The angular distribution of the intensity in photoemission experiments is
affected by electron diffraction patterns and by a smoothly varying ISO
contribution originated by both intrumental details and physical properties of
the samples. The origin of the various contributions to the ISO component has
been identified since many years. Nonetheless in this work we present original
developement of the ED analysis, which arises from the evolution of
instrumental performance, in terms of analyzers positioning and angular
resolution, as well as collimation and size of X-ray beams in third generation
synchrotron sources. The analytical treatement of the instrumental factors is
presented in detail for the end station of the ALOISA beamline (Trieste
Synchrotron), where a wide variety of scattering geometries is available for ED
experiments. We present here the basic formulae and their application to
experimental data taken on the Fe/Cu3Au(001) system in order to highlight the
role of the various parameters included in the distribution function. A
specific model for the surface illumination has been developed as well as the
overlayer thickness and surface roughness have been considered.Comment: RevTex, nine pages with five eps figures; to be published in J.
Electron Spectrosc. Relat. Pheno