16 research outputs found

    Adaptive Signal Processing Techniques and Realistic Propagation Modeling for Multiantenna Vital Sign Estimation

    Get PDF
    Tämän työn keskeisimpänä tavoitteena on ihmisen elintoimintojen tarkkailu ja estimointi käyttäen radiotaajuisia mittauksia ja adaptiivisia signaalinkäsittelymenetelmiä monen vastaanottimen kantoaaltotutkalla. Työssä esitellään erilaisia adaptiivisia menetelmiä, joiden avulla hengityksen ja sydämen värähtelyn aiheuttamaa micro-Doppler vaihemodulaatiota sisältävät eri vastaanottimien signaalit voidaan yhdistää. Työssä johdetaan lisäksi realistinen malli radiosignaalien etenemiselle ja heijastushäviöille, jota käytettiin moniantennitutkan simuloinnissa esiteltyjen menetelmien vertailemiseksi. Saatujen tulosten perusteella voidaan osoittaa, että adaptiiviset menetelmät parantavat langattoman elintoimintojen estimoinnin luotettavuutta, ja mahdollistavat monitoroinnin myös pienillä signaali-kohinasuhteen arvoilla.This thesis addresses the problem of vital sign estimation through the use of adaptive signal enhancement techniques with multiantenna continuous wave radar. The use of different adaptive processing techniques is proposed in a novel approach to combine signals from multiple receivers carrying the information of the cardiopulmonary micro-Doppler effect caused by breathing and heartbeat. The results are based on extensive simulations using a realistic signal propagation model derived in the thesis. It is shown that these techniques provide a significant increase in vital sign rate estimation accuracy, and enable monitoring at lower SNR conditions

    Spectrum sensing, spectrum monitoring, and security in cognitive radios

    Get PDF
    Spectrum sensing is a key function of cognitive radios and is used to determine whether a primary user is present in the channel or not. In this dissertation, we formulate and solve the generalized likelihood ratio test (GLRT) for spectrum sensing when both primary user transmitter and the secondary user receiver are equipped with multiple antennas. We do not assume any prior information about the channel statistics or the primary user’s signal structure. Two cases are considered when the secondary user is aware of the energy of the noise and when it is not. The final test statistics derived from GLRT are based on the eigenvalues of the sample covariance matrix. In-band spectrum sensing in overlay cognitive radio networks requires that the secondary users (SU) periodically suspend their communication in order to determine whether the primary user (PU) has started to utilize the channel. In contrast, in spectrum monitoring the SU can detect the emergence of the PU from its own receiver statistics such as receiver error count (REC). We investigate the problem of spectrum monitoring in the presence of fading where the SU employs diversity combining to mitigate the channel fading effects. We show that a decision statistic based on the REC alone does not provide a good performance. Next we introduce new decision statistics based on the REC and the combiner coefficients. It is shown that the new decision statistic achieves significant improvement in the case of maximal ratio combining (MRC). Next we consider the problem of cooperative spectrum sensing in cognitive radio networks (CRN) in the presence of misbehaving radios. We propose a novel approach based on the iterative expectation maximization (EM) algorithm to detect the presence of the primary users, to classify the cognitive radios, and to compute their detection and false alarm probabilities. We also consider the problem of centralized binary hypothesis testing in a cognitive radio network (CRN) consisting of multiple classes of cognitive radios, where the cognitive radios are classified according to the probability density function (PDF) of their received data (at the FC) under each hypotheses

    Spectrum sensing for cognitive radios: Algorithms, performance, and limitations

    Get PDF
    Inefficient use of radio spectrum is becoming a serious problem as more and more wireless systems are being developed to operate in crowded spectrum bands. Cognitive radio offers a novel solution to overcome the underutilization problem by allowing secondary usage of the spectrum resources along with high reliable communication. Spectrum sensing is a key enabler for cognitive radios. It identifies idle spectrum and provides awareness regarding the radio environment which are essential for the efficient secondary use of the spectrum and coexistence of different wireless systems. The focus of this thesis is on the local and cooperative spectrum sensing algorithms. Local sensing algorithms are proposed for detecting orthogonal frequency division multiplexing (OFDM) based primary user (PU) transmissions using their autocorrelation property. The proposed autocorrelation detectors are simple and computationally efficient. Later, the algorithms are extended to the case of cooperative sensing where multiple secondary users (SUs) collaborate to detect a PU transmission. For cooperation, each SU sends a local decision statistic such as log-likelihood ratio (LLR) to the fusion center (FC) which makes a final decision. Cooperative sensing algorithms are also proposed using sequential and censoring methods. Sequential detection minimizes the average detection time while censoring scheme improves the energy efficiency. The performances of the proposed algorithms are studied through rigorous theoretical analyses and extensive simulations. The distributions of the decision statistics at the SU and the test statistic at the FC are established conditioned on either hypothesis. Later, the effects of quantization and reporting channel errors are considered. Main aim in studying the effects of quantization and channel errors on the cooperative sensing is to provide a framework for the designers to choose the operating values of the number of quantization bits and the target bit error probability (BEP) for the reporting channel such that the performance loss caused by these non-idealities is negligible. Later a performance limitation in the form of BEP wall is established for the cooperative sensing schemes in the presence of reporting channel errors. The BEP wall phenomenon is important as it provides the feasible values for the reporting channel BEP used for designing communication schemes between the SUs and the FC

    Fast and reliable detection of incumbent users in cognitive radios

    Get PDF
    Fast and reliable Spectrum Sensing (SS) plays a crucial role in the cognitive radio (CR) technology in order to prevent unwanted interference to the primary users (PU) and to reliably and quickly detect the white spaces in the spectrum for opportunistic access by the secondary users (SU). Spectrum Sensing must often be performed in the absence of information such as PU signaling scheme, noise level and channel fading coefficients. While these parameters can be estimated in the SU, estimation errors significantly deteriorates the performance of SS techniques. In this thesis, we introduce and evaluate the performance of two novel blind spectrum sensing algorithms which do not rely on knowledge of these parameters. The first is a SS technique for signaling schemes which introduce controlled intersymbol interference in the transmitter. The second is for cases when the receiver of the SU is equipped with a multiantenna system. This approach exploits the path correlation among the signals received at different antennas. Next we analyze the performance of Spectrum Monitoring (SM), an new technique which allows the SU to detect the presence of the PU using its own receiver statistics. In contrast to SS, with SM, the SU does not need to interrupt its own transmission in order to detect the presence of the PU. We carefully construct the decision statistics for SM and evaluate its performance. The performance of a hybrid SM/SS system shows a significant improvement over SS alone

    Spectrum Sensing in the Presence of Multiple Primary Users

    Full text link
    We consider multi-antenna cooperative spectrum sensing in cognitive radio networks, when there may be multiple primary users. A detector based on the spherical test is analyzed in such a scenario. Based on the moments of the distributions involved, simple and accurate analytical formulae for the key performance metrics of the detector are derived. The false alarm and the detection probabilities, as well as the detection threshold and Receiver Operation Characteristics are available in closed form. Simulations are provided to verify the accuracy of the derived results, and to compare with other detectors in realistic sensing scenarios.Comment: Accepted in IEEE Transactions on Communication

    Spectrum sensing for cognitive radio and radar systems

    Get PDF
    The use of the radio frequency spectrum is increasing at a rapid rate. Reliable and efficient operation in a crowded radio spectrum requires innovative solutions and techniques. Future wireless communication and radar systems should be aware of their surrounding radio environment in order to have the ability to adapt their operation to the effective situation. Spectrum sensing techniques such as detection, waveform recognition, and specific emitter identification are key sources of information for characterizing the surrounding radio environment and extracting valuable information, and consequently adjusting transceiver parameters for facilitating flexible, efficient, and reliable operation. In this thesis, spectrum sensing algorithms for cognitive radios and radar intercept receivers are proposed. Single-user and collaborative cyclostationarity-based detection algorithms are proposed: Multicycle detectors and robust nonparametric spatial sign cyclic correlation based fixed sample size and sequential detectors are proposed. Asymptotic distributions of the test statistics under the null hypothesis are established. A censoring scheme in which only informative test statistics are transmitted to the fusion center is proposed for collaborative detection. The proposed detectors and methods have the following benefits: employing cyclostationarity enables distinction among different systems, collaboration mitigates the effects of shadowing and multipath fading, using multiple strong cyclic frequencies improves the performance, robust detection provides reliable performance in heavy-tailed non-Gaussian noise, sequential detection reduces the average detection time, and censoring improves energy efficiency. In addition, a radar waveform recognition system for classifying common pulse compression waveforms is developed. The proposed supervised classification system classifies an intercepted radar pulse to one of eight different classes based on the pulse compression waveform: linear frequency modulation, Costas frequency codes, binary codes, as well as Frank, P1, P2, P3, and P4 polyphase codes. A robust M-estimation based method for radar emitter identification is proposed as well. A common modulation profile from a group of intercepted pulses is estimated and used for identifying the radar emitter. The M-estimation based approach provides robustness against preprocessing errors and deviations from the assumed noise model

    Robust spectrum sensing techniques for cognitive radio networks

    Get PDF
    Cognitive radio is a promising technology that improves the spectral utilisation by allowing unlicensed secondary users to access underutilised frequency bands in an opportunistic manner. This task can be carried out through spectrum sensing: the secondary user monitors the presence of primary users over the radio spectrum periodically to avoid harmful interference to the licensed service. Traditional energy based sensing methods assume the value of noise power as prior knowledge. They suffer from the noise uncertainty problem as even a mild noise level mismatch will lead to significant performance loss. Hence, developing an efficient robust detection method is important. In this thesis, a novel sensing technique using the F-test is proposed. By assuming a multiple antenna assisted receiver, this detector uses the F-statistic as the test statistic which offers absolute robustness against the noise variance uncertainty. In addition, since the channel state information (CSI) is required to be known, the impact of CSI uncertainty is also discussed. Results show the F-test based sensing method performs better than the energy detector and has a constant false alarm probability, independent of the accuracy of the CSI estimate. Another main topic of this thesis is to address the sensing problem for non-Gaussian noise. Most of the current sensing techniques consider Gaussian noise as implied by the central limit theorem (CLT) and it offers mathematical tractability. However, it sometimes fails to model the noise in practical wireless communication systems, which often shows a non-Gaussian heavy-tailed behaviour. In this thesis, several sensing algorithms are proposed for non-Gaussian noise. Firstly, a non-parametric eigenvalue based detector is developed by exploiting the eigenstructure of the sample covariance matrix. This detector is blind as no information about the noise, signal and channel is required. In addition, the conventional energy detector and the aforementioned F-test based detector are generalised to non-Gaussian noise, which require the noise power and CSI to be known, respectively. A major concern of these detection methods is to control the false alarm probability. Although the test statistics are easy to evaluate, the corresponding null distributions are difficult to obtain as they depend on the noise type which may be unknown and non-Gaussian. In this thesis, we apply the powerful bootstrap technique to overcome this difficulty. The key idea is to reuse the data through resampling instead of repeating the experiment a large number of times. By using the nonparametric bootstrap approach to estimate the null distribution of the test statistic, the assumptions on the data model are minimised and no large sample assumption is invoked. In addition, for the F-statistic based method, we also propose a degrees-of-freedom modification approach for null distribution approximation. This method assumes a known noise kurtosis and yields closed form solutions. Simulation results show that in non-Gaussian noise, all the three detectors maintain the desired false alarm probability by using the proposed algorithms. The F-statistic based detector performs the best, e.g., to obtain a 90% detection probability in Laplacian noise, it provides a 2.5 dB and 4 dB signal-to-noise ratio (SNR) gain compared with the eigenvalue based detector and the energy based detector, respectively

    Testing equality of multiple power spectral density matrices

    Get PDF
    This paper studies the existence of optimal invariant detectors for determining whether P multivariate processes have the same power spectral density. This problem finds application in multiple fields, including physical layer security and cognitive radio. For Gaussian observations, we prove that the optimal invariant detector, i.e., the uniformly most powerful invariant test, does not exist. Additionally, we consider the challenging case of close hypotheses, where we study the existence of the locally most powerful invariant test (LMPIT). The LMPIT is obtained in the closed form only for univariate signals. In the multivariate case, it is shown that the LMPIT does not exist. However, the corresponding proof naturally suggests an LMPIT-inspired detector that outperforms previously proposed detectors.This work was partly supported by the Spanish MINECO grants COMONSENS Network (TEC2015-69648-REDC) and KERMES Network (TEC2016-81900-REDT/AEI); by the Spanish MINECO and the European Commission (ERDF) grants ADVENTURE (TEC2015-69868-C2-1- R), WINTER (TEC2016-76409-C2-2-R), CARMEN (TEC2016-75067-C4-4- R) and CAIMAN (TEC2017-86921-C2-1-R and TEC2017-86921-C2-2-R); by the Comunidad de Madrid grant CASI-CAM-CM (S2013/ICE-2845); by the Xunta de Galicia and ERDF grants GRC2013/009, R2014/037 and ED431G/04 (Agrupacion Estratexica Consolidada de Galicia accred- ´ itation 2016-2019); by the SODERCAN and ERDF grant CAIMAN (12.JU01.64661); and by the Research Council of Norway grant FRIPRO TOPPFORSK (250910/F20). This paper was presented in part at the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing

    SPECTRUM SENSING AND COOPERATION IN COGNITIVE-OFDM BASED WIRELESS COMMUNICATIONS NETWORKS

    Get PDF
    The world has witnessed the development of many wireless systems and applications. In addition to the large number of existing devices, such development of new and advanced wireless systems increases rapidly the demand for more radio spectrum. The radio spectrum is a limited natural resource; however, it has been observed that it is not efficiently utilized. Consequently, different dynamic spectrum access techniques have been proposed as solutions for such an inefficient use of the spectrum. Cognitive Radio (CR) is a promising intelligent technology that can identify the unoccupied portions of spectrum and opportunistically uses those portions with satisfyingly high capacity and low interference to the primary users (i.e., licensed users). The CR can be distinguished from the classical radio systems mainly by its awareness about its surrounding radio frequency environment. The spectrum sensing task is the main key for such awareness. Due to many advantages, Orthogonal Frequency Division Multiplexing system (OFDM) has been proposed as a potential candidate for the CR‟s physical layer. Additionally, the Fast Fourier Transform (FFT) in an OFDM receiver supports the performance of a wide band spectrum analysis. Multitaper spectrum estimation method (MTM) is a non-coherent promising spectrum sensing technique. It tolerates problems related to bad biasing and large variance of power estimates. This thesis focuses, generally, on the local, multi antenna based, and global cooperative spectrum sensing techniques at physical layer in OFDM-based CR systems. It starts with an investigation on the performance of using MTM and MTM with singular value decomposition in CR networks using simulation. The Optimal MTM parameters are then found. The optimal MTM based detector theoretical formulae are derived. Different optimal and suboptimal multi antenna based spectrum sensing techniques are proposed to improve the local spectrum sensing performance. Finally, a new concept of cooperative spectrum sensing is introduced, and new strategies are proposed to optimize the hard cooperative spectrum sensing in CR networks. The MTM performance is controlled by the half time bandwidth product and number of tapers. In this thesis, such parameters have been optimized using Monte Carlo simulation. The binary hypothesis test, here, is developed to ensure that the effect of choosing optimum MTM parameters is based upon performance evaluation. The results show how these optimal parameters give the highest performance with minimum complexity when MTM is used locally at CR. The optimal MTM based detector has been derived using Neyman-Pearson criterion. That includes probabilities of detection, false alarm and misses detection approximate derivations in different wireless environments. The threshold and number of sensed samples controlling is based on this theoretical work. In order to improve the local spectrum sensing performance at each CR, in the CR network, multi antenna spectrum sensing techniques are proposed using MTM and MTM with singular value decomposition in this thesis. The statistical theoretical formulae of the proposed techniques are derived including the different probabilities. ii The proposed techniques include optimal, that requires prior information about the primary user signal, and two suboptimal multi antenna spectrum sensing techniques having similar performances with different computation complexity; these do not need prior information about the primary user signalling. The work here includes derivations for the periodogram multi antenna case. Finally, in hard cooperative spectrum sensing, the cooperation optimization is necessary to improve the overall performance, and/or minimize the number of data to be sent to the main CR-base station. In this thesis, a new optimization method based on optimizing the number of locally sensed samples at each CR is proposed with two different strategies. Furthermore, the different factors that affect the hard cooperative spectrum sensing optimization are investigated and analysed and a new cooperation scheme in spectrum sensing, the master node, is proposed.Ministry of Interior-Kingdom of Saudi Arabi
    corecore