The vehicle-to-vehicle (V2V) propagation channel has significant implications
on the design and performance of novel communication protocols for vehicular ad
hoc networks (VANETs). Extensive research efforts have been made to develop V2V
channel models to be implemented in advanced VANET system simulators for
performance evaluation. The impact of shadowing caused by other vehicles has,
however, largely been neglected in most of the models, as well as in the system
simulations. In this paper we present a shadow fading model targeting system
simulations based on real measurements performed in urban and highway
scenarios. The measurement data is separated into three categories,
line-of-sight (LOS), obstructed line-of-sight (OLOS) by vehicles, and non
line-of-sight due to buildings, with the help of video information recorded
during the measurements. It is observed that vehicles obstructing the LOS
induce an additional average attenuation of about 10 dB in the received signal
power. An approach to incorporate the LOS/OLOS model into existing VANET
simulators is also provided. Finally, system level VANET simulation results are
presented, showing the difference between the LOS/OLOS model and a channel
model based on Nakagami-m fading.Comment: 10 pages, 12 figures, submitted to Hindawi International Journal of
Antennas and Propagatio