.0 ns – 8.5 ns = 2.5 ns. Substituting the measured dielectric constant of clean ballast 

𝜀𝑐 = 3 into Eq. (4.14), 𝑉𝑐 is calculated as 1.73x108 m/s. Using Eq. (4.13) with ∆𝑡 = 1.25 

ns, the depth of the fouled ballast region is computed as 0.216 m approximately. This 

value agrees well with the actual physical setups (0.2 m depth). 

4.5. Conclusions  

This chapter has demonstrated the integration of 2D entropy and STFT analytical 

methods to leverage GPR data processing efficiency. By computing radargram 2D 

entropy and OTSU’s thresholds, singular areas within large background data can be 

effectively extracted. The utilization of entropy analysis effectively reduces the data 

volume for implementing more sophisticated post-processing algorithms. In our test 

experiments, around 60% data compression rate is achieved for rebar detection and 95% 

data compression rate is achieved for fouled ballast region detection. STFT is then 

applied for time-frequency characterization to leverage region detection accuracy and 

screen out false results. Note there are other more sophisticated JTF analysis methods, 

such as Gabor transform, wavelet, fractional Fourier transform, etc., that are capable of 

more advanced characterizations when the data scope is more focused with the assistance 

of entropy calculation. STFT is generally sufficient for these applications that require 

marginal detection resolutions. 
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CHAPTER 5: GROUND PENETRATING RADAR RAILROAD BALLAST 

INSPECTION WITH AN UNSUPERVISED ALGORITHM TO BOOST THE 

REGION OF INTEREST DETECTION EFFICIENCY 

Abstract 

Railroad ballast inspection is critical for the safety of both passenger and freight 

rail. Ground penetrating radar (GPR) has been utilized as a highly efficient non-

destructive evaluation (NDE) and structural health monitoring technique in bridge and 

roadway inspection for many years. However, the development of robust GPR 

technologies for railroad ballast inspection is still at its early stage due to the complex 

scattering characteristics of ballast and the lack of efficient algorithms to process big 

GPR data. In this study, an efficient unsupervised method for detecting the region of 

interest in ballast layer based on Hilbert Transform and Renyi entropy analysis is 

proposed and tested extensively using an indoor platform emulating the railroad 

structure. Based on the lab test results, this unsupervised analysis approach is utilized to 

characterize 300 GB field test data collected at Massachusetts Bay Transit Authority 

(MBTA) and Metro St. Louis. The data interpretation results demonstrate that the 

developed region of interest detection algorithm is an efficient and valuable tool for GPR 

data processing. 

Keywords: ground penetrating radar, information entropy, Hilbert transform, railroad 

ballast inspection, automatic detection, region of interest. 
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5.1. Introduction 

Typical railroad subsurface defects include cavity, fouled ballast, high degree of 

moisture, etc. Although railroad subsurface structure safety is critical, its inspection is 

very challenging. Traditional inspection methods such as drilling test and 

acoustic/hammer test are either destructive or inefficient, labor intensive, time 

consuming, disturbing to the normal traffic, etc. As a non-destructive and highly efficient 

test method, GPR has been widely used for concrete bridge decks inspection [1], asphalt 

pavement monitoring [2], highway rebar detection [3], railroad ballast condition 

assessment [4], soil moisture estimation [5], etc. Among these applications, railroad 

ballast condition assessment is especially challenging due to the complex scattering 

characteristics of the ballast. Although a number of studies have been conducted, the 

application of GPR for railroad structure inspections is still in its early stage.  

For applying GPR to railroad inspections, a major challenge is how to effectively 

process and interpret GPR data. There are sophisticated processing algorithms [6]-[9] 

that can effectively characterize subsurface structural features. Sparse representation is 

utilized in Ref. [6] to extract the feature of the A-Scan trace signal, and Support Vector 

Machine (SVM) technique [7] is applied for the GPR A-Scan traces classification based 

on a prior knowledge. Discrete wavelet transform is used in Ref. [8] to extract the texture 

feature in GPR B-Scan image and similarity measurement is performed to compare the 

tested B-Scan image and known B-Scan image pattern for ballast of various fouling 

condition. Similarly, discrete wavelet transform and fractional Fourier transform [9] are 

developed to extract features of each GPR A-Scan trace, and these features are supplied 
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to SVM classifiers to identify the underground objects. Nearly all existing GPR ballast 

data interpretation methods share the same data processing scheme: 1. producing priori 

knowledge about various fouling ballast patterns; 2. applying the feature extraction 

method to GPR data to extract test patterns; 3. using a classifier to categorize the test data 

in accordance to fouling ballast patterns.  

Such supervised methods can achieve high classification accuracy, however they 

are computationally complex. For large scale GPR survey, the collected inspection data 

is typically over hundred Giga Bytes (GB), making the direct application of these 

sophisticated data processing methods difficult and sometimes even infeasible. On the 

other hand, the structural composition of field ballast layer is very complex as some other 

scatters or material can be mixed within the ballast. Even the prior knowledge can be 

obtained using some ballast test with various fouling conditions, the feature pattern of 

field test ballast cannot be guaranteed to exist in the known training pattern due to its 

complex material composition. Therefore, developing an unsupervised and automatic 

GPR data processing method that can effectively and rapidly identify suspicious features 

from big radargram is critically desirable, which will facilitate advanced radar data post 

processing, such as the sophisticated feature extraction and pattern recognition. 

In our previous work, an entropy analysis and short-time Fourier transform 

(STFT) based unsupervised algorithm has been developed and demonstrated to boost 

GPR signal processing efficiency [10]. By computing radargram 2D entropy and OTSU’s 

thresholds, singular areas within large background data can be effectively extracted. The 

utilization of entropy analysis effectively reduces the data volume for implementing more 
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sophisticated post-processing algorithms. STFT performs time-frequency 

characterization to leverage region detection accuracy and screen out false results.  

In this chapter, the customized entropy-based algorithm is improved to automate 

and facilitate the detection of suspicious fouling ballast regions or Regions of Interest 

(ROI) within big GPR survey data sets. Considering the GPR transmitting signal is a high 

order (2nd order or higher) Gaussian pulse, the backscattering A-scan signal shows 

multiple peaks, which increases the difficulty to identify the feature of scatters. In this 

research, an analytic method using Hilbert Transform is developed to extract the pulse 

signal envelope so as to characterize the scattering signal power. Furthermore, an 

automatic layer identification method based on signal decomposition is implemented to 

detect and isolate the ballast region from the ground surface. Finally, the 2D entropy 

analysis is performed on the scattering data corresponding to ballast region. Such data 

processing approaches leverage 2D entropy analysis effectiveness and eliminate the need 

of STFT for singular region identification, so as to facilitate large volume GPR ballast 

inspection data post processing and interpretation. 

To validate data processing effectiveness, extensive laboratory experiments are 

first conducted employing our Ultra Wideband (UWB) air-coupled impulse GPR system 

[11]. Further analysis is conducted on large volume (overall 20 miles) railroad field test 

data sets collected during the field test at Metro St. Louis and Massachusetts Bay Transit 

Authority (MBTA).  
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5.2. GPR System Configuration 

In this chapter, the experimental data are collected with our air-coupled impulse 

GPR system developed in Ref. [3], [11] and [12]. Figure 5.1 illustrates the system 

diagram. As shown in Figure 5.1, the GPR system hardware consists of five major 

functional units: (1) RF transmitter; (2) Ultra-wideband antennas; (3) Data acquisition 

unit comprising of a high speed real time digitizer, high speed data transmission and 

storage unit; (4) Quard-core computer (Intel core i7 3.4 GHz) (5) FPGA digital controller 

along with a wheel encoder. 

 

Figure 5.1: GPR system diagram: (a) High Speed UWB GPR System; (b) Digitizer Configured in 

SAR Mode; (c) UWB Pulse Generator; (d) UWB Antenna. 

The RF transmitter comprises a UWB pulse generator that generates high-

amplitude Gaussian pulses with the Pulse Repetition Frequency (PRF) controlled by the 
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FPGA. The high-speed digitizer contains a 10-bit 8 GSPS real-time sampling Analog-to-

Digital Converter (ADC), which also includes a high-throughput data transmission unit 

connected to the multi-core computer via Peripheral Component Interconnect express 

(PCIe) bus. The computer streams the GPR data from the digitizer and tags the data with 

header information. The optical encoder measures the travel distance and generates 

quadrature pulses correspondingly. The FPGA receives the wheel encoder pulses and 

triggers GPR scans. The travel distance information is transmitted to the computer for 

data location registration. The antennas have a compact size and good impedance 

matching over a wide bandwidth from 600 MHz to 6 GHz for effective signal 

transmission and reception. Some selected key specifications of this GPR system are 

summarized in Table 1.1.More design details are elaborated in Ref. [3], [11]-[13].  

Table 5.1: Air-coupled Impulse GPR System Specifications. 

Data acquisition unit 8 Gsps, 10-bit resolution 

GPR reflection pulse 

sampling window width 
40 ns 

Pulse repetition frequency 0 to 30 kHz tunable 

Horizontal resolution 1 cm at 100 km/h survey speed 

Signal bandwidth 600 MHz to 2 GHz tunable 

Penetrating capability Up to 1 meter 
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5.3. Unsupervised GPR ROI Detection Method 

The flow chart of the proposed unsupervised GPR signal processing methods for 

detecting region of interest is illustrated in Figure 5.2. Stacking and low pass filtering are 

first performed on raw B-scan image for noise reduction. Hilbert transform is then 

utilized to extract the scattering signal envelope and characterize the signal power, based 

on which, the A-Scan decomposition is conducted to identify interfacing layers between 

different materials and to locate the ballast region for data interpretation. Clutter removal 

and stacking are then performed to enhance the ballast region image. Finally, the 

statistical 2D entropy analysis is applied to quickly detect the singular region of interest. 

Details of each step are elaborated in the following subsections. 

Raw Data
Stacking Every 

50 Traces
Low Pass Filter

Hilbert 
Transform

A-Scan 
Decomposition

Ballast Region 
Identification

Clutter Removal
Stacking Every 

10 Traces
2D Entropy 

Analysis
Region of 
Interest

Pre-processing Power Information 
Characterization

Ballast Region 
Identification

B-Scan Image EnhancementRegion of Interest Dection  

Figure 5.2: Unsupervised algorithm for detecting region of interest in ballast layer. 

5.3.1. Pre-processing 

To enhance the raw B-Scan images quality, a two-step pre-processing is 

implemented: 

Step 1: Stack every 50 A-scan traces to calculate the average to boost the signal-

to-noise ratio (SNR) [14]. 
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The GPR signal transmitter is triggered in distance. The perimeter of the hi-rail 

SUV wheel used in GPR test is 0.77 m, and the wheel encoder has 10000 triggers per 

rotation. Thus, the distance interval between two pulses are 0.77m/10000 = 0.077 mm. 

Stacking every 50 traces results in 0.077mm*50 = 3.85 mm distance interval between 

two pulses, which assures the good spatial scanning resolution as well as improves the 

SNR of GPR A-Scan trace. 

Step 2: Apply Low Pass Filtering (LPF) with a 2 GHz cutoff frequency. In the 

test, our GPR pulse signal spectrum is tuned as a monocycle pulse with 1 GHz center 

frequency, and the amplitude spectrum of received GPR A-Scan trace is shown in Figure 

5.3. A 2 GHz LPF is employed to filter out the out-of-band high frequency noise. 

 

Figure 5.3: Amplitude spectrum of GPR A-Scan trace. 
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5.3.2. Power Information Characterization 

Hilbert Transform is often used in communication system for baseband signal 

demodulation and extraction. In our GPR system, Hilbert Transform is implemented to 

extract the pulse envelope that measures the signal power [15]. 

The Hilbert Transform of signal 𝑠(𝑡) can be considered as the convolution of 𝑠(𝑡) 

with the function ℎ(𝑡) =
1

𝜋𝑡
, which can be expressed as 

 �̂�(𝑡) = ℋ{𝑠} = ℎ(𝑡) ∗ 𝑠(𝑡) = ∫ 𝑠(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏
∞

−∞
=

1

𝜋
∫

𝑠(𝜏)

𝑡−𝜏
𝑑𝜏

∞

−∞
 (5.1) 

To eliminate the singularities, such as 𝜏 = 𝑡 and 𝜏 = ±∞, Hilbert Transform is 

defined using the Cauchy principal value. Correspondingly, the Hilbert Transform of 

𝑠(𝑡) is given by 

 �̂�(𝑡) = ℋ{𝑠} = −
1

𝜋
lim
𝜀↓0

∫
𝑠(𝑡+𝜏)−𝑠(𝑡−𝜏)

𝜏
𝑑𝜏

∞

𝜀
 (5.2) 

Applying Hilbert transform to GPR signal 𝑠(𝑡), the analytic signal is obtained as 

 𝑠𝑎(𝑡) = 𝑠(𝑡) + 𝑖�̂�(𝑡) (5.3) 

where �̂�(𝑡) is the direct output of the Hilbert Transform of 𝑠(𝑡). The magnitude of 𝑠𝑎(𝑡) 

equals 

 |𝑠𝑎(𝑡)| = √𝑠(𝑡)2 + �̂�(𝑡)2 (5.4) 

|𝑠𝑎(𝑡)| is the envelope of 𝑠(𝑡), which facilitates the signal power characterization. 

Figure 5.4 demonstrates signal power characterization using Hilbert transform. 

The signal in Figure 5.4(a) is a GPR A-Scan waveform produced from two scatters. In 

the A-Scan waveform, the first pulse is the antennas’ direct coupling, while the second 

and third pulses are the reflection signal from the 1st and 2nd scatters correspondingly. 
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As the transmitting pulse signal is the Ricker wavelet (the second order derivatives of 

Gaussian function), the backscattering pulse from each object or layer interface shows 

three peaks. Figure 5.4(b) shows the waveform produced by the Hilbert transform where 

the three peaks become much more discernible. 

 

Figure 5.4: Hilbert transform for signal power characterization: (a) GPR A-Scan trace; (b) GPR 

A-Scan envelope. 

5.3.3. Identification of Ballast Region 

Prior to 2D entropy analysis, an A-Scan decomposition is performed to remove 

clutters that are produced due to various sources, such as antenna direct coupling, cross-

ties reflection, etc, and to isolate ballast layer for more sophisticated post processing.  

For signal decomposition, the transmitter and receiver antennas’ direct coupling 

pulse is utilized as the reference signal which preserves the transmitted pulse signal 

shape. Cross-correlation is a measure of similarity of two signal sequences as a function 

of the lag of one relative to the other. Denoting the reference GPR A-Scan trace as 𝑓[𝑡] 
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and the target GPR A-Scan trace as 𝑔[𝑡], the cross-correlation for these two real signal 

sequences is defined as: 

 𝐶𝑟𝑜𝑠𝑠𝐶𝑜𝑟(𝑓, 𝑔)[𝜏] ≝ ∑ 𝑓[𝑡]𝑔[𝑡 + 𝜏]∞
𝑡=−∞  (5.5) 

The scattering is located at the time shift 𝜏 which is determined as 

 𝜏 = 𝑎𝑟𝑔 max
𝜏

|𝐶𝑟𝑜𝑠𝑠𝐶𝑜𝑟(𝑓, 𝑔)[𝜏]| (5.6) 

By performing iterative cross correlations [16], an A-Scan waveform is 

decomposed into the combinations of multiple pulses of varying amplitude and phases 

characterizing the reflection signals from different scatters (i.e. objects or layers). Based 

on the decomposition result, the signal component corresponding to the ballast layer is 

picked out and the scope of data analysis is narrowed down to the ballast region. 

Figure 5.5 demonstrates the process of A-Scan decomposition. In Figure 5.5(a), 

the direct coupling signal with amplitude 𝐴1 at time instance 𝑡1 is chosen as the reference 

signal. As shown in Figure 5.5(b), by performing cross correlation between the reference 

signal and the A-Scan trace following 𝑡1 time instant, a maximum correlation value is 

identified at time instance 𝑡2 which corresponds to the first backscattering pulse. 

Continuing the cross correlation calculation, another backscattering pulse is identified at 

time instance 𝑡3 as shown in Figure 5.5(c). Finally, the A-Scan trace is decomposed into 

combinations of three pulses of varying amplitudes and time delays. 
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Figure 5.5: Signal decomposition for identification of backscattering from different sources: (a) 

Direct coupling signal; (b) 1st backscattering pulse; (c) 2nd backscattering pulse. 

5.3.4. B-Scan Image Enhancement 

Upon ballast region identification, the resultant B-Scan image is further 

enhanced: 

Step 1: Remove the background signals (i.e. air-ground surface reflection signals) 

using a 2-Dimensional (2D) High Pass Filter (HPF) [17]-[18]. The basic principle of this 

filtering is that in the B-scan image’s horizontal direction, the frequency bandwidth of 

the background clutter is much narrower than that of subsurface scattering signals. 

Step 2: After clutter removal, every 10 A-scan traces are grouped to perform the 

averaging calculation to further improve signal SNR as well as reduce data volume and 

redundancy.  

5.3.5. Entropy Based Region of Interest (ROI) Detection 

Our automatic ROI detection method computes 2D Renyi entropy to characterize 

data singularity so as to effectively identify and detect the structural features of interest. 
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In information theory, entropy is a measure of the uncertainty associated with a random 

variable. For our GPR data processing, entropy characterization is explored to identify 

singular regions within a large data set. In particular, a high entropy value indicates high 

degree of data similarity while a low entropy value specifies high degree of data 

singularity.  

The received GPR backscattering signal 𝑌(𝑡) can be modeled with the following 

equation:  

 𝑌(𝑡) = 𝐷(𝑡) + 𝑆(𝑡) (5.7) 

where 𝐷(𝑡) represents the reflection signal from objects of interest, and 𝑆(𝑡) models 

background signals, clutters or other interference signals. For entropy analysis, a power 

normalization is first performed which can be expressed as 

 𝑦𝑖(𝑡) =
‖𝑌𝑖(𝑡)‖2

∑ ‖𝑌𝑖(𝑡)‖2𝑀
𝑖=1

 (5.8) 

where 𝑦𝑖(𝑡) is the normalized signal, 𝑖 denotes the trace index, 𝑀 is the total number of 

traces included, and 𝑡 specifies the time index of data points on each reflection trace 

waveform. Upon the power normalization, a generalized Renyi’s entropy [19] is 

computed to assess the data singularity as: 

 𝐸𝛼(𝑡) =
1

1−𝛼
loge〈∑ [𝑦𝑖(𝑡)]𝛼𝑀

𝑖=1 〉 (5.9) 

where 𝐸𝛼(𝑡) is the entropy quantification and 𝛼 is the entropy order. Based on the study 

in Ref. [10], 𝛼 = 3 can accomplish optimal performance.  

Fouled ballast mixed with sand and fouled ballast of diverse moisture levels 

produce distinct features of reflection [15], which can be characterized from entropy data 
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values for detecting the singular data regions. Following this idea, an automatic ROI 

detection method is developed, which consists of the following data processing steps: 

Step 1: 2D Renyi entropy calculations in accordance to Eq. (5.9). 

Step 2: Entropy curve smoothing using a moving average method [20]. 

 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑛) =
1

𝑚
∑ 𝐸(𝑖)𝑛

𝑖=𝑛−𝑚+1  (5.10) 

In Eq. (5.10), 𝐸(𝑖) denotes the entropy value of index 𝑖 in entropy data sequence. 

The moving average method calculates the mean of every 𝑚 data points to eliminate 

noise and smooth out the entropy data array. In our analysis, 𝑚 is selected as 5% of the 

total number of entropy data points to accomplish optimal smoothing performance as 

well as preserve the data resolution.  

Step 3: Adaptive entropy threshold determination using OTSU’s method. 

Depending on the data characteristics, regions in a B-scan image can be classified 

into three categories: singular region, stationary background region and the transition 

region. The classification of a region can be done through assessing its entropy values 

against two thresholds 𝐾1 and 𝐾2 (𝐾1 < 𝐾2). Singular regions have entropy values lower 

than threshold 𝐾1, and stationary background regions have entropy values higher than 

𝐾2. For transition regions, their entropy values are amid of these two thresholds. In order 

to appropriately determine threshold values 𝐾1 and 𝐾2, the automatic OTSU’s 

thresholding method [21] is employed. OTSU’s method is a classic image segmentation 

technique for extracting an object from its background. In principle, an image can be 

divided into non-overlapping regions by evaluating region’s homogeneity through 

intensity values (i.e. pixel magnitude) variance assessment. For region classification, the 
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intra-class intensity values are close to each other with small variances; while the inter-

classes intensity values are significantly different with large variances. OTSU’s method 

performs statistical analysis to identify appropriate thresholds so as to segment image 

into different regions accomplishing the criteria: the intensity values variances of the 

same region is minimized while the variances of different regions are maximized. 

5.4. Lab Experiment 

5.4.1. Test Configuration 

To test and verify our automatic ROI region detection method, a test platform is 

produced emulating a railroad segment as shown in Figure 5.6(a). The test platform is 

3.5 meters long, 1.2 meters tall and 1.5 meters wide. It is filled with sand and ballast. One 

portion of the ballast region is filled with the fouled ballast mixed with sand and water. 

Figure 5.6(b) illustrates the platform structure: (1) The ballast layer of 0.3 meters 

thickness is laid above the soil; (2) 0.75 meters apart from the left end of the platform, 

an area (highlighted in blue) of 0.45 meters length and 0.2 meters depth is filled with the 

fouled ballast, which is a mixture of sand, ballast, and water.  This fouled ballast region 

is used to evaluate the effectiveness of our GPR system and ROI detection algorithms. 

 

Figure 5.6: Railroad ballast lab test configuration: (a) Test platform; (b) Subsurface structure. 
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5.4.2. ROI Detection 

The GPR raw B-scan image of the test platform is plotted in Figure 5.7(a). Figure 

5.7(b) shows the pre-processed B-Scan image upon de-noising with stacking and low 

pass filtering. The air-ballast interface reflection appears at 8.5 ns, and the ballast-soil 

interface reflection appears at 12 ns. The two-way travel time of radar incident signal 

within the clean ballast region equals Δ𝑡 = 12 ns – 8.5 ns = 3.5 ns, and the one-way travel 

time is 1.75 ns. Substituting the dielectric constant of clean ballast 𝜀𝑐 = 3.2 [22] into 

equation 𝑉𝑐 = 𝑉/√𝜀𝑐, where 𝑉 is the speed of light in air, 𝑉𝑐 is calculated as 1.68 × 108 

m/s. Using 𝑉𝑐 = 𝑑/(
Δ𝑡

2
), the thickness of clean ballast region is computed as 0.294 m 

approximately. This value agrees well with the actual setup on the test platform in Figure 

5.6(b), where the thickness of clean ballast region is 0.3 m. 

 

Figure 5.7: B-Scan image from lab tests: (a) Raw B-Scan image; (b) Pre-processed B-Scan image. 

After applying the Hilbert transform, the new B-Scan image Figure 5.8(a) is 

plotted in accordance to signal magnitude envelop, which characterizes the power 

distribution of the reflection signal. Figure 5.8(c) depicts a sample A-scan waveform, 

wherein the first pulse corresponds to the direct coupling between the transmitter and 
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receiver antennas, and the second one corresponds to the ground surface reflection signal. 

Utilizing signal decomposition method, these systematic background signals can be 

effectively identified and singled out. As shown in Figure 5.8(b), the first white line 

represents the antennas direct coupling signal (the reference signal), and the ground 

surface reflection signal is highlighted as the gray line. The ballast region can be located 

as the region below the ground surface reflection, and is extracted in Figure 5.9(a) 

separately. Since our interest is only in the ballast layer in this study, the development of 

the automatic ROI detection method focuses on characterizing the ballast layer, while 

other layers above it are eliminated. The ballast region data are further enhanced using 

2D high pass filtering and 10-trace stacking to improve signal to noise ratio SNR. The 

resulting B-Scan image is depicted in Figure 5.9(b). 

 

Figure 5.8: Signal Magnitude Characterization through Hilbert Transform: (a) B-Scan image 

plotted using signal magnitude data; (b) Systematic background signals identified through 

decomposition method; (c) A sample A-Scan trace waveform. 
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Figure 5.9: B-Scan image for ballast layer: (a) Ballast layer; (b) Enhanced ballast layer. 

After obtaining Figure 5.9(b), 2D entropy analysis is calculated, and the resulting 

curves are shown in Figure 5.10. 

For the y-axis entropy curve shown in Figure 5.10(a), two threshold values 𝐾1 =

5.78 and 𝐾2 = 6.22 are calculated using the OTSU’s thresholding method. As illustrated 

in Figure 5.10(a), there is one region with entropy values smaller than 𝐾1, which locates 

between 𝑡 = 10.80 ns and 12.30 ns. Similarly, two other threshold values 𝐾1
′ = 4.48 and  

𝐾2
′ = 4.80 are also computed for the x-axis entropy curve shown in Figure 5.10(b). A 

singular region is identified based on threshold 𝐾1
′, which is located between 𝑥 = 2.55 

m and 𝑥 = 2.80 m. Combining both the x-axis and y-axis entropy analysis results, one 

singular area is marked in Figure 5.11 specifying the fouled ballast area.  
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Figure 5.10: Entropy analysis of ballast data of Figure 5.8(b): (a) Entropy along Travel time index 

(y-axis); (b) Entropy along Scan Axis (x-axis). 

 

Figure 5.11: 2D entropy analysis of the B-Scan image collected from the test platform. 

The depth of the fouled ballast region is computed as follows: In raw B-Scan 

image Figure 5.7(a), the air-ground surface reflection signal is located at 𝑡 = 8.5 ns, and 

the top edge of the detected singular region is located at 𝑡 = 10.80 ns. Hence, the two-

way travel time of radar incident signal between the air-ground surface and the fouled 

ballast region equals Δ𝑡 = 10.80 ns – 8.5 ns = 2.3 ns, and the one-way travel time is 1.15 

ns. Substituting the dielectric constant of clean ballast 𝜀𝑐 = 3.2 [22] into equation 𝑉𝑐 =
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𝑉/√𝜀𝑐, where 𝑉 is the speed of light in air, 𝑉𝑐 is calculated as 1.68 × 108 m/s. Using 

𝑉𝑐 = 𝑑/(
Δ𝑡

2
), the depth of the fouled ballast region is computed as 0.193 m 

approximately. This value agrees well with the actual setup on the test platform in Figure 

5.6(b), where the depth of fouled ballast region is 0.2 m. The detection error is only (0.2 

- 0.193)/0.2 = 3.5%. 

Horizontally, the fouled ballast region spans from 2.4 m to 2.8 m, which is also 

consistent with the actual setup on the test platform (from 2.55 m to 2.80 m) in Figure 

5.6(b). These results validate that the automatic ROI detection method can correctly 

identify the fouled ballast region. As shown in Figure 5.11, the extracted fouled ballast 

region comprises less than 5% of the entire data volume, which can significantly reduce 

computation complexity for other more sophisticated post-processing. 

5.5. Inspection of Railroad Ballast 

5.5.1. Test Configuration 

Table 5.2: Key Parameters Used in the GPR Field Tests. 

Data acquisition unit 8 Gsps, 10-bit resolution 

Vehicle moving speed 5 miles/h according to railway service regulation 

Pulse repetition frequency 
Triggered in distance, 10000 triggers per wheel 

rotation 

Vehicle wheel Perimeter 0.77 meter 

Signal bandwidth 1.5 GHz 

Penetrating capability 1 meter 
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In August 2013, the research team conducted several field tests at Boston MBTA 

Green and Red Lines as well as St. Louis Metro Red and Blue Lines. The GPR system is 

mounted on a hi-rail SUV as shown in Figure 5.12 and the key parameters used in the 

GPR tests are listed in Table 5.2. 

 

Figure 5.12: GPR System configuration during field tests. 

Field tests at Boston MBTA: On August 15th, 2013, the GPR was utilized to scan 

approximately 2.4 miles of MBTA Green line from Blandford Rd to Summit Ave 

traveling westbound. On August 16th, 2013, about 3 miles of MBTA Red line from 

Mattapan Station to Cedar Grove Station traveling eastbound was inspected with GPR. 

Field tests at Metro St. Louis: During the night of August 19th and the early 

morning of August 20th, 2013, the team collected GPR data along MetroLink Red line 
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from Shiloh-Scott Station to Belleville Station for approximately 6 miles. In the night of 

August 20th and the early morning of August 21st, 2013, the team tested the GPR system 

along MetroLink Blue line from Forest Park Station to Sunnen Station for approximately 

6 miles. 

These field tests generate about 300 GB of GPR data. For processing the big data 

of such volume, the aforementioned GPR signal processing algorithms are applied to 

automatically detect singular regions of potential interests. In this chapter, a segment of 

GPR data from Metro St. Louis MetroLink Blue line (about 8 meters long) is used to 

demonstrate our automatic ROI detection algorithm. Figure 5.13 shows two pictures of 

the site where the sample GPR data were collected. 

 

Figure 5.13: Site pictures: (a) Metro St. Louis MetroLink Blue line; (b) Railroad ballast. 
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5.5.2. ROI Detection 

The same pre-processing steps detailed in the preceding sections are implemented 

for the field test data. The raw B-Scan image is shown in Figure 5.14(a), and the pre-

processing result is plotted in Figure 5.14(b). 

 

Figure 5.14: (a) Field test raw B-Scan image; (b) Pre-processed B-Scan image. 

 

Figure 5.15: (a) Field test B-Scan image obtained from signal magnitude ; (b) cross-tie marked by 

signal decomposition; (c) A-Scan signal at x = 3.8 m. 

Utilizing the Hilbert transform, the envelope of the field test B-Scan image is 

plotted in Figure 5.15(a), which characterizes the power distribution of the reflection 

signal. To separate the ballast layer and the cross-tie layer, the first step is to choose the 
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transmitter and receiver antennas’ direct coupling pulse as the reference signal, which is 

the first pulse in Figure 5.15(c). By performing cross correlation using the reference pulse 

signal, each A-Scan waveform in the B-Scan image (Figure 5.15(a)) is decomposed into 

combinations of pulses of varying amplitude and time delays representing the reflection 

signals from different scatters. As shown in Figure 5.15(b) and (c), the second scatter in 

the B-Scan image (Figure 5.15(a)) is detected as the cross-tie (or sleeper). By removing 

these two sections, the ballast layer is obtained in Figure 5.16(a). 

 

Figure 5.16: B-Scan image for ballast layer: (a) Ballast layer; (b) Enhanced ballast layer. 

The ballast region image is further enhanced by clutter removal using 2D high 

pass filtering and averaging by stacking operation of every 10 traces. The enhanced 

ballast B-Scan image is shown in Figure 5.16(b). 

The 2D entropy characterization algorithm is then utilized to detect singular 

features. As in the laboratory GPR data processing, high entropy values characterizes 

high data similarity, while low entropy values specify high degree of singularity.  
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Figure 5.17: Entropy analysis of ballast data of Figure 5.15(b) along: (a) Travel time axis and (b) 

Scan Distance axis. 

As shown in Figure 5.17, the smoothed entropy curves are calculated. Using the 

OTSU’s method, the thresholds for vertical entropy data are computed as 𝐾1 = 5.69 and 

𝐾2 = 5.94 respectively as shown in Figure 5.17(a), and the thresholds for horizontal 

entropy data are 𝐾1
′ = 3.82 and 𝐾2

′ = 4.01 respectively as shown in Figure 5.17(b). In 

each direction, regions with entropy values below threshold 𝐾1 or 𝐾1
′ are considered as 

the ROI. By combining the entropy analysis results along the vertical and horizontal 

directions, the automatic ROI detection results are marked out with white rectangles in 

Figure 5.18. The suspicious fouled ballast region data occupies about 5% of the entire 

data volume. By narrowing down the data scope, the automatic ROI detection method 

can remarkably decrease computation complexity and storage space for more 

sophisticated post-processing. The developed algorithm has been applied to the whole 

GPR data collected from the field tests at Boston MBTA and Metro St. Louis. Due to the 

chapter length constraints, only some selected results are presented in this chapter. 
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Figure 5.18: Automatic suspicious fouled ballast regions marked by white rectangle. 

5.6. Discussion and Conclusions 

The advancements in microelectronics technologies have made it possible to 

design high-speed and high-resolution GPR circuit hardware for large-scale railroad 

structural inspections.  However, the field employments of these GPR technologies 

unavoidably produce big survey data volume, which challenges data processing. How to 

effectively detect sporadically distributed singular regions of interest within a big data 

set is a critical problem for GPR railroad inspections. Although sophisticated GPR data 

processing methods exist in the literature, most of which are supervised and 

computationally demanding. The unsupervised automatic ROI detection method 

developed in this study provides a promising solution to leverage computation efficiency. 

Moreover it can effectively identify regions of interest in the ballast layer for further in-

depth analysis. The proposed unsupervised automatic GPR data processing algorithm has 

been effectively applied to laboratory and field test data. The analysis results prove that 

the proposed algorithm can correctly identify the fouled ballast region and can accurately 
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measure the region’s location. According to our experiments, the fouled ballast data 

scope is significantly reduced to less than 5% of the whole data set for both laboratory 

and field tests. After narrowing down the data scope, sophisticated and computational 

demanding post-processing can be performed effectively. 
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CHAPTER 6: MULTISTATIC GROUND PENETRATING RADAR IMAGING 

USING BACK-PROJECTION ALGORITHM 

6.1. Introduction 

Multistatic GPR system contains multiple spatially diverse monostatic radar or 

bistatic radar components with a shared area of coverage [1]. Each of the components 

pairs involves a different bistatic angle and target radar cross section. Upon the data 

fusion between each component pair, the spatial diversity afforded by the multistatic 

GPR system allows for different aspects of a target being viewed simultaneously. The 

information gained from various antenna pairs and multiple radar cross sections can give 

rise to a number of advantages over conventional monostatic or bistatic GPR systems, 

such as higher signal-to-noise ratio (SNR), signal-to-clutter ratio (SCR), high detection 

rate, better robustness, etc. 

High Signal-to-Noise Ratio (SNR): The multiple measurements at a target from 

the variety of antenna locations afford the integration of the target scattering signals. 

While for the measurement noises, the measurements from different antenna locations 

would cancel each other. Thus, the multistatic GPR imaging can attain a higher SNR 

comparing to monostatic GPR and bistatic GPR. 

High Signal-to-Clutter Ratio (SCR): Multiple looks at a target from the variety of 

antenna spacings make the GPR easier to distinguish targets of interest from clutter [2]. 

The clutter characteristic can be affected many parameters, such as bistatic geometry of 

radar, frequency of transmitting signal, meteorological conditions, polarization of 

antenna, etc. It has been proven that the magnitude of clutter varies significantly as a 
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function of bistatic geometry [3]. The variety of bistatic geometry and diversity in 

reflectivity within the multistatic GPR system can alleviate the clutter signal. 

High Detection Rate. Many targets only reflect radar energy away to certain 

angles of narrow range, such as a small target buried beneath a large target, so the 

monostatic GPR or bistatic GPR may not be able to capture the reflection signal from 

those targets. Multistatic receivers look at the target from multiple angles so they could 

have a higher chance to catch the reflection signal. 

High Robustness. A fault or malfunction in either transmitter or receiver for a 

monostatic or bistatic system will lead to a complete loss of radar functionality. While 

for multistatic GPR system, multiple pairs of transmitters and receivers increase the 

overall stability and robustness of the system functionality. 

The back-projection imaging algorithm is developed for both ground-coupled 

multistatic GPR and air-coupled multistatic GPR configurations in this chapter. The rest 

sections of this chapter are organized as following. Sec. 6.2 introduces two popular GPR 

migration algorithms (Stolt migration and back-projection) for monostatic system and 

discusses their potential to be extended for multistatic GPR system. Sec. 6.3 describes 

the development of back-projection algorithm for ground-coupled multistatic GPR 

imaging, which accounts for the spatial offsets between the transmitter antennas and 

receiver antennas. Sec. 6.4 proposes the back-projection algorithm for air-coupled 

multistatic GPR imaging, which deliberates the heights of the antenna platform and the 

refraction phenomenon at the air-ground interface. In Sec. 6.5, experiments on simulated 

GPR data are conducted to evaluate the effectiveness of the back-projection algorithm 
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for multistatic GPR imaging application. Concluding remarks are summarized in Sec. 

6.6. 

6.2. Stolt Migration Algorithm and Back-Projection Algorithm 

Among the aforementioned GPR migration methodologies in Sec. 1.3.6, the Stolt 

migration algorithm (SMA) and back-projection algorithm (BPA) are two most popular 

and functional algorithms. The development of conventional SMA and BPA as well as 

comparison between them are described in the subsequent sections. 

6.2.1. SMA for Ground-Coupled Monostatic GPR 

6.2.1.1. Implementation Method 1 

Assuming the subsurface media is homogeneous, the implementation of the SMA 

for ground-coupled monostatic GPR can be summarized as follows [4]: 

(1) Collect the 2-D scattered field B-Scan data 𝑠(𝑥, 𝑡). 

(2) Perform the 2-D Fourier Transform on 𝑠(𝑥, 𝑡) to transform the data into the 

wavenumber-frequency domain as 𝑠(𝑘𝑥, 𝑓) and normalize it to get �̅�(𝑘𝑥, 𝑓). On the cross-

range direction, the 𝑘𝑥 varies linearly from −𝜋 ∆𝑥⁄  to 𝜋 ∆𝑥⁄ , where ∆𝑥 is the distance 

interval between two adjacent A-Scan traces in time domain. 

(3) Substitute 𝑘𝑟 = 𝜔 𝑣⁄ = 2𝜋𝑓 𝑣⁄  into �̅�(𝑘𝑥, 𝑓) to obtain the data in 

wavenumber-wavenumber domain as �̅�(𝑘𝑥 , 𝑘𝑟), where 𝑣 is the wave propagating 

velocity in subsurface media. For a homogeneous subsurface media of dielectric constant 

𝜀𝑟, the wave propagating velocity is 𝑣 = 𝑐 √𝜀𝑟⁄ , where 𝑐 is the light speed in air. 

(4) Map the data from 𝑘𝑥 − 𝑘𝑟 domain to 𝑘𝑥 − 𝑘𝑧 domain using 

 𝑘𝑧 = √4𝑘𝑟
2 − 𝑘𝑥

2 (6.1) 
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and do interpolation to produce the uniformly spaced rectangular mesh data as �̃�(𝑘𝑥, 𝑘𝑧). 

(5) Take the 2-D Inverse Fourier Transform on �̃�(𝑘𝑥, 𝑘𝑧) to produce the final 

migrated 2-D GPR image 𝑠𝑖𝑚𝑎𝑔𝑒(𝑥, 𝑧) in the scene space under Cartesian coordinates. 

6.2.1.2. Implementation Method 2 

Recently, another implementation of the SMA was introduced as range migration 

algorithm (RMA) [5]-[6] for ground-coupled monostatic GPR imaging applications. The 

implementation of the RMA can be summarized as follows: 

(1) Collect the 2-D scattered field B-Scan data 𝑠(𝑥, 𝑡). 

(2) Range and Cross-Range Fourier Transform: Calculate the 2-D Discrete 

Fourier Transform (DFT) of the GPR data matrix 𝑠(𝑥, 𝑡) resulting in the wavenumber-

frequency domain data matrix 𝑠(𝑘𝑥, 𝑓), where the 𝑘𝑥 varies linearly from −𝜋 ∆𝑥⁄  to 

𝜋 ∆𝑥⁄ . In addition to the DFT, the substitution 𝑘𝑟 = 2𝜋𝑓 𝑣ℎ𝑎𝑙𝑓−𝑤𝑎𝑦⁄  is made to produce 

the GPR data matrix in wavenumber-wavenumber domain as 𝑠(𝑘𝑥, 𝑘𝑟), where 𝑣ℎ𝑎𝑙𝑓−𝑤𝑎𝑦 

is the half-way wave propagating velocity in subsurface media. Since in the GPR data 

collection, the time instance along the range direction actually is the two-way wave 

propagating time from the target to GPR antenna. However, the GPR image in scene 

space should show the real depth (or one-way distance) of the target in range direction. 

Thus, when calculating the wave propagating velocity in the substitution, the RMA 

utilizes the half-way velocity 𝑣ℎ𝑎𝑙𝑓−𝑤𝑎𝑦 = 𝑣 2⁄ , where 𝑣 is the wave propagating 

velocity in the media. For a homogeneous subsurface media of dielectric constant 𝜀𝑟, the 

wave propagating velocity is 𝑣 = 𝑐 √𝜀𝑟⁄ . 
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(3) Stolt Interpolation: Stolt interpolation transforms the 2-D GPR data matrix 

𝑠(𝑘𝑥 , 𝑘𝑟) from the spatial wavenumber and frequency wavenumber domain 𝑘𝑥 − 𝑘𝑟, to 

the spatial wavenumber and spatial wavenumber domain 𝑘𝑥 − 𝑘𝑧. The Stolt relationship 

between 𝑘𝑧, 𝑘𝑟 and 𝑘𝑥 is 

 𝑘𝑧 = √𝑘𝑟
2 − 𝑘𝑥

2 (6.2) 

Upon this, a 1-D interpolation is applied across all the wavenumber 𝑘𝑟 to map them onto 

𝑘𝑧 resulting in the Stolt interpolated GPR data matrix �̃�(𝑘𝑥 , 𝑘𝑧). 

(4) Inverse Fourier Transform to Scene Domain: To convert the Stolt GPR data 

matrix �̃�(𝑘𝑥 , 𝑘𝑧) into scene domain 𝑠𝑖𝑚𝑎𝑔𝑒(𝑥, 𝑧), a rectangle subsection completely filled 

with data of the Stolt interpolated data matrix �̃�(𝑘𝑥, 𝑘𝑧) is taken. For some narrow band 

GPR imaging application, such rectangle subsection can’t be found so all elements with 

no value in the �̃�(𝑘𝑥, 𝑘𝑧) would be set to 0. The 2-D Inverse Discrete Fourier Transform 

(IDFT) is then applied on the rectangle subsection to produce the final migrated 2-D GPR 

image 𝑠𝑖𝑚𝑎𝑔𝑒(𝑥, 𝑧) in the scene space. 

6.2.1.3. Comparison between Two Implementations 

Theoretically, the two implementations of SMA in Sec. 6.2.1.1 and 6.2.1.2 are 

identical. The only difference is the mapping equation. In the first implementation, 

mapping 𝑘𝑧 = √4𝑘𝑟
2 − 𝑘𝑥

2 is performed while the second implementation utilizes the 

mapping 𝑘𝑧 = √𝑘𝑟
2 − 𝑘𝑥

2. The reason is that in the first implementation, 𝑘𝑟 = 𝜔 𝑣⁄  is 

calculated using the normal wave propagating speed 𝑣 = 𝑐 √𝜀𝑟⁄ . While in the second 

implementation, 𝑘𝑟 = 𝜔 𝑣ℎ𝑎𝑙𝑓−𝑤𝑎𝑦⁄  is formulated using the half-way wave velocity. The 

same result of 𝑘𝑧 = √4 𝜔2𝜀𝑟 𝑐2⁄ − 𝑘𝑥
2 will be obtained if the two velocity definitions are 
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substituted into the two mapping equations respectively. This explanation just tries to 

eliminate the confusion when readers survey the relevant SMA literatures. 

6.2.2. Improved SMA for Ground-Coupled Bistatic GPR 

Based on phase shift of samples and the wave equation, the traditional SMA 

interpolates the samples in the frequency-wavenumber (F-K) domain to obtain the 

reconstructed target in scene space. The F-K domain of samples in SMA can be easily 

generated by fast Fourier transform (FFT) on the radar range and cross range direction, 

which has high efficiency. Unfortunately, the traditional SMA or RMA fails to consider 

the impact of separation between the transmitter and receiver antennas, so the SAR 

imaging result has object shape distortion and range calculation error for bistatic GPR or 

multistatic GPR imaging application. 

In the bistatic GPR configuration, the transmitter and receiver antennas can be 

modeled as Figure 6.1. The range direction is denoted as z-axis which indicates the depth 

in the GPR inspection, while the cross range direction is denoted as x-axis which presents 

the horizontal GPR survey distance. The coordinate of the receiver antenna during the 

survey is (𝑥𝑅 , 𝑧𝑅 = 0), and that of the transmitter antenna is (𝑥𝑇 , 𝑧𝑇 = 0). The separation 

distance between the transmitter antenna and the receiver antenna is denoted as 𝑑, so 

𝑥𝑇 = 𝑥𝑅 + 𝑑. The coordinate of the target is (𝑥, 𝑧). When 𝑑 ≥ 0.64𝑧 in the GPR 

configuration, the separation between the transceiver antennas increases the minimum 

travel distance of the transmitted signal by 5% at least, which will lead to obvious error 

in the estimation of target locations for traditional SMA [7]. 
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Figure 6.1: One pair of transceiver antennas in multi-static GPR configuration. 

A new interpolation scheme in F-K domain that accounts for the widely separated 

transceivers (WST) has recently been investigated to reconstruct the targets under testing 

in Ref. [7], which is summarized as follows. 

To compensate the impact of the 𝑑 on the performance of the GPR migration, the 

2-D GPR data matrix 𝑠0(𝑥, 𝑡) is first converted into a 3-D data matrix 𝑠(𝑥𝑅 , 𝑥𝑇 , 𝑡). The 

mapping between those two matrices are: 

 {
𝑠(𝑥𝑅 , 𝑥𝑇 , 𝑡) = 𝑠0(𝑥𝑅 , 𝑡), when 𝑥𝑇 = 𝑥𝑅 + 𝑑

𝑠(𝑥𝑅 , 𝑥𝑇 , 𝑡) = 0, otherwise
  (6.3) 

If we denote the signal at location (𝑥, 𝑧) and time instance 𝑡 in the EM field as 

𝑠𝑡,𝑧(𝑥𝑅 , 𝑥𝑇 , 𝑡), where 𝑥𝑅 and 𝑥𝑇 are regarded as two independent location variables, the 

signal collected by the receiver antenna during the movement of the transceivers along 

the x-axis is  𝑠𝑡,𝑧=0(𝑥𝑅 , 𝑥𝑇 , 𝑡), the data inside which are identical with the 3-D data matrix 

𝑠(𝑥𝑅 , 𝑥𝑇 , 𝑡). The time domain signal 𝑠𝑡,𝑧=0(𝑥𝑅 , 𝑥𝑇 , 𝑡) and its F-K domain form 

𝑆𝑡,𝑧=0(𝑘𝑥𝑅
, 𝑘𝑥𝑇

, 𝜔) can be transformed between each other via the 3-D Fourier transform: 

 𝑆𝑡,𝑧=0(𝑘𝑥𝑅
, 𝑘𝑥𝑇

, 𝜔) = ∭ 𝑠𝑡,𝑧=0(𝑥𝑅 , 𝑥𝑇 , 𝑡)𝑒−𝑗(𝑘𝑥𝑅
𝑥𝑅+𝑘𝑥𝑇

𝑥𝑇+𝜔𝑡) 𝑑𝑥𝑅 𝑑𝑥𝑇 𝑑𝑡 (6.4) 
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 𝑠𝑡,𝑧=0(𝑥𝑅 , 𝑥𝑇 , 𝑡) =
1

(2𝜋)3 ∭ 𝑆𝑡,𝑧=0(𝑘𝑥𝑅
, 𝑘𝑥𝑇

, 𝜔) 𝑒𝑗(𝑘𝑥𝑅
𝑥𝑅+𝑘𝑥𝑇

𝑥𝑇+𝜔𝑡) 𝑑𝑘𝑥𝑅
𝑑𝑘𝑥𝑇

𝑑𝜔

 (6.5) 

where 𝑘𝑥𝑅
 and 𝑘𝑥𝑇

 are the wavenumbers of the transmitter and receiver respectively. 𝜔 

is the angular frequency. When the target coordinate is (𝑥, 𝑧), the EM wave field at the 

target position can be modeled as 𝑠𝑡,𝑧(𝑥𝑅 , 𝑥𝑇 , 𝑡), which is a phase shifted version of 

𝑠𝑡,𝑧=0(𝑥𝑅 , 𝑥𝑇 , 𝑡) in F-K domain: 

 𝑠𝑡,𝑧(𝑥𝑅 , 𝑥𝑇 , 𝑡) =

1

(2𝜋)3 ∭ 𝑆𝑡,𝑧=0(𝑘𝑥𝑅
, 𝑘𝑥𝑇

, 𝜔) 𝑒𝑗(𝑘𝑥𝑅
𝑥𝑅+𝑘𝑥𝑇

𝑥𝑇+𝑘𝑧𝑅
𝑧+𝑘𝑧𝑇

𝑧+𝜔𝑡) 𝑑𝑘𝑥𝑅
𝑑𝑘𝑥𝑇

𝑑𝜔 (6.6) 

Therefore, the target feature in the imaging space is 𝑠𝑡=0,𝑧(𝑥𝑅 , 𝑥𝑇 , 𝑧) =

𝑠𝑡,𝑧(𝑥𝑅 , 𝑥𝑇 , 𝑡)|𝑡 = 0, i.e. 

 𝑠𝑡=0,𝑧(𝑥𝑅 , 𝑥𝑇 , 𝑧) =

1

(2𝜋)3 ∭ 𝑆𝑡,𝑧=0(𝑘𝑥𝑅
, 𝑘𝑥𝑇

, 𝜔) 𝑒𝑗(𝑘𝑥𝑅
𝑥𝑅+𝑘𝑥𝑇

𝑥𝑇+𝑘𝑧𝑅
𝑧+𝑘𝑧𝑇

𝑧) 𝑑𝑘𝑥𝑅
𝑑𝑘𝑥𝑇

𝑑𝜔 (6.7) 

Due to the Maxwell's equations, the target reflection signal should meet the 

following conditions: 

 
𝜕2𝑠

𝜕2𝑥𝑅
2 +

𝜕2𝑠

𝜕2𝑧𝑅
2 −

1

𝑣2

𝜕2𝑠

𝜕2𝑡2 = 0 (6.8) 

 
𝜕2𝑠

𝜕2𝑥𝑇
2 +

𝜕2𝑠

𝜕2𝑧𝑇
2 −

1

𝑣2

𝜕2𝑠

𝜕2𝑡2 = 0 (6.9) 

where 𝑣 is the signal velocity in the underground medium. If the dielectric constant of 

the medium is 𝜀𝑟, the velocity is 𝑣 = 𝑐/√𝜀𝑟. The above conditions lead to the following 

relations between the wavenumbers and angular frequency: 

 𝑘𝑥𝑅
2 + 𝑘𝑍𝑅

2 − 𝜔2 𝑣2⁄ = 0 (6.10) 
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 𝑘𝑥𝑇
2 + 𝑘𝑍𝑇

2 − 𝜔2 𝑣2⁄ = 0 (6.11) 

Denoting that 𝑘𝑧 = 𝑘𝑧𝑅
+ 𝑘𝑧𝑇

, the angular frequency 𝜔 can be expressed in form of 𝑘𝑧 

as 

 𝜔(𝑘𝑧) = 𝑠𝑔𝑛(𝑘𝑧)
𝑣

2
√2(𝑘𝑥𝑅

2 + 𝑘𝑥𝑇
2 ) + 𝑘𝑧

2 + (𝑘𝑥𝑅
2 − 𝑘𝑥𝑇

2 )2 𝑘𝑧
2⁄  (6.12) 

where 𝑠𝑔𝑛(𝑘𝑧) is the positive or negative sign of 𝑘𝑧. Using the function 𝜔(𝑘𝑧), 

𝑆𝑡,𝑧=0(𝑘𝑥𝑅
, 𝑘𝑥𝑇

, 𝜔) can be interpolated and projected into a 3-D data matrix 

𝑆𝑡=0,𝑧(𝑘𝑥𝑅
, 𝑘𝑥𝑇

, 𝑘𝑧(𝜔)) in new coordinate system (𝑥𝑅 , 𝑥𝑇,𝑧), which is migrated data in 

the target space domain or imaging area domain. Substituting Eq. (6.12) into Eq. (6.7), 

the follow relation between 𝑠𝑡=0,𝑧(𝑥𝑅 , 𝑥𝑇 , 𝑧) and 𝑆𝑡=0,𝑧(𝑘𝑥𝑅
, 𝑘𝑥𝑇

, 𝑘𝑧) can be obtained: 

 𝑠𝑡=0,𝑧(𝑥𝑅 , 𝑥𝑇 , 𝑧) =

1

(2𝜋)3 ∭ 𝑆𝑡=0,𝑧(𝑘𝑥𝑅
, 𝑘𝑥𝑇

, 𝑘𝑧(𝜔)) 𝑔(𝑘𝑧)𝑒𝑗(𝑘𝑥𝑅
𝑥𝑅+𝑘𝑥𝑇

𝑥𝑇+𝑘𝑧𝑧) 𝑑𝑘𝑥𝑅
𝑑𝑘𝑥𝑇

𝑑𝑘𝑧 (6.13) 

where the weighting coefficients are 

 𝑔(𝑘𝑧) =
𝑠𝑔𝑛(𝑘𝑧)𝑣(𝑘𝑧−(𝑘𝑥𝑅

2 −𝑘𝑥𝑇
2 )

2
𝑘𝑧

3⁄ )

2√2(𝑘𝑥𝑅
2 +𝑘𝑥𝑇

2 )+𝑘𝑧
2+(𝑘𝑥𝑅

2 −𝑘𝑥𝑇
2 )

2
𝑘𝑧

2⁄

 (6.14) 

Eq. (6.13) indicates that 𝑆𝑡=0,𝑧(𝑘𝑥𝑅
, 𝑘𝑥𝑇

, 𝑘𝑧(𝜔)) is the 3-D inverse Fourier transform of 

𝑠𝑡=0,𝑧(𝑥𝑅 , 𝑥𝑇 , 𝑧). 

Finally, the B-Scan image can be produced as 

 𝑠mig(𝑥, 𝑧) = 𝑠𝑡=0,𝑧(𝑥𝑅 , 𝑥𝑅 + 𝑑, 𝑧)|
𝑥=𝑥𝑅+𝑑

 (6.15) 

The flow chart of the WST-SMA is summarized as 
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Figure 6.2: WST-SMA Migration Flow Chart. 

The WST-SMA accounts for the separation between the transmitter antenna and 

receiver antenna, so it is an improved version of the traditional SMA for bistatic GPR 

imaging application. Nevertheless, since the WST-SMA performs all the computations 

on a 3-D data matrix instead of the original 2-D data matrix, this algorithm sacrifices 

both computational efficiency and space complexity for achieving a good imaging 
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performance, which could be an issue when processing large GPR data matrix, especially 

the GPR field test data. 

6.2.3. BPA for Ground-Coupled Monostatic GPR 

6.2.3.1. Principle 

Assuming the subsurface media is homogeneous, the physical principle of the 

BPA for ground-coupled monostatic GPR can be elaborated as follows [8]-[9]: 

 

Figure 6.3: Principle of BPA for monostatic GPR: (a) Distance between antenna and target in 

scene space; (b) Wave propagating time from antenna to target; (c) Time domain data points back 

projected to scene space. 

(1) Collect the 2-D scattered field B-Scan data 𝑠(𝑥, 𝑡). There are 𝑁 A-Scan traces 

in the 2-D GPR data corresponding to signals received at 𝑁 antenna locations. 

(2) Consider the received signal from the target at different antenna locations 𝑛𝑖 

(𝑖 = 1, 2, … , 𝑁). The physical setup is illustrated in Figure 6.3(a), in which two antenna 

locations are plotted as example. In scene space, the distance between the target and each 

antenna location is 𝑟𝑖 (𝑖 = 1, 2, … , 𝑁). 
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(3) Based on the distance between the target and each antenna location in scene 

space, the two-way wave propagating time between each antenna location and the target 

is 

 𝑡𝑖 =
2𝑟𝑖

𝑣
 (6.16) 

where 𝑣 is the wave propagating velocity in the subsurface media. This process is 

illustrated in Figure 6.3(b). 

(4) The scattering source can be located on a semicircle around each antenna 

location with radius �̅�𝑖 = 𝑣𝑡𝑖 2⁄ , where 𝑡𝑖 is the wave propagating time calculated in Step 

(3) for each antenna position. As an example, in Figure 6.3(c), the semicircles with radius 

�̅�1 and �̅�2 are generated in two individual images respectively. Then those two images are 

superposed to the final migrated GPR image. In the final resulted image, the section 

where the semicircles overlap will have a strong reflection while the other data points 

have weak or zero reflection. 

(5) Repeat the Step (3) and (4) for all antenna positions and superpose 

corresponding semicircles on the migrated GPR image. The strong scattering in the 

migrated image will be considered as the target while the weak scattering considered as 

the noise or background. 

The principle of the BPA indicates that, as long as the wave propagating path 

between the antenna and the target can be determined, the wave propagating time can be 

calculated. Further, the data points in the scene space can be reconstructed from the 

collected data matrix in time domain. Therefore, the BPA algorithm has the potential to 

be modified and extended for bistatic GPR and multistatic GPR imaging applications. 
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6.2.3.2. Implementation Method 1 

 

Figure 6.4: Implementation of BPA for ground-coupled monostatic GPR 

The monostatic GPR configuration is plotted in Figure 6.4. The implementation 

of the BPA for ground-coupled monostatic can be described as follows [10]-[11]: 

(1) Collect the 2-D scattered field B-Scan data 𝑠(𝑥, 𝑡). There are 𝑁 A-Scan traces 

in the 2-D GPR data corresponding to signals received at 𝑁 antenna locations. For the 

𝑖th antenna location, the coordinate of the antenna is (𝑥𝑖 , 0). 

(2) For a given scene point 𝑃(𝑥0, 𝑧0) in the GPR testing scenario, the GPR signal 

transmits from the antenna, propagates to the scene point, and reflects back to the 

antenna. 

(3) For the 𝑖th antenna location, the round-trip distance between the antenna at 

(𝑥𝑖 , 0) and the scene point 𝑃 at (𝑥0, 𝑧0) can be calculated as: 

 𝑑𝑃,𝑖 = 2√(𝑥0 − 𝑥𝑖)2 + 𝑧0
2 (6.17) 

The two-way wave propagating time is 
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 𝑡𝑃,𝑖 =
𝑑𝑃,𝑖

𝑣
=

2√(𝑥0−𝑥𝑖)2+𝑧0
2

𝑣
=

2√(𝑥0−𝑥𝑖)2+𝑧0
2

𝑐 √𝜀𝑟⁄
 (6.18) 

where 𝜀𝑟 is the dielectric constant of the subsurface media. Here we assume that the 

subsurface is a homogeneous media. 

(4) For this given scene point 𝑃, calculate the two-way wave propagating time 

from 𝑃 to each of the antenna position as {𝑡𝑃,1, 𝑡𝑃,2, … , 𝑡𝑃,𝑁}. 

(5) The scattering signal of scene point 𝑃 is recorded in all the 𝑁 received signals 

at the 𝑁 antenna locations. Denote the A-Scan trace signal at 𝑖th antenna is 𝑠𝑖(𝑡). 

Interpolate in the 𝑠𝑖(𝑡) to obtain the scattering from point 𝑃 in the 𝑖th A-Scan trace: 

 𝑆𝑃,𝑖 = 𝑠𝑖(𝜏)|𝜏=𝑡𝑃,𝑖
  (6.19) 

(6) Perform interpolation and Eq. (6.19) on all the A-Scan traces, the scattering 

from point 𝑃 in each A-Scan trace can be obtained as {𝑆𝑃,1, 𝑆𝑃,2, … , 𝑆𝑃,𝑁}. If  point 𝑃 is 

out of the illuminated area of the 𝑘th antenna location, then 𝑆𝑃,𝑘 is set to 0.  

(7) The final value of the point 𝑃(𝑥0, 𝑧0) in the scene space can be formulated as: 

 𝑆𝑖𝑚𝑎𝑔𝑒(𝑥0, 𝑧0) = ∑ 𝑆𝑃,𝑖
𝑁
𝑖=1    (6.20) 

(8) Repeat Step (2)-(7) for all the points in the scene space to produce the 

migrated GPR image. 

Considering the interpolation is the most time consuming computation in this 

implementation, let us quantify how many interpolations are performed to complete this 

migration process. For GPR data matrix or the imaging region of size 𝑀 × 𝑁, signals are 

recorded at 𝑁 antenna locations as 𝑁 A-Scan traces, and each A-Scan trace consists of 

𝑀 data points. Assume we set a scene space of size 𝑀0 × 𝑁0. In this implementation of 
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BPA, a point 𝑃 in the scene space is given and the scattering signal of this point in each 

A-Scan trace is calculated by interpolation. Then the scattering signals recorded in each 

A-Scan traces are projected back to the point 𝑃. So 𝑁 interpolations are required for one 

data point in the scene space. This process will be repeated for all data points in the GPR 

imaging scene space for 𝑀0𝑁0 times. Finally, 𝑀0𝑁0𝑁 times of interpolation are 

computed during the BPA migration process. 

6.2.3.3. Implementation Method 2 

An alternative implementation was proposed in Ref. [12] comprising less times 

of interpolation: 

(1) Collect the 2-D scattered field B-Scan data 𝑠(𝑥, 𝑡). There are 𝑁 A-Scan traces 

in the 2-D GPR data corresponding to signals received at 𝑁 antenna locations. For the 

𝑖th antenna location, the coordinate of the antenna is (𝑥𝑖 , 0). Initialize the migrated GPR 

image as 𝑆𝑖𝑚𝑎𝑔𝑒(𝑥, 𝑧) consisting of 𝑀0 × 𝑁0 scene points. For a given scene point 

𝑃(𝑥0, 𝑧0) in the GPR testing scenario, the GPR signal transmits from the antenna, 

propagates to the scene point, and reflects back to the antenna. 

(2) For the 𝑖th antenna location, the round-trip distance between the antenna at 

(𝑥𝑖 , 0) and the scene point 𝑃 at (𝑥0, 𝑧0) can be calculated as: 

 𝑑𝑃,𝑖 = 2√(𝑥0 − 𝑥𝑖)2 + 𝑧0
2 (6.21) 

The two-way wave propagating time is 

 𝑡𝑃,𝑖 =
𝑑𝑃,𝑖

𝑣
=

2√(𝑥0−𝑥𝑖)2+𝑧0
2

𝑣
=

2√(𝑥0−𝑥𝑖)2+𝑧0
2

𝑐 √𝜀𝑟⁄
 (6.22) 
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where 𝜀𝑟 is the dielectric constant of the subsurface media. Here we assume that the 

subsurface is a homogeneous media. 

(3) For the 𝑖th antenna location, calculate the two-way wave propagating time 

from it to each of the scene points in the scene space 𝑆𝑖𝑚𝑎𝑔𝑒(𝑥, 𝑧) as a matrix:  

 𝑇𝑖 = [

𝑡𝑖(𝑥1, 𝑧1) ⋯ 𝑡𝑖(𝑥𝑁0
, 𝑧1)

⋮ ⋱ ⋮
𝑡𝑖(𝑥1, 𝑧𝑀0

) ⋯ 𝑡𝑖(𝑥𝑁0
, 𝑧𝑀0

)
] (6.23) 

(4) The 𝑖th A-Scan trace at the 𝑖th antenna location records the scattering signal 

from all the scene points in 𝑆𝑖𝑚𝑎𝑔𝑒(𝑥, 𝑧). Denote the A-Scan trace signal collected at 𝑖th 

antenna location is 𝑠𝑖(𝑡). Interpolate in the 𝑠𝑖(𝑡) to obtain the scattering from point 

𝑃(𝑥𝑛, 𝑧𝑚) that recorded in the 𝑖th A-Scan trace, and project this scattering back to the 

scene space: 

 𝑆𝑖(𝑥𝑛, 𝑧𝑚) = 𝑠𝑖(𝜏)|𝜏=𝑡𝑖(𝑥𝑛,𝑧𝑚)  (6.24) 

Eq. (6.24) represents the contribution 𝑆𝑖(𝑥, 𝑧) of the 𝑖th A-Scan trace to the migrated 

image in scene space. For those scene points out of the illuminated area of the 𝑖th antenna 

location, their corresponding values in 𝑆𝑖(𝑥, 𝑧) are set to 0. 

(5) Repeat Step (2)-(4) on all the A-Scan traces, the contribution of each A-Scan 

trace to the migrated image can be obtained as {𝑆1(𝑥, 𝑧), 𝑆2(𝑥, 𝑧), … , 𝑆𝑁(𝑥, 𝑧)}. Finally, 

the migrated image can be formulated as: 

 𝑆𝑖𝑚𝑎𝑔𝑒(𝑥, 𝑧) = ∑ 𝑆𝑖(𝑥, 𝑧)𝑁
𝑖=1    (6.25) 

In this implementation of BPA, an A-Scan trace received at the 𝑖th antenna 

location is given and the scattering signals from all the scene points recorded in this A-

Scan trace are calculated by interpolation. Then the scattering signals from all the scene 
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points recorded in this A-Scan trace are projected back to the scene space. So just one 

interpolation is applied when calculating the contribution of the 𝑖th A-Scan signal to the 

scene space. This process will be repeated for all antenna locations by 𝑁 times. Totally, 

only 𝑁 times of interpolation are computed during the BPA migration process.  

6.2.3.4. Comparison between Two Implementations 

Comparing to the implement in Sec. 6.2.3.2, the implementation in Sec. 6.2.3.3 

has three advantages: 

(1) Since much less times of interpolation are performed, this implementation of 

BPA has much lower computational cost. 

(2) The data in each A-Scan are only accessed within one single loop, so the 

process or computation on each A-Scan signal is independent to each other, which 

benefits the parallel processing and computing. 

(3) The A-Scan is used as a unit in each loop within the implementation, so, 

highly vectorized programming scheme can be utilized in MATLAB to implement the 

algorithm with concise and efficient code. 

Therefore, the implementation of BPA described in Sec. 6.2.3.3 is a better option 

from multiple aspects. All the discussions on BPA in the following sections of this 

chapter will be based on this implementation. 

6.2.4. Comparison between SMA and BPA 

Comparisons between the SMA and BPA for GPR imaging are summarized as 

follows: 
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Image Quality: The range resolutions of the SMA and BPA are nearly the same 

for experimental measurements [13]. On the other hand, the effects of the antenna’s finite 

beam-width is incorporated in the BPA, since the back-projection is only performed on 

the scene points that fall inside the antenna’s illuminated area. Thus, BPA performs better 

than SMA when dealing with the antenna’s side-lobes. 

Computational Cost: The time complexity of BPA is 𝒪(𝑁3). The time 

complexity of conventional SMA for monostatic GPR imaging is only 𝒪(𝑁2), while for 

bistatic GPR imaging, the improved SMA described in Sec. 6.2.2 also has time 

complexity of 𝒪(𝑁3). Thus, for potential multistatic GPR imaging, the time complexity 

of BPA and SMA are close to each other. However, BPA lends itself naturally to parallel 

processing [12]. Firstly, BPA can be performed on any selected sub-region of the scene 

space, so the scene space can be divided into several sub-region and each sub-region can 

be imaged separately on different hardware processors. Secondly, the BPA processes 

each A-Scan signal individually, so the GPR data matrix can be divided into several 

groups of A-Scan traces and each group can be processed parallel on separated 

processors. Thus, BPA is suitable for parallel computation. Overall speaking, the 

computational cost of BPA is not a severe issue for multistatic GPR imaging. 

Real-Time Application: For some GPR applications, especially multistatic GPR 

applications such as landmine detection [15]-[17], the real-time GPR imaging is urgently 

demanded. Since the BPA processes each A-Scan signal individually, so it can generate 

the GPR image as collecting the data. While for the SMA, all the measurements have to 

be record as a B-Scan since cross range FFT is one of the steps in SMA, so SMA has to 
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wait until the whole GPR inspection is completed. Therefore, the BPA is more suitable 

for real-time GPR imaging than SMA. 

Geometry Configuration: Due to the FFT operation, SMA requires a uniform 

spatial sampling along the cross range direction, which limits its geometry configuration. 

This could be an issue for multistatic GPR. The increments in the separation distances 

between different transmitter antennas and receiver antennas may not be uniform, so the 

overall spatial distribution of the GPR measurements from all bistatic pairs is not uniform 

for the data fusion process. Therefore, the geometry configuration requirement of SMA 

limits its utilization in multistatic GPR application. While for the BPA, as long as the 

coordinates of bistatic pairs are known, the data points can be accurately projected back 

to the scene space. 

In summary, BPA is more suitable for multistatic GPR imaging than SMA from 

above four perspectives. A BPA imaging algorithm would be developed in this chapter 

for multistatic GPR imaging application in the following sections. 

6.3. Ground-Coupled Multistatic GPR Imaging Methodology 

As a starting point, back-projection imaging algorithm for ground-coupled 

multistatic GPR is described in this section. It is a special and simplified case of air-

coupled multistatic imaging algorithm. 

6.3.1. System Configuration 

Given a multistatic GPR system with 𝑀 transmitter antennas and 𝑁 receiver 

antennas depicted as Figure 6.5, there are totally 𝑀 × 𝑁 bistatic pairs or transceiver 

antennas pairs. The antennas are assembled on an antenna platform. During the GPR 
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survey, the antenna platform moves along the cross-range direction and records signals 

at 𝐾 positions. At each data collection location, all transmitter antennas are switched on 

sequentially. When one transmitter antenna is on, 𝑁 A-Scan traces are recorded by 𝑁 

receiver antennas respectively and simultaneously. After switching between all 𝑀 

transmitter antennas, totally 𝑀 × 𝑁 A-Scan traces are recorded by the GPR system. This 

data acquisition step is repeat at every antenna platform scanning position. Finally, 𝑀 ×

𝑁 × 𝐾 A-Scan traces are recorded and assembled into one GPR data matrix for this GPR 

inspection job. 

 

Figure 6.5: Ground-coupled multistatic GPR configuration. 

6.3.2. BPA for Ground-Coupled Multistatic GPR Imaging 

The back-projection based multistatic GPR imaging algorithm aims to fuse the 

𝑀 × 𝑁 × 𝐾 A-Scan traces from different bistatic pairs and signal measurement locations 

into one B-Scan image. The imaging configuration of ground-coupled multistatic GPR 

is illustrated in Figure 6.6. A 2-D coordinate in scene space is constructed and all the 

bistatic pairs share the same coordinate system. The x-axis is the cross-range direction or 

the GPR scanning direction. Antenna platform consisting of 𝑀 transmitter antennas and 
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𝑁 receiver antennas is moving along the x-axis during the GPR survey. The z-axis is the 

range direction or the penetrating depth. Assume the subsurface media is a homogenous 

media of dielectric constant 𝜀𝑟. 

 

Figure 6.6: Ground-coupled multistatic GPR imaging. 

As an example, one bistatic pair at one antenna platform scanning location is 

plotted in Figure 6.6. When the antenna platform is at the 𝑘th scanning location (𝑘 =

1, 2, … , 𝐾), the coordinate of the 𝑖th transmitter antenna (𝑖 = 1, 2, … , 𝑀) is (𝑥𝑖,𝑘, 0) and 

the coordinate of the 𝑗th receiver antenna (𝑗 = 1, 2, … , 𝑁) is (𝑥𝑗,𝑘, 0). In this example, the 

𝑖th transmitter antenna and the 𝑗th receiver antenna form a bistatic pair (𝑖, 𝑗), and the 

spatial offset between them is 𝑑𝑖,𝑗 which is a fixed value during the GPR survey.  

Define the scene region as 𝑆 ∈ ℝ𝑀0×𝑁0 consisting of 𝑀0 × 𝑁0 scene points. For 

a scene point 𝑃(𝑥𝑚, 𝑧𝑛) where 𝑚 = 1, 2, … , 𝑀0 and 𝑁 = 1, 2, … , 𝑁0, the GPR signal 

transmits from the 𝑖th transmitter antenna to it and then reflects back to the 𝑗th receiver 
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antenna at the 𝑘th scanning position. The wave propagating distance between the 𝑖th 

transmitter antenna at (𝑥𝑖,𝑘, 0) and the scene point 𝑃 at (𝑥𝑚, 𝑧𝑛)  can be calculated as: 

 𝑑𝑖,𝑘(𝑥𝑚, 𝑧𝑛) = √(𝑥𝑚 − 𝑥𝑖,𝑘)2 + 𝑧𝑛
2 (6.26) 

The corresponding wave propagating time for 𝑑𝑖,𝑘(𝑥𝑚, 𝑧𝑛) is: 

 𝑡𝑖,𝑘(𝑥𝑚, 𝑧𝑛) =
𝑑𝑖,𝑘(𝑥𝑚,𝑧𝑛)

𝑣
=

√(𝑥𝑚−𝑥𝑖,𝑘)2+𝑧𝑛
2

𝑣
=

√(𝑥𝑚−𝑥𝑖,𝑘)2+𝑧𝑛
2

𝑐 √𝜀𝑟⁄
 (6.27) 

Similarly, the wave propagating distance from the scene point 𝑃 at (𝑥𝑚, 𝑧𝑛) to the 𝑗th 

receiver antenna at (𝑥𝑗,𝑘, 0) and corresponding propagating time can be formulated as: 

 𝑑𝑗,𝑘(𝑥𝑚, 𝑧𝑛) = √(𝑥𝑚 − 𝑥𝑗,𝑘)2 + 𝑧𝑛
2 (6.28) 

 𝑡𝑗,𝑘(𝑥𝑚, 𝑧𝑛) =
𝑑𝑗,𝑘(𝑥𝑚,𝑧𝑛)

𝑣
=

√(𝑥𝑚−𝑥𝑗,𝑘)2+𝑧𝑛
2

𝑣
=

√(𝑥𝑚−𝑥𝑗,𝑘)2+𝑧𝑛
2

𝑐 √𝜀𝑟⁄
 (6.29) 

Adding Eq. (6.27) and Eq. (6.29) together, the round-trip wave propagating time between 

the scene point 𝑃(𝑥𝑚, 𝑧𝑛) and the bistatic pair (𝑖, 𝑗) is expressed as: 

 𝑡(𝑖,𝑗),𝑘(𝑥𝑚, 𝑧𝑛) = 𝑡𝑖,𝑘(𝑥𝑚, 𝑧𝑛) + 𝑡𝑗,𝑘(𝑥𝑚, 𝑧𝑛) 

 =
√(𝑥𝑚−𝑥𝑖,𝑘)2+𝑧𝑛

2

𝑐 √𝜀𝑟⁄
+

√(𝑥𝑚−𝑥𝑗,𝑘)2+𝑧𝑛
2

𝑐 √𝜀𝑟⁄
 (6.30) 

For the bistatic pair (𝑖, 𝑗), calculate the two-way wave propagating times between 

it and each of the scene points in the scene space 𝑆 as a matrix:  

 𝑇(𝑖,𝑗),𝑘(𝑥, 𝑧) = [

𝑡(𝑖,𝑗),𝑘(𝑥1, 𝑧1) ⋯ 𝑡(𝑖,𝑗),𝑘(𝑥1, 𝑧𝑁0
)

⋮ ⋱ ⋮
𝑡(𝑖,𝑗),𝑘(𝑥𝑀0

, 𝑧1) ⋯ 𝑡(𝑖,𝑗),𝑘(𝑥𝑀0
, 𝑧𝑁0

)
] (6.31) 

The A-Scan trace measured by bistatic pair (𝑖, 𝑗) at the 𝑘th antenna platform 

location 𝑠(𝑖,𝑗),𝑘(𝑡) records the scattering signal from all the scene points in 𝑆𝑖𝑚𝑎𝑔𝑒(𝑥, 𝑧). 
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Interpolate in the 𝑠(𝑖,𝑗),𝑘(𝑡) to obtain the scattering from point 𝑃(𝑥𝑛, 𝑧𝑚) that recorded 

by the bistatic pair (𝑖, 𝑗) at the 𝑘th antenna platform location, and project this scattering 

back to the scene space: 

 𝑆(𝑖,𝑗),𝑘(𝑥𝑛, 𝑧𝑚) = 𝑠(𝑖,𝑗),𝑘(𝜏)|𝜏=𝑡(𝑖,𝑗),𝑘(𝑥𝑛,𝑧𝑚)  (6.32) 

The contribution 𝑆(𝑖,𝑗),𝑘(𝑥, 𝑧) of the bistatic pair (𝑖, 𝑗) at 𝑘th antenna platform location to 

the migrated image in scene space can be formulated as: 

 𝑆(𝑖,𝑗),𝑘(𝑥, 𝑧) = [

𝑆(𝑖,𝑗),𝑘(𝑥1, 𝑧1) ⋯ 𝑆(𝑖,𝑗),𝑘(𝑥1, 𝑧𝑁0
)

⋮ ⋱ ⋮
𝑆(𝑖,𝑗),𝑘(𝑥𝑀0

, 𝑧1) ⋯ 𝑆(𝑖,𝑗),𝑘(𝑥𝑀0
, 𝑧𝑁0

)
] (6.33) 

For those scene points out of the illuminated area of the bistatic pair (𝑖, 𝑗) at the 𝑘th 

location, their corresponding values in 𝑆(𝑖,𝑗),𝑘(𝑥, 𝑧) are set to 0. 

Repeating above processing for the bistatic pair (𝑖, 𝑗) on the A-Scan traces at 

every platform location, the contribution of A-Scan traces at each antenna platform 

location to the migrated image can be obtained as 

{𝑆(𝑖,𝑗),1(𝑥, 𝑧), 𝑆(𝑖,𝑗),2(𝑥, 𝑧), … , 𝑆(𝑖,𝑗),𝐾(𝑥, 𝑧)}. The imaging data matrix produced by the 

static pair (𝑖, 𝑗) can be formulated as: 

 𝑆(𝑖,𝑗)(𝑥, 𝑧) = ∑ 𝑆(𝑖,𝑗),𝑘(𝑥, 𝑧)𝐾
𝑘=1    (6.34) 

Repeating above processing for every bistatic pair in the multistatic GPR system, 

the imaging data matrix for each bistatic pair can be obtained as 𝑆(𝑖,𝑗)(𝑥, 𝑧) where 𝑖 =

1, 2, … , 𝑀 and 𝑗 = 1, 2, … , 𝑁. The final migrated GPR image can be formulated as the 

superposition of the 𝑆(𝑖,𝑗)(𝑥, 𝑧) from each bistatic pair: 

 𝑆image(𝑥, 𝑧) = ∑ ∑ 𝑆(𝑖,𝑗)(𝑥, 𝑧)𝑁
𝑗=1

𝑀
𝑖=1    (6.35) 
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For algorithm development and elaboration purpose, we set 𝑆image(𝑥, 𝑧) as a 

gridded rectangle. However, for real GPR imaging application, 𝑆image(𝑥, 𝑧) can be 

subsurface region of arbitrary shape that the GPR operator would like to inspect. 

6.4. Air-Coupled Multistatic GPR Imaging Methodology 

The back-projection imaging algorithm for air-coupled multistatic GPR is 

described in this section. Based on the ground-couple version, the air-couple multistatic 

GPR imaging methodology accounts for the height of the antenna platform and the 

refraction phenomenon of the propagating signal at the air-ground interface. 

 

Figure 6.7: Air-coupled multistatic GPR configuration. 

The system configuration of the air-couple multistatic GPR is almost the same as 

ground-coupled multistatic GPR. The only difference is the antenna platform is above 

the ground surface with a height of ℎ as depicted in Figure 6.7. The configuration of the 

array of the transmitter antennas and receiver antennas in Figure 6.7 is just for 

demonstration purpose. In practical hardware design, the sequence, heights and spatial 
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offsets of the antennas can be adjusted to achieve different system specifications [18]-

[21]. 

 

Figure 6.8: Air-coupled multistatic GPR imaging. 

One bistatic pair at one antenna platform scanning location is plotted in Figure 

6.8. When the antenna platform is at the 𝑘th scanning location (𝑘 = 1, 2, … , 𝐾), the 

coordinate of the 𝑖th transmitter antenna (𝑖 = 1, 2, … , 𝑀) is (𝑥𝑖,𝑘, −ℎ) and the coordinate 

of the 𝑗th receiver antenna (𝑗 = 1, 2, … , 𝑁) is (𝑥𝑗,𝑘, −ℎ). In this example, the 𝑖th 

transmitter antenna and the 𝑗th receiver antenna form a bistatic pair (𝑖, 𝑗), and the spatial 

offset between them is 𝑑𝑖,𝑗 which is a fixed value during the GPR survey.  

Define the scene region as 𝑆 ∈ ℝ𝑀0×𝑁0 consisting of 𝑀0 × 𝑁0 scene points. For 

a scene point 𝑃(𝑥𝑚, 𝑧𝑛) where 𝑚 = 1, 2, … , 𝑀0 and 𝑁 = 1, 2, … , 𝑁0, the GPR signal 
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transmits from the 𝑖th transmitter antenna to the air-ground interface, refracts into the 

ground, reaches the scene point 𝑃, reflects back to the ground-air interface, refracts out 

of the ground and then propagates back to the 𝑗th receiver antenna at the 𝑘th scanning 

position. 

The wave propagating path is displayed in Figure 6.8. In the path from the 

transmitter antenna to the scene point, the EM wave refracts at point (𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛), 0) 

on the air-ground interface. To determine the wave propagating path, the value of 

𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛) should be solved. The angle of incidence is 𝜃𝑖 and the angle of refraction 

is 𝜃𝑟, whose values satisfy the Snell’s law: 

 
sin 𝜃𝑖

sin 𝜃𝑟
= √𝜀𝑟 (6.36) 

According to the geometry, the angle of incidence 𝜃𝑖 and angle of refraction 𝜃𝑟 can also 

be expressed as: 

 sin 𝜃𝑖 =
|𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛)−𝑥𝑖,𝑘|

√(𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛)−𝑥𝑖,𝑘)2+ℎ2
 (6.37) 

 sin 𝜃𝑟 =
|𝑥𝑚−𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛)|

√(𝑥𝑚−𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛))2+𝑧𝑛
2
 (6.38) 

Substituting Eq. (6.37) and Eq. (6.38) into Eq. (6.36), the following quartic equation can 

be obtained: 

 
|𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛)−𝑥𝑖,𝑘|

√(𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛)−𝑥𝑖,𝑘)2+ℎ2
∙

√(𝑥𝑚−𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛))
2

+𝑧𝑛
2

|𝑥𝑚−𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛)|
= √𝜀𝑟 (6.39) 

which is equivalent to: 

 
(𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛)−𝑥𝑖,𝑘)2

(𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛)−𝑥𝑖,𝑘)2+ℎ2 ∙
(𝑥𝑚−𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛))

2
+𝑧𝑛

2

(𝑥𝑚−𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛))2 = 𝜀𝑟 (6.40) 
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𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛) can be solved from Eq. (6.40). Solving a quartic equation is a time 

consuming computation. Considering there are 𝑀 × 𝑁 bistatic pairs in the system and 𝐾 

antenna platform scanning positions, for a single scene point, the quartic equation in Eq. 

(6.40) will be solved for 𝑀 × 𝑁 × 𝐾 times. To alleviate the computational cost, the 

approximate value of 𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛) will be applied in this multistatic GPR imaging 

method instead of solving the quartic equation (6.40). 

Denote the intersection point of the x-axis and the direct line from the antenna 

(𝑥𝑖,𝑘, −ℎ) to the scene point (𝑥𝑚, 𝑧𝑛) is (𝑥𝑐,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛), 0). According to geometry of the 

setup, the following relation on (𝑥𝑖,𝑘, −ℎ), (𝑥𝑐,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛), 0) and (𝑥𝑚, 𝑧𝑛) can be 

formulated: 

 
𝑥𝑐,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛)−𝑥𝑖,𝑘

𝑥𝑚−𝑥𝑐,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛)
=

ℎ

𝑧𝑛
 (6.41) 

Thus, the value of 𝑥𝑐,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛) can be calculated by 

 𝑥𝑐,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛) =
𝑧𝑛𝑥𝑖,𝑘+ℎ𝑥0

𝑧𝑛+ℎ
 (6.42) 

Once 𝑥𝑐,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛) is known, according to the derivation in Ref. [22]-[23], the 

approximation of 𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛) can be formulated as: 

 𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛) =

{

𝑥𝑚 + (𝑥𝑐,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛) − 𝑥𝑚) √𝜀𝑟⁄ ,

𝑥𝑚 + 𝑧𝑛 √𝜀𝑟 − 1⁄ ,

𝑥𝑚 − 𝑧𝑛 √𝜀𝑟 − 1⁄ ,

      

|𝑥𝑖,𝑘 − 𝑥𝑚| < (𝑧𝑛 + ℎ)√𝜀𝑟 (𝜀𝑟 − 1)⁄

𝑥𝑖,𝑘 − 𝑥𝑚 ≥ (𝑧𝑛 + ℎ)√𝜀𝑟 (𝜀𝑟 − 1)⁄

𝑥𝑖,𝑘 − 𝑥𝑚 ≤ −(𝑧𝑛 + ℎ)√𝜀𝑟 (𝜀𝑟 − 1)⁄

 (6.43) 
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Once 𝑥𝑟 is solved, the wave path from the 𝑖th transmitter antenna at (𝑥𝑖,𝑘, 0) to 

the scene point 𝑃 at (𝑥𝑚, 𝑧𝑛) when the antenna platform is at the 𝑘th location can be 

determined. The wave propagating time on this path can be calculate as: 

 𝑡𝑖,𝑘(𝑥𝑚, 𝑧𝑛) =
√(𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛)−𝑥𝑖,𝑘)

2
+ℎ2

𝑐
+

√(𝑥𝑚−𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛))
2

+𝑧𝑛
2

𝑐 √𝜀𝑟⁄
 (6.44) 

Similarly, when antenna platform is at the 𝑘th location, for the wave propagating 

path from the scene point 𝑃 at (𝑥𝑚, 𝑧𝑛) to the 𝑗th receiver antenna at (𝑥𝑗,𝑘, 0), the 

intersection point (𝑥𝑐,(𝑗,𝑘),(𝑥𝑚,𝑧𝑛), 0) and the refraction point (𝑥𝑟,(𝑗,𝑘),(𝑥𝑚,𝑧𝑛), 0) can be 

determined as: 

 𝑥𝑐,(𝑗,𝑘),(𝑥𝑚,𝑧𝑛) =
𝑧𝑛𝑥𝑗,𝑘+ℎ𝑥0

𝑧𝑛+ℎ
 (6.45) 

 𝑥𝑟,(𝑗,𝑘),(𝑥𝑚,𝑧𝑛) =

{

𝑥𝑚 + (𝑥𝑐,(𝑗,𝑘),(𝑥𝑚,𝑧𝑛) − 𝑥𝑚) √𝜀𝑟⁄ ,

𝑥𝑚 + 𝑧𝑛 √𝜀𝑟 − 1⁄ ,

𝑥𝑚 − 𝑧𝑛 √𝜀𝑟 − 1⁄ ,

      

|𝑥𝑗,𝑘 − 𝑥𝑚| < (𝑧𝑛 + ℎ)√𝜀𝑟 (𝜀𝑟 − 1)⁄

𝑥𝑗,𝑘 − 𝑥𝑚 ≥ (𝑧𝑛 + ℎ)√𝜀𝑟 (𝜀𝑟 − 1)⁄

𝑥𝑗,𝑘 − 𝑥𝑚 ≤ −(𝑧𝑛 + ℎ)√𝜀𝑟 (𝜀𝑟 − 1)⁄

 (6.46) 

Once the refraction point (𝑥𝑟,(𝑗,𝑘),(𝑥𝑚,𝑧𝑛), 0) is obtained, the wave propagating time on 

this path can be calculate as 

 𝑡𝑗,𝑘(𝑥𝑚, 𝑧𝑛) =
√(𝑥𝑟,(𝑗,𝑘),(𝑥𝑚,𝑧𝑛)−𝑥𝑗,𝑘)

2
+ℎ2

𝑐
+

√(𝑥𝑚−𝑥𝑟,(𝑗,𝑘),(𝑥𝑚,𝑧𝑛))
2

+𝑧𝑛
2

𝑐 √𝜀𝑟⁄
 (6.47) 

Adding Eq. (6.44) and Eq. (6.47) together, the round-trip wave propagating time between 

the scene point 𝑃(𝑥𝑚, 𝑧𝑛) and the bistatic pair (𝑖, 𝑗) is expressed as: 

 𝑡(𝑖,𝑗),𝑘(𝑥𝑚, 𝑧𝑛) = 𝑡𝑖,𝑘(𝑥𝑚, 𝑧𝑛) + 𝑡𝑗,𝑘(𝑥𝑚, 𝑧𝑛) 

 =
√(𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛)−𝑥𝑖,𝑘)

2
+ℎ2+√(𝑥𝑟,(𝑗,𝑘),(𝑥𝑚,𝑧𝑛)−𝑥𝑗,𝑘)

2
+ℎ2

𝑐
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 +
√(𝑥𝑚−𝑥𝑟,(𝑖,𝑘),(𝑥𝑚,𝑧𝑛))

2
+𝑧𝑛

2+√(𝑥𝑚−𝑥𝑟,(𝑗,𝑘),(𝑥𝑚,𝑧𝑛))
2

+𝑧𝑛
2

𝑐 √𝜀𝑟⁄
 (6.48) 

For the bistatic pair (𝑖, 𝑗), calculate the two-way wave propagating times between 

it and each of the scene points in the scene space 𝑆 as a matrix:  

 𝑇(𝑖,𝑗),𝑘(𝑥, 𝑧) = [

𝑡(𝑖,𝑗),𝑘(𝑥1, 𝑧1) ⋯ 𝑡(𝑖,𝑗),𝑘(𝑥1, 𝑧𝑁0
)

⋮ ⋱ ⋮
𝑡(𝑖,𝑗),𝑘(𝑥𝑀0

, 𝑧1) ⋯ 𝑡(𝑖,𝑗),𝑘(𝑥𝑀0
, 𝑧𝑁0

)
] (6.49) 

The A-Scan trace measured by bistatic pair (𝑖, 𝑗) at the 𝑘th antenna platform 

location 𝑠(𝑖,𝑗),𝑘(𝑡) records the scattering signal from all the scene points in 𝑆𝑖𝑚𝑎𝑔𝑒(𝑥, 𝑧). 

Interpolate in the 𝑠(𝑖,𝑗),𝑘(𝑡) to obtain the scattering from point 𝑃(𝑥𝑛, 𝑧𝑚) that recorded 

by the bistatic pair (𝑖, 𝑗) at the 𝑘th antenna platform location, and project this scattering 

back to the scene space: 

 𝑆(𝑖,𝑗),𝑘(𝑥𝑛, 𝑧𝑚) = 𝑠(𝑖,𝑗),𝑘(𝜏)|𝜏=𝑡(𝑖,𝑗),𝑘(𝑥𝑛,𝑧𝑚)  (6.50) 

The contribution 𝑆(𝑖,𝑗),𝑘(𝑥, 𝑧) of the bistatic pair (𝑖, 𝑗) at 𝑘th antenna platform location to 

the migrated image in scene space can be formulated as: 

 𝑆(𝑖,𝑗),𝑘(𝑥, 𝑧) = [

𝑆(𝑖,𝑗),𝑘(𝑥1, 𝑧1) ⋯ 𝑆(𝑖,𝑗),𝑘(𝑥1, 𝑧𝑁0
)

⋮ ⋱ ⋮
𝑆(𝑖,𝑗),𝑘(𝑥𝑀0

, 𝑧1) ⋯ 𝑆(𝑖,𝑗),𝑘(𝑥𝑀0
, 𝑧𝑁0

)
] (6.51) 

For those scene points out of the illuminated area of the bistatic pair (𝑖, 𝑗) at the 𝑘th 

location, their corresponding values in 𝑆(𝑖,𝑗),𝑘(𝑥, 𝑧) are set to 0. 

Repeating above processing for the bistatic pair (𝑖, 𝑗) on the A-Scan traces at all 

𝐾 platform locations, the contribution of A-Scan traces at each antenna platform location 

to the migrated image can be obtained as {𝑆(𝑖,𝑗),1(𝑥, 𝑧), 𝑆(𝑖,𝑗),2(𝑥, 𝑧), … , 𝑆(𝑖,𝑗),𝐾(𝑥, 𝑧)}. The 

imaging data matrix produced by the static pair (𝑖, 𝑗) can be formulated as: 
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 𝑆(𝑖,𝑗)(𝑥, 𝑧) = ∑ 𝑆(𝑖,𝑗),𝑘(𝑥, 𝑧)𝐾
𝑘=1    (6.52) 

Repeating above processing for every bistatic pair in the multistatic GPR system, 

the imaging data matrix for each bistatic pair can be obtained as 𝑆(𝑖,𝑗)(𝑥, 𝑧) where 𝑖 =

1, 2, … , 𝑀 and 𝑗 = 1, 2, … , 𝑁. The final migrated GPR image can be formulated as the 

superposition of the 𝑆(𝑖,𝑗)(𝑥, 𝑧) from each bistatic pair: 

 𝑆image(𝑥, 𝑧) = ∑ ∑ 𝑆(𝑖,𝑗)(𝑥, 𝑧)𝑁
𝑗=1

𝑀
𝑖=1    (6.53) 

The difference of this air-coupled multistatic GPR imaging method and the 

ground-coupled version is the way to calculate the wave propagating time between the 

scene point and the antennas. 

6.5. Experimental Results 

To evaluate the back-projection based multistatic GPR imaging method, 

experiments are conducted with four sets of test data that are synthesized with the GPR 

simulation tool GprMax [24]. In the first and second test cases, a ground-coupled 

multistatic GPR is simulated. An air-coupled multistatic GPR is simulated in the third 

and fourth test cases. 

6.5.1. Ground-Coupled GPR Imaging Experiments 

In this section, two sets of simulation data are created using GprMax program. In 

our simulation, the GPR waveform is generated as a Ricker waveform (i.e. negative 

normalized second derivative of a Gaussian pulse) with its center frequency being 2 GHz. 

The multistatic configuration consists of one transmitter antenna and six receiver 

antennas. Spatial offsets between the transmitter antenna and six receiver antennas are 5 

cm, 10 cm, 20 cm, 30 cm, 40 cm and 50 cm respectively. The antenna platform is close 
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to the ground surface simulating the ground-coupled configuration. The antenna platform 

moves uniformly from left to right along the horizontal direction and records the received 

signal at 100 positions. The distance interval between two adjacent platform locations is 

2 cm. 

6.5.1.1. Simulation Data 1: Three Targets 

In the first simulation setup, the subsurface media is modeled as a homogeneous 

layer whose dielectric constant is 6.0. As depicted in Figure 6.9, three targets are buried 

underground whose dielectric constants are all set to 8.0. The purpose of this test case is 

to evaluate the effectiveness of the proposal multistatic GPR imaging method on targets 

of various shapes. The dimensional specifications of the targets are listed as follows: 

 Pipe (cylinder object) – depth: 7.5 cm; diameter: 2.5 cm. 

 Man-made shape object – depth of top surface: 10 cm; depth of bottom surface: 20 

cm; width of top part: 10 cm; width of bottom part: 20 cm; thickness of top part: 5 

cm; thickness of bottom part: 5 cm. 

 Plate – depth: 8.5 cm; width: 15 cm; thickness: 0.5 cm. 

 

Figure 6.9: Ground-coupled multistatic GPR testing setup – three buried targets. 
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The multistatic system in this simulation consists of one transmitter antenna and 

six receiver antennas, so six GPR data matrices are produced by six bistatic pairs. The 

raw B-Scan images produced by the Tx1-Rx1 pair and Tx1-Rx5 pair are plotted as Figure 

6.10(a) and (b) respectively. 

 

(a) 

 

(b) 

Figure 6.10: Ground-coupled multistatic GPR raw B-Scan – three buried targets: (1) Tx1-Rx1 

pair; (2) Tx1-Rx5 pair. 

If each bistatic pair is regarded as an individual GPR system, the migrated B-Scan 

images generated by the proposed algorithm are displayed in Figure 6.11(a) and (b) for 

pair Tx1-Rx1 and Tx1-Rx5 respectively. As shown in Figure 6.11(a), for the B-Scan 

produced by bistatic pair Tx1-Rx1, the resolution of the targets is good, nevertheless, the 
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bottom of the man-made shape target can’t be detected and the SCR is low. As depicted 

in Figure 6.11(b), for the B-Scan image obtained from bistatic pair Tx1-Rx5, the bottom 

of the middle target can be reconstructed accurately and the SCR is high, however, the 

resolution is not good comparing to bistatic pair Tx1-Rx1. Because of the variety of 

spatial offsets in different bistatic antenna pairs, the characteristics of both the target and 

clutter vary. 

 

(a) 

 

(b) 

Figure 6.11: Ground-coupled multistatic GPR migrated B-Scan – three buried targets: (1) Tx1-

Rx1 pair; (2) Tx1-Rx5 pair. 

Now considering all six bistatic pairs as a multistatic system, the GPR data matrix 

is processed by the proposed multistatic GPR imaging method, and the resulted GPR 
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image is plotted as Figure 6.12. The imaging result is consistent with the geometry setup 

depicted in Figure 6.9. It combines the advantages of all bistatic pairs, in which, the 

resolution is good and the shapes of the targets are reconstructed accurately. Moreover, 

this migrated GPR image testifies to the discussion in Sec. 6.1 that the radar imaging 

specifications, such as SNR and SCR, benefit from the multistatic configuration because 

of information gained from various antenna pairs and multiple radar cross sections. 

 

Figure 6.12: Ground-coupled multistatic GPR migrated B-Scan using proposed multistatic 

imaging method – three buried targets 

6.5.1.2. Simulation Data 2: Congested Pipes 

In the second simulation setup for ground-coupled multistatic GPR inspection, 

the subsurface media is also modeled as a homogeneous layer whose dielectric constant 

is 6.0. As depicted in Figure 6.13, three groups of congested pipes are buried underground 

whose dielectric constants are all set to 8.0. The diameters of the pipes are all 2.5 cm. 

This test case simulates the complex testing scenario of GPR underground utility sensing 

and mapping application. The dimensional specifications of the targets are listed as 

follows: 
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 Left group – three pipes are at the same x-coordinate while different depth. The 

depths of them are 8.5 cm, 16 cm and 23.5 cm respectively. 

 Middle group – five pipes construct a “W” shape. The depths of the top three pipes 

are 10.5 cm. The depths of the bottom two pipes are 20.5 cm. The horizontal spatial 

separation between two adjacent pipes is 10 cm. 

 Right group – Depths of all three pipes are 15 cm. The separation between two 

adjacent ones is 10 cm. 

 

Figure 6.13: Ground-coupled multistatic GPR testing setup – three buried targets. 

If individual antenna pair is selected for GPR imaging processing, the raw B-Scan 

images produced by the Tx1-Rx1 pair and Tx1-Rx5 pair are plotted in Figure 6.14(a) and 

(b) respectively as two examples. Their corresponding migrated B-Scan images 

reconstructed by the proposed algorithm are shown in Figure 6.15(a) and (b) respectively. 

Similar to the first test case in Sec. 6.5.1.1, for the B-Scan produced by bistatic pair with 

small spatial offset, the resolution of the targets is good, while the SCR is low. For the 

B-Scan image obtained from bistatic pair with large spatial offset, the SCR is high while 

the resolution, especially the cross range resolution is not good. 
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(a) 

 

(b) 

Figure 6.14: Ground-coupled multistatic GPR raw B-Scan – congested pipes: (1) Tx1-Rx1 pair; (2) 

Tx1-Rx5 pair. 

 

(a) 



 

178 

 

(b) 

Figure 6.15: Ground-coupled multistatic GPR migrated B-Scan – congested pipes: (1) Tx1-Rx1 

pair; (2) Tx1-Rx5 pair. 

Now performing the multistatic GPR imaging algorithm on the GPR data 

collected by all six bistatic pairs, the resulted GPR image is plotted as Figure 6.16, which 

is consistent with the geometry setup depicted in Figure 6.13. The migrated GPR image 

from multistatic measurement data benefits from the multiple looks at the targets. It has 

high reconstruction accuracy, resolution, and SCR. 

 

Figure 6.16: Ground-coupled multistatic GPR migrated B-Scan using proposed multistatic 

imaging method – congested pipes. 
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6.5.2. Air-Coupled GPR Imaging Experiments 

In this section, two sets of simulation data are created using GprMax program 

using the same transmitting waveform. The multistatic configuration is similar to the 

ground-coupled setup described in 6.5.1. The only difference is the antenna platform is 

0.5 m high above the ground surface to simulate an air-coupled antenna configuration. 

6.5.2.1. Simulation Data 1: Three Targets 

The geometry setup of the subsurface region and targets is illustrated in Figure 

6.17, which is identical to the setup in Sec. 6.5.1.1. 

 

Figure 6.17: Air-coupled multistatic GPR testing setup – three buried targets. 

The GPR data are processed by the proposed multistatic GPR imaging method 

and the resulted GPR image is plotted in Figure 6.18. Due to the large signal propagation 

loss in air-couple GPR system [25], the clutter removal is performed to enhance the target 

features. The B-Scan image upon clutter removal processing is depicted in Figure 6.19, 

in which the three targets are all reconstructed accurately as the geometry setup. 



 

180 

 

Figure 6.18: Air-coupled multistatic GPR migrated B-Scan using proposed multistatic imaging 

method – three buried targets 

 

Figure 6.19: Air-coupled multistatic GPR migrated B-Scan upon clutter removal – three buried 

targets 

6.5.2.2. Simulation Data 2: Congested Pipes 

The geometry setup of the subsurface region and targets is illustrated in Figure 

6.20, which is similar to the setup in Sec. 6.5.1.2. 
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Figure 6.20: Air-coupled multistatic GPR testing setup – congested pipes. 

The GPR data processed by the proposed multistatic GPR imaging method is 

plotted in Figure 6.21. Due to large signal propagation loss of air-couple GPR system, 

the clutter removal is necessary to improve the image equality. The B-Scan image upon 

clutter suppression is depicted in Figure 6.22, in which all the pipes are imaged on the 

accurate coordinates defined by the geometry setup. 

 

Figure 6.21: Air-coupled multistatic GPR migrated B-Scan using proposed multistatic imaging 

method – congested pipes. 
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Figure 6.22: Air-coupled multistatic GPR migrated B-Scan upon clutter removal – congested 

pipes. 

6.6. Conclusions 

In this chapter, back-projection based imaging techniques are developed for both 

ground-coupled multistatic GPR and air-coupled multistatic GPR systems. This 

multistatic imaging method accounts for the height offsets of the antennas, spatial offsets 

between antennas and refraction phenomenon at the air-ground interface. It fuses the 

scattering signals gained from various antenna pairs and multiple radar cross sections to 

produce migrated GPR image with higher SNR and SCR over conventional monostatic 

or bistatic GPR systems. Experiments with simulation data indicate that the proposed 

multistatic imaging method can effectively reconstruct the targets from raw GPR data. 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORKS 

7.1. Conclusions 

In this dissertation, the three-stage cascade signal processing methodologies were 

proposed to tackle with GPR signal processing from three perspectives: (1) Suppressing 

the radar clutter signal through a low-rank and sparse representation based approach. (2) 

Detecting the region of interest in the GPR image using Hilbert Transform and 2-D Renyi 

entropy based statistical analysis to reduce the computational cost for further 

sophisticated GPR data processing, such as back-projection migration. (3) Imaging the 

underground target for both ground-coupled multistatic GPR and air-coupled multistatic 

GPR configurations by back-projection imaging techniques. Experiments on both the 

simulation and lab measurement data validate that the proposed three-stage cascade 

signal processing methodologies can improve the performance of GPR system. 

7.2. Future Work 

The future work based on the materials presented in this dissertation can be 

focused on a few directions. 

In Chapter 2 and 3, the clutter removal problem is formulated as a low-rank and 

sparse decomposition problem: 

 min
𝐿,𝑆

‖𝐿‖∗ + 𝜆‖𝑆‖1    𝑠. 𝑡.   𝐷 = 𝐿 + 𝑆 (7.1) 

The success of this decomposition is primarily dependent on how low the rank of matrix 

𝐿 is and how sparse the matrix 𝑆 is. Some pre-processing steps can be applied to improve 

the quality of the data prior to the decomposition and transform the decomposition 

problem to the following one: 
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 min
𝐿,𝑆

‖𝐿‖∗ + 𝜆‖𝑆‖1    𝑠. 𝑡.   𝐷 = 𝐿 ∘ 𝜏 + 𝑆 ∘ 𝜌 (7.2) 

where 𝜏 is the operator manipulating the clutter component in the GPR data to have lower 

rank, and 𝜌 is the operator making the target component more sparse. The methodology 

presented in Chapter 3 proposed the cross-correlation as the operator 𝜏 to align the ground 

surface reflection and decrease the rank of the clutter matrix. A recent work in Ref. [1] 

testified that instead of decomposing the raw GPR data, migration imaging can be applied 

first to focus target response so that the sparsity and the strength of target response are 

enhanced, which is a kind of the operator 𝜌 in Eq. (7.2). The future direction on the low-

rank and sparse representation based clutter removal can focus on optimizing and 

implementing the operator 𝜏 and 𝜌 simultaneously for the GPR data matrix. 

In Chapter 4 and 5, 2-D Renyi entropy analysis was performed on the amplitude 

and phase information of the GPR data. For GPR underground sensing application, most 

of the targets are objects with certain shapes, so geometry structure and morphological 

information reside inside the GPR data matrix. The 2-D entropy analysis methodology 

can be further explored and applied on the data features extracted from morphological 

transformation, such as Curvelet Transform [2]-[5] to afford more comprehensive region 

of interest detection. 

For GPR migration problem, the propagating velocity of the EM wave in 

subsurface media is a vital input, which is associated with the dielectric constant of the 

subsurface media. Unfortunately, this is usually not prior information for real field GPR 

testing. The approaches for measuring or estimating the dielectric constant and wave 

velocity information have been investigated by some research work [6]-[8] for 
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homogeneous subsurface media. However, for most of the real GPR testing scenarios, 

the subsurface media is inhomogeneous. Moreover, Ref. [9]-[10] claims that the 

systematic errors in the migration techniques may lead to poor image reconstruction and 

inaccurate target position estimation even if the exact velocity distribution is used as the 

prior knowledge. Therefore, autofocusing technique for GPR imaging is highly 

demanded and will be investigated in the future work. 
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