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Abstract

Development of Computer Aided Diagnostic (CAD) tools to aid radiologists in pathology de-

tection and decision making relies considerably on manually annotated images. With the ad-

vancement of deep learning techniques for CAD development, these expert annotations no

longer need to be hand-crafted, however, deep learning algorithms require large amounts of

data in order to generalise well. One way in which to access large volumes of expert-annotated

data is through radiological exams consisting of images and reports. Using past radiological

exams obtained from hospital archiving systems has many advantages: they are expert annota-

tions available in large quantities, covering a population-representative variety of pathologies,

and they provide additional context to pathology diagnoses, such as anatomical location and

severity. Learning to auto-generate such reports from images presents many challenges such as

i



the difficulty in representing and generating long, unstructured textual information, accounting

for spelling errors and repetition or redundancy, and the inconsistency across different anno-

tators. In this thesis, the problem of learning to automate disease detection from radiological

exams is approached from three directions. Firstly, a report generation model is developed

such that it is conditioned on radiological image features. Secondly, a number of approaches

are explored aimed at extracting diagnostic information from free-text reports. Finally, an

alternative approach to image latent space learning from current state-of-the-art is developed

that can be applied to accelerated image acquisition.
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Chapter 1

Introduction

1.1 Motivation

Computer aided detection (CADe) and diagnosis (CADx) systems are tools designed to assist

radiologists in the interpretation of medical images such as x-rays, MRIs and ultrasound. Early

CAD systems were developed in order to combat fatigue that radiologists experience from

interpreting large volumes of images, as well as human error that may occur in the interpretation

of these images [11]. Traditional CADe tools relied on hand-crafted image features tailored

to specific tasks, and their purpose was to highlight these features, or abnormalities, to the

radiologist, who ultimately made the diagnostic judgement [12, 13, 14, 15]. CADx tools go

one step further and attempt to classify these image features, for instance, classifying nodule

features into benign or malignant [16, 17, 18]. Modern-day CAD systems can incorporate both

detection and diagnosis in order to optimise the work-flow of radiologists and thereby reduce

reading time, as well as improve the accuracy and consistency of diagnoses [19, 20]. A typical

CAD scheme will incorporate one or more of the following: 1) image preprocessing, such as

noise reduction, contrast and exposure levelling 2) image segmentation into anatomical regions

such as organs, tissue types or possible lesions; 3) quantitative analysis of regions of interest or

abnormalities, such as form, size, location; 4) evaluation/classification of image features [21].

Techniques used in developing CAD diagnosis tools began with rule-based approaches [22, 23,

1
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24] that relied on computing filters and using anatomical knowledge to select for filter responses.

These filters and if-then reasoning relied on a number of assumptions about the data, which

may not be valid in every situation to which they are applied. Statistical and machine learning

approaches, such as feature selection methods and classifiers, can be given a range of features,

with fewer assumptions on which features will result in a ‘better’ prediction [25, 26, 18, 27].

The choice of features is still an important part of machine learning approaches, and hand-

crafting them will still introduce bias. Additionally, even with the most comprehensive feature

extraction techniques, there is an unavoidable loss of underlying information from the images.

With the increase in computational power and the availability of larger volumes of imaging data

from picture archiving and communication systems (PACS) of increasingly higher resolution

quality, recent approaches have begun to adopt deep learning (DL) techniques [28, 29, 30]. Deep

learning refers to a subset of machine learning algorithms that use multiple layers of artificial

neural networks to extract features of increasing levels of abstraction by iteratively updating

the weights of the network with respect to a pre-defined task. In this way, DL does away with

the need for domain knowledge and hand-crafted features and instead, learns to extract features

directly from the images.

Observer performance studies are generally in agreement that CAD systems improve the sen-

sitivity, specificity and AUC of a radiologist’s diagnosis [31, 32, 33, 34]. They do, however,

have their limitations. Hand-crafted image features and radiologists’ expertise as ground truth

introduce human bias. DL algorithms reduce some of this bias by removing the need for man-

ual feature engineering and can instead learn an intermediate image space, potentially even

learning features not previously considered by radiologists. However, DL algorithms are still

trained on human-labeled ground-truths, and therefore require much larger databases in order

to generalise well. Without large and diverse training data, DL algorithms are liable to suffer

from overfitting, whereby the networks learn features unique to the data they are trained on,

and perform poorly on unseen data. Additionally, supervised training algorithms require task-

specific expert annotations, sometimes more than is required as part of the diagnostic process,

as in the case of segmentation. It is therefore an additional time-consuming task for radiol-

ogists to create annotations of the quality required for supervised DL. The annotations may
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also require updating when applying the algorithms to different populations, or once imaging

techniques advance.

This thesis demonstrates how data gathered as part of hospital data management, specifically

radiological images and their corresponding free-text reports, can be used as part of a supervised

learning framework in order to automate the generation of diagnostics from unseen radiological

images. This has potential uses as part of a CAD tool for assisting radiologists in making

diagnoses, and additionally framing the diagnoses in a textual report that summarises the

visual features of the pathologies in a similar style to that of a radiologist. The motivation

for using PACS databases directly is two-fold: firstly, given the necessary permissions (e.g.

ethical approvals since patient data is identifiable in clinical PACS), they are available in large

quantities and can be gathered from many hospitals, and secondly, ‘ground-truth’ diagnostics

are gathered as part of radiological exams in the form of diagnostic reports and so dispenses

the need for manual image annotation.

There are, of course, still practical challenges to consider in gathering data from PACS for the

purpose of automated diagnostics generation: a large, standardised, representative and fully

characterised set of examples is required. Collecting standardised patient data is difficult as data

gathering protocols vary across institutions, contain manually recorded ‘free-text’ information,

and reports are typically unstructured and possibly incomplete and/or contain errors. There

has been a push to introduce structured reporting systems into the workflow of radiologists to

improve consistency and reproducibility, which in turn would benefit data mining and machine

learning [35, 36, 37]. However, these systems are difficult for radiologists to adopt into their

workflow as they tend to require more time, as well as limit the level of expression and detail

a radiologist can provide [38]. Acquiring fully representative data is challenging due to the low

prevalence of certain diseases, but also due to biases introduced when data is acquired from

one hospital, or specific geographical regions. Fully-characterised patient data may consist of

multiple modalities: radiological images (multi-modality and multi-view), radiologist reports,

lab reports, patient history, interviews and physician’s notes. These may be incomplete for many

patients, and conversely, many of these features may have no diagnostic value and introduce

unnecessary noise.
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Even with structured and standardised diagnostic reports, there are challenges in designing a

report generation model based on supervised learning. Firstly, in order to learn to generate

reports from a radiological image, the image must be encoded in such a way that the encoding

retains semantic information - for instance, the pathology present in the image and its anatom-

ical location. This is a challenge as most work on generating image embeddings is done for

the purpose of classification and segmentation, meaning we cannot directly take advantage of

pre-trained models for transfer learning. Secondly, given a semantically-rich image space, the

report generation model must balance learning a syntactic language model (a grammatically

coherent structure) as well as a semantic model where the generated words are conditioned on

image features.

It is also important to consider whether a syntactic language model needs to be learned at

all, and whether it is more prudent to approach this as a classification task whereby disease

labels are extracted from the reports as an intermediate step, and assigned as class labels to the

images. The main challenges in this approach are that extracting disease labels from free-text

reports made by humans is not a simple case of using regular expressions: radiologists have

many ways of describing the same disease, or a disease may be referred to in multiple ways.

Additionally, one disadvantage of extracting only disease labels is that we lose all the contextual

and visual information about the disease, for instance its severity, visual characteristics, and

anatomical location, all of which is useful knowledge when making a differential diagnosis.

1.2 Thesis overview

The goal of achieving an effective supervised framework from radiological exams is approached

from three main directions:

• The challenge of learning a text generation model that is conditioned on radiological

image features

• The challenge of distilling diagnostic information from free-text reports to be assigned as

image label
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• The challenge of encoding radiological images such that the embedding space retains

semantic information.

To begin with, in Chapter 3 the focus is on investigating encoder-decoder image captioning mod-

els that are trained to generate diagnostic reports from radiological image representations. The

‘encoder’ portion of the model can either be an encoder of images, (for instance, using a CNN

to encode images into dense representations), or a multi-modal encoder of image-text (using a

CNN and RNN). The decoder portion then takes this representation as input and generates an

output, in this case, the diagnostic report. Different encoder-decoder configurations are con-

sidered in this chapter, beginning with encoding the images into a single image feature vector

using a CNN pre-trained on natural images (due to the low availability of labeled radiological

images). These image embeddings are then incorporated into an RNN sequence learning model

either by initialisation, concatenation at the input, or concatenation at the output. Each regime

was trained and evaluated on single and multi-view radiological image datasets, with varying

degrees of report complexity. In the same chapter, this work was extended by exploring im-

age captioning frameworks that aim to capture dynamic (attention-based) and location-specific

image representations. This is motivated by the fact that using lower-level image features and

recurrent attention over these features provides a richer input to the sequence learning model.

The next challenge addressed by this thesis in Chapter 4 and Chapter 5 is the extraction of

diagnostic information from free-text radiological reports. This is useful for many further appli-

cations, including image retrieval, image classification and image captioning tasks. Two concept

extraction approaches are explored and compared: a combination of ontological and statisti-

cal tools for classification label extraction, and abstractive text summarisation using machine

learning. Chapter 4 describes the statistical and ontological approach: a series of off-the-shelf

tools were used to extract findings from images, grouped using clustering of word represen-

tations, and then assigned as image labels for image classification. Chapter 5 then explores

mapping the free-text reports into a summary of findings using abstractive text summarisation

techniques. In this thesis, a summary report is defined as one that is vocabulary controlled and

contains pathologies present in the image(s), their anatomical location, and visually-descriptive
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features. The reasoning behind this structure is that it these concepts directly correspond to

visual features in the image and are more suitable for image-captioning tasks than free-text

reports. In addition, they are consistent with the natural reporting methods of radiologists,

and so can be used as part of a CAD tool in daily reporting.

The last challenge addressed in this thesis in Chapter 6 is the challenge of capturing semantic

information in the image space. The assumption that pre-trained CNN classification networks

extract task-agnostic features is certainly compelling, however, it can be improved upon. The

goal of this chapter is to explore the use of autoencoders for encoding images into a latent

space to be used for report generation. The use of an autoencoder for this task is two-fold:

autoencoders can be used in an unsupervised way to learn a dense representation of the image

for report generation, and the same network can be used in conjunction with an auxiliary task

of denoising such that report generation can be performed on noisy or aliased images. This is

particularly useful in magnetic resonance imaging (MRI), where scans can take hours, but can

be sped up through sampling in the frequency space. This approach of report generation from

latent space is evaluated on brain diffusion-weighted MRI of stroke patients, where diagnosis

of an ischaemic stroke is time-sensitive. The method is first evaluated on pre-processed 2D

axial slices, and then on the full 3D brain images. The results showed that image embeddings

taken from the latent space of an autoencoder trained on the dual task of classification and

reconstruction out-performed the attention network on report generation, even at high image

acceleration rates. The results on 3D images were poorer than for 2D slices, however, it demon-

strated that reports can be generated from highly-accelerated 3D images without the need for

pre-trained networks.

1.3 Contributions

The main contributions of this work are as follows:

• Investigation into optimal multi-view encoder-decoder image captioning configurations

for radiological image report generation.
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• Evaluation of report generation methods when trained on vocabulary-controlled, struc-

tured versus varied and unstructured raw reports.

• Investigation into combined techniques of statistical ontological tools for label extraction

from radiological reports.

• Evaluation of report label extraction methods on radiological image classification.

• Application of abstractive text summarisation to radiology reports in order to map raw

reports into vocabulary-controlled summaries of key pathologies and their visual descrip-

tions.

• Investigation into an alternative approach to image latent space learning for the task of

accelerated image report generation through the use of autoencoders.

1.4 Publications

One of the techniques described in Chapter 3 was first published in a study done on knee

X-ray report generation: Gasimova, A. (2017). Automated Knee X-ray Report Generation, In

NeurIPS Workshop on Machine Learning for Health, 2017.

The deep learning-based model for concept extraction described in Chapter 5 and consequent

report generation described in Chapter 3 was published in a study that first used annotated

reports to train a model for concept extraction, and then used the extracted concepts for chest

X-ray report generation: Gasimova, A. (2019). Automated enriched medical concept generation

for chest X-ray images. In Interpretability of Machine Intelligence in Medical Image Computing

and Multimodal Learning for Clinical Decision Support (pp. 83-92). Springer, Cham.

The latent space learning for accelerated report generation described in Chapter 6 was pub-

lished in a study on report generation for brain diffusion weighted imaging: Gasimova, A., See-

goolam, G., Chen, L., Bentley, P., Rueckert, D. (2020, October). Spatial Semantic-Preserving

Latent Space Learning for Accelerated DWI Diagnostic Report Generation. In International
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Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 333-342).

Springer, Cham.

1.5 Datasets

The datasets necessary to evaluate automated radiology report generation from images must

contain expert-generated radiology reports that can be used as a ground-truth. The Indiana

University Chest X-ray collection (IU-CX) [2] is suitable for this as it is a collection of outpatient

examinations with associated free-text radiology reports. Additionally, the text reports were

manually annotated by two experts with MeSH terms [39], supplemented by Radiology Lexicon,

RadLex [40], codes. These annotations were made according to the principles outlined in NLM

Indexing Manual and Technical Memoranda [41]: using MeSH terms with qualifiers (such as

MeSH term ‘lung’ with qualifier ‘upper lobe’), where available in the free-text reports. These

vocabulary-controlled, semi-structured annotations are suitable for the second task in this thesis

of evaluating automatic extraction of diagnostic information from free-text reports, explored in

Chapter 5.

A second dataset of brain-DWI examinations and radiology reports was available from Imperial

College local hospitals. This dataset was also suitable for the evaluation of automated radiology

report generation as the DWI reports were manually parsed to extract 1-2 sentences summaris-

ing the findings in the image, which, for stroke patients, is limited to determining whether there

has been an ischaemic stroke or haemorrhage, and if so, where and to what extent. The scope

of the pathology, and therefore the diversity of the language, is therefore less diverse than for

the IU-CX (which report on all possible chest abnormalities). Therefore, even though they

do not have expert annotations, they do have a potential to be parsed by a non-expert in an

semi-automated way to extract and categorise brain regions, explored in Chapter 4.
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1.5.1 Indiana University Chest X-ray Dataset

The Indiana University Chest X-ray collection (IU-CX) [2] is available publicly from the Na-

tional Library of Medicine [1]. This dataset consists of 3,955 exams and 7,470 images from

the hospital’s picture archiving systems. Each exam contains a posteriranterior (PA) chest

X-ray view, an associated radiological report, and a series of Medical Subject Heading anno-

tations (MeSH R©) all made by qualified radiologists. Some exams have additional images such

as a second PA and/or a lateral chest X-ray view. Exams have all been fully anonymised

to remove patient names and any identifiable information. Reports are made up of Indi-

cation: symptoms, Findings : visual features noted by the radiologist in the X-ray scan,

and Impression: pathology diagnosis. MeSH annotations are (with some exceptions) format-

ted as [finding0/description0, ...findingn/descriptionn] where description is a combination of

anatomy/position/severity. An example of a full exam consisting of two PA view and one lat-

eral view chest X-ray images, together with the full radiological report and MeSH annotations

is illustrated in Figure 1.1. The ‘XXXX’ characters represent redacted information.

The Basic Interpretation guide by Smithuis and van Delden from the Radiology Department

of the Rijnland Hospital [4] proposes a systematic inside-out approach to interpreting chest

X-rays: examining first the heart, then mediastinum and hili, followed by lungs, lungborders

and finally the chest wall and abdomen. If abnormalities are identified, a pattern approach

is used to come up with the most likely differential diagnosis. Lung abnormalities typically

present as areas of increased density and can be split into the following patterns: consolida-

tion (small airways fill with dense material), atelectasis (lung collapse), nodule or mass, and

interstitial (scarring), see Figure1.2. The pleura (membrane covering the lungs) are examined

for opacification, which can indicate pleural effusion or masses, and shape/displacement, which

can indicate a pneumothorax. In the case of the heart, only the outer contours are visible

on an X-ray, hence the main findings are either that the heart is normal or enlarged. The

mediastinum and hili are also examined for displacement. Chest wall abnormalities are iden-

tified by rib deformation (typically due to old rib fractures) or metastases in vertebral bodies

and ribs. Abdominal abnormalities can be identified by examining the diaphragm, where an
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Indication: XXXX-year-old male, XXXX.
Findings: There is XXXX increased opacity within the right upper lobe
with possible mass and associated area of atelectasis or focal consolidation.
The cardiac silhouette is within normal limits. XXXX opacity in the left
midlung overlying the posterior left 5th rib may represent focal airspace dis-
ease. No pleural effusion or pneumothorax. No acute bone abnormality.
Impression: 1. Increased opacity in the right upper lobe with XXXX as-
sociated atelectasis may represent focal consolidation or mass lesion with
atelectasis. Recommend chest CT for further evaluation. 2. XXXX opacity
overlying the left 5th rib may represent focal airspace disease.
MeSH annots. 1. Opacity, lung, lingula; 2. Opacity, lung, upper lobe,
right 3. Pulmonary atelectasis, upper lobe, right

Figure 1.1: Sample chest X-ray exam from IU-CX [2]

unusual positioning of the diaphragm can suggest free abdominal air.

With this prior information, the findings in the reports can be grouped according to the patterns

they present, as opposed to the diagnosis. The motivation for this is that a pattern may be

caused by any number of different diseases, and diagnosing the disease is typically based on a

number of other observations. In addition, the disease diagnostic made by a radiologist is not

confirmed in the report itself, and hence cannot be treated as a ground-truth annotation for

the purpose of supervised learning from reports.

A list of finding labels was created by compiling the finding terms of the MeSH annotations,

i.e. any word(s) that were not anatomical location. Where a finding was made up of two or

more words, they were combined into one label, such as ‘pulmonary atelectasis’. There were 94

finding labels identified, the top 20 of which are are listed in Table 1.1 with respective occurrence

frequency. The finding terms include a mixture of abnormal patterns and possible diagnoses. In

the example in Figure 1.1, opacity and pulmonary atelectasis are general abnormal patterns. An
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Figure 1.2: Patterns of lung abnormalities resulting in increased density on chest X-rays [4]
.

example of a disease diagnosis MeSH term in Table 1.1 would be ‘calcified granuloma’, as this

appears as a mass on the X-ray. Another example, ‘airspace disease’, can be be recognised with

a pattern of consolidation and lung collapse in the lobes of the lung. The ability to recognise

these patterns and their locations guides the diagnostic process, hence the 94 finding labels

were grouped either under patterns or diagnoses, as per the distinctions outlined by Smithuis

and van Delden [4]. The full list of MeSH terms and their groupings are listed in Appendix .1

Table 1.

A simplified subset of the IU-CX dataset was created by selecting exams with one MeSH pattern

annotation, and therefore, assuming the radiologist’s interpretation is correct, only one main

abnormality is present in the image(s). Statistics of the chest X-ray dataset’s free-text reports

and MeSH annotations is summarised in Table 1.2. The description terms were also categorised

into one of anatomy/position/severity based on a radiological medical dictionary [42]. These
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categorisations of terms are only used for evaluation and not for training purposes. Sample

labels and their categories are listed in Table 1.3.

normal 1357 deformity 125
opacity 512 atherosclerosis 125
cardiomegaly 347 airspace disease 124
calcinosis 332 catheters indwelling 122
pulmonary atelectasis 330 scoliosis 119
calcified granuloma 277 nodule 117
cicatrix 196 granulomatous disease 107
markings 168 surgical instruments 105
pleural effusion 161 fractures bone 93
density 129 aorta thoracic 90

Table 1.1: Top 20 most commonly occurring MeSH findings, taken from MeSH annotations of
the IU-CX images [1].

Exams Vocab Avg. s/e Avg. t/e STD t/e
IU-CX free-text 3,741 2088 5.81 44.60 22.20
IU-CX MeSH 3,741 178 2.08 7.35 7.12
IU-CX MeSH-sp-subset 2,237 131 1 3.33 1.46

Table 1.2: IU-CX [1] report vocabulary and length statistics. IU-CX MeSH-sp-subset subset
of exams with one a single reported abnormal pattern. Avg. s/e refers to the average number
of sentences per exam, avg. t/e is average tokens per exam, and STD t/e is standard deviation
of tokens per exam.

Diagnosis Pattern Anatomy Position Severity
Total 31 45 47 5 30
Samples airspace

disease,
pleural
effusion

opacity,
atelectasis,
degenera-
tive bone,
mass

diaphragm,
esophagus,
heart,
heart
ventricles

bilateral,
left, pos-
terior,
right

acute,
chronic,
healed,
patchy

Table 1.3: MeSH terms categorised into diagnosis, patterns, anatomy, position and severity
labels.

1.5.2 Imperial College Local Hospital Brain DWI

The brain DWI dataset consists of 1,226 3D DWI scans and corresponding radiological reports

of acute stroke patients collected from local hospitals. All the images and reports were fully

anonymised and ethical approval was granted by Imperial College Joint Regulatory Office.

The scans were obtained from three different scanners (Siemens) with the following acquisition
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Small acute white
matter infarct left
corona radiata

No focus diffusion
restriction

No acute infarct ,
intra extra-axial
haemorrhage
demonstrated

Figure 1.3: Samples of three unique brain DWI exams, shown as slices with respective filtered
reports. Slices were selected based on maximum ischaemic infarct segmentation area using the
segmentation network of Chen et al. [5].

parameters: field strength: 1.5-3 T; slice thickness: 5 mm; slice spacing: 1.0-1.5 mm; pixel size

in x-y plane: 1.40×1.40 or 1.80×1.80 mm; matrix size: (19-23)×(128×128) or (192×192); field

of view: 230×230 or 267×267; echo time 90-93 ms; repetition time 3200-4600 ms; flip angle 90;

phase encoding steps: 95-145. The scans were pre-processed according to the steps outlined

in [5]: images were resampled into uniform pixel size of 1.6×1.6mm, and pixel intensities were

normalised to zero mean and unit variance. The number of slices per image varies between 7

and 52, and the slice dimensions are 128×128.

Each report was parsed by a clinician to extract 1–2 sentences summarising the presence or

absence of the pathology and its location within the brain. These filtered reports contained

between 1 and 78 words, with an average of 16.7 and standard deviation 9.8. In addition, each

exam was assigned a diagnosis label as part of hospital protocol: 54% were diagnosed ‘no acute

infarct’, 46% were diagnosed ‘acute infarct’. The remaining, which made up a total of <1% and

included diagnoses such as ‘unknown’, ‘haematoma’, ‘tumour’, were removed, leaving a total

of 1,177 exams. A sample of three brain DWI slices with their respective filtered reports are

displayed in Figure 1.3.
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A 2D subset of acute and non-acute (normal) slices was created from the 3D images. The acute

set was created by first using the brain ischemia segmentation network developed by Chen et

al. [5] to segment the images labelled with acute ischemia. The output of the segmentation

network are pixel-wise probabilities. A simple heuristic was applied to the segmented slices to

select the ones more likely to have a visible acute ischemia: segmentations were thresholded

at 0.8, and slices were selected as having acute ischemia if the total area of the segmented

ischemia was >10 pixels. Most 3D images contained multiple slices that fit the criteria, and so

the reports were duplicated for each slice, and each slice-report pair were treated as an instance.

For the normal set, slices were sampled from the non-acute labelled images according to the

same axial plane distribution as the acute set. The full subset sampling procedure is illustrated

in Figure 1.4.

Figure 1.4: 2D Brain DWI subset procedure: 3D images are passed through a brain ischemia
segmentation network of Chen et al. [5]. Slices fitting a heuristic thresholding criteria are
selected as having a visible acute ischemia, and non-acute slices are sampled from normal brain
images according to the same axial plane distribution as the acute slices.
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1.6 Evaluation Metrics

As with natural image captioning tasks, the generated reports are evaluated against the true

(human-generated) reports using BLEU [43] and ROUGE [44] scores, a type of modified n-gram

precision and recall metrics developed originally for evaluating machine translation. These met-

rics measure the degree of word, or n-word, overlap between the true and predicted sentence(s),

and treat all words as having equal contribution to the overall metric. It is generally consid-

ered to correlate well with human evaluation for accuracy and coherence of predicted against

ground-truth sentences. When considering what is most important to accurately predict (and

therefore report on) from a radiological image, it is far more important to correctly identify any

markers in the image that may suggest the presence of a disease, and so not all generated words

should be treated as having equal contribution to the overall metric. Therefore, in addition to

evaluating the degree of overlap between the true and predicted radiology reports using estab-

lished metrics such as BLEU and ROUGE, they are also evaluated on recall and precision of the

predicted disease, anatomy, location and severity (DAPS) terms. These terms were categorised

using radiological text tagging tools and manual checking. The DAPS metric was developed in

this thesis to specifically address the challenge of assessing the quality of radiological reports

irrespective of the quality of the grammar. This metrics provides a more granular assessment

of what the report generation model either succeeds or fails to capture from the image.

1.6.1 BLEU

BLEU (Bilingual Evaluation Understudy) [43] is a type of modified precision metric that eval-

uates how closely a model generated text matches that of the (human generated) ground truth.

It was developed for evaluating the quality of machine translation and has been reported to

have high correlation with human judgement. It has since been used to evaluate image caption

generation, text summarisation and speech recognition. The BLEU score is always a number

between 0 and 1, with numbers closer to 1 representing a closer match to the ground truth, or

reference, text. A unigram BLEU score, or BLEU-1, is the modified precision based on single
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word matches, penalised by candidate sentence length in comparison to reference length. For

instance, although a candidate sentence [‘the cat’] matches [‘the cat sat on the mat’] when calcu-

lating word-level precision, this would favour shorter sentences, therefore a ‘brevity’ penalty is

applied to lower the score of a candidate sentence if it is shorter than all the reference sentences.

Similarly, bigram, 3-gram and 4-gram individual BLEU scores can be calculated. Typically,

these scores are taken cumulatively by taking a geometric mean of scores up to BLEU n-gram.

1.6.2 ROUGE

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [44] calculates n-gram precision,

recall and F1 scores without modification, so is a good complement to BLEU. Whilst BLEU pe-

nalises shorter candidates, the common implementations of ROUGE do not, so it is important

to consider both during evaluation. Additionally, n-gram ROUGE calculations are not cumu-

lative, so BLEU n-gram implementations are preferred when evaluating for the overlapping of

larger n-grams.

1.6.3 DAPS

Both ROUGE and BLEU were developed for evaluating machine translation and so have some

limitations when applied to specific tasks where the quality of the translation, in our case, the

translation of image encodings to text, may not have the same requirements. For instance,

when generating a report from a radiological image, having an accurate pathology prediction

is more important than an accurate severity prediction. For this reason, four categories were

identified to be non-intersecting: disease, anatomy, position and severity, or DAPS. This is

not exhaustive as some words will not fall in any category, but it provides a breakdown to

the precision/recall metrics of BLEU and ROUGE. The categorisation of terms into DAPS is

done in a dataset specific way with a combination of online radiological ontologies, medical

text tagging tools such as MetaMap [45] and manual checking. Recall, precision and F1 is

calculated in the same way as is done for classification, where each unique term is treated as
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a class. A disease recall, precision and f1 score is then an average over all the scores of all the

disease terms, and the same is done for terms under anatomy, position and severity, resulting

in averaged precision, recall and F1 scores for each of the DAPS categories.



Chapter 2

Background

2.1 Theoretical Background

The algorithms used in this thesis for report generation, concept extraction and latent space

learning are primarily neural networks. This chapter starts by covering the basic building blocks

of recurrent and convolutional neural networks, which are the most common networks used to

model natural language and images respectively. Image captioning is considered as a problem

of encoding images using convolutional neural networks, and decoding image representations

into natural language using recurrent neural networks. These are referred to as encoder-decoder

architectures, and form the basis of the approaches considered in Chapter 3. Following this

are the methods for medical concept extraction and representation learning used in Chapter 4

and Chapter 5, which are a combination of ontological tools, clustering algorithms and neural

networks. Lastly is an introduction to representation learning, specifically through autoencoder

networks as these form the basis for image representation learning and image reconstruction

used in Chapter 6.

18
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2.1.1 Building Blocks of Encoder-Decoder Frameworks for Image

Captioning

Brief Introduction to Neural Networks

Introduced in the 1940’s by McCulloch and Pitts [46], the ‘threshold logic’ computational model

for neural networks was inspired by propagation of signals through the brain via activations of

neurons. The linear threshold unit model for a neuron was expanded into a learning algorithm

with the creation of the perceptron in 1958 by Rosenblatt [47] for the purpose of pattern

recognition. The simplest single-layer perceptron model is illustrated in Figure 2.1. The output

of the perceptron Y is calculated from the input vector x as follows:

Y = f(
N∑

n=1

xn · wn − θ) (2.1)

where w is a vector of weights, θ is the bias term and f() is a step function such that:

f(x) =


1, if w · x− θ > 0

0, otherwise

(2.2)

In modern perceptrons, this function is more commonly replaced by the sigmoid function.

Weights are randomly initialised, and the output Y is calculated for each training example i in

the set. The weights are then updated as follows:

wn(t+ 1) = wn(t) + (Yi −Di)xn,i (2.3)

where Di is the desired output.

Being a linear function of input signals, the perceptron is limited to classifying input vectors

only if they are linearly separable. This observation was highlighted by [48], which, along

with inadequate processing power of computers at the time, slowed the research in neural
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Figure 2.1: Single-layer perceptron

network. Interest picked up again with the introduction of the backpropagation algorithm by

[49], which solved the problem of training multi-layer neural networks. This effectively solved

the problem of non-linear separability as the universal approximation theorem [50] states that

multiple neural networks stacked on top of each other (creating at least one hidden layer) can

approximate a variety of continuous functions.

The backpropagation algorithm is a method for learning the weights in a neural network.

Unlike in standard gradient descent where all the weights are updated as a function of error,

backpropagation computes the loss function with respect to each weight by chain rule. Error

on the output is calculated using a differentiable loss function, e.g. mean square loss, and is

propagated backwards to the parameters. In this way, weights are adjusted based on how much

they contribute to the error.

Convolutional Neural Networks

With growing computational power through the use of graphics processing units (GPUs), and

a growing digital record of images, it became possible to train multi-layer networks, or deep

neural networks, for the purpose of visual recognition. The most prominent advance in im-

age classification came about in 2012, when [51] beat the state-of-the-art image classification

algorithms by large margin through the use of a deep convolutional neural network (CNN)

architecture.
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CNNs are multilayer neural networks consisting of one or more convolutional layers. They have

been particularly successful in image recognition as they are able to learn translation invariant

features by exploiting local correlation. Its design was inspired by overlapping receptive fields

in the human visual cortex which act as local filters. In the same way, the convolution layer is

composed of learnable filters, or kernels, which slide across the input image. The layer computes

the dot product between the filter and the input in the receptive field (convolution). These

convolution layers are normally followed by max-pooling (down-sampling) and rectified linear

unit (ReLU) layers, ending with a fully connected layer. An example convolutional neural

network with two hidden layers is illustrated in Figure 2.2.

Figure 2.2: Convolutional neural network with 2 hidden layers.

Several convolutional layers, ReLUs and max-pooling layers can be stacked together into a

network, such as the LeNet-5. Introduced in 1990 for the purpose of digit recognition [52] and

popularised in 1998 [53], LeCun’s model was capable of classifying digits under various spacial

transformations. In addition, the MNIST dataset, which they used to evaluate the performance

of their model, became the standard benchmark for digit recognition tasks.

The ImageNet database was later created by [54] to benchmark natural image classification

performance. In the 2012 pivotal paper, Krizhevsky et al. [51] showed that by training a deep

convolution neural network on multiple GPUs and employing Dropout [55] to prevent over-

fitting, they were able to almost halve the error rate from 36.7% (state-of-the-art) to 15.3% on

the ImageNet dataset. Since then, convolution neural networks have been the main focus of

research on image recognition tasks.
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Recurrent Neural Networks

Introduced in the 1980s, recurrent neural networks were designed with directed connections

between neurons and are thus able to retain a ‘memory’ of past inputs. They are most commonly

used to model temporal problems, such as language translation, speech recognition, and image

captioning. Recurrent neural networks are able to model sequential information by preserving

past information in an internal hidden state ht. The hidden state and output are calculated as

follows:

ht = φ1(W
(hx)xt +W (hh)ht−1)

yt = φ2(W
(yh)ht)

(2.4)

where φ1, φ2 are activation functions, typically logistic sigmoid or tanh, and W (hx), W (hh) and

W (yh) are weight parameters that are shared temporally. They are best visualised unrolled

through time, Figure 2.3.

Figure 2.3: Recurrent neural network, rolled and unrolled.

Recurrent neural networks are trained by an extension to backpropagation, called backpropa-

gation through time (BPTT) [56]. Time, in this case, is defined as a series of nested functions.

Due to this process, RNNs suffer from vanishing and exploding gradients: small gradients get

increasingly smaller, and larger gradients explode. One way to mitigate this problem is to use

fewer time steps, or through the use of LSTMs.
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Long Short-Term Memory (LSTM) [57] models are widely used in machine translation

[58, 59, 60] and natural image and video captioning [61, 62, 10] due to their ability to capture

long-term dependencies, and to reduce the problem of vanishing gradients in vanilla RNNs.

Each LSTM unit has three sigmoid gates to control the internal state: input, output and forget.

At each time step, the gates control how much of the previous time steps is propagated through

to determine the output. The forget gate takes the current input and previous hidden state

and decides whether to keep the information from the previous time stamp or forget it. The

input gate does the same but quantifies the importance of the current input (new information).

The cell hidden state h(t) is updated based on the input and forget gates, and the output gate

determines the value of the next hidden state m(t). For an input word sequence {x1, . . . , xn},

the internal hidden state ht and memory state mt are updated as follows:

it = sig(W (ix)xt +W (ih)mt−1)

ft = sig(W (fx)xt +W (fh)mt−1)

ot = sig(W (ox)xt +W (oh)mt−1)

ht = ft � ht−1 + it � tanh(W (hx)xt +W (hm)mt−1)

mt = ot � tanh(ht)

(2.5)

where xt is the input at time step t, W (hx) and W (hm) are the trainable weight parameters, and

it, ot and ft are the input, output and forget gates respectively.

Encoder-Decoder Networks

Automated caption generation draws on both computer vision and natural language processing

techniques of image and text representation. RNNs have been shown to generate human-like

text by training on a large corpus, such as Shakespeare [63] and Wikipedia [64]. Given a starting

token (a character or a word), these models predict which tokens are likely to follow. RNN

language generation models have been applied to tasks such as machine translation whereby

the language generation is conditioned on a representation of a word or a sentence in another
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language [58, 59, 60]. The words and sentences in one language are encoded into a single

representation using one RNN network, and decoded using another.

CNN
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Figure 2.4: Encoder-decoder configuration for image captioning.

This idea of encoder-decoder networks has been extended to include encoding other data repre-

sentations to be decoded into text: spatio-temporal data to generate pollen forecast summaries

[65], weather forecasts [66], summarising electronic medical records [67], text summarisation

[68], and image caption generation [69, 70, 62]. Figure 2.4 illustrates a simplified configuration

of an encoder-decoder used for image captioning: a convolutional neural network is used to

encode the image features into a dense representation, this representation is passed to a re-

current neural network, which decodes the information in the image and generates a textual

description. The various methods and architectures of encoding the image information, passing

the image features to the RNN, and generating the outputs will be discussed further in the

literature review on deep learning methods for image caption generation.

2.1.2 Medical Concept Extraction and Word Representation Learn-

ing

As stated in the introduction, it may not be necessary to learn to automate the generation of

radiology reports to match those of a radiologist, but rather, use the radiology reports to first

extract medical concepts, such as pathology and location, and learn to detect these from the

images. For instance, encoder-decoder networks introduced in the previous section can be used
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to summarise long reports with a large vocabulary into short reports made up of key concepts

and a much reduced vocabulary. However, this requires the radiology reports to be annotated

with their respective task-specific summaries (for instance, if the summaries are to be used for

image captioning, they must contain pathologies that can be seen in the images), and they

must be done by an expert. This is typically not available for radiology reports taken directly

from hospital databases as it is not part of standard reporting. Therefore, another method to

consider is the use of off-the-shelf ontological tools that use pattern-matching to extract and

categorise medical concepts.

Once medical concepts and phrases are extracted, they can be directly assigned to their respec-

tive radiological images as ‘labels’ for image classification, or as summary reports for report

generation. The difficulty is in deciding whether to treat the concepts and phrases as single

discrete labels, or continuous representations. Even with the help of ontological tools, there

will be ambiguity over the meaning of certain words. For instance, whether a word is classified

as a disease, a finding, or an abnormal pattern is heavily dependent on context that the tools

do not have. Additionally, as described in Section 1.5.1, different diseases may present with

the same abnormal patterns in a chest X-ray, in which case decisions need to be made on how

to group similar concepts together. Hence, in addition to using the ontological tool MetaMap

to extract medical concepts, two different methods of representing the words and phrases are

used in order to group them together by meaning: term frequency-inverse document frequency

(tf-idf) [71, 72] and word2vec [73, 74].

MetaMap: an Ontological Medical Concept Extraction Tool

MetaMap [75] is a tool developed to map biomedical texts to the Unified Medical Language Sys-

tem (UMLS) Metathesaurus [76]. It was originally developed to improve retrieval of biomedical

citations and abstracts from MEDLINE R©(a large bibliographic database of clinical articles and

journals). It uses natural language processing techniques to identify candidate phrases in the

text and map them to their closest UMLS concepts, scoring each variant. It consists of several

processing steps, summarised in the system diagram in Figure 2.5. Input text is first tokenised
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and split into sentences, then put through MedPost - a stochastic part-of-speech (POS) tagger

developed specifically for medical text tagging by [77]. The POS tagger uses a hidden Markov

model where each part of speech is a state in the model and transition probabilities are based on

bigram frequencies determined during training. This is followed by a lexical look-up and shallow

parse where words and phrases part of the SPECIALIST lexicon (a component of the UMLS)

are identified. Each word or phrase is accompanied by its acronym/abbreviation/synonym vari-

ants generated from the look-up. A candidate set of Metathesaurus strings containing these

variants is retrieved and evaluated against the input text. Finally, a mapping is constructed by

combining the various candidates of the separate phrases and choosing the highest scoring com-

bined candidate mapping. Optionally, this is followed by word-sense disambiguation (WSD)

[78] where candidates that are semantically consistent with the surrounding text are favoured.

Figure 2.5: MetaMap System Diagram, reproduced from [79]

MetaMap has therefore become suitable for extracting and mapping terms in medical free text

to common concepts for various purposes, such as clinical text analysis [80] and indexing and
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retrieval [81, 82]. One of the main weaknesses of MetaMap is its WSD: many distinctive words

or phrases in the Metathesaurus have common synonyms, for instance, cold can be used in

the phrase common cold or cold temperature. Some of these phrases are manually suppressed

during MetaMap processing, and the rest are put through the WSD algorithm, however, it still

occasionally fails to determine the correct phrase or concept due to the algorithm being based

on pattern-matching.

Tf-idf

Term frequency-inverse document frequency is a method of generating weight vectors for doc-

uments by measuring how important each word is to the document in relation to the whole

corpus [71, 72]. It is often used by search engine tools for scoring documents according to their

relevance to a search query. The term frequency (tf) measures the raw count of a term t in a

document d, (ft,d) which can optionally be logarithmically scaled or nomalised by the frequency

of the maximally occurring term tmax to prevent a bias towards longer documents:

tf(t, d) = ft,d

= 1 + log(ft,d)

= 0.5 + 0.5× ft,d
ftmax,d

(2.6)

The inverse document frequency term is a measure of how much ‘information’ that term provides

and is calculated as follows:

idf(t,D) = log

(
N

1 + nt

)
= log

(
ntmax

nt

)
= log

(
N − nt

nt

) (2.7)



28 Chapter 2. Background

where N is the total number of documents in the corpus D, and nt is the number of documents

that contain the term t. Therefore, words that appear often in a particular document may not

contribute information if they also appear in a large fraction of other documents in the corpus.

The tf-idf score is calculated as a product:

tfidf = tf(t, d)× idf(t,D) (2.8)

Hence, higher weights are assigned to words that occur frequently in the document and infre-

quently across the corpus.

Word2vec

One major downside to tf-idf word representations is they fail to capture the semantic meaning

of words since words are represented in a discrete way. Word2vec, developed by Mikolov et

al.[73, 74], is an alternative method that creates continuous and semantically-meaningful word

vector representation. It does this by training a 2-layer neural network on a large corpus of

text and incorporating the context during training. The assumption is that words appearing in

similar contexts will have similar meaning. Word2vec uses one of two mechanisms: continuous

bag-of-words (CBOW) and continuous skip-gram. In CBOW, the context, or neighbouring

words, are used to predict the target word. Bag-of-words refers to the assumption that the

ordering and grammar of the context words does not affect the prediction. The skip-gram

architecture predicts the context words for a given input word. The authors note that for the

skip-gram architecture, increasing the range of neighbours surrounding the input word improved

the quality of the word vectors, but increased computational complexity [73]. CBOW, on the

other hand, was faster to train, but had worse performance on infrequent words.

An evaluation of word2vec word embeddings versus traditional count-based methods (including

tf-idf) presented in [83] showed that word embeddings outperform on almost all tasks, including

semantic relatedness, synonym detection, concept categorization, and analogy. Like tf-idf, they

can be used to represent sentences, paragraphs and documents as fixed-length feature vectors,
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but do so maintaining the order relationships between words [84].

2.1.3 Image Latent Space Learning through Autoencoders

Autoencoders are artifical neural networks that create dense representations of data in an

unsupervised way by imposing a bottleneck in a network trained to reconstruct the data [85, 86].

They have been successfully applied in the medical imaging field for unsupervised image feature

extraction [87, 88, 89], image denoising [90] and reconstruction [91, 92, 93, 94, 95, 95, 96, 97].
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Figure 2.6: Autoencoder network for dense image representation through reconstruction.

An autoencoder is also a type of encoder-decoder network, where the encoder is used to ‘com-

press’ the data into a smaller representation, and a decoder follows the inverse steps in order

to reconstruct the original data from the compression. A simplified illustration of an image

autoencoder using CNNs is shown in Figure 2.6. The encoder portion of the network applies

downsampling to the convolutional filter outputs, and the decoder portion applies the inverse

upsampling such that the result at the output is the same shape as the input. By setting the

loss of the full network to be the difference between the input and output image (e.g. mean

squared error), a dense representation, or image latent space, is learnt at the bottleneck layer.

2.2 State-of-the-art in Image Caption Generation

2.2.1 Image Caption Generation in Computer Vision

The use of human generated visually descriptive text to infer the contents of an image has

primarily been applied to image caption generation in the field of computer vision. The main
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goal is a generative model that is able to describe the context of objects in an image using

natural language, the way a human would. This has many potential applications, for instance,

describing images or videos to people who are visually impaired. Although these applications

do not necessarily translate into the medical domain, the way these models are trained using

images and their free-text captions (as opposed to pixel-level labelling or classification) can give

us ideas of how we can incorporate radiological reports to train models that can predict the

context of diseases in radiological images.

Template-Based Models

Earlier models of image caption generation relied on linking template-based language models

to objects and spatial contexts in the image. For instance, the approach by Farhadi et al.

[6] was to map images and text into an intermediate space they term ‘Meaning’: a triplet of

object/action/scene, illustrated in Figure 2.7. Their problem is framed as a Markov Random

Field (MRF), where nodes are object, action and scene, and edges correspond to binary re-

lationships between nodes. Predicting these triplets in a discriminative way requires images

to be manually labelled with their meaning triplets. For this purpose, they created the UIUC

PASCAL1 dataset. Sentences are generated by searching a pool of sentences for one that closely

matches the image triplet. BLEU evaluation was only done on mapping images to meaning, and

not images to sentences, but human evaluators agreed that, on average, at least one sentence

generated per image was deemed ‘accurate’.

A similar approach is used by Kulkarni et al. [98] on the same dataset. Their model (‘BabyTalk’)

identifies objects, modifiers and spatial relationships in an image, ‘smooths’ using statistical

priors based on sample texts, and uses these results to generate sentences using an N-gram

language model (a conditional probability distribution of N-word sequences) and a template

with linguistic constraints. Their results showed that the N-gram language model scored higher

on BLEU (25) than the template based model (15), however, the template-based model gen-

erated more coherent sentences (based on human judgement). This reveals the limitation of

1http://vision.cs.uiuc.edu/pascal-sentences/
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Figure 2.7: Illustration of ‘Meaning’ space triplet of object/action/scene, reproduced from
Farhadi et al. [6]. Framed as a Markov Random Field, where each object, action, scene is a
node and edges are relationships between nodes.

their models: although the language model is better able at generating descriptive sentences in

line with what a human would describe, it is ineffective at making them grammatically correct.

On the other hand, although the template-based model is generally grammatically correct, its

constraints limit it to basic descriptions of object/modifier/preposition, which do not always

cover the full context of the image.

In contrast to generating word captions, Fidler et al. [7] proposed a holistic Conditional Random

Field (CRF) model that uses text to improve object recognition and semantic segmentation,

illustrated in Figure 2.8. They introduce object detection potentials to the CRF that use text

to re-rank candidate bounding boxes by, for instance, penalizing bounding box configurations

that do not match the estimated cardinality from the text, and using prepositions in the text

to boost certain bounding box configurations that are consistent with the spatial locations. As

the goal is scene understanding as opposed to sentence generation, they evaluate their model on

semantic segmentation on the UIUC PASCAL dataset using the standard VOC IOU measure

and achieve a score of 36.4% (12.5% above state-of-the-art at the time). This model was

developed further by the same group as part of a framework used to generate multi-sentence

descriptions of images with multiple objects and complex interactions in [99].
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Figure 2.8: Textual descriptions to inform semantic segmentations through a conditional ran-
dom field, reproduced from Fidler et al. [7]. Object relations are extracted from text and used
to re-rank candidate bounding boxes for object detection.

Deep Learning Models

More recently, interest has moved to the combined potential of convolutional neural networks

and recurrent neural networks for describing images using natural language [61, 8, 100, 9,

10]. The advantage of using neural networks for caption generation is that the model is not

constricted by hard-coded language templates and is able to learn more freely from the training

data.

One of the first of such models was a multi-modal neural language model from Kiros et al.

[101] that took inspiration from multi-modal learning. Their modality-biased log-bilinear model

(MLBL-B) is a natural language model conditioned on a different modality, in this case images,

by incorporating image features as an additive bias. Later, they improved on caption generation

and image ranking tasks by using an encoding-decoding model inspired by machine translation

[61]. A joint image-sentence embedding is learnt using an LSTM, and a structure-content neural
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language model (SC-NLM) is used to decode the embeddings into captions.

A different take on the encoder-decoder model, Neural Image Caption (NIC), was proposed by

Vinyals et al. [8] at the Google Brain team that used a CNN trained for image classification

as an image ‘encoder’, using its last hidden layer as an input to an LSTM along with the text.

The image and words are mapped into the same space, and input into the LSTM sequentially,

as illustrated in Figure 2.9. The LSTM is trained by minimising the negative log likelihood of

the correct word at each time step. They attribute this vast improvement over the BabyTalk

model [98] primarily to the extraction of image features using deep learning.

Figure 2.9: Neural image caption model, reproduced from Vinyals et al. [8]. CNN encodes
image into a dense representation and input into the LSTM at time step -1. Images and words
are mapped into the same embedding space.

Working in parallel, Karpathy’s model aimed to generate descriptions of image regions [100],

similar in ambition to the holistic scene understanding model of [7]. However, instead of

labelling images from a set of categories, they aimed for a richer understanding of image content.

They first create image representations using a Region Convolution Neural Network, developed

by [102]. A Bidirectional RNN is similarly used to compute word representations in the same

h-dimensional vector space as the image representations. They then formulate their objective to
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encourage aligned image-sentence pairs to have higher scores than misaligned pairs by defining

the score between a sentence and image to be the sum over the dot products of image region

vectors and word vectors. These alignments are used to create image annotations consisting

of not just single words, but short, local descriptions. A Multimodal RNN is then used to

generate sentences from these descriptions. For the task of image annotation and sentence

generation, their model fell a little behind the NIC, which they attribute to the NIC’s more

powerful CNN (GoogLeNet) and more powerful sequence learner (LSTM), however, they did

achieve state-of-the-art in image ranking tasks.

One major drawback of using vanilla RNNs for image captioning is that they struggle with

long-term dependencies. If the image is introduced at the start of the sequence, consequent

words are conditioned less and less on the image features. One solution may be to use LSTMs,

which are able to ‘forget’ past, redundant information, but an alternative was proposed by Chen

et al. [9]. Their recurrent neural network model was built on top of Mikolov’s [103, 104] with

an additional visual hidden layer that attempts to reconstruct visual features from previous

words, and is thus able to retain a visual memory by propagating these visual features through

each time step. This last layer can be ignored when generating sentences from images as the

visual features are already known. Their model also allows for visual feature generation from

text, though they do not propose an application to this.

Alternatively, instead of storing the visual information within the recurrent neural network,

Mao et al. [69] proposed using the visual features as inputs along with every word at each time

step. Each time step in their multimodal RNN consists of two word embedding layers, which

encode both syntactic and semantic meanings of the words. These are: a recurrent layer, which

is a multimodal layer that takes as inputs the word representation, recurrent layer output and

image representation; and a softmax layer that generates a probability distribution of the next

word. Their model allows for backpropagation to update the CNN part of the model as well

as the RNN (though they did not have a chance to apply this due to a shortage of data). Had

they done so, their CNN model may have improved with the knowledge of textual information.

For the most part, these methods use a single vector representation for the entire image. Cap-
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Figure 2.10: Mind’s eye: image captioning through visual feature reconstruction, reproduced
from Chen et al. [9]. The green modules represent the RNN language model, v is a vector of
observed visual features, and ṽ is the reconstruction of the visual features.

turing salient image features is a large part of image captioning, and Xu et al. proposed to

use recurrent visual attention over the more descriptive, lower-level image representations for

image captioning, illustrated in Figure 2.11 [10]. The Recurrent Attention Model (RAM) was

first introduced by Mnih et al. [105] in order to reduce the computation required by tradi-

tional convolutional neural networks by learning to process only selected regions of interest

instead of the entire image. The RAM is a recurrent neural network model that, at each time

step, takes as input the ‘glimpse’ representation (given the image and location) and combines

with the internal representation at the previous time step to produce the new internal state.

Their model is non-differentiable, and so required the use of reinforcement learning in order

to train. To tackle this, Xu et al. propose a ‘soft’ attention mechanism that, instead, learns

a distribution over the vector representations, and is therefore differentiable and trainable via

backpropagation [10].
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Figure 2.11: High-level illustration of recurrent attention model of Xu et al., reproduced from
[10]. Instead of a single vector representation as the input to the language model RNN, they
propose the use of the lower-level features maps. ‘Attention’ is characterised as the learned
weights over these features, as well as the previously generated words.

2.2.2 Radiology Reports As Image Annotations

Ontology-Based Concept Extraction

One common approach to using raw radiological reports in order to assist in supervised imaging

tasks is text mining the reports for diagnoses and assigning them as image labels. These

labels have been successfully applied to supervised multi-label classification [106] and weakly

supervised localisation learning frameworks [107]. In these examples, a series of text processing

techniques are applied to the reports for pathology extraction, including negation detection,

and tools such as DNorm [108] and MetaMap [45], which map key words to a standardised

vocabulary of clinical terms. However, other biological concepts in the reports, such as location,

severity, and other visually descriptive features of the pathology are not taken advantage of.

The framework proposed by Schlegl et al. [109] attempt to take advantage of spatial semantic

content of clinical reports and corresponding images for localised abnormality detection in

optical coherence tomography (OCT). Image features were extracted using a CNN, and semantic

target labels were extracted from the textual report using semantic parsing. Each report was

reduced to K pairs of [object class, spatial location]. The CNN was then trained to predict
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these semantic labels and tested by transforming the semantic prediction into voxel-wise class

labels and comparing them to their voxel-wise labelled ground truths. They showed that

the using semantic content as ‘weak labels’ to train a disease classifier results in improved

performance over naive weakly-supervised learning (66.30% vs. 81.73% accuracy). They note

that by training a CNN on semantic target labels, it was able to “learn abstract concepts of

‘location’”. However, their classifier performance is still not as good as one trained through

fully supervised learning using voxel-level annotations (which achieved 96.98% accuracy).

Statistical Text Mining

Statistical mining approaches have also been applied to extract labels for classification. For

instance, Shin et al. [110] applied latent Dirichlet allocation for topic and sub-topic extraction

to then be used for the classification of images into sub-topics. Sub-topics were made up of

a collection of key-words which included pathologies, anatomy, imaging modality and severity,

and so could be used to auto-generate key-word ‘reports’. Wang et al. [111] proposed clustering

image embeddings and grouping their associated text reports. In both cases, sub-topics and

cluster groups are only implicitly defined and depend on the number of topics/groups providing

the lowest perplexity score, which can be a range of values. In addition, these are not generative

models, therefore reports can only be selected based on nearest-neighbour methods from ones

present in the training sets. Therefore, a generative learning approach in a similar style to

image captioning has also been considered for radiology report generation

Automated Radiology Report Generation

Image captioning models and learning frameworks are, to a lesser extent, being applied to

medical images and their reports: from learning to automate MeSH annotations for chest

X-rays [3], to leveraging reports in a dual-attention framework to improve features used for

classifying histopathology images and to provide interpretability to the classification [112, 113].

In the latter paper, a structured report output is explored as a potential application of their

dual CNN-LSTM classification network. In all these examples, manually created structured
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reports are used for supervision as they are short and only contain visually-relevant information

that can be extracted using a suitable CNN. These are, for instance, the presence of localised

pathologies such as lesions and masses in the case of chest x-rays used in [3], and cell appearance

such as crowding and mitosis in the case of the histopathology images used in [113].

The structured reports used by Shin et al.[3] were the MeSH annotations of the Indiana Univer-

sity chest X-ray dataset, described in Section 1.5.1. Their recurrent neural cascade approach

starts by first training an RNN to generate the MeSH annotations conditioned on a dense im-

age representation appended to the start. They then mean-pool the hidden state vectors of the

RNN to obtain what they term a ‘joint image/text context vectors’. These vectors are grouped

together with k-means to represent new labels, which are then used to fine-tune the CNN to

create new image representations, and those representations are used to fine-tune the RNN.

The training sequence is illustrated in Figure 2.12.

Figure 2.12: Recurrent neural cascade training sequence, reproduced from Shin et al. [3].

Learning a generative captioning model from raw textual radiology reports is a more difficult

task due to the reporting of non-visually informative information, such as negation or uncer-
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tainty over the presence of pathologies. Jing et al. [114] demonstrated how long textual reports

with partially-correctly identified medical concepts can be generated by first training a mulit-

label CNN on the images and the Medical Text Indexer (MTI) tags identified in the original

raw reports of the Indiana University chest x-ray dataset. The image features from the CNN

and tag embeddings are used as inputs to a hierarchical LSTM for topic (sentence) and word

learning.

Yuan at al. [115] use a similar technique of first training a multi-label CNN on extracted disease

labels (though it is not mentioned how these are extracted), and then training a hierarchical

encoder-decoder RNN network to generate the raw reports of IU-CX. They go a step further and

use the medical concepts extracted from the reports using a UML extraction tool called SemRep

to inform the report generation directly. The hierarchical decoder RNN is made up of two

layers: one trained to generated sentence hidden states from the visual features (incorporating

attention), and a second trained to generate word hidden states from the sentence hidden states

and SemRep medical concept embeddings. They achieve s.o.t.a. BLEU in report generation

when evaluated against previous image captioning techniques. However, reports can be very

long and heterogeneous, and as BLEU treats n-grams equally, it may not be an appropriate

metric for determining whether a pathology has been identified as present in the image, which is

a far more important task to achieve if it is to be used in a clinical setting to assist radiologists.

2.3 Summary

The approaches to creating valuable CAD tools from radiology image-report datasets depend

on the desired output. If the goal is to be able to automatically generate reports from new

radiological images in the style of a radiologist, the most closely related approach in literature

is that of image captioning. These approaches can be summarised by a general encoder-decoder

framework that takes as input an image representation (or multiple representations), and de-

codes that representation into natural language. Convolutional neural networks and recurrent

neural networks are uniquely suited to model images and text respectively, and so are the most
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commonly used encoders and decoders.

On the other hand, if the goal is to automate the detection of diseases, without the need to

frame them in a report (and therefore dispense the need for learning a language model), then

there is a required intermediate step of extracting disease labels from the textual reports. There

are many off-the-shelf ontological tools capable of this, though none designed with the specific

task of extracting labels that can then be used for image classification. Therefore, a more

common approach in literature has been a more data-centric one: the reports are mined using

statistical methods in order to define the ‘disease’ clusters, and group images accordingly. This

has the disadvantage that disease clusters are only defined implicitly, and require choices in

heuristics that then make it difficult to apply the same methods to other datasets.



Chapter 3

Report Generation for Single and

Multi-View Radiological Images

3.1 Introduction

Within the UK National Health Service (NHS), when a patient has a radiology exam such as

an X-ray, computed tomography (CT), ultrasound or magnetic resonance imaging (MRI), a

radiologist will make a report on the image or set of images. The purpose of the report is

to summarise diagnostic findings and possibly recommend treatment, interventions or follow-

ups. These reports are then stored, in their free-text format, within the hospital PACS or RIS

along with the images. The PACS or RIS is therefore a valuable resource of large volumes of

radiological images that have been interpreted by experts. This chapter investigates whether

radiological exams gathered directly from a PCAS or RIS can be used as part of a supervised

learning framework to predict pathological information from new, unseen radiological images.

A common approach in literature is to treat this as an image captioning task [3, 112, 116, 115] as

there are many parallels: images are human-annotated using unstructured, natural language,

and there is no limit to the vocabulary and no hard rules on number or type of concepts

that are commented on. When writing radiology reports, there are still clinical protocols and

standards radiologists must follow in terms of language and structure, but these vary across

41
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institutions and are still subject to an individual’s training and interpretation. Hence, one

major component of image captioning is learning a language model that is capable of capturing

this highly variable and complex structure.

Another aspect of image captioning is the choice of image representations. Convolutional

neural networks require large amounts of images for training, as many as thousands per class,

something not available for radiological images. This number can be reduced through the use

of transfer learning. A common method of generalised image feature extraction in literature is

the use of a deep CNN pre-trained on a large and diverse image dataset, such as ImageNet. It

has been shown that such transfer learning is effective for use on radiological images, even if

the network has been trained on natural images [3, 116, 115]. Hence, this method is used to

extract task-agnostic image features from radiological images in this chapter.

In the work of the cascaded report generation model of Shin et al. [3], chest X-ray feature

vectors were extracted from a CNN network pre-trained on ImageNet, and pre-appended as a

‘word’ to the radiology report, made up of manual annotations using Medical Subject Headings

(MeSH). A recurrent neural network was then trained to predict this sequence with iterative

fine-tuning. Their model was trained and tested on the IU-CX MeSH dataset, filtered to contain

only a single MeSH disease/description per image. The first half of this chapter uses this as

a baseline technique that makes use of image representations from a pre-trained network and

builds on it by:

1. Exploring single-view image-text encoder-decoder configurations to achieve the optimal

diagnostic predictions in terms of both language (BLEU, ROUGE) and content (DAPS).

2. Improving training performance by incorporating image and text augmentation tech-

niques, weighted sampling, dropout over image representations and word embeddings,

and training end-to-end.

3. Extending the architecture to incorporate multi-view images by combining image view

feature vectors through mathematical operations such as sum, max and concatenate.
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4. Evaluating the optimal encoder-decoder configurations on more complex clinical data

consisting of multi-view images and unstructured, free-text reports with multiple cases of

pathology per image.

The second half of the chapter builds on this further by incorporating dynamic attention over

the multi-view convolutional image features when generating the report. This approach has

been successfully used for image captioning to capture local, salient features at each time-

step during the generation process [10, 116, 115]. In the original natural image captioning

implementation of Xu et al. [10], the attention weights are conditioned on the previous hidden

state, and they interpret this as the networking learning ‘where to look next’ depending on the

previously generated words. This method can be translated to multi-view radiological images

since each generated word in a report depends on the features in a specific location within the

image, possibly only seen in one of the image views. This additionally provides interpretability

to the words being generated as the attention weights can be visualised over the images, and

hence give some indication as to which locations in the image resulted in the prediction of

abnormalities.

3.2 Datasets

In order to compare the performance of the radiological report generation architectures on single

and multi-view exams, the models were trained and evaluated on the IU-CX and the ICH-Brain-

DWI datasets. The IU-CX MeSH-sp-subset was made up of chest X-ray exams where the MeSH

annotation of the PA view images reported the presence of a single abnormal pattern. This

simplified dataset was used to first determine the optimal encoder-decoder configuration and

hyperparameters based on a combination of BLEU, ROUGE and DAPS metrics. Then, the best

performing model was trained and evaluated on the more complex IU-CX MeSH, IU-CX free-

text and ICH-Brain-DWI-2D. The creation of the 2D subset of ICH-Brain-DWIs is described in

Section 1.5.2. By evaluating the report generation model only on the 2D subset, the challenge

of creating a specialised 3D brain DWI image encoder is circumvented, but will be addressed
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later in Chapter 6.

3.2.1 Preprocessing - Chest X-rays

Image preprocessing All exams consisted of at least one image, however, image metadata

did not contain image view labels. An image view classifier was made using a fixed-weight

ResNet50 CNN model [117] pretrained on ImageNet [54] with a binary classification output

instead of the multi-class output. It was trained on 40 randomly selected and manually labelled

chest X-ray images, 20 PA and 20 lateral. Another 5 PA and 5 lateral view images were used

for validating the trained model. The model was trained using early stopping on the validation

loss, and was trained for 42 epochs. Final accuracy, precision and recall were 100% on the

validation set. The trained model was then used to predict the views of the remaining chest

X-ray images.

Text preprocessing Of the 3,955 X-ray exams introduced in Section 1.5.1, 876 are missing

findings, 10 are missing impressions and 40 are missing both. The ones missing both were

removed from the dataset, and for simplicity, findings and impressions were combined under one

textual report, and indications were removed as they were not visual descriptions of features

in the images. As the negation of pathologies was generally standard across the free-text

reports, negation removal was performed using NegEx [118]: a processing package using regular

expression (regex). The package identifies and tags negation signifiers such as ‘[tag]no[tag]

[disease] present’ or ‘[tag]without evidence of[tag] [disease]’ and so a regex rule was made to

remove phrases beginning with [tag] and ending in full stops.

Several preprocessing steps were then done on the reports and MeSH annotations. This involved

lower-casing, removal of punctuation (except full-stops and commas), and non-alpha-numeric

character removal. Stopwords such as ‘and’ and ‘the’ were removed from the reports and

MeSH annotations, and remaining words were tokenised i.e. split into units of words separated

by spaces and punctuation. A vocabulary was then created from the tokens that captured 99

percent of the content, with a unique vocabulary created for the free-text reports, the MeSH
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Vocab Avg. s/e Avg. t/e STD t/e
IU-CX free-text 1309 3.0 23.9 16.7
IU-CX MeSH 118 2.1 7.2 7.0
IU-CX MeSH-sp-subset 95 1.0 3.3 1.5
ICH-Brain-DWI 1021 1.4 10.8 6.3

Table 3.1: IU-CX [2] statistics of free text reports (IU-CX free-text and ICH-Brain-DWI),
MeSH (IU-CX MeSH) and MeSH single-pattern subset (IU-CX MeSH-sp-subset) annotations
after processing. Avg. s/e refers to the average number of sentences per exam, avg. t/e is
average tokens per exam, and STD t/e is standard deviation of tokens per exam.

annotations and the MeSH single-pattern subset annotations. Tokens not in the respective

vocabularies were removed. This method of capturing 99 percent of the content meant that

rare words, typos and misspellings were filtered out.

3.2.2 Preprocessing - Brain DWI

After some initial data clean-up outlined in Section 1.5.2, the brain DWI dataset was reduced

to 1,177 exams, each consisting of a re-sampled 2D image of dimensions 128x128, a binary

diagnosis of presence/absence of acute infarct, and 1–2 sentences summarising the findings in

the image that pertain directly to the presence or absence of an infarct. Pre-processing steps on

the reports were the same as for the chest X-rays: lower-casing, removal of non-alpha-numeric

characters, tokenization and vocab reduction. Statistics of the processed reports of the IU-CX

and ICH-Brain-DWI are listed in Table 3.1.

3.3 Static Image Embedding Models

3.3.1 Related Work

There are multiple image captioning frameworks that are well suited for this type of task, for

instance, the Neural Image Caption (NIC) [8] model and the attention-based captioning model

[10]. The NIC model uses a pre-trained deep CNN network to encode the image into a single,

static, feature vector, which is used as the initial ‘word’ in the caption sequence. Subsequent
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words are embedded into the same embedding space. An LSTM network is then trained to

generate this sequence. This forms the basis of the recurrent neural cascade model of Shin

et al. [3], where the CNN network used to generate image embeddings is fine-tuned first on

selected disease labels, then again on new ‘labels’ based on the joined image-context vectors.

These are computed by mean-pooling the hidden state vectors of the LSTM at each time step

over the entire sequence, and then selecting new disease-context labels using dimensionality

reduction and k-means clustering. This method has the following main disadvantages: errors

in the initial training stages are propagated to the final training stages, PA and Lateral-view

images are considered as separate instances even when they are part of the same exam, and

the model cannot be trained end-to-end. Hence, a simplified NIC framework was considered as

a baseline that can be trained end-to-end and extended to incorporate multi-view images.

3.3.2 Model Architectures

The group of models described here will be referred to as the Static Embedding Report Gen-

eration, or SERepGen models. The baseline model was trained as follows: a pre-trained CNN

network was used to extract image features from a single view, and then pre-pended to the

sequence of words in the report. An LSTM network was then trained to generate this sequence

by predicting the next work. This model is referred to as the SERepGen-init as the report

generation model is initialised with the static image embedding.

Initialising the model with the image embedding means treating it as the initial ‘word’ in the

sequence, and so subsequently generated words are conditioned less and less on the first word.

One option to mitigate this is to inject the image embeddings at the input to the LSTM at

every time step, here referred to as the SERepGen-inject model. In this model, the LSTM is

acting as both an encoder of the linguistic and visual information. Alternatively, the image

embedding can be merged (through concatenation for instance) at the output of the LSTM

such that the LSTM is acting only as an encoder of reports, and the decoder is a dense layer

taking as input this merged, multi-modal representation. This model will be referred to as

the SERepGen-merge. There has been some work to suggest that the role of the recurrent
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neural network in a caption generator is as an encoder rather than a generator [119], and this

is explored more in this chapter.

This approach has several advantages over the recurrent cascade training method of [3]: each

of the SERepGen models can be extended to incorporate multi-view images by combining the

feature vectors of multiple views into a single vector through mathematical functions such as

sum, max and concatenate. The models can also be trained end-to-end by training unique

instances of the CNN image encoder network, one for each view. Finally, I demonstrate how

the inject and merge approach differ from initialisation, and that understanding the role of the

recurrent neural network is important when trying to model more diverse language, such as in

the case of free-text radiology reports.

For all the SERepGen models, an image embedding, imi = CNN(I) where imi ∈ Rg is

extracted from the final spatial-average pooling layer of a pre-trained CNN. The words in

the report sequence are fed through an embeddings layer of the same dimension. An LSTM

RNN is used to model the report word sequence. In order for the report generation model

to be conditioned on the input image, three static embedding report generation (SERepGen)

architectures are considered:

1. SERepGen-init: The image embedding is projected into the same embedding space as

the word embeddings via a dense transition layer: im = relu(W (dg)CNN(I)). The image

embedding is concatenated with the word sequence and thus treated as the initial ‘word’

in the report sequence.

2. SERepGen-merge: The image embedding is projected via a dense transition layer into

a fixed embedding width and combined with the output of the recurrent layer through

either concatenation or summation operation, and passed to the decoder dec:

dect = relu(W (z)(ot ∗ relu(W (dg)CNN(I))) (3.1)

where ∗ represents concatenation or summation and W z are the weights of the decoder.



48 Chapter 3. Report Generation for Single and Multi-View Radiological Images

3. SERepGen-inject: The image embedding is projected via a dense transition layer into a

fixed embedding width and combined with the input of the recurrent layer through either

concatenation or summation operation, and passed to the encoder enc:

enct = relu(W (a)(xt ∗ relu(W (dg)CNN(I))) (3.2)

where W a are the weights of the encoder.

The model architectures are illustrated in Figure 3.1. For all models, the decoder outputs are

passed to the prediction layer s(t) = f(W Txt) where f is the softmax function.

(a) SERepGen-init
(b) SERepGen-merge

(c) SERepGen-inject

Figure 3.1: Image-report learning architectures using a single static image embedding as an
aggregate representation of all input image views.

The extension to multi-view is the same for all SERepGen models. For an exam consisting of

multiple views [V1, V2, ...VK ], a mathematical function of all the features is aggregated across

the image views to create a fixed-size input imi = f(CNN(V1),CNN(V2)), ...CNN(VK)). The

multi-view static image embedding computation is illustrated in Figure 3.2.
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Figure 3.2: Multi-view static embedding. All multi-view images from a single exam are passed
through a pre-trained classification CNN where the classification layer has been removed. The
outputs are then the considered the image representations and are combined into a single static
vector through a combination operation, such as max, concat, sum.

Augmentation Parameters
Image rotation 0.01×2pi
Image translation h×0.05, w×0.05
Image cropping 224x224
Sentence shuffling random

Table 3.2: Image and text augmentation parameters.

3.3.3 Experiments

Data balancing and augmentation Image augmentation was done on-the-fly with ran-

dom rotation, random translation, and random cropping, parameters listed in Table 3.2. Text

augmentation, unlike image augmentation, must be very domain-specific if we are to maintain

the original meaning. Randomly shuffling sentences in the text reports will maintain the con-

text surrounding the pathologies and provide extra instances where pathologies are listed in

different order. During training, sentences in the text reports were randomly shuffled during

sampling. The multi-pattern MeSH annotation disease/description pairs were also randomly

shuffled during sampling. For the single-pattern MeSH captions, the training samples were

weighted by the inverse of the total frequency of the finding/pattern label in the caption.
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Encoding The text reports were cropped/padded to mean + 1 std + ‘start’ + ‘end’ tokens:

7 for IU-CX MeSH-sp-subset, 16 for IU-CX-MeSH, 43 for IU-CX free-text and 19 for ICH-

Brain-DWI. Word indices were one-hot-encoded and passed through a word-embedding layer.

The image encodings were extracted from the ResNet50 [117] CNN architecture, pre-trained

on the ImageNet dataset [54]. Static image features of each X-ray image view were extracted

from the last spatial average pooling layer (R2048). The sum of all the features was aggregated

across the image views to create a fixed-size input to the RNN of dimension R2048, which was

then passed through the image transition layer.

Training For all experiments, the same 10% of the dataset was held out as test, which equated

to 357 unique exams. The remaining 3,221 exams were used for training the sequence models.

The LSTM model was trained for report generation conditioned on the combined image features

by minimising the negative log-likelihood between the output and true sequence:

L(S, I) = −
T∑
t=0

log p(Pt = Tt|CNN(I), P0, . . . Pt−1) (3.3)

where p is the probability that the predicted word Pt equals the true word Tt at time step t given

image features CNN(I) and previous words P0 . . . Pt−1, and T is the LSTM sequence length. At

training time, loss was minimised over the training set using stochastic gradient descent, and

parameters were updated using Adam [120] optimisation. Training was terminated when loss on

validation no longer decreased. Since it is time-consuming to evaluate BLEU/ROUGE/DAPS

scores during training as it requires sampling from the model, metrics of accuracy, recall and

precision over output words were used to determine whether the model was converging to an

optimum. This was still not an ideal metric as the output space is equal to the vocab size,

which is in the thousands for the free-text reports. For instance, relatively high recall/precision

can be achieved by the simple prediction of the end token as these appear in all the reports.

Hence, BLEU/ROUGE/DAPS evaluation that was performed post convergence was not neces-

sarily being performed on the optimum model. Optimising directly for BLEU/ROUGE/DAPS

performance is not possible because they require sampling, and are therefore non-differentiable.
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However, this approach of minimising negative log-liklihood and terminating based on recall and

precision is adequate for the purpose of tuning hyperparameters. Results were averaged over

5-fold cross-validation splits and hyperparameters were chosen based on the optimal average

BLEU/ROUGE/DAPS performance over all the validation metrics.

Inference During inference, the image features were extracted from the pre-trained CNN

and combined to the ‘start’ token embedding to create the input to the SERepGen-inject

and SERepGen-merge models. For SERepGen-init, the image features are passed through the

transition layer and used as the first word input. A prediction of the next word is sampled

at the output and subsequently used as the input for the next prediction. Words are sampled

until an ‘end’ token is reached.

3.3.4 Results

Model comparison Hyperparameters, such as the dimension of the word embedding layer,

image transition layer and the LSTM hidden layer, were tuned for all models using 5-fold cross

validation studies trained and validated on the IU-CX MeSH-sp (single-pattern) and single-

view (PA) subset of the IU-CX dataset. BLEU-1, BLEU-4, Rouge-1 F1, and the F1 scores

of groupings of disease, anatomy, position and severity terms are reported for combinations of

hyperparameters in Figure 3.3.

In each static embedding model, the internal hidden and memory states of the LSTM at-

tempts to capture different dependencies and hence each model requires specific tuning. For

the SERepGen-init, the image transition layer forces the image embedding into the same em-

bedding space as the word embedding in order for the LSTM to treat it as a pre-appended

word. The word embedding layer is simultaneously learning dense word representations based

on its position (since we are predicting the next word in the sequence). The balance is between

keeping the maximum features of the image representation, but not overfitting the word em-

bedding layer as the vocabulary is relatively small (95 for the IU-CX MeSH-sp subset). From

the four hyperparameter studies under SERepGen-init in Figure 3.3, the optimal transition
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Figure 3.3: 5-Fold averaged cross validation hyperparameter studies of static image embedding
models SERepGen-init, SERepGen-inject and SERepGen-merge. All models were trained and
evaluated on the IU-CX MeSH-sp PA view subset. Reported metrics are BLEU-1, BLEU-2,
BLEU-3, BLEU-4, Rouge-F1, and the F1 scores of groupings of disease, anatomy, position
and severity terms. Results on training set are at half-transparency and results on validation
set are opaque. The first four experiments in the figure are the hyperparameter studies of
SERepGen-init, the next five are SERepGen-inject, and the last three are SERepGen-merge.

layer/word embedding dimension was 128, after which it begins to overfit.

For the SERepGen-inject model however, the image representation and word embedding di-

mensions are not tied together, and so the word embedding layer can be kept relatively small

and the full image representation can be used. However, the hidden state of the LSTM is now

required to learn the time dependency of the image together with the input words at each time

step. In effect, the LSTM is being trained on more instances as each word now has an associ-

ated image and so overfitting is less of a problem. As demonstrated in the five hyperparameter

studies under SERepGen-inject in Figure 3.3, keeping the full image representation as output

by the CNN achieved the best results, with word embedding and LSTM hidden dimension set

to 128.

The SERepGen-merge, like the SERepGen-inject, also doesn’t require that the image and word

representation have the same dimensions and so the full image representation can be used.

However, in contrast to the SERepGen-inject, the image representations are combined at the

output with the output of the LSTM at the final time-step. The LSTM hidden state is no
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longer modelling image-word dependencies and hence the learn-able parameters at the input

can be reduced. This is reflected in the results in Figure 3.3 as fewer parameters are required

to achieve the same results as the SERepGen-inject model. Increasing the word embedding

and LSTM hidden dimensions did not have a large effect on the overall performance of the

SERepGen-merge, so fewer parameters are required to encode the language structure of the

reports.

Comparison of model performance on MeSH generation Each static embedding model

was re-trained on the full training set of the IU-CX MeSH-sp PA-view subset using the optimal

hyperparameters, and evaluated on the test set. The BLEU scores are compared with the

performance of the recurrent cascade model of Shin et al. [3] in Table 3.3. The DAPS metrics

are compared for the three SERepGen models in Table 3.3.

BLEU-1 BLEU-2 BLEU-3 BLEU-4
tr te tr te tr te tr te

Recurrent Cascade [3] 97.2 79.3 67.1 9.1 14.9 0.0 2.8 0.0
SERepGen-init 41.6 18.8 18.6 1.9 8.2 0.0 3.2 0.0
SERepGen-inject 75.3 27.0 38.8 8.1 20.4 0.1 10.1 0.0
SERepGen-merge 78.3 34.8 40.1 13.3 28.5 10.7 12.6 5.2

Table 3.3: BLEU n-gram scores of static image embedding models train (tr) an test (test)
metrics, evaluated on the IU-CX MeSH-sp PA-view subset, compared with recurrent cascade
model of [3].

D-F1 A-F1 P-F1 S-F1
tr te tr te tr te tr te

SERepGen-init 73.5 27.8 62.7 17.6 60.2 13.7 64.3 6.6
SERepGen-inject 99.8 35.0 99.7 18.4 99.8 14.3 96.3 6.9
SERepGen-merge 99.9 38.2 99.8 25.4 99.8 16.9 97.6 10.2

Table 3.4: Disease, anatomy, position and severity (DAPS) averaged F1 scores of static image
embedding models train (tr) an test (test) metrics, evaluated on the IU-CX MeSH-sp PA-view
subset.

The recurrent cascade model uses a similar framework to SERepGen-init where the image

embedding is used as the initial ‘word’ in the report. However, their approach to iteratively

train the model significantly improves the model’s ability to produce the first word, but struggles

to maintain visual correspondence in generating subsequent words, hence the steep reduction in
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higher n-gram precision. This can be explained by the fact that the image CNN in the recurrent

cascade model is first trained to classify images into disease annotations (by their definition

of a disease annotation), and then fine-tuned to classify into clusters of joint image-context

labels (which they identify through k-means). This approach relies heavily on assumptions

made about the annotations and what is considered a non-overlapping disease label. If the

initial assumptions of the disease labels, and later the image-context clusters, were incorrect,

the joint image-text features are less meaningful and hence may result in poorer predictions.

For instance, ‘calcified granuloma lung lower lobe left’ and ‘calcified granuloma lung base right’

have the same disease annotation, but their image features should differ based on the fact

that the disease occurs in different locations. However, according to their results, these two

annotations were found in the same embedding cluster. This may explain why the recurrent

cascade model struggled to produce higher n-gram overlaps with the true reports.

Additionally, the definition of what is a disease annotation is subjective, and their approach

mines the labels for least overlap, and removes a large number of cases (60%) where the MeSH

annotations are too complex. The creation of the IU-CX MeSH-sp-subset had a similar ap-

proach, but removed only 40% of the exams for containing more than one disease pattern

(described in more detail in Section 1.5.1).

The SERepGen-inject and -merge solve these problems by conditioning the word generation

process on the image features at each time-step and by being trained end-to-end. In this way,

image features are tuned in such a way as to retain semantic information pertaining to the

disease and descriptions during training, and no assumptions are made about the meaning of

the words in the annotations. Both models therefore achieve higher BLEU-2,3,4, and generalise

better based on the improved performance on the test set. SERepGen-merge performed slightly

better on all the metrics, which signifies that not only is it not necessary to input the image

into the RNN at each time-step, but that it has a negative effect on the RNN’s ability to

learn sequential dependence. By using the RNN to encode purely the linguistic features and a

CNN to encode the image features, the dense decoder is able to use the meaning of the MeSH

annotation and the learned image features to make a prediction on the next word.
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Qualitative evaluation Examples of the MeSH annotations generated by SERepGen-merge

on the test dataset are displayed in Figure 3.4. BLEU n-gram calculations are reported for

individual predictions to give an indication of how ‘correct’ and ‘incorrect’ predictions are

scored. It is evident that there are some limitations to using BLEU scores to evaluate the

quality of the reports. For instance, reports shorter than 4-gram will automatically suffer a

penalty for BLEU less than or equal to 4. An example is the prediction of ‘normal’ and true

report ‘normal’ having no 2, 3, and 4-gram overlaps, contributing to a lower BLEU-2,3,4 score,

even though the report is correct.

Another limitation of BLEU scores is in the interpretation of an individual score. It is not

necessarily the case that a higher score correlates with better predictions of the correct findings,

since all words are treated equally. Hence, it is also necessary to look at the DAPS recall and

precision scores, which tally up the total predicted true positives, false positives and false

negatives per MeSH category. The batch DAPS scores of the samples in Figure 3.4 give a

better breakdown of how good the model is at predicting the correct disease vs the correct

descriptions of the disease findings (anatomy, position, severity). DAPS recall and precision is

calculated on a per-batch basis by counting how many of the disease/anatomy/position/severity

terms in the MeSH annotations are correctly identified by the predictions. For instance, in the

case of disease terms, 4 out of 8 are identified correctly (true positive rate = 0.5), and 4/8 are

identified incorrectly (false positive rate = 0.5, false negative rate = 0.5).

Multi-view and free-text extension For extension into multi-view end-to-end training, the

image encoder of the SERepGen-merge was modified to combine the outputs of two instances

of the image CNN: one for encoding the PA-view images, and one for the L-view images. The

model was trained and evaluated on its ability to produce reports from more complex chest

X-ray exams where the images presented at least one abnormal pattern (IU-CX MeSH dataset),

and for it’s ability to learn from and generate more complex reports where the vocabulary is

more diverse: the IU-CX free-text and ICH-Brain-DWI 2D datasets.

From the BLEU, Rouge-F1 and DAPS-F1 scores in Table 3.5, it can be observed that, overall,
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Figure 3.4: Sample MeSH annotation prediction generated by SERepGen-merge on test set
of IU-CX-sp PA view subset. Per-sample BLEU n-gram scores are reported beneath each
prediction based on the original MeSH annotation. The disease, anatomy, position and severity
recall and precision are reported on the batch at the bottom of the figure.

the best performance was achieved when training from and predicting the IU-CX MeSH-single-

pattern. This is expected as it is a simplified dataset with one observed abnormal pattern

and one corresponding manual MeSH annotation per exam. When training with exams that

consisted of multiple MeSH annotations, the IU-CX MeSH, the BLEU-1 performance suffered

considerably. Including the lateral view improved the BLEU-1 score and DAPS-F1, however,

the disease label F1 score (31.3) was still lower than for IU-CX MeSH-sp (38.2). This implies

that there were fewer correctly identified disease labels when training with multiple diseases per

exam. There may be different reasons for this: multiple disease annotations do not necessarily

correspond to multiple disease patterns in a one-to-one mapping. As mentioned in Section 1.5.1,

MeSH annotations can be a combination of abnormal patterns and the disease diagnosis they

represent. Additionally, some MeSH disease labels share abnormal patterns, such as ‘calcified
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View B-1 B-2 B-3 B-4 R-F1
Random init. - 21.2 5.2 1.0 0.2 23.8
IU-CX MeSH-sp PA 34.8 13.3 10.7 5.2 37.6
IU-CX MeSH PA 35.4 3.9 1.1 0.4 12.0
IU-CX MeSH PA+L 35.4 3.0 1.9 0.6 36.4
IU-CX free-text PA 25.2 13.2 7.0 3.6 32.9
IU-CX free-text PA+L 24.5 14.7 8.4 4.0 36.9
ICH-Brain-DWI 2D Axial 20.8 12.9 5.1 1.6 31.6

Table 3.5: BLEU n-gram scores of SERepGen-merge trained and evaluated on the IU-CX
with PA- and L-view images and ICH-Brain-DWI dataset with axial slice images. Reported
performance on test set. Results are compared against initialising the trained report generation
model on random noise (in the shape of the image, with matched mean and variance to the
image space).

View D-F1 A-F1 P-F1 S-F1
IU-CX MeSH-sp PA 38.2 25.4 16.9 10.2
IU-CX MeSH PA 36.9 13.5 20.3 21.9
IU-CX MeSH PA+L 31.3 31.3 15.2 10.6

Table 3.6: Disease, anatomy, position and severity (DAPS) averaged F1 scores of SERepGen-
merge trained and evaluated on the IU-CX MeSH-single-pattern subset and full IU-CX MeSH
dataset with PA- and L-view images. Reported performance on test set.

granuloma’ and ‘nodule’. This could explain the reason why the disease F1 score is lower, but

the anatomy, position and severity scores are similar to that of the model trained on IU-CX

MeSH-sp: the patterns are identified incorrectly, but their context is the same.

The free-text reports could not be evaluated for DAPS since it would require categorising a

much larger vocabulary, with no official ontological tool as there was for MeSH annotations.

Hence, judging on purely the BLEU and Rouge-F1 scores, it can be seen that the performance

of predictions on the IU-CX free-text and ICH-Brain-DWI is lower on average. Training on

free-text reports suffers from the same obstacles as the MeSH annotations: exams that consist of

multiple abnormal patters will have a complex report that lists not just the abnormal patterns,

but potential diseases. As mentioned previously, different diseases can present with the same

patterns, and potentially we do not want to predict a diagnosis, but rather limit the prediction

to a qualitative description of the abnormalities. In addition to this, free-text reports do not

have a fixed vocabulary for the same concepts, which introduces even more potential textual

outputs for the same image feature inputs.
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There are suggestions in literature on how to tackle training on long, multi-disease free-text

reports, for instance, the use of a hierarchical RNN decoder [115] that conditions the generation

of the sentence hidden states on the image features, and the word hidden states on medical

concept embeddings extracted from the original reports. In this way, each generated word

is informed by not only the image features and previous words, but also on chosen medical

concepts. For instance, these concepts can be extracted disease labels, or abnormal patterns,

which could help boost the generation of the correct disease predictions at the output.

3.3.5 Summary

Three different configurations of encoder-decoder architectures were trained and evaluated on

their ability to generate increasingly complex radiological reports from single and multi-view

images. The best performance judging by BLEU, ROUGE and DAPS scores was achieved by

the SERegGen-merge, where the image features are combined at the output of the text encoder

RNN, and the decoder is simply a fully-connected dense layer. Training the SERepGen-merge

model on increasingly more complex datasets, including multi-view images, multi-disease/pattern

reports and free-text reports revealed a considerable drop in BLEU, ROUGE and DAPS perfor-

mance. Free-text reports have a more diverse vocabulary, negation, uncertainty and references

to multiple diseases, all of which make it harder for a language model to learn the more variable

structure. This also makes it harder for the image-text decoder to learn a mapping from image

features to text when large portions of the text are no longer directly related to the images

(specifically negation and uncertainty).
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3.4 Dynamic Image Embedding

As seen in the previous section, the BLEU and ROUGE performance of the static embedding

model dropped significantly when trained on full MeSH annotations and the more complex

and varied free-text reports. In both cases, the reports now had references to multiple diseases

in multiple locations, and a static embedding model is no longer suitable at capturing all of

these in one vector representation. Hence, a dynamic embedding model, one where the text

generation is conditioned on different image locations at each time-step, can potentially improve

the predictions. In this section, the attention mechanism introduced by Mnih et al. [105] and

used by Xu et al. [10] for image captioning is applied in the task of multi-view free-text report

generation on the chest X-ray and brain-DWI images.

3.4.1 Dataset

For comparison with the SERepGen models, the same IU-CX free-text and multi-view dataset

is used for training and evaluation of the dynamic attention model. The attention model is also

evaluated on the 2D single-view subset of the brain-DWI dataset, and a ‘multi-view’ brain-DWI

set which is simply the full 3D DWI images where each axial slice is treated as a view. Each

brain-DWI multi-view exam is therefore made up of between 7 and 52 axial slices, which are

sampled and padded to each consist of 20 slices (mean+1std). Exams with more than 20 slices

are sampled with even distribution, and exams with fewer than 20 slices are padded with even

distribution.

3.4.2 Related Work

The attention model builds on the NIC by taking lower-level CNN features corresponding to

parts of the image and learning the ‘context vector’: a dynamic representation of the relevant

part of the image at each time step, also trained by using an LSTM in order to generate the

caption sequence. Attention mechanisms have been successfully used in machine translation
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[121], image classification [105] and image captioning [10] in order to learn to attend to parts of

the input: words in text, image regions, or both simultaneously. The benefit of using attention

as opposed to a single vector representation for an image is that the lower-level CNN features

retain richer, contextual information that is lost in the final layer through pooling of features.

It also allows the sequence generation to focus on different, relevant parts of the image at each

time step, similar to human image captioning. Additionally, the learned attention weights can

be used to visualise the salient parts of the image used to generate a word at each time step,

providing interpretability to the generation process. The soft attention mechanism of Xu et

al. [10] demonstrated on an image captioning task is used by Zhang et al. [112] in the same

way, but they additionally propose auxiliary attention sharpening which uses the implicit class-

specific localisation property of global-average pooling, adding an extra layer of supervision

to the attention weights. A co-attention mechanism is used by Jing et al. [116] where they

compute attention over the image convolution features as well as the CNN predicted multi-

label tags. They additionally propose the use of a hierarchical sentence-word LSTM as a better

alternative for modelling longer, multi-sentence reports. Yuan et al. [115] use a similar approach

but have the attention mechanism in both the sentence decoder and word decoder, as well as

incorporating multi-view image fusion through a multi-view CNN encoder (also incorporating

attention).

3.4.3 Model Architectures

Attention is learned over image regions by computing a context vector ct = φ ({ai}, {αi}) which

is a dynamic representation of the relevant parts of the image at time step t for each location

i, where αi are the weights of each image annotation vector ai. For 2D L × L images, these

annotation vectors are taken from a lower convolutional layer of a CNN. A recurrent neural

network processes these inputs at each time step, learning a sequential internal representation

of locations based on the prediction task. As per the formulation in [121] and [10], at each time

step, a scalar score eti is computed for each location i ∈ 1 · · ·L× L:
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Figure 3.5: An illustration of soft-attention image captioning, reproduced from model descrip-
tion in [10]

eti = FF (ai,ht−1) (3.4)

where FF is a feed-foward neural network, ht−1 is the hidden state of the RNN at the previous

time step. The score is effectively a similarity measure between the encoded states of the image

and the encoded states of the text. An alternative to a FF network is the simpler dot product.

Soft-attention weights αi can be computed using the softmax function over the score eti:

αti =
exp (eti)∑
i exp (eti)

such that
L×L∑
i

αti = 1 and αti ≥ 0 (3.5)

The location i for the next time step can be found by sampling from this softmax (hard atten-

tion), or by computing the expectation over the feature slices (soft attention), the advantage

of soft attention being that it is differentiable and can be learned through back-propagation.

The soft-attention image captioning architecture adapted from [10] is illustrated in Figure 3.5.

The weighted sum combination of inputs ct, or context vector, is then fed to the RNN:
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ct =
L×L∑
i

αtiai (3.6)

ht = RNN(ht−1, [yt−1, ct]) (3.7)

where yt−1 is the previous predicted word. The attention module of the DARepGen is illustrated

in Figure 3.6
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Figure 3.6: Dynamic attention report generation (DARepGen) module where attention is com-
puted using the previous hidden state of the LSTM. Image convolutional features are a con-
catenation of conv features from either a single or multiple views.

To make this work for multi-view images, as with the static embedding models, a dedicated
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image CNN network is trained to produce image features for each view.

3.4.4 Experiments

The dynamic attention model was trained to reduce the categorical cross-entropy loss in the

same way as for the static embedding model:

L(S, I) = −
T∑
t=0

log p(Pt = Tt|CNN(I0)...CNN(IK), P0 . . . Pt−1) (3.8)

where CNN(I0)...CNN(IK) are the feature vectors extracted from a convolutional network from

image views [V1, V2, ...VK ]. Data balancing, image and text augmentation and text encoding is

performed using the same techniques as for static embedding model training, including image

rotation/translation, sentence shuffling, pre-pending and appending ‘start’ and ‘end’ tokens.

Convolutional image features were extracted from the final convolutional layer of ResNet50

pre-trained on ImageNet.

The method for training on the 20-slice brain-DWI set was slightly different to training on the

single-view DWI subset and chest X-rays: attention was calculated over each individual slice,

as opposed to locations within slices. Feature vectors were taken from the last spatial average

pooling layer of the ResNet50 [117] CNN architecture, pre-trained on the ImageNet dataset

[54]. The intention was to contrast this with having location-specific convolutional features

taken from each slice, but this was not completed due to time constraints.

3.4.5 Results

BLEU and ROUGE metrics evaluated on test sets of each dataset are displayed in Figure

3.7. The use of attention significantly improved the performance of the text generation when

training on the chest X-rays, but had less of an effect when training on the brain DWI exams.

This may be because having location-specific features is more important when the reports are
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made up of multiple diseases in multiple locations (as is the case for chest X-rays), but less

important when looking for only one disease in one location (as is the case when examining a

brain DWI for the presence of ischemic stroke).

Sample report predictions from the model trained on PA-view chest X-rays are displayed in

Figure 3.7. The learned attention weights are overlayed on top the images at each time step,

giving an indication of where the model is looking in order to generate each word. All predictions

are of varied length since the word generation process was terminated after the first appearance

of the end-token. Below each sample prediction is the original report and the BLEU n-gram

scores as calculated for that specific prediction and true report. These samples demonstrate

that the reports are coherent in terms of language and structure (i.e. they sound as if a

radiologist has written them), but do not give much of an indication whether the generated

words are conditioned on image features. This is especially evident when looking at the BLEU

scores of the sample with highest BLEU performance (third sample): the original report notes

the presence of emphysema and a calcified granuloma, but the rest of the report is a tick-

list of anatomic locations of normal appearance. The predicted report also notes emphysema

and granuloma (though in a much less coherent way), but also notes ‘degenerative changes in

thoracic spine’, ‘thoracic kyphosis’ and ‘biapical pleural parenchymal scarring’, none of which

are present in the original report. The high BLEU scores are achieved not only by matching the

correct diseases and locations, but also on correctly matching what is ‘normal’ in appearance,

which is typically a large number of things if the radiologist is following a systematic way

of reporting on all anatomical locations, as suggested by The Basic Interpretation guide by

Smithuis and van Delden [4].

Examples of brain DWI report predictions for the single axial slice dataset are presented in

Figure 3.8. Attention weights are overlayed over the slice at each time step, and the corre-

sponding generated word is printed above the slice. For the 20-slice brain DWI dataset, the

generated reports and selected slices based on attention weights are displayed in Figure 3.9.

The generated sequence of words and selected slices are highlighted in orange. The slices high-

lighted in blue are the ones selected by the 2D subset selection procedure that used the brain

ischemia segmentation network developed by Chen et al. [5], outlined in Section 1.5.2. The
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segmentation masks are displayed alongside the DWI slices.

Model View B-1 B-2 B-3 B-4 R-F1
IU-CX free-text

SERepGen PA 25.2 13.2 7.0 3.6 32.9
SERepGen PA+L 24.5 14.7 8.4 4.0 36.9
DARepGen PA 35.6 19.2 16.6 5.3 38.4
DARepGen PA+L 37.4 20.5 17.8 5.0 40.1

ICH-Brain-DWI
SERepGen 1-axial 20.8 12.9 5.1 1.6 31.6
DARepGen 1-axial 21.5 13.4 6.8 2.3 31.8
DARepGen 20-axial 23.4 12.5 5.5 2.1 33.2

Table 3.7: BLEU n-gram and ROUGE-1 F1 scores of DARepGen trained and evaluated on the
IU-CX free-text single (PA) and multi-view (PA+L) datasets, and ICH-Brain-DWI single axial
slice and 20 axial slice datasets. SERepGen-merge results displayed for comparison. Reported
performance on test set.

3.5 Conclusion

Both static and dynamic image embeddings can be used as image representations for report

generation in an encoder-decoder framework. When using static image embeddings, it is im-

portant to consider the purpose of the encoder: whether it is learning the time-dependency of a

sequence initialised with an image, learning the language structure, or a combination of image-

word time dependency. Optimal performance, based on a combination of BLEU, ROUGE and

DAPS metrics, was achieved when the image CNN was considered as the encoder of image fea-

tures, the LSTM as an encoder of textual features and the decoder as a dense layer that took

both encodings as inputs to generate a probability distribution over words. The implication be-

ing that RNNs were designed to model sequential dependencies, which are inherent in language

but not necessarily between image-word sequences. The use of the attention mechanism allows

the LSTM to additionally learn a sequential traversal over the image when generating words,

which bears some similarity to the way humans describe images by focusing sequentially on

different parts of the image. In addition to learning attention over image regions at each time

step, this model can be improved with attention over other inputs to the RNN decoder, for in-

stance multi-label class predictions from a separate network, or other types of feature encodings
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taken from the images from a separate but related task, for instance, image segmentation.

Training and evaluating this framework on hospital data was considerably more difficult than

on curated data where reports were annotated with medical subject headings. This is as

expected since the radiological reports of the hospital data (IU-CX free-text and ICH-Brain-

DWI) were unstructured and had a much more varied vocabulary. This means that even if

two images present the same abnormal patterns, two different radiologists may describe them

using different words that both map to the same MeSH annotations. One way to address this

is, instead of directly learning from free-text reports, to first learn a mapping of free-text to a

vocab-controlled thesaurus, such as MeSH, and train using image-MeSH annotations.

In the following chapter, the combination of a medical concept extraction tool MetaMap [79]

and statistical and machine learning methods of word representation and clustering, including

tf-idf [71, 72], word2vec [73, 74] and k-means clustering [122], are used to extract and group

concepts that can then be used as image labels.

3.6 Related Publications

Gasimova, A. (2017). Automated Knee X-ray Report Generation, In NeurIPS Workshop on

Machine Learning for Health, 2017.

Gasimova, A. (2019). Automated enriched medical concept generation for chest X-ray im-

ages. In Interpretability of Machine Intelligence in Medical Image Computing and Multimodal

Learning for Clinical Decision Support (pp. 83-92). Springer, Cham.
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True report: ‘small focal opacity in left upper lobe, differential diagnosis includes subsegmental atelec-
tasis, small infiltrate, scarring, followup recommended. heart size within normal limits. mediastinal,
left hilar calcifications suggest previous granulomatous process.’
B1 = 9.7, B2 = 1.3, B3 = 1.0, B4 = 0.0

True report: ‘lower cervical, upper thoracic spinal fixation. multiple sternotomy. bilateral calcified
granulomas, degenerative change in spine. lungs appear clear.’
B1 = 33.3, B2 = 11.3, B3 = 5.2, B4 = 2.2

True report: ‘lungs hyperexpanded consistent with emphysema. pectus carinatum noted. heart size
, pulmonary vascularity appear within normal limits. lungs. calcified granuloma noted. vascular
calcification noted. hyperexpanded lungs consistent with emphysema. pectus carinatum.’
B1 = 44.2, B2 = 38.4, B3 = 37.9, B4 = 29.8

Figure 3.7: IU-CX free-text sample test report predictions and attention maps of DARepGen.
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True report: ‘acute left mca territory infarct involving left parietal lobe superior lateral left occipital
lobe extending anteriorly left temporal lobe left operculum posterior left insula.’
B1 = 33.0, B2 = 23.9, B3 = 16.6, B4 = 6.0

True report: ‘recent acute/subacute less 10 days old infarcts within left cerebellum superior cerebellar
artery territory.’
B1 = 11.8, B2 = 8.9, B3 = 5.1, B4 = 2.8

True report: ‘no acute infarction diffusion weighted sequences.’
B1 = 28.6, B2 = 21.8, B3 = 12.4, B4 = 7.0

Figure 3.8: ICH-Brain-DWI sample test report predictions and attention maps of DARepGen.
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Original report: no acute infarct , intra extra-axial haemorrhage demonstrated

DWI            Segmentation mask Slices selected by attention mechanism for each predicted word 

Original report: multiple acute tiny infarcts within left corona radiata

Original report: this background , no focus diffusion restriction

Original report: large haematoma right region with right haematoma

Figure 3.9: 20-slice brain DWI exams with predicted reports. Slices highlighted in blue on the
left are the slices selected by the 2D brain-DWI subset selection procedure described in Section
1.5.2. They are displayed for comparison in order to highlight which slice (if any) contains
the ischemia according to the segmentation network of Chen et al. [5]. Slices on the right,
highlighted in orange, are selected based on max attention weights at each time-step. The
generated word and selected slice number for that word are displayed in the top left corner of
each image. The original reports are displayed underneath each sample.



Chapter 4

Medical Concept Extraction from

Free-Text Diagnostic Reports

4.1 Introduction

As seen in the previous chapter, training report generation models on free-text reports are very

difficult due to the unstructured nature of the reports. The reports may contain non-visually

descriptive information (such as negation, which is difficult to correlate to image features),

redundancy, spelling errors, inconsistent use of language (medical and non-medical). It is

additionally difficult to evaluate the predictions for clinically-relevant concepts, for instance,

correct identification of pathologies. On the other hand, training and evaluating using the

medical subject heading annotations of the IU-CX dataset proved more successful as the vo-

cabulary is controlled and consistent for abnormal patterns, and less noisy with errors. There

is therefore a strong motivation to be able to map free-text reports to vocabulary-controlled

structured medical concepts that correspond directly to visually-relevant image features.

Aside from radiology report generation, generating or extracting phrases that summarise vi-

sual image features from free-text reports has applications in automated image labelling for

weak-label supervision and image retrieval tasks. For instance, radiology reports from past ex-

aminations have been used to extract classification labels for large chest x-ray training datasets

70
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[107, 123, 124]. A variety of methods have been used to extract disease labels: rule-based

[124], ontology-based tools such as DNorm [108] and MetaMap [79] that map terms to Unified

Medical Language System [107] concepts, and manual expert-based annotation for supervised

multi-label classification using convolutional and recurrent neural networks attention models

[123].

The main challenges all these methods face are that free-text radiology reports are typically

long (>50 words), potentially consisting of references to multiple pathologies or lack thereof,

with only small number of sentences or phrases containing key information summarising the

disease, its location and severity. In addition, there is typically inconsistency across radiologists

in the way they refer to findings in the images, with many phrases mapping to the same disease

concept. Language inconsistency primarily affects rule-based and ontology-based approaches

since they rely on pattern matching of a finite set of terms. On the other hand, neural network

classification models have the challenge of generating meaningful report representations that

are able to capture the disease concepts, and discard extraneous information. In addition, for

tasks such as image retrieval and automated radiology report generation, single-class labels do

not capture the full context of the pathology, such as severity and location, and therefore a

generative approach is more suitable.

This chapter focuses on exploring and comparing manual, ontological, and a combination of

statistical and ontological approaches to medical concept extraction of free-text radiological

reports. An ontological tool is first used to extract phrases and concepts related to disease

findings, and then these phrases and concepts are grouped together based on their meaning

using a statistical approach (k-means clustering). The reason for merging the two approaches

is that ontological tools, specifically MetaMap, do the majority of the work in filtering reports

and extracting disease findings. However, as it is an extractive approach, these disease phrases

and concepts can have a lot of overlap in terms of meaning. Additionally, the use of the

‘Diseases or Syndromes’ tag alone misses a large proportion of disease concepts. Additional

MetaMap tags can be used, but must be carefully chosen to capture more phrases and not over-

eagerly capture ambiguous phrases unrelated to disease findings. Both ‘Finding’ and ‘Pathologic

Function’ capture a wider range of disease phrases and concepts, as well as some phrases that
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are unrelated to disease findings. Using word-vector representation and k-means clustering,

these phrases are grouped together based on their meaning, and hence a large vocabulary of

findings is mapped to a much smaller, more consistent vocabulary, which is more suitable to use

as image labels. These image labelling technique is then evaluated by performing multi-class

classification on the images. The main contributions are as follows:

1. The ontological medical concept extraction tool MetaMap is used to tag and extract

phrases and concepts related to disease findings in free-text radiological reports. Three

different tag combinations are compared: ‘Disease or Syndrome’, ‘Disease or Syndrome’

+ ‘Finding’, and ‘Disease or Syndrome’ + ‘Finding’ + ‘Pathologic Function’.

2. The tag combinations that resulted in the best correspondence of ‘normal’ cases according

to the ground-truth MeSH annotations are chosen as new labels, but required grouping

according to meaning due to many disease phrases referring to the same disease.

3. Two methods of grouping these concepts and phrases are compared: tf-idf and word2vec.

This is done by creating disease phrase vectors and then clustering them using k-means.

4. Optimal clusters were chosen using the silhouette scores and manual checking of the

clusters for semantically similar phrases. Clusters were then assigned as labels to the

images, instead of the original extracted disease phrases.

5. These two phrase clustering methods of labelling are compared with the disease labels

extracted directly from the MeSH annotations, and with labels extracted using MetaMap’s

tag ‘Disease or Syndrome’.

6. The four labelling methods are compared by performing image classification and evalu-

ating the accuracy, precision and recall of the predictions.

All of these techniques are tested and evaluated on the IU-CX dataset, Section 1.5.1, since they

can be compared with the manual annotations provided by MeSH. The brain DWI dataset,

described in Section 1.5.2, does not have manual annotations of the disease phrases in the

reports, though it does have binary acute/no acute ischemia labels for the images. Additionally,
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the reports are filtered to the 1-2 sentences describing the presence/absence of ischaemia, and

so are much simpler than the reports for chest X-rays (which can report on any number of

diseases in the images, or lack thereof). This means a slightly different approach needs to

be used to group and assign disease labels that is more suited to this particular dataset. In

the second half of this chapter, a combination of manual extraction and a hierarchical brain

ontology is used to extract and group brain regions referenced by the reports to contain acute

ischemia. These annotations, together with the binary labels of acute/no acute ischemia, and

evaluated by assigning them as multi-label vectors to the images and performing multi-label

classification.

4.2 Datasets

The Indiana U. Chest X-ray Collection (IU-CX) is the most suitable for comparing ontolog-

ical/statistical and machine learning concept extraction methods because it consists of 3,955

individual exams, where each exam consists of X-ray images, the radiological report, and man-

ual Medical Subject Heading annotations (MeSH R©). The MeSH annotations can treated as the

gold-standard in concept extraction since they are made by expert radiologists, and summarise

the disease findings in the reports using vocabulary-controlled MeSH concepts.

Findings: Normal cardiomediastinal silhouette. Interval improvement in lung
volumes bilaterally. Improved aeration of the right and left lung bases.
Bilateral small pleural effusions and left base atelectatic change, with interval
improvement. Visualized XXXX of the chest XXXX are within normal limits.

Impression: Interval improvement in aeration of lung bases and pleural
effusions. Residual small left effusion and questionable small right pleural
effusion.

MeSH:
1. Pleural Effusion/bilateral/small 2. Pulmonary Atelectasis/base/left

Figure 4.1: Sample report and Medical Subject Heading (MeSH) annotations. Highlighted are
phrases in the report that contribute the most to the MeSH annotations.

The free-text reports of IU-CX are made up of Indication: presenting symptoms, Findings :
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visual descriptions of the x-ray scan that cover all presenting/non-presenting pathologies, and

Impression: comment on presence/absence of specific pathology for which the scan was initi-

ated. Each exam contained at least 1 MeSH annotations, with 43 % having at least 2. A sample

of the free-text report and MeSH annotations, with manually highlighted disease findings, is

presented in Figure 4.1.

4.3 Statistical and ontology-based concept extraction of

chest X-ray reports

4.3.1 Related work

The burden of ground truth image label generation primarily rests with experienced clini-

cians, but as automated concept extraction from clinical reports is applied to more and more

modalities, researchers are looking at ways in which to automate the process of ground truth

label generation. Considerable work has been done in text mining radiological reports for

concept extraction for the purpose of query retrieval [125, 126, 127], clinical support services

[128, 129, 130], and coding of reports for administrative and analytical purposes [131].

A statistical approach to latent topic extraction was proposed by Shin et al. [110]. They

proposed the use of Latent Dirichlet Allocation (LDA) to extract a hierarchy of latent topic

labels from radiology reports. LDA was first presented as a probabilistic graphical model

for topic learning by [132] that models ‘topics’ as having a distribution over a vocabulary and

‘documents’ as having a distribution over topics, where the topic distribution is assumed to have

a Dirichlet prior. This distribution can be learned using Bayes inference methods, for instance,

collapsed Gibbs Sampling [133]. Shin et al. [110] chose the number of topics by evaluating

the ‘perplexity score’ of each model: the log-likelihood on a test set. A lower perplexity score

corresponded to a better model. The main problem with this approach is that topics are not

well-defined and are not explicitly disease findings.

Wang et al. [107] propose a primarily ontological approach, together with hand-crafted nega-
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tions and uncertainty detection. They merge the results of ‘Diseases or Syndromes’ and ‘Find-

ings’ concepts extracted by MetaMap [75] and DNorm [108] and use them to assign eight

common disease labels to images for weakly-supervised multi-label classification and localisa-

tion.

4.3.2 Methods

Disease terms extraction using MetaMap The NegEx algorithm created by [118] was

used to identify negatives from a ‘negation phrase list’ in the raw reports. After they were

identified, a regular expression parser was used to remove all the negated phrases. These

processed reports were then analysed by MetaMap [75].

The total number of tags that MetaMap was able to extract from the IU-CX reports was 107,

the top 20 of which are listed in Table 4.1 along with their frequency of appearance. Visually-

relevant parts of the report, such as pathology, severity, location, have been detected under tags

such as Finding, Disease or Syndrome, Qualitative Concept, Spatial Concept and Body Part,

Organ, or Organ Component. At least one Finding concept appears in 93% of the reports, and

at least one Qualitative Concept appear in 92% of the reports.

Note, each identified phrase within the report may have multiple candidate mappings, each

with varying scores determined by MetaMap. For instance, the phrase ‘interval development

of bandlike opacity’ had 18 candidate mappings, two of which as displayed in Figure 4.2. In

this example, the word ‘opacity’ is mapped to both Finding and Pathologic Function.

Figure 4.2: MetaMap sample output: identified phrase ‘interval development of bandlike opac-
ity’ and two out of 18 candidate mappings, with corresponding MetaMap score.
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Table 4.1: Top 20 Tags Assigned to the X-Ray Reports by MetaMap

Tag Frequency % of reports w/
at least 1 ap-
pearance

Qualitative Concept 59311 92
Spatial Concept 57882 70
Finding 40167 93
Body Part, Organ, or Organ Component 37559 88
Quantitative Concept 31643 84
Intellectual Product 21531 38
Functional Concept 19283 46
Body Location or Region 18027 56
Pathologic Function 16713 33
Disease or Syndrome 14464 35
Idea or Concept 8264 22
Temporal Concept 7696 19
Therapeutic or Preventive Procedure 5544 12
Inorganic Chemical 4742 19
Organ or Tissue Function 4488 9
Medical Device 4476 10
Health Care Activity 4448 9
Manufactured Object 3070 8
Body Substance 2961 7
Tissue 2749 22

The concepts under the tag Disease or Syndrome appear at least once in 35% of the reports,

and have the potential to make suitable labels for the extraction of valuable image features

through a classification task. However, there are a few problems with simply using this tag. To

begin with, reports where no Disease or Syndrome tag was identified can either be assumed to

be ‘normal’, or excluded from training altogether. If they are assumed to be normal, then 64.7%

of the reports would be labeled as ‘normal’, compared with 36.3% as identified by the manual

MeSH annotations. This suggests a number of disease terms that were identified by radiologists

were not identified by MetaMap. Alternatively, some diseases may have been classified under

a different tag, such as Finding or Pathologic Function.

Including terms or phrases under Finding and Pathologic Function tags increased the proportion

of exams with identified diseases, and increased the vocabulary of the identified disease terms

(Table 4.2). A full list of phrases and terms extracted from Disease and Syndrome, Finding

and Pathologic Function that appear in at least 30 reports is presented in Appendix .2, Table
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MetaMap tag Total vocab % normal
Disease or Syndrome 344 64.7%
Disease or Syndrome + Finding 854 42.5%
Disease or Syndrome + Finding + Pathologic Function 949 37.9%

Table 4.2: Total vocabulary and percentage of ‘normal’ cases when using multiple MetaMap
tags to extract disease terms and phrases.

2 and the top 20 in Table 4.3. These tags also captured words and phrases that may not be

related to pathologies, as well as phrases that state no findings, or describe normal appearance,

for instance ‘clear’ and ‘normal heart size’. Therefore, to determine the proportion of ‘normal’

cases, reports in which every extracted phrase contained words in [‘clear’, ‘normal’, ‘intact’,

‘negative’, ‘well’, ‘limited’, ‘unchanged’, ‘negative’] were considered normal, which came to

37.9% of the exams, similar to the proportion identified by the ground-truth MeSH.

As more terms have been extracted from each report, there is considerable overlap in appear-

ances between phrases. For instance, from Table 4.3, the word ‘normal’ has 113% overlap

because it appears together with other phrases, and additionally within the other phrases such

as ‘normal heart size’. The phrase ‘cardiomegaly’ appears alongside another phrase in 93% of

cases. Terms and phrases with high percentages of overlap are not particularly useful as im-

age labels if the ultimate goal is to use CNNs for image classification and train by minimising

cross-entropy. One option is to perform multi-label classification, however, it is also evident

that the phrases are not independent. In some cases, they have the same meaning: ‘normal

heart size’ and ‘heart size normal’. In other cases, phrases have enough semantic similarity

that they can be grouped together under one label, for instance, thoracic spine degeneration

and degenerative spine are referring to the same pathology, with thoracic referring to position;

similarly with pleural effusion and pleural effusions bilateral. Therefore, an approach is needed

to cluster phrases together based on their meaning, and treat the clusters as independent image

labels.

Creating disease phrase vectors There are several choices for clustering algorithms, but

they first require a choice of semantic similarity measure. Text similarity measures can be

split into two main types: string-based and knowledge-based. String based similarity measures
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Table 4.3: Top 10 Metamap extracted ‘Disease or Syndrome’, ‘Finding’ and ‘Pathologic Func-
tion’ terms and their percentage overlap with other phrases. Percentage is calculated as total
appearance as a single phrase divided by appearances with and within other phrases. For in-
stance, the word ‘normal’ appears as single Metamap term 2512 times, but also appears within
other Metamap terms such as ‘normal heart size’.

Disease/Finding/Pathology phrase Total ap-
pearances

Appearances w/
and within other
terms or phrases

Overlap %

clear 3350 2651 79
normal 2512 2848 113
heart size 1812 2434 134
intact 711 664 93
normal heart size 703 506 72
atelectasis 630 696 110
cardiomegaly 532 494 93
opacities 479 477 100
heart size normal 397 359 90
unchanged 342 319 93
thoracic spine degeneration 336 306 91
opacity 327 387 118
disease 319 678 212
degenerative spine 259 230 89
pleural effusion 244 343 140
crowding 165 159 96
normal breast 163 159 98
emphysema 157 169 107
tortuous aorta 157 153 97
tortuous 157 288 183
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various forms of ‘distance’ between strings for approximate string matching, for instance, cosine

similarity of term frequency-inverse document frequency (tf-idf) vectors. Knowledge similarity

is measured based on similarities obtained from semantic networks, such as WordNet [134]

(a large lexical database of English where words are organised and linked according to their

semantic relations). Additionally, cosine similarities can be obtained from word embeddings

such as word2vec [74] which have been trained on a large corpus. Both tf-idf and word2vec can

be created directly on the corpus, though they both greatly benefit from having a large and

diverse set of documents.

In application to radiological reports, one document is the set of words within a phrase extracted

by MetaMap under the tags ‘Disease or Syndrome’, ‘Finding’ and ‘Pathologic Function’, and

the corpus is the full set of phrases extracted from all reports.

Since both architectures make use of the context surrounding a word to determine its meaning,

keeping the context surrounding the extracted disease terms is fundamental for training. There-

fore, the full textual reports (post negation removal) were used to train the word2vec model to

create word representations, and disease phrase representations were created by averaging the

word vectors within the phrase.

Clustering disease phrase vectors K-means clustering was performed on tf-idf weight

vectors and word2vec phrase representations. K-means minimises the within-cluster variance,

or squared Euclidean distance, but cosine similarity is a more appropriate measure for tf-idf

and word2vec representations. Hence, the vectors are first normalised so that the Euclidean

distance is connected linearly to the cosine distance.

To start with, a tf-idf matrix was generated for the 949 individual disease phrases in the reports.

Each phrase consisted of a vector of tf-idf scores, one discrete value score for each word in the

vocabulary. When building the vocabulary, words that appeared in 99% of the reports are

discounted, as well as words that appeared in less than 1%. This gave a total vocabulary, and

therefore dimensionality, of 39 words. The tf-idf matrix (R949×39) was then clustered using

k-means. To determine the optimal number of clusters, the mean silhouette score was plotted
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for each k, displayed in Figure 4.3a. The silhouette score is a measure of how separated the

clusters are, and is calculated by (b− a)/max(a, b) where a is the mean intra-cluster distance

and b is an average of the distances between each sample and a cluster it is not part of. The

range of values is between -1 and 1, 1 indicating that the point was placed in the correct cluster.

The average silhouette score reached a maximum at around 175 clusters, a sample of which is

visualised in 2 dimensions using SVD in Figure 4.3b.

For comparison, a word2vec matrix was created by first fitting the CBOW word2vec model

on the reports (without negation), and then averaging the disease phrase vectors. The feature

space was chosen to be 100. K-means clustering was performed on the word2vec phrase repre-

sentations, and the optimal number of clusters was chosen by also plotting the silhouette scores,

displayed in Figure 4.4a. In the case of word2vec, the silhouette score had still not converged

after 300 clusters, meaning a better score can be achieved by increasing the number of clusters.

However, this may not be desirable since, according to the ground-truth MeSH annotations,

there are only 31 unique diagnosis labels (Table 1.3 in Section 1.5.1).

It is difficult to determine the quality of the clustering from the silhouette scores and visualised

SVD clusters alone. Looking at the two distributions of terms per cluster in Figure 4.5, it

is evident that a single cluster contains the largest proportion of disease phrases. For tf-

idf, roughly 40% have been grouped under one cluster, and for word2vec, roughly 13% (the

lower proportion could also be due to the larger number of clusters used to perform k-means).

Investigating the phrases under largest cluster of tf-idf and word2vec, a sample of which is listed

in Table 4.4, it can be seen that, semantically, these words are not similar. This may be due

to the way in which the tf-idf matrix is constructed: words that appear very rarely across the

documents are left out from the vocabulary, and so if a disease phrase only contains words that

are not in the vocabulary, the entire vector is zeros. These vectors naturally become grouped

under one cluster. These words can be incorporated back into the vocabulary, however, this

is evidence of a slightly larger problem with the clustering system. When each ‘document’ (in

this case, each disease term or phrase) is small and vocabulary is large, the tf-idf matrix is

very sparse. This means that phrases may become grouped together if they only share one

word (as long as that word is not especially common across the phrases). For instance, terms
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Table 4.4: Sample of disease phrases extracted from largest cluster of rare words from tf-idf
and word2vec k-means.

Tf-idf Word2vec
hiatal hernia retracted
opacity collapsed
osteopenia infections
clear hematoma
tortuous pass
ectatic pleuritis
cardiomegaly pancreatitis
consolidation obese
shunt avn
increased gallstones
mas stigmata
opacities cholelithiasis
combination short
thickening degenerated
round bronchiolitis, viral

small airways disease, granulomatous disease, diseases of the joints, bullous disease are under

one cluster presumably because they all contain the word disease, and the other words in the

phrase are either unique, or very rare. The same problem is present when using word2vec due

to the same reasons: words that are rare are left out, and if a phrase only contains rare words,

the phrase vector is zeros. If all rare words are kept in the vocabulary, there will many instances

of phrases containing unique or rare words which are distinct enough that they do not belong

in any cluster. It would require very careful tuning of the k-means clustering algorithm to make

sure clusters are distinct.

Another way to evaluate the quality of the clusters is to assign them as image labels and eval-

uate the performance of image classification. The performance will indicate whether there is

correlation between the disease phrase clusters and visual features in the radiological images.

The phrases with zeroed vectors were removed from both tf-idf and word2vec, and the matri-

ces re-clustered using k=175 and k=300 respectively. Phrases were then replaced with their

respective cluster indices, and multi-class classification was performed on the PA-view images

using the ResNet50 architecture, pre-trained with ImageNet [51], with the final classification

layer being replaced with a dense layer of dimension equal to the number of class labels. This

was compared to the classification performed on images labeled with the ‘Disease or Syndrome’
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extracted terms and phrases, which were not clustered. For all experiments, labels that ap-

peared less than 30 times were removed, and exams with no labels were dropped from training.

To create a single image label, only the most common disease labels were used per each exam.

The final number of labels and exams used for training the different experiments is outlined in

Table 4.5. The same set of 300 exams was used for testing all of the experiments.

Table 4.5: Multi-class experimental set-up for extractive and clustering labelling methods.

Labelling method Num. labels Total exams
MeSH disease 15 2369
MetaMap D/S tag 16 3138
tf-idf 175 31 3197
word2vec 300 54 3587

Table 4.6: Classification comparison of labelling methods using micro-precision, -recall, -F1
and macro-precision, -recall and -F1. Results reported on test set. Micro-P/R/F1 refers to the
average over classes, and macro-P/R/F1 are averaged over samples.

Labelling method Acc. micro-P micro-R micro-F1 macro-P macro-R macro-F1
MeSH disease 22.9 24.5 22.9 23.7 4.7 10.2 6.4
MetaMap D/S tag 10.3 69.9 10.3 18.0 8.8 13.4 10.6
tf-idf 175 63.8 41.8 63.8 50.5 3.4 5.2 4.1
word2vec 300 9.8 57.2 9.8 16.7 7.9 6.7 7.3

These labelling methods are compared with using disease labels extracted from manual MeSH

annotations in Table 4.6. Classification results indicate that, even when using manual MeSH

annotations to provide disease labels, precision and recall performs very poorly. There may

be various reasons for this. Firstly, there is an inherent problem in assigning a single disease

label when many diseases tend to co-occur. A multi-label classification approach may be more

appropriate, but would require carefully tuning the loss to balance the distribution of labels

per sample as well as what these labels should be.

Secondly, even MeSH disease annotations may not be ideal as image labels, specifically for

chest X-rays since the same image features, or patterns, are associated with different diseases

(as explained in Section 1.5.1), which may make convergence difficult since the same image

feature inputs are being mapped to different outputs. The MeSH annotations consist of a

mix of abnormal patterns (general image features, such as areas of opacity) and diagnoses,

such as ‘calcified granuloma’. Extracting the patterns from MeSH annotations as described in
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Section 1.5.1 was a manual process, and therefore not ideal as an automated approach to image

labelling.

MetaMap ‘Disease or Syndrome’ tag achieved the best macro-F1. Macro scores are averaged

over classes rather than instances, so the MetaMap labels achieved the best average per-class

performance. Although MetaMap ‘Disease or Syndrome’ tag has the downside that it mis-

categorises, therefore misses, some disease phrases from the reports, results show that the ones

it does not miss can be used for image labelling. However, based on the recall and precision

performance, it is still not an adequate method for automated diagnosis of chest X-ray images.

4.4 Anatomical brain region mapping using manual ex-

traction and a hierarchical ontology

The radiological findings of the ICH brain DWI dataset of patients with stroke-like symptoms

are structured in a similar way to the chest X-rays: presence/absence of pathology/lesion,

anatomical location, severity and any visually descriptive features of the lesion. The problem

of extracting disease labels is somewhat simplified for this dataset as clinicians are primarily

interested whether the patient has suffered an ischemic stroke, and if so, its location. As

detailed in Section 1.5.2, each exam is assigned a diagnosis label as part of reporting, which is

treated as a binary presence/absence of acute infarct. The descriptions of the brain regions,

on the other hand, are far more diverse and therefore more difficult to categorise. This section

proposes a semi-automated method of extracting and grouping brain regions from text reports

using a hierarchical brain ontology, and evaluates the labelling technique by attempting multi-

label brain-DWI image classification. The classification network is inspired by attention-guided

multilabel video classification tasks [135, 136], where each slice in the DWI is treated as a

frame and attention weights are learned over the individual 2D slices. In this way, the problem

of having to model a 3D brain volume is avoided and, instead, pre-trained 2D convolutional

neutral networks can be used to extract image features.
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4.4.1 Method

A combination of manual and automated annotation was necessary in order to extract terms

relating to brain regions from the clinical reports. A hierarchical brain region ontology available

from the Allen Institute [137] was used to manually extract the terms, and then automatically

assign these terms to larger, parent regions in the hierarchy. For instance, ‘left middle temporal

gyrus’ is located within, and therefore reassigned to, the ‘temporal lobe’. Regions that occurred

less than 3 times across the entire corpus were excluded. In this way, 356 unique regions were

reduced to 42. The 20 most common regions and their frequency of appearance are listed in

Table 4.7.

Table 4.7: Top 20 classes of brain regions after re-assignment based on a hierarchical ontology.

Brain region freq. Brain region freq.
frontal lobe 100 left cerebellar hemisphere 17
basal ganglia 99 cerebellum 15
parietal lobe 74 centrum semiovale 13
corona radiata 72 posterior cerebral artery 12
middle cerebral artery 68 medulla oblongata 11
occipital lobe 45 midbrain 11
pons 43 superior cerebellar artery 11
insular cortex 41 perirolandic region 9
thalamus 39 thalamocapsular region 8
temporal lobe 36 right cerebellar hemisphere 8

An example of the extraction and mapping is shown in Figure 4.6. In this way, all of the free-

text reports are mapped to a binary presence/absence of ischemic infarct and the corresponding

brain region labels. This labelling technique was evaluated by encoding the labels into k-hot

vectors, and performing multi-label classification on the brain image slices.

As with the chest X-rays, a pre-trained CNN network, in this case VGG-16 [138], was used

to extract dense image features from the last average-pooling layer. This was compared with

using recurrent attention over the final convolutional layers of the individual slices, inspired by

attention-guided multilabel video classification tasks [135, 136]. In video-labelling, the RNN

is used to model the temporal dependencies of frames and attention is learnt over locations

within individual frames. The same approach is adopted for the brain slices where an RNN is

used to model the sequential dependencies of slices within the DWI and trained to produce a
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multilabel output.

For each 3D DWI, the annotations vectors of each slice are taken from the last convolution layer

of a CNN: a = {a1, . . . , aN}, ai ∈ RL×L×D. The weights can be thought of as the probability

distribution of the relevancy of each location encoding to the output (diagnosis+location). The

input at the next time step xt is then the expectation of features at different locations:

xt =
L2∑
i

αiXi (4.1)

The complete model is illustrated in Figure 4.7. The dimension of the hidden state of the

LSTM is set to R512. The LSTM is unrolled up to 19 time steps for the average number of

slices. Images with fewer than 19 slices were re-distributed and padded with intervening slices.

The LSTM model was trained by minimising the cross-entropy loss:

L(S, I) = −
K∑
t=0

C∑
c=0

yt,c log ŷt,c + λ
∑
i

W 2
i (4.2)

where yt is the k-hot vector of labels at time step t and N is the LSTM sequence length, λ

is the weight decay coefficient, and W are all the model parameters. Exams were split into

80%/10%/10% for training, testing and validation respectively. At training time, loss was

minimised over the training set using stochastic gradient descent (batch size 16, learning rate

1e-5, 10 epochs), and parameters are updated using Adam [139] optimisation.

4.4.2 Results

The performance of the models is evaluated using accuracy, precision, recall and Hamming Loss

[140], comparing the results of the VGG-16 model trained with and without attention. Table

4.8 summarises the quantitative results. The accuracy of the ‘infarct’ class is reported on its

own, and the mean average accuracy, precision and recall (mAA, mAP, mAR) and Hamming

Loss (HL) is reported over all the classes (including the ‘infarct’ class).
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Table 4.8: ICH Brain DWI multi-label classification results using extractive labelling technique.
The accuracy of the ‘infarct’ class is reported separately as well as part of the mean average
accuracy, precision and recall (mAA, mAP, mAR) and Hamming Loss (HL) of all classes.

Acc. ‘infarct’ (%) mAA (%) mAP (%) mAR (%) HL (%)
VGG-16, central slice 59.3 97.3 29.3 17.1 2.7
VGG-16, max-agg. 55.1 97.9 24.6 14.2 3.1
VGG-16+att. 68.0 97.7 39.0 19.6 2.2

From the performance results, it can be seen that taking the central slice as input performed

better than taking all of the slices and max-aggregating the features. This is as expected

since lesions will only be present in a small number of slices, and taking all the slices as inputs

introduces a lot of noise. On the other hand, taking the central slice is the more naive approach:

a lesion reported in the text may not be present in the central slice. Taking an expectation

over all the locations across the slices provided a compromise: the entire image was explored,

but the input was more localised at each time step. The accuracy of the ‘infarct’ class achieved

better performance using attention, and in addition, an improvement is seen in mean average

recall, which is especially important in the medical domain as we want to identify all patients

with high-risk lesions (for further examination).

Although the mean average precision and recall is relatively low (39.0 and 19.6 respectively),

it does show that brain regions can be predicted alongside the presence/absence of an infarct

to some extent through the use of manual labelling techniques and models that use attention

over image slices. Manual labelling has some advantages over automated extraction using

MetaMap: for instance, all brain regions were extracted and mapped no matter their spelling

or word order, and word disambiguation is less of a problem for human annotators since they are

able to interpret the context of words far better than MetaMap. However, manual annotation

of exams is a very time-consuming process, and can introduce human errors, especially if it

is not performed by a clinician. These errors can contribute to making the labels noisy, and

therefore more difficult to learn from.



4.5. Conclusion 87

4.5 Conclusion

Using general ontological tools to extract disease findings from radiological reports proved to

have several disadvantages: extracted disease terms or phrases had several potential mappings,

some of which were not under the obvious tag of ‘Disease or Syndrome’, but the more gen-

eral ‘Finding’, many disease phrases were semantically similar and required further statistical

processing, and the ambiguity of context meant that many words and phrases were miscate-

gorised. Grouping the phrases into clusters of similar meaning was also challenging as tf-idf

and word2vec phrase representations were not suitable for modelling rare words, especially with

such a small training corpus. The results of the classification performed on the clusters showed

that the labels were not suitable for extracting image features that correlate with the findings

in the clusters.
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(a) K-mean average silhouette.

(b) Sample of disease phrase vectors and their clusters, reduced with SVD.

Figure 4.3: K-means clustering performed on tf-idf representations of disease phrases extracted
by MetaMap.
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(a) K-mean average silhouette.

(b) Sample of disease phrase vectors and their clusters, reduced with SVD.

Figure 4.4: K-means clustering performed on averaged word2vec representations of disease
phrases extracted by MetaMap.
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(a) Tf-idf (b) Word2vec

Figure 4.5: Log of disease phrase frequency distributions over k-means clusters performed on
tf-idf and word2vec representations.

Clinical Report: There is a small focus of acute ischaemia in the right corona
radiate, and a tiny focal cortical infarct in the left middle temporal gyrus.

Clinical diagnosis: Acute infarct

Manually extracted regions: right corona radiate, left middle temporal
gyrus

Region mappings: corona radiata, temporal lobe.

Figure 4.6: Central slice of sample DWI exam with corresponding clinical report, clinical diag-
nosis, manually extracted brain regions and region mappings.

CNN

224x224x3

S
1

7x7x512

S
2

S
N VGG-16

CNN

CNN

Attention
Model

Attention
Model

Attention
Model

a
1

z
1

z
2

z
N

LSTM

LSTM

LSTM

y
1

y
2

y
N

a
2

a
N
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Chapter 5

Abstractive Concept Extraction from

Free-Text Diagnostic Reports

5.1 Introduction

In the previous section, it was shown that using ontological tools to extract terms and phrases

from free-text reports that relate to disease findings results in a very diverse set of phrases that

are very difficult to group by meaning. Extractive summarisation techniques like this have the

downside that phrases are selected directly from the original text, rather than mapped to their

common meaning. This is fine when creating a summary of disease findings for human read-

ability, but not suitable for creating image labels that can then be used for image classifiers or

automated report generation models. Additionally, it was shown that using manual annotation

and mapping is incredibly time-consuming and still results in poor image classification. On the

other hand, abstractive text summarisation models generate a paraphrase of the main concepts

in the original text, potentially even using a different, reduced, vocabulary set. Given that

free-text reports have a very large and diverse vocabulary, and MeSH annotations summarise

the findings using a much smaller set of key terms, abstractive text summarisation techniques

have the potential to be applied to medical text for auto-generating MeSH annotations for

radiological images.

91
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In this chapter, a supervised abstractive text summarisation technique was used in order to

generate vocabulary-controlled phrases summarising pathology findings from free-text radiology

reports. Reports were encoded using convolutional neural networks (CNNs), and pathology

summaries (pathology, severity, anatomical location concepts) were encoded using a recurrent

neural network. During decoding, an attention model was used over the word-level feature

maps, phrase-level feature maps, and the output of the summary encoder at each time step to

provide a joint context, that was then used to predict the next word in the summary sequence.

5.1.1 Related work

The current s.o.t.a. methods for abstractive text summarisation use recurrent neural network

(RNN) [68, 141, 142] where a typically long document is mapped into a short summary using

encoder-decoder frameworks. RNNs model documents sequentially and therefore past informa-

tion does not contribute equally to the document’s encoding. However, important information

is not necessarily found in any particular section of the document. This is addressed partially

by using LSTMs to ‘forget’ past, unimportant information, and additionally by the use of hi-

erarchical attention [68]. In hierarchical attention, the encoding of the document is made up

of word-level attention contexts and sentence-level attention contexts, and the decoder learns

to attend to sections of the document when generating the output at each time-step.

However, it is not necessarily essential to model document-level sequential correlation for certain

tasks, and may even be more beneficial to capture local word-level correlation using local

convolution. CNNs have successfully been applied to document classification [143, 144, 145]

and as a way of encoding sentences into features used as inputs to an RNN model [146]. Deep

CNNs are able to capture n-gram patterns irrespective of their position in the source text and

are therefore more suitable at modelling longer documents with scattered short, key phrases.

CNNs are particularly suitable for modelling radiological reports where key terms summarising

the visual features of the pathology are found within short phrases within much longer reports

consisting of multiple sentences which do not refer to the pathology at all (and may instead

refer to the absence of pathologies).
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This section is focused on the examination of applying RNN encoder-decoder abstractive text

summarisation techniques to generate vocabulary-controlled disease summary outputs from

free-text radiological reports. These methods are then compared with a purely CNN encoder

to demonstrate the capability of CNNs of capturing word phrase-level features in order to

improve the generated summaries.

5.1.2 Method

Clinical Report Encoder

Word-level encoder: Let wi ∈ Rd be the d-dimensional word vector for the i-th word of

report r. The text report is thus represented as a concatenation of word embeddings:

r = [w1, ...wi, ...wN ] ∈ RNd (5.1)

where N is the maximum number of words in each report. Filters m ∈ Rd×kd of multiple kernel

widths k = k1, k2, k3 are convolved with a window of k words to produce a new feature ci:

ci = f(m ∗ xi:i+k−1 + b) (5.2)

where f is a non-linear activation function and b is a bias term. Multiple filters are ap-

plied consecutively to every k-word window in the report, generating feature maps c
(w)
k =

[c1, ....ci, ...cN ] ∈ RNd. Reports are padded such that, for any kernel width, the length of fea-

ture maps is equal to the length of the input sequence, and can therefore be concatenated into

the combined feature maps c:

c = [c
(w)
k1 ; c

(w)
k2 ; c

(w)
k3 ] ∈ RN(3d) (5.3)
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Phrase-level encoder: Much like in image CNNs, successively applying convolutional layers

captures higher-level visual features. In our case, a second convolutional layer aims to capture

phrase-level semantic structure. Taking inspiration from GoogleNet’s Inception Module [147],

we perform multiple filter-width convolutional operations and concatenate with max-pooling.

The phrase-level feature maps are obtained in the same way as word-level feature maps: c
(p)
k =

[c1, ....ci, ...cN ] ∈ RNf where f is the number of feature maps. Stride-1 max-over-time pooling

[148] is applied over each of the word-level convolutional feature maps: ĉ(w) = max(cw). The

concatenated output is then a combination of word-level feature maps and phrase-level features

maps and max-pooling outputs:

p = [c
(w)
k1 ; c

(p)
k1 ; c

(p)
k2 ; c

(p)
k3 ; ĉ(w)] (5.4)

Summary Sequence Attention Decoder

We use Bahdanau attention, in a similar implementation as the dynamic attention of Chapter 3,

first introduced for neural machine translation [121]. The report summary is modeled using an

LSTM. Each LSTM unit has three sigmoid gates to control the internal state: ‘input’, ‘output’

and ‘forget’. For an input summary sequence x = [x0, ...xt, ...xM ], the internal hidden state ht

and memory state ct are updated as follows:

ct = ft � ct−1

+ it � tanh(W (cx)xt +W (ch)ht−1

+W (cz)zt)

ht = ot � tanh(ct)

(5.5)

where zt is the context vector, W (cx), W (ch), W (cz) are the trainable weight parameters, and it,

ot and ft are the input, output and forget gates respectively. The context vector is calculated

as the weighted sum of the input sequence annotations p generated by the report encoder,
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computed at every decoder time-step:

zt =
N∑

n=0

āipi (5.6)

The weights āi are computed as the normalised score given by function f(ht−1, pi) 7→ αi ∈ R:

ā = softmax(a) (5.7)

The function f(x) is chosen to be a feed-forward MLP. The initial hidden and memory state of

the LSTM are taken as the average over the annotations. The weight āi can be interpreted as

the relative importance of annotation pi in generating the next word in the summary sequence

xt given the previous hidden state ht−1. The output word probability is then computed by a

dense decoder layer:

p(xt|x0, ..., xt−1, zt) = g(xt−1, ht−1, zt) (5.8)

where g(x) is a single-layer dense MLP with softmax activation. The full schematic of the

encoder-decoder network is illustrated in Figure 5.1.

5.1.3 Experimental Settings

Preprocessing After removal of reports with missing finding and/or impressions, there re-

mained a total of 3,740 exams, 300 of which are used for training and validation each. Pre-

processing involved lower-casing, punctuation and non-alpha-numeric character removal, re-

moval of common ‘stopwords’ (‘and’, ‘the’), and words that fell outside of the 99th percentile.

Following processing, the average number of words per report was 21.5 ± 14.2 std with a vo-

cabulary of 1,319. For the MeSH annotations, the average number of captions per report was

2.1, with average number of total terms per exam being 5.2 ± 5.5 with a final vocabulary of

126.
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Figure 5.1: TextCNN2Seq-Att model schematic. Best viewed in colour.

Augmentation: As ‘normal’ cases made up 37% of the exams, the ‘abnormal’ cases ( where

the MeSH caption is not ‘normal’) were augmented by randomly shuffling the sentences of the

reports. This results in 5,748 report-MeSH annotation pairs used for training.

Encoding Reports and MeSH annotations were cropped/padded to length 37 and 13 re-

spectively (mean+1std+start-token+end-token+unknown). Both the report words and MeSH

terms were one-hot-encoded before being passed through the learn-able word embedding layer.

For both the word-level and phrase-level convolution, kernel filter widths are set to k1 = 1, k2 =

3, k3 = 5, with 64 filters each for word-level and 128 phrase-level. Max-pooling on word-level

feature maps is done with width 3 filters and stride=1 with padding. The final feature map

output of the report encoder was therefore 320. The report word embedding dimension was set

to be 1024, the LSTM hidden dimension to be 320 and decoder dimension to 128.

Training The model was trained by minimising the categorical cross-entropy between the

generated summary sequence and true sequence. At training time, loss is minimised over the

training set using SGD (batch size 128, learning rate 1× 10−5), and parameters were updated

using Adam [120] optimisation.
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Inference During inference, first the word- and phrase-level feature maps are generated using

the trained CNN. To predict the first word, the LSTM hidden and memory states are initialised

with an average over the feature maps, and the start-token is input into the LSTM. Greedy

search is performed over the output probabilities i.e. the word with the highest probability is

selected as the output. This word is then appended to the LSTM input sequence, the hidden and

memory states are updated, and the process repeated until the sequence is of length M = 17.

5.1.4 Results

The quality of the generated summaries was evaluated by measuring BLUE [43] and ROUGE

[44] scores averaged over all the summaries, Table 5.1. The scores of the TextCNN2Seq model

are compared against a LSTM seq2seq model with and without attention, and a partial imple-

mentation (excluding the pointer/generator) of the hierarchical seq2seq model with attention

of [68] as their code was unavailable. The baseline summaries are those extracted by MetaMap

under the tags ‘Disease or Syndrome’, ‘Pathologic Function’, ‘Finding’, ‘Qualitative Concept’,

‘Spatial Concept’, ‘Body Part, Organ, or Organ Component’.

The CNN encoder model performs better on all metrics when compared to the sequences encoder

models, and MetaMap extracted phrases, and qualitative evaluation (Figure 5.2 reveals that

it is capable of attending to short, key phrases in the report in order to generate summaries.

Results are averaged over 5 training procedures. It should also be noted that the TextCNN2Seq

approached convergence to the optimal Rouge/Bleu metrics with approx 50% of the parameters

as the HierSeq2Seq+Att model.

Model Rouge-1 Rouge-2 Rouge-L B-1 B-2 B-3 B-4
MetaMap 29.0 2.5 22.6 20.7 3.6 0.3 0.0
Seq2Seq 66.5 24.5 68.9 61.2 19.9 11.0 4.0
Seq2Seq + Att 69.2 27.9 71.4 64.4 23.3 13.8 6.3
HierSeq2Seq + Att 79.2 36.0 79.9 73.2 31.8 22.2 12.3
TextCNN2Seq + Att 81.2 38.7 81.8 74.5 33.4 24.0 13.8

Table 5.1: TextCNN2Seq performance comparison with seq2seq models. Reported are Rouge
unigram bigram, and longest sequence F1 scores, and BLEU 1-4-gram scores. All metrics are
reported on the test set.



98 Chapter 5. Abstractive Concept Extraction from Free-Text Diagnostic Reports

Report: interval cabg . sternotomy appear intact . stable , mild
degenerative disc disease thoracic spine . visualized bony
structures otherwise unremarkable appearance . atherosclerotic
calcifications thoracic aorta . clear lungs . peripheral vascular
disease

True MeSH: atherosclerosis aorta_thoracic thoracic_vertebrae
degenerative mild

Pred. Mesh: atherosclerosis aorta_thoracic thoracic_vertebrae
degenerative thoracic_vertebrae

Figure 5.2: Sample output MeSH summary from the TextCNN2Seq+Att with largest and
second-largest attention weights highlighted in colour.

5.2 Conclusion

Abstractive text summarisation techniques can be applied to generate vocabulary-controlled

disease concept summaries, and a purely CNN document encoder improves on previous sequence-

encoder approaches. These generated summaries correlate very well with the ground-truth

MeSH term annotations created by radiologists, and so can be used successfully as image an-

notations for report generation, as done in Chapter 3. One of the limitations of this approach

is the need for high-quality annotations, such as the MeSH annotations used here. As they

are made from drop-down lists, the annotations are limited in vocabulary and are consistent

across radiologists. Creating such annotations is a laborious task for radiologists, hence, if

some domain knowledge can be injected into the process through some ontological tools, we

can potentially be able to use fewer annotations to achieve the same performance. For instance,

ontological tools can be used to annotate the text words and phrases in the reports with labels

such as ’pathology’ and ’anatomy’, which can then be encoded and used as additional inputs

into the attention network. Additionally, using word2vec to generate the word embedding layer

could improve training, as word and phrase vectors will already have contextual meaning prior
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to training. Knowledge-based similarity measures require training on a large corpus of radio-

logical reports and clinical text, therefore it can benefit from a larger corpus of unlabeled text

reports (if such exist in the public domain).

5.3 Related Publications

Gasimova, A. (2019). Automated enriched medical concept generation for chest X-ray im-

ages. In Interpretability of Machine Intelligence in Medical Image Computing and Multimodal

Learning for Clinical Decision Support (pp. 83-92). Springer, Cham.



Chapter 6

Image Latent Space Learning for

Diagnostic Report Generation

6.1 Introduction

Patients that have suffered the symptoms of a stroke have a very short time frame in which

to be effectively treated; therefore, it is imperative that radiologists determine the cause of the

symptoms in order to provide the appropriate treatment. The majority of strokes are caused by

cerebral ischaemia, which can be characterised as reduced blood flow to the brain, causing poor

oxygenation that can lead to permanent brain cell death. Both computed tomography (CT) and

multi-modal magnetic resonance imaging (MRI) are effective in assessing brain ischaemia, but

diffusion-weighted MRI (DWI) is particularly advantageous as it provides highest sensitivity to

early ischaemic lesions. In comparison to CT, typical DWI has a much longer acquisition time

(1-2 hours vs 20 around minutes) which additionally makes the scans more susceptible to patient

motion and subsequent unwanted imaging artefacts. Furthermore, requiring patients to be still

without any motion for long periods of time may lead to discomfort. A well-explored approach

for accelerating scan-time is through undersampling whereby fewer scanner measurements are

taken, violating the Nyquist-Shannon sampling theorem and thus introducing aliasing artefacts

into the reconstruction of the image. Several studies are focused on the dealiasing of such

100
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images, validating undersampled MRI as an accepted acceleration technique [91, 92, 93, 94, 95,

95, 96, 97].

Assessing the quality of the MR image reconstruction is typically focused on calculating simi-

larity metrics such as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) index

between the dealiased reconstruction and the fully-sampled image [149]. This does not, how-

ever, guarantee the retention of pathological features necessary for a diagnosis, especially at

more aggressive acceleration rates. Therefore, a complementary way of reviewing extremely

accelerated images is through the use of real-time diagnostic tasks such as segmentation and

classification [150]. In this study, done jointly with Gavin Seegoolam, we explore the automated

generation of radiological text reports containing relevant diagnostic and contextual informa-

tion. The logging of diagnostic reports generated by qualified radiologists is standard hospital

protocol. As a result, datasets for studies involving automated text report generation can be

acquired directly from hospital archives. In contrast, segmentation and classification tasks re-

quire non-standard time-consuming manual annotations. In addition, DWI diagnostic reports

typically detail contextual information as well as the presence/absence of an acute lesion, such

as anatomical location and severity of the lesion, and being able to auto-generate them will

expedite the process of identifying and documenting acute ischemia.

The motivation for learning a pathology-preserving latent space through reconstruction is

therefore two-fold: to provide an alternative method to evaluating accelerated images, and

to preserve the anatomical structure of the brain in order to improve the report generation

task. Previous work on medical image report generation, in this thesis as well as other studies

[3, 112, 116, 151, 115], make use of transfer learning from a pre-trained convolutional neural

network, trained on natural images. We show that the image representations taken from the

pathology-preserving reconstruction network, trained only on brain DWI images, outperform

the image embeddings taken from a pre-trained natural image network on the task of report

generation.

To this end, we have developed a pipeline that 1) learns an implicit context-preserving manifold

of brain DWIs that captures both spatial and pathological information, 2) enforces a latent
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code for the accelerated DWIs that performs in a similar fashion to the fully-sampled images 3)

utilises these accelerated brain DWI image representations to learn to automatically generate

reports using a recurrent neural network. To our knowledge, this is the first demonstration of

deep latent space learning for the retention of semantic feature information required for report

generation, and the first demonstration of learning to auto-generate reports from brain DWI

images.

6.2 Related Work

6.2.1 Latent space learning of accelerated MRI

Previous work has shown the use of deep latent space learning for performing tasks such as

segmentation and reconstruction in the context of accelerated MRI [95, 150]. Accelerated

MRI data acquisition is centred around the ability to reconstruct image data in a typically

ill-conditioned inverse regression problem. However, certain tasks will only require certain

parts of information from the sensor space, called ‘k-space’. For example, approximate motion

estimation from cardiac cine MRI can be performed with acceleration rates of 51.2 which

corresponds to only 5 lines of k-space [91]. [150] shows that cardiac segmentation can be

performed by a single line acquisition in k-space. Inspired by this we explore the use of deep

latent space learning for learning diagnostically-relevant contextual image embeddings. Whilst

[150] shows that deep latent space learning provides a manifold that can be robust to different

undersampling patterns, they also show that at extreme acceleration rates, deep latent space

learning can outperform conventional approaches.

The accelerated acquisition of brain DWI has been previously studied in the context of image

reconstruction [152, 153, 154, 155]. However, in our study, we explore its use for automated

text report generation. We demonstrate how the latent space learned by the accelerated recon-

struction network captures both spatial semantic and pathology information required in order

to learn to generate reports.
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Figure 6.1: An autoencoder is trained to reconstruct the fully-sampled image through an L2 loss.
The latent space is conditioned to encode pathological information by performing a classification
of ischaemia, trained with a binary cross-entropy loss. The latent space encoding learned at the
bottleneck is used as a training target for the encoding branch which only sees the accelerated
image.

6.3 Methods

Our study accelerates DWI acquisition through aggressive variable-density Cartesian under-

sampling as has been studied in several previous works such as [91, 150]. In our study, we start

with attempting a zero-fill reconstruction whereby the lines in k-spaces that are not acquired

are filled with zeros. An example of a fully sampled image and a corresponding undersampled

image is shown in Figure 6.2. For all acceleration rates, we always sample the two most central

lines in k-space whilst the other lines are acquired following a Gaussian distribution centered

at the point of highest energy in k-space. During training, undersampling masks are generated

on the fly and images are also augmented with additional rotations and translations.



104 Chapter 6. Image Latent Space Learning for Diagnostic Report Generation

6.3.1 Latent space learning

In our approach, we use an autoencoder network that takes as input the original fully-sampled

DWI brain MRI. The purpose of this is to learn a latent space at the bottleneck that contains

spatial and contextual information that may be useful for a text report generator. In particular,

we manipulate the embedding manifold toward one more suitable for text report generation by

introducing an ischaemia-classification loss as a regulariser. This loss can be summarised by

equation (6.1) where an Adam optimiser with learning rate 1.0×10−5, β1 = 0.9 and β2 = 0.999

was used.

L(x, y) = ||D(E(x))− x||22 − γ(y logC(E(x)) + (1− y) log(1− C(E(x)))), (6.1)

where E, D and C are the encoder, decoder and classifier networks (from figure 1) respectively,

x is our fully-sampled image, y is a binary classification label for ischaemia and γ = 8000. We

can measure the performance of the latent space learnt as a combination of reconstruction error

(in particular of the ischaemia) and of the classification error.

Along side this, we use a structurally-identical encoding branch to learn a latent space for

the accelerated MRI acquisition. We use the approach of performing a zero-fill reconstruction

whereby after convolutional layers can be used to identify aliasing artefacts as directly relevant

image features themselves. The latent space is trained against the bottleneck of the autoencoder

using an L2 loss and another Adam optimizer with the same optimizer parameters. This is

summarised in Figure 6.1 and in equation (6.2). Note, for each acceleration rate used in our

study, a unique encoder is learned to generate the required latent space. An advantage of

deep latent space learning is that we can train the specific encoder associated with different

acceleration rates towards the same manifold which avoids the need for retraining of the text

report generator model.

L(x, xacc) = ||E(x)− xacc||22, (6.2)
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Figure 6.2: Left to right: (1) An example of a brain with ischaemia (2) The corresponding x16
accelerated image is zero-fill reconstructed from k-space using a 2D Fourier Transform. Note
that this image suffers from heavy aliasing artefacts. (3) A projection of the first two principle
components in a PCA analysis of the latent space. Some clustering can be seen (4) a t-SNE
projection of the latent space showing clear clustering.
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Figure 6.3: Clinical report generation model from accelerated image latent space embeddings.

where xacc is our accelerated, aliased image and Eacc is our encoding branch for the accelerated

images.

We can measure the performance of the ‘accelerated’ latent space by seeing how well it recon-

structs images (in particular of the ischemia) by using reconstruction part of the autoencoder,

and then separately the classification loss from the manifold classification regulariser. The

latent space is verified by reconstructions and through decompositional projections shown in

Figure 6.2.
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6.3.2 Report generation model

We use a report generation model based on [156] where the report word sequence is modelled

using the Long Short-Term Memory (LSTM)[57], and conditioned on image embeddings at

each time step through concatenation at the input to the LSTM. At each time step, the input,

output and forget gates control how much of the previous time steps is propagated through to

the output. For an input embedding sequence {x1, . . . , xn} where xi ∈ RD, the internal hidden

state ht ∈ Rh and memory state mt ∈ Rm are updated as follows:

ht = ft � ht−1 + it � tanh(W (hx)xt +W (hm)mt−1)

mt = ot � tanh(ht)

(6.3)

where xt ∈ RD is the concatenation of the latent space image embedding and word embedding

at time step t, W (hx) and W (hm) are the trainable weight parameters, and it, ot and ft are the

input, output and forget gates respectively. The model architecture is illustrated in Figure 6.3.

We additionally add Dropout layers after image and word embeddings to force the model to

condition on both thus regularising training.

6.4 Dataset

The dataset consists of 1226 DWI scans and corresponding radiological reports of acute stroke

patients. All the images and reports were fully anonymised and ethical approval was granted by

Imperial College Joint Regulatory Office. The scans were obtained from three different scanners

(Siemens) with the following acquisition parameters: field strength: 1.5-3 T; slice thickness: 5

mm; slice spacing: 1.0-1.5 mm; pixel size in x-y plane: 1.40×1.40 or 1.80×1.80 mm; matrix

size: (19-23)×(128×128) or (192×192); field of view: 230×230 or 267×267; echo time 90-93

ms; repetition time 3200-4600 ms; flip angle 90; phase encoding steps: 95-145. The scans were

pre-processed according to the steps outlined in [5]: images were resampled into uniform pixel
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size of 1.6×1.6mm, and pixel intensities were normalised to zero mean and unit variance. The

number of slices per image varies between 7 and 52, and the slice dimensions are 128×128.

Each report contains between 1 and 2 sentences summarising the presence or absence of the

pathology, a visual description, and its location within the brain. In addition, each exam is

assigned a diagnostic label as part of hospital protocol: 54% were diagnosed ‘no acute infarct’,

46% were diagnosed ‘acute infarct’. The remaining, which made up a total of <1% and included

diagnoses such as ‘unknown’, ‘haematoma’, ‘tumour’, were removed for the purpose of training.

Processing was done on the reports to remove words outside the 99th percentile, exams with

empty reports were removed, leaving a total of 1104 exams, total vocab length 1021, mean

words per exam 10.8, std. 6.3.

In order to simplify the problem, we created a 2D dataset of acute and non-acute (normal)

slices from these images. For the acute set, we used the brain ischemia segmentation network

developed by Chen et al.[5] to segment the images labelled with acute ischemia, thresholded

at 0.8, and selected slices where the total area of ischemia was >10 pixels. For the normal

set, we sampled slices from the non-acute labelled images according to the same axial plane

distribution as the acute set.

6.5 Experiments

The accelerated latent space model was trained to reduce the sum of the reconstruction and

classification losses defined in Section 6.3.1. Training was terminated when validation loss no

longer decreased. Once trained, the encoder was used to generate embeddings for accelerated

images, with augmentation in the form of rotation. These embeddings were then used to train

the report generation model.

Reports were padded with ‘start’ and ‘end’ tokens to length 19 (mean + 1std. + ‘start’ + ‘end’).

The word embedding layer maps one-hot encoded word embeddings into a 256 dimensional

space. The LSTM hidden state is also set to dim 256, and the LSTM units are unrolled up to

19 time steps. We train the model on non-accelerated latent embeddings and their associated
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reports by minimising the categorical cross-entropy loss over the generated words. All models

are trained with batch size 128, using Adam optimisation [139], learning rate=0.0001 for a

maximum of 300 epochs, with early termination of training based on validation loss.

6.6 Results

The intermediate evaluation of the accelerated latent space model was performed by calculating

the F1, mean-squared-error (MSE) and peak signal-to-noise ratio (PSNR), reported in Table

6.1. The scores on the fully-sampled images are reported alongside those of accelerated images

since the models were re-trained for each acceleration rate, and drop in performance from fully-

sampled to accelerated images is relative to the individual model. However, the F1, MSE and

PSNR scores are fairly consistent for all but two of the accelerations: x4 and x64. The models

trained with x4 and x64 acceleration both had significantly lower MSE of 26.49 and 26.66

respectively, and much higher PSNR of 38.11 and 38.69 respectively. Their F1 validation scores

are, on the other hand, relatively lower. This could mean that these two models converged to a

different optimum whereby the reconstruction was favoured over the classification. Excluding

these two, we can see a general trend of reduced F1 of the accelerated images in both the train

and validation data. However, there is no significant drop in MSE or PSNR of the reconstructed

images. This implies that it becomes more difficult to retain pathologic information within

images with increased acceleration as opposed to structural information.

For the report generation task, inference was performed by first sampling from the LSTM using

a ‘start’ token concatenated with the accelerated embeddings, and consequently appending the

output word embedding to the input and sampling until an ‘end’ token was reached. The

quality of the generated reports was evaluated by measuring BLUE [43] and ROUGE [157]

scores averaged over all the reports, report in Table 6.2. We observe that the both the BLEU

and ROUGE scores decrease with increasingly accelerated images, as expected. We note that

there is a significant reduction in performance between the x4 and x8 accelerated images possibly

due to some contextual information not being captured by the latent space.
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We also assess the sampled reports qualitatively in Figure 6.4. We observe fairly coherent re-

ports for all accelerations, with x2 and x4 correctly identifying the presence/absence of ischemia

as well as the location. Note: the last example shows a text report that was ischemic but was

classified as healthy. This is likely to have confused the latent code for this example resulting

in poor text report generations.

Table 6.1: F1, MSE and PSNR metrics of ground truth and accelerated MRI. F1 score is taken
at the output of the classifier module and MSE and PSNR metrics from the output of the
reconstruction module of the autoencoder. All metrics are reported as average over samples.

Fully-sampled MRI Accelerated MRI
F1 MSE PSNR F1 MSE PSNR

train val train val train val train val train val train val
Acc.×1 0.89 0.78 148.03 171.23 34.85 29.98 0.89 0.78 148.03 171.23 34.85 29.98
Acc.×2 0.87 0.83 151.53 173.77 34.68 29.92 0.84 0.77 151.53 173.77 34.68 29.92
Acc.×4 0.86 0.68 26.49 26.37 43.54 38.11 0.78 0.66 27.87 24.56 43.29 38.42
Acc.×8 0.85 0.72 151.91 173.77 34.69 29.92 0.73 0.69 151.91 173.77 34.69 29.92
Acc.×16 0.85 0.75 152.28 173.77 34.66 29.92 0.74 0.75 152.28 173.77 34.66 29.92
Acc.×64 0.86 0.77 26.66 23.09 43.64 38.69 0.74 0.67 26.45 22.38 43.70 38.82

Table 6.2: BLEU1,2,3,4-gram and ROUGE1 F1, precision (P) and recall (R) metric comparisons
on increasingly accelerated image embeddings.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 R-1 F1 R-1 P R-1 R
ResNet embedding models

SERepGen-merge 20.8 12.9 5.1 1.6 31.6 44.2 26.7
DARepGen 21.5 13.4 5.8 2.3 31.8 43.1 27.6

Latent space models
Acc.×1 38.12 27.26 20.28 15.59 47.10 52.89 44.96
Acc.×2 34.07 23.31 15.55 11.57 44.00 51.86 40.68
Acc.×4 31.36 19.42 12.29 8.31 41.17 48.09 38.80
Acc.×8 21.32 10.37 5.06 2.55 29.53 32.92 29.52
Acc.×64 21.58 11.11 4.97 2.35 30.39 35.10 29.07

6.7 3D-DWI Extension

Using the 3D DWI volumes directly removes the need for time-consuming tasks such as seg-

mentation, slice selection and out-of-distribution data discarding that was performed when

creating the 2D axial-slice dataset. We therefore performed a study to evaluate the accelerated

latent space report generation framework when trained directly on 3D volumes. Additionally,
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we performed an ablation study on the auxiliary tasks of classification and image reconstruc-

tion without accelerated acquisition to determine the optimal balance between the two loss

functions. The encoder was tuned through a set of experiments with a validation set on the

report generation task. Finally, the encoder model is tuned with accelerated acquisitions for

DWI report generation without an intermediate reconstruction phase.

Ablation study One goal of our study was to ascertain the balance between our auxiliary

tasks for the latent space learning from 3D volumes and thus optimise the parameter γ in

Equation 6.1. We assess the quality of the latent space by training and then sampling from the

report generation model, and evaluating the predicted reports against the true reports using the

BLEU metric, averaged across samples. The results are shown in Table 6.3. After evaluating

on the validation set, we found that the classification only model performed best on BLEU-1,

however, when γ = 1e10, the model performs better on higher n-gram BLEU metrics. Higher

BLEU metrics on longer n-grams indicates that a more contextual report is learned (i.e. greater

overlap of 2, 3, and 4 sequential words). This is consisted with our hypothesis that the auxiliary

task of reconstruction improves the semantic-preserving ability of the latent space.

Table 6.3: Results of ablation study

Model Acc. Precision Recall B-1 B-2 B-3 B-4
Classification Only 0.79 0.85 0.67 21.10 8.73 4.14 0.47
γ = 1e8 0.54 0.50 0.53 12.28 3.02 2.10 0.00
γ = 1e9 0.62 0.58 0.60 18.49 9.02 1.85 0.70
γ = 1e10 0.78 0.82 0.65 20.83 11.82 8.62 7.59
γ = 1e11 0.77 0.76 0.73 18.68 9.88 2.65 1.32

Accelerated DWI report generation With the optimal hyperparameters chosen for the

auxiliary learning task, the ‘accelerated’ encoder was trained to produce the same embeddings

of ‘fully-sampled’ encoder via an L2 loss. The result was that the semantic embeddings were

produced from extremely accelerated acquisitions of pathological brain volumes. We found that

even highly accelerated acquisitions were able to be encoded to representations very close to

that of fully-sampled acquisitions. These embeddings were then used to produce the associated

accelerated radiological text report. The BLEU scores evaluated on the test dataset for each



6.8. Conclusion 111

acceleration rate is shown in Figure 6.5. As expected, higher acceleration rates lead to worse

BLEU scores but it is important to note that even at x8 acceleration, the reports are still of

good quality as shown in the samples in Table 6.4.

Table 6.4: Sample ground truth and generated reports from fully sampled and undersampled
3D brain DWI. Correctly identified concepts are highlighted.

True: no, acute, ischaemic, lesion, intracranial, haemorrhage
No Acc.: no, acute, infarct, intra, extraaxial, haemorrhage, demonstrated
Acc. x8: per, mri, study, performed, earlier, today, no, acute, intracranial,

abnormality, evident
True: multiple, small, acute, infarcts, scattered, throughout, left, superior,

temporal, inferior, frontal, superior, parietal, lobe
No Acc.: acute, cortical, left, mca, territory, infarct, within, left, parietal, lobe
Acc. x8: appear, small, acute, left, left, superior
True: restricted, diffusion, involving, left, posterior, temporal, lobe, external,

capsule, posteriorly, extending, left, parietal, lobe, appearances,
keeping, acute, left, mca, infarct

No Acc.: several, small, foci, restricted, diffusion, within, left, parietal, lobe,
keeping, acute, right, mca, territory

Acc. x8: minor, microangiopathic, ischaemic, changes, involving, left, occipital,
lobe, extending, posterior, internal, capsule

True: no, acute, infarction, intracranial, haemorrhage
No Acc.: no, acute, infarct, haemorrhage, demonstrated
Acc. x8: no, acute, infarct, evidence, recent, haemorrhage, demonstrated
True: acute, infarcts, seen, left, frontal, corona
No Acc.: acute, infarct, left, corona, radiata, involving, june, posterior,

limb, left, internal, capsule
Acc. x8: acute, infarct, left, corona, radiata
True: acute, infarction, right, mca, territory, involving, caudate, nucleus,

anterior, limb, internal, capsule, entire, lentiform, nucleus
No Acc.: complete, right, aca, mca, territory, infarcts
Acc. x8: note, made, extensive, right, mca, territory, subacute, infarct,

involving, right, corpus, striatum, corona, radiata, external, capsule,
insular, right, frontoparietal, cortices, confluent, large, infarct

6.8 Conclusion

We demonstrate how a latent space capturing pathological and spatial information can be

learned from accelerated brain DWI images and subsequently used to train a diagnostic report

generation network with promising results. In future works, we wish to explore radial under-

sampling trajectories for DWI brain imaging which are expected to provide improved diagnostic
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embeddings. We also present a streamlined pipeline that directly transforms a 3D accelerated

DWI acquisition into a semantically-rich embedding space, from which radiological text reports

can be learned. Another aim of this preliminary study was to ascertain the use of balanced

reconstruction and classification auxiliary tasks for the generation of image embeddings in

the context of accelerated radiological report generation. Future progress from this preliminary

study includes investigations into different acceleration schemes and more appropriate language

models.
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Acute: Y True report: restricted diffusion right posterior insula several 
additional foci within parietal lobe keeping multiple small right mca infarcts 

Acc x1: tiny foci restricted diffusion within right parietal lobe right 

Acc x2: acute embolic looking infarcts within right parietal lobe 

Acc x4: acute infarcts within right mca territory bilaterally 
Acc x8: tiny acute cortical infarcts right mca territory involving right frontal 
parietal 
Acc x64: several cortical **unknown** infarcts within right parietal lobe 

Acute: Y True report: cortical restricted diffusion centred left parasagittal front

al parietal region involving **unknown** lobule superior 

Acc x1: cortical restricted diffusion centred left parasagittal parietal region inv

olving posterior 

Acc x2: multiple cortical subcortical acute infarcts centred left corona radiata 

Acc x4: cortical subcortical acute ischaemic changes involving left parietal region 

Acc x8: acute cortical infarct centred left parietal region 

Acc x64: several acute infarction within left mca territory 
 

 

Acute: N True report: no acute infarcts demonstrated 

Acc x1: no acute intracranial abnormality identified intracranial haemorrhage 

Acc x2: no acute intracranial abnormality demonstrated particular no acute infarct 

intra extraaxial haemorrhage 

Acc x4: no acute ischaemic changes 
Acc x8: no acute ischaemic lesion intracranial haemorrhage 

Acc x64: no acute infarction intracranial haemorrhage 

Acute: Y True report: small acute white matter infarct left corona radiata 

Acc x1: small area acute infarct left corona radiata 

Acc x2: small area restricted diffusion within left mca territory infarct 

Acc x4: focal area signal within left corona radiata 
Acc x8: multiple small foci acute ischaemia left gyrus 

Acc x64: area restricted diffusion accompanying flair within left corona radiata su

ggest **unknown** 

Acute: N True report: no acute infarction 

Acc x1: no acute ischaemic lesion intracranial haemorrhage 

Acc x2: no acute infarct 

Acc x4: no acute ischaemic lesion 

Acc x8: small acute infarct centred left parietal region 

Acc x64: no acute ischaemic lesion 

Acute: N True report: modest volume acute right middle cerebral artery territory 
ischaemia noted no evidence haemorrhagic transformation 

Acc x1: no evidence acute infarct 

Acc x2: no acute infarct intra extraaxial haemorrhage 

Acc x4: no acute intracranial haemorrhage demonstrated 
Acc x8: acute infarcts within right mca territory areas days 

Acc x64: focal subcortical restricted diffusion within left parietal lobe keeping a

cute infarct 

 
 

Figure 6.4: Sample brain slices and associated reports generated from non-accelerated and
increasingly accelerated image embeddings. Correctly identified pathology (acute/non-acute)
and spatial contexts are highlighted in blue.
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Figure 6.5: Average BLEU-n scores of accelerated brain volumes.



Chapter 7

Conclusion

7.1 Summary of Thesis Achievements

In this thesis, the problem of learning to auto-generate diagnostics from radiological images by

training machine learning algorithms on radiological reports is approached in three ways. By

taking inspiration from natural image captioning, the first approach was to train a language

generation model on the reports, and explore ways in which to condition the generated words

on static vector radiological image features. It was demonstrated that the best performance

according to BLEU, ROUGE and DAPS metrics was the encoder-decoder model SERepGen-

merge, in which the LSTM encoder is trained to encode the textual reports, a pre-trained

CNN encoder is used to extract static image features, and a dense neural network acts as a

decoder of the two encoders. The better performance is attributed to the fact that LSTMs

were designed to model sequential dependence, and therefore more suitable at modelling purely

linguistic features, as opposed to the combination of artificial image-word sequences, which are

not sequentially dependent. Although it was difficult to evaluate the generated reports against

the true ones using BLEU and ROUGE, the DAPS averaged F1 scores gave an indication that

the predicted diseases were better than random.

The static encoder-decoder model achieved poorer results when trained on more complex

datasets, including the chest X-rays dataset consisting of multiple views (posterior-anterior

115
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and lateral) and more complex reports. Reports were made more complex by including the

previously filtered out MeSH annotations to make reports consist of references to multiple

disease. The disease F1 scores were lower when training on the multi-view and multi-disease

IU-CX dataset. One reason may be that a static image embedding model, especially one that

is extracted using a network pre-trained on natural images as opposed to chest X-rays, cannot

capture the full range of disease features, especially more subtle ones that even radiologists have

trouble distinguishing. Additionally, a static image feature does not encode location-specific

information, meaning that generating a separate location per identified disease is technically

impossible (though there may be some implicit location information being encoded into the

feature vector, it is still impossible to separate out this information for diseases in multiple

locations). By taking lower convolutional layer outputs, prior to max-pooling (and therefore

the loss of location-specific features), and using attention mechanism of Mnih et al. [105],

the quality of the generated reports when training on multi-view image and free-text reports.

(according to BLEU and ROUGE) was moderately improved.

Although BLEU and ROUGE had improved, it was still difficult to assess the predicted reports

for diagnostic content. Therefore, the next two chapters explored ways of extracting diag-

nostic information from free-text radiological reports. The first approach was a combination

of using MetaMap to extracts and tags medical concepts, followed by representing the words

and phrases using word vectors, and grouping them together by meaning using k-means. The

resulting clusters were evaluated on their ability to be predicted from images by training an

image classifier and evaluating average per-class and per-instance precision and recall. Results

indicated that, on a per-class performance basis, all of the methods failed at providing dis-

tinguishable labels for the purpose of image classification. This may be due to a number of

assumptions that needed to be made in creating these labels. For instance, extracting different

MetaMap tag combinations made a large difference in the number of identified disease concepts

and the proportion of exams identified as being ‘normal’. The inherent ambiguity of natural

language makes it difficult for a pattern-matching algorithm to determine the intended mean-

ing of a phrase, and whether to tag it as a ‘disease’, a ‘finding’ or ‘abnormality’. Even if all

disease phrases are correctly extracted, grouping them together under a shared disease label
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also requires a number of assumptions. In order to group phrases such as ‘pleural effusion’

and ‘pleural effusion bilateral’, it was assumed that their vector representations (made either

through tf-idf or word2vec) would be close together, and therefore could be clustered using

distance measures. However, this assumption did not hold true for words and phrases that

appeared very rarely within the reports, which resulted in their representations being clustered

together. Lastly, the main assumption that a chest X-ray image can be labeled with a single,

independent disease label was also challenged by the fact that the image classifier achieved poor

results even when trained on manual disease label annotations taken from MeSH.

An alternative to single disease-label extraction from free-text reports was developed and eval-

uated in the form of abstractive text summarisation. In contrast to MetaMap’s extractive

approach, the abstractive encoder-decoder frameworks were better able to match the manual

MeSH annotations of the IU-CX free-text reports. The best performing encoder-decoder ac-

cording the BLEU and ROUGE metrics between the generated summaries and original MeSH

was the TextCNN2Seq. The free-text encoder was inspired by successful application of CNNs

to document encoding and classification, and a CNN architecture was designed that was able

to capture local word-level and phrase-level features by successively applying convolutional lay-

ers over word embeddings. An LSTM decoder with attention over the CNN output features

was then trained to generate the MeSH annotations from free-text reports. This technique

was successful in mapping long, free-text reports with a large and diverse vocabulary, into

short, vocab-controlled MeSH phrases consisting of pathology, severity and anatomical location

concepts. There are several potential applications of this technique, including training a radio-

logical report generation model on the more concise summaries instead of the original free-text

reports, or using the annotations for image retrieval. Having vocab-controlled annotations is

important to both of these tasks as it greatly reduces the variety of ways of referring to a

disease, making annotations more consistent across images.

Learning to auto-generate radiological reports from images requires an image encoder capable of

capturing the semantic information described in the report. These are typically a combination of

presence of disease, disease severity and anatomical location, therefore an encoder must capture

both pathological and anatomical information. One method of encoding both pathological
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information and anatomical structure is through autoencoders trained for disease classification

and image reconstruction, which is explored as a method of encoding ischemic brain DWIs. This

method had several advantages over the use of pre-trained CNN networks as image encoders.

Firstly, the networks could be trained on 3D images, which allowed for the use of full 3D brain

volumes and removed the need for preprocessing the volumes into 2D using segmentation and

slice selection. Secondly, training the autoencoder to perform accelerated image reconstruction

mean the report generation model could also generate reports for accelerated images. This is

especially useful for magnetic resonance imaging examinations where the treatment is time-

sensitive, such as in the case of ischemic strokes. Lastly, the reports generated by the model

trained using the autoencoder latent space outperformed those trained using ResNet50 pre-

trained networks, according to both BLEU and ROUGE metrics, meaning the learned latent

space was better able to capture the spatial and pathological information from the images.

7.2 Limitations and Future Work

The main limitation that all of the described methods have in common is in assessing the

evaluation metrics, namely BLEU and ROUGE. N-gram matching approaches to evaluating

NLP tasks have long been critiqued in literature. Several studies questioned the validity of the

claim that BLEU correlates well with human judgement [158, 159, 160] and found low to no

correlation with human judgement for both meaning and fluency. The proposed alternative

method of categorising words under tags and evaluating sudo-precision and recall metrics,

introduced as DAPS in this thesis, does provide a better metric for the presence/absence of

specific words that are relevant in evaluating the reports for clinical value, but are not ideal

as it requires a corpus-specific set of categorised terms, which is very difficult to create in an

automated way, especially from free-text reports.

Additionally, BLEU, ROUGE and DAPS are all discrete measures of text similarity, which

is inherently problematic due to the presence of synonyms and word modifiers. A more suit-

able metric for measuring text similarity is by representing the words in continuous space,
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where words with similar meaning appear near each other within this space. These measures

are model-specific, i.e. they require that a model be trained on a corpus in order to build

this ‘meaning’ space. One such example is BERTscore [161] which computes cosine similarity

between word embeddings using the Bidirectional Encoder Representations from Transformer

(BERT) language model [162]. The BERT model could be trained on the corpus of radiological

free-text reports, and could potentially result in all the different variations of a disease concept

to be mapped to the same vector space, allowing for generated reports to be evaluated on their

meaning irrespective of the exact wording.

Another aspect of natural language that limits the validity of the metrics (even in the case of

continuous space measures) is the use of uncertainty and negation, such ‘there may be <disease

>’ or ‘there is no presence of <disease >’. The problem was largely avoided by using NegEx

[118] to tag and remove negated phrases, but this simple pattern-matching system fails on

more complicated sentences, and fails to detect uncertainty in findings altogether. There has

been an increasing focus on identifying negation and uncertainty in medical text using machine

learning, such as the negation classifiers of Morante et al. [163], and negation and speculation

classifier of Diaz et al. [164]. These classifiers can be used in conjunction with the current

evaluation metrics in order to identify which phrases have been negated or are speculative to

help determine whether the correct diseases have been negated.

Lastly, the main limitation of applying machine learning techniques to radiological images

and reports is the lack of large, curated datasets. Even though data is indeed available in

large quantities from hospitals, the methods demonstrated in this thesis required manual data

curation and would benefit significantly from pre-trained networks. For instance, instead of

one-hot encoding words and relying on the report generation training to result in meaningful

word encodings, the word embeddings can initialised using a medical concept specific language

model pre-trained on a large corpus of medical text. These contextual word embeddings, such

as ELMo [165] and BERT [162], have been shown to improve the performance of many NLP

tasks, and have recently been applied to the medical domain through Clinical BERT [166],

BioBERT [167] and Med-BERT [168].
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Table 1: Chest X-ray patterns and diagnoses manually extracted from MeSH annotations of
the IU-CX images [1]. Definition of patterns and diagnosis taken from Smithuis and van Delden
[4].

(a)

Patterns
mass
degenerative bone
calcinosis
opacity
mastectomy
interstitial
tortuous
catheters indwelling
cardiomegaly
foreign bodies
consolidation
atelectasis
hypoinflation
bronchial thickening
dislocations
congestion
scoliosis
osteophyte
hernia
hyperinflation
hyperdistention
atherosclerosis
lucency
deformity
fractures bone
kyphosis
spinal fusion
diaphragmatic eventration
lung hyperlucent
pneumoperitoneum
colonic interposition
epicardial fat
diaphragm elevation
pneumonectomy
nipple shadow
adipose tissue
bullae
contrast media
funnel chest
hypovolemia
bronchiectasis
aorta dilated
pectus carinatum

(b)

Diagnoses
normal
airspace disease
pleural effusion
bone diseases metabolic
calcified granuloma
cicatrix
pulmonary congestion
pneumothorax
granulomatous disease
pulmonary emphysema
spondylosis
emphysema
pulmonary disease chronic obstructive
pulmonary edema
lung diseases interstitial
pneumonia
arthritis
cysts
hydropneumothorax
sclerosis
pulmonary fibrosis
granuloma
hyperostosis diffuse idiopathic skeletal
volume loss
bronchitis
cystic fibrosis
heart atria
aortic aneurysm
bullous emphysema
hemopneumothorax
hemothorax
osteoporosis
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Table 2: Metamap extracted ‘Disease or Syndrome’, ‘Finding’ and ‘Pathalogic Function’ terms
that appear in at least 30 reports, and their degree of overlap with other terms.

Disease/Finding/Pathology Term Total appear-
ances

Appearances w/
and within other
terms

Overlap %

clear 3350 2651 79
normal 2512 2848 113
heart size 1812 2434 134
intact 711 664 93
normal heart size 703 506 72
atelectasis 630 696 110
cardiomegaly 532 494 93
opacities 479 477 100
heart size normal 397 359 90
unchanged 342 319 93
thoracic spine degeneration 336 306 91
opacity 327 387 118
disease 319 678 212
degenerative spine 259 230 89
pleural effusion 244 343 140
crowding 165 159 96
normal breast 163 159 98
emphysema 157 169 107
tortuous aorta 157 153 97
tortuous 157 288 183
granulomatous disease 154 170 110
vascular 150 222 148
limited 120 114 95
identified 116 114 98
pneumothorax 107 146 136
thoracic spondylosis 105 101 96
pneumonia 104 189 181
negative 98 86 88
pleural effusions bilateral 93 89 96
infection nos 84 80 95
followup 83 89 107
copd 72 74 102
probable 72 72 100
nodular opacity 71 69 97
congestion 68 71 104
calcifications 65 67 103
consolidation 64 80 125
hiatal hernia 63 61 97
arthritic changes 59 57 97
osteophytes 58 73 126
pleural thickening 57 56 98
scar 56 65 116
pulmonary oedema 56 56 100
right chest 47 47 100
sequela 46 69 150
nodular density 45 43 96
atelectasis focal 43 43 100
thickening 42 94 224
increased markings 42 42 100
mass 42 56 133
chest radiograph 41 48 117
interstitial oedema 41 53 129
mas 40 63 131
normal cardiac 39 60 154
engorgement 39 39 100
dextroscoliosis 39 39 100
history 38 43 113
calcification nos 37 37 100
result 37 37 100
diaphragm flattening 37 37 100
vascular engorgement 36 36 100
ectatic 35 36 103
oedema 35 134 383
pulmonary congestion 34 34 100
vascularity 33 33 100
flattened diaphragm 32 32 100
cardiac enlargement 32 30 94
mm 31 49 158
curvature of spine 31 30 97
normal appearance 31 31 100
indicated 30 28 93


