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Abstract—This preliminary work presents a comparative study
of human body compensation models for localization and track-
ing purposes. Besides the well known influence of multipath
fading and diffraction on the performance of localization systems,
the influence of the user itself is often still neglected. The
presence of such a user can block the radio-frequency (RF) signal
paths between a body-worn node and the fixed infrastructure
nodes. As a result, these additional obstructions might worsen
the performance. This phenomenon is also known as human
body shadowing and to cope with this effect, human body
compensation models are used. In this work, compensation
models obtained through electromagnetic (EM) simulations and
empirical measurements are evaluated and compared.

Index Terms—Localization, Tracking, Human Body Shadow-
ing, EM Simulation, Indoor Environment

I. INTRODUCTION

Localization and tracking in indoor environments has gained
a huge interest over the last decade and many context-aware
applications have emerged. These applications are situated
in various domains, e.g., healthcare, surveillance, and in the
industrial sector. The most commonly used ranging techniques
for localization are angle of arrival (AoA) [1], time of arrival
(ToA) [2], time difference of arrival (TDoA) [3] and received
signal strength (RSS) based fingerprinting [4]. The first three
are generally speaking more accurate but require specialized
hardware, whereas the latter can work with the existing WiFi
or ZigBee infrastructure. Many localization systems that try
to cope with multipath fading and diffraction have already
been proposed [5]–[7]. Although the influence of a human
body has already been noted in literature [6], it is often
still neglected. To this end, many localization and tracking
systems are evaluated by stepwise moving a device placed
on a tripod, hereby explicitly removing the human from
the equation. However, practical human tracking applications,
always imply the presence of a user’s body. In previous
work [8], two methods were proposed to cope with human
body shadowing. The first method uses multiple body-worn
tags and relies on the assumption that a combination of tags
placed on different parts of the human body can decrease
the influence of the user itself. The second method explicitly
compensates for the influence of the human body by taking
the user’s orientation and body-worn tag’s relative position
into account. Next, a compensation value is calculated which
is then used to preprocess the measurements before they are
passed to the localization or tracking algorithm. In this work,
new techniques to acquire human body compensation models

are proposed and evaluated.

II. METHODOLOGY

In this section, the methodology to construct human body
compensation models is explained in more detail.

A. Simulated model

The first model is based on simulations carried out in Sem-
cad X, a three-dimensional full wave simulation environment
based on the finite-difference time-domain (FDTD) method.
The Virtual Family Male [9] (a heterogeneous phantom with
a BMI = 22.3 kg/m2) was used to perform simulations at
2.45 GHz. An accurate model of our mobile tag was built
in the simulation platform and was optimized to resonate at
2.45 GHz. This mobile tag is a TelosB mote from Cross-
bow, equipped with an embedded PIFA antenna and Chipcon
CC2420 radio. The packets broadcasted by this body worn
tag are received by the fixed infrastructure and the measured
RSSI values of these packets are used as input for the tracking
algorithm (see Section III). In the simulation environment,
the mobile tag was placed on various parts of the human
phantom: chest, back, and right wrist. The simulated directivity
patterns reflect the influence caused by the human body and are
used to obtain three-dimensional compensation models (see
Figure 1a).

B. Empirical model

The second model is based on empirical measurements
carried out in a wireless testbed. This testbed measures 17 m
by 90 m and is located on the third floor of an office building
in Ghent. It consists of several computer labs, offices, and
meeting rooms. The wireless network is a fixed infrastructure
which consists of 48 nodes that are installed at a height of
2.5 m. First, a person was asked to turn around its axis, whilst
wearing a mobile tag once on the chest, back and wrist. This
person turns 45◦ every 15 seconds, taking 2 minutes for a full
rotation. The mobile tags broadcast packets that are received
by the fixed infrastructure, where the measured RSSI values
are logged. By comparing all measured RSSI values with the
average value of the full rotation, the influence of the human
body can be extracted as a function of the angle (i.e., the user’s
orientation towards the fixed nodes). The obtained empirical
compensation models for the body-worn chest, back and wrist
tag are plotted in Figure 1b.

At first sight, the empirical and simulated human body com-
pensation model show similar trends. Especially, the models
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(a) Simulation
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(b) Empirical measurements

Figure 1: Human body compensation models.

for the body worn tag placed on the central area of the chest
and back resemble each other. The compensation models for
a wrist-worn tag show more differences, this is because of
the relative movement of the arm and body whilst rotating
during the empirical measurements. It is also clear that a high
compensation value of the chest tag corresponds to a low value
of the back tag (and the other way around). This general
trend can be expected as a high compensation value means
the human body is blocking or attenuating the strongest path
between the mobile tag and a fixed node, meaning that the tag
on the other side of the user’s body is likely not blocking the
strongest path.

III. TRACKING ALGORITHM

The adopted tracking algorithm for the evaluation of the
proposed compensation models is based on a Viterbi-like
technique [4]. It uses a motion model and floor plan infor-
mation to determine the most likely path (i.e., sequence of
locations) instead of only the most likely current position
(Viterbi principle). These constraints ensure that no unrealisti-
cally large distances are traveled within a given time frame
and no walls are crossed. The original tracking algorithm
uses measured RSSI values directly as input to calculate a
location update. In this work, these measured RSSI values
are preprocessed to eliminate the influence of human body
shadowing. To assess the influence of a user with a certain
position and orientation, the angle between their body-worn
tag and the fixed infrastructure nodes, is needed as input
for the compensation models of Section II. Therefore, the
location of the fixed nodes (generally available in the floor plan
information) and the user’s orientation is utilized. The latter is
provided by a compass, gyroscope or can even be estimated
based on previous positions [8]. For now, this is accounted
for by giving the exact orientation as an additional input.
This is possible because the followed trajectory is known
beforehand and it is assumed a user walks forward, hence
the exact orientation can be determined.

IV. EVALUATION

The compensation models from Section II are evaluated in
terms of location accuracy. This accuracy is defined as the
Euclidean distance between the predicted and actual location:

accuracy =
√
(xp − xa)2 + (yp − ya)2 [m] (1)

The predicted and actual positions are located at coordinates
(xp, yp) and (xa, ya), respectively. The mean (µ), standard
deviation (σ), mean (50th percentile value) and maximum
(95th percentile value) of the tracking accuracy are chosen
as evaluation metrics. The measurement data comes from a
user that walked along a test trajectory whilst wearing the
mobile node once on his chest, back and wrist (repeated five
times for reproducibility). The trajectory has a total length of
140 m, passes through three meeting rooms, a computer lab,
and the hallway. The mobile tags broadcast 10 packets per
second which are received by the infrastructure nodes (i.e., the
same testbed from Section II). Every second a location update
is generated: the average RSSI values of the packets received
within this second are preprocessed with the compensation
models to eliminate the influence of human body shadowing
and are subsequently passed to the tracking algorithm from
Section III. The absolute evaluation metrics and the relative
improvements compared to the original tracking algorithm
(without compensation for human body shadowing), are av-
eraged over all runs and can be found in Table I.

µ σ 50th 95th

Compensation ↓ [m] [%] [m] [%] [m] [%] [m] [%]

None 3.74 / 2.18 / 3.43 / 10.25 /

Simulated 3.15 15.78 1.92 12.25 2.82 17.78 9.12 11.03

Empirical 3.38 9.63 1.96 10.09 3.09 9.91 9.03 11.90

Table I: Tracking accuracy and improvements with simulated and empirical
compensation models.

Table I shows that all evaluation metrics benefit from
the compensation of human body shadowing. The simulated
compensation model slightly outperforms the empirical one
but also requires more time and computing power to construct
(full wave electromagnetic simulations) whereas the empirical
model is based on a simple rotation whilst wearing the body-
worn tag. More specific, the mean, standard deviation, 50th

and 95th percentile value of the tracking accuracy improve
by 16%, 12%, 18%, and 11% with the simulated model and
10%, 10%, 10% and 12% with the empirical compensation
model. The proposed method for human body compensation
adds only 8 ms to the processing time of one location update
(on a normal desktop computer) and hence is well suited for
localization or tracking in real-time.

V. CONCLUSIONS

In this work, human body compensation models obtained
through simulations and empirical measurements were evalu-
ated and compared. These models are used to eliminate the
influence caused by human body shadowing and are designed
for RSSI based localization or tracking algorithms. The sim-
ulated compensation models are based on three-dimensional
electromagnetic simulations with a human phantom. Measure-
ments in a wireless testbed with a person were used to build



the empirical compensation models. Both models rely on the
orientation of the user and the relative position of the body-
worn tag to calculate a compensation value. This compensation
value is used to preprocess RSSI measurements before they are
passed to the actual localization or tracking algorithm. Com-
pensating for human body shadowing improved the median
localization accuracy up to 18% with the simulated model
and 10% with the empirical model. Future work will include
measurements with multiple persons and other localization and
tracking techniques. Furthermore, the effect of human body
shadowing in different environments will be assessed.
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