1,509 research outputs found

    Recuperação de informação multimodal em repositórios de imagem médica

    Get PDF
    The proliferation of digital medical imaging modalities in hospitals and other diagnostic facilities has created huge repositories of valuable data, often not fully explored. Moreover, the past few years show a growing trend of data production. As such, studying new ways to index, process and retrieve medical images becomes an important subject to be addressed by the wider community of radiologists, scientists and engineers. Content-based image retrieval, which encompasses various methods, can exploit the visual information of a medical imaging archive, and is known to be beneficial to practitioners and researchers. However, the integration of the latest systems for medical image retrieval into clinical workflows is still rare, and their effectiveness still show room for improvement. This thesis proposes solutions and methods for multimodal information retrieval, in the context of medical imaging repositories. The major contributions are a search engine for medical imaging studies supporting multimodal queries in an extensible archive; a framework for automated labeling of medical images for content discovery; and an assessment and proposal of feature learning techniques for concept detection from medical images, exhibiting greater potential than feature extraction algorithms that were pertinently used in similar tasks. These contributions, each in their own dimension, seek to narrow the scientific and technical gap towards the development and adoption of novel multimodal medical image retrieval systems, to ultimately become part of the workflows of medical practitioners, teachers, and researchers in healthcare.A proliferação de modalidades de imagem médica digital, em hospitais, clínicas e outros centros de diagnóstico, levou à criação de enormes repositórios de dados, frequentemente não explorados na sua totalidade. Além disso, os últimos anos revelam, claramente, uma tendência para o crescimento da produção de dados. Portanto, torna-se importante estudar novas maneiras de indexar, processar e recuperar imagens médicas, por parte da comunidade alargada de radiologistas, cientistas e engenheiros. A recuperação de imagens baseada em conteúdo, que envolve uma grande variedade de métodos, permite a exploração da informação visual num arquivo de imagem médica, o que traz benefícios para os médicos e investigadores. Contudo, a integração destas soluções nos fluxos de trabalho é ainda rara e a eficácia dos mais recentes sistemas de recuperação de imagem médica pode ser melhorada. A presente tese propõe soluções e métodos para recuperação de informação multimodal, no contexto de repositórios de imagem médica. As contribuições principais são as seguintes: um motor de pesquisa para estudos de imagem médica com suporte a pesquisas multimodais num arquivo extensível; uma estrutura para a anotação automática de imagens; e uma avaliação e proposta de técnicas de representation learning para deteção automática de conceitos em imagens médicas, exibindo maior potencial do que as técnicas de extração de features visuais outrora pertinentes em tarefas semelhantes. Estas contribuições procuram reduzir as dificuldades técnicas e científicas para o desenvolvimento e adoção de sistemas modernos de recuperação de imagem médica multimodal, de modo a que estes façam finalmente parte das ferramentas típicas dos profissionais, professores e investigadores da área da saúde.Programa Doutoral em Informátic

    Analysis of biomedical and health queries: Lessons learned from TREC and CLEF evaluation benchmarks

    Get PDF
    International audienceBACKGROUND:Inherited ichthyoses represent a group of rare skin disorders characterized by scaling, hyperkeratosis and inconstant erythema, involving most of the tegument. Epidemiology remains poorly described. This study aims to evaluate the prevalence of inherited ichthyosis (excluding very mild forms) and its different clinical forms in France.METHODS:Capture - recapture method was used for this study. According to statistical requirements, 3 different lists (reference/competence centres, French association of patients with ichthyosis and internet network) were used to record such patients. The study was conducted in 5 areas during a closed period.RESULTS:The prevalence was estimated at 13.3 per million people (/M) (CI95\%, [10.9 - 17.6]). With regard to autosomal recessive congenital ichthyosis, the prevalence was estimated at 7/M (CI 95\% [5.7 - 9.2]), with a prevalence of lamellar ichthyosis and congenital ichthyosiform erythroderma of 4.5/M (CI 95\% [3.7 - 5.9]) and 1.9/M (CI 95\% [1.6 - 2.6]), respectively. Prevalence of keratinopathic forms was estimated at 1.1/M (CI 95\% [0.9 - 1.5]). Prevalence of syndromic forms (all clinical forms together) was estimated at 1.9/M (CI 95\% [1.6 - 2.6]).CONCLUSIONS:Our results constitute a crucial basis to properly size the necessary health measures that are required to improve patient care and design further clinical studies

    Understanding, Categorizing and Predicting Semantic Image-Text Relations

    Full text link
    Two modalities are often used to convey information in a complementary and beneficial manner, e.g., in online news, videos, educational resources, or scientific publications. The automatic understanding of semantic correlations between text and associated images as well as their interplay has a great potential for enhanced multimodal web search and recommender systems. However, automatic understanding of multimodal information is still an unsolved research problem. Recent approaches such as image captioning focus on precisely describing visual content and translating it to text, but typically address neither semantic interpretations nor the specific role or purpose of an image-text constellation. In this paper, we go beyond previous work and investigate, inspired by research in visual communication, useful semantic image-text relations for multimodal information retrieval. We derive a categorization of eight semantic image-text classes (e.g., "illustration" or "anchorage") and show how they can systematically be characterized by a set of three metrics: cross-modal mutual information, semantic correlation, and the status relation of image and text. Furthermore, we present a deep learning system to predict these classes by utilizing multimodal embeddings. To obtain a sufficiently large amount of training data, we have automatically collected and augmented data from a variety of data sets and web resources, which enables future research on this topic. Experimental results on a demanding test set demonstrate the feasibility of the approach.Comment: 8 pages, 8 Figures, 5 table

    Use Case Oriented Medical Visual Information Retrieval & System Evaluation

    Get PDF
    Large amounts of medical visual data are produced daily in hospitals, while new imaging techniques continue to emerge. In addition, many images are made available continuously via publications in the scientific literature and can also be valuable for clinical routine, research and education. Information retrieval systems are useful tools to provide access to the biomedical literature and fulfil the information needs of medical professionals. The tools developed in this thesis can potentially help clinicians make decisions about difficult diagnoses via a case-based retrieval system based on a use case associated with a specific evaluation task. This system retrieves articles from the biomedical literature when querying with a case description and attached images. This thesis proposes a multimodal approach for medical case-based retrieval with focus on the integration of visual information connected to text. Furthermore, the ImageCLEFmed evaluation campaign was organised during this thesis promoting medical retrieval system evaluation

    Multimodality Representation Learning: A Survey on Evolution, Pretraining and Its Applications

    Full text link
    Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at https://github.com/marslanm/multimodality-representation-learning

    Generating semantically enriched diagnostics for radiological images using machine learning

    Get PDF
    Development of Computer Aided Diagnostic (CAD) tools to aid radiologists in pathology detection and decision making relies considerably on manually annotated images. With the advancement of deep learning techniques for CAD development, these expert annotations no longer need to be hand-crafted, however, deep learning algorithms require large amounts of data in order to generalise well. One way in which to access large volumes of expert-annotated data is through radiological exams consisting of images and reports. Using past radiological exams obtained from hospital archiving systems has many advantages: they are expert annotations available in large quantities, covering a population-representative variety of pathologies, and they provide additional context to pathology diagnoses, such as anatomical location and severity. Learning to auto-generate such reports from images presents many challenges such as the difficulty in representing and generating long, unstructured textual information, accounting for spelling errors and repetition or redundancy, and the inconsistency across different annotators. In this thesis, the problem of learning to automate disease detection from radiological exams is approached from three directions. Firstly, a report generation model is developed such that it is conditioned on radiological image features. Secondly, a number of approaches are explored aimed at extracting diagnostic information from free-text reports. Finally, an alternative approach to image latent space learning from current state-of-the-art is developed that can be applied to accelerated image acquisition.Open Acces

    Image Annotation and Topic Extraction Using Super-Word Latent Dirichlet

    Get PDF
    This research presents a multi-domain solution that uses text and images to iteratively improve automated information extraction. Stage I uses local text surrounding an embedded image to provide clues that help rank-order possible image annotations. These annotations are forwarded to Stage II, where the image annotations from Stage I are used as highly-relevant super-words to improve extraction of topics. The model probabilities from the super-words in Stage II are forwarded to Stage III where they are used to refine the automated image annotation developed in Stage I. All stages demonstrate improvement over existing equivalent algorithms in the literature

    Semantic multimedia modelling & interpretation for search & retrieval

    Get PDF
    With the axiomatic revolutionary in the multimedia equip devices, culminated in the proverbial proliferation of the image and video data. Owing to this omnipresence and progression, these data become the part of our daily life. This devastating data production rate accompanies with a predicament of surpassing our potentials for acquiring this data. Perhaps one of the utmost prevailing problems of this digital era is an information plethora. Until now, progressions in image and video retrieval research reached restrained success owed to its interpretation of an image and video in terms of primitive features. Humans generally access multimedia assets in terms of semantic concepts. The retrieval of digital images and videos is impeded by the semantic gap. The semantic gap is the discrepancy between a user’s high-level interpretation of an image and the information that can be extracted from an image’s physical properties. Content- based image and video retrieval systems are explicitly assailable to the semantic gap due to their dependence on low-level visual features for describing image and content. The semantic gap can be narrowed by including high-level features. High-level descriptions of images and videos are more proficient of apprehending the semantic meaning of image and video content. It is generally understood that the problem of image and video retrieval is still far from being solved. This thesis proposes an approach for intelligent multimedia semantic extraction for search and retrieval. This thesis intends to bridge the gap between the visual features and semantics. This thesis proposes a Semantic query Interpreter for the images and the videos. The proposed Semantic Query Interpreter will select the pertinent terms from the user query and analyse it lexically and semantically. The proposed SQI reduces the semantic as well as the vocabulary gap between the users and the machine. This thesis also explored a novel ranking strategy for image search and retrieval. SemRank is the novel system that will incorporate the Semantic Intensity (SI) in exploring the semantic relevancy between the user query and the available data. The novel Semantic Intensity captures the concept dominancy factor of an image. As we are aware of the fact that the image is the combination of various concepts and among the list of concepts some of them are more dominant then the other. The SemRank will rank the retrieved images on the basis of Semantic Intensity. The investigations are made on the LabelMe image and LabelMe video dataset. Experiments show that the proposed approach is successful in bridging the semantic gap. The experiments reveal that our proposed system outperforms the traditional image retrieval systems

    Modeling and Visualization of Drama Heritage

    Get PDF
    corecore