6,434 research outputs found

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations

    Full text link
    The vehicle-to-vehicle (V2V) propagation channel has significant implications on the design and performance of novel communication protocols for vehicular ad hoc networks (VANETs). Extensive research efforts have been made to develop V2V channel models to be implemented in advanced VANET system simulators for performance evaluation. The impact of shadowing caused by other vehicles has, however, largely been neglected in most of the models, as well as in the system simulations. In this paper we present a shadow fading model targeting system simulations based on real measurements performed in urban and highway scenarios. The measurement data is separated into three categories, line-of-sight (LOS), obstructed line-of-sight (OLOS) by vehicles, and non line-of-sight due to buildings, with the help of video information recorded during the measurements. It is observed that vehicles obstructing the LOS induce an additional average attenuation of about 10 dB in the received signal power. An approach to incorporate the LOS/OLOS model into existing VANET simulators is also provided. Finally, system level VANET simulation results are presented, showing the difference between the LOS/OLOS model and a channel model based on Nakagami-m fading.Comment: 10 pages, 12 figures, submitted to Hindawi International Journal of Antennas and Propagatio

    The Physics of Ultraperipheral Collisions at the LHC

    Get PDF
    We discuss the physics of large impact parameter interactions at the LHC: ultraperipheral collisions (UPCs). The dominant processes in UPCs are photon-nucleon (nucleus) interactions. The current LHC detector configurations can explore small xx hard phenomena with nuclei and nucleons at photon-nucleon center-of-mass energies above 1 TeV, extending the xx range of HERA by a factor of ten. In particular, it will be possible to probe diffractive and inclusive parton densities in nuclei using several processes. The interaction of small dipoles with protons and nuclei can be investigated in elastic and quasi-elastic J/ψJ/\psi and ΄\Upsilon production as well as in high tt ρ0\rho^0 production accompanied by a rapidity gap. Several of these phenomena provide clean signatures of the onset of the new high gluon density QCD regime. The LHC is in the kinematic range where nonlinear effects are several times larger than at HERA. Two-photon processes in UPCs are also studied. In addition, while UPCs play a role in limiting the maximum beam luminosity, they can also be used a luminosity monitor by measuring mutual electromagnetic dissociation of the beam nuclei. We also review similar studies at HERA and RHIC as well as describe the potential use of the LHC detectors for UPC measurements.Comment: 229 Pages, 121 figure

    AROMA: Automatic Generation of Radio Maps for Localization Systems

    Full text link
    WLAN localization has become an active research field recently. Due to the wide WLAN deployment, WLAN localization provides ubiquitous coverage and adds to the value of the wireless network by providing the location of its users without using any additional hardware. However, WLAN localization systems usually require constructing a radio map, which is a major barrier of WLAN localization systems' deployment. The radio map stores information about the signal strength from different signal strength streams at selected locations in the site of interest. Typical construction of a radio map involves measurements and calibrations making it a tedious and time-consuming operation. In this paper, we present the AROMA system that automatically constructs accurate active and passive radio maps for both device-based and device-free WLAN localization systems. AROMA has three main goals: high accuracy, low computational requirements, and minimum user overhead. To achieve high accuracy, AROMA uses 3D ray tracing enhanced with the uniform theory of diffraction (UTD) to model the electric field behavior and the human shadowing effect. AROMA also automates a number of routine tasks, such as importing building models and automatic sampling of the area of interest, to reduce the user's overhead. Finally, AROMA uses a number of optimization techniques to reduce the computational requirements. We present our system architecture and describe the details of its different components that allow AROMA to achieve its goals. We evaluate AROMA in two different testbeds. Our experiments show that the predicted signal strength differs from the measurements by a maximum average absolute error of 3.18 dBm achieving a maximum localization error of 2.44m for both the device-based and device-free cases.Comment: 14 pages, 17 figure

    ROBAST: Development of a ROOT-Based Ray-Tracing Library for Cosmic-Ray Telescopes and its Applications in the Cherenkov Telescope Array

    Full text link
    We have developed a non-sequential ray-tracing simulation library, ROOT-based simulator for ray tracing (ROBAST), which is aimed to be widely used in optical simulations of cosmic-ray (CR) and gamma-ray telescopes. The library is written in C++, and fully utilizes the geometry library of the ROOT framework. Despite the importance of optics simulations in CR experiments, no open-source software for ray-tracing simulations that can be widely used in the community has existed. To reduce the dispensable effort needed to develop multiple ray-tracing simulators by different research groups, we have successfully used ROBAST for many years to perform optics simulations for the Cherenkov Telescope Array (CTA). Among the six proposed telescope designs for CTA, ROBAST is currently used for three telescopes: a Schwarzschild-Couder (SC) medium-sized telescope, one of SC small-sized telescopes, and a large-sized telescope (LST). ROBAST is also used for the simulation and development of hexagonal light concentrators proposed for the LST focal plane. Making full use of the ROOT geometry library with additional ROBAST classes, we are able to build the complex optics geometries typically used in CR experiments and ground-based gamma-ray telescopes. We introduce ROBAST and its features developed for CR experiments, and show several successful applications for CTA.Comment: Accepted for publication in Astroparticle Physics. 11 pages, 10 figures, 4 table

    HST/ACS Images of the GG Tauri Circumbinary Disk

    Full text link
    Hubble Space Telescope Advanced Camera for Surveys images of the young binary GG Tauri and its circumbinary disk in V and I bandpasses were obtained in 2002 and are the most detailed of this system to date. The confirm features previously seen in the disk including: a "gap" apparently caused by shadowing from circumstellar material; an asymmetrical distribution of light about the line of sight on the near edge of the disk; enhanced brightness along the near edge of the disk due to forward scattering; and a compact reflection nebula near the secondary star. New features are seen in the ACS images: two short filaments along the disk; localized but strong variations in disk intensity ("gaplets"); and a "spur" or filament extending from the reflection nebulosity near the secondary. The back side of the disk is detected in the V band for the first time. The disk appears redder than the combined light from the stars, which may be explained by a varied distribution of grain sizes. The brightness asymmetries along the disk suggest that it is asymmetrically illuminated by the stars due to extinction by nonuniform circumstellar material or the illuminated surface of the disk is warped by tidal effects (or perhaps both). Localized, time-dependent brightness variations in the disk are also seen.Comment: 28 pages, 7 figures, accepted for publication in the Astronomical Journa

    Study of the isotropic contribution to the analysis of photoelectron diffraction experiments at the ALOISA beamline

    Full text link
    The angular distribution of the intensity in photoemission experiments is affected by electron diffraction patterns and by a smoothly varying ISO contribution originated by both intrumental details and physical properties of the samples. The origin of the various contributions to the ISO component has been identified since many years. Nonetheless in this work we present original developement of the ED analysis, which arises from the evolution of instrumental performance, in terms of analyzers positioning and angular resolution, as well as collimation and size of X-ray beams in third generation synchrotron sources. The analytical treatement of the instrumental factors is presented in detail for the end station of the ALOISA beamline (Trieste Synchrotron), where a wide variety of scattering geometries is available for ED experiments. We present here the basic formulae and their application to experimental data taken on the Fe/Cu3Au(001) system in order to highlight the role of the various parameters included in the distribution function. A specific model for the surface illumination has been developed as well as the overlayer thickness and surface roughness have been considered.Comment: RevTex, nine pages with five eps figures; to be published in J. Electron Spectrosc. Relat. Pheno
    • 

    corecore