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Abstract – For multihop/Ad-hoc networks, the conventional one-dimensional (1-D) channel 
model cannot capture the spatial correlation of the shadowing processes. This paper 
investigates the joint spatial/temporal correlation property the shadowing process for 
peer-to-peer radio links in urban environments. Statistical analysis reveals that the 
shadowing process is mainly a result of the movement at the mobile station (MS) side. 
Furthermore, the joint correlation property of the MS-MS channel shows that MS movement 
at each end of the peer-to-peer link have independent and equal effect on the correlation 
coefficient. A filter based joint shadowing process simulation model is proposed for urban 
peer-to-peer radio channels. Simulations illustrate the potential of the proposed channel 
model. 
[1] [2] [3] [4] [5] 
Index Terms—Channel model, shadowing, spatial correlation, multihop, Ad-hoc, urban. 
 

I. INTRODUCTION 

The demand for flexible mobile multimedia services continues to grow. Traditional cellular solutions 
are coming under increasing pressure from peer-to-peer WLAN solutions such as 802.11b. Beyond 
third generation networks are looking to combine peer-to-peer connectivity together with traditional 
cellular solutions to improve coverage, reduce transmit power, and ultimately provide ubiquitous 
high capacity connectivity. This area has been widely studied and a number of wireless systems that 
explore adaptive self-configurable networks over peer-to-peer radio channel have been proposed 
[1-5]. To evaluate the performance of such systems in an urban setting, proper radio propagation 
models for peer-to-peer links that can provide all the essential channel characterizations are 
necessary. Among those channel characterizations, the spatial/temporal correlation properties of 
shadowing attract considerable interest in the field of multihop/ad-hoc networks. One of the core 
ideas here is to provide high capacity connectivity by overcoming the heavy shadowing and more 
efficiently reusing the radio resource spatially [1,3].  

Most existing channel models [6,7] are established based on the base station to mobile station 
propagation channel for cellular networks, where only the auto-correlation of the Base-station to 
Mobile Subscriber (BS-MS) is modelled. A two-dimensional (2-D) sum of sinusoids (SOS) based 
channel model is developed in [8] to simulate the BS-MS shadowing process in a virtual map. In [9], 
the cross-correlation of MS to multi BS links is modelled for handoff performance studies. However, 
in a multihop/ad-hoc network, the shadowing correlation between a large number of MS-MS links 
needs to be closely investigated. [10 ] reported that incomplete consideration of the spatial 
correlation in multipoint-to-multipoint (M2M) radio channels (i.e. multiple MS-MS links) can lead to 
significant inaccuracies in simulation results, especially for the routing protocols and radio resource 
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management (RRM) performance evaluations. A simple biased fading (random or site-specific) 
process applied to each MS is suggested in this paper. In [11], a general mathematical joint 
correlation model for shadow fading between two BS and two MS is derived. However, this model is 
unable to be extended for M2M channels. 

In this paper, the spatial correlation properties between MS-MS links have been investigated, as well 
as for other links existing in a multihop network, e.g. BS-MS, BS to fixed Relay Node (BS-RN), 
RN-MS, RN-RN. The joint correlation function is extracted and a filter based shadowing process 
model is proposed. The performance of the proposed channel simulator is analyzed in terms of the 
autocorrelation function of the simulated shadowing process. Simulations illustrate the potential of 
the proposed channel model. This model, incorporating the statistical channel model developed in 
previous study [12], provides a complete solution for power prediction in system level simulations 
that incorporate multihop/ad-hoc and fixed relay network elements in an urban environment at 
UHF/VHF frequency band.  

The remainder of this paper is organized as follows: In section II, the 3-D ray model used to obtain 
the channel data is introduced together with the simulation settings; the data analysis and extracted 
joint correlation function is given in section III; in section IV, the proposed shadowing model is 
described; finally, the performance of the proposed model is analyzed in section V and some 
concluding remarks are drawn in Section VI. 

 

II. Ray Model Simulation 

As it is extremely difficult to obtain sufficient data samples by means of measurement due to the 
need to measure all mesh links between MSs, BSs and RNs, the shadowing correlation is analysed 
based on the data generated from a fully three-dimensional deterministic propagation model [13]. 
This model uses geographic data (terrain, building, foliage and ground cover data) to predict power 
as well as time, frequency and spatial dispersion in the radio channel. The model was developed at 
the University of Bristol and has been validated for transmitter (TX) locations both above rooftop and 
below rooftop in urban environments at 2GHz and 5GHz [14,15]. In the Bristol comparison, the 
mean error of the predicted power was less than 4.5dB and the rms. error was less than 7.5dB. 

Simulations are conducted on a 1.4km x 1.4km area of central Bristol (Figure 1). The urban 
environment is typical of a European city with buildings typically 3 storeys in height. The average 
building height for this region was 12m.The test area also includes several hills with terrain height 
variations in the order of 60 meters. The height of the antennas was set to 15m, 5m and 1.5m for BS, 
RN and MS respectively. Carrier frequencies of 2.1GHz and 5.2GHz were assumed. 

For the study of the spatial shadowing auto-correlation, 6 moving routes were defined in Single 
Route simulation mode, during which the TX remained at a fixed location while the receiver (RX) 
moving around. The RX was set to be a MS, and the TX was set to be either a MS, RN or BS for 
comparison. As the spatial correlation is environment dependent, to obtain the averaged correlation 
function, 6 routes were placed at different areas on the map, with a total length of 8km. For the 
MS-MS link shadowing cross-correlation investigation, Route Set simulation mode was defined, in 
which route set was used. Each route set consists of a moving TX route as well as a moving RX 
route. 4 route sets have been defined in the city centre area, with a total length of 2km (TX) x 2km 
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(RX). The route configurations are shown in Figure 2. The channel data has been generated with RX 
(and TX in Route Set mode) moving along the pre-set routes at 1 metre intervals. 

Figure 3 shows an example of the predicted local mean received power and the shadow fading from 
Single Route simulation mode. The Route Set mode result is shown in Figure 4. The term of local 
mean received power was obtained by summing the power in all the arriving rays, where the phase 
of each ray was not taken into account; hence the fast fading is averaged out. The shadowing data 
was calculated by subtracting the local mean power by the distance dependent mean path loss 
found in the previous study [12]. For more detailed information, please refer to [12]. 

 

 

Figure 1: Bristol database as used in the simulations 
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Figure 2: Routes Setting, (a) Single Route mode, (b)Route Set mode 
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(a) (b) 

Figure 3: (a) The received power, and (b) shadowing data from simulation on route1 
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Figure 4: The received power (left) and shadowing (right) data from simulation on route set 1 

 

III. Analysis of Shadowing Correlation 

A. Spatial Autocorrelation Function 

The spatial autocorrelation function of the shadow fading is a measure of how fast the local mean 
power evolves as the MS moves along a certain route. As discovered in a previous study [12], the 
shadowing variation is distance dependent. To fairly estimate the shadowing spatial correlation, 
instead of using the entire set of data in one route, in which the RX displacement is approximately 
1.8km, the auto-correlation function is calculated every 200m along each route. The results from 6 
different Single Route mode simulations are then averaged and plotted in Figure 5. 

It is observed that the exponential decaying function accurately models the spatial autocorrelation 
function of the shadow fading, which is defined as: 

2ln

1 )( cord
d

edR
∆

−

=∆  (1) 

where ∆d represents the movement of the RX, the de-correlation distance represented by dcor , 
which is dependent on the environment, and corresponds to the distance at which the correlation 
drops to 50% correlation. For the city of Bristol in this stipulation, the best fit de-correlation distance 
dcor was found to be 20m. 

 4



Furthermore, it can be seen in Figure 5 that the auto-correlation function for all kinds of link types are 
similar, despite the varying TX heights and operating frequencies. This is reasonable given that the 
shadowing fluctuation is due to the birth and death of multi-paths, which corresponds to the 
changing of the scatters around TX and RX. During the simulations, only the RX, i.e. the MS, is 
moving, and hence the shadowing fluctuations are mainly caused by changes in the surround 
buildings near to the MS.  

 

Figure 5: The shadowing spatial auto-correlation function (Averaged) 

 

B. Joint Spatial Correlation Function 

The shadowing joint spatial correlation function is a measure of how fast the local mean power 
evolves when the MSs, at both ends of a peer-to-peer radio link, move around, as illustrated in   
Figure 6. It is particularly important for shadowing process generation in the system level simulations 
for routing protocols and RRM algorithm performance evaluations in multihop/Ad-hoc networks. The 
joint-correlation function can be estimated by calculating the 2D auto-correlation function based on 
the results from Route Set mode simulations.  

The averaged 2-D shadowing spatial auto-correlation function is shown in Figure 7, where the TX 
and RX movement distance shifts are limited to 100 meters. The correlation coefficient is between 
0.1 and -0.1 when the distance shift is beyond 100m. Using R2 (∆dT, ∆dR) to represent the 2-D 
auto-correlation function, it has been discovered from Figure 7 that the following relationship exists: 

R2 (∆dT, ∆dR) = R1 (∆dT) * R1 (∆dR) (2) 

where ∆dT and ∆dR denote the movement of the TX and RX respectively. R1 (∆d) represents the one- 
dimensional auto-correlation function. Substituting from (1), we obtain:  

R2 (∆dT, ∆dR) = R1 (∆dT + ∆dR) (3) 

Equation (2) indicates that the 2-D shadowing spatial auto-correlation can be decomposed as the 
combination of two independent 1-D spatial auto-correlation functions, which correspond to the 
movements at each terminal respectively. One explanation for this relationship could be that the 
shadowing fluctuation is only a result of the changes of local scatters around the moving terminal, 
and so the movements of the terminals at both end of the link are uncorrelated. Under such 
conditions, equation (2) would be true. 
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  Figure 6: Peer-to-Peer link model 

 

(a) 3D plot (b) Contour plot 

Figure 7: The shadowing spatial joint-correlation function for MS-MS links, 3D and Contour plot 

 

IV. Shadowing Process Model 

A number of computer simulation models have been proposed to simulate fading channels. One 
straight forward method is to firstly generate the shadowing values n for each link as statistically 
independent random variables, which are thus uncorrelated; and to then apply the correlation using 
a matrix A: 

s = A n  (4) 

where n is an N dimensional column vector with elements that are statistically independent random 
variables, A is an NxN matrix and s is an N dimensional column vector which consists of the 
required shadowing values, with the correlation matrix R = A AH. Knowing that all the values are real 
numbers, it can be further simplified to R = A AT. Once R is determined by the correlation function 
R2(∆d1, ∆d2), A can be resolved by Cholesky factorization. The shadowing model developed in [11] 
is a special case of this kind of model with the number of links limited to two.  

∆dT MS1 moving Route

A1 A2 

B2 
B1 

MS2 moving Route
∆dR 
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However, the computational complexity of Cholesky factorization for an NxN matrix is O (N3), and for 
ad-hoc networks with M nodes, the number N of links is O (M2), Furthermore, to apply this model,  
the matrix A has to be positive definite to have a Cholesky factorization, which can not be 
guaranteed.  

Instead of handling such ‘big’ matrix factorization, the shadowing process model we proposed in this 
paper is base on a filtering method. Basically, a stationary Gaussian process can be generated by 
passing a sequence of white Gaussian random deviates through a filter whose frequency response 
is the square root of the Gaussian process’ power spectral density (PSD) [16, p. 403]. The PSD can 
be obtained by performing the Fourier transform on the autocorrelation function. Therefore, once the 
autocorrelation function is given, the filter that needed to generate the shadowing process can be 
calculated.  

For the joint shadowing process, firstly a 4-D grid map with white Gaussian random variables is 
generated, which is denoted as N(xT,yT,xR,yR). The first two dimensions in the 4-D map represent the 
TX location plane dT(xT,yT) on the virtual map, and the second two dimensions represents the RX 
location plane dR(xR,yR). This map is filtered by the filter calculated according to the autocorrelation 
function that extracted in the previous section. Let Φ1(f) and Φ2(fT,fR) represent the Fourier transform 
of the correlation function R1 (d) and R2 (dT, dR) respectively, recall that it has been found that the 
shadowing fluctuations caused by MS movements at each end of the link are independent, i.e. 
equation (2), we can obtain: 

∫ ∫
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where f and d are vectors and can be replaced with (fx,fy) and (dx,dy), hence equation (5) is actually a 
4-D Fourier transform. Equation (5) indicates that the filter can be applied to the dT and dR 
dimensions separately, i.e. we only need the filter that corresponds to the traditional autocorrelation 
function R1 (d), which has already been well studied [8]. After filtering, the shadowing value for the 
given TX and RX location on the virtual map can be interpolated according to the resulted grid 
shadowing map uS(xT,yT,xR,yR). The flow chart for generating the spatial correlated shadowing map 
is shown in Figure 8. 

The motivation to use a 4-D map, which could be considered as a combination of two 2-D virtual 
planes, is to fulfil the needs in multihop/Ad-hoc network simulations. For example, a mobile may be 
moving along a closed route rather than a straight line, and we may want to study how the routing 
protocol and RRM algorithms perform. In this case, a 1-D shadowing process cannot be used 
because it cannot capture the correlation of the channel along this closed route.  
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Figure 8: Flow chart for generating the spatially correlated shadowing map 

 

For practical implementation, the channel shadowing is expected to be symmetrical, which means if 
we exchange the locations of TX and RX, the shadowing value should be the same, i.e. 
uS(xT,yT,xR,yR) = uS(xR,yR,xT,yT). This requirement can be achieved by manually making the 4-D 
white Gaussian random matrix conform to reciprocity such that N(xT,yT,xR,yR) <=> N(xR,yR,xT,yT). 
This, however, will introduce extra correlation between dT and dR dimensions when the separation 
between TX and RX is less than the de-correlation distance (20m). This limitation may prevent this 
model applying to network simulations with high subscribe density. 

 

V. NUMERICAL RESULTS 

In this section, we present numerical results from the proposed joint shadowing process model. We 
simulate the shadowing process for MS-MS links in the urban scenario, where we assume the 
autocorrelation function R1 (∆d) is symmetric at all directions, i.e.:  

)(),( 1

)2ln()2ln(

1

22

dReeyxR corcor d
d

d
yx

∆===∆∆
∆

−
∆+∆

−

 (6) 

The 2D auto-correlation function R1(∆x, ∆y) and the corresponding filter h(x,y) are shown in Figure 9. 
We generate a virtual map with size 500m x500m. The grid sampling distance was set to 10m and 
the filter size 200m x 200m. Figure 11 shows an example of the generated shadowing and the 
resulted 2D autocorrelation function. With the generated virtual map, 1-D autocorrelation and joint 
correlation are evaluated based on Single route and Route set modes with random TX and RX 
routes. The averaged results over 50 runs are shown in Figure 11. It can be seen that the proposed 
shadowing process model accurately regenerates the channel shadowing spatial property in term of 
correlation functions. 

 

Figure 9: The 2D auto-correlation function R1(∆x, ∆y) and the corresponding filter h(x,y) 
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Figure 10: Example of generated shadowing plane (left), and the 
resulted 2D autocorrelation function (right) 

 

Figure 11: Averaged 1-D Autocorrelation function (left) and Joint 
correlation function (right) from the simulation 

 

VI. Conclusion 

In this paper, the spatial/temporal correlation of the shadowing property for peer-to-peer radio links 
in urban environments has been investigated and the joint correlation function extracted. A filtering 
based shadowing process model has been proposed. Simulations illustrate that this channel model 
provides the ability to generate a more realistic shadowing process in a M2M peer-to-peer channels 
in urban environments, which are particularly attractive for use in system level simulations that 
incorporate multihop/ad-hoc and fixed relay network elements in an urban environment. 
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