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K U R Z FA S S U N G

Tubuläre Kontinuumsroboter gehören zur Familie der Roboter, deren tangentiale
Krümmungsvektoren eine kontinuierliche Kurve beschreiben. Sie bestehen aus meh-
reren ineinander verschachtelten Röhrchen und zeichnen sich durch ihre inhärente
Flexibilität aus. Durch die Ausstattung mit Werkzeugen am distalen Ende sind sie
prädestiniert für den Einsatz in der minimal invasiven Chirurgie. Aufgrund ihres
morphologischen Aufbaus ist es ihnen zudem möglich in Bereiche im Körper vorzu-
dringen, die mit kommerziellen Werkzeugen nicht zugänglich sind oder große Schnit-
te erfordern. Darüber hinaus können sie durch kleine Öffnungen inseriert werden
oder nichtlinearen Pfaden folgen.

Um den Einsatz dieser Roboter in der Medizin zu ermöglichen, wurden in den let-
zten Jahren grundlegende Forschungsansätze entwickelt. Es bestehen jedoch noch
immer Herausforderungen, die gelöst werden müssen. Eine davon ist die Struk-
tursynthese von tubulären Kontinuumsrobotern, welche nicht trivial ist, da sich diese
Roboter durch einen großen Parameterraum auszeichnen. Dies ist einerseits von
Vorteil, da sie patientenübergreifend und für unterschiedliche Anwendungen einge-
setzt werden können. Andererseits ist die Komposition der Röhrchen und ihr Design
komplex und erfordert Wissen über Anatomie und Strukturverhalten. Vor dem Ein-
satz solcher Roboter muss die Zusammensetzung der Röhrchen (d.h. die Auswahl
von Designparametern und anwendungsspezifischen Einschränkungen) gelöst wer-
den, deren Design anwendungs- und patientenspezifisch ist. Kinematische Modelle,
die die Morphologie und Bewegung der Roboter beschreiben, erhöhen die Komplex-
ität dieser Synthese, da ihre mathematische Beschreibung nicht linear ist.

Stand der Forschung ist daher die strukturelle Maßsynthese von tubulären Kon-
tinuumsrobotern. Die Anwendung von Optimierungsalgorithmen ermöglicht die
Designkonzeptionierung für ein bestimmtes Anwendungsszenario oder einen Pa-
tientendatensatz. Bestehende Ansätze berücksichtigen jedoch nicht den gesamten
Parameterraum, können nicht mit der Nichtlinearität des Modells umgehen oder
mehrere Zielfunktionen gleichzeitig berücksichtigen (wobei die meisten medizinis-
chen Anwendungen und Aufgaben durch multiple Zielfunktionen definiert sind).

Ziel dieser Arbeit ist es, diese grundlegende Herausforderung zu lösen, indem
das Problem der Parameteroptimierung durch die Anwendung eines multiplen Op-
timierungsalgorithmus gelöst wird. Das Hauptaugenmerk dieser Arbeit liegt auf
einer allgemeinen Methode zur Lösung des patienten- und anwendungsspezifischen
Designs der tubulären Kontinuumsroboter. Die vorgeschlagene Methode basiert auf
der Anwendung von evolutionären Algorithmen, die mehrere konkurrierende Ziel-
funktionen berücksichtigen können, wobei der zu optimierende Parametersatz eine
variable Länge aufweisen kann. Globale Optimierungsalgorithmen zielen speziell
auf den beschränkten Suchraum von tubulären Kontinuumsrobotern ab. Eine nicht
lineare Optimierung ermöglicht die Einbindung des Elastizitätsmodells zur kinema-
tischen Modellierung.
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Der hier vorgeschlagene Optimierungsansatz wird anhand unterschiedlicher An-
wendungen evaluiert. Dies beinhaltet die Kooperation zweier Roboterarme, die struk-
turelle Steifigkeitsoptimierung unter Berücksichtigung von Arbeitsraumbeschränkun-
gen und externen Kräften, und die laser-induzierte Thermoablation zur Entfernung
von Tumoren im Gehirn.

Die wissenschaftlichen Beiträge dieser Arbeit sind 1) die Entwicklung eines Opti-
mierungsansatzes, der die wichtigsten Parameter, Zielfunktionen und Beschränkun-
gen im Hinblick auf die Auslegung der tubulären Kontinuumsroboter beschreibt, 2)
die Auswahl eines geeigneten Optimierungsalgorithmus, der den multidimension-
alen Suchraum und mehrere Zielfunktionen berücksichtigt und 3) die Bewertung des
vorgeschlagenen Optimierungsansatzes, sowie strukturelle Synthese auf der Grund-
lage von drei realen Anwendungen.

Schlagwörter: Tubuläre Kontinuumsroboter, Designoptimierung, Minimal-invasive
Chirurgie
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A B S T R A C T

Concentric tube robots belong to the class of continuum robotic systems whose mor-
phology is described by continuous tangent curvature vectors. They are composed of
multiple, interacting tubes nested inside one another and are characterized by their
inherent flexibility. Concentric tube continuum robots equipped with tools at their
distal end have high potential in minimally invasive surgery. Their morphology en-
ables them to reach sites within the body that are inaccessible with commercial tools
or that require large incisions. Further, they can be deployed through a tight lumen
or follow a nonlinear path.

Fundamental research has been the focus during the last years bringing them
closer to the operating room. However, there remain challenges that require atten-
tion. The structural synthesis of concentric tube continuum robots is one of these
challenges, as these types of robots are characterized by their large parameter space.
On the one hand, this is advantageous, as they can be deployed in different patients,
anatomies, or medical applications. On the other hand, the composition of the tubes
and their design is not a straightforward task but one that requires intensive knowl-
edge of anatomy and structural behavior. Prior to the utilization of such robots, the
composition of tubes (i.e. the selection of design parameters and application-specific
constraints) must be solved to determine a robotic design that is specifically targeted
towards an application or patient. Kinematic models that describe the change in
morphology and complex motion increase the complexity of this synthesis, as their
mathematical description is highly nonlinear.

Thus, the state of the art is concerned with the structural design of these types of
robots and proposes optimization algorithms to solve for a composition of tubes for
a specific patient case or application. However, existing approaches do not consider
the overall parameter space, cannot handle the nonlinearity of the model, or multiple
objectives that describe most medical applications and tasks.

This work aims to solve these fundamental challenges by solving the parame-
ter optimization problem by utilizing a multi-objective optimization algorithm. The
main concern of this thesis is the general methodology to solve for patient- and
application-specific design of concentric tube continuum robots and presents key pa-
rameters, objectives, and constraints. The proposed optimization method is based on
evolutionary concepts that can handle multiple objectives, where the set of parame-
ters is represented by a decision vector that can be of variable dimension in multidi-
mensional space. Global optimization algorithms specifically target the constrained
search space of concentric tube continuum robots and nonlinear optimization en-
ables to handle the highly nonlinear elasticity modeling.

The proposed methodology is then evaluated based on three examples that in-
clude cooperative task deployment of two robotic arms, structural stiffness optimiza-
tion under the consideration of workspace constraints and external forces, and laser-
induced thermal therapy in the brain using a concentric tube continuum robot.
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In summary, the main contributions are 1) the development of an optimization
methodology that describes the key parameters, objectives, and constraints of the
parameter optimization problem of concentric tube continuum robots, 2) the selec-
tion of an appropriate optimization algorithm that can handle the multidimensional
search space and diversity of the optimization problem with multiple objectives, and
3) the evaluation of the proposed optimization methodology and structural synthesis
based on three real applications.

Keywords: concentric tube continuum robots, design optimization, minimally inva-
sive surgery
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1
I N T R O D U C T I O N

1.1 concentric tube continuum robots

Concentric tube continuum robots (CTCR) are a subclass of continuum robots whose
morphology is described by continuous tangent vectors. CTCR are also referred to as
active cannulas or tubular continuum robots in the literature (Burgner-Kahrs, Rucker,
and Choset, 2015). They were first introduced by (Sears and P. Dupont, 2006; Webster
III, Okamura, and Cowan, 2006) in 2006. CTCR are composed of multiple, precurved
elastic tubes (with the number of tubes > 2) with different length inserted into one
another, as depicted in Figure 1. Each tube is actuated through translation and rota-
tion at its base. Elastic interaction of the tubes generates a tentacle-like motion that
enables their manipulability. NiTi (nickel-titanium) shape memory alloys represent
the most commonly proposed tube material, but also 3D printed thermoplastic ma-
terials like PLA (polylactide), PCL (polycaprolactone), and nylon are mentioned in
the literature (Amanov, Nguyen, and Burgner-Kahrs, 2015; Morimoto and Okamura,
2016; Webster III, Okamura, and Cowan, 2006).

Due to their small size with diameters usually less than 2 mm and compliant struc-
ture, they have been proposed for various medical applications to be utilized as an
actuatable needle. These include endonasal surgery (Burgner, Gilbert, and Webster
III, 2013), neurosurgery (Anor, Madsen, and Dupont, 2011; Bedell et al., 2011; Berge-
les, Gosline, et al., 2015; Boushaki et al., 2016), intracerebral hemorrhage evacuation
(Burgner, Swaney, Lathrop, et al., 2013; Godage et al., 2015), intracardiac surgery
(Bergeles, Gosline, et al., 2015), bronchoscopy (Kuntz, Torres, et al., 2015; Torres, Web-
ster III, and Alterovitz, 2012), laser prostate surgery (Hendrick, Herrell, and Webster
III, 2014), cochlear implant insertion (Granna, Rau, et al., 2016), and transforamenal
hippocampotomy (Comber et al., 2016; Gilbert, Neimat, and Webster III, 2015).

Figure 1: Concentric tube continuum robot composed out of three tubes (reprinted from
(Gilbert, Neimat, and Webster III, 2015), © 2015 IEEE)

1
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The CTCR could either be employed as an autonomous device or be teleoperated
by the surgeon as a master-slave system. Natural orifices or small incisions can be
used to deploy the robot into the human body. Depending on the application, the
CTCR could be equipped with tools, for instance with a gripper, needle, camera, or
laser fiber. The tools can be inserted through the inner lumen of the robot. The CTCR
could also be utilized as a surgical device to be deployed through an endoscope.
Multiple CTCR arms working collaboratively on a medical task are proposed by
(Hendrick, Herrell, Mitchell, et al., 2016; Hendrick, Herrell, and Webster III, 2014;
Hendrick, Mitchell, et al., 2015).

The fields of research for CTCR include design, modeling, control, and planning.
The design of CTCR considers the selection of materials or structural design of tubes,
the design of the actuation unit, and fabrication aspects (Gilbert, Rucker, and Webster
III, 2016).

Different models to determine the forward kinematics have been proposed. Early
research considered the use of simple geometry and constant curvature arcs to com-
pute the three-dimensional curve of the robot (Rucker and Webster III, 2008). The
most recent model utilizes elasticity theory and models the robot as a collection of
continuous slender beams undergoing bending and torsion. Shear and axial exten-
sion are assumed to have little effect on the bending behavior, such that they are
neglected thus far. The model also accounts for external loads (forces and moments)
(Rucker, Jones, and Webster III, 2010a). The kinematics for two tubes with constant
circular precurvature can be solved analytically - other tube designs require to solve a
set of differential equations numerically (Lock et al., 2010; Rucker, Jones, and Webster
III, 2010a). The inverse kinematics approaches the forward kinematics numerically
(Leibrandt, Bergeles, and Yang, 2015) and utilizes, for instance, an inverse Jacobian
approach (Sears and P. E. Dupont, 2007), or considers the use of machine learning
concepts (Grassmann, Modes, and Burgner-Kahrs, 2018). Further modeling regards
the occurrence of instable configurations that are described by a sudden release of
energy that builds up due to the rotational difference and friction between the tubes,
so-called snapping (Gilbert, Hendrick, and Webster III, 2016; Ha, Park, and Dupont,
2016; Hendrick, Gilbert, and Webster III, 2015a; Webster III, Romano, and Cowan,
2009; R. Xu, Atashzar, and Patel, 2014).

So far, CTCR’s kinematic control concentrated mainly on teleoperation, where a de-
vice is utilized to position the robot. Teleoperation also deals with human-machine
interaction concepts that investigate user-friendly input devices and control algo-
rithms. Further, optimal kinematic control includes the consideration of shape sens-
ing to receive information about the actual position and orientation of the robot’s tip
but also other points along the backbone. Additionally, force sensing is required to
measure external loads that might occur during deployment (Gilbert, Rucker, and
Webster III, 2016).

Another important research field deals with planning concepts. These include mo-
tion and trajectory planning approaches to deploy the robot along a tortuous path or
around obstacles and the trajectory or motion strategy between adjacent configura-
tions of the robot (Gilbert, Rucker, and Webster III, 2016). Follow-the-leader behavior
is an important aspect, which describes a specific motion of a robot where the over-
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all backbone follows the path of the tip. This type of motion is required for some
minimally invasive applications (Gilbert, Neimat, and Webster III, 2015).

CTCR represent the smallest continuum robot existing thus far and promise to
improve minimally invasive surgery considering the diverse set of applications and
employed medical tools mentioned in the state of the art. They have potential over
various other treatment options, as they can maneuver through tight space and lu-
men on nonlinear trajectories, which are not accessible with commercially existing
tools or robotic designs. However, there still exist fundamental challenges that re-
quire attention to finally advance CTCR to their full potential. Addressing these
challenges could bring them closer to be finally used as a commercial product in
medicine. One of these challenges is their structural design synthesis, which is fur-
ther detailed in the following.

1.2 overview for design optimization of ctcr

CTCR can only reach their full potential in minimally invasive surgery if the design
of the tubes adapts to the specific application, patient, or task. This design process is
not one to solve straight forward, as the design parameter space for CTCR is large,
such that there exist infinite options. It further requires a priori knowledge about
the anatomical constraints and medical conditions, which demands medical image
analysis and prior definition of task requirements.

To employ a CTCR for a medical application, design- and application-specific pa-
rameters must be selected a priori. The parameter space of CTCR is diverse, as each
tube is characterized by certain geometric and material parameters. Geometric pa-
rameters are the tube curvature, the outer and inner diameter, and the straight and
curved section length that define the overall length of each tube. The material is cho-
sen to be superelastic, which is defined by an elastic modulus, the recoverable strain
rate, the Poisson’s ratio, and the shear modulus.

Selecting the design parameters manually is not possible, as the tube interaction
and the morphology of the robot is only predictable for simple designs. Thus, re-
searchers proposed the use of optimization algorithms to design CTCR for a medical
application or task. Existing design optimization algorithms consider the optimiza-
tion of the tube’s lengths and curvatures (Bedell et al., 2011), and consider task or
anatomical constraints to maximize a set of reachable points (Bergeles, Gosline, et
al., 2015). In (Burgner, Gilbert, and Webster III, 2013), the authors use a different
approach and incorporate volume-based objectives to optimize the tube’s curvature.
(Torres, Webster III, and Alterovitz, 2012) and (Baykal, Bowen, and Alterovitz, 2018)
investigate design optimization together with motion planning to compute a feasi-
ble path towards the goal. Using a global optimization method, the authors optimize
tube lengths and curvatures to maximize the reachable space (Baykal, Bowen, and Al-
terovitz, 2018). In (Gilbert, Neimat, and Webster III, 2015), the authors first study the
use of helically shaped tubes to optimize for follow-the-leader motion to enable the
robot to follow a predefined path. Multiple objectives are considered by (Boushaki
et al., 2016) to maximize reachability and stability at the same time and include the
computation of optimal tube curvatures and lengths.
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1.3 challenges and research questions

The parameter optimization of CTCR for a specific application or task remains still
a challenge. Design optimization algorithms for CTCR have been proposed for vari-
ous applications. A design optimization algorithm that applies to different scenarios
and patients is challenging, as each problem is defined by specific in- and outputs,
parameters, constraints, and objective functions.

Most optimization algorithms that were proposed in the early stages of CTCR
used simplified kinematic models. Recent kinematic models require solving highly
nonlinear functions (Cosserat rod theory), which constrains the space of applicable
optimization algorithms. Further, existing algorithms are still restricted to only a few
parameters, where most consider tube curvature and curved length. Especially the
consideration of stiffness and material properties is an important aspect, as these
parameters influence the robot’s ability to withstand or apply external forces and
loads during a medical task. They are thus essential for manipulation tasks and have
not been considered in the state of the art so far.

Considering other robotic optimization algorithms’ state of the art, it is noticeable
that various researchers utilized global optimization algorithms. These are mostly
heuristic approaches but are especially suited for complex optimization problems
with various design parameters and have better performance. As the design space is
multidimensional and multimodal, a global optimization algorithm seems suitable
for the structural design of CTCR. The parameter space of CTCR has many con-
straints - especially when the number of optimization parameters increases. Local
optimization algorithms are prone to remain stuck in local minima, whereas global
(heuristic-based) approaches are more likely to find a global optimum.

Another important aspect of the design optimization procedure is the consider-
ation of conflicting objectives. Looking at optimization strategies for other robots,
multi-objective optimization algorithms have been employed for various robot types.
Optimization procedures for CTCR mostly considered scalar error metrics or the
sum of weighted objectives. This results in problems, as the selection of these weights
is not straightforward. However, as objectives tend to be represented by different
units, their appropriate selection is essential. Changing these weights influences the
outcome of the optimization procedure dramatically and might result in different
solutions. The consideration and handling of heterogeneous objectives (represented
by different units) is not covered by the state of the art.

To conclude, an optimization framework that utilizes a global optimization ap-
proach, which considers the overall parameter space, and handles the combination
of multiple heterogeneous and conflicting objectives is unexploited by the state of
the art.
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1.4 dissertation contributions

This thesis seeks to answer the following key questions.

How can the optimization problem or framework

1. be classified and formulated to handle different problems or patients?

2. handle the overall parameter space (including length, diameter, wall thick-
ness, curvature, and elasticity of the tubes) and the nonlinearity of the
kinematic model?

3. consider multiple heterogeneous and conflicting objectives?

This thesis classifies the optimization problem of CTCR and formulates the design
optimization problem to handle patient-specific image data as input to the algorithm
to optimize for patient-individual tubes. Another aim is the formulation of key ob-
jective functions that occur in various medical applications and are inspired by the
state of the art and the applicability of CTCR to minimally invasive surgery.

This work hypothesizes that evolutionary optimization algorithms and particu-
larly swarm intelligence could be an efficient method to cope with the structural
design optimization of CTCR. Especially, multi-objective particle swarm optimiza-
tion is investigated in the scope of this thesis. The applicability of such a global
evolutionary optimization algorithm that considers multiple objectives is currently
unexploited by the state of the art. The assumption here is that particle swarm opti-
mization has the potential to handle multimodal problems (with many parameters
and constraints) and can especially account for multiple conflicting objective func-
tions. Further, it can handle the nonlinearity of the model.

The proposed algorithm is formulated to consider the overall set of design pa-
rameters (number of tubes, material, length, diameters, wall-thickness, curvatures)
including the material’s elasticity and stiffness. The multi-objective particle swarm
optimization algorithm is then evaluated based on three applications, which are
the cooperative task deployment of two robotic arms, the structural stiffness opti-
mization under the consideration of workspace constraints and external forces, and
laser-induced thermal therapy in the brain.

In summary, this thesis aims to classify the optimization problem for CTCR and
proposes an optimization strategy that can handle multiple conflicting objective
functions. The proposed optimization method includes the overall parameter

and configuration space. This work specifically investigates the applicability of
multi-objective particle swarm optimization, which is evaluated based on three
problems.
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1.5 outline

1.5.1 Part I: State of the Art

Chapter 2 presents the fundamentals of concentric tube continuum robots and intro-
duces their design space, actuation principles, and modeling. The modeling part of
this chapter is concerned with the forward kinematics of the CTCR that allows the
determination of the three-dimensional space curve (pose of the robot) depending
on the specific configuration. The forward kinematics represents a key aspect in pa-
rameter optimization of CTCR as it can be utilized to determine the workspace of a
specific design. This thesis applies Cosserat rod theory, where each tube of the CTCR
is assumed to be a slender beam undergoing bending and torsion.

As the aim of this thesis is to apply numerical optimization to the design problem
of CTCR, chapter 3 introduces the general definition of an optimization problem
and gives an overview of evolutionary algorithms. Particle swarm optimization is
particularly presented in this chapter, as this algorithm presents the basis of this
work. Further, multi-objective optimization and the extensibility of particle swarm
optimization towards multi-objective problems are discussed.

The focus in chapter 4 is the state of the art for optimization algorithms in the area
of robotics and their application to design optimization problems. Here, prominent
design parameters and objectives are presented, as well as single- and multi-objective
optimization strategies. Specifically, the state of the art for design optimization of
CTCR is regarded in this chapter and existing parameters and objectives are iden-
tified. Lastly, this chapter discusses existing optimization algorithms for CTCR and
concludes with the challenges in parameter optimization of this work.

1.5.2 Part II: Methods

Chapter 5 presents the parameter optimization methodology for CTCR, which is
the basis of this thesis. It formulates and defines key parameters, objectives, and con-
straints of optimization problems for CTCR. It further introduces the implementation
of the multi-objective particle swarm optimization algorithm specifically targeted to-
wards the structural design optimization of CTCR.

1.5.3 Part III: Applications

The following chapters investigate the applicability of the presented algorithm re-
garding three problems. These define novel applications for the use of CTCR in
minimally invasive surgery.

The first application (chapter 6) compares the applicability of a single-objective
particle swarm optimization algorithm to the performance of the Nelder-Mead algo-
rithm inspired by the state of the art. The application deals with the optimization of
cooperative robots to allow for simultaneous deployment of multiple tasks.
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The second application (chapter 7) deals with the structural stiffness optimization
of CTCR. It considers the overall parameter space for a three-tube CTCR and includes
external forces, as well as multiple objectives.

The third application (chapter 8) applies the parameter optimization methodology
to laser-induced thermal therapy in the brain utilizing a CTCR. It accounts for mul-
tiple objectives and considers application-specific parameters (bin packing problem)
in the optimization procedure to show the extensibility of the algorithm.

The last chapter concludes this thesis and reports scientific findings and the un-
derlying contribution of this work.
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S TAT E O F T H E A RT





2
F U N D A M E N TA L S O F C O N C E N T R I C T U B E C O N T I N U U M
R O B O T S

This chapter presents the fundamentals for CTCR, which include their design, ac-
tuation principles as well as kinematic modeling. The design principles present the
material and geometric tube parameters, and the actuation principles describe the
configuration space of the robot. Further, this chapter presents the forward kine-
matic modeling for CTCR, where the theory of elastic rods is applied. This includes
Cosserat, and specifically Kirchhoff rod theory, which is utilized to model the CTCR
as a composition of slender rods undergoing bending and torsion. It further consid-
ers the robot to be subject to external forces and loads.

2.1 design and configuration space

CTCR are composed out of n (n > 2), precurved superelastic tubes, which are in-
serted into one another. Each tube is mechanically actuated by translation and rota-
tion and is fixed in an actuation unit at its base. The morphology of the robot thus
represents a curve in three-dimensional space (Burgner-Kahrs, Rucker, and Choset,
2015).

2.1.1 Design Principles

Each tube i is characterized by certain material and geometric parameters. The ma-
terial is chosen to be superelastic and is defined by an elastic modulus E, the recov-
erable strain rate ǫ, the Poisson’s ratio ν, and the shear modulus G.

Geometric parameters are the curvature κ, and the straight and curved section
length ℓsi and ℓci

, respectively. The overall length of a tube is ℓi = ℓsi + ℓci
where

ℓ1 > ... > ℓn with i = 1 being the innermost tube, see Figure 2. Note, that also tubes
with non-constant curvature would be conceivable. However, this work focuses on
tubes with a straight and a curved section with constant curvature.

ℓ1ℓ2

ℓ3

β3β2β1

α1 α2 α3

s

Figure 2: Concentric tube robot composed of three tubes with tube length ℓ1, ℓ2, ℓ3, transla-
tional parameters β1,β2,β3, and rotational parameters α1,α2,α3.

11
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The outer ODi and inner diameter IDi of each tube are parameters that define
the wall thickness and influence the stiffness and the moment of inertia I of the
tubes. Further, the outer diameter constrains the maximum curvature of a tube i as
(Webster III, Romano, and Cowan, 2009).

κimax
=

2ǫi

ODi(1+ ǫi)
,

where ǫi defines the strain. This equation describes the relation between material
strain limit and plastic deformation of a tube.

2.1.2 Actuation Principles

The actuation space of each tube i is defined by the translational parameters βi ∈

[−ℓi, 0] and the rotational parameters αi ∈ [−π,π), as illustrated in Figure 2. The con-
figuration space Q of CTCR is thus of dimension 2n with q = [α1, ...,αn,β1, ...,βn]

T ,
which are subject to the following inequalities

β1 6 ... 6 βn 6 0,

ℓn +βn 6 ... 6 ℓ1 +β1.

These constraints arise, as the tip of an inner tube is not supposed to be retracted into
an outer tube. Note, that βi is negative, as it defines the length from the constrained
outlet towards the end of a tube.

2.2 modeling

CTCR can be modeled as slender rods (where their length is assumed to be much
longer than their diameter) using elastic rod theory. The elastic Cosserat rod theory
describes the deformation of a rod and is an extension to classical beam theory, see
(Antman, 2005). It was originally developed by Eugène and Françoise Cosserat in
1907. Cosserat rod theory enables to describe the deformation of the tubes, as well
as their torsion against one another (Lock et al., 2010; Rucker, Jones, and Webster
III, 2010a). The adapted forward kinematics model for CTCR based on Cosserat rod
theory presented here is based on the work by (Rucker, Jones, and Webster III, 2010a).

2.2.1 Cosserat Rod Model

General Cosserat rod theory considers a rod to undergo bending, torsion, extension,
and transverse shear. Considering a CTCR, the theory assumes that friction has only
little effect on the bending behavior of the tube and is not considered. In Cosserat
rod theory, a set of differential equations describes the rod’s deformation. This set
of differential equations consists of 1) kinematic equations, 2) equilibrium equations,
and 3) constitutive equations.

Consider a single tube i to be a slender Cosserat rod, which is subject to external
loads. An external load can be defined by forces, as well as moments. A set of dif-
ferential Cosserat rod equations can be derived to describe the deformation of a rod
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through external loads from an initial, undeformed state g∗

i (s) to its deformed state
gi(s).

Figure 3 depicts a Cosserat rod (assumed to be tube i here) with length ℓ, which
is subject to external forces F and loads L, as well as internal forces n and moments
m at its free end. External forces can account for gravity, and/or interaction/envi-
ronmental forces. A coordinate frame is attached to the rod and travels along its
centerline (represented by the dashed line). The local z-axis of the frame is pointing
towards the tangent of the curve and the x- and y-axes are established in a canoni-
cal way (different frame conventions can be utilized, e.g. Frenet-Serret’s or Bishop’s
frames). This body coordinate frame is referred to as frame b in the following. Each
point on the centerline can be described in a global reference frame w with orienta-
tion R∗

∈ SO(3) and position r∗ ∈ E(3) of the coordinate frame.

m(0)

n(0)

m(ℓ)

n(ℓ)

F(s),L(s)

w

b

s = 0
s = ℓ

Figure 3: A Cosserat rod with length ℓ and s being the arc length parameter. The slender rod
is subject to external forces F and loads L, and internal forces n and moments m

at its free end. A body coordinate frame b travels along the centerline (red dashed
line) of the tube which is in relation to the global coordinate frame w.

The tube i is thus characterized by an arc length s parameterized curve wr∗i
b(s)

and the position and orientation of frames along the curve can then be represented
by wg∗

i
b(s) ∈ SO(3), where this denotes a transformation matrix of frame b with

respect to w. Thus, (wRb
i )

T = bR
w
i and wg∗

i
b(s) is represented by

wg∗

i
b
(s) =

[
wR∗

i
b
(s) wr∗i

b(s)

0T 1

]
,

where wR∗

i
b
(s) ∈ SO(3) and wr∗i

b(s) ∈ E(3) represent the orientation and translation
at s with respect to the global reference frame w. The local curvature vector υ∗

i (s)

can then be represented by

bυ
∗

i (s) = (bR
∗

i
w
(s)∂s wR∗

i
b
(s))∨,

where ∨ denotes the inverse of ∧, which describes the mapping from se(3) to R
3.
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2.2.1.1 Kinematic Equations

The kinematic equations describe the evolution of the curvature and pose along arc
length s

∂s wrbi (s) = wRb
i (s) bϑ(s),

∂s wRb
i (s) = wRb

i (s) bυ̂i(s), (1)

with

wgb
i (s) =

[
wRb

i (s) wrbi (s)

0
T 1

]
,

where ∂s represents the partial derivative with respect to s, bϑ and bυ define the
linear (extension and shear) and angular (bending and torsion) strains, respectively.
Both are represented in the body coordinate frame b. The evolution is characterized
by bυi(s) = bυ

∗

i (s) +∆bυi(s) and bϑi(s) = bϑ
∗

i (s) +∆bϑi(s).

2.2.1.2 Equilibrium Equations

These equations are derived by writing the static equilibrium for each tube i. De-
scribing the evolution of m and n along s, the force and moment equilibrium can be
stated as

wn(s) −wn(0) +

∫s

0
wF(ω)dω = 0,

wm(s) +wrb(s)×wn(s) −wm(0) −wrb(0)×wn(0)

+

∫s

0

(
w
rb(ω)×wF(ω) +wL(ω)

)
dω = 0,

where the inner forces and moments wn and wm, and the external forces and loads
wF and wL are all represented in the global world coordinate system w. The differ-
ential equilibrium equations can be derived by taking the derivative with respect to
s leading to

∂s wn(s) +wF(s) = 0, (2)

∂s wm(s) + ∂s wrb(s)×wn(s) +wL(s) = 0. (3)

2.2.1.3 Constitutive Equations

These equations relate the linear strains bϑ and angular strains bυ to the internal
forces wn and moments wm. Constitutive equations of the material are considered,
where in this case linear elastic behavior along the tube is assumed for simplicity. To
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express these in a global reference frame w, the constitutive equations are multiplied
by a rotation matrix wRb(s) according to

wn(s) = wRb(s) bKv(s)(bϑ(s) − bϑ(s)
∗), (4)

wm(s) = wRb(s) bKυ(s)(bυ(s) − bυ(s)
∗), (5)

where bKϑ and bKυ are the linear and angular stiffness matrices, respectively. As-
suming homogeneous material behavior, they are expressed as

bKϑ =



GA 0 0

0 GA 0

0 0 EA


 ,

bKυ =



EIxx 0 0

0 EIyy 0

0 0 GIzz


 .

G is the shear modulus, A is the area of the cross section, E is the elastic modulus,
Ixx, Iyy are the second moments of area about the respective axis, and Izz is the polar
moment of inertia about the z-axis with Izz = Ixx + Iyy. Note that G,A,E and I are
constant along s for each tube i.

2.2.1.4 Differential Equations

The differential Cosserat rod equations can then be derived considering the kine-
matic rod, equilibrium and constitutive equations. The constitutive equations (4) and
(5) are derived with respect to s. Substitution of the equilibrium equations (2) and
(3), the kinematic equation (1), and multiplication of (wRb)T results in the following
differential equations.

∂s wrb = wRb
bϑ,

∂s wRb = wRb
bυ̂,

∂s bϑ = ∂s bϑ
∗ − bK

−1
ϑ

(
(bυ̂ bKϑ + ∂s bKϑ)(bϑ− bϑ

∗) + bR
w

wF
)
,

∂s bυ = ∂s bυ
∗ − bK

−1
υ

(
(bυ̂ bKυ + ∂s bKυ)(bυ− bυ

∗)

+ bϑ̂ bKϑ(bϑ− bϑ
∗) + bR

w
wL

)
. (6)

Note, that s is omitted for practical reasons.

2.2.2 Kirchhoff Rod Model

A Kirchhoff rod is a special case of a Cosserat rod, where extension and transverse
shear are neglected. The assumption of a tube i being a Kirchhoff rod is considered
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in the scope of this work. The linear strains are defined to be constant ϑ = ϑ∗ = e3.
The differential equations simplify to

∂s wrb = wRbe3 ,

∂s wRb = wRb
bυ̂ ,

∂s wn = −wF ,

∂s bυ = ∂s bυ
∗ − bK

−1
υ

(
(bυ̂ bKυ + ∂s bKυ)(bυ− bυ

∗) + bR
w

wL
)

.

2.2.3 Combination of Multiple Tubes

Consider now the combination of multiple tubes i, where each tube is assumed to
be a Kirchhoff rod. This implies that extension and shear of the tubes are neglected,
such that bϑ = [0 0 1]T . It further assumes that extension and shear have only little
effect on the deformation of the tubes compared to bending and torsion. The model
presented here, was originally published by (Rucker, Jones, and Webster III, 2010a)
and considers the following assumptions

• inextensibility of the tubes,

• no transverse shear of the tubes,

• neglection of friction, and

• linear elastic material behavior.

In the following, the Kirchhoff rod equations are derived for multiple tubes and
again, the differential equations arise by considering the kinematic equations, the
equilibrium equations, and the constitutive equations.

2.2.3.1 Kinematic Equations

For the sake of simplicity, it is first assumed that the tubes are aligned and start at
s = 0 and end at s. As the tubes twist independently (such that orientation of frames
may vary), each of the tubes deforms from an initial reference state g∗

i (s) to a final
state gi(s). As the tubes are placed concentrically into one another, their final curves
(represented by points) align so that there exists a final deformed curve g(s) for all
tubes.

The relative rotation between the tubes, illustrated in Figure 4, can be described
by a rotation BR

b
θi

about the local z-axis by angle θi, where the coordinate frame B

defines the body coordinate frame of tube i = 1, and b is the body coordinate frame
of tube i. The rotation angle θi is measured with respect to tube i = 1. This rotational
relationship is described by

wRb
i (s) = wRB

1 (s)BR
b
θi

, (7)

with

BR
b
θ =



cos(θi) −sin(θi) 0

sin(θi) cos(θi) 0

0 0 1


 ,
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such that this angular change can also be represented by

∂sθi = bυi,z − Bυ1,z.

By1

Bx1

b
xi

b
yi

θi

Figure 4: Rotational difference between the tubes measured with respect to tube 1 by a rota-
tion about the z-axis by angle θi.

A relation between the curvatures is essential to determine the final curve. This can
be derived by considering the kinematic equation (1) for a single rod. Substituting
equation (7) into the definition for υi leaves

bυi(s) = bR
w
i (s)∂s wRb

i (s)
∨ = bR

B
θi B

υ1 + ∂sθie3.

Determination of the derivative with respect to s to describe the evolution of bυi

then yields

∂s bυi(s) = ∂sθi ∂θibR
B
θi B

υ1 + bR
B
θi
∂s Bυ1 + ∂2sθie3, (8)

where ∂θi
represents the partial derivative with respect to θi.

2.2.3.2 Equilibrium Equations

Considering multiple precurved overlapping tubes i, the static equilibrium consider-
ing external forces can be written as

∫s

0

n
∑

i=1

wFi(ω)dω−

n
∑

i=1

wni(s) = 0, (9)

and

∫s

0

(
w
rb(ω)×

n
∑

i=1

wFi(ω) +

n
∑

i=1

wLi(ω)
)
dω

−

n
∑

i=1

(
w
mi(s) +wrb(s)×wni(s)

)
= 0, (10)

where ni and mi are the internal forces and moments at each cross section of tube
i, and Fi and Li are the external forces and loads in the global coordinate frame w.
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Taking the derivative of equation (9) and (10) with respect to s yields the differential
equilibrium equations for multiple overlapping tubes

n
∑

i=1

(
∂s wni(s) +wFi(s)

)
= 0,

n
∑

i=1

(
∂s wmi(s) + ∂s wrb(s)×wni(s) +wLi(s)

)
= 0. (11)

2.2.3.3 Constitutive Equations

The linear constitutive equation can easily be written for multiple tubes

n
∑

i=1

wmi(s) =

n
∑

i=1

wRb
i (s)bKi(s)(bυi(s) − bυ

∗

i (s)), (12)

where

bKi =



EiIxxi

0 0

0 EiIyyi
0

0 0 GiIzzi


 .

Here, the material parameters and geometry of each tube i need to be considered.
It is assumed that material parameters are constant for each tube i. Gi is the shear
modulus, Ei is the elastic modulus, Ixxi

and Iyyi
are the second moments of area

about the respective axis, and Izzi is the polar moment of inertia about the z-axis of
each tube i.

2.2.3.4 Differential Kirchhoff Rod Equations

To obtain the set of differential Kirchhoff rod equations, the kinematic constraints,
the equilibrium equations and the constitutive equation for multiple tubes are con-
sidered. Note that the arc length parameter s is omitted for practical reasons in the
following section. To later receive a definition of ∂s Bυ1 with respect to the state
variables, the constitutive equation (12) is derived with respect to s as (note, that s is
again omitted for practical reasons)

n
∑

i=1

∂s wmi =

n
∑

i=1

∂s wRb
i bKi(bυi − bυ

∗

i ) +

n
∑

i=1

wRb
i ∂s bKi

(bυi − bυ
∗

i ) +

n
∑

i=1

wRb
i bKi(∂s bυi − ∂s bυ

∗

i ). (13)
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Consider the equilibrium equation (11) and substitute ∂s wRb
i = wRb

i bυ̂i and equa-
tion (13). Substituting then wRb

i = bR
B
1 BR

b
θi

(equation (7)) results in

n
∑

i=1

wRb
i

(
b
Ki(∂s bυi − ∂s bυ

∗

i ) + (bυ̂i bKi + ∂s bKi)

(bυi − bυ
∗

i )
)
+

n
∑

i=1

(
∂s wrb ×wni +wLi

)
= 0.

Apply ∂s wrb = wRb e3 and equilibrium equation (9). Multiplying with (bR
B
1 )

T (s)

yields

n
∑

i=1

BR
b
θi
(bKi(∂s bυi − ∂s bυ

∗

i ) + (bυ̂i bKi + ∂s bKi)(bυi −b υ∗

i ))

+ e3 × (bR
B
1 )

T

∫s

0
wFi(ω)dω+ (bR

B
1 )

T
wLi = 0.

Substitution of equation (8) into the prior determined equation and solving for the
first two components of ∂s Bυ1 yields

[
∂s Bυ1,x

∂s Bυ1,y

]
=

n
∑

i=1

−bK
−1
i Rθi

(
bKi

(
∂sθi ∂θi

(BR
b
θi
)T Bυ1 − ∂s bυ

∗

i

)

+ (bυ̂i bKi + ∂s bKi)(bυi − bυ
∗

i )

)
−

n
∑

i=1

bK
−1
i

(
ê3(bR

B
1 )

T

∫s

0
wFi(ω)dω+ (bR

B
1 )

T
wLi

)∣∣∣∣
x,y

, (14)

where |x,y denotes selection of only the first two components of a vector.
As equation (14) only enables to solve for ∂s Bυ1,x,∂s Bυ1,y, the last differential equa-
tion is obtained by considering the Kirchhoff rod equation (6) for a single tube i

∂s bυi = ∂s bυ
∗

i − bK
−1
υi

(
(bυ̂i bKυi

+ ∂s bKυi
)(bυi − bυ

∗

i + (wRb
i )

T
wLi

)
.

Substitution of bKυi
, bυ̂i and solving for the third component of bυi, results in a

representation of ∂s bυi,z in terms of the state variables. It is given by

∂s bυi,z = ∂s bυ
∗

i,z +
EiIi

GiIzzi
(bυi,x bυ

∗

i,y − bυi,y bυ
∗

i,x) −
1

GiIzzi
eT
3 (wRb

i )
T

wLi.

2.2.4 Solving the Differential Equations

To determine the model equations of multiple interleaved tubes, a system of contin-
uous rods must be solved considering specific boundary conditions. This includes
the consideration of sections that are defined as regions of constant curvature and
transition points that mark the passing from one section to the other. The sections of
constant curvature for a three tube CTCR are illustrated in Figure 5. For each section,
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s = 0 T1

T2

T3

T4

T5

Figure 5: Concentric tube robot composed of three tubes with 5 sections of constant curva-
ture and corresponding set of transition points T1−5, which are elements of T.

the set of differential equations are to be solved considering the following boundary
conditions. The set of transition points is defined by

T = {0,β1 + ℓs1 ,β1 + ℓs1 + ℓc1
,β2 + ℓs2 ,β2 + ℓs2 + ℓc2

, ...,βn + ℓsn ,βn + ℓsn + ℓcn
},

where all elements < 0 from T can be omitted.

2.2.4.1 Boundary Conditions

The boundary conditions consider geometrical constraints of the CTCR, force and
moment equilibrium, and the continuity of the space curve. The geometrical con-
straints define the conditions for arc length s and that the tubes are considered to
be straight for s < 0. To ensure continuity of the space cure wgb

i (s
+), the conditions

apply as

wgb
i (s

−) = wgb
i (s

+),

where s− defines the state right before the transition point and s+ after. The transi-
tion also requires a static equilibrium as

n
∑

i=1

wmi(s
−) =

n
∑

i=1

wmi(s
+) +

n
∑

i=1

wLp,i(s),

where wLp,i(s) is a point moment applied to tube i in the world coordinate system
w. Another equilibrium to be considered is at the tip of the robot, which becomes

n
∑

i=1

wmi(ℓ) −

n
∑

i=1

wLp,i(ℓ) = 0,

where wLp,i is a point load.

2.2.4.2 Shooting Method

The differential equations are to be solved numerically utilizing a shooting method,
as an analytic solution to solve the differential equations exists only for a CTCR with
n = 2 tubes with circular precurvature (Lock et al., 2010; Rucker, Jones, and Webster
III, 2010b).

For other tube combinations, integration from base to tip is performed (though
from tip to base is also possible) to solve the differential equations. The integration
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defines an initial value problem (can be solved using Runge-Kutta), where the solver
guesses for unknown conditions at the proximal end and solves for initial curvatures.
The boundary conditions must be considered. If they are not satisfied, the solver
guesses new values. To implement this model, the following initial conditions apply

br
B
1 (0) = 0,

bR
B
1 =




cos(α1 +β1bυ
∗

1,z) −sin(α1 +β1bυ
∗

1,z) 0

sin(α1 +β1bυ
∗

1,z) cos(α1 +β1bυ
∗

1,z) 0

0 0 1


 ,

θi = (αi +βibυ
∗

i,z) − (α1 +β1bυ
∗

1,z),

θ1(β1) = 0.

2.3 conclusion

As the model presented here requires numerical methods to solve highly nonlinear
differential equations, incorporation into an optimization framework represents a
major challenge for this work. The forward kinematic model limits the application
of several optimization strategies, as methods are to be acquired that can handle
function nonlinearity. Additionally, the absence of analytically solvable inverse kine-
matics represents a major limitation when it comes to design synthesis of CTCR, as
the straightforward computation from parameters in task space (end-effector posi-
tion of the robot) into configuration space is not possible.





3
E V O L U T I O N A RY O P T I M I Z AT I O N M E T H O D S

This chapter states the definition of a general optimization problem and presents an
overview of evolutionary optimization methods. The methods are categorized into
different types, which are suited for distinct problems and functions. Specifically,
particle swarm optimization is presented, as this strategy is a core method of this
thesis. Finally, this chapter describes multi-objective optimization methods and their
implementation with regard to particle swarm optimization.

3.1 optimization problem

An optimization problem arises from searching an optimal solution to a problem, i.e.
the necessity to find an optimum (a minimum or a maximum). In many world prob-
lems there is even a need to finding not one solution to a problem, but multiple or
infinite numbers of solutions. Optimization methods have been specifically evolved
to solve these problems and apply to many domains. Generally, optimization meth-
ods describe the numerical solution to a problem and use an initial start value as an
estimate (Antoniou and Lu, 2007). The problem can be defined by a function and the
applied optimization method utilizes it to solve for extrema.

3.1.1 Problem Definition

If one aims to minimize an objective function f(x), then function dependent param-
eters x1, x2, .., xm have to be adjusted such that the function f is minimized, with m

being the number of decision variables. The optimization problem can thus be stated
as

minimize y = f(x) = f(x1, x2, ..., xm),

where x defines the decision vector x = [x1, x2, ..., xm]T of the optimization prob-
lem and y defines the objective or cost function. Each optimization problem can be
written as a minimization of the objective function f(x) or a maximization of the
objective function −f(x), as

minimize f(x) ≡ maximize [−f(x)] .

3.1.2 Local and Global Minima

A function can have multiple local minima. A local minimum at x̃ exists for f(x̃), if

f(x̃) 6 f(x) for all ||x− x̃||2 < ρ,

23
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where ρ defines a user-defined neighborhood with ρ > 0, and f(x̃) has a global
minimum at x̃ if

f(x̃) 6 f(x) for all x.

If a function has multiple local minima, it is called multimodal (Simon, 2013). Fig-
ure 6 represents global and local optima of a function in R

2.

Figure 6: Global and local minima and maxima of a function in R
2.

3.1.3 Constraints

The optimization problem can be subject to constraint functions, which can be either
equality, or inequality constraint functions as

gi(x) = 0 hi(x) 6 0 i ∈ N\0.

3.2 overview of evolutionary optimization algorithms

Optimization methods can be divided into several subcategories. The manifold of
optimization algorithms is large, and the type of optimization problem defines the
utilized optimization technique. Selection of an appropriate optimization technique
is challenging and not a straightforward task to solve. Generally said, optimization
algorithms can be divided into linear and nonlinear methods, where nonlinear opti-
mization algorithms are iterative methods (gradient is determined numerically) that
can be utilized for complex and multimodal problems (Nelles, 2001). See Figure 7

for an overview of optimization methods.
The focus of this thesis is evolutionary optimization, as these algorithms are

envisioned to be suitable for the structural design optimization problem of CTCR.
Evolutionary optimization algorithms are probabilistic and fall into the category of
global optimization methods. Global optimization techniques are suited to explore
the overall parameter space and are thus more likely to find global optima. They
are generally applicable to complex problems with many optima, nonlinearities, or
constrained problems. However, they are not always prone to find a global optimum.
For these type of algorithms, there is usually a tradeoff between global exploration
and convergence (Nelles, 2001).
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Figure 7: Overview of optimization methods.

Evolutionary algorithms utilize a population-based approach with many iterations
(Simon, 2013). Such algorithms are particularly suitable for complex problems and
can be used if gradient-based approaches do not provide a sufficient solution or if a
gradient of the function cannot be determined. Thus, evolutionary algorithms have
been applied to many domains, e.g. robotics, neural networks, or in medicine (Si-
mon, 2013). These algorithms are further suitable to be transferred to multi-objective
optimization problems and represent powerful optimization tools (Reyes-Sierra and
Coello Coello, 2006).

This thesis concentrates on these types of algorithms, which are further explained
in the following. Though many sub-classes and modifications of evolutionary al-
gorithms exist, the following sections concentrate on the most prominent examples,
which are genetic algorithms, evolutionary programming, evolution strategy, genetic
programming, and swarm intelligence (Simon, 2013; Yu and Gen, 2010).

3.2.1 Genetic Algorithms

Genetic algorithms are the most prominent evolutionary optimization methods and
represent the inspiration for many of the following algorithmic approaches. They
were first introduced by (Holland, 1962) and further extended by (Goldberg, 1989;
Goldberg and Holland, 1988). The algorithm is based on the idea of natural selection
and the population of individuals. Individuals can reproduce and represent candi-
date solutions. The algorithm consists of three main steps: evaluation, selection, and
recombination. Evaluation represents the assessment of the fitness of each individual
within the population. The individuals with the best fitness among the population
(parents) are selected for reproduction. Recombination of genes can either happen
in the sense of reproduction (the crossover of genes) or by mutation. Mutation of
selected individuals ensures diversity and the exploration of space and represents a
probabilistic factor. The reproduced individuals then represent the next child popu-
lation. This genetic cycle continues until a sufficient solution is found, or a maximum
number of generations is reached. The genetic cycle is illustrated in Figure 8.
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The decision vectors are coded into a binary representation such that bit strings
represent candidate solutions. This is a complex task as the representation of the
candidate solution is crucial for the functionality of the algorithm (Eiben and Smith,
2003). In genetic algorithms, the fitness score represents the objective function. There
exist various representations and operators for genetic algorithms, including differ-
ent strategies for reproduction and mutation (Eiben and Smith, 2003). It further in-
cludes different population strategies, where e.g. only the child population remains
and no parents or parent and child populations are overlapping (Weicker, 2015).

Figure 8: Genetic cycle that consists of the current population, fitness evaluation, selection of
individuals, and recombination including reproduction (crossover) and mutation.

3.2.2 Evolution Strategies

Evolution strategies intend to simulate biological evolution. They were first intro-
duced by (Rechenberg, 1973). In contrast to genetic algorithms, the decision vectors
are represented by real numbers R. Further, the first publications utilized mostly
mutation operators and the selection of individuals (Simon, 2013). Gaussian muta-
tion operations ensure the exploration of the space and the candidate solutions are
selected randomly from the parent population (Weicker, 2015). The self-adaption
of mutation step sizes is characteristically for most implementations of evolution
strategies (Eiben and Smith, 2003). Recombination methods can either be discrete or
intermediate, such that alleles from two parents are randomly selected or averaged.

3.2.3 Evolutionary Programming

Evolutionary programming is comparable to evolution strategies and aims to simu-
late biological evolution and models artificial intelligence. It was invented by (Fogel,
Owens, and Walsh, 1966). The decision vectors are also represented by real numbers
R and mutation and selection operators are applied. New individuals are generated
through mutation using statistical distribution and Gaussian perturbation (Eiben
and Smith, 2003; Simon, 2013). The principle relies on the fitness computation of in-
dividuals and then stochastic selection of some members for the next generation. In
evolutionary programming, recombination strategies are not applied and the struc-
ture of individuals is fixed (Weicker, 2015).
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3.2.4 Genetic Programming

Genetic programming is based on genetic concepts - in contrast to evolution strate-
gies and evolutionary programming. It is a stochastic technique and similar to evo-
lutionary programming and strategies, but here the structure of the program can
change. This means that genetic programming can be used for problems, where the
specific structure of the optimization problem or the number of optimization param-
eters is unknown (Simon, 2013). It rather belongs to the machine learning family,
as it is based on learning concepts and the methods are less constrained (Eiben
and Smith, 2003). Genetic programming techniques also use reproduction operators,
whereas mutation is not prominent (Weicker, 2015). The methods are built upon tree
structures and individuals can vary in size (Weicker, 2015).

3.2.5 Swarm Intelligence

Swarm intelligence represents algorithms that are based on the idea of natural se-
lection (Yu and Gen, 2010). They are intended to simulate natural swarm behavior
of, for instance, a flock of birds, fish, or insects looking for food or a mating partner.
This includes algorithms as particle swarm optimization, ant colony optimization,
and artificial bee colony optimization (Yu and Gen, 2010).

Researchers no dot agree whether swarm intelligence belongs to the family of
evolutionary algorithms (Simon, 2013). However, as they operate in a similar manner
using a candidate solution which evolves from generation to generation, they are
considered as evolutionary algorithms in the following. The inventors of particle
swarm optimization refer to it as an evolutionary algorithm, which is similar to
evolutionary programming and genetic algorithms (Shi and Eberhart, 1999).

3.2.6 Summary

Evolution strategies, evolutionary programming, and genetic programming are all
adaptions of genetic algorithms. In contrary to other evolutionary algorithms, parti-
cle swarm optimization is relatively simple, as it has only one operator for comput-
ing new offspring. In that sense, it is different from other evolutionary algorithms,
as it does not use selection and crossover. However, it is still a population-based and
fitness-oriented approach (Yu and Gen, 2010). Swarm intelligence has become one
of the most prominent evolutionary algorithms, which might be explainable by its
low computational cost (Reyes-Sierra and Coello Coello, 2006; Yu and Gen, 2010).
The authors in (Hassan et al., 2005) investigate the computational efficiency and
performance of genetic versus particle swarm optimization based on different test
functions. Both algorithms perform similar but particle swarm optimization with
lower computational cost, as it needs fewer function evaluations. Further, particle
swarm optimization requires no binary coding and parameters can take any value.

The assumption is that evolutionary optimization might be an efficient method
to cope with the structural design synthesis of CTCR. Due to the prior mentioned
advantages of particle swarm optimization, the following sections concentrate on
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swarm intelligence. Note, that the performance of an algorithm is problem depen-
dent (Yu and Gen, 2010), such that other genetic algorithms might be suitable to
cope with the parameter selection of CTCR as well. However, this thesis specifically
investigates the applicability of particle swarm optimization for the structural design
synthesis of CTCR.

3.3 particle swarm optimization

As particle swarm optimization is the underlying algorithm of this work, it is ex-
plained in detail in the following. There exist many extensions of the original im-
plementation, however, this section introduces the original concept. The selection
of particle swarm optimization for the structural design optimization of CTCR is
discussed in more detail in the following chapters.

The particle swarm algorithm is a heuristic search algorithm, which is inspired
by the social behavior of a swarm and was originally introduced by (Kennedy and
Eberhart, 1995). It intends to simulate the social behavior of a swarm, which moves
through space in seek for food and tries to find the best fit possible (Kennedy and
Eberhart, 1995). The authors intend to transfer this behavior to optimization prob-
lems assuming that the swarm consists of multiple particles moving through the
search space. It is considered to be an iterative process, where the swarm consists of
a number of particles P that move through the search space and change their position
within space for each generation t until the maximum number of generations T is
reached. Each particle k is defined by its current position xk and a velocity vk, where
the position of a particle resembles the decision vector of the optimization problem.
The position and velocity change from generation t to the next generation t+ 1 and
the velocity vk of a particle is influenced by its personal best position pbk

the particle
achieved so far and a global best position gb within the swarm across all generations
(also referred to as leaders). As a position corresponds to a solution/decision vector,
the position of a particle xk can consist out of multiple components m and represent
a vector (i.e. multidimensional parameter space) (Kennedy and Eberhart, 1995). The
velocity of each particle xtk is determined with

vt+1
k = η · vtk + c1 · r1 · (p

t
bk

− xtk) + c2 · r2 · (g
t
b − xtk) , (15)

where η defines the inertia weight that controls the influence of the current velocity,
c1 and c2 are constants controlling the influence of the personal versus global best
position, and r1 and r2 randomly influence the velocity vt+1

k . r1 and r2 ∈ [0, 1] ∈ R.
The position xt+1

k at time step t+ 1 can then be determined using equation (15) as

xt+1
k = xtk + vt+1

k .

The objective function within particle swarm optimization is represented by the cost
y of a particle k. The cost y defines the "goodness" of the position xk of a particle
and indicates how close the particle is to its goal, i.e. to an optimum.

Figure 9 illustrates the algorithm’s cycle. The selection of leaders, the determina-
tion of each particle’s cost, and the velocity and position of a particle change for each
generation t until the maximum number of generations T is reached. The output of
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the algorithm and also the solution to the optimization problem is then the global
best position gb.

Figure 9: Particle swarm optimization cycle that consists of the current population, fitness
evaluation, selection of individuals, and update of each particle’s velocity and po-
sition.

3.4 adaptations of particle swarm optimization

There exist various adaptions of the original particle swarm optimization (Kennedy
and Eberhart, 1995). This includes, for instance, the incorporation of constraints, the
consideration of different topology approaches, and the transfer from fixed to a vari-
able dimension of decision vectors. The latter is especially important in the scope
of this thesis. The following adaptions represent the most prominent and important
extensions (considering this work) of particle swarm optimizations.

3.4.1 Constraints

The consideration of constraints is important in most real-world applications, as
optimization problems are usually subject to constraints. This is especially true for
the structural design of CTCR. It applies for particle swarm optimization as follows.
If the position of a particle xt+1

k is not within the search space, then strategies to
reposition the particle’s position back into the search space considering upper ub

and lower lb parameter boundaries are to be applied. There exist various strategies
to include these constraints. The following present the most prominent approaches,
see (S. Xu and Rahmat-Samii, 2007) for an overview.

3.4.1.1 Penalty

This method accepts a position outside the search space of the particle (Parsopoulos
and Vrahatis, 2005). However, a particle exceeding the search space receives a penalty,
which influences its quality and it is rated worse against other particles. In future
generations, particles exceeding the search space thus have a disadvantage among
other particles within the swarm.
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3.4.1.2 Truncation

If a particle exceeds the parameter space in any of the dimensions, this method
constrains the particle’s position component either at the lower lb or upper boundary
ub of the parameter space (Coello Coello, Toscano Pulido, and Salazar Lechuga,
2004).

xtk =







ub , if xtk > ub

lb , if xtk < lb,

where the comparison is done for each element.

3.4.1.3 Randomization

If a particle’s component exceeds the limitations of the parameter space, the particle’s
component in this dimension is assigned a new randomly chosen position

xtk ∈ [lb,ub].

3.4.1.4 Reflection

If a particle’s component exceeds the parameter space, the component’s position is
reflected at the boundary limit into the opposite direction of the parameter space

xtk =







ub − (xtk −ub) , if xtk > ub

lb + (lb − xtk) , if xtk < lb.

3.4.1.5 Reflection to Other Side

This method is similar to the method mentioned before, but the particle’s position is
reflected at the other side of the boundary limit

xtk =







lb + (xtk −ub) , if xtk > ub

ub − (lb − xtk) , if xtk < lb.

3.4.2 Topologies

Topologies describe the connectivity of particles within the swarm and influence
their information exchange. The performance of the algorithm is depended on its
topology and the selection of the leader within the neighborhood. This implies that
there exist strategies that do not utilize the global best leader approach but utilize
different strategies to determine the leader of a swarm by neighborhood topologies.
The original implementation of particle swarm optimization utilizes the global topol-

ogy approach, where all particles are connected with all others. Here, the leader of
the swarm is the global best position gt

b considering all particles.
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Other topologies consider each particle to be connected to a specific number of
neighbors within the swarm and the leader is determined within a local neighbor-
hood - not within the overall swarm. Some neighborhoods can be either assigned
through metrics, stochastically, randomly or can also be static (Reyes-Sierra and
Coello Coello, 2006; Simon, 2013). Thus, the selected topology has a high influence
on the convergence and exploration rate of the algorithm. As the global topology en-
sures an information exchange with all particles, it enables a high convergence rate.
For the same reason, this topology is also limited in exploration and has a higher
tendency to converge towards local extrema. The other extreme is the empty topol-
ogy, where each particle is only connected to itself. This enables high exploration of
the search space, but convergence is slow (Reyes-Sierra and Coello Coello, 2006).

3.4.3 Variable Dimension

This is an extension to the original proposed particle swarm optimization algorithm
and has been recently proposed by (Kadlec and Šeděnka, 2018; Mukhopadhyay and
Mandal, 2014; Xue et al., 2014). It is also referred to as particle swarm optimization
with variable-length or grammatical swarm approach. Here, the dimension of each
particle k within a swarm may vary and the decision vectors can be of different
length. This is especially suited for those problems, where the dimension of param-
eters is not known a priori, and the decision space is thus of variable dimension.
This method can be used to search for an optimal dimension of the decision vector.
The proposed optimization algorithm has been proven to be effective in performance
and optimization result by (Kadlec and Šeděnka, 2018; Mukhopadhyay and Mandal,
2014; Xue et al., 2014).

In contrast to general particle swarm optimization, the velocity must be deter-
mined differently, where each component m of a particle k is considered. This is
necessary, as each particle exhibits a different dimension. The overall number of
components of a particle is defined as Nm and the overall number of components
within the global best solution gbm

is Nmg
. There exist three scenarios to determine

the velocity vtkm
for each component, considering Nm and Nmg

1) Nm = Nmg

vt+1
km

= η · vtkm
+ c1 · r1 · (p

t
bkm

− xtkm
) + c2 · r2 · (g

t
bm

− xtkm
). (16)

2) Nm > Nmg

The number of Nmg
components are selected randomly from xk. The velocity for

these components is determined according to equation (16). The velocity of the re-
maining Nm −Nmg

components m is determined with

vt+1
km

= η · vtkm
+ c1 · r1 · (p

t
bkm

− xtkm
).

3) Nm < Nmg

Nm components are randomly drawn from gb and the velocity is determined with
equation (16) using the selected components. The position of each particle’s compo-
nent xt+1

km
is then determined with

xt+1
km

= xtkm
+ vt+1

km
.
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3.4.4 Summary

Particle swarm optimization has one operating mechanism to compute a new popu-
lation. There exist multiple variables that can be altered to influence this mechanism
and change the effect on exploration versus exploitation of the parameter space.

Specifically, the incorporation of constraints can be challenging, as there exist mul-
tiple methods for implementation. The adherence to constraints highly influences the
outcome of the algorithm. The authors in (Alvarez-Benitez, Everson, and Fieldsend,
2005) found out that a method that keeps the parameter set close to the boundary
leads to the fast development of the Pareto front and an exploration close to the
boundary. Other methods to enforce the constraints exhibit good performance on
specific test functions, however, overall the truncation method allows for safe perfor-
mance. This method also keeps the velocity from overshooting (Hassan et al., 2005).
Thus, truncation is the preferred method for algorithm implementation for CTCR.

Another challenging aspect in particle swarm optimization is the selection of ap-
propriate leaders, as this is based on neighborhood topologies. However, the appro-
priate selection of particle swarm variables (inertia weight, the influence of personal
versus global best parameter set) can also cope with this problem to allow for a
good exploration of the overall search space. Generally, a higher inertia rate η in-
creases exploration and leads to a faster convergence, where the parameters c1 and
c2 determine the self-confidence of a parameter set versus swarm confidence. Thus,
the adequate selection of these parameters can tune the algorithm and result in an
overall good performance.

There exist guidelines on the selection of population sizes (Coello Coello and
Lechuga Salazar, 2002; Trelea, 2003). The authors in (Shi and Eberhart, 1999) find
that population sizes are not important and have similar performance regarding
P = 20, 40, 80, 160 particles. This can be interpreted as a feature of the algorithm and
means that the performance is not sensitive to the initial population size. The authors
in (Coello Coello and Lechuga Salazar, 2002) advise to select 20 to 80 particles.

Variable dimension is a feature to the general particle swarm optimization if the di-
mension of decision vectors is not known a priori. The velocity and position updates
are more complex compared to general particle swarm optimization and require a
higher computational effort but can enlarge the applicability of the algorithm.

As multiple objectives are important for the structural design optimization of
CTCR, see Chapter 1, the following sections focus on the implementation of mul-
tiple objectives to particle swarm optimization.

3.5 multi-objective optimization

In multi-objective optimization there exist multiple solutions to the problem, as each
solution to the problem represents a tradeoff between objectives. Thus, one aims to
minimize or maximize more than one objective (quality measure).

Evolutionary algorithms are especially suited for these types of problems, as indi-
viduals can search through the overall parameter space and thus represent a large
diversity, even if the boundaries of the parameter space are unknown. As evolu-
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tionary algorithms are adaptable to multi-objective optimization problems, several
optimization strategies have been proposed, the most prominent ones are (Simon,
2013)

• Non-dominated sorting genetic algorithm (NSGA)
(Srinivas and Deb, 1994)

• Strength Pareto evolutionary algorithm (SPEA)
(Zitzler, 1999)

• Improved strength Pareto evolutionary algorithm (SPEA2)
(Zitzler, Laumanns, and Thiele, 2001)

• Multi-objective particle swarm optimization (MOPSO)
(Coello Coello and Lechuga Salazar, 2002)

• Fast and elitist multi-objective genetic algorithm (NSGA-II)
(Deb et al., 2002).

3.5.1 Problem Definition

The multi-objective optimization problem consists of multiple objectives o and can
be formulated as

minimize y = f(x) = (f1(x), ..., fo(x)) ,

with fi being the objective functions and i ∈ [1, ...,o]. The following constraints apply

gi(x) = 0 hi(x) 6 0 i ∈ N\0,

where

x = (x1, x2, ..., xm) ∈ X , y = (y1,y2, ...,ym) ∈ Y.

x defines the decision vector in decision space X and y defines the objective vector in
objective space Y. x ∈ Xf, where Xf = {x ∈ X | g(x) = 0, h(x) 6 0)}. Multi-objective op-
timization usually deals with the optimization of two to three objectives. If more than
three objective functions require optimization, the problem is called many-objective
(Fleming, Purshouse, and Lygoe, 2005).

3.5.2 Pareto Dominance

Pareto dominance describes a concept to balance the objectives against one another,
which had a profound impact in multi-objective optimization (Tan, Khor, and Lee,
2005). It can also be defined as an optimality criterion and has been proposed by
(Pareto, 1896). Decision vectors are evaluated against one another based on their
objectives (quality). The term domination characterizes the elitism of one decision
vector over the other (considering the minimization of objective functions):

A decision vector x strictly dominates another vector x∗ (x ≺ x∗), if fi(x) 6 fi(x
∗)

∀ i = 1...o and fi(x) < fi(x
∗) for some i. A decision vector x weakly dominates

another vector x∗ (x 4 x∗), if fi(x) 6 fi(x
∗) for all i. A non-dominated vector x thus

means, that there exists no fi(x
∗) 6 fi(x) for all i.
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3.5.3 Pareto Optimality

The set of different solutions in decision space X from the evaluation of the quality
of objectives through tradeoffs is called the Pareto optimal set (Awad and Khanna,
2015). The Pareto optimal set Ps is defined by the set of non-dominated solutions
and is thus defined as

Ps = {x ∈ Xf| x is Pareto optimal}.

This implies that the decision vector x is Pareto optimal within the feasible region
Xf. The set of the non-dominated solutions defines the Pareto front Pf in objective
space Y as

Pf = {f(x) ∈ R
o| x ∈ Ps},

where o are the objectives. The Pareto optimal set of solutions also spans the Pareto
front, as depicted in Figure 10 (left). The graph illustrates the set of solutions charac-
terizing the Pareto front and the dominated solutions for the two objectives f1 and
f2. The mapping from decision to objective space is represented by Figure 10 (right).

Figure 10: Dominated solutions and solutions on Pareto front (left) and mapping from deci-
sion space X to objective space Y (right).

3.5.4 Characterization of Objectives

Given a solution set W, the objective functions are said to be totally conflicting, if
there exist no two solution vectors x and x∗, where (fi(x) ≺ fi(x

∗)) or (fi(x
∗) ≺

fi(x)), ∀ i = 1...o. This means that no objective function dominates the other and
that the solution set already defines the Pareto optimal front. The objective functions
are defined as partially conflicting, if any x or x∗ exists, where (fi(x) ≺ fi(x

∗)) or
(fi(x

∗) ≺ fi(x)) for some i. The objective functions are said to be non-conflicting, if
there exists any x or x∗, where (fi(x) ≺ fi(x

∗)) or (fi(x
∗) ≺ fi(x)) for all i. In this

case, the objective functions can be converted into one single objective, e.g. using a
scalar, as the minimization or maximization of one of the objectives results in the
minimization or maximization of the other (Tan, Khor, and Lee, 2005).
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3.5.5 Performance Measures

To evaluate the quality of candidate solutions, there exist different performance mea-
sures. These are the convergence of the candidate solutions towards a Pareto optimal
front, the distribution of candidate solutions over the search space and their cover-
age of the Pareto optimal region, and the relative proximity of the solution set to the
set of Pareto optimal solutions (Awad and Khanna, 2015). However, a priori knowl-
edge about the Pareto optimal region and the Pareto optimal front is required in
most cases. Usually, the functionality of multi-objective optimization algorithms is
evaluated using test functions, or the performance of the algorithms is evaluated
against one another. A straight forward method to quantify the propagation of the
Pareto front is measured by the number of solutions on the front and their spread
(Reyes-Sierra and Coello Coello, 2006).

The following sections concentrate on multi-objective particle swarm optimization
(MOPSO), originally proposed by (Moore and Chapman, 1999).

3.5.6 Multi-Objective Particle Swarm Algorithm

Particle swarm optimization is the general focus of this work and is selected over
other evolutionary algorithms mentioned in this chapter. It proves to be computation-
ally more efficient than other multi-objective evolutionary algorithms (Coello Coello
and Lechuga Salazar, 2002; Hassan et al., 2005; Shi and Eberhart, 1999). Further, it
is not sensitive to population size (Shi and Eberhart, 1999) and is thus especially
suited for complex problems that require high computation times (as smaller pop-
ulation sizes can be selected). Here, it is assumed that computational effort is high
for parameter optimization of CTCR as nonlinear differential equations need to be
solved for kinematic modeling. Another advantage is that decision vectors can be of
variable dimension if utilizing a variable dimension approach. This enables applica-
bility to a larger domain of problems. Further, the algorithm has been shown to offer
better convergence for complex objective functions dependent on multiple variables
(Ramezan Shirazi, Seyyed Fakhrabadi, and Ghanbari, 2014).

Multi-objective particle swarm optimization was first introduced by (Moore and
Chapman, 1999). The presented algorithm is fundamentally related to general par-
ticle swarm optimization. In single-objective particle swarm optimization, the ob-
jective is evaluated based on its value. This is not possible for multi-objective op-
timization problems, such that researchers proposed various methods for handling
objectives. It is especially complex if objectives are conflicting. Conflicting objective
functions refer to the existence of multiple solutions to the problem (Reyes-Sierra
and Coello Coello, 2006). As f contains multiple objectives, minimization or maxi-
mization of f cannot result in finding a global solution if f contains objectives that
are conflicting (Awad and Khanna, 2015).

If an optimization problem is defined by multiple objectives, there exist various
approaches for decision making and thus selection of leaders within a swarm. The
concepts for objective function handling can be divided into weighted aggregation,
population, and Pareto optimality concepts. However, there exists a large variety of
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approaches (also combinations of the aforementioned), such that this section only
gives a broad overview.

Aggregation Methods combine all objectives and the multi-objective problem is con-
verted into a single objective problem (Ramezan Shirazi, Seyyed Fakhrabadi, and
Ghanbari, 2014). Most of these optimization strategies consider a weighted sum ap-
proach, where each of the objectives is assigned a different weight as

y =

o
∑

i=1

λifi(x) for λo > 0 and
o
∑

i=1

λi = 1,

where λi define the weights for each objective o. By varying the weights, multiple
solutions can be acquired through the algorithm. Usually, the weights are prede-
fined based on the performance of the optimization algorithm. There exist also those
concepts that consider a weight change during optimization, using either linear or
dynamic aggregating functions (Parsopoulos and Vrahatis, 2002; Ramezan Shirazi,
Seyyed Fakhrabadi, and Ghanbari, 2014). Weighted Aggregation Concepts are suited
for optimization problems that contain non-conflicting objectives.

Population Methods divide the overall swarm into subpopulations, where each of
the subpopulations handles the optimization of a single objective (Chow and Tsui,
2004) such there exist parallel evaluated swarms (Parsopoulos, Tasoulis, and Vra-
hatis, 2004). If a problem consists of o objectives, then the algorithm is composed
of o sub swarms. The sub swarms are combined for solution selection. These type
of methods are susceptible to find extreme solutions but do not determine a large
variety of different solutions on the Pareto front (Awad and Khanna, 2015).

Pareto Dominance Methods are especially suited for those optimization problems
with conflicting objectives (Alvarez-Benitez, Everson, and Fieldsend, 2005). These
types of methods utilize the domination principle that some solutions dominate oth-
ers and base the leader selection on this concept.

3.6 summary and conclusion

Aggregation methods are only suitable if objectives are non-conflicting. They can be
used if weights are selected appropriately. Population methods may be restricted in
generating the true Pareto front and Pareto dominance methods are key if objectives
are conflicting or are represented by different units. They are thus the key concept
of this thesis.

However, leader selection using Pareto dominance methods is different from gen-
eral particle swarm and more challenging for this type of optimization, as this in-
corporates the handling of the non-dominated solutions. Pareto dominance methods
usually generate an archive as a repository to store the non-dominated solutions
(Reyes-Sierra and Coello Coello, 2006).

The performance in multi-objective optimization is not as straightforward to mea-
sure. Usually, the convergence of the algorithm is the key parameter that is used to



3.6 summary and conclusion 37

forecast when the objective function converges towards a specific value. This prin-
ciple cannot be used as a measure for the domination principle. The true Pareto
front is usually not known a priori, and the performance is usually measured by the
stagnation of the solutions on the front.

Besides other advantages, evolutionary optimization algorithms seem suitable for
the structural design optimization of CTCR, as they can handle multiple objectives.
Particle swarm optimization is one prominent example of evolutionary algorithms.
Note, that other evolutionary algorithms might be suitable for the design optimiza-
tion of CTCR, however, this thesis specifically investigates the applicability of multi-
objective particle swarm optimization.





4
O P T I M I Z AT I O N A L G O R I T H M S I N R O B O T I C S

This chapter presents an overview of optimization algorithms targeting the design
of robots and specifically identifies parameters, objectives, and optimization meth-
ods for existing robotic optimization problems. The optimization of parallel, hyper-
redundant, and continuum robots (especially soft continuum robots) has been of
research interest. In the early stages of optimization algorithms and robotics, re-
searchers targeted the design optimization of serial robots. The state of the art pre-
sented here focuses on the optimization of design parameters of various robots - not
the optimization of configuration-specific parameters, or motions.

4.1 parameters

Most optimization parameters in robotic applications consider the structure and/or
geometrical design of the specific robot type. These are, for instance, joint distances
and angles for serial robots that are composed out of several rigid links and joints
(Coello Coello, Christiansen, and Aguirre Hernándes, 1998). The length of links and
the configuration of joints is adaptable and characterizes the overall workspace of a
robot (Siciliano and Khatib, 2008). An example serial robot is depicted in Figure 11

(left). Even though the parameters of serial robots can be manually tuned for the
structural synthesis in most cases, researchers tested the performance of optimiza-
tion algorithms (Chocron, 2008; Coello Coello, Christiansen, and Aguirre Hernándes,
1998; Khatami and Sassani, 2002; Kumar et al., 2014; Paredis and Khosla, 1993; Stocco,
Salcudean, and Sassani, 1998). However, if the diversity of the design parameters is
large, design optimization algorithms represent a tool to design the robot according
to specific constraints or regarding multiple criteria.

As serial grippers are composed out of various links and joints, their structural
design is of research interest (Ciocarlie and Allen, 2010; Datta, Pradhan, and Bhat-
tacharya, 2016; Rao and Waghmare, 2015). The optimization parameters of an exam-
ple gripper, depicted in Figure 11 (right), are the three geometrical lengths and one
joint angle (Datta, Pradhan, and Bhattacharya, 2016).

If two or more serial arms are connected to one end-effector, the system is by defi-
nition a parallel robot (Siciliano and Khatib, 2008). The design of such robots is more
complex than a single serial chain, as the chains of the parallel structure depend on
one another. First research dealt with the structural design optimization of parallel
robotic mechanisms and platforms for better performance (Hao and Merlet, 2005;
H. S. Kim and Tsai, 2003; Kurtz and Hayward, 1992; Stock and Miller, 2003). Planar
mechanisms require design optimization algorithms for structural design synthesis,
especially three-dimensional mechanisms, as they can be defined by various parame-
ters. The authors in (Shin et al., 2013) optimize a planar mechanism, as illustrated in
Figure 12 (left), and consider the mechanism’s kinematic parameters (configurations
and lengths of links) for optimization. (Hao and Merlet, 2005) optimize the geometri-
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Figure 11: Serial robot (left) (reprinted from (Coello Coello, Christiansen, and Aguirre
Hernándes, 1998), © 1998, with kind permission from Cambridge University Press)
and robotic gripper (right) (reprinted from (Datta, Pradhan, and Bhattacharya,
2016), © 2016 IEEE).

Figure 12: 2DOF planar parallel robot (left) (reprinted from (Shin et al., 2013), © 2013 IEEE)
and a parallel robotic mechanism (right) (reprinted from (Hao and Merlet, 2005),
© 2005, with kind permission from Elsevier).

cal parameters of a mobile platform connected to six legs by ball joints, as illustrated
in Figure 12 (right), and (Ramezan Shirazi, Seyyed Fakhrabadi, and Ghanbari, 2014)
determine optimal lengths and joint angles of a parallel robot manipulator. A dif-
ferent parallel robot is depicted in Figure 13 (left), which shows a four cable-driven
parallel manipulator for a spherical radio telescope. This mechanism requires the
optimization of three geometrical parameters. The optimization parameters of the
parallel ankle rehabilitation robot, as illustrated in Figure 13 (right), are also joint
connections and distances (Jamwal, Xie, and Aw, 2009).

Hyper-redundant robots are defined by their large number of actuatable DOF,
such that the robot has more DOF than are needed to execute a task (Chirikjian and
Burdick, 1994). They can be composed out of various materials and actuators, in-
cluding many rigid links and joints, but also softer materials. Design parameters of
the hyper-redundant robot, illustrated in Figure 14 (left), include the number, length,
and configuration of soft modules (Trivedi, Dienno, and Rahn, 2008). A similar robot
is considered in (Bodily, Allen, and Killpack, 2017), see Figure 14 (middle), and op-
timization parameters include the mounting height and angle, and link lengths. The
authors in (Tesch, Schneider, and Choset, 2013) aim to optimize the gait parameters
for the sidewinding of a robotic snake, as depicted in Figure 14 (right). Continuum
robots are a type of robot, where the number of DOF converges towards infinity
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Figure 13: Four cable driven parallel manipulator for a spherical radio telescope (left)
(reprinted from (Yao et al., 2010), © 2010 IEEE) and parallel ankle rehabilitation
robot (right) (reprinted from (Jamwal, Xie, and Aw, 2009), © 2009, with kind per-
mission from Elsevier).

Figure 14: OctArm (left) (reprinted from (Trivedi, Dienno, and Rahn, 2008), © 2008, with kind
permission from ASME), a soft pneumatic robot (middle) (reprinted from (Bodily,
Allen, and Killpack, 2017), © 2017 IEEE), and snake robots (right) (reprinted from
(Tesch, Schneider, and Choset, 2013), © 2013 IEEE).

(Robinson and Davies, 1999). Continuum robots can be classified mainly into soft,
tendon-actuated, and concentric-tube continuum robots.

One example case for a soft continuum robot is depicted in Figure 15 (left). The
optimization parameters for this particular mechanism, are the chamber thickness,
position, and outer and inner radius of a soft module (Runge, Peters, and Raatz,
2017). A tendon-actuated robotic design is depicted in Figure 15 (right). The design
optimization parameters for the particular robot are the overall robot length and the
difference in section length of the three-segment tendon-actuated robot to the right
(Ouyang, Liu, and Sun, 2016).

It is noticeable that most optimization problems in the state of the art for robotics
are defined by few parameters (usually around two to five). In contrast to that, the
CTCR optimization problem requires to solve for a higher number of parameters and
many constraints (that arise from the constraint configuration space, CTCR geometry,
and tube dependencies), which results in higher complexity of the problem.



42 optimization algorithms in robotics

Figure 15: A soft module (left) (reprinted from (Runge, Peters, and Raatz, 2017), © 2017 IEEE)
and a tendon-actuated continuum robot composed out of three segments (right)
(reprinted from (Ouyang, Liu, and Sun, 2016), © 2016 IEEE).

4.2 objectives

Prominent examples of objective functions depend on the specific robot type but
some of them are applicable in general. These include, but are not limited to, the
workspace, singularities, dexterity, accuracy, stiffness, and other kinematic and dy-
namic performance measures.

The authors in (Hao and Merlet, 2005) optimize the workspace and accuracy of
a three-dimensional mobile platform. Other workspace-specific characteristics are
singularities and dexterity, which are considered for a parallel robot by (Ramezan
Shirazi, Seyyed Fakhrabadi, and Ghanbari, 2014) and a hyper-redundant robot by
(Bodily, Allen, and Killpack, 2017; Trivedi, Dienno, and Rahn, 2008). The authors in
(Shin et al., 2013) aim to maximize the stiffness of a planar mobile platform, such
that objectives include the determinant and inverse of the condition number of the
stiffness matrix. The dynamic performance of a planar robot is considered in (Song et
al., 2017). Kinematic performance criteria represent objectives in (Kelaiaia, Company,
and Zaatri, 2012) for the design optimization of a linear Delta parallel robot. Specific
kinematic performance indices include the isotropy index and global dynamic index
that are accounted for by (Unal, Kiziltas, and Patoglu, 2008) for a 2DOF parallel
mechanism. Another characteristic is the global condition number of the Jacobian
matrix that is mentioned by (Jamwal, Xie, and Aw, 2009) to optimize the design of a
parallel ankle rehabilitation robot.

Robot-specific objectives are, for instance, the torques and reaction forces at the
joints of serial robots (Coello Coello, Christiansen, and Aguirre Hernándes, 1998),
the gripping forces and force transmission rations of serial grippers (Datta, Prad-
han, and Bhattacharya, 2016), the cable tension and stiffness for cable-driven parallel
manipulators (Yao et al., 2010), the head stability and speed of a hyper-redundant
snake (Tesch, Schneider, and Choset, 2013), the load capacity for a specific actuation
pressure of the Oct Arm (Trivedi, Dienno, and Rahn, 2008), the load capabilities of
a hyper-redundant robot (Bodily, Allen, and Killpack, 2017), and maximum anatom-
ical visibility for the design of a parallel mechanism for minimally invasive surgery
(Kuntz, Bowen, et al., 2018).
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4.3 single-objective optimization

Single-objective optimization problems in robotics have been treated with many dif-
ferent optimization algorithms in the past. Those optimization problems, which are
rather simple (not defined by various optimization parameters and constraints) can
utilize iterative methods, as in (Shin et al., 2013), where the authors chose an iterative
method to maximize the stiffness of a planar mechanism. The selected type of algo-
rithm is also constrained by the kinematic model of the robotic structure. For those
mechanisms, where the kinematic model can be solved analytically, various types of
optimization algorithms can be applied.

Least-squares optimization belongs to the class of local optimization algorithms.
It is gradient-based and there exist those methods that apply to linear functions and
those that can handle nonlinearity. Those robotic mechanisms that utilize nonlinear
kinematic models, require the use of nonlinear optimization algorithms. (Connolly,
Walsh, and Bertoldi, 2017) optimize the design of multiple fluidic powered fibers
reinforced actuators to follow a specific trajectory utilizing an analytical nonlinear
elasticity model. Simple least-squares optimization minimizes a scalar error metric
regarding bending angles, segment lengths, and pressures. The authors in (Ouyang,
Liu, and Sun, 2016) utilize a nonlinear optimization algorithm (Nelder-Mead) to
optimize the workspace of a tendon-actuated continuum robot composed out of
three segments, considering the robot’s length and the difference in section length.

Heuristic algorithms are suited for nonlinear problems with higher complexity
and multiple constraints, as they are more likely to find a global optimum. Evolu-
tionary algorithms are prominent nonlinear global optimization algorithms, and this
is the reasoning for their appearance in many robotic applications.

Particle swarm optimization, belonging to the class of evolutionary algorithms, is
applied to workspace and accuracy optimization of a parallel robot manipulator in
(Ramezan Shirazi, Seyyed Fakhrabadi, and Ghanbari, 2014).

Genetic algorithms are further prominent examples of evolutionary algorithms
that have been applied to various robotic optimization problems. (Jamwal, Xie, and
Aw, 2009) use a genetic algorithm to optimize the design parameters of a parallel
ankle rehabilitation robot. This includes the optimization of joint connections and
geometrical distances. The objective of the algorithm considers the global condition
number of the Jacobian matrix for optimal performance. (Hiller and Lipson, 2012)
utilize an evolutionary algorithm to design a soft robot using volumetric expanding
materials such that an automatic design for free form snakes can be developed, and
(Runge, Peters, and Raatz, 2017) use the same methodology to optimize the geomet-
rical parameters of a soft module, combining finite element analysis and constant
curvature modeling.

Simulated annealing is another heuristic-based algorithm and is applied by (Kuntz,
Bowen, et al., 2018) to optimize the design of a parallel mechanism for maximum
anatomical visibility under the consideration of motion planning and utilizes adap-
tive simulated annealing for optimization.

The authors in (Lou et al., 2014) compare different methods for design optimiza-
tion of parallel robots, including sequential quadratic programming, controlled ran-
dom search, genetic algorithm, differential evolution, and particle swarm optimiza-
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tion. Results show that sequential quadratic programming is suitable for simple
robot designs and genetic algorithms, as well as particle swarm optimization, for
all problems with many constraints.

4.4 multi-objective optimization

Multi-objective optimization approaches are prominent in robotics, as most appli-
cations depend on multiple objective functions. If objectives are non-conflicting,
weighted methods are suitable to find an overall optimum regarding all objectives.
If objectives are conflicting, then Pareto-based approaches represent a helpful tool
to determine a parameter set that represents a tradeoff between the objectives. How-
ever, some works also utilize weighted methods for conflicting objective functions.
This is not advisable, as the minimization of one objective function does not result
in the minimization of the others.

4.4.1 Weighted Methods

Weighted methods include normalized weighted objective functions, where multiple
objectives are represented by a scalar objective. The selection of weights, however,
can be a challenge and is usually done empirically.

The authors in (Rao and Waghmare, 2015) utilize this method to implement five
different objective functions for configuration optimization of a serial gripper. (Song
et al., 2017) consider the use of a scalar error metric for optimization and determine
a weighted sum objective, based on dynamic performance and manufacturing cost.
The authors apply hybrid particle swarm optimization to optimize the structural
parameters of their planar robot.

An iterative method is applied to optimize for stiffness and cable tension of a
four cable-driven parallel manipulator for a spherical radio telescope (Yao et al.,
2010). The objectives are not conflicting in this case and a method that considers
both objectives in one error metric is an appropriate choice.

(Zhang et al., 2010) propose a design optimization algorithm for a 2DOF tendon-
actuated module. The authors optimize the stiffness and an increased workspace
volume. A weighted method may not be the preferred algorithm as stiffness and
workspace volume are conflicting. This is the reason why weighted methods are not
the first choice for multi-objective optimization problems.

4.4.2 Pareto Optimality Methods

Pareto optimality methods are commonly used in robotics and have been imple-
mented early on. Especially evolutionary algorithms are prominent examples, as
they can be easily adapted from single to multiple objectives. A genetic algorithm,
for instance, is applied to multi-objective design optimization of a serial robot by
(Coello Coello, Christiansen, and Aguirre Hernándes, 1998).

Multi-objective genetic algorithms are applied to determine gripping forces and
an optimal force transmission ratio for a serial gripper (Datta, Pradhan, and Bhat-
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tacharya, 2016). They are also utilized by (Bodily, Allen, and Killpack, 2017) to opti-
mize the dexterity and load bearing of a hyper-redundant robot to compute a set of
Pareto optimal solutions, and by (Kelaiaia, Company, and Zaatri, 2012) for a linear
Delta parallel robot that should be designed in a way to have improved kinematic
and dynamic performance, high stiffness, and a large workspace. All aforementioned
objectives are conflicting, such that the use of Pareto optimality is suitable.

The authors in (Unal, Kiziltas, and Patoglu, 2008) consider multi-objective design
optimization of a 2DOF parallel mechanism. They formulate their algorithm in a
general manner considering Pareto optimality to optimize geometrical measures.

(Tesch, Schneider, and Choset, 2013) propose another multi-objective optimization
strategy. The authors aim to improve the locomotive capabilities of snake robots,
considering the head stability and speed of the snake. Again, these objectives are
in conflict and Pareto optimality applies. The authors investigate two different op-
timization algorithms, where their algorithm (considering Pareto optimality) shows
improved performance.

4.5 optimization for concentric tube continuum robots

Researchers consider the design of CTCR for various applications and optimize
CTCR parameters for neurosurgery (Anor, Madsen, and Dupont, 2011; Bedell et al.,
2011; Bergeles, Gosline, et al., 2015; Boushaki et al., 2016), bronchoscopy (Torres, Web-
ster III, and Alterovitz, 2012), endonasal surgery (Burgner, Gilbert, and Webster III,
2013), intracardiac surgery (Bergeles, Gosline, et al., 2015), cochlear implant insertion
(Granna, Rau, et al., 2016), and transforamenal hippocampotomy (Gilbert, Neimat,
and Webster III, 2015; Hendrick, Mitchell, et al., 2015). Figure 16 depicts a CTCR for
bronchoscopy, CTCR configurations within the ventrical system of the brain (Berge-
les, Gosline, et al., 2015), and helical tubes for follow-the-leader motion within the
hippocampus in the brain (Gilbert, Neimat, and Webster III, 2015).

Figure 16: CTCR robotic designs in the bronchial tubes of the lung (left) (reprinted from
(Torres, Webster III, and Alterovitz, 2012), © 2012 IEEE), in the ventrical system
within the brain (middle) (reprinted from (Bergeles, Gosline, et al., 2015), © 2015

IEEE), and helical tubes for follow-the-leader motion within the hippocampus in
the brain (right) (reprinted from (Gilbert, Neimat, and Webster III, 2015), © 2015

IEEE).
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4.5.1 Parameters

CTCR are defined by multiple design parameters (number of tubes, lengths, diam-
eters, wall thickness, curvature, stiffness, material properties). The parameters con-
sidered so far by the state of the art are the tube lengths and curvatures as in (Anor,
Madsen, and Dupont, 2011; Baykal, Torres, and Alterovitz, 2015; Bedell et al., 2011;
Bergeles, Gosline, et al., 2015; Boushaki et al., 2016; Burgner, Gilbert, and Webster III,
2013; Torres, Webster III, and Alterovitz, 2012) for a CTCR composed of three tubes
and constant curvature made from the shape memory alloy NiTi.

The authors in (Ha, Park, and Dupont, 2017) consider a non-constant curvature
function and optimize the precurvature of each tube. The design of a plastic tube for
a 4DOF tube robot is considered by (Noh et al., 2016). It includes the optimization
of the straight and curved section length and curvature of the inner tube in two-
dimensional space. Helically shaped tubes are optimized by (Comber et al., 2016).
The specific application regards the optimization of length, curvature, and torsion of
one helical precurved tube and the length of an ablation probe.

4.5.2 Objectives

Various objective functions have been proposed in the past that depend on the in-
tended application. These include task and anatomical constraints to reach the de-
sired goal region (Anor, Madsen, and Dupont, 2011; Bedell et al., 2011; Torres, Web-
ster III, and Alterovitz, 2012), to maximize the reachable space (Baykal, Torres, and
Alterovitz, 2015) or target points by the CTCR’s end-effector (Bergeles, Gosline, et al.,
2015). The authors in (Burgner, Gilbert, and Webster III, 2013) incorporate a volume-
based objective that defines the number of reachable voxels within the target area,
and (Noh et al., 2016) consider the uncovered surface of the target volume as the
objective function.

A different approach is taken by (Boushaki et al., 2016; Ha, Park, and Dupont,
2017), who regard the elastic stability of the tubes. (Boushaki et al., 2016) additionally
consider reachability and tip trajectory smoothness. The authors in (Gilbert, Neimat,
and Webster III, 2015) optimize helical tubes for follow-the-leader deployment along
a specific path, where the objective function minimizes the distance of the robot
backbone towards the path. The objective function in (Hendrick, Gilbert, and Webster
III, 2015b) describes the optimal overlap between the camera and robot workspace.

4.5.3 State of the Art of Optimization Algorithms for CTCR

Designing a CTCR for a specific application results in an infinite number of possible
combinations. Further, workspace determination is not intuitive, due to the complex
interaction of the tubes. This makes it impossible to select a design manually and
the utilization of CTCR is not possible without the design optimization of the tubes.
Thus, researchers proposed the use of various optimization algorithms.
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4.5.3.1 Single-Objective

Most optimization algorithms that have been proposed in the context of parameter
optimization of CTCR are single-objective and use one single error metric for opti-
mization. First work utilized simple kinematic models for CTCR that describe the
three-dimensional shape of the robot using a geometrical approach. Further, most
optimization approaches utilize unconstrained optimization algorithms, which are
not suitable for all CTCR applications, as constraints can be important. These arise
from the configurational and geometrical dependencies between the tubes, as well
as from the task or anatomy.

Other work included additional constraints into the design optimization proce-
dure, such as motion planning, obstacles, and elastic stability. (Torres, Webster III,
and Alterovitz, 2012) are the first to consider motion planning within the design
optimization utilizing a sampling-based motion planning approach. This allows the
final robot design to safely navigate through the lung considering obstacles. A heuris-
tic approach performs an exhaustive search over the parameter space to determine
optimal parameters. The design space consists of tube lengths and curvatures.

In (Burgner, Gilbert, and Webster III, 2013) the authors apply the Nelder-Mead al-
gorithm for the optimization of tube length and curvatures to cover a tumor volume.
The authors utilize a volume-based objective that defines the number of reachable
voxels within the target area. Here, the authors utilize Cosserat rod theory to com-
pute the single objective.

(Baykal, Torres, and Alterovitz, 2015) continue the work by (Torres, Webster III,
and Alterovitz, 2012) and combine design optimization and motion planning into
one problem to determine tube sets to maximize the reachable space represented
by a single objective. Global optimization and sampling-based motion planner are
utilized together to avoid obstacles to steer into the lung. Here, lengths and tube
curvatures are considered using adaptive simulated annealing (a heuristic approach)
and rapidly exploring random trees for motion planning. The authors extended their
work to the kinematic design optimization of general robotic structures using motion
planning in (Baykal, Bowen, and Alterovitz, 2018).

(Hendrick, Gilbert, and Webster III, 2015b) optimize tube parameters of two col-
laborative robotic arms to achieve an optimal camera overlapping workspace such
that the endoscopic field view and the view of the workspace are aligned. Here, the
authors optimize the curvature of the inner tube using a brute force method and
determine the CTCR workspace using simple geometry.

The authors in (Noh et al., 2016) consider a very special case of a CTCR and
optimize the design of a plastic tube for a 4DOF tube robot utilizing a geometric
model and a scalar error metric for optimization. As mentioned above, they utilize an
unconstrained optimization technique using a derivative-free method (Nelder-Mead
simplex algorithm). This type of algorithm is generally suited for nonlinear problems
with multiple parameters and can thus handle nonlinear kinematic models.

The authors in (Ha, Park, and Dupont, 2017) consider the elastic stability of the
tubes such that the sudden release of energy can be prevented. While prior methods
considered tubes with piecewise constant curvature, the authors consider a non-
constant curvature function and optimize the tube’s precurvature using the steepest
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descent method (a local gradient-based approach) to numerically solve the optimiza-
tion problem.

4.5.3.2 Multi-Objective

Multi-objective optimization for CTCR is covered by researchers in the sense of mul-
tiple weighted scalar error metrics that are combined into one single objective. This
includes work by (Anor, Madsen, and Dupont, 2011), who propose a global pattern
search algorithm to determine optimal tube parameters for neurosurgery consider-
ing multiple target points based on patient anatomy. The pattern search is further
developed by (Bedell et al., 2011) to minimize the length and curvature of all tube sec-
tions while minimizing a single objective function and considering task and anatom-
ical constraints based on patient anatomy. A pattern search is a gradient-free numer-
ical optimization approach and not suited for complex parameter optimization of
CTCR.

An optimization framework is presented by (Bergeles, Gosline, et al., 2015) con-
sidering task and anatomical constraints for the deployment of CTCR and optimizes
for a maximum set of reachable points. Here, path planning is also considered using
a simplified kinematic model by computing intermediate configurations towards a
goal. A Nelder-Mead optimization is utilized to minimize a cost function composed
out of multiple scalar error metrics.

Multi-objective optimization is introduced by (Boushaki et al., 2016) using a Pareto
grid searching approach to optimize reachability and elastic stability considering
tip trajectory smoothness. Optimized parameters are tube’s curvature and lengths,
where other tube parameters are selected a priori. However, here the objectives are
not necessarily conflicting, as high reachability does not inevitably result in low elas-
tic stability. So far, this is the only work that considers multi-objective optimization
utilizing Pareto dominance concepts that are suited to treat problems with conflict-
ing objectives.

4.6 conclusion

This chapter presented key parameters and objectives in robotic applications. Consid-
ering different robotic structures, parameters for optimization are mainly concerned
with their geometrical dimensions. The dimension of the parameter space is small
compared to CTCR and optimization parameters usually vary between two to five.
The geometrical structure of CTCR is complex due to many geometrical parameters
of each tube. This implies that the constrained space for CTCR also increases in com-
plexity, as constraints are dependent on the parameter space. Further, the selection
of material dependent parameters is not a priori for CTCR, as the selected material
influences the stiffness and the elastic interaction of the tubes. Thus, CTCR optimiza-
tion parameters are geometric and material dependent, which increases the overall
complexity of the optimization problem.

Considering the state of the art for CTCR optimization, the overall set of parame-
ters is yet to be considered regarding their multidimensional parameter space. Also,
forces and material parameters are not being considered within the optimization
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methodology thus far. While the kinematics for most robotic types can be solved an-
alytically, the modeling for CTCR requires complex elasticity theory. Early research
considered simplified kinematic models and applied optimization algorithms that
are limited to linear functions or do not regard constraints.

Objectives in other robotic applications include the workspace, dexterity, accuracy,
stiffness, and other kinematic and dynamic performance measures. Even though
these measures can be applied to CTCR optimization, the objective functions are dif-
ferent for the use of CTCR in minimally invasive surgery and most of the presented
optimization algorithms have been applied outside of medicine. The application of
optimization algorithms to other robotic systems in minimally invasive surgery is
still relatively small, such that objective functions have to be formulated for the in-
tended medical applications of CTCR.

Considering the structural optimization of other robotic types, researchers em-
ployed global optimization algorithms and heuristic approaches for complex struc-
tures and a large parameter set. Parameters for optimization mostly include struc-
tural design but also kinematic parameters. The utilization of multi-objective opti-
mization algorithms utilizing Pareto dominance approaches is prominent for other
robotic applications. These optimization algorithms have yet to be applied to the
structural design optimization of CTCR for conflicting objectives.

Existing optimization algorithms for CTCR considered scalar error metrics and not
conflicting objectives. Weights of weighted objectives are selected empirically, which
are prone to result in different outcomes.

To conclude, this thesis aims to classify the optimization parameter space for CTCR
and formulates objective functions for their use in minimally invasive surgery. As
evolutionary and Pareto dominance concepts have proven their performance for var-
ious other robotic applications, their use for the structural design optimization of
CTCR is the scope of this thesis and particularly particle swarm optimization is
investigated. This further implies the consideration of heterogeneous objective func-
tions that are represented by different units.
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PA R A M E T E R O P T I M I Z AT I O N M E T H O D O L O G Y F O R
C O N C E N T R I C T U B E C O N T I N U U M R O B O T S

This chapter describes the general optimization problem for CTCR. It presents the
optimization workflow for different medical applications and describes the proce-
dure of data processing of medical images, which is essential before optimization.
The optimization problem for CTCR is then classified into different sub-categories.
This includes the identification of parameters to be optimized, definition of objec-
tives, and constraints. Lastly, this chapter presents the algorithmic implementation
approach that utilizes a multi-objective particle swarm optimization algorithm with
variable dimension to solve for optimal parameters of the optimization problem.
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5.1 problem definition and overview

As the design space of CTCR is multidimensional, appropriate design parameters for
an application, anatomy, or to execute a medical task must be determined through a
design optimization procedure utilizing specific algorithms. The parameter space is
constrained as design-, as well as application-specific parameters, impose constraints.
Additionally, the kinematic model for CTCR is highly non-linear, such that only
non-linear optimization methods can be utilized to solve the optimization problem.
The overall constrained search space for CTCR can be envisioned as a space with
multiple "islands" that represent the feasible space Xf. In the search for an optimum,
the decision vector would have to be adapted, such that it "jumps" from one island to
the other to remain within the feasible space, see Figure 17. This type of optimization
problem demands a specific algorithm that can handle such problems.

Figure 17: The overall search space of the optimization problem is represented by the gray
box, the feasible region Xf is marked in light orange, a solution without con-
straints is illustrated in red, and feasible solution considering the constraints in
blue.

The contribution of this chapter is the formulation of the structural design opti-
mization problem for CTCR and describes the optimization methodology proposed
in this work.

It further presents data representation methods, which are required to account for
different patient datasets and applications. The optimization problem and method-
ology presented here thus has the potential to be adapted to different applications.
This thesis targets CTCR applications by the state of the art (neurosurgery, intracere-
bral hemorrhage evacuation, endonasal surgery, cochlear implant insertion, intrac-
ardiac surgery, bronchoscopy, and transforaminal hippocampotomy) and those that
are investigated in the scope of this thesis (cooperative task deployment, structural
stiffness optimization, and laser-induced thermal therapy). This thesis assumes that
CTCR are beneficial to those minimally invasive procedures.

This chapter aims to classify the optimization problem and describes different pa-
rameters, objectives, and constraints that define the design- and application-specific
optimization problem of CTCR for the targeted applications. The description of the
parameter space should thus hold for the entirety of design parameters (number, ma-
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terial, curved and straight section length, outer and inner diameter, and curvature).
The definition of application-specific parameters is also included in the scope of this
chapter.

Lastly, this chapter proposes to utilize multi-objective particle swarm optimization
to handle the structural design optimization problem of CTCR regarding multiple
objectives and presents the implementation of the algorithm. It is thus structured as
follows:

1. Optimization Workflow,

2. Data Representation,

3. Kinematic and Performance Measures,

4. Classification of parameters, objectives, and constraints, and

5. Algorithmic implementation.

5.2 optimization workflow

Figure 18 illustrates the optimization workflow, which is characterized by three main
blocks. The first block represents the preallocation of parameters, objectives, and
constraints, as well as the input of medical image data to the optimization proce-
dure. The optimization algorithm requires the definition of objectives, either single
or multiple. Robot- and application-specific constraints have to be defined by the
user. Further, the use of patient-specific medical image data within the optimization
algorithm requires a certain representation for further computation and the defini-
tion of the trajectory towards a goal, as well as the alignment of coordinate systems.

The main block illustrates the optimization process, which considers both robot-
and application-specific parameter optimization. To compute the objective functions
during the execution of the algorithm, kinematic modeling and motion planning
algorithms can be utilized. Note, that motion planning algorithms are not considered
in the scope of this thesis, but can be included in the design optimization process,
if required. The output of the algorithm is then the quality of the optimization and
one or multiple parameter sets. If the optimization problem is defined by multiple
objectives, a Pareto optimal set of solutions is the output of the algorithm and a
solution must be selected from the front either manually or automatically.

Generally, the optimization of design- and application-specific parameters can be
divided, such that subsequent optimization strategies are applied, and the outcome
of the prior optimization is the input to the proximate optimization. This concept is
illustrated by the dashed lines in Figure 18.

5.3 data representation

If the aim is to optimize the CTCR for a medical application, task, or scenario, then
the optimization procedure requires certain data structures as input to the optimiza-
tion workflow. The data can be acquired through medical images (e.g. from CT, MRT
or ultrasound) to
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Figure 18: Optimization workflow with preallocation of inputs, optimization, and output.

• generate a voxelized grid representation to describe a target volume or obsta-
cles,

• compute a trajectory towards a target,

• transform the surgical workspace into the robot coordinate system, and

• include a safety margin into the optimization procedure.

This data processing represents the basis for the optimization process such that the
CTCR can be specifically optimized for a medical procedure or a patient. Anatomical
related constraints can also be acquired from medical image data.

5.3.1 Voxelized Grid Representation

Medical image data is input to the optimization procedure. This requires a specific
data representation for further computation purpose. Medical images usually come
from CT or MRI images. Manual or semi-automatic segmentation of the specified vol-
ume using a threshold identifies all voxels within a specified range. The segmented
3D volume (using e.g. 3D slicer) can be exported as a surface dataset GS (e.g. into
Matlab), which is represented by its surface points and can be non-convex. The vol-
ume can represent the overall surgical workspace (including obstacles) or a single
volume.

5.3.1.1 Single Volume

The surface dataset is then converted into a voxelized grid GV through voxelization
of the volume with an isotropic voxel size vs (in mm and should be selected based
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on the size of the end-effector to cover a single voxel). Different surface datasets (rep-
resenting tumor volumes) segmented from CT image data are depicted in Figure 19

(left) as an example. The extent of GV in x,y, and z-direction is defined by

|xmax − xmin|

vs
×

|ymax − ymin|

vs
×

|zmax − zmin|

vs
,

with the origin at oV = [xmin ymin zmin]
T and |xmax − xmin|, |ymax − ymin|, |zmax − zmin|

being the extent of the surface data points in x,y, z-direction. A voxel containing a
surface data point, or enclosed by the surface is set to GV(i, j,k) = 1 and a voxel
outside the volume is set to GV(i, j,k) = 0. i, j,k refer to the voxel with i =

|x−oVx |

vs
,

j =
|y−oVy |

vs
, and k =

|z−oVz |

vs
. This process is illustrated in Figure 19 (right). Here, the

voxelized grid represents a binary representation.

Figure 19: Segmented tumor volumes of different size and shape (left) and volume of interest
as a voxelized grid (planar view, right). Voxels inside the volume are set to one and
outside to zero.

5.3.1.2 Surgical Workspace

If the application requires the consideration of obstacles, the overall surgical work-
space is converted into a voxelized grid. The extent of the voxelized grid is then
defined by the extent GV in x, y, and z-direction considering all volumes or objects
(including obstacles). If obstacles are present, they are assigned a different value
(> 1) to differentiate them from the target volume. An exemplary voxelized surgical
workspace is illustrated in Figure 20, where the target volume is depicted in red and
the obstacles in gray.

5.3.2 Trajectory

A trajectory defines the path from a start position (on the body surface or within if
the CTCR is brought into the body through a different medical device, e.g. a straight
endoscope) towards a goal position within the human body. For some medical ap-
plications, there might also exist multiple feasible trajectories, as multiple start or
goal positions exist. A trajectory can be defined by a straight or nonlinear path - de-
pendent on the application. The insertion point o can be selected manually by the
surgeon or can be optimized from a set of feasible insertion points.
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Figure 20: Voxelized grid representation with the target volume in red and obstacles in gray.

5.3.2.1 Straight Trajectory

A trajectory towards a target is defined by an insertion point o and a trajectory vector
h pointing towards the target. The trajectory vector can be computed by considering
the insertion point o and either a surface data point a of the target volume GS, or its
centroid c. An insertion point on the skull surface and the corresponding trajectory
towards a target volume are depicted in Figure 21 (left). Note, that the insertion point
o can be on the surface but also within the body if the CTCR is employed through
an insertion tool.

Figure 21: Skull with tumor in red. Insertion point o, trajectory towards the tumor volume h,
and tumor surface point a (left). Multiple nonlinear trajectories h(s) (in red) from
the ureter and renal pelvis into the renal calyces of the kidney (right).

5.3.2.2 Nonlinear Trajectory

The trajectory towards a target can also be defined by a nonlinear path h(s). This
is illustrated in Figure 21 (right), where multiple nonlinear trajectories (in red) start
at the insertion point o within the ureter and follow through the renal pelvis into
the renal calyces of the kidney. The computation of the nonlinear trajectory can be
achieved through thinning of the voxelized representation to determine its skeleton
(T.-C. Lee and Kashyap, 1994).
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5.3.3 Coordinate Systems

The robotic coordinate system B has its zero reference at s = 0. The medical coordi-
nate system has its zero reference at the insertion point o. For further computation
purposes (i.e. kinematic modeling), medical image data is converted into the robot
coordinate system using the transformation matrix ET

B, such that the position and
orientation of E align with B. This transformation and the two coordinate systems
are illustrated in Figure 22.

Figure 22: Robot coordinate system B at s = 0 and surgical coordinate system E with inser-
tion point o. The transformation between the two coordinate systems is ET

B.

To generate a voxelized representation GV of the surgical workspace into the robot
coordinate system, the surface data points GS are transformed through ET

B into the
robot coordinate system and the transformed point cloud is then converted into a
voxelized representation.

5.3.4 Margins

A margin is defined as the periphery within or outside a volume. Such margins can
be implemented for safety to ensure that the robot avoids the defined periphery (e.g.
to keep the CTCR away from critical structures) but also to explicitly reach it by the
end-effector (to manipulate within this periphery).

Implementation of such a margin is highly dependent on the geometry of the
volume. It can be, for instance, implemented through dilation or reduction of the
volume. This is achieved by translation of surface data points towards/from the
centroid of a volume. If the object is rather thin and long, then another approach is
to scale an object by a defined percentage through a homogeneous transformation
of surface normals. If the volume is highly non-convex, then a different approach
needs to be considered to preserve topology. The explicit assumption here is that
medical image data and corresponding volumes are not highly non-convex, such
that a margin can be implemented by dilation or reduction of the volume.
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To implement a margin δ utilizing a reduction approach, the surface dataset GS

of a volume is considered. The volume is then shrunken towards its centroid c. The
mean of all surface data points accounts for an estimate of the centroid c. To achieve
a reduction of the volume, each surface point a is translated towards the centroid by
δ as

a∗ = a+ δ ·
c−a

|c−a|
. (17)

Alternatively, to achieve a dilation of the volume, the direction vector in (17) is point-
ing into the opposite direction.

5.4 kinematic measures

These following metrics describe the approximation and characterization of the robotic
workspace. They are required for the computation of objective functions and are tied
to the specific CTCR.

5.4.1 Approximation of the Configuration Space

5.4.1.1 Discretization

This method approximates the configuration space Q with q = [α1, . . . ,αn,β1, . . . ,βn]

by dividing it into ms translational increments △β and ms rotational increments △α

following βi ∈ [−ℓi, 0] and αi ∈ [−π,π), and considering the inequalities

β1 6 ... 6 βn 6 0,

ℓn +βn 6 ... 6 ℓ1 +β1,

with i ∈ [1, ...,n] and n being the overall number of tubes. To save computation time,
the translational parameters can also be bounded to an upper or lower boundary.

5.4.1.2 Sampling of the Configuration Space

This method applies random sampling of the configuration space Q, where ms × n

uniformly distributed random samples are generated for q = [α1, . . . ,αn,β1, . . . ,βn].
As this method can lead to unique samples q, they are removed for further process-
ing. The following constraints apply

αi ∈ [−π,π),

βn ∈ [−ℓsn , 0],

βi ∈ [ℓi − ℓi−1 +βi+1,βi+1] ∀ i=1,...,n−1.

5.4.2 Reachable Workspace

For each configurational parameter set q, the forward kinematic model (see Chap-
ter 2) is utilized to determine the space curve g(s). The reachable workspace WR then
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defines the set of all end-effector positions. This metric can be used to determine the
size and boundaries of the workspace, as the extent in x,y, z-direction can serve as
an indicator (Burgner-Kahrs, Gilbert, et al., 2014; Granna and Burgner, 2014).

5.4.3 Workspace Volume

The overall CTCR workspace volume WV can be determined by converting the reach-
able workspace into a voxelized grid, as in Section 5.3.1. The workspace volume then
accounts for all voxels WV > 0 multiplied by v3s (Burgner-Kahrs, Gilbert, et al., 2014;
Granna and Burgner, 2014).

5.4.4 Redundancy

WV can also account for a redundancy measure, if one counts all end-effector posi-
tions e in each voxel as

WV = WV + 1 ∀e ∈ WR.

WV then accounts for a volume that describes the density of end-effector positi-
ons within the workspace volume (Burgner-Kahrs, Gilbert, et al., 2014; Granna and
Burgner, 2014).

5.5 performance measures

These metrics describe the performance of the CTCR during utilization. They are
required for objective function computation.

5.5.1 Reachability

This describes the accessibility of a target volume. The determination of this measure
requires the prior computation of the CTCR workspace WR to determine whether a
voxel of the target volume GV is reachable. A voxel is defined as reachable if it is
accessible by the robot’s tip and the backbone is not colliding with surrounding
anatomical structures or obstacles.

This computation makes the implicit assumption that all reachable voxels are
reachable from all others. This implies no collisions of the robot with obstacles and
no boundary violation.

5.5.2 Collision Avoidance

To determine whether the robotic backbone collides with surrounding anatomical
structures, the anatomical workspace GV is converted into the robot coordinate sys-
tem. For each backbone point of the robotic backbone g(s), it is determined whether
it refers to a voxel within GV that is > 1. If this is the case, then the robotic structure
collides with surrounding obstacles.
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5.6 classification

This section aims to classify the optimization problem, where each specific problem
can be defined by certain parameters, objectives, and constraints. As the robot is
intended to be optimized for medical applications, the parameters and constraints
are either robot or application dependent, see Figure 23.

Figure 23: Classification of parameters and constraints into robot- and application-specific.

5.6.1 Parameters

The parameter set depends on the employed robot design or medical application.
Hence, the parameter space can be divided into robot- and application-specific pa-
rameters.

5.6.1.1 Robot-Specific Parameters

Robot-specific parameters describe the design parameter space of a single CTCR.
The overall number of parameters that could potentially be optimized includes the
number of tubes n with n ∈ [1, ..., i], the tube material properties including the elastic
modulus Ei, and the Poisson’s ratio νi, the curved and straight section length ℓci

and
ℓsi , outer and inner diameter ODi and IDi, and curvature κi of the curved section.

5.6.1.2 Application-Specific Parameters

There exist also those optimization parameters, which are specifically tied to the
medical application and are treatment dependent. Some of these parameters can be
patient-specific, e.g. the insertion point of the robot, the trajectory towards the goal,
or a specific orientation. If parameters are patient-specific, anatomical information
can be acquired from medical image data (CT, MRI, ultrasound). Medical treatments
could include, for instance, visual inspection with cameras, the suctioning of blood
or tissue, the ablation of tissue, the manipulation of tissue using tools, and the collab-
oration between robotic arms. Optimization parameters for a certain medical appli-
cation can be camera requirements, motion profiles (for the manipulation of tissue,
or the suctioning of blood), ablation dependent characteristics, tool requirements for
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manipulation (this could include a required stiffness to exert forces), or the triangu-
lation between robotic arms.

5.6.2 Objectives

The optimization problem can be defined by different objectives that represent a
quality measure of the optimization. Depending on the formulation of the objective
function, the objectives are either minimized or maximized during the optimization
procedure. However, as stated in Chapter 3, an optimization function can be formu-
lated as minimization or maximization and transformed into either-or.

Objective functions that require minimization can be for instance the tip or path
deviation, the deflection of the shape due to forces, the remaining volume (which
must be covered), the number of utilized tubes, the number of unstable configura-
tions for stability, a specific orientation angle, the traveled distance in task space, or
certain workspace constraints.

Objective functions, which are formulated for maximization are for example the
number of reachable target points, the number of reachable voxels (for volume-based
objective), the coverage a volume, the number of stable configurations, a specific ori-
entation angle, the traveled distance in configuration space, the workspace volume,
specific workspace constraints, or the camera view.

The following example objectives are inspired by the state of the art and are
specifically targeted to the use of CTCR in the previous mentioned applications
(neurosurgery, intracerebral hemorrhage evacuation, endonasal surgery, cochlear im-
plant insertion, intracardiac surgery, bronchoscopy, transforaminal hippocampotomy,
cooperative task deployment, structural stiffness within the workspace, and laser-
induced thermal therapy). Newly presented objectives are the deflection, the orien-
tation, the traveled distance in Cartesian and configuration space, and workspace-
specific objectives. Note, that these are objectives specifically targeted towards the
structural design of CTCR. Also, simple design objectives can be included (e.g. the
number of tubes, number of utilized CTCR, robot length, curvature, number of un-
stable configurations). Application-specific objectives that target the utilization of
specific end-effector tools (e.g. laser, camera) can also be added as objectives into the
design optimization procedure as well.

5.6.2.1 Examples

The objective functions presented here are evaluated based on one specific parameter
set x. Various objective functions require the use of the forward kinematics model
(Cosserat rod model presented in Chapter 2) to determine the space curve g(s) and
the end-effector position e for the investigated parameter set. In some cases, various
calls of the forward kinematics are required to generate the overall CTCR workspace.

End-Effector Deviation This objective function is utilized to describe the deviation
of the end-effector from one or multiple goals. The goal here is defined by point h.
To determine the objective fdeviation, the following steps apply

1. Generate the configuration space Q for the investigated parameter set x.
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2. Compute the reachable workspace WR by determining the space curve g(s) for
each q and compute the corresponding end-effector position e.

3. Consider only those points from the set of end-effector positions, where the
backbone does not collide with surrounding structures.

4. Select the nearest end-effector position (from the remaining set) towards h, by
computing the Euclidean distance from each end-effector position e to the goal
h.

5. Compute the Euclidean distance between the end-effector position e and the
goal point h.

fdeviation = |e−h| .

Repeat step 1) and 2) for multiple goal points and determine the mean deviation
value. The end-effector deviation is measured in mm and illustrated in Figure 24 a).

Trajectory Deviation This objective function intends to optimize the robot towards
a trajectory, i.e. minimizes the divergence of the three-dimensional backbone. The
trajectory hi is defined by N equidistant points i ∈ [1, . . . ,N]. The following steps
apply

1. Generate the configuration space Q for the investigated parameter set x.

2. Compute the reachable workspace WR by determining the space curve g(s) for
each q.

3. Consider only those curves g(s), where the backbone does not collide with
surrounding structures.

4. Divide the space curves g(s) into N equidistant points pi.

5. Compute the Euclidean distances between each backbone point pi to the cor-
responding point hi for all curves.

6. The objective fdev is then determined by selecting the curve g(s) with the min-
imum deviation from h(s)

fdeviation =
1

N

N
∑

i=1

|pi −hi| .

The deviation of the robotic backbone g(s) from trajectory h(s) is depicted in Fig-
ure 24 b). The trajectory deviation is measured in mm.

Deflection The deflection of the robot as a result of external forces F can be described
by a change from an undeformed shape g(s)∗ to a deformed shape g(s).

1. Determine the unloaded space curve g(s)∗ for configuration q utilizing the
forward kinematic model for the investigated parameter set x.
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2. Determine the loaded space curve g(s) for configuration q utilizing the for-
ward kinematic model for the investigated parameter set.

3. Divide both curves g(s)∗ and g(s) into N equidistant points p∗

i and pi.

4. The objective fdeflection can be quantified by computing the Euclidean distances
between corresponding points along the unloaded and loaded robot as

fdeflection =
1

N

N
∑

i=1

|p∗

i −pi| ,

where p∗

i are the unloaded robot backbone points and pi are the loaded backbone
points. Minimization of this objective results in a robotic design, which is more
likely to withstand external forces or loads in certain configurations or areas of the
workspace. An illustration of this objective is depicted in Figure 24 c). The deflection
is measured in mm. Note, that the maximum deviation or deflection can also be con-
sidered as an objective.

Remaining Volume and Coverage These describe objectives to execute a surgical
plan. This implies to maximize the coverage, or on the contrary to minimize the
remaining volume of a target volume. The basis of the computation of these objec-
tives is the voxelized representation of the target volume. The computation of this
objective requires the following steps

1. Convert the surgical workspace and target volume into a voxelized grid GV.

2. Transform the surgical workspace GV into the robot coordinate system.

3. Determine the CTCR reachable workspace WR.

4. Determine which voxels of the target volume are reachable and unreachable.

5. The coverage of the volume fcoverage is defined by the ratio of the number of
unreachable voxels vunreachable to the number of total voxels vtotal within the
volume as

fremaining =
vunreachable

vtotal
.

The remaining volume (coverage) is a ratio between 0 and 1.

Orientation The orientation of the robotic end-effector describes an objective that
is important for manipulation tasks. The orientation of the end-effector can be de-
scribed by the tangent curvature vector rze , which is defined as the vector between
the last two backbone points.

1. Determine the space curve g(s) utilizing the forward kinematic model for the
investigated parameter set x.

2. Determine the tangent curvature vector rze between the last two backbone
points.
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Figure 24: a) Tip deviation, b) path deviation, c) deflection due to forces, d) overlapping
workspace, e) CTCR workspace and coverage of a tumor volume, and f) coverage
with spherical laser ablations.

3. Compute the angle ϕ between the required orientation vector rz and the tan-
gent vector rze . It is determined with

ϕ = atan2
(
||rz × rze || , rz · rze

)
.

4. The ideal angle between rz and rze is ϕideal. The objective function is thus
described by

fϕ = ϕideal −ϕ .

Minimization of fϕ results in an optimal alignment between the two vectors. The
orientation is measured in radians.

Traveled Distance This objective function describes either a distance in Cartesian or
configuration space. The traveled distance in Cartesian space is the traveled distance
by the end-effector of the CTCR. Note, that this could also be the tool center position.
One might aim to minimize this distance to operate in a small volume. This objective
fR3 is determined by

1. Determine the motion planning sequence between subsequent target points.
This might require solving the inverse kinematics numerically.

2. Determine the sum of Cartesian distances between subsequent end-effector
positions as

fR3 =

N−1
∑

i=1

|ei+1 − ei| ,
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where ei is the current end-effector position and ei+1 is the subsequent end-effector
position, both in Cartesian space. N is the overall number of subsequent configura-
tions. The Cartesian traveled distance is measured in mm.

The traveled distance in configuration space is the traveled distance by the actu-
ators that translate and rotate the tubes. Minimization of this parameter could po-
tentially result in less operation time. The objective fqrot that describes the rotational
difference is determined by

1. Determine the motion planning sequence between subsequent target points.
This might require solving the inverse kinematics numerically.

2. Determine the sum of distances between subsequent configurations. The objec-
tive fqrot that describes the rotational difference is determined by

fqrot =

N−1
∑

i=1

|qroti+1
−qroti | ,

and the objective fqtrans that describes the translational difference is determined
with

fqtrans =

N−1
∑

i=1

|qtransi+1
−qtransi | ,

where qi is the current configuration and qi+1 is the subsequent configuration. N is
the overall number of subsequent configurations. The traveled distance in configura-
tion space is measured in mm and radians.

Workspace Volume These objectives specifically target the workspace of the CTCR.
The aim might be to maximize the reachable workspace or to increase the redun-
dancy within a specified area of the workspace.

1. Determine the workspace volume WV.

2. The number of voxels > 0 within WV then accounts for the objective fworkspace.

The size of the workspace volume ins measured in mm3.

Workspace Size As the workspace exhibits a rotational symmetry, it can also be
approximated trough the generation of samples in a single plane, e.g. x/z-plane. The
size of the polygon that spans the extreme end-effector points e can be an indicator
for the planar workspace size.

1. Generate the configuration space Q for the investigated parameter set x.

2. Determine all corresponding end-effector points utilizing the forward kine-
matic model and rotate them into the x/z-plane.

3. Determine the area of the polygon WP that connects all boundary end-effector
points e within the x/z-plane.
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The size of the polygon ins measured in mm2.

Redundancy To maximize the redundancy in a specified area of the workspace, the
following steps apply

1. Determine the workspace volume WV by counting the number of end-effector
positions within each voxel.

2. The objective fredundancy then accounts for the number of redundant end-effector
positions within the specified volume.

This objective function is dimensionless.

5.6.2.2 Combination of Objectives

The combination of different objectives can be challenging, as they can be classified
into homogeneous and heterogeneous objectives, as well as into non-conflicting and
conflicting.

If objectives are non-conflicting, then all objectives could potentially be combined
into a single objective using scalar error metrics. However, this can only be applied
if there exists any x or x∗, where (fi(x) ≺ fi(x

∗)) or (fi(x
∗) ≺ fi(x)) for all objective

functions o. Often, they are partially or totally conflicting in medical applications,
such that Pareto dominance methods represent a better concept to cope with the
problem. A compromise between weighting and Pareto dominance approaches can
also be achieved if some objectives of the problem are conflicting and some are not.
Then, non-conflicting objectives are combined into a scalar and used within Pareto
optimization.

If objectives are represented by the same units they are by definition homoge-

neous, if not they are heterogeneous. If objective functions are heterogeneous, the
objectives must be normalized when combined with a weighting approach. Normal-
ization is not always possible, as the maximum or minimum value of an objective
function is not always known a priori. The selection of weights is not trivial and in-
fluences the outcome of the optimization. Thus, the application of Pareto dominance
concepts is preferable for conflicting objectives.

Regarding the example objectives presented in this thesis, the following objectives
can be classified as homogeneous: 1) deviation, deflection, traveled distance in Carte-
sian space, translational distance in configuration space, 2) orientation, rotational
traveled distance in configuration space, 3) the remaining volume, and redundancy
are dimensionless. However, even though these groups of objectives can be repre-
sented by the same units, their range can differ significantly, such that normalization
or the selection of weights is necessary for combination

y =

o
∑

i=1

λifi(x) for λo > 0 and
o
∑

i=1

λi = 1,

where λi define the weights for each objective o.
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5.6.3 Constraints

During the execution of the optimization algorithm, constraints must be applied,
such that parameters remain within the search space. As the CTCR tube parameters
have many dependencies and the kinematic structure of the robot is not trivial, there
exist numerous robot design constraints. Further, the specific medical application
can impose constraints on the optimization procedure.

The number of constraints depends on the number of optimization parameters, as
the parameter space of these is usually bounded. The design optimization param-
eters of CTCR can consider the number of tubes n, the tube’s material (with the
elastic modulus E, the recoverable strain rate ǫ, the Poisson’s ratio ν, and the shear
modulus G), and the geometric parameters of the robot (the tube’s curvature κ, the
straight and curved section length ℓsi and ℓci

, and the outer ODi and inner diame-
ter IDi). All aforementioned parameters can thus apply constraints, as they have to
remain in predefined parameter space. The constraints are formulated as equality or
inequality conditions within the optimization procedure and they are divided into
robot- and application-specific constraints in the following.

5.6.3.1 Robot-Specific Constraints

These constraints arise from the design nature of CTCR. As the actuation parameters
αi and βi are constrained as

β1 6 ... 6 βn 6 0,

ℓn +βn 6 ... 6 ℓ1 +β1,

they need to be ensured during the optimization procedure (e.g. when sampling the
actuation space, workspace computation). Other dependencies between robot design
parameters include the relationship of tube diameters as

ID1 < OD1 < ID2 < OD2 < · · · < IDn < ODn,

where also a certain tube clearance needs to be taken into consideration. Further,
the material properties (including the elastic modulus Ei and strain limit νi) impose
constraints on the maximum curvature κimax

or minimum diameter ODi of a tube.
The maximum curvature of a tube κimax

(or minimum diameter ODi) depends either
on the a priori selected tube material, or changes during optimization, if material pa-
rameters Ei and νi are optimization dependent. The dependency between curvature
and diameter is formulated as

κimax =
2ǫi

ODi(1+ ǫi)
,

ODimin =
2ǫi

κi(1+ ǫi)
.

The stability of the robot might account for constraints, as certain tube design
combinations lead to unstable configurations. The same is true for some designs
that require a certain stiffness (Gilbert, Rucker, and Webster III, 2016; Ha, Park, and
Dupont, 2016; Hendrick, Gilbert, and Webster III, 2015b; Webster III, Okamura, and
Cowan, 2006; R. Xu, Atashzar, and Patel, 2014).
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5.6.3.2 Application-Specific Constraints

Application-specific constraints cluster into two groups, which are treatment- and
anatomy-specific constraints. Treatment-specific constraints can impose constraints
on the inner diameter IDi of the tubes. This is depended on the medical tool (e.g.
gripper, laser, or camera) deployed through the inner lumen of the robot. Other
treatment-specific constraints are defined by the medical task. This can be for in-
stance inspection, manipulation, laser activation, the suctioning of tissue or blood, a
specific planning procedure, and the application of external forces and loads.

Considering a specific patient case, the anatomy imposes constraints during the
optimization. This can be, for instance, a specific required outer diameter ODi to
deploy the robot within a tight lumen, a curvature κi to maneuver along tortuous
paths, or the overall length ℓ of the robot to reach the desired goal. Other application-
specific constraints include obstacle avoidance and motion planning that could be
incorporated into the algorithm to determine feasible configurations of the robot.
The anatomy constraints can be embedded into the optimization by considering
patient image data as inputs to the algorithm.

Both treatment and anatomy dependent constraints limit the minimum or maxi-
mum value for the design parameters of the CTCR and are formulated as

• number of tubes nmin 6 n 6 nmin

• curvature κmin 6 κi 6 κmax

• curved length ℓcmin 6 ℓci
6 ℓcmax

• straight length ℓsmin 6 ℓsi 6 ℓsmax

• outer diameter ODmin 6 ODi 6 ODmax

• inner diameter IDmin 6 IDi 6 IDmax

• elastic modulus Emin 6 Ei 6 Emax.

All optimization parameters have to remain within a predefined parameter space.

5.7 algorithmic implementation

The selection of a suitable algorithm requires to consider the overall optimization
problem. Linear optimization is not suitable for parameter optimization of CTCR, as
highly nonlinear differential equations must be solved. The deployment of nonlinear
algorithms is thus a necessity. These are subdivided into local and global methods.
As the parameter space is multidimensional and multimodal, a global method is
proposed here. These methods are more likely to cover the whole search space of
CTCR without remaining stuck in local minima. However, this does not necessarily
imply that they find the best or optimal solution.

The assumption here is that evolutionary algorithms, particularly particle swarm
optimization, have the potential to be applied to parameter optimization of CTCR.
Their application is currently unexploited by the state of the art. However, they have
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been successfully employed for other robotic systems (Simon, 2013). Thus, this thesis
investigates the applicability of particle swarm optimization to the structural design
optimization problem of CTCR.

CTCR are defined by many parameters, which all impose constraints on the param-
eter space. Further, constraints arise from the dependencies between actuator values
and the composition of tubes. Additional constraints are dependent on the medi-
cal application or task. The parameter space is thus multimodal, and the decision
vector might have to jump from one feasible space to the other. Here, evolutionary
algorithms can be efficient.

The combination of objectives is not straight forward for the application in a med-
ical scenario, as they can be heterogeneous. Particle swarm optimization can apply
Pareto dominance methods and handle heterogeneous multi-objective functions.

The kinematic model is highly complex compared to other robotic systems, as
well as their kinematic structure. The material and stiffness properties influence the
interaction of the tubes and the morphology of the robot in contrary to robots that
are composed of rigid links, joints or non-deformable materials.

One advantage of particle swarm optimization is their extension to variable dimen-
sion. This makes the algorithm applicable to a larger domain of problems, where
decision vectors can be either of fixed or variable size. Further, they are not sensi-
tive to population size (Shi and Eberhart, 1999). Thus, smaller population sizes can
be selected to find a suitable solution. This can be especially advantageous, as the
computation of objective functions requires usually many calls of the kinematic func-
tion, such that the computational effort increases with population size dramatically.
Further research findings demonstrate that particle swarm optimization outperforms
genetic algorithms with respect to computational effort to find high-quality solutions
(Hassan et al., 2005). It shows better convergence for complex objective functions de-
pendent on multiple variables (Ramezan Shirazi, Seyyed Fakhrabadi, and Ghanbari,
2014).

This section presents the implementation of the particle swarm optimization algo-
rithm proposed in this thesis, which is extensible to single, multiple, non-conflicting,
and conflicting objectives, as well as fixed and variable dimension of decision vectors.

The overall swarm is defined to consist of P particles with position xtkm
and veloc-

ity vtkm
at time t, where m is the dimension of each particle k. Each particle’s velocity

and position change from generation t to t+ 1 (until the maximum number of gen-
erations T is reached), as the swarm explores the search space. The implementation
of the overall algorithm can be depicted in Algorithm 1. The steps of the algorithm
are explained in the following to account for single, non-conflicting, or conflicting
objectives. Further, the implementation of the algorithm is explained for fixed and
variable dimension.

5.7.1 Input

Input to the algorithm is patient-specific image data. This can be a voxelized grid
of the target volume or obstacles, the trajectory h, the robot and medical coordi-
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nate systems, and margins. Further, the preallocation of parameters, objectives, and
constraints are input to the particle swarm optimization algorithm.

5.7.2 Initialization

The selection of the number of generations T depends highly on the application
and the convergence rate or the spread of the Pareto front. It is adjusted application
dependent, however, the authors in (Coello Coello and Lechuga Salazar, 2002) advise
to select at least 80 function evaluations. The number of particles P should be at least
20 as the authors in (Shi and Eberhart, 1999) demonstrate good performance for
population sizes of 20, 40, 80, and 160 particles. They conclude that the performance
does not improve with larger population size. The author of (Trelea, 2003) evaluate
particle swarm optimization for 15, 30, and 60 particles. 15 particles lead to fast
convergence and 60 particles result in more function evaluations. The best results are
obtained for 30 particles. The authors in (Coello Coello and Lechuga Salazar, 2002)
advise to select 20 to 80 particles for multi-objective particle swarm optimization.

The inertia weight η ranges between 0.4 and 1.4. The higher the inertia weight,
the larger the exploration of the search space and the lower the convergence rate
to a single value or the Pareto front. c1 and c2 control the influence of the self-
confidence of a parameter set and the confidence of the swarm. If c1 = c2 there exists
a compromise and an even influence between exploration of the search space and
exploitation. Generally, c1 varies between 1.5 and 2 and c2 between 2 and 2.5. These
parameters can be easily adapted to change the relationship between exploration
and exploitation but must be selected depending on the application.

The second initialization is concerned with the initial population of the swarm, i.e.
the initial set of decision vectors. The dimension of the decision vector x is generally
not constrained but the higher the dimension, the higher the computational com-
plexity. Generally, the dimension of the decision vector should be kept as small as
possible, as the convergence of the algorithm is affected negatively otherwise. This
might not result in a sufficient set of solutions.

To generate the initial population, each dimension m of particle xkm
with variable

dimension has to be initialized based on a uniform random distribution within the
parameter space. If each particle has the same dimension within the swarm, then m

is equal for all particles.
Considering the structural design optimization of CTCR, a particle (decision vec-

tor) represents the optimization parameters of the problem (considering the design
and application-specific parameters). The parameter space is thus defined by the
application- and robot-specific constraints that describe the underlying problem, see
Section 5.6.3.

5.7.3 Function Evaluation

The determination of a particle’s cost y depends on the number of objectives, and
whether objectives are conflicting or not. The number of objective functions in multi-
objective particle swarm optimization can be up to three. Additional objective func-
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tions would classify the problem as many-objective. Many-objectives require specific
algorithmic implementations (Fleming, Purshouse, and Lygoe, 2005) and are not re-
garded in the scope of this work. The cost of a particle can represent the objectives
mentioned in Section 5.6.3. There exist different methods to represent the cost of a
particle depending on the number of objectives and whether they are non-conflicting
or conflicting, as explained in the following.

5.7.3.1 Single-Objective or Non-Conflicting Objectives

If the optimization problem is defined by a single objective, then the particle’s cost
y = f(x). This is also the case if objectives are non-conflicting and a weighted sum
approach is selected to compute one single objective function out of multiple. The
cost of a particle is then defined by y = λ1f1(x) + ... + λofo(x), where λ are the
weights and o are the overall number of objectives.

5.7.3.2 Conflicting Objectives

If objectives are conflicting, then the concept of Pareto optimality is applied. This
implies that some particles dominate others. A particle (decision vector) xk strictly

dominates another particle (decision vector) x∗k (xk ≺ x∗k), if fi(xk) 6 fi(x
∗

k) ∀ i =

1...o and fi(xk) < fi(x
∗

k) for some i. A particle xk weakly dominates another particle
x∗k (xk 4 x∗k), if fi(xk) 6 fi(x

∗

k) for all i. A non-dominated particle xk thus means,
that there exist no fi(x

∗

k) 6 fi(xk) for all i.
Thus, a particle is represented by multiple costs fi, where i ∈ [1, ...,o] with o being

the number of objectives. Applying the concept of Pareto optimality results in a
Pareto optimal set of solutions Ps that span the Pareto front Ps.

5.7.4 Leader Selection

To ensure a good convergence rate, the selection of leaders is based on the idea of the
global topology approach, as this is the most prominent approach in multi-objective
particle swarm optimization (Reyes-Sierra and Coello Coello, 2006). This implies that
each particle is connected with all members of the swarm and information exchange
happens between all of them.

5.7.4.1 Single-Objective or Non-Conflicting Objectives

Here, the leader of the swarm is the global best position gt
b considering all particles.

Each particle’s personal best solution pt
bk

found so far and the global best solution
gt
b within the overall swarm can then be determined to function as leaders.

5.7.4.2 Conflicting Objectives

The non-dominated solutions across all generations are stored within an archive At.
Each non-dominated particle from the current population is added to At. A particle is
deleted from At, if it is dominated by another particle within At. To select a leader
gt
b, a decision vector is then randomly drawn from At.
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Algorithm 1 PSO and MOPSO
Input: patient dataset, robot- and application-specific parameters
Define T ,P,η, c1, c2
Initialize xkm

, vkm

for t = 1 : T do
{yi} :=function evaluation(xtk)
{pt

bk
,gt

b} :=leader selection(xtk,pt−1
bk

,gt−1
b orAt,yi)

for k = 1 : P do
{xt+1

km
, vt+1

km
} := update(xtkm

, vtkm
,pt

bk
,gt

b,η, c1, c2)

xt+1
km

:=enforce constraints(xtkm
)

end
end
Return gt

b orAt

5.7.5 Position and Velocity Update

The influence of c1 and c2 is exploited to control exploration and convergence. In-
dependent from whether each particle is of equal dimension or not, the position of
each particle’s component xt+1

km
is determined with

xt+1
km

= xtkm
+ vt+1

km
.

The update of the velocity vt+1
km

depends on equal or variable dimension within the
swarm, as follows.

5.7.5.1 Equal Dimension

If the dimension within the swarm is equal for all members, then the velocity is
updated according to

vt+1
km

= η · vtkm
+ c1 · r1 · (p

t
bkm

− xtkm
) + c2 · r2 · (g

t
bm

− xtkm
),

with η being the inertia weight, c1 and c2 are constants controlling the influence of
personal versus global best and r1 and r2 are randomly chosen in the range of [0, 1].

5.7.5.2 Variable Dimension

A variable dimension enables optimization for a prior undefined number of opti-
mization parameters. This is especially advantageous for the parameter optimiza-
tion of CTCR, as the dimension of some parameters is not known a priori, e.g. the
number of tubes can be variable.

The velocity and position are updated according to the dimensions of each particle
and the global best solution found so far, where the overall number of components
of a particle is defined as Nm and the overall number of components within the
global best solution gb is Nmg

. There exist three scenarios to determine the velocity
vtkm

for each component, considering Nm and Nmg

1) Nm = Nmg

vt+1
km

= η · vtkm
+ c1 · r1 · (p

t
bkm

− xtkm
) + c2 · r2 · (g

t
bm

− xtkm
),

2) Nm > Nmg
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The number of Nmg
components are selected randomly from xk. The velocity for

these components is determined according to (16). The velocity of the remaining
Nm −Nmg

components m is determined with

vt+1
km

= η · vtkm
+ c1 · r1 · (p

t
bkm

− xtkm
).

3) Nm < Nmg

Nm components are randomly drawn from gb and the velocity is determined with
equation (16) using the selected components.

5.7.6 Constraints

This algorithm employs the truncation method as this results in high performance
independent of the application (Alvarez-Benitez, Everson, and Fieldsend, 2005). To
enforce the parameters to remain within the parameter space as

xtkm
=







ubm
, if xtkm

> ubm

lbm
, if xtkm

< lbm
,

where lbm
are the lower boundary and ubm

are the upper boundary components.

5.7.7 Output

5.7.7.1 Single-Objective or Non-Conflicting Objectives

The output of the algorithm here is the global best solution gt
b. This output is

achieved when the maximum number of generations T is reached, or the algorithm
converges.

5.7.7.2 Multi-Objectives

Once the maximum number of generations T is reached, the optimization ends, and
the Pareto optimal solutions are stored within At. A solution from the Pareto front
can be selected manually (e.g. by the surgeon) or automatically based on perfor-
mance criteria, which can be determined based on preferences by a surgeon or other
constraints.

5.8 summary

This section discusses the applicability of the proposed optimization algorithm and
summarizes the contribution of this chapter.

5.8.1 Applicability of the Methodology

The hypothesis of this thesis is the potential of the proposed framework to solve the
structural design problem of CTCR. The following paragraphs provide instructions
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on how state of the art problems could be reformulated as multi-objective and solved
with particle swarm optimization.

Optimization for Endonasal Pituitary Surgery The authors in (Burgner, Gilbert, and
Webster III, 2013) optimize a three-tube CTCR to be utilized in endonasal pituitary
surgery, where the outer tube is straight and the two innermost are curved. The opti-
mization parameters are the straight and curved section lengths and curvature of the
two inner tubes, which results in six parameters total. The objective is the percentage
of coverage of the tumor volume by the CTCR. Here, the authors successfully apply
a Nelder-Mead algorithm for design optimization. Further, they conclude that the
deployment of multiple concentric tube robots simultaneously or subsequentially
could improve their results and increase tumor coverage.

Here, the application of multiple objectives and a multi-objective optimization al-
gorithm could have potential. An additional objective could be the number of se-
quentially employed robots. These objectives are conflicting: the employment of sub-
sequent robots requires time for tube exchange, such that the number of utilized
CTCR should be at a minimum. However, the utilization of differently designed
CTCR increases coverage.

Thus, the multi-objective particle swarm algorithm could optimize for a Pareto
optimal set regarding coverage and number of robots (tube combinations). The sur-
geon could then select the preferred solution with a minimized number of employed
robots but sufficient coverage (remaining coverage could be treated by chemother-
apy) from the Pareto front.

Another option would be to apply the CTCR as single-objective but to utilize the
variable dimension of decision vectors of the algorithm. Additional optimization pa-
rameters could then be the number of utilized tubes or CTCR.

Parameter Optimization for Sets of Concentric Tubes The authors in (Baykal, Tor-
res, and Alterovitz, 2015) present a similar approach and optimize the design of
sequentially employed CTCR to maximize the coverage of a goal region. Here, tubes
are envisioned to be exchanged during deployment. While the utilization of sequen-
tial sets of tubes results in improved coverage of the goal region, the authors aim to
minimize the number of utilized CTCR during surgery to reduce time effort.

The authors optimize the design parameters of a CTCR (including the straight
and curved section length, and curvature of tube i) utilizing a global optimization
algorithm (adaptive simulated annealing). The contribution of this work is the inclu-
sion of a motion planning algorithm for obstacle avoidance (using rapidly exploring
random trees), which considers the deployment of the robot.

To solve the design optimization problem, the authors utilized two sequentially
employed algorithms. The first algorithm maximizes the coverage of a goal region for
a fixed set of sequentially employed CTCR. This algorithm is executed multiple times
to determine the coverage for different sets. The second algorithm then minimizes
the number of sets that allow for a required percentage of coverage.

Here, the objectives are conflicting as a decrease in the number of utilized CTCR
does not decrease the uncovered volume of the reachable space. Thus, the multi-
objective particle swarm optimization algorithm could have potential, as it would
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not require the execution of two sequential algorithms. The proposed approach could
optimize for coverage and the number of utilized CTCR simultaneously. As the pro-
posed framework can incorporate decision vectors with variable length, each sequen-
tially utilized CTCR could have a variable number of tubes. The algorithm could
optimize for an optimal combination of tubes and sequentially employed CTCR. A
solution from the front of Pareto optimal solutions can then be selected either auto-
matically (based on a threshold) or by the surgeon.

Optimization based on Task and Anatomical Constraints The authors in (Bergeles,
Gosline, et al., 2015) take a different approach. They aim to minimize the robot’s
extension length and curvature while ensuring the reachability of target points. Min-
imization of the extension length should lead to an overall better stiffness of the
CTCR and a minimized curvature can prevent tubes from plastic deformation. Here,
the optimization problem is divided into 1) reachability of the target (includes the
end-effector position error, the orientation error, and violation of anatomical con-
straints), and 2) optimal robot design (includes the extension length and curvature).
Aim of the optimization algorithm is to minimize the end-effector error, orientation
error, violation of constraints, extension length, and curvature. All aforementioned
objectives are combined in a scalar error metric utilizing different weights. Here, the
employed Nelder-Mead algorithm does not consider constraints as separate equality
or inequality functions, such that they are combined into the objectives as penalties.

The authors apply their algorithm to neurosurgery and a beating-heart procedure.
Both applications require the selection of different weights, as objectives are hetero-
geneous. The minimization of curvature and extension length does not necessarily
result in the reachability of the target such that objectives are conflicting. The rela-
tionship between these objectives is complicated but could be analyzed through the
multi-objective approach presented in this work.

The problem could be formulated using three objective functions which describe
the reachability (tip and orientation error), the curvature, and extension length of the
tubes. The tip and orientation error can be included in a scalar metric by converting
the orientation error into a radian measure in mm. The curvature of the tubes and
extension length are then independent objectives, as they conflict with the reacha-
bility of the target. Another option would be to utilize two objective functions that
describe the reachability and the length of the tubes. The maximum curvature of
the tubes can be incorporated as a constraint into the multi-objective particle swarm
optimization, as well as anatomical constraints.

5.8.2 Conclusion

This chapter presents the basis of this thesis and describes the general optimization
problem for CTCR in minimally invasive surgery. This is the first work to give an
overview of the general problem. Further, the workflow of the proposed optimization
methodology is described with respective in- and outputs.

Medical images are input to the design optimization methodology and data repre-
sentation methods are proposed to handle different patients and medical scenarios.
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This includes the representation of target volumes and obstacles, trajectory compu-
tation, and kinematic performance measures.

The contribution of this chapter is the presentation of parameters, objectives, and
constraints for minimally invasive procedures that are predestined for CTCR. The
parameters include the overall parameter space, as well as geometric and material
parameters. This chapter specifically describes the computation of objective func-
tions that are different from other robotic applications and thus specifically tied to
minimally invasive procedures.

The general assumption of this thesis is that evolutionary optimization algorithms,
particularly particle swarm optimization, can cope with the parameter optimization
problem of CTCR. The presented particle swarm optimization algorithm employed
in this thesis is formulated, such that it can handle single, multiple, non-conflicting
and conflicting objectives. Here, the use of particle swarm optimization with variable
dimension is proposed - which is new in the area of robotics. The variable dimension
of decision vectors is especially advantageous for the structural design optimization
of CTCR, as the number of parameters (i.e. the number of tubes, or curved sections)
is not known a priori.

Further, the concept of Pareto optimality, which is new to the parameter opti-
mization of CTCR for conflicting objective functions, is explained. This enables the
optimization of heterogeneous objectives.

The following chapters represent three example medical scenarios to show the
applicability of the proposed algorithm and prove that particle swarm optimization
can cope with the structural parameter optimization problem of CTCR, as well as
handle other application-specific parameters.

The first application deals with the simultaneous deployment of two CTCR robotic
arms to execute a medical task. The proposed design optimization methodology is
applied. Additionally, the performance of particle swarm optimization is compared
to Nelder-Mead optimization (following the state of the art). Here, the algorithm is
utilized as single-objective, as multiple conflicting objectives are not exploited by the
state of the art thus far.

The second example considers the overall design parameter space of CTCR, multi-
ple objectives and incorporates external forces for the first time. The aim here is the
structural stiffness for force absorption and an increased workspace of the CTCR.

The last application envisions the CTCR in laser-induced thermal therapy. The
problem is formulated as multi-objective and accounts for design-, as well as appli-
cation-specific parameters to demonstrate the extensibility of the proposed algo-
rithm.
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O P T I M I Z AT I O N F O R C O O P E R AT I V E TA S K D E P L O Y M E N T

This chapter presents the design optimization problem for two CTCR to work col-
laboratively, which allows for the simultaneous deployment of multiple tasks. The
robotic arms are intended to be employed in a dual channel endoscope. Generally,
endoscopes can be utilized in minimally invasive surgery and the incorporation of
additional robots into the endoscope could advance single port access surgery that
is still restricted until today.

Optimization parameters are the curvature and curved length of each robot. This
presents the first approach to optimize two collaborative CTCR arms and the def-
inition of a novel objective, which allows for advanced triangulation of the two
end-effectors to improve and enable medical task performance. The presented op-
timization methodology allows to formulate and identify parameters, the objective,
and constraints of this specific problem. Additionally, this chapter compares the per-
formance of the single-objective particle swarm algorithm to the Nelder-Mead algo-
rithm applied by the state of the art.

Based upon:

Chikhaoui, M.T.⋆, Granna, J.⋆, Starke, J., & Burgner-Kahrs, J. (2018). Towards Motion Coordination

Control and Design Optimization for Dual-Arm Concentric Tube Continuum, IEEE Robotics and

Automation Letters
⋆ both authors contributed equally
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6.1 motivation

The employment of multiple CTCR arms allows for robotic cooperation and simul-
taneous execution of a medical task. This includes manipulation tasks and the em-
ployment of different medical tools, such that redeployment and tool exchange of
one robot is not necessary. Dual arm continuum robots have been investigated in the
past for the use in minimally invasive surgery, especially single port access surgery,
where only one incision is performed to deploy all tools required to perform the
medical task. This includes, for instance, bimanual teleoperation of tendon actuated
continuum robots (pick-and-place and knot tying) in (Bajo et al., 2012), as well as su-
turing and grape peeling in (K. Xu, Zhao, and Fu, 2014). The employment of CTCR
as dual arms is investigated for teleoperation in endonasal skull base surgery and
tumor removal in (Burgner, Rucker, et al., 2014). Further, dual-arm CTCR are incor-
porated into an endoscope for prostate surgery in (Hendrick, Herrell, Mitchell, et al.,
2016; Hendrick, Herrell, and Webster III, 2014; Hendrick, Mitchell, et al., 2015). The
authors in (Hendrick, Mitchell, et al., 2015) optimize the overlap of the endoscope
field of view and CTCR workspace.

This chapter applies the proposed methods from Chapter 5 to design parameter
optimization of two collaborating robotic arms (robot A and B), which are incorpo-
rated into a dual channel endoscope, see Figure 25.

Figure 25: Dual arm channel endoscope with two CTCR arms working collaboratively on a
medical task and triangulation angle ϕ.

6.2 optimization problem

As this application deals with dual arm CTCR, the optimization problem considers
the design parameters of the two robotic arms. In particular, the aim is to enable col-
laborative task performance of the two end-effectors. Robot A and B are defined by
the same design parameters with three tubes each. Parameters, the objective function,
and constraints of this optimization application are explained in the following.
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6.2.1 Contribution

This application requires the introduction of a novel objective that aims to optimize
collaboration of the two robotic arms and ensures a specific triangulation between
them. In the context of dual-arm CTCR, researchers consider the overlap of the en-
doscope field of view and CTCR workspace in (Hendrick, Mitchell, et al., 2015).
However, none consider to aim for an optimized triangulation of the two arms. This
thesis presents the first approach to optimize the design parameters of the two arms
and aim for an advanced alignment. Further, it demonstrates that the presented
methodology in Chapter 5 allows identifying parameters, the objective function, and
constraints for single-, as well as multi-objective problems. Existing optimization
approaches consider optimizing for curvature and curved length of a single robot,
where this application considers the design parameters of robot A and B to enable
interactive manipulation.

This example scenario is specifically selected as it can serve as proof for the appli-
cability of the proposed algorithm. As this application requires the consideration of
only one objective, the proposed particle swarm algorithm can be compared to the
Nelder-Mead search applied to CTCR design optimization in the past. Convergence
behavior, computation time and objective function values are compared for multiple
optimization runs.

6.2.2 Parameters

This optimization problem is defined by robot-specific parameters and considers the
following tube design parameters of the two robotic arms for optimization

• curvature κi, with i ∈ [1, ..., 3],

• curved length ℓci
, with i ∈ [1, ..., 3].

Fixed design parameters and input to the algorithm are the number of tubes n,
the diameters of each tube ODi and IDi, the straight lengths ℓsi , and the elastic
modulus Ei of the selected tube material (NiTi). ODi and IDi remain fixed during
optimization, provided that the triangulation of the two end-effectors is decisively
determined by the curvature and curved length of the tubes. The tube diameters and
the distance between the arms at the base are driven by commercial dual channel
endoscope designs. Typically, the channel diameters vary between 2 and 4 mm with
a shift distance S ≃ 5mm. This shift distance is considered as the offset between the
two arms at the exit of the endoscope.

Further, this application targets the optimization of curvature and curved length
for comparability. Performance of the Nelder-Mead algorithm for six parameters is
shown in (Burgner, Gilbert, and Webster III, 2013).

6.2.3 Objective

The objective is application-specific and considers the pose of the two robotic arms to
allow for an advanced triangulation. This optimization problem is defined as single-
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objective and maximizes the number of collaborative configurations nqA,B of robot A
and B as

maximize y = f(x) = nqA,B ∀ qA,B with ϕ ∈ [90◦, 180◦] and |eA − eB| > dE,

where qA,B defines a configuration of robot A and B, ϕ defines the triangulation
angle between the robotic end-effectors, |eA − eB| defines the Euclidean distance be-
tween them, and dE is a user defined threshold. A configuration qA,B of robot A and
B counts as collaborative, if a certain triangulation and Euclidean end-effector dis-
tance is guaranteed for task deployment. ϕ is defined as the angle between the two
tangent curvature vectors rzA,B at both end-effectors, as illustrated in Figure 25. The
triangulation angle is selected to be ϕ ∈ [90◦, 180◦], as this allows the end-effectors to
be oriented towards one another to work simultaneously on a task. Thus, the aim of
the optimization algorithm is to search for two robotic arm designs, which result in
a maximum number of collaborative configurations with the specified triangulation
angle. The triangulation angle ϕ is computed with

ϕ = atan2
(
||rzA × rzB || , rzA · rzB

)
.

6.2.4 Constraints

The constraints are material and robot-specific, and the selected NiTi imposes a max-
imum limit on the curvature, such that the material remains within the elastic region.
The constraints are parameter dependent as

• curvature κ ∈ [κmin, κmax],

• curved lengths ℓc ∈ [ℓcmin , ℓcmax ],

• κ1 > κ2 > κ3,

• ℓc1
> ℓc2

> ℓc3
.

6.3 implementation

The aim is to determine optimal tube parameters (curvature and curved length) of
the two robotic arms with maximum collaboration. A single-objective particle swarm
optimization algorithm is applied as presented in Chapter 5. Here, a particle xk is
defined by the curved lengths ℓci

and curvatures κi of each tube respectively as xk =

[κi, ℓci
]. To determine the objective function f for each particle xk, the workspace

of each CTCR is generated by creating uniformly distributed samples ms for each
robot as qA,Bj

= [α1, . . . ,αi,β1, . . . ,βi]
T with j ∈ [1,ms]. By utilizing the Cosserat

rod forward kinematics model (see Chapter 2), the space curve g(s)j can be acquired
for each sample j and robot. The triangulation angle ϕ is then computed for each
permutation of robot A and B. Only those configurations qA,B count as collaborative
that ensure the required triangulation angle and end-effector distance. The workflow
of this optimization problem is illustrated in Figure 26. It illustrates the parameters,
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Figure 26: Optimization workflow for cooperative task deployment of two robotic arms with
preallocation, optimization process, and output.

objective function, and constraints as input to the algorithm. The algorithm optimizes
six parameters of robot A and B and the output is the optimal design set.

As this application utilizes a single-objective particle swarm optimization algo-
rithm, the personal pt

bk
and global best solutions gt

b within a swarm are determined
within each generation. The personal best parameter set pt

bk
of a particle defines the

set of parameters with the maximum value for f, as the aim here is to maximize
the objective function. The global best parameter set gb then describes the set of
parameters with the highest cost across all particles and generations.

At the beginning of the algorithm, each particle is randomly initialized on a uni-
form distribution regarding the constraints of the optimization problem. If a parti-
cle exceeds a boundary, then the parameter is truncated regarding the specific con-
straint.

6.4 evaluation and results

This section evaluates the performance of the single-objective particle swarm opti-
mization algorithm. Its performance is then compared to the Nelder-Mead algorithm
that has been applied to CTCR design problems in the past.

The number of tubes for both robotic arms is n = 3. All preselected design pa-
rameters are depicted in Table 1. The outer and inner diameter ODi and IDi are
selected to fit through a commercial dual channel endoscope. Elastic modulus Ei

and Poisson’s ratio ν are defined by the material NiTi.
The particle swarm algorithm is executed with P = 20 particles, T = 100, η = 0.9,

and c1 = c2 = 2 (to ensure a compromise between exploration and convergence
of the algorithm). All parameters are selected based on performance. r1 and r2 are
real random numbers ∈ [0, 1]. The population size and number of generations are
selected based on the recommendations in (Coello Coello and Lechuga Salazar, 2002;
Shi and Eberhart, 1999). The population size is selected to be relatively low for com-
putation reasons. Further, the parameter space is defined by only six parameters,
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Table 1: Preselected tube design parameters.

parameter OD in mm ID in mm E in GPa ν ℓs in mm

tube 1 1.21 0.67 60 0.3 250

tube 2 1.92 1.28 60 0.3 200

tube 3 2.74 2.08 60 0.3 150

such that a small population is assumed to be adequate. The curved lengths for each
tube i are empirically selected to be within the range of ℓci

∈ [0, 100mm], and the
curvature is selected to be within the elastic region of NiTi as κi ∈ [0, 0.05mm−1].
The sampling size is ms = 500 for robot A and B (empirically selected based on
performance). This results in 250,000 possible combinations. However, only those
configuration combinations are regarded as collaborative that exhibit the required
end-effector distance dE and triangulation angle ϕ.

The optimized tube design sets of the particle swarm algorithm for three opti-
mization runs are depicted in Table 2. The corresponding convergence behavior is
illustrated in Figure 27 (left). The first optimization (in blue) results in 198 collabo-
rative configurations and the algorithm converges after approximately 40 iterations.
The second optimization (in gray) results in 203 collaborative configurations and
converges after approximately 75 iterations. The third optimization (in black) results
in 199 collaborative configurations and converges after approximately 20 iterations.
All optimizations result in a similar number of collaborative configurations, which
proves the performance of the algorithm. Note, that the function value f(x) can be
quadruplicated through design optimization of the two robotic arms by the algo-
rithm.

Table 2: Optimized tube design sets for particle swarm and Nelder-Mead optimization for
multiple optimization runs. κi in mm−1 and ℓci in mm.

algorithm run κ1 κ2 κ3 ℓc1
ℓc2

ℓc3

Particle Swarm 1 0.047 0.030 0.006 80.6 44.1 20.3

Particle Swarm 2 0.048 0.028 0.015 81.0 46.7 5.6

Particle Swarm 3 0.048 0.024 0.006 74.0 48.1 8.2

Nelder-Mead 1 0.034 0.011 0.003 37.0 74.7 92.0

Nelder-Mead 2 0.033 0.018 0.008 95.1 38.5 41.0

Considering the results in Table 2, it is noticeable that all three particle swarm
optimizations result in a high curvature for tube 1. All other optimization parameters
vary slightly but result in a similar objective function value due to tube interaction.

To verify the applicability of the particle swarm optimization algorithm for the
structural design optimization of CTCR, this chapter compares the algorithm to the
state of the art. The Nelder-Mead algorithm has been applied in the past to optimize
CTCR design parameters (Bergeles, Gosline, et al., 2015; Burgner, Gilbert, and Web-
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Figure 27: Convergence behavior of particle swarm optimization (left) and the Nelder-Mead
algorithm (right) over t = 100 iterations for multiple optimization runs.

ster III, 2013). To compare the performance of the two algorithms, the Nelder-Mead
search is initialized with 20 random parameter sets. The optimized tube parame-
ters are also depicted in Table 2 and the convergence behavior in Figure 27 (right).
The Nelder-Mead algorithm ran over 100 iterations and converges approximately
after 30 iterations to 160 collaborative configurations (in turquoise). The second opti-
mization results in 162 collaborative configurations (in orange) and converges after
approximately 15 configurations. Notice, that tube curvatures are similar for the two
optimizations, but curved section lengths vary considerably.

The algorithm has been implemented in Matlab on an Intel Core i7-4790 3.60 GHz.
To limit computation time, the kinematic model has been loaded into Matlab as
precompiled C++ code. Computation times for both algorithms are depicted in Fig-
ure 28. The run time per iteration is lower for the Nelder-Mead algorithm. Note, that
the run time per iteration for the particle swarm algorithm depends on its popula-
tion size. The mean convergence time is also lower for the Nelder-Mead algorithm;
however, the particle swarm optimization algorithm achieves a higher function value
for all optimization runs.

The mean function evaluation time over one generation is 22.7 s for particle swarm
optimization. As the objective function for both optimizers is the same, the Nelder-
Mead algorithm requires the same time for function evaluation. One call of the for-
ward kinematics takes 0.02 s, measured as the mean over 500 samples.

Note, that the sampling size can be increased if computational power is not lim-
ited. This would lead to an increase in collaborative configurations. However, also
a low sampling size can indicate a robotic design that offers an improved triangula-
tion. Also, rotational symmetry within the workspace can be utilized to generate an
increase in collaborative configurations.

A selection of the particle swarm optimization algorithm over the Nelder-Mead
search is preferable to find the overall optimal design. The particle swarm algorithm
may be able to overcome a local minimum found here by the Nelder-Mead algo-
rithm. However, Nelder-Mead optimization may be preferable if computation time
is limited.
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Figure 28: Run time for one iteration and the mean convergence time for the Nelder-Mead
and particle swarm algorithms, respectively.

Figure 29 illustrates example collaborative configurations of the optimized robotic
arms for the first particle swarm optimization run with a triangulation of ϕ ∈

[90◦, 180◦] and end-effector distance dE < 5mm. Note, that the Euclidean end-effector
distance can be set to a different value dependent on the application.

6.5 conclusion and future work

This chapter presents a theoretical study towards the design of collaborative CTCR
for contactless tasks. The optimization problem could be extended to multiple ob-
jectives if required in the future. This could include specific workspace constraints
(manipulability, stability of the robots), or constraints for task deployment (body col-
lision between the two robotic arms). A different relative distance between the two
end-effectors or triangulation can be selected in the future but also variable relative
distances are accountable.

The collaboration of two CTCR accounts for various applications, as this approach
has the potential to reduce intervention time. Medical tasks could include, for in-
stance, tissue manipulation, knot tying, deployment of tools, or cameras. This further
enables the simultaneous performance of concurrent sub-tasks.

Most importantly, this study compares the performance of the particle swarm
optimization algorithm to Nelder-Mead optimization. Results show that the single-
objective particle swarm optimization algorithm results in higher objective function
values than the Nelder-Mead algorithm but requires more computation time. Even
though the proposed algorithm requires more function evaluations and time, it can
be advantageous for those applications that are defined by more parameters and
constraints. Particle swarm optimization has the potential to overcome local minima
to converge towards a global optimum in a multidimensional constrained search
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space. This study represents the first step to show the applicability of the particle
swarm optimization algorithm towards the design optimization of CTCR.

Figure 29: Collaborative configurations of the particle swarm design 1 with an optimal trian-
gulation and end-effector distance for cooperative tasks.





7
S T R U C T U R A L S T I F F N E S S A N D W O R K S PA C E O P T I M I Z AT I O N
C O N S I D E R I N G E X T E R N A L F O R C E S

This chapter applies the proposed methodology to the structural stiffness of CTCR
and their force absorption capabilities. It considers the overall design space includ-
ing the wall thickness and elastic modulus of the tubes. This is a multi-objective
optimization problem with conflicting objective functions, which aims to increase
workspace size while maintaining the structural stiffness of the tubes. The appli-
cation of external forces is inspired by medical interaction forces during surgery.
Further, force absorption capabilities within the overall workspace of the optimized
design are compared with two existing state of the art designs.

The presented optimization methodology enables the identification of parameters,
objectives, and constraints and utilizes the multi-objective particle swarm optimiza-
tion algorithm to solve the problem regarding multiple Pareto optimal solutions.
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7.1 motivation

This chapter considers the workspace and stiffness properties of CTCR. The aim is
to use the CTCR as a medical device. Some minimally invasive applications require
a large workspace of the robot to cover the overall surgical workspace (e.g. within
the abdomen or lungs). The inherent flexibility of the CTCR and a large workspace
extent are advantageous but the use of the CTCR as a medical device requires certain
stiffness capacities of the backbone. This applies particularly if the manipulator is
used for manipulation tasks in which it is exposed to external forces. To apply the
required manipulation forces during surgery, the CTCR must have a certain stiffness
and at the same time sufficient flexibility to cover a specific workspace.

Structural synthesis requires special attention since the stiffness of the CTCR is in-
fluenced by both geometrical and material properties. This parameter optimization
thus considers the entire parameter space of CTCR (lengths, diameters, curvatures,
and material parameters) to optimize the workspace size and provide the desired
stiffness for manipulation task performance. An optimal stiffness is achieved through
the optimization of the tube’s wall thickness and elastic modulus. External forces re-
sulting from manipulation tasks, which influence the shape of the robot backbone are
taken into account. To perform the desired manipulation task, the CTCR is equipped
with a tool at its end-effector, as illustrated in Figure 30.

Figure 30: CTCR equipped with a gripper at its tip for manipulation task performance. Ex-
ternal point forces F(s) are applied onto the robotic structure during task perfor-
mance.

CTCR have been proposed for various applications, however, the investigation of
manipulator stiffness and force absorption capabilities remain relevant and challeng-
ing research objectives. Forces in minimally invasive surgery have been investigated
in the sense of force feedback for other robotic systems. The authors in (U. Kim
et al., 2015) investigate pulling forces in minimally invasive surgery using a 4DOF
force sensor. A special tool with force measuring capabilities has been developed for
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their robot system to measure the pulling forces during manipulation. The measured
pulling forces of tissue depend on the gripper opening angle Ω, as illustrated in Fig-
ure 31, but the maximum forces are measured to be 1.45 N, 0.21 N, and 0.15 N in x,y,
and z-direction with a magnitude of 1.47 N. In the following, these pulling forces are
regarded as reference.

Ω

Fx

Fy

Fz

Figure 31: Pulling forces acting on the gripper in x,y,z-direction.

Thus far, different tube materials have been proposed for CTCR. These include the
superelastic shape memory alloy NiTi (Nickel-Titanium alloy), but also 3D printed
thermoplastic materials like PLA, PCL, and nylon (Amanov, Nguyen, and Burgner-
Kahrs, 2015; Morimoto and Okamura, 2016). This application might require materi-
als with higher stiffness, such as CuZnAl (Cooper-Zinc-Aluminum alloy) or CuAlNi
(Copper-Aluminium-Nickel alloy). These alloys exhibit a higher Elastic modulus
compared to NiTi and are thus stiffer. The elastic modulus E and strain rate ǫ are
depicted in Table 3 for different tube materials. The Poisson’s ratio is assumed to be
0.33 for metals. These are considered as tube material in the following.

Table 3: Material properties of different alloys. Based on (Huang, 2002; Jani et al., 2014)

Properties Elastic modulus E in GPa Strain rate ǫ

NiTi 28-83 8%

CuZnAl 70-100 4− 5%

CuAlNi 80-100 3− 5%

7.2 optimization problem

The aim is to determine optimal tube parameters of the CTCR to allow for an in-
creased workspace size while optimizing for a robotic design that exhibits enough
stiffness to absorb external manipulation forces. This is a problem with conflicting
objectives as stiffness and workspace size are inevitably competing. Here, the multi-
objective optimization methodology can be applied to optimize for workspace size
and stiffness simultaneously. The manipulation forces considered here are analogous
to the pulling forces mentioned in Section 7.1. In the context of this application, ex-
ternal manipulation forces F are applied to the tip of the unloaded robot g(s)⋆. This
point force application results in a deflection represented by the loaded backbone
g(s), illustrated in Figure 32. In summary, this optimization determines optimal



94 structural stiffness and workspace optimization considering external forces

robotic parameters to enlarge workspace size while minimizing the deflection ac-
cording to external forces within the workspace.

Figure 32: The unloaded g(s)⋆ and loaded CTCR g(s) with external point force F.

7.2.1 Contribution

This chapter applies the presented optimization methodology from Chapter 5 to the
structural stiffness and workspace optimization of CTCR. The optimization problem
presented here considers geometric, as well as material properties for the first time.
This includes the tube’s lengths, diameters, wall thickness, and material properties
of different shape memory alloys. Additionally, the consideration of external forces
within the design optimization procedure is novel to the state of the art. Two ob-
jectives are introduced that allow optimizing for an increased workspace, and the
minimization of the deflection according to external forces.

This thesis investigates the CTCR’s ability to withstand forces and examines the
relationship between stiffness versus flexibility. The robot is required to exhibit cer-
tain flexibility to increase workspace size while retaining enough stiffness to absorb
external forces.

In terms of stiffness, researchers investigate the patterning of tubes that can lead to
a different stiffness behavior in (Azimian et al., 2014; J. S. Kim et al., 2014; D. Y. Lee
et al., 2015). However, the authors concentrate on improved stability of the robot to
reduce friction between the tubes and snapping (rapid rotational motion of a tube)
during deployment. External forces are investigated in terms of force sensing, e.g.
in (R. Xu, Yurkewich, and Patel, 2016), using FBG force sensors. The authors aim to
measure curvature, torsion, and forces and develop a force-curvature-strain model
to incorporate their measurements into kinematic modeling. Force measurements
can be utilized in the future to account for robot-tissue interactions. In the context
of design optimization, this is the first work that considers the stiffness of the tubes
(diameter of the tubes and elastic modulus) within the design optimization proce-
dure. Additionally, external forces are included for the first time. This is essential to
determine a tube design that is eventually capable to withstand and absorb the occur-
ring external forces during manipulation. Further, two novel objective functions are
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presented. The first objective represents an approximation of the planar workspace
size of the CTCR, and the second objective characterizes the deflection according
to external forces. The formulation of two conflicting objective functions with the
application to multi-objective optimization is novel to the state of the art.

7.2.2 Parameters

The parameter space for this particular problem is diverse and the optimization
parameters are the

• inner diameter IDi,

• outer diameter ODi,

• tube curvature κi,

• tube curved length ℓci
,

• elastic modulus Ei with i ∈ [1, ...,n].

The elastic modulus corresponds to a specific alloy with the respective strain rate ǫ,
and Poisson’s ratio ν. The straight tube length ℓsi remains fixed during optimization
and n = 3.

7.2.3 Objectives

Objectives here aim to increase workspace size, as well as minimize the deflection ac-
cording to external forces. The objectives are conflicting, as an increase of workspace
size does not necessarily result in an increased stiffness to absorb the occurring ex-
ternal forces. In fact, an increased stiffness of the CTCR (with short tubes and max-
imum wall-thickness) and high corresponding force absorption capabilities leads to
a narrow and small workspace. Thus, the optimization problem is defined as multi-
objective

minimize y = f(x) = (f1(x), f2(x)) ,

where f1 describes the workspace size and f2 is the deflection as a result to external
manipulation forces. The conflicting objective functions f1 and f2 imply that there
exist no two solution vectors x and x∗, where (f1(x) ≺ f2(x

∗)) or (f2(x
∗) ≺ f1(x)).

Since the workspace size requires maximization and the deflection minimization, f1
is represented by a negative number. This enables the minimization of both objective
functions.

7.2.3.1 Objective Function f1

To determine the size of the workspace for a tube parameter set x (i.e. each particle)
and evaluate the cost y, the discretization approach is used for workspace approx-
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imation. The rotational parameters αi remain unactuated, while the translational
parameters are actuated using the following three sequences and intervals

1. β1 ∈ [−ℓ1,−ℓ2], β2 = −ℓ2, β3 = −ℓ3.

2. β1 ∈ [−ℓ2,−ℓ3], β2 ∈ [−ℓ2,−ℓ3], β3 = −ℓ3.

3. β1 ∈ [−ℓ3, 0], β2 ∈ [−ℓ3, 0], β3 ∈ [−ℓ3, 0].

These sequences are executed after one another. The size of the translational incre-
ments △β is set to 1 mm. For each sample q = [β1,β2,β3] the forward kinematics
(Cosserat rod modeling) is used to determine the space curve g(s)∗q. Note, that this
leads to a representation of end-effector positions in one plane, as the rotational pa-
rameters remain unactuated. The generated end-effector points represent the right
border of the workspace. The left border is represented by the z-axis (due to rota-
tional symmetry) and the top border is a line from [0, zmax] to [xmax, zmax]. This is
illustrated in Figure 33 (left). Using this discretization, the size of the workspace can
be approximated by computing the area of the polygon, which is defined by all bor-
der points. As the workspace of the CTCR exhibits rotational symmetry, the area of
the polygon WP can be an indicator for the size of the overall workspace as

f1(x) = WP.

This approximation requires considerably less computation time compared to a
three-dimensional random sampling-based approach.

7.2.3.2 Objective Function f2

Objective f2 accounts for the deflection of the backbone as a result of external forces

f2(x) =
1

N

N
∑

j=1

( 1

M

M
∑

d=1

|p∗

dj
−pdj

|
)

,

where M defines the number of equidistant backbone points of the unloaded p∗ and
of the loaded backbone p. The deflection is measured along the entire backbone to
obtain a measure that reflects the overall stiffness of the manipulator. N defines the
number of configurations. To determine the force absorption capabilities of the inves-
tigated parameter set, external forces are applied to the unloaded robot in tangential
direction at the tip to account for pulling forces, see Figure 33 (right). Here, the exter-
nal point forces are applied to the following configurations β1 = β2 = β3 = −ℓ3 and
β1 = β2 = β3 = 0, αi remain unactuated. These configurations represent examples
where the tubes are extended and the robot has a low load capacity.

7.2.4 Constraints

The geometric and material parameters of the CTCR impose constraints, as they have
to remain within their defined parameter space. The following constraints apply

• inner diameter IDi ∈ [IDimin , IDimax ],
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Figure 33: Planar workspace approximation. The red points mark the end-effector positions
generated through the discretization (left). Robot in its undeformed state with
external point force F in tangential direction to account for pulling forces (pointing
in z-direction of the local coordinate system) (right).

• outer diameter ODi ∈ [ODimin ,ODimax ],

• tube clearance c < cmin,

• tube curvature κi ∈ [κimin , κimax ],

• tube curved length ℓci
∈ [ℓcimin

, ℓcimax
],

• elastic modulus Ei ∈ [Eimin ,Eimax ].

Additionally, the overall design of the robot requires ID1 < OD1 < · · · < IDn <

ODn, c considers the minimum clearance between the tubes, κimax has to remain
below a certain threshold such that the material remains within the elastic region,
and the constraint for Ei depends on the Poisson’s ratio ν of the respective material
and vice versa. Further, κ1 > κ2 > κ3 and ℓc1

> ℓc2
> ℓc3

apply here.

7.3 implementation

Here, the particle swarm optimization algorithm considers multiple objectives f1
and f2. The decision vector is defined by the following set of parameters: xk =

[IDi,ODi, κi, ℓci
,Ei], with the inner and outer diameter, curvature, curved length,

and elastic modulus of each tube i respectively. As this problem has two conflict-
ing objectives, the concept of Pareto optimality is applied (see Chapter 5). The cost
of each particle is defined as y = [f1, f2]. The corresponding workflow of this op-
timization is presented in Figure 34. The input to the optimization algorithm are
parameters, objectives, and constraints. The constraints are robot-specific design pa-
rameters and the external forces F. During optimization, Cosserat rod modeling is
applied to determine the deflection of the robotic backbone according to the external
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forces. The output is a Pareto optimal set considering the two objective functions. A
solution is then manually selected from the front.

To enforce constraints of this problem the upper and lower boundary for each
parameter are considered. If a particle’s parameter exceeds this boundary, it is repo-
sitioned to the nearest value within the parameter space.

Figure 34: Design optimization workflow with preallocation, optimization, and output.

7.4 evaluation and results

The optimization methodology applied here aims to optimize the CTCR’s structural
stiffness, and workspace considering external forces. The first evaluation applies the
proposed algorithm, while the second evaluation investigates the force absorption
capabilities of the optimized design.

7.4.1 Workspace and Stiffness Optimization

The multi-objective particle swarm optimization algorithm is executed with P =

50 particles, T = 100 generations, inertia weight η = 1.4 and c1 = 1, c2 = 2. All
parameters are selected based on performance. r1 and r2 are real random numbers
∈ [0, 1]. The population size and inertia weight are increased in comparison to the
previous application, as this optimization problem is defined by a larger parameter
set. A higher inertia weight ensures a better exploration of the search space and an
increased population size ensures diversity. The global confidence c2 is increased for
the same reason.

Each particle is initialized on a uniform random distribution within parameter
constraints. Constraints are selected as: inner diameter IDi ∈ [0.2mm, 3.3mm], outer
diameter ODi ∈ [0.3mm, 3.5mm], lengths ℓci

∈ [50mm, 150mm], curvatures κi ∈

[0.005mm−1, κimax ], and elastic modulus Ei ∈ [60Gpa, 100GPa]. The minimum tube
clearance is c < 0.5mm, and the minimum wall thickness is 0.2 mm. The upper
boundary for the outer diameter of tube 3 is selected to be 3.5 mm, as a higher diam-
eter is not preferable for the intended applications of CTCR. κimax is either the maxi-
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mum allowed curvature to remain within the elastic region or defined as 0.06mm−1.
The upper and lower boundaries for the elastic modulus are selected based on the
presented materials in Table 3. For fabrication convenience, it is assumed that all
tubes are made from the same alloy. All other boundaries are empirically chosen.
The maximum curvature κimax is adjusted during optimization, as the outer diam-
eter is an optimization parameter. The straight section lengths are selected to be
ℓs1 = 150mm, ℓs2 = 100mm, and ℓs3 = 50mm, all empirically chosen.

Figure 35 illustrates the convergence behavior of the Pareto front for P = 50 parti-
cles after initialization, 10, 50, and 100 iterations. The Pareto front is depicted with
respect to the mean deflection of the robotic backbone and the planar workspace
size. Notice, that the particles on the front differ only slightly from 50 to 100 itera-
tions, which indicates that the front converges. The archive size is 10, 17, 26, and 30

particles, respectively.

Figure 35: Development of the Pareto front after 50 and 100 iterations with respect to planar
workspace size and deflection. Population size is selected to be P = 50.

The algorithm is executed for four optimization runs utilizing P = 50 particles.
Figure 36 illustrates the result and shows that the optimization algorithm results in
a similar Pareto optimal set after 100 iterations. The solutions distribute between the
two objective functions, which proves that they are conflicting.

Note, that the Pareto front is sparse for larger workspaces and deflections. This
could be explained by the fact that it is difficult for the algorithm to find solu-
tions with higher stiffness, as the outermost tube diameter and the elastic modulus
are constrained. The continuity of the front could potentially be increased through
larger population sizes. However, since a solution with a compromise between pla-
nar workspace size and deflection is sought, solutions with extreme function values
are not required.
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Figure 36: Four optimizations with P = 50 and T = 100. Objective function f1 represents
the planar workspace size and objective f2 the mean deflection. The figure on the
bottom illustrates all four optimizations.
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A solution is then selected from the front that represents a compromise between
workspace size and deflection, marked by a circle in Figure 36. The selected param-
eter set has a planar workspace size of 91 cm2 and a mean deflection with extended
tubes of 0.33 mm. All optimized tube parameters are illustrated in Table 4. Notice,
that the optimized design exhibits the maximum allowed outer diameter for tube 3.
The elastic modulus is 95GPa. This means that a different material than NiTi must
be selected as tube material.

The algorithm has been implemented in Matlab on an Intel Core i7-4790 3.60 GHz
and the computation time for 100 iterations was 22 h. The mean run time for one gen-
eration is 13 min, for function evaluation it is 14.18 s, to enforce constraints it is 4.2 ms.
To decrease computation time, the forward kinematics including external forces has
been compiled as C++ code and converted into Matlab executable commands. Over
100 calls of the function, execution takes 0.54 s on average with external forces.

Table 4: Optimized tube design parameters of the selected solution from the first Pareto front.

parameter tube 1 tube 2 tube 3

OD in mm 2.48 3.08 3.5

ID in mm 1.05 2.75 3.29

E in GPa 95 95 95

ℓc in mm 84 78 56

κ in mm−1 0.0297 0.0150 0.0095

7.4.2 Workspace Analysis

This section aims to investigate the stiffness and force absorption capabilities of the
selected and optimized design within the overall workspace. Further, it is compared
to two existing state of the art designs.

In particular, this considers the deflection of the CTCR’s backbone according to
external forces at the tip. The analysis proceeds as follows. ms×n uniform randomly
distributed samples are drawn for each configuration q. The space curve g(s)∗ for
each configuration q is then computed using Cosserat rod theory. Three-dimensional
external forces F with a magnitude of 1.47 N are applied to the tip of each backbone
g(s)∗. The force direction vector is randomly determined to point away from the
end-effector to account for a pulling force at the tip. The deflection between g(s)∗

and g(s) then accounts for the force absorption capabilities of the investigated tube
design. The deflection is defined as the sum of all Euclidean distances between each
point along g(s)∗ and g(s), where the points are equidistant along each curve.

The first CTCR design is from (Burgner, Swaney, Rucker, et al., 2011), which is opti-
mized for endonasal skull base surgery. The second design is from (Burgner, Gilbert,
and Webster III, 2013) and is optimized for transnasal surgery. All corresponding
design parameters are depicted in Table 5 and Table 6, respectively. In both appli-
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cations, the optimization parameters are the curvature and curved section length of
each tube respectively, where the outer tubes are selected to be only straight.

Table 5: Optimized tube design parameters for endonasal skull base surgery from (Burgner,
Swaney, Rucker, et al., 2011).

parameter tube 1 tube 2 tube 3

OD in mm 1.64 2.29 3.05

ID in mm 1.4 2.04 2.8

E in GPa 60 60 60

ℓc in mm 60.6 60.2 0

κ in mm−1 0.0185 0.0084 0

Table 6: Optimized tube design parameters for transnasal surgery from (Burgner, Gilbert,
and Webster III, 2013).

parameter tube 1 tube 2 tube 3

OD in mm 1.17 1.68 2.32

ID in mm 0.76 1.35 1.87

E in GPa 60 60 60

ℓc in mm 74.8 68.1 0

κ in mm−1 0.0128 0.0109 0

The analysis of the force absorption capabilities for all tube sets considering 100

configurations and external forces with a magnitude of 1.47 N is illustrated using box
plots. Figure 37 (left) represents the overall box plot and Figure 37 (right) illustrates
the deflection for the tube set for endonasal surgery in comparison to the optimized
tube set. The red line indicates the median values, the box upper, and lower quartiles,
the whiskers indicate the minimum and maximum values, and outliers are depicted
in red. Results show that the tube set for transnasal surgery exhibits the largest
deflections as a result of external forces. The tube set for endonasal skull base surgery
follows as the maximum deflection across all configurations is the second highest.
Overall, the optimized tube set exhibits the best force absorption capabilities. The
mean deflection for the tube set for endonasal skull base surgery is 5.2 mm, for
transnasal surgery it is 31.4 mm, and for the optimized design it is 1.4 mm. The
maximum deflection for the tube set for endonasal skull base surgery is 35.7 mm,
for transnasal surgery it is 146.61 mm, and for the optimized design it is 4.14 mm.
The design for transnasal surgery results in the largest deflections, as it has a lower
wall thickness and tube diameter. Further, the second design features long tubes that
lead to a higher deflection. Notice, that the optimized design has tubes with overall
higher curvature to increase the workspace extent in x/y-direction.

To investigate the workspace extent, its planar size is determined by the approx-
imation method proposed in this chapter. The result for all three tube designs is
depicted in Figure 38. Notice, that the optimized design exhibits the second largest
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Figure 37: Box plot for the deflection according to the applied external forces for all tube sets.
The red line indicates the median, the box upper and lower quartiles, the whiskers
indicate the minimum and maximum values, and outliers are depicted in red.

workspace extent. Its planar size is lower compared to the design for transnasal
surgery, as it represents a compromise between workspace size and deflection. To

Figure 38: Planar workspace approximation for all tube designs.

verify the proposed planar workspace approximation, 10,000 uniform random dis-
tributed samples for q are drawn to approximate the configuration space Q. The
corresponding end-effector positions and the planar workspace are illustrated in Fig-
ure 39. Notice, that the planar workspace represents the size of the randomly sam-
pled workspace for the tube design for endonasal surgery. The actual workspace size
for the optimized tube design is larger compared to the planar representation, as the
extent in z-direction is created by the rotation of tubes against one another. However,
the planar workspace approximation can be an indicator for the actual size if compu-
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Figure 39: Planar workspace representation and randomly sampled end-effector points in
blue for two robotic designs (endonasal skull base surgery and optimized design).

tational time is limited and time for function evaluation must remain at a minimum.
Further, the extent in x/y-direction is of higher interest, as the extent in z-direction
can be increased through an increase of straight section lengths. If computation time
is not limited, then the sampling of the configuration space or further discretization
including the rotation of the tubes is preferable.

5 example configurations for all investigated tube designs are depicted in Fig-
ure 40, Figure 41, and Figure 42, respectively. The unloaded backbone is depicted
in gray and the loaded backbone in blue. Randomly generated three-dimensional
forces with a magnitude of 1.47N are applied to the tip of the robot and result in
the illustrated deflections. Notice, that the optimized tube design exhibits only small
deflections.

Figure 40: Unloaded (gray) and loaded (blue) robotic configurations of the optimized tube
design for endonasal surgery.
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Figure 41: Unloaded (gray) and loaded (blue) robotic configurations of the optimized tube
design for transnasal surgery.

Figure 42: Unloaded (gray) and loaded (blue) robotic configurations of the first optimized
tube design.

7.5 conclusion and future work

The investigation of existing tube designs results in large deflections within the
workspace for some configurations. This proves the necessity to include parameters
that affect the robot’s stiffness into the optimization procedure. This chapter presents
the first work on design optimization of CTCR considering external forces and the
stiffness of the manipulator. It shows that the presented optimization methodology
applies to the structural stiffness optimization of CTCR. This is the first work to
consider the diameters and elastic modulus into the design optimization procedure.
The state of the art considers up to six design parameters for optimization, while
this optimization considers 13 parameters.
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Two conflicting functions are included in the procedure and a Pareto optimal set
is achieved. The solutions distribute between the two objective functions and the
development of the Pareto front proves that the two are conflicting. It demonstrates
that the algorithm can account for the multidimensional parameter space. Further,
the two objective functions are novel to the state of the art. The planar workspace
approximation can be utilized for various applications to limit computation time. It
can also be utilized to determine the reachability of a target.

Future work demands the consideration of tube materials with increased stiffness.
The selection of NiTi and especially 3D printed materials as tube material might not
be appropriate for those tasks that require high manipulation forces.

This means that control algorithms must consider the behavior of the robot under
external forces. Further, motion planning algorithms could avoid configurations that
exhibit low force absorption capabilities. Future research can investigate the effect of
external forces on the overall structure of the CTCR. Additionally, external moments
might occur during the intervention and can be incorporated in the future.



8
O P T I M I Z AT I O N F O R L A S E R - I N D U C E D T H E R M A L T H E R A P Y

This chapter presents the optimization of a CTCR for the specific application of laser-
induced thermal therapy (LITT) in the brain. In this case, the CTCR is employed as
a steerable laser probe and the robot design parameters are specifically optimized
to cover and destroy a tumor volume through laser activation. Further, application-
specific parameters are optimized, which are the number, location, and size of laser
ablations.

This example scenario utilizes real image data and demonstrates the optimization
process based on different patient datasets. It employs the presented data processing
methods to extract volumetric models from medical image data.

Further, it shows the extensibility of the algorithm to optimize for application-
specific parameters to solve a packing problem. The problem is formulated as multi-
objective and particle swarm optimization with a variable dimension of decision
vectors is applied.

Based upon:

Granna, J., Nabavi, A., & Burgner-Kahrs, J. (2017). Toward Computer-Assisted Planning for Interstitial

Laser Ablation of Malignant Brain Tumors using a Tubular Continuum Robot, MICCAI

Granna, J., Nabavi, A., & Burgner-Kahrs, J. (2018). Computer-Assisted Planning for a Concentric-Tube

Robotic System in Neurosurgery, International Journal of Computer Assisted Radiology and Surgery
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8.1 medical motivation

Laser-induced thermotherapy (LITT) in the brain is a minimally invasive surgical
procedure to denature tumor tissue through laser activation (Mensel, Weigel, and
Hosten, 2006). Prior to the intervention, stereotactic frames are attached to the pa-
tient’s head, and a straight laser probe is brought towards the tumor volume. Med-
ical imaging (MR-thermometry) is utilized to localize the target and monitor the
surrounding anatomical structures. As the invasiveness is low compared to conven-
tional approaches, the relatively new method has potential benefits over others. How-
ever, the method is restricted. Irregularly shaped, and large tumors require multiple
punctures to treat the overall volume. A steerable device that allows reaching the
tumor on a nonlinear path could broaden the scope of this surgical procedure. A
CTCR employed with a laser fiber within its inner lumen could maneuver towards
the tumor volume on a nonlinear path. The robotic design and laser ablations in the
brain are illustrated in Figure 43.

Other minimally invasive steerable devices have been proposed, e.g. in (Burdette
et al., 2010; Swaney et al., 2012), particularly for neurosurgical applications. These in-
clude an automatic laser ablation endoscope (Su, Tang, and Liao, 2015), a thermal or
laser ablation probe (Graves et al., 2012; Rezapour, Leuthardt, and Gorlewicz, 2016),
MRI-guided stereotactic neurosurgery (Li et al., 2015), and robot-assisted neurolog-
ical lasers (Motkoski et al., 2013). However, a system of a steerable laser probe for
LITT in the brain does not exist.

Figure 43: CTCR system composed of an outer delivery tube and an inner ablation guid-
ing tube housing the laser fiber (red) within its inner lumen. The laser fiber de-
posits energy (yellow) in a spherical region (reprinted from (Granna, Nabavi, and
Burgner-Kahrs, 2018), © 2018, with kind permission from Springer Nature).
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8.2 robotic system

8.2.1 Design and Configuration Space

For the application of LITT, the CTCR consists of two tubes. A straight tube is utilized
to deliver the inner curved tube on a straight path towards the tumor volume. Within
the inner lumen of the CTCR is the laser fiber to denature the tumor tissue, depicted
in Figure 43. The translation and rotation of each tube enable the precise positioning
of the laser fiber on a nonlinear path within the tumor volume. As the robot is
supposed to be monitored during the procedure using thermometry, the tubes are
considered to be made from the shape memory alloy NiTi, which has proven to be
MR- and biocompatible (Comber et al., 2016).

The design and configuration space of this CTCR is as follows: the curved tube is
composed of a straight section ℓs1 , and a curved section ℓc1

. The outer delivery tube
is only composed of a straight section ℓs2 , as illustrated in Figure 44. The configu-
ration space is q = [α,β1,β2], where α is the rotation of the inner tube, and β1,β2

the translation of the two tubes respectively, see Figure 45. These are subject to the
following constraints

β1 ∈ [β2 − (ℓc1
+ ℓs1 − ℓs2), 0] ,

β2 ∈ [−ℓs2 , 0] .

Figure 44: The inner tube is composed of a straight section ℓs1 , and a curved section ℓc1 . The
outer delivery tube is composed of a straight section ℓs2 .

8.2.2 Kinematics

The forward kinematics allows the computation of the shape of the robot for a config-
uration q. In this case, a geometric model can be applied (and utilization of Cosserat
rod theory is not necessary), as the robot is composed of only two tubes (one be-
ing straight), and the outer tube is much stiffer in comparison. Thus, torsion can be
neglected.

The coordinate system is defined, as illustrated in Figure 45: the z-axis is pointing
into the direction of the trajectory vector (which is defined by a point on the skull,
towards a point within the tumor volume), and the x- and y-axis are chosen to span
an orthogonal frame. The rotational 0◦ angle aligns with the negative y-axis.

The end-effector position of the CTCR is defined as e = [x,y, z]. It can be computed
utilizing the configuration depended lengths γi, see Figure 45. γ3 here defines the
length of the retracted laser fiber and depends on the selected laser probe design.
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Figure 45: Configuration space and kinematic parameters of the CTCR.

x = sin(α)
(
1− cos(κ1 γ2)

κ1
+ γ3 sin(κ1 γ2)

)
,

y = −cos(α)
(
1− cos(κ1 γ2)

κ1
+ γ3 sin(κ1 γ2)

)
,

z = γ1 +
sin(κ1 γ2)

κ1
+ γ3 cos(κ1 γ2) ,

with

γ1 = ℓs2 +β2 ,

γ2 = ℓs1 + ℓc1
+β1 − γ1 ,

where κ1 is the curvature of the inner tube. The inverse kinematics of this geometric
model can be determined numerically to determine a configuration q for a given
end-effector position e.

8.3 optimization problem

In the case of LITT, the CTCR would be utilized as a steerable laser probe to position
laser ablation objects within the tumor volume. It can be assumed that the ablation
objects are represented by geometrical objects (e.g. sphere, half-sphere, or ellipsoid),
depending on the heat distribution of the utilized laser probe. The aim for the po-
sitioning of laser ablation objects is that they cover the overall tumor volume. This
would mean that placing many overlapping ablation objects into the volume would
be the ultimate goal. However, this could lead to heat accumulations in some areas,
which can cause carbonization or gas formation. To prevent this, ablation objects
should overlap only slightly ensuring coverage of the tumor volume, but also avoid
complications of heat accumulations.

Regarding this specific application, another important aspect is to consider the in-
sertion point on the skull surface, and the trajectory towards the tumor volume (con-
sidering surrounding anatomical structures). Also, to position the ablation objects
within the tumor volume, the design of the CTCR needs to be taken into account. In
summary, this is an application- and robot-specific optimization problem, of

• placing ablation objects into the tumor volume considering their overlap and
coverage of the overall volume,

• and determining optimal tube parameters to place these ablation objects into
the volume.
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This also implies utilizing the forward kinematics model to determine the configura-
tion parameters of each evaluated robot design.

8.3.1 Contribution

Optimization of application and robot dependent parameters is essential for the use
of LITT, as manual placement of ablation objects cannot consider multiple objectives
at the same time. The problem of placing ablation objects into a volume is related
to the general problem of bin packing (Delorme, Iori, and Martello, 2015). However,
general bin packing algorithms do not consider the overlap between objects. They
usually only consider packing constraints, such as filling a volume with as many
bins as possible, so that the applied optimization approach handles a bin packing
problem with a new constraint. This packing problem is illustrated in Figure 46.

Figure 46: Regular bin packing problem (left) and packing problem for robot-assisted LITT
with overlapping objects. The remaining tumor volume is depicted in light pink
and the overlapping tumor volume in dark brown (right) (reprinted from (Granna,
Nabavi, and Burgner-Kahrs, 2018), © 2018, with kind permission from Springer
Nature).

Many researchers considered ablation planning over the past years. Most of these
algorithms concentrate on radiofrequency ablation, which include multi-objective
trajectory planning to treat liver (Baegert et al., 2007), or large tumors (Ren, Campos-
Nanez, et al., 2014), mixed variable optimization for maximum coverage and multi-
ple probe placements (Kapoor, Li, and Wood, 2011), optimization of electrode place-
ment via finite-element models for a fixed access point (Chen, Miga, and Galloway,
2009), and an algorithm for optimal probe placement based on the simulation of the
temperature within tissues (Altrogge et al., 2006), and under consideration of sur-
rounding anatomical structures (Audigier et al., 2017; McCreedy et al., 2006). The
authors in (Ren, Guo, et al., 2014) propose a genetic algorithm for coverage planning,
and (Tani et al., 2016) consider ablation margins within the MRI planning procedure.

The existing algorithms cannot be applied as they either cannot handle multiple
objectives, are specifically targeted towards radiofrequency ablation (which consid-
ers straight probes, or needles for multiple incisions into the brain), or cannot handle
the application and design optimization problem at the same time.

The presented optimization framework in Chapter 5 is applied to the specific prob-
lem of robot-assisted LITT to optimize for application-, as well as robot-specific pa-
rameters at the same time. It demonstrates the extensibility of the proposed frame-
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work, as the algorithm solves a bin packing problem. It utilizes medical images and
different patient datasets as input to the algorithm. Further, it demonstrates the ex-
tension towards a variable dimension of decision vectors.

8.3.2 Parameters

The parameters of this optimization problem can be categorized into application-
and robot-specific parameters. Application-specific parameters are the insertion point
on the skull, the trajectory vector towards the tumor, the number of ablation objects,
and their corresponding size and position. The robot-specific parameters are the
number of sequentially utilized inner tubes, and their corresponding curvature and
curved length. Sequential use of differently curved inner tubes potentially results in
more coverage of the tumor volume. These parameters are described by

• trajectory vector h,

• insertion point on the skull o,

• number of ablation objects na,

• size of ablation object sai
with i ∈ [1, ...,na],

• center point of an ablation object pi = [xi,yi, zi],

• sequentially used inner tubes d,

• tube curvature κ1j
with j ∈ [1, ...,d],

• tube curved length ℓc1j
with j ∈ [1, ...,d].

Note, that these only include parameters, which change during the optimization
procedure. However, more parameters could potentially be included to describe the
overall optimization problem (e.g. the tube diameters, or straight lengths). They are
assumed to remain fixed here to limit the complexity of the problem. Also, this
thesis considers spherical ablation objects. Other geometrically shaped ablations can
be considered, as well as their orientation.

8.3.3 Objectives

There exist multiple objective functions that define this optimization problem. It can
be further categorized into two sub-problems, which can be explicitly described as

1) The aim of this optimization problem is to minimize the remaining tumor vol-
ume (i.e. maximize coverage) while minimizing the overlap of adjacent ablation ob-
jects. Thus, this problem is defined as multi-objective. The two objectives are conflict-
ing, as minimization of one objective does not result in the minimization of the other.
The objective functions are f1 (minimization of tumor volume) and f2 (minimization
of ablation overlap) and can be stated as

minimize y = f(x) = (f1(x), f2(x)),
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where x defines the decision vector. The conflicting objective functions f1 and f2
imply that there exist no two solution vectors x and x∗, where (f1(x) ≺ f2(x

∗)) or
(f2(x

∗) ≺ f1(x)).
2) The second aim is to enable the CTCR to position the ablation objects into the

tumor volume. This implies that the number of ablation objects that are reachable by
the robot is maximized. This number is defined as the objective function f3 with

maximize y = f3(x).

8.3.4 Constraints

The application- and robot-specific parameters impose constraints, as they have to
remain within their defined parameter space. The following constraints apply

• number of ablation objects na ∈ [namin ,namax ],

• size of ablations sa ∈ [samin , samax ],

• sequentially used tubes d ∈ [dmin,dmax],

• tube curvature κ1 ∈ [κ1min , κ1max ],

• tube curved length ℓc1
∈ [ℓc1min

, ℓc1max
].

The set of surface data points GS and the voxelized grid representation GV of the
target volume need to be considered, such that all ablation center points pai

=

[xi,yi, zi] remain within tumor volume. Medical images (MRI) define anatomical
constraints for the insertion point o on the, and the trajectory vector h.

8.4 implementation

The implementation of the algorithm can be accounted for by two different ap-
proaches: 1) a combined optimization approach, where the algorithm optimizes
for application- and robot-specific parameters simultaneously, and 2) a separate ap-
proach, where the application- and robot-specific optimization is executed in two
steps. The combined optimization approach is illustrated in Figure 47, and the sep-
arate approach in Figure 48 and Figure 49. Both approaches utilize the concept of
Pareto optimality to optimize for multiple objective functions. The input to the two
approaches is identical: medical images (in this case MRI) and the segmented tumor
volume. The workflow of the two approaches is described as follows:

1) The combined optimization considers the definition of the insertion area on the
skull after medical image processing (e.g. by the surgeon or automatically), and the
trajectory towards the tumor volume can be computed as a next step (considering
anatomical constraints). Then, the optimization algorithm optimizes for application-
and robot-specific parameters simultaneously. The outcome of the algorithm is the
Pareto optimal set considering the two objective functions f1 and f2. The objective
function f3 is not considered in this approach and only required for the separate
optimization. The preferred solution from the front can then be selected automat-
ically, or manually by the surgeon. Every solution describes the ablation plan (i.e.
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Figure 47: Combined optimization (simultaneous application- and robot-specific optimiza-
tion).

number, position, size of ablation objects), and the corresponding CTCR parameters
(i.e. number of sequentially used tubes, curvature, length) for execution.

2) After medical data processing, the second approach considers the determination
of the application-specific parameters first and computes an optimal distribution of
ablation objects. The application-specific parameter optimization also considers the
two objective functions f1 and f2. The outcome of the algorithm is then a front of
optimal solutions with respect to f1 and f2. Again, the preferred ablation plan can
be selected automatically, or manually. Then, the surgeon could either select the
insertion area on the skull manually, or it can be optimized considering anatomical
structures. The trajectory to the tumor volume can be determined via the insertion
point. As the last step follows the second optimization with respect to one objective
f3. The robot-specific parameter optimization computes optimal robot parameters to
position the precomputed ablation objects into the tumor volume.

The combined optimization approach has the advantage that an optimized design
and ablation plan is available after one execution of the algorithm, while the sepa-
rate requires two steps. The separate approach simplifies the optimization problem
and reduces complexity, as fewer parameters must be optimized at once. This could
enable the implementation of differently shaped ablation objects, e.g. ellipsoids. The
planning requires to consider their orientation, which increases the complexity of
the problem.

8.4.1 Multi-Objective Particle Swarm Optimization with Variable Dimension

As presented in Chapter 5, the optimization approach in this thesis utilizes multi-
objective particle swarm optimization. In this specific case, a variable dimension of
each particle is selected. This is especially suited, as the dimension of the decision
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Figure 48: Separate optimization approach with application-specific optimization.

vector can be of variable length, i.e. the number of distributed ablation objects within
the tumor volume, or the number of sequentially utilized tubes does not have to be
fixed.

The combined optimization approach utilizes one multi-objective particle swarm
algorithm. The separate approach utilizes two sequentially applied particle swarm
optimization algorithms, where only the first one uses multiple objectives.

8.4.1.1 Combined Optimization Approach

The aim here is to optimize for application- and robot-specific parameters simultane-
ously. This implies that the representation of a particle differs from the separate opti-
mization approach. A particle xk is defined as xk = [o,h,d, ℓc1j

, κ1j
,na, xi,yi, zi, sai

],
where o is the insertion point on the skull, h is the trajectory vector, d is the number
of sequentially utilized tubes with curved length ℓc1j

and curvature κ1j
, j ∈ [1, ...,d].

Each tube is able to position a specific number of na ablation objects into the tumor
volume with position pai

= [xi,yi, zi] and size sai
, i ∈ [1, ...,na]. This approach

only requires the use of objective functions f1 and f2. Objective function f3 is only
required for the separate approach, as each ablation tube corresponds to a certain
number of ablation objects using the above-mentioned particle representation. To
determine a configuration qi corresponding to the position pai

= [xi,yi, zi] of an
ablation object i, the inverse kinematics must be solved.

To enforce constraints on the parameter space, the upper and lower boundaries
for d, ℓc1

, κ1,na, and sa are considered. If a value exceeds this boundary, it is repo-
sitioned to the nearest value within the parameter space. The insertion point o, and
the position of ablation objects pai

= [xi,yi, zi] are kept within the parameter space,
by considering the skull surface data points, and the surface dataset GS of the tumor
volume.
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Figure 49: Separate optimization approach with robot-specific optimization.

8.4.1.2 Separate Optimization Approach

Application-Specific The aim of the application-specific parameter optimization is
to determine an optimal number na of ablation objects with their position, i.e. cen-
terpoint pai

= [xi,yi, zi] within the tumor volume and size sai
, where i ∈ [1, ...,na].

The application-specific optimization utilizes the objective functions f1 (remaining
tumor volume) and f2 (ablation overlap). A particle is defined by xk = [xi,yi, zi, sai

],
where pai

= [xi,yi, zi] defines the ablation object’s position, and sai
defines their

size, with i ∈ [1, ...,na], and na being the number of ablation objects.

Robot-Specific To position the optimized ablation object distribution within the tu-
mor volume using the CTCR, design-specific parameters must be determined. Thus,
the particle swarm algorithm maximizes f3, which is the number of reachable ab-
lation objects. This implies that the number of ablation objects na, their position
pai

= [xi,yi, zi] and size sai
are fixed now and inputs to the robot-specific parame-

ter optimization to determine an insertion point o, a trajectory vector h, the number
of sequentially utilized tubes d, the curved length ℓc1

and curvature κ1 of the inner
tube. The decision vector is represented by xk = [o,h,d, ℓc1j

, κ1j
], with j ∈ [1, ...,d].

To determine whether the center point pai
= [xi,yi, zi] of an ablation object is

reachable by the tip of the CTCR, the inverse kinematics is solved numerically. If
the position is reachable, then e = pai

and a configuration q is found. The CTCR
within the tumor, a trajectory h, and the corresponding ablation object are depicted
in Figure 50.
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8.5 evaluation and results

To evaluate the proposed optimization approaches, real patient datasets are acquired
through manual segmentation of MRI images using 3D slicer (slicer.org). All patient
datasets are selected as representatives for irregular tumor geometries, depicted in
Figure 51.

Further, a safety margin δ is defined by the surgeon to be 6 mm to ablate over the
edge of the tumor to ensure maximum coverage. The voxel size vs is set to 2mm, as
the laser probe’s tip is of similar size, and the laser can thus be precisely positioned
within it (see existing LITT probes, e.g. Medtronic).

8.5.1 Combined Optimization Approach

The combined application- and robot-specific parameter optimization is evaluated
with 5 different patient datasets (tumor volumes). For each patient dataset, 3 different
trajectories are generated, which result in 15 trials in total. To generate different
trajectories, a surgeon places fiducials onto the skull to mark feasible insertion points
(considering anatomical structures). The trajectory vector h is then defined by the
vector pointing from an insertion point o to the closest direct neighbor (Euclidean
distance) to the centroid of the tumor volume.

As the insertion point o and the trajectory vector h are both inputs to the optimiza-
tion algorithm, they are not optimized for this evaluation. Further, the curved length
ℓc1

remains fixed during the optimization to lower the computational complexity.
The parameters optimized by the multi-objective particle swarm optimization algo-
rithm with variable dimension are xk = [d, κ1j

,na, xi,yi, zi, sai
].

The algorithm is executed using P = 20 particles, T = 500 generations, with an in-
ertia coefficient as η = 0.9, c1 = c2 = 2 to ensure a compromise between exploration
and exploitation, and r1 and r2 are real random numbers between 0 and 1. All pa-
rameters are selected based on performance, according to the principles mentioned
in Section 5.7.2. Due to the large parameter set, computational complexity is high,
such that the population size is set to a minimum of P = 20 particles. As mentioned
in (Coello Coello and Lechuga Salazar, 2002), the number of generations should be
at least 80, such that 500 generations are higher that the minimum required function
evaluations. Fixed parameters are set to ℓc1

= 30mm and ℓs1 = ℓs2 = 400mm, where
ℓ is selected according to the mean skull dimensions considering the different patient
datasets.

Each particle is initialized on a uniform random distribution regarding the fol-
lowing constraints of the optimization problem: d ∈ [1, 2], κ1 ∈ [19 mm−1, 1

15 mm−1],
na ∈ [4, 14], sa ∈ [3, 10] (all empirically chosen and κ selected to be within the elas-
tic strain region of NiTi). The center point pa = [xi,yi, zi] of an ablation object is
randomly placed into the tumor volume.

Three example Pareto fronts for patient datasets 1-3 for one trajectory into the tu-
mor volume are illustrated in Figure 52. The solutions of the front distribute between
the two objective functions f1 and f2. The Pareto front for patient dataset 4 for one
trajectory with respect to f1 and f2 is depicted in Figure 53. It further illustrates three
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Figure 50: CTCR within the tumor volume (orange), spherical ablation object with position
pai

(yellow), and trajectory vector h.

Figure 51: Five patient datasets as representatives for irregular tumor volumes.

different solutions selected from the front, which are 1) the solution with the lowest
remaining tumor volume, 2) the solution with the lowest remaining tumor volume
from a set of solutions with sphere overlap < 50%, and 3) the solution with the
least overlap between spheres from a set of solutions with remaining tumor volume
< 10%. All optimized spheres are of different size with a range between 3 mm and
10 mm radius. The number of sequentially used inner tubes is d = 1, and the inner
tube’s curvature is κ1 = 1/15mm−1 for all three solutions. The inverse kinematics
is solved geometrically, as this first approach does not consider the extension of the
laser fiber γ3 that otherwise requires to solve it numerically.

The run time for the illustrated patient trial 4 was 38 h on an Intel Core i7-4790

3.60 GHz using parallelization. The mean run time for one generation is 4 min. The
mean computation time over one generation for enforcing constraints is 14 s, 0.73 s
for objective function evaluation, and 0.6 ms for the geometrical inverse kinematics
(mean over 100 calls). The run time for enforcing constraints is relatively high, as not
only the parameter space of the tubes needs to be considered but also the position
of the spheres.

Figure 54 depicts two box plots for the percentage of remaining tumor volume and
ablation overlap across all patient trials for solution 1-3. Across all trials, solution
1 has the lowest mean remaining tumor volume, but also the highest overlapping
volume compared to the other two solutions. Solution 3 has the highest remaining
tumor volume and in contrary the lowest overlapping volume, as objectives are con-
flicting.
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Figure 52: Example Pareto fronts for patient datasets 1-3 for one single trajectory with respect
to the two objective functions ablation overlap and remaining tumor volume, both
in percent.

Figure 55 illustrates three Pareto optimal sets for patient dataset 5 for three dif-
ferent selected trajectories. Note, that the Pareto fronts distribute similar between
the two objectives functions. As the trajectories vary, the algorithm finds different
solutions. However, this plot proves the effectiveness of the selected algorithm.

Figure 56 illustrates the development of the Pareto front for patient dataset 5 for a
single trajectory. The Pareto optimal set is depicted after initialization, and after 50,
250, 500, and 1000 iterations. It is noticeable that the solutions improve after initial-
ization and the Pareto front converges after 500 generations. The Pareto optimal set
contains 8, 33, 25, 34, and 34 solutions after initialization, and iterations 50, 250, 500,
and 1000.

An experiment is then conducted, where two neurosurgeons select their preferred
solution from the front (out of the three prior selected ones) considering 10 trials (5
patient datasets and 2 different corresponding trajectories). The surgeons never se-
lect solution 1, solution 2 is selected 8 times, and solution 3 is selected 22 times. They
argue that approximately 10% remaining tumor volume is acceptable, as chemother-
apy after LITT treatment outweighs the risk of heat accumulation.



120 optimization for laser-induced thermal therapy

Figure 53: Pareto front for patient dataset 4 for one trajectory with respect to the two objective
functions ablation overlap and remaining tumor volume, both in percent. The
selected solutions from the front are marked by red circles (top) and the sphere
distribution is illustrated (bottom).

Figure 54: Box plots for the percentage of remaining tumor volume and ablation overlap for
solutions 1, 2, and 3 across all patient trials. The red line indicates the median, the
box upper and lower quartiles, the whiskers indicate the minimum and maximum
values, and outliers are depicted in red.
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Figure 55: Pareto fronts for patient dataset 5 for three different trajectories.

Figure 56: Distribution of the Pareto front for patient dataset 5 for a single trajectory. The
Pareto optimal set is depicted after initialization, and after 50, 250, 500, and 1000

iterations.
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8.5.1.1 Discussion

The expertise of two neurosurgeons proves reasonable results of the algorithm, con-
sidering that a remaining tumor volume of 10% is acceptable and can be treated
with chemotherapy. Solution 3, with a compromise between ablation overlap and
coverage, is selected most of the time so that an automatic solution selection from
the Pareto front can be performed for future simulations.

The manual ablation distribution inspection by the two neurosurgeons indicates
that the maximum number of ablation objects can be lowered. This would constrain
the optimization problem to generate fewer solutions with high overlap. Further, the
results indicate that sequential use of tubes is not necessary, as multiple solutions
with a single curved tube exist with reasonable coverage and low overlap.

Additionally, the convergence behavior of the Pareto optimal set indicates that
future evaluations should use more function evaluations for an improved outcome
but are limited here due to computational power.

8.5.2 Separate Optimization Approach

As the previous method optimizes for a specifically defined number of trajectories
(which are generated by the help of a neurosurgeon), this evaluation takes a differ-
ent approach. The aim is to evaluate the effectiveness of the algorithm and to deter-
mine, whether multiple trajectories from various directions into the tumor volume
can be taken to execute the optimized ablation plan. The separate optimization ap-
proach is evaluated considering three patient datasets (patients 3-5) and 50 randomly
generated trajectories. This subset is selected to be smaller, as the consideration of
additional trajectories is the focus of this evaluation.

8.5.2.1 Application-Specific

The particle swarm algorithm with variable dimension is executed with the two ob-
jective functions f1 and f2 using P = 50 particles, T = 1000 generations, inertia
coefficient η = 0.9, and c1 = c2 = 2. All parameters are selected based on perfor-
mance and convergence behavior. Further, application-specific optimization requires
less computation time, such that population size and function evaluations can be
increased. The position of a particle is initialized based on the following constraints
of the parameters: the number of ablation objects to na ∈ [3, 10] and their size to
sa ∈ [3mm, 10mm]. The initial center point pai

= [xi,yi, zi] of an ablation object is
randomly placed within the tumor volume. These intervals are defined by the sur-
geon. The number of ablation objects is set to a lower value, as previous results show
that neurosurgeons generally prefer fewer ablation objects.

The Pareto optimal solutions represent the outcome of the application-specific pa-
rameter optimization using the multi-objective particle swarm algorithm with vari-
able dimension. These are depicted in Figure 57 for patients 3-5. The solutions dis-
tribute from the objective function f1 (remaining tumor volume) to f2 (overlapping
volume), where all solutions are depicted in percent. Figure 58 illustrates one solu-
tion from the front for patient 3, 4 and 5 from different view angles. The solutions
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Figure 57: Pareto front with optimal solutions with remaining and overlapping tumor vol-
ume for patients 3, 4 and 5.

from the front are selected based on the previous results with approximately 10%
remaining tumor volume. Solution 1 exhibits 7 spherical ablation objects, solution
2 has 5, and solution 3 is defined by 8 spherical ablation objects. All spheres are of
different size with a range between 3 mm and 10 mm radius.

The mean run time on an Intel Core i7-4790 3.60 GHz was 169 min across all
patient trials using parallelization. The following computation times are determined
for patient 4. The mean run time for one generation is 28.23 s and 10.16 s in parallel.
The mean computation time over one generation for enforcing constraints is 0.21 s
and 0.22 s for objective function evaluation.

Figure 59 illustrates the development of the Pareto front for patient dataset 4 after
initialization, and 50, 250, 500, and 1000 iterations. The archive size is 7, 31, 35, and
52 respectively and shows a large increase from 500 to 1000 iterations.

To prove the performance of the algorithm, the optimization is repeated for patient
dataset 4. The Pareto fronts for all three optimizations are depicted in Figure 60.
Results show that the algorithm results in the same Pareto fronts in two out of three
cases. For the third optimization run, results are similar for low ablation overlap
and low remaining tumor volume but spread further apart for extreme function
values. This indicates that the selection of higher population size or an increase of
the inertia weight could be appropriate to ensure sufficient exploration of the search
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Figure 58: The selected solution (to have 10 % remaining tumor volume but less overlap)
from the front from different view angles for patient 3, 4, and 5.

space. However, as the selected solution from the front represents a compromise
between ablation overlap and remaining tumor volume, extreme function solutions
are not a necessity and the algorithm can be executed with the selected parameters
for this evaluation.

The performance of the algorithm is then tested using a larger population. Fig-
ure 61 illustrates the Pareto fronts for P = 50 particles for the three optimization
runs for T = 1000 in gray and the Pareto front in yellow with P = 80 particles. Re-
sults show that performance can be improved with a larger population. Figure 62

illustrates the Pareto fronts for P = 50 particles for the three previous optimization
runs for T = 1000 in gray and the Pareto front in yellow with P = 80 particles
for T = 500. It is noticeable that the optimization with increased population size
and T = 500 outperforms the optimization with fewer particles and T = 1000. This
demonstrates the effectiveness of an increase in population size.
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Figure 59: The development of the Pareto front for patient 4 after initialization, and 50, 250,
500, and 1000 iterations.

Figure 60: Pareto fronts for three optimization runs with respect to ablation overlap and
remaining tumor volume for patient 4 and T = 1000.
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Figure 61: Pareto fronts for four optimization runs with respect to ablation overlap and re-
maining tumor volume for patient 4 and T = 1000. The Pareto optimal set for
P = 50 particles (different shades of gray) and for P = 80 (yellow).

Figure 62: Pareto fronts for four optimization runs with respect to ablation overlap and re-
maining tumor volume for patient 4. The Pareto optimal set for P = 50 particles
and T = 1000 (different shades of gray) and for P = 80 and T = 500 (yellow).
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8.5.2.2 Robot-Specific

The particle swarm algorithm with one objective f3 is then executed optimizing for
ℓc1

and κ1. d is set to 1, as previous results show that one sequentially utilized tube
is sufficient to cover the overall tumor volume. The fixed lengths are again set to
ℓs1 = ℓs2 = 400mm, according to the mean skull dimensions. Each particle is defined
by a certain insertion point on the skull ok and trajectory vector hk. This leaves 50

different trajectories, as the algorithm is executed with 50 particles. All trajectories
are initialized by selecting points from the set of tumor surface points randomly.

The following variables are again initialized based on performance: P = 50 parti-
cles, T = 100 generations, inertia coefficient η = 0.9 and c1 = c2 = 2. The number
of function evaluations is reduced, as the complexity of the robot-specific optimiza-
tion is lower compared to the previous optimization problems. The inner tube’s
diameter is set to 2mm based on existing commercial laser probes. A particle is
initialized on a uniform random distribution regarding: ℓc1

∈ [10mm, 15mm] and
κ1 ∈ [1/13mm−1, 1/20mm−1] (κ selected to be within the elastic strain region of
NiTi.

Results show that it is possible to treat the tumor volume using various trajectories:
out of k = 50 generated trajectories, 43 can be utilized to distribute the spherical
ablation objects into the tumor volume of patient 3, 38 for patient 4, and 37 for
patient 5. This implies that a successful CTCR design is found with an optimized
length ℓc1

and curvature κ1. The trajectories for patient 1 are depicted in Figure 63

from different view angles. It is noticeable that various directions into the tumor
volume can be taken.

As a representative example case, a neurosurgeon selected an anatomically feasible
trajectory (regarding anatomical constraints and surrounding structures) from the
overall set of trajectories for patient 4. The corresponding insertion point on the skull
and the tumor volume are illustrated within the MR-images for a representative 2D
and 3D view in Figure 64. To visualize representative configurations of the CTCR,
Figure 65 illustrates example configurations to position the spherical ablation objects
within patient 4 considering one selected trajectory.

Figure 63: Optimized trajectories into the tumor volume for patient 4 from different view
angles (reprinted from (Granna, Nabavi, and Burgner-Kahrs, 2018), © 2018, with
kind permission from Springer Nature).

In this case, the extension of the laser fiber γ3 is considered, such that the inverse
kinematics had to be solved numerically using fmincon in MATLAB (i.e. numerical
determination of the configuration q for a corresponding end-effector position e).
The mean run time across all three patient trials on an Intel Core i7-4790 3.60 GHz
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Figure 64: A manually selected insertion point with corresponding trajectory by the surgeon
from the overall set. MRT slice and 3D view (left and right) (reprinted from
(Granna, Nabavi, and Burgner-Kahrs, 2018), © 2018, with kind permission from
Springer Nature).

Figure 65: Different view angles of the optimized configurations of the CTCR for one ex-
ample trajectory to reach all 7 sphere center points of patient 4 (reprinted from
(Granna, Nabavi, and Burgner-Kahrs, 2018), © 2018, with kind permission from
Springer Nature).

was 69 min. The mean run time on an Intel Core i7-4790 3.60 GHz was 169 min
across all patient trials using parallelization. The following computation times are
determined for patient 4. The mean run time for one generation is 59 s. The mean
computation time over one generation for enforcing constraints is 0.08 ms, 1.29 s for
objective function evaluation, and 57 ms for the numerical inverse kinematics (mean
over 100 calls). Figure 66 depicts a box plot for the optimized curved lengths ℓc1

and
curvature κ1 across all trails, where the red line indicates the median values, the
box upper and lower quartiles, the whiskers indicate the minimum and maximum
values, and outliers are depicted in red.

The curved length ℓc1
is optimized with values between 10.3 mm and 13.8 mm, and

the curvature κ1 between 0.05mm−1 and 0.077mm−1 across all patients. Note, that
the upper limit of ℓc1

= 13.8mm can be selected for future designs, assuming that the
straight tube is much stiffer than the inner tube. This would imply that the curved
part of the inner tube is retracted into the outer tube to remain straight. Further,
the upper curvature limit of 0.077mm−1 is selected by the algorithm in some cases.
This characterizes the curvature where the maximum strain limit is reached for NiTi.
Theoretically, if a different material with a higher strain limit would be selected, or
tube patterning would be performed, more trajectories could be feasible.
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8.5.2.3 Discussion

Results demonstrate that the separate optimization approach achieves reasonable
solutions and less than <10% remaining tumor volume and sufficient coverage can
be achieved. Automatic solution selection can be performed in the future, which
might be a preferred option if time is limited before the intervention.

The Pareto fronts for some of the results indicated that solutions are sparse to-
wards extreme function values. An increase of solutions close to extreme function
values can be achieved by an increased exploration of the search space. This can be
obtained by an increase of the inertia weight, more confidence of the personal best
influence, or a larger population. However, solutions close to extreme function val-
ues are not always necessary. In the case of LITT, the preferred solution represents a
compromise between both cost functions. Further, the convergence for the separate
optimization approach and application-specific optimization can be improved by an
increase in population size.

Various trajectories into the tumor volume can be taken to distribute the optimized
ablation plan. Here, 50 trajectories have been tested for feasibility. Testing more tra-
jectories would possibly result in even more feasible ones. As there exist multiple
paths into the tumor volume, the surgeon could select the preferred trajectory vector
in the future, or a planning tool can easily navigate around anatomical structures
that have to be avoided.

Note, that the robot-specific optimization problem for the separate approach does
not necessarily require the use of particle swarm optimization due to the low com-
plexity of the problem. For generality, particle swarm optimization has been applied
to both.

8.6 conclusion and future work

A multi-objective particle swarm optimization algorithm with variable dimension
is applied to the design- and application-specific parameter optimization of CTCR.
This is the first robotic application, where particle swarm optimization with variable
dimension is utilized. Further, this chapter presents two optimization approaches
(combined and separate application- and robot-specific optimization) to optimize
the optimization parameters specific to LITT. The algorithm proves its effectiveness,
as multiple solutions distribute on the Pareto front between the two objective func-
tions and several optimizations for a single patient dataset result in a similar dis-
tribution. However, convergence behavior and an increase of the Pareto optimal set
could potentially be achieved through larger population sizes or adaption of the
inertia weight and global confidence within the swarm. Further, neurosurgeons in-
vestigated the planning distribution of spherical ablation objects within the tumor
volume and multiple trajectories are feasible for task performance. This proves the
feasibility of the concept for steerable LITT using a CTCR.

Other parameters can be included in the future to describe the optimization prob-
lem. From a clinical point of view, the optimization parameters could account e.g. for
a specific set of ablation tubes (that are readily available within the OR), different ab-
lation geometries (half-spheres, ellipsoids), effects from laser-tissue interaction, the
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Figure 66: Optimized curved length ℓc1 and curvature κ1 across all patients and trajectories.
The red line indicates the median, the box upper and lower quartiles, the whiskers
indicate the minimum and maximum values, and outliers are depicted in red
(reprinted from (Granna, Nabavi, and Burgner-Kahrs, 2018), © 2018, with kind
permission from Springer Nature).

non-homogeneous convection of ablative energy (due to heat sinks, or convection
barriers through carbonization in multiple overlapping areas), or surrounding criti-
cal structures.

This application demonstrates that the proposed optimization method is capable
to handle different parameters, objectives, and constraints, which can be adapted
using the presented approach in Chapter 5. If further demonstrates the extensibility
of the algorithm towards the optimization of application-specific parameters and bin
packing.
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C O N C L U S I O N

9.1 contribution

In summary, this thesis presents a methodology for the parameter optimization and
structural synthesis of CTCR. The main contributions, considering the research ques-
tions of this doctoral thesis, are

1) Classification and Formulation of the Structural Design Optimization Problem

of CTCR that can handle different problems and patients.
This work formulates the structural design optimization for CTCR and classifies

the parameter space, objectives, and constraints that apply to example applications
in minimally invasive surgery. Further, an optimization methodology and workflow
to handle different patient datasets is presented. The applicability to different patient
datasets is shown in the context of LITT.

This thesis proposes a multi-objective particle swarm optimization algorithm with
variable dimension for the structural design optimization of CTCR. This work hy-
pothesizes that the proposed algorithm has the potential to cope with the structural
design optimization of CTCR. It has been successfully applied to three different sce-
narios and has proven its performance compared to a single-objective Nelder-Mead
algorithm for the design optimization of two cooperative robotic arms. Further, it has
been extended towards application-specific parameter optimization in the context of
LITT (the bin packing of unequal spheres) and applied to a multidimensional struc-
tural design optimization problem for medical task performance. The extensibility to
a variable dimension of decision vectors is a feature of the algorithm to handle prob-
lems where the dimension of the parameter optimization space is not known a priori.

2) Consideration of the Multidimensional Parameter Space that includes the length,
diameter, wall thickness, curvature, and elasticity of the tubes. The general optimiza-
tion methodology is formulated to account for various design parameters and does
not limit its number. Further, the decision vector of the optimization problem can be
of variable dimension approaching infinite options.

The CTCR design-specific parameters include the geometrical design (straight and
curved section length, diameter, wall thickness, and curvature), as well as material
parameters that consider the elastic modulus, the recoverable strain rate, the Pois-
son’s ratio, and the shear modulus. The state of the art does not yet consider ma-
terial parameters and tube diameters. Additionally, application-specific parameters
can also be handled by the algorithm, as the application of laser-induced thermal
therapy has shown, where design- as well as application-specific parameters are con-
sidered for optimization.

The inclusion of external forces into the optimization procedure and consideration
of stiffness and material properties are targeted for the first time. It is a necessity to
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bring CTCR closer to the real application.

3) Consideration of Heterogeneous and Conflicting objects.

This work defines homogeneous, heterogeneous, non-conflicting, and conflicting
objectives and formulates key objective functions. The concept of Pareto optimality
is applied that considers the dominance of some solutions over others to achieve
a Pareto optimal front of solutions and a Pareto optimal set. This is an addition
to the state of the art that mostly utilize scalar error metrics for optimization, non-
conflicting objectives, and the application of weighting methods. Further, the combi-
nation of different objectives is described in the concept of parameter optimization
for CTCR. Considering the applications in this thesis, two conflicting objectives are
selected for the structural stiffness design optimization and laser-induced thermal
therapy in the brain.

In summary, this thesis presents a parameter optimization methodology for the
structural design optimization of CTCR with the application of a multi-objective par-
ticle swarm optimization algorithm with variable dimension.

9.2 future work

9.2.1 Investigation of further CTCR-specific Characteristics

To bring CTCR closer to real applications, further parameters require attention and
need to be investigated in the future. This includes the consideration of kinematic
measures into the design optimization procedure. These are singularities and ma-
nipulability, as well as other kinematic and dynamic performance measures that are
considered as objectives in other robotic applications. As they are tied to motion
planning strategies, they are not considered in the scope of this work but can be
incorporated in the future (Baykal, Bowen, and Alterovitz, 2018; Baykal, Torres, and
Alterovitz, 2015; Bergeles and P. E. Dupont, 2013; Fellmann and Burgner-Kahrs, 2015;
Kuntz, Torres, et al., 2015; Leibrandt, Bergeles, and Yang, 2017; Torres and Alterovitz,
2011).

Further, the incorporation of stability measures could enable an advanced and
safer performance of the CTCR during deployment (Gilbert, Rucker, and Webster
III, 2016; Ha, Park, and Dupont, 2016; Hendrick, Gilbert, and Webster III, 2015b;
Webster III, Okamura, and Cowan, 2006; R. Xu, Atashzar, and Patel, 2014). However,
the inclusion of stability measures is not a necessity, as the control of CTCR could
prevent snapping behavior.

The stiffness and elasticity behavior of CTCR based on patterning of the tubes is
neglected in this thesis (J. S. Kim et al., 2014; D. Y. Lee et al., 2015). Specific patterns
have the potential to increase stability and stiffness while remaining inherent flexibil-
ity. These characteristics can be included in the parameter optimization in the future
to advance force or moment absorption. Further, this work investigates tubes with
straight and curved sections. The utilization of helically shaped tubes can be ben-
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eficial in some medical procedures (e.g. cochlear implant surgery, hippocampus in
the brain), where the trajectory can be approximated by a helix. These tubes further
allow for follow-the-leader behavior, which enables safe navigation through tight
lumen (Gilbert, Neimat, and Webster III, 2015). Further, the optimization of non-
constant curvature tubes can have potential benefits, as they have improved stability
behavior. Thus, the sudden release of friction between the tubes can be reduced,
which allows for safer navigation.

9.2.2 Algorithm Improvement

The computational efficiency of the algorithm requires improvement to enable real-
time optimization of application-specific parameters during intervention or if time is
limited before surgery and an optimal CTCR design set is instantly required. The op-
timization for specific sets of tubes that are ready for use in the hospital can also be
incorporated in the future. The computational efficiency can be improved if perfor-
mance criteria within the particle swarm optimization are optimally selected, as they
influence the exploration and convergence of the algorithm. This requires extensive
statistical analysis of the minimum number of generations, population size, inertia
weight, and the influence of the personal versus global confidence within the swarm.
The analysis would have to be performed based on multiple CTCR applications to
determine if there exist rules on how to optimally select these performance criteria
based on the number of parameters or objectives. Learning-based approaches uti-
lizing large sets of medical data (different patient dataset) and statistical measures
can further advance the parameter optimization of CTCR. Also, there exist differ-
ent options to enforce the constraints of the parameter space. These include random
repositioning of the particle, truncation at the boundary or reflection at the bound-
ary. This implementation can affect the performance behavior of the algorithm and
requires investigation in the future.

As sensing-based knowledge of the robot’s pose is currently of research interest
(B. Kim et al., 2014; Ryu and Dupont, 2014; Vandini et al., 2015; R. Xu, Yurkewich,
and Patel, 2016), future optimization methods could include sensor data into the op-
timization to compute application-specific parameters during the intervention. Fur-
ther, the incorporation of advanced motion planning strategies for obstacle avoidance
would be beneficial to find feasible sets of tubes (Baykal, Bowen, and Alterovitz, 2018;
Baykal, Torres, and Alterovitz, 2015; Bergeles and P. E. Dupont, 2013; Kuntz, Torres,
et al., 2015; Torres and Alterovitz, 2011). One of the key aspects that would advance
the optimization procedure, is the incorporation of an inverse kinematic approach
(that still requires intensive research) to determine the reachability of the manipula-
tion site.

In conclusion, this is the first work that presents a design optimization framework
that helps to identify the key parameters, objectives, and constraints to solve the
structural design problem of CTCR for various applications. It considers the overall
parameter space, conflicting objectives, and external forces for the first time. Specifi-
cally, the applicability of a multi-objective particle swarm optimization algorithm is
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investigated. The algorithm is successfully applied to three problems and has the po-
tential to be utilized for other scenarios. Additionally, the methodology can handle
different patient datasets. This work can be a future guideline for engineers to cope
with multi-objective design problems of CTCR.
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