7,418 research outputs found

    Prediction of Human Trajectory Following a Haptic Robotic Guide Using Recurrent Neural Networks

    Full text link
    Social intelligence is an important requirement for enabling robots to collaborate with people. In particular, human path prediction is an essential capability for robots in that it prevents potential collision with a human and allows the robot to safely make larger movements. In this paper, we present a method for predicting the trajectory of a human who follows a haptic robotic guide without using sight, which is valuable for assistive robots that aid the visually impaired. We apply a deep learning method based on recurrent neural networks using multimodal data: (1) human trajectory, (2) movement of the robotic guide, (3) haptic input data measured from the physical interaction between the human and the robot, (4) human depth data. We collected actual human trajectory and multimodal response data through indoor experiments. Our model outperformed the baseline result while using only the robot data with the observed human trajectory, and it shows even better results when using additional haptic and depth data.Comment: 6 pages, Submitted to IEEE World Haptics Conference 201

    Assistive Planning in Complex, Dynamic Environments: a Probabilistic Approach

    Full text link
    We explore the probabilistic foundations of shared control in complex dynamic environments. In order to do this, we formulate shared control as a random process and describe the joint distribution that governs its behavior. For tractability, we model the relationships between the operator, autonomy, and crowd as an undirected graphical model. Further, we introduce an interaction function between the operator and the robot, that we call "agreeability"; in combination with the methods developed in~\cite{trautman-ijrr-2015}, we extend a cooperative collision avoidance autonomy to shared control. We therefore quantify the notion of simultaneously optimizing over agreeability (between the operator and autonomy), and safety and efficiency in crowded environments. We show that for a particular form of interaction function between the autonomy and the operator, linear blending is recovered exactly. Additionally, to recover linear blending, unimodal restrictions must be placed on the models describing the operator and the autonomy. In turn, these restrictions raise questions about the flexibility and applicability of the linear blending framework. Additionally, we present an extension of linear blending called "operator biased linear trajectory blending" (which formalizes some recent approaches in linear blending such as~\cite{dragan-ijrr-2013}) and show that not only is this also a restrictive special case of our probabilistic approach, but more importantly, is statistically unsound, and thus, mathematically, unsuitable for implementation. Instead, we suggest a statistically principled approach that guarantees data is used in a consistent manner, and show how this alternative approach converges to the full probabilistic framework. We conclude by proving that, in general, linear blending is suboptimal with respect to the joint metric of agreeability, safety, and efficiency

    Modelling Adaptation through Social Allostasis: Modulating the Effects of Social Touch with Oxytocin in Embodied Agents

    Get PDF
    Social allostasis is a mechanism of adaptation that permits individuals to dynamically adapt their physiology to changing physical and social conditions. Oxytocin (OT) is widely considered to be one of the hormones that drives and adapts social behaviours. While its precise effects remain unclear, two areas where OT may promote adaptation are by affecting social salience, and affecting internal responses of performing social behaviours. Working towards a model of dynamic adaptation through social allostasis in simulated embodied agents, and extending our previous work studying OT-inspired modulation of social salience, we present a model and experiments that investigate the effects and adaptive value of allostatic processes based on hormonal (OT) modulation of affective elements of a social behaviour. In particular, we investigate and test the effects and adaptive value of modulating the degree of satisfaction of tactile contact in a social motivation context in a small simulated agent society across different environmental challenges (related to availability of food) and effects of OT modulation of social salience as a motivational incentive. Our results show that the effects of these modulatory mechanisms have different (positive or negative) adaptive value across different groups and under different environmental circumstance in a way that supports the context-dependent nature of OT, put forward by the interactionist approach to OT modulation in biological agents. In terms of simulation models, this means that OT modulation of the mechanisms that we have described should be context-dependent in order to maximise viability of our socially adaptive agents, illustrating the relevance of social allostasis mechanisms.Peer reviewedFinal Published versio

    Show, Attend and Interact: Perceivable Human-Robot Social Interaction through Neural Attention Q-Network

    Full text link
    For a safe, natural and effective human-robot social interaction, it is essential to develop a system that allows a robot to demonstrate the perceivable responsive behaviors to complex human behaviors. We introduce the Multimodal Deep Attention Recurrent Q-Network using which the robot exhibits human-like social interaction skills after 14 days of interacting with people in an uncontrolled real world. Each and every day during the 14 days, the system gathered robot interaction experiences with people through a hit-and-trial method and then trained the MDARQN on these experiences using end-to-end reinforcement learning approach. The results of interaction based learning indicate that the robot has learned to respond to complex human behaviors in a perceivable and socially acceptable manner.Comment: 7 pages, 5 figures, accepted by IEEE-RAS ICRA'1
    corecore