451 research outputs found

    Методика оптимизации положения робота-манипулятора в технологическом процессе лазерной резки

    Get PDF
    A promising direction for the production processes modernization which uses laser cutting of metal blanks is the creation of the robotic lines that perform cutting operations with high productivity and accuracy. Modern robotic manipulators with rotational axes allow to orientate the tool quite effectively when performing laser cutting operations, however, their widespread adoption isconstrained by the low efficiency of the known approaches to the layout of robotic lines. Such approaches are based on the use of standard design solutions with a further search for the robot links movements by trial and error, and often do not allow to ensure the required quality of the cutting tool path. In this paper, we propose a new technique for optimizing the robot-manipulator position relative to the cutting contour, which takes into account, compared with known approaches, constraints on  the  possibilities  of  the  cutting  tool  movements,  as  well  as kinematic  and  geometric  constraints  on  the movements of the robot itself. The proposed technique is based on a kinematic model of a robot manipulator and a cutting tool and allows finding the coordinates of the robot manipulator base position, at which it can move the cutting  tool  along  the  cutting  contour  with  a  minimum  range  of movements  in  the  joints.  The  search  of  the optimal  coordinates  of  the  robotic  manipulator  base  position  iscarried out in two stages. At the first stage, the area of admissible values of the coordinates of the base isdiscretized with a certain step and for each discrete value  it  is  a  trajectory  sought  on  which  the  range  of  movements in  the  joints  of  the  robot  is  minimized. This allows to take into account technological constraints on the orientation of the cutting tool relative to the cutting  contour,  as  well  as  kinematic  and  geometric  restrictions  on  the  movements  of  the  robot  manipulator. At the second stage a position of the base is selected which corresponds to the minimal volume of movement when  the  technological  tool  is  moving  along  the  cutting  contour.  The  effectiveness  of  the  proposed  method is demonstrated on model examples. The technique can be used inthe design of new layouts of robotic systems for laser cutting of metal blanks for mechanical engineering enterprises.Перспективным  направлением  модернизации  производственных  технологических процессов,  использующих  лазерную  резку  металлических  заготовок, является  создание роботизированных линий, выполняющих операции резки с высокой производительностью и точностью. Современные  роботы-манипуляторы  с  вращательными  осями  позволяют достаточно  эффективно ориентировать  инструмент  при  выполнении  операций  лазерной  резки,  однако  их  широкое  внедрение сдерживается  низкой  эффективностью  известных  подходов  к  компоновке  роботизированных  линий. Такие  подходы  основаны  на  применении  типовых  конструктивных  решений  с  дальнейшим  поиском движений  звеньев  робота  методом  проб  и  ошибок  и  зачастую  не  позволяют  обеспечить  необходимое качество траектории режущего инструмента. В данной работе предложена новая методика оптимизации положения  робота-манипулятора  относительно  контура  резки,  учитывающая,  по  сравнению с известными  подходами,  ограничения  на  возможности  движений  режущего  инструмента,  а  также кинематические  и  геометрические ограничения  на  движения  самого робота.  Предложенная  методика основана на кинематической модели робота-манипулятора и режущего инструмента и позволяет найти координаты  положения  базы  робота-манипулятора,  при  которых  он  сможет  перемещать  режущий инструмент вдоль контура резки с минимальным объемом движений всочленениях. Поиск оптимальных координат  положения  базы  робота-манипулятора  производится  в  два этапа.  На  первом  этапе  область допустимых значений координат базы дискретизируется с некоторымшагом, и для каждого дискретного значения  ищется  траектория,  на  которой  минимизируется  объем  движений  в  сочленениях  робота. При  этом  учитываются  технологические  ограничения  на  ориентацию режущего  инструмента относительно  контура  резки,  а  также  кинематические  и  геометрические  ограничения  на  движения робота-манипулятора.  На  втором этапе  выбирается  такая  позиция  базы,  которой  соответствует наименьшей  объем  движения  при  перемещении  технологического  инструмента  вдоль  контура  резки. Эффективность  использования  предложенной  методики  продемонстрирована  на  модельных  примерах. Методика  может  быть  применена  при  проектировании  новых  компоновок  роботизированных комплексов лазерной резки металлических заготовок для предприятий машиностроения

    Artificial cognitive architecture with self-learning and self-optimization capabilities. Case studies in micromachining processes

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingeniería Informática. Fecha de lectura : 22-09-201

    NASA Center for Intelligent Robotic Systems for Space Exploration

    Get PDF
    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE

    Multi-objective particle swarm optimization for the structural design of concentric tube continuum robots for medical applications

    Get PDF
    Concentric tube robots belong to the class of continuum robotic systems whose morphology is described by continuous tangent curvature vectors. They are composed of multiple, interacting tubes nested inside one another and are characterized by their inherent flexibility. Concentric tube continuum robots equipped with tools at their distal end have high potential in minimally invasive surgery. Their morphology enables them to reach sites within the body that are inaccessible with commercial tools or that require large incisions. Further, they can be deployed through a tight lumen or follow a nonlinear path. Fundamental research has been the focus during the last years bringing them closer to the operating room. However, there remain challenges that require attention. The structural synthesis of concentric tube continuum robots is one of these challenges, as these types of robots are characterized by their large parameter space. On the one hand, this is advantageous, as they can be deployed in different patients, anatomies, or medical applications. On the other hand, the composition of the tubes and their design is not a straightforward task but one that requires intensive knowledge of anatomy and structural behavior. Prior to the utilization of such robots, the composition of tubes (i.e. the selection of design parameters and application-specific constraints) must be solved to determine a robotic design that is specifically targeted towards an application or patient. Kinematic models that describe the change in morphology and complex motion increase the complexity of this synthesis, as their mathematical description is highly nonlinear. Thus, the state of the art is concerned with the structural design of these types of robots and proposes optimization algorithms to solve for a composition of tubes for a specific patient case or application. However, existing approaches do not consider the overall parameter space, cannot handle the nonlinearity of the model, or multiple objectives that describe most medical applications and tasks. This work aims to solve these fundamental challenges by solving the parameter optimization problem by utilizing a multi-objective optimization algorithm. The main concern of this thesis is the general methodology to solve for patient- and application-specific design of concentric tube continuum robots and presents key parameters, objectives, and constraints. The proposed optimization method is based on evolutionary concepts that can handle multiple objectives, where the set of parameters is represented by a decision vector that can be of variable dimension in multidimensional space. Global optimization algorithms specifically target the constrained search space of concentric tube continuum robots and nonlinear optimization enables to handle the highly nonlinear elasticity modeling. The proposed methodology is then evaluated based on three examples that include cooperative task deployment of two robotic arms, structural stiffness optimization under the consideration of workspace constraints and external forces, and laser-induced thermal therapy in the brain using a concentric tube continuum robot. In summary, the main contributions are 1) the development of an optimization methodology that describes the key parameters, objectives, and constraints of the parameter optimization problem of concentric tube continuum robots, 2) the selection of an appropriate optimization algorithm that can handle the multidimensional search space and diversity of the optimization problem with multiple objectives, and 3) the evaluation of the proposed optimization methodology and structural synthesis based on three real applications

    A Dynamic Programming Framework for Optimal Planning of Redundant Robots Along Prescribed Paths With Kineto-Dynamic Constraints

    Get PDF
    Off-line optimal planning of trajectories for redundant robots along prescribed task space paths is usually broken down into two consecutive processes: first, the task space path is inverted to obtain a joint-space path, then, the latter is parametrized with a time law. If the two processes are separated, they cannot optimize the same objective function, ultimately providing sub-optimal results. In this paper, a unified approach is presented where dynamic programming is the underlying optimization technique. Its flexibility allows accommodating arbitrary constraints and objective functions, thus providing a generic framework for optimal planning of real systems. To demonstrate its applicability to a real world scenario, the framework is instantiated for time-optimality. Compared to numerical solvers, the proposed methodology provides visibility of the underlying resolution process, allowing for further analyses beyond the computation of the optimal trajectory. The effectiveness of the framework is demonstrated on a real 7-degrees-of-freedom serial chain. The issues associated with the execution of optimal trajectories on a real controller are also discussed and addressed. The experiments show that the proposed framework is able to effectively exploit kinematic redundancy to optimize the performance index defined at planning level and generate feasible trajectories that can be executed on real hardware with satisfactory results

    Concurrent optimization of process parameters and product design variables for near net shape manufacturing processes

    Get PDF
    This paper presents a new systematic approach to the optimization of both design and manufacturing variables across a multi-step production process. The approach assumes a generic manufacturing process in which an initial Near Net Shape (NNS) process is followed by a limited number of finishing operations. In this context the optimisation problem becomes a multi-variable problem in which the aim is to optimize by minimizing cost (or time) and improving technological performances (e.g. turning force). To enable such computation a methodology, named Conditional Design Optimization (CoDeO) is proposed which allows the modelling and simultaneous optimization of process parameters and product design (geometric variables), using single or multi-criteria optimization strategies. After investigation of CoDeO’s requirements, evolutionary algorithms, in particular Genetic Algorithms, are identified as the most suitable for overall NNS manufacturing chain optimization The CoDeO methodology is tested using an industrial case study that details a process chain composed of casting and machining processes. For the specific case study presented the optimized process resulted in cost savings of 22% (corresponding to equivalent machining time savings) and a 10% component weight reduction

    On the Application of Mechanical Vibration in Robotics-Assisted Soft Tissue Intervention

    Get PDF
    Mechanical vibration as a way of transmitting energy has been an interesting subject to study. While cyclic oscillation is usually associated with fatigue effect, and hence a detrimental factor in failure of structures and machineries, by controlled transmission of vibration, energy can be transferred from the source to the target. In this thesis, the application of such mechanical vibration in a few surgical procedures is demonstrated. Three challenges associated with lung cancer diagnosis and treatment are chosen for this purpose, namely, Motion Compensation, tumor targeting in lung Needle Insertion and Soft Tissue Dissection: A robotic solution is proposed for compensating for the undesirable oscillatory motion of soft tissue (caused by heart beat and respiration) during needle insertion in the lung. An impedance control strategy based on a mechanical vibratory system is implemented to minimize the tissue deformation during needle insertion. A prototype was built to evaluate the proposed approach using: 1) two Mitsubishi PA10-7C robots, one for manipulating the macro part and the other for mimicking the tissue motion, 2) one motorized linear stage to handle the micro part, and 3) a Phantom Omni haptic device for remote manipulation. Experimental results are given to demonstrate the performance of the motion compensation system. A vibration-assisted needle insertion technique has been proposed in order to reduce needle–tissue friction. The LuGre friction model is employed as a basis for the study and the model is extended and analyzed to include the impact of high-frequency vibration on translational friction. Experiments are conducted to evaluate the role of insertion speed as well as vibration frequency on frictional effects. In the experiments conducted, an 18 GA brachytherapy needle was vibrated and inserted into an ex-vivo soft tissue sample using a pair of amplified piezoelectric actuators. Analysis demonstrates that the translational friction can be reduced by introducing a vibratory low-amplitude motion onto a regular insertion profile, which is usually performed at a constant rate. A robotics-assisted articulating ultrasonic surgical scalpel for minimally invasive soft tissue cutting and coagulation is designed and developed. For this purpose, the optimal design of a Langevin transducer with stepped horn profile is presented for internal-body applications. The modeling, optimization and design of the ultrasonic scalpel are performed through equivalent circuit theory and verified by finite element analysis. Moreover, a novel surgical wrist, compatible with the da Vinci® surgical system, with decoupled two degrees-of-freedom (DOFs) is developed that eliminates the strain of pulling cables and electrical wires. The developed instrument is then driven using the dVRK (da Vinci® research kit) and the Classic da Vinci® surgical system

    Design Issues for Hexapod Walking Robots

    Get PDF
    Hexapod walking robots have attracted considerable attention for several decades. Many studies have been carried out in research centers, universities and industries. However, only in the recent past have efficient walking machines been conceived, designed and built with performances that can be suitable for practical applications. This paper gives an overview of the state of the art on hexapod walking robots by referring both to the early design solutions and the most recent achievements. Careful attention is given to the main design issues and constraints that influence the technical feasibility and operation performance. A design procedure is outlined in order to systematically design a hexapod walking robot. In particular, the proposed design procedure takes into account the main features, such as mechanical structure and leg configuration, actuating and driving systems, payload, motion conditions, and walking gait. A case study is described in order to show the effectiveness and feasibility of the proposed design procedure

    Special Issue of the Manufacturing Engineering Society (MES)

    Get PDF
    This book derives from the Special Issue of the Manufacturing Engineering Society (MES) that was launched as a Special Issue of the journal Materials. The 48 contributions, published in this book, explore the evolution of traditional manufacturing models toward the new requirements of the Manufacturing Industry 4.0 and present cutting-edge advances in the field of Manufacturing Engineering focusing on additive manufacturing and 3D printing, advances and innovations in manufacturing processes, sustainable and green manufacturing, manufacturing systems (machines, equipment and tooling), metrology and quality in manufacturing, Industry 4.0, product lifecycle management (PLM) technologies, and production planning and risks
    corecore