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Taman tyon keskeisimpéand tavoitteena on ihmisen elintoimintojen tarkkailu
ja estimointi kayttaen radiotaajuisia mittauksia ja adaptiivisia sig-
naalinkasittelymenetelmia monen vastaanottimen kantoaaltotutkalla. Tyossa
esitelladn erilaisia adaptiivisia menetelmia, joiden avulla hengityksen ja sydamen
varahtelyn aiheuttamaa micro-Doppler vaihemodulaatiota sisaltavat eri vas-
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tulosten perusteella voidaan osoittaa, ettd adaptiiviset menetelmat parantavat
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signal amplitude at m™ receiver in IQ-plane

signal amplitude of p'" propagation path at m™ receiver
effective area of m'™ receiver, and p*™* reflection point
Vandermonde type Fourier Transform vector

mixing matrix

array response vector

speed of light

channel coefficient vector

positive definite diagonal uncertainty matrix

vector of m™ receiver coordinates

size of array aperture

matrix of receiver coordinates

instantaneous estimation error at discrete time k
vector of estimation errors

frequency

array response ambiguity function

adaptation gain vector

gain of m™ receiver, and gain of transmit antenna
adaptation channel coefficients

frequency response of adaptive channel coefficients
identity matrix

discrete time-index

filter length

receiver array antenna index

number of receive antennas

number of transmit antennas

propagation path index

number of vital sign propagation paths

power received by m'™" receiver, total transmit power
narrow frequency window around center frequency 6
autocovariance sequence

radial distance from transmitter to target, and receiver to target
cross-correlation vector of z and y

estimate of autocovariance matrix

autocovariance matrix of sequence z, autocovariance of interference plus noise

static reflection path index

vibration model

vector of mutually independent source signals
number of static reflection paths

time-frequency distribution of STFT

smoothed pseudo WVD of a continuous time signal
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smoothed pseudo WVD of a discrete time signal

continuous time-index

amplitude of vibration

matrix of true normalized array response vectors

matrix of normalized beamforming array response vectors
target radial velocity relative to radar

inner product of FT vector and a priori Kalman gain vector
window sequence

vector of additive white Gaussian noise

Wigner-Ville distribution of a signal

inverse of mixing matrix

received adaptive processing input samples

mixture vector of independent components

matrix of adaptive processing input samples

adaptive processing reference signal, and beamforming output
estimate of adaptive processing reference signal

vector of received samples

short-Time Fourier Transform of a signal

step-size

signal substance penetration depth

permittivity of a substance

ratio of refractive indices

angle of arrival at p'" reflection point

angle between m'™ receiver and normal of p'* reflection point
angle of absorption at p'" reflection point

angle between transmitter broadside and p'" reflection point
angle between m' receiver broadside and p'* reflection point
signal direction of arrival at receiver

wavelength, forgetting factor

time-delay

signal phase

estimated signal spectrum

initial phase of micro-Doppler motion

angular frequency
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BSS
CW
EKG
FBA
FIR
FM
FFT
GRLT
ICA

IF
ISAR
LMS
LOS
LS
MFB
MIMO
ML
MMSE
MRC
MSE
MTI
MUSIC
MVDR
PSD
RCB
RCS
SAR
SIMO
SINR
SISO
SMI
SNR
SPWVD
STAP
STFT
TFD
ULA
WSS
WVD

Blind Source Separation
Continuous Wave
Electrokardiogramm

Filter-Bank Approach
Finite-Impulse Response
Frequency Modulation

Fast Fourier Transform
Generalized Likelihood Ratio Test
Independent Component Analysis
Instantaneous Frequency

Inverse Synthetic Aperture Radar
Least-Mean-Squares

Line of Sight

Least-Squares

Matched Filter Beamformer
Multiple-Input Multiple-Output
Maximum-Likelihood

Minimum Mean-Square-Error
Maximum Ratio Combining
Mean-Square-Error
Moving-Target Indicator

Multiple Signal Classification
Minimum-Variance Distortionless Response
Power Spectral Density

Robust Capon Beamformer
Radar Cross Section

Search and Rescue

Single-Input Multiple-Output
Signal to Interference-Plus-Noise Ratio
Single-Input Single-Output
Sample Matrix Inversion

Signal to Noise Ratio

Smoothed Pseudo Wigner-Ville Distribution
Space-Time Adaptive Processing
Short-Time Fourier Transform
Time-Frequency Distribution
Uniform Linear Array
Wide-Sense Stationary
Wigner-Ville Distribution



1 Introduction

1.1 Motivation

Through the latest developments in wireless communication systems, medical tech-
nology has become less intrusive and more sophisticated with non-contact monitor-
ing systems. In addition to telecommunications, high-frequency wireless radios may
be employed for non-contact monitoring of human vital signs, including breathing
and heart beat. The development of such measurement systems has become an
active research topic especially due to the growing need of location independent
healthcare services. Currently, the main limitation for online medical diagnosis is
not set by the existing communication infrastructure, but the lack of compact and
reliable mobile medical sensors. However, as new smartphones carry multiple high
end radios on board and enable wireless access to the Internet, these mobile de-
vices could become the missing link between routine visits at the doctor and online
medical diagnosis.

This thesis studies the application of wireless microwave radar systems in human
vital sign monitoring. The use of microwave radar systems for human life-detection
was studied already in the 1970’s, and later on in 1980’s when the use of X-band
frequencies was proposed for detecting respirational and cardiovascular motion [1,
2]. Subsequent studies have also shown that wireless microwave radar can be used
in human life-detection behind various obstacles and earthquake rubble up to three
meters [3]. Currently, a big driver on the topic are new high end mobile phones
that carry these microwave radios embedded, in addition to the high computational
power. Therefore, vital sign estimation using such a device is of high interest as soon
everyone could be carrying personal healthcare services in their pocket. However,
there are specific challenges still related to detection and estimation of vital signs,
which is why this technology is not yet available.

Wireless detection and monitoring of the cardiopulmonary vital signs is based
on the vibrating motion of the body resulting from breathing and heartbeat activi-
ties. A radar system observes this vibration as small periodic Doppler shifts, known
as micro-Doppler. At low signal-to-noise ratio (SNR), accurate micro-Doppler es-
timation presents a major challenge for vital sign monitoring using single antenna
continuous wave radar systems. The application of multiple receive antennas has
been introduced in vital sign monitoring to overcome challenges like random body
movement cancellation, signal enhancement, and resolving or separating different
source of micro-Doppler [4, 5. While these techniques have limitations in fixed
measurement geometry and implementation complexity, the current multiantenna
vital sign solutions have not addressed the problem of rate estimation under low
SNR conditions.

In this thesis, adaptive multiantenna signal processing techniques are proposed
for enhancing micro-Doppler effect caused by vital signs such as heart beats and
breathing. The system model employs CW radar and multiantenna receiver. The
performances of the proposed methods are evaluated in extensive simulations and us-
ing realistic radio wave propagation models derived in this thesis. The performance



gains in low SNR regime are of particular interest.

1.2 Micro-Doppler: Applications and Challenges

During the last decade, there has been an increasing interest in the study of micro-
Doppler dynamics due to its ability to provide unique target specific movement sig-
natures [6]. It has been proposed that the micro-Doppler information can be used to
distinguish vehicles, including cars, airplanes, helicopters and ballistic targets, based
on the mechanical vibration or rotation of structures, such as the engine, blades on a
helicopter, or the wobble of a missile [7] [8] [9]. Further studies have proposed models
using micro-Doppler with high resolution inverse synthetic aperture radars (ISAR)
for pedestrian identification based on their unique gait signatures [10] [11]. Also
the healthcare industry has received attention with studies on noncontact vital sign
measurements utilizing micro-Doppler motion models [12] [13], see Figure 1. While
this thesis focuses on the use of cardiopulmonary micro-Doppler information solely
for vital sign rate estimation, the same information could be used by healthcare
doctors in diagnosing potential heart diseases like arrhythmia, or sleep apnea [14].
A nonintrusive active wireless noncontact monitoring system provides also a con-
venient alternative for strap on premature infant cardiopulmonary monitoring and
in-home healthcare monitoring [12]. Other proposed applications include entrance
surveillance monitoring and movement tracking, various search and rescue (SAR)
tasks with victim locationing in smoke diving and earthquake rubble for firemen,
border patrol and police. The military has also shown interest in through-the-wall
imaging radar for antiterrorist activities.

The many applications of vital sign detection pose different requirements for the
used radar systems. Required sensitivity and Doppler resolution are key system
parameters that depend on the used radar waveform and frequency. Othe common
design parameters are the physical size of the radar unit, dynamic operating range,
available processing power, and mobile unit battery lifetime. Applications such
as search and rescue require a considerably larger operating range for vital sign
detection and are usually battery operated compared to for example clinical health
care monitoring. The latter application takes place in close to ideal conditions,
where the subject is typically stationary with respect to the radar and there is very
little motion clutter from the environment. Moreover, in health care monitoring the
distance between the radar unit and monitored subject is adjustable for optimal
detection, whereas in search and rescue, and surveillance applications the subject
location is generally unknown. Radar systems that would address these issues with
digital automatic gain control circuits and improved dynamic range, are still under
development [12].

In many vital sign detection applications utilizing battery operated radar sys-
tems, minimizing the processing power is critical for achieving sufficiently long op-
erational lifetime. Since various applications, such as entrance security, fire rescue,
earthquake victim locationing, and border patrol need merely the knowledge whether
heartbeat or respiration is present or not, high-complexity signal processing can be
kept to minimum. Many of these applications are time critical, thus it is enough for



the system to make a binary decision on the presence of vital signs. For example a
fireman needs to know whether there is a person trapped in a smoke filled room or
not, and an entrance security system if an intruder has entered a room, hence there is
no need for accurate vital sign estimation. As spectrum estimation methods are not
required for such applications, system costs and power consumption can be reduced
by eliminating the need of advanced digital signal processing microprocessors [12].
Further challenges in vital sign estimation are imposed by weak signal returns and
interference caused by excess motion artifacts. While noncontact vital sign detection
is based on sensing small physiological movements on the order of millimeters, ran-
dom body movement and environment dynamics can cause a significant interference
for accurate detection. Moreover, the problem of weak signal returns is empha-
sized when the signal conditions deteriorate or the subject is further away from
the radar. However, recent studies in vital sign estimation have developed accurate
mathematical models for detecting heartbeat and breathing motion using continu-
ous wave radar. It has been shown that the application of these models along with
robust high resolution spectral estimation methods in a single-input single-output
(SISO) continuous wave radar facilitate accurate wireless vital sign monitoring at
close range [13, 15]. One significant challenge still remaining in wireless vital sign
estimation is the weakness of the vital sign information in the reflected return sig-
nal. In order to solve this problem, advanced signal enhancement techniques in
multiantenna continuous wave radar systems are developed in this thesis.

Doppler frequency (Hz)

Time (s)

Figure 1: Time-frequency spectrum illustrating the micro-Doppler effect caused by
breathing and heartbeat. Heartbeats are visible as fast variations in the time-frequency
spectrum, whereas breathing results in lower micro-Doppler frequencies.



1.3 Contributions

This thesis proposes a novel approach for signal enhancement in wireless vital sign
monitoring using adaptive noise cancellation methods with multiple receivers. Also,
the application of spatial filtering methods for directional micro-Doppler interfer-
ence cancellation is presented. A mathematical model for radio wave propagation
is derived to allow realistic modeling of signal attenuation and reflections. This
model is applied in MATLAB simulations studying the performance of the pre-
sented adaptive processing techniques. Based on the simulations, it is shown in this
thesis that adaptive multiantenna signal enhancement techniques may be used to
solve the problem of vital sign monitoring in low SNR regime. Finally, a paper on
the presented adaptive methods was written and submitted to the 2013 IEEE Radar
Conference [16].

1.4 Outline of the Thesis

The thesis is structured as follows. In Chapter 2 the physiology and dynamics of
heartbeat and breathing activities are described. Also, the continuous wave (CW)
radar system is presented for vital sign monitoring, along with detailed derivation
of a general signal propagation micro-Doppler model for single and multiantenna
systems. Chapter 3 describes the signal processing and spectral estimation tools used
for extracting the instantaneous vital sign rate estimates from return signals. The
adaptive multiantenna signal enhancement techniques are introduced in Chapter 4,
which gives a detailed presentation of the applied adaptive noise cancellation and
spatial processing techniques. Chapter 5 provides simulation results demonstrating
the excellent performance of the proposed signal enhancement techniques. Finally,
Chapter 6 summarizes the contributions and results in this thesis.



2 Models for Vital Sign Monitoring

Although microwave life-detection systems were proposed already in the 1970’s [1],
only recent advances in both wireless and medical technology have offered an al-
ternative to the common chest-strap respiration and heartbeat monitors. This new
noncontact monitoring technology has several advantages in terms of subject com-
fort, measurement reliability, and both implementation and acquisition costs. While
there is no physical contact during monitoring, the system does not confine or in-
hibit the subject, nor does it cause any discomfort or skin irritation like straps and
electrodes [12]. This makes the system ideal for long-term continuous monitoring,
which also increases measurement reliability as subjects are unaware of the system,
and thus less likely to unintentionally alter their respiration or heartbeat due to
monitoring involved stress. Furthermore, the low hardware costs and small physical
size of the technology allows it to be embedded in various systems and consumer
products.

This section begins by explaining the basic physiology behind cardiopulmonary
activity, and how respiration and heartbeat are detected using a continuous wave
radar. Thereafter, the section focuses on the applied radar technology by giving an
overview on the operation and motion detection capabilities of a SISO continuous
wave radar. In order to further elaborate the use of continuous wave radar is the de-
tection of vital signs, a mathematical relation is given between the cardiopulmonary
activities and observed radar signal frequency shifts. After the physiological system
and measurement technology is defined, the section derives a micro-motion based
micro-Doppler signal model for multiantenna receiver systems. For improved sim-
ulation accuracy, this extended signal model considers various signal propagation
losses, including path loss and nonideal reflections. Finally, the section presents a
commonly used alternative multiantenna signal model known as the beamforming
model, which relies on specific assumptions on subject range. Due to its mathemat-
ical simplicity, the beamforming model is used when introducing spatial methods
later on in chapter 4.

2.1 Physiology and Modeling of Cardiopulmonary Activity

Talking, stress and exercise influence the instantaneous heartbeat and breathing
rates. Additionally, as the heart muscle, like skeletal muscles, requires oxygen in the
chemical reactions causing the muscle contraction, there is an evident co-dependence
between the heart and breathing rates [17]. However, since the goal is simply to de-
tect both vital signs, it is enough to model them as independent activities without
any loss of generality for detection. The following sections give a brief introduc-
tion to the physiology of cardiac and respirational activities, and describe simple
mathematical models that can be used to simulate these motions.

2.1.1 Cardiac Activity

Cardiac activity comprises of the contractions of the heart muscle and expansion
of the pulmonary arteries and ventricles due to blood flows. The heart muscle



can be characterized by two unique features: the ability to generate self-stimulated
rhythmic electrical impulses for muscle contraction, and conducing these impulses
quickly forward through the heart. However, as skeletal muscles have similar con-
ductive abilities, the electrical currents passing through the heart also spread into
adjacent tissues. Consequently, part of this current passes directly to the surface of
the body, thus enabling recording of the potentials induced by heart electrical cur-
rents, as is illustrated in Figure 2. Such recording is known as electrokardiogramm
(EKG).

On the other hand, the detection of cardiac activity using microwave radar sys-
tems relies on the physical motion of the contracting heart muscle. However, as most
of the microwave signal reflections originate from the skin layer, which is shown in
section 2.3.3, the radar is limited to observing heart induced vibration of the thorax
or carotid artery, not the heart muscle itself. As the heart is protected by the rib
cage and chest muscles, it is clear that the conduced heart vibration observable on
the skin layer is smoothed and attenuated by the surrounding tissues. Consequently,
the cardiac vibration is strongest on the left side of the thorax, directly above the
heart muscle.

The rate of heart pumping is regulated by specialized fibers of the heart’s con-
ducting system capable of self-excitation. These fibers have an intrinsic normal
discharge rate of 70 to 80 stimulations per minute. Furthermore, the rate is con-
trolled by the volume of blood flowing into the heart, as well as the autonomic
nervous system that can increase the regular heart rate by up to 100 per cent under
extrinsic stimulation. Consequently, the pumping rate can be decreased or even
stopped for a few seconds under strong parasympathetic nervous stimulation. [17]
In general, rapid natural fluctuations of the heart result from external stimulus from
the environment or sudden mental stress in situations, such as job interviews and
moments of frightening.

It is clear that the heart induced physical vibration on a healthy subject does
not obey a perfect periodic sinusoidal motion, but is characterized by a time-varying
rhythmic pulsation. Nevertheless, to illustrate the applied radar system detection
capabilities of any periodic motion, the cardiac activity on a subject’s body is mod-
eled as a sinusoid with a temporally fluctuating period. To justify the sinusoid

130 - L
% f / Ventricular volume
=
S /
50
L Elektrokardiogramm

Figure 2: Electrokardiogramm measured potential variations and ventricular volume of
the heart during two cardiac cycles [17]. The dashed line represents a sinusoidal approxi-
mation of the heart activity.



approximation, it can be seen in Figure 2 that the ventricular volume of the heart
follows roughly a continuous sinusoidal pattern during one cardiac cycle. Although
the observed vibration originates from the periodic contraction and relaxation of
the heart muscle, rather than expansion due to blood flow, the mechanical vibration
is smoothed by the protective tissues round the heart. Even though the sinusoidal
model is a rough approximation of the true muscular vibration, this model allows
for simplified simulations without the loss of generality for detecting the rhythmic
cardiac activity. The same sinusoidal approximation is made also when simulating
respiratory activity, which is discussed in the following section.

2.1.2 Respiration

The main function of the respiratory system is to provide oxygen to the tissues
and to remove any carbon dioxide from the body. This is accomplished, among
other things, by the pulmonary ventilation system that causes lung expansion and
contraction. It is exactly this slow periodic inspiration and expiration motion that
may be observed using continuous wave radar systems.

Normally, breathing is regulated by the respiratory center nervous system lo-
cated in the brain. The main functions of this nervous system are to control the
rate and depth of expiration and inspiration. The rate is regulated so that the
relative concentration of oxygen, carbon dioxide, and hydrogen ions in the blood
circulation remain constant even under heavy exercise. Excess carbon dioxide ions
are the main stimulant for the respiratory center to directly increase the strength of
both inspiratory and expiratory signals for respective muscles. These signals further
stimulate the respiratory muscles, including diaphragm and intercostal muscles that
control the expansion of lungs. [17] At rest, a common respiration rate for a healthy
person is from 6 to 20 breaths per minute, but during strong exercise the ventilation
rate can increase above 140.

There is an intrinsic connection between the expansion of the lungs and the
increase in diameter of the chest. During normal breathing, the lungs are expanded
either by contraction of the diaphragm, which pulls the lungs downwards, or by
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Figure 3: Variations in lung volume and pleural pressure during one respirational cy-
cle [17]. The dashed line represents a sinusoidal approximation of the breathing activity.



elevation and depression of the ribs to increase and decrease the diameter of the
chest cavity. During inspiration, both of these methods lead to an expansion of the
lung volume, which consequently decreases the pleural pressure and results in air
flow into the lungs. In rest, a regular respirational lung volume change for a male is
0.5 liters, which is illustrated in Figure 3 along with changes in the pleural pressure.
The maximum lung capacity is however far greater, and can reach up to 5.8 liters
especially with athletic people. [17]

In contrast to the cardiac activity, the lung volume variations in regular breath-
ing are considerably larger. Therefore it is clear that also the physical movement
generated by the respirational activity has larger amplitude, which makes it easier
to detect with microwave radar systems. The reasoning for this is presented in sec-
tion 2.2.3. Furthermore, as the volume changes during one respirational cycle are
close to sinusoidal, as can be seen in Figure 3, this supports modeling breathing as
a sinusoid with a temporally fluctuating period.

2.2 Continuous Wave Radar

A typical application of continuous wave radar is to detect target motion in the
environment. This is also the case in vital sign monitoring, where the target motion
is caused by the small physical vibration of heartbeat and breathing activity on
the subject’s thorax, as described in previous sections. The continuous wave radar
detects motion by observing frequency changes in the reflected signals, which are
caused by any radial movement relative to the radar. Such frequency shifts are
known as Doppler shifts, which is also why the continuous wave radar is sometimes
referred to as Doppler radar.

In addition to the vital sign application, CW radars are widely used in many basic
consumer products as well as official and military grade equipment. Besides the well-
known application of traffic control officials using CW radars to measure the speed of
passing vehicles, a frequency modulated (FM) version of the radar can also be used
in air traffic as simple altimeters to measure the distance between the ground and
plane. However, in life critical missions such as commercial airplanes, the accuracy
of laser operated devices is preferred over the cost savings of CW radar. Other
common applications utilizing the inexpensive and compact technology of CW radars
include car parking aid proximity sensors, entrance surveillance motion detectors in
various premises, forecasting rapid changes in weather conditions especially near
airports [18], and measuring the speed of a tennis ball after the serve. Also the
military has found use for this technology by applying it in various early warning and
combat missile systems [19], [20], as well as antiterrorist through-the-wall imaging.

Based on the numerous applications of CW radars, it is evident that the technol-
ogy has multiple advantages compared to other types of radars. Firstly, the simple
operation principle allows the CW radar to be built from common and inexpen-
sive hardware components. This reduces the overall manufacturing costs and brings
the technology available even for small entrepreneur businesses, thus allowing faster
adaptation to new markets and applications, including basic consumer products.
Secondly, the simple hardware makes the radar relatively failure safe and service



free with little or no maintenance costs. Therefore the CW radar is ideal for embed-
ded systems like cars or aircrafts, where access to the components is usually limited.
Finally, the simple structure of the radar allows for a small and compact assembly
that is easy to carry around or embed into small devices, such as mobile phones and
toys.

2.2.1 Operation and Motion Detection

There are two basic types of continuous wave radars: unmodulated and modulated.
They both have the same operation principle of transmitting a continuous wave
signal and monitoring the return for amplitude and phase changes. As their names
already imply, the main difference with these two types of radars lie in the way the
transmitted signal frequency is modulated. The unmodulated CW radar transmits a
fixed frequency continuous wave signal, whereas the modulated radar uses frequency
modulation to alternate the carrier frequency in which the signal is transmitted. It
is in fact this underlying difference in modulation technique that determines the
operational capabilities of the radar.

The unmodulated CW radar, or Doppler radar, has the ability to detect moving
targets and determine their redial velocity relative to the radar. However, it will
be explained later on that the CW radar is unable to detect stationary targets or
perform ranging without the use of a transmit signal modulation scheme. Therefore,
the unmodulated CW radar has most of its applications in the field of simple motion
detection, such as traffic control and various sports. Moreover, since the goal in
the vital sign estimation task is to simply detect the cardiopulmonary motion on
the subject’s body, it is enough to use an unmodulated CW radar in vital sign
estimation. Consequently, this thesis focuses on the operation and application of
the unmodulated CW radar. For brevity, in what follows, the unmodulated CW
radar is referred to as CW radar, unless stated otherwise.

The CW radar operates by transmitting a fixed frequency f. = w./27 signal
and analyzing the return for Doppler shifts fp, as is illustrated in Figure 4. The
return signals are a result of electromagnetic wave interactions with various objects
and nonuniformities in the propagation medium. Whenever the transmitted signal
encounters such nonuniformities, like a human body, part of the signal energy is
reflected and scattered back to the receiver. In the case of a SISO radar observing a
single moving reflection point, the transmission channel output at the receiver can
be modeled as

y(t) = a(t) sin (we(t — 7(t))), (2.2.1)
where a(t) represents a complex channel amplitude, and 7(t) is the propagation

time-delay. A complex representation of the output is obtained by IQ demodulating
the signal (2.2.1) to its baseband form of

y(t) = a(t)ej¢(t), (2.2.2)

where ¢(t) is the phase term carrying the Doppler information.
Variations in the two way signal path length modulate the phase of the signal,
which in turn gives rise to the Doppler shifts. For example, assume that the radar
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a(®)sin(w.(t — (1))

Figure 4: A basic CW radar operates by transmitting a fixed frequency f. continuous
signal, and monitoring the return for frequency shifts fp.

is illuminating a target at distance r that is moving with a radial displacement of
Ar(t) towards the radar. Then the time-dependent signal propagation path length
for a single reflection point is

F(t) =1+ Ar(t) =r + —t. (2.2.3)

To highlight the propagation path length dependency on the target movement ve-
locity, the equation (2.2.3) can be rewritten as

T(t) =1+ vt (2.2.4)

where v, is the radial velocity component along the line of sight (LOS) of the radar.
Furthermore, by assuming that the radar is monostatic, that is the transmitter
and receiver are co-located, then the transmitted signal experiences a propagation
time-delay of

() ~ %m), (2.2.5)

where ¢ denotes the speed of light. Consequently, the signal phase observed at the
receiver is given by

o(t) = wer(?) (2.2.6)

and consequently the output signal defined in (2.2.2) is

y(t) = a(t)e duec oot (2.2.7)
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It is worth noting that already a radial displacement of vt = A\/2 is enough to
result in a complete 27 rotation of the signal phase. Therefore the Doppler shift
corresponding to target motion is now given by the instantaneous phase change as

~1.99(1)
o= 5 o
=2f.".
&

(2.2.8)

Clearly there is a linear relation 2f./c between the instantaneous radial velocity and
the instantaneous Doppler shift. This relation is the basis for estimating simple
target motion using the Doppler information.

In the case that nothing is moving in the environment, that is v, = 0 for all
reflection points, then also the observed Doppler component fp is zero, and the
receiver output (2.2.7) is simply a constant complex number. Therefore stationary
targets do not provide any information for CW radar, thus rendering the radar
unable to detect them.

In addition to the phase changes, the transmitted signal experiences amplitude
attenuation in the propagation medium. This loss in the received signal energy
is generally caused by signal reflections, path loss, shadow fading, and multipath
fading. In close range vital sign monitoring, the most significant losses result from
path losses and signal reflections, where part of the energy is absorbed into the
body and transformed into heat. A detailed model for the amplitude a(t) is given
in Section 2.3.2.

It is evident from equation (2.2.7) that any radial target movement relative to
the radar results in reflected signal Doppler shifts that are observable at the receiver
input. Furthermore, by applying proper signal processing techniques, the radar
system can determine the radial velocity of the target by extracting v, from the
input signal. However in the vital sign application, the target motion is introduced
by the periodic vibration of the subject’s body. Therefore, instead of detecting
simple constant velocity, the following section focuses on detecting small periodic
micro-motion components by introducing the concept of micro-Doppler.

2.2.2 Micro-Motion Dynamics in Radar

A micro-Doppler motion model can be used to characterize vibrational periodic
or quasi-periodic (periodic over some observation window) motion in radar applica-
tions. Micro-motion dynamics, such as mechanical vibration, tumbling, and rotation
induce small Doppler modulations on the reflected radar signal. This phenomenon
is referred to as micro-Doppler [8]. A basic CW radar is able to detect simple target
motion and determine its velocity. This is usually enough information for a binary
decision on target detection or simple velocity measurements. However, the main
Doppler component does not generally provide enough information for radar sys-
tems performing sophisticated target movement analysis and identification, such as
air surveillance and target recognition, and vital sign monitoring. Therefore, the
additional micro-Doppler information is required for reliable target recognition and
fine scale movement analysis.
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In many radar applications like the vital sign estimation, the target might in-
clude micro-motions that induce time-varying micro-Doppler frequency shifts onto
the carrier frequency. These micro-motions yield more accurate information about
the target movement or inner structure, which are usually defining characteristics for
different targets. For example, if a human is walking towards a CW radar, the for-
ward movement of the body will generate a main Doppler component in the reflected
signal, thus allowing detection of the person. Similarly, the swinging arms and legs
will contribute additional micro-Doppler sidebands around the main Doppler shifted
central carrier frequency. By nature, the dynamics of these micro-motions are fairly
unique between individuals, thus according to [11] this additional information could
be used to identify persons by their walk.

Like the movement of arms and legs, also the cardiopulmonary motion on the
body of a subject results in detectable micro-motions. However compared to gait
analysis, the detection of vital signs is more challenging due to the significantly
smaller motion amplitude. Furthermore during normal walking, the average human
heart rate is close to the rate of swinging arms that may also be illuminated by the
radar. Therefore any arm movement produces significant interference to vital sign
measurements. Additionally, any periodic wobble of the body, like nodding, will
result in interfering micro-Doppler frequencies. In order to minimize these interfer-
ences, it is assumed in this thesis that the observed subject is stationary during the
measurements, hence only the cardiopulmonary micro-Doppler is observed. As the
elementary theory behind detecting vital sign micro-Doppler components is similar
to basic operation principles of a CW radar, the following signal model derivation
is merely an extension of the theory in section 2.2.1.

2.2.3 Micro-Doppler Motion Model

The micro-Doppler effect in vital sign monitoring is generated by the periodic motion
of the pulsating heart muscle and chest, as described in section 2.1. Like in the case
of a moving car, the vital sign motions modulate the phase of the reflected radar
signal through propagation path length variations. In contrast to the previous case of
constant Doppler-shift, the periodic cardiopulmonary vibration results in a smaller
time-varying periodic micro-Doppler. Figure 5 illustrates the application of a CW
radar system to the task of vital sign monitoring. In order to derive an expression
for micro-Doppler effect observed at the receiver, it is necessary to find a vibrating
model for the target.

The instantaneous amplitude of the cardiopulmonary motion is determined by
the phase and strength of the respective breathing and heartbeat activities, as was
presented in Section 2.1. For example, when a subject is breathing at rest, the chest
cavity is expanding and contracting in a slow periodic manner, thus resulting in
amplitude variations that reflect exhaling and inhaling. Similarly, the beat of heart
muscle resonates on the chest, while the pulse of oxygenated blood spreads in the
arteries. Consequently, by using the sinusoidal approximation of cardiopulmonary
motions, the vibrations can be modeled independently as

s(t) = u(t) - sin (2rf(t) - t + 1), (2.2.9)
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a(t) sin(w, (¢ — 7()))
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Figure 5: Example of micro-Doppler in continuous wave radar system with application
to vital sign monitoring. For simplicity, the subject is assumed to be stationary with
respect to the radar so that random body movements do not contribute the vital sign
measurements.

where u(t) denotes the amplitude, f(¢) the instantaneous frequency (IF), and v the
initial phase of respective breathing and heartbeat activities. Furthermore, let us
assume that the subject is at rest during measurements, and the small amplitude
fluctuations may be neglected, that is u(t) = u is constant. Then, the micro-Doppler
effect of either vital sign seen at the receiver of a monostatic radar is given by

2-5(t)  Anf.
— =

o(t) = we - cu-sin (27 f(t) -t + ). (2.2.10)
This indicates that also the observed micro-Doppler frequency shifts are periodic,
and the magnitude depends on the chosen carrier frequency, and the phase and
amplitude of the vibrating target motion.

It is worth noting that the model in (2.2.10) applies to the micro-Doppler of
an individual vibrating target. In order to account for reflections from multiple
sources, and to model both breathing and heartbeat simultaneously, the following
section presents a micro-Doppler multipath signal model for general single receiver
radar.

2.2.4 Multipath Signal Model

Recalling that in the case of a single constant velocity target, the received baseband
signal was given by (2.2.2). Generally however, the SISO channel between a pair
of transmit and receive antennas comprises of multiple propagation paths, that is
reflections from chest, throat, etc., or secondary subjects nearby. Therefore, the
channel output at the receiver can be modeled as a sum of the P distinct multipath
components containing vital sign phase modulation, and S components with static
interference from the environment. Hence, the receive input signal can be modeled
as

P S
y(t) =Y up(t) + Yy oy +wl(t), (2.2.11)

where p denotes the propagation path component y,(t) containing contributions
from vital signs, s denotes the static reflections s, [ denotes the direct transmitter to
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receiver leakage y;, and w(t) ~ N(0,02) is white noise [13]. By further assuming that
both the measurement environment and radar geometry are static, the interference
and leakage components do not contribute any Doppler shifts because

—JWeTs

Ys = Qs+ €

k) (2.2.12)

= Qs - eXp( — JWwe -
is a constant complex number for both y, and y;. Here r, and r; are used to denote
the radial distance from transmitter to target, and receiver to target respectively.
As a result of the periodic cardiopulmonary micro-Doppler signal phase modu-
lation, the vital sign carrying propagation paths are time-dependent, and therefore
modeled as
yp(t) = a, - e 730 (2.2.13)

where the signal amplitudes a, are approximately constant over time due to the
small physical amplitude of vital sign motion. Let us assume that the periodic
breathing and heartbeat activities are characterized by given mathematical models
s®)(t) and s (t) respectively. Then, the two way radial propagation path length
for one reflection point p in the azimuth plane is given by

7o(t) = 1 + 5P () - cos B, + sM (t) - cos b,
+ 15+ sO(t) - cos O, + sM(t) - cos b, (2.2.14)
where 6, and 6 are the corresponding angles between the normal of the p'™® reflective

surface and the transmitter, and receiver. When the cardiopulmonary vibrations are

modeled according to (2.2.9) as sinusoids with frequencies AR (t) and fyﬁh) (t), and

amplitudes u](gb) and ul(;h), the path delay for the p'" reflection point is

Tp(t) =
+ul? - sin (27 (1) - t +9) - (cos (6,) + cos (6;))
+ul - sin (2 [0 (2) -t + ) - (cos (6,) + cos (65))), (2.2.15)

(Tp +7p

where the phase terms @/)z(,b) and @/}z(;h) represent the relative phase of the respiratory
and cardiac activities on different points of reflection on the subjects body. It is
worth noting that the oscillation frequencies f,(t) and fj,(¢) are time-dependent and
may fluctuate based on the excitement and stress felt by the monitored subject.
These frequency variations are however usually relatively slow, thus the signal can
be assumed stationary within a short time window, but not over long periods. In
other words, the signal is quasi-stationary. The stationarity assumption is important
for the applied spectral estimation techniques that are discussed in more detail in
Chapter 3.

The micro-Doppler effect at the receiver resulting from path delay (2.2.15) is
given by
(1)

c

Pp(t) = we

+ dp0, (2.2.16)
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where ¢, is a phase term comprising of the antenna beampattern angular phase
offset and phase shift due to reflection. Clearly, the cardiopulmonary vibration
frequency information is preserved in the received signal phase term ¢,(t). The
connection to the instantaneous micro-Doppler frequency shifts can be obtained by
differentiating the phase term in time, thus yielding

Fuplt) = 2 fo () F9(1) - cos (1) + ) (c0s (6,) + cos (6))

+ u](uh)féh) (t) - cos (w:l(,h) (t) + 1/}1(,11)) (cos (6,) + cos (6;)) ), (2.2.17)
where w,()b/ ") (t) = 2w fng/ P (t). Evidently the magnitude of the micro-Doppler com-

ponent depends on the periodic motion amplitudes uz(,b/ ") and frequencies j;Sb/ P (t).

Moreover, it is also dependent on the chosen carrier frequency f. and the relative
signal angle of arrival at the vibrating target. Consequently, the multipath com-
ponents may experience different Doppler shifts. However, assuming that there is
only one source of vital sign phase modulation, the corresponding frequency infor-
mation can be recovered using advanced signal processing and spectral estimation
techniques. These techniques are presented in Chapter 3.

Estimation of the micro-Doppler frequencies is however not trivial due to the
small amplitude of the periodic motion contributing to the low frequency shifts.
The weakness of the signal imposes high requirements on the radar hardware qual-
ity as well as maximum monitoring range. In order to deal with these limitations,
this thesis extends the models and concepts of previous research from SISO continu-
ous wave radar systems into multiple antenna radar systems [13]. Applying multiple
antennas at the transmitter and receiver enables the use of various signal enhance-
ment and spatial diversity techniques, thus allowing improved SNR and enhanced
reception of the weak vital sign information signal. These techniques are introduced
in Chapter 4. The following section introduces a realistic signal propagation model
for multiantenna radar systems with both arbitrary and uniform linear array (ULA)
receiver geometry.

2.3 Multiantenna Vital Sign Signal Models

The advantages of multiple transmit and receive antennas are widely known in
communications engineering. In the application of wireless vital sign monitoring,
the multiantenna systems have been proposed to overcome challenges arising from
excess motion artifacts, and detecting multiple sources of micro-Doppler motion [4,
5, 12].  While this thesis is focused on the application of single-input multiple-
output (SIMO) receiver systems, this Section presents the advantages of having
multiple receive antennas, and derives the vital sign signal models employed in the
simulations.

2.3.1 Multiantenna Receiver System

The application of multiple receive elements may be used to improve the reliabil-
ity and performance of radar systems. It has been shown that the multiantenna
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systems have more degrees of freedom than single element radars, thus enabling
improved angular resolution and parameter identifiability [21]. By using sufficient
displacement among the antennas, these systems are able to illuminate the target
from different angles and consequently exploit target radar cross section (RCS) di-
versity in target detection and identification. These widely separated radars achieve
performance gains also in detection of slow moving targets due to multidirectional
Doppler estimates, as is the case with vital sign monitoring, see Figure 6. Further-
more, frequency modulated radars enable multidirectional delay estimates, allowing
high resolution target locationing when the radars are accurately synchronized. [22]
Consequently, the main applications of widely separated antennas lie in various
surveillance and positioning systems, including air surveillance, military signal in-
telligence and locationing.

Conversely, colocated antennas with small sensor interelement spacing provide
increased radar directivity and higher SNR gains through coherent processing and
excellent interference cancelling capabilities [23]. Typical usage of colocated mul-
tiantenna systems include target detection and tracking in low signal conditions,
direction of arrival (DoA) estimation, and wireless link telecommunications. Due to
the beamforming and coherent processing capabilities of colocated receiver anten-
nas, such systems are most suitable for the task of vital sign estimation where low
signal to interference plus noise (SINR) conditions are typical. This thesis employs
both colocated and widely separated receiver geometries.

The general multiantenna signal model used in this thesis stems from previ-
ous research in CW radar vital sign measurements with SISO and MIMO sys-
tems [15, 13, 24]. For single antenna systems, the simplified single target CW radar
micro-Doppler signal model was presented in the previous Sections 2.2.3 and 2.2.4.
It has been shown that such micro-motion based models are fairly good approxi-
mations of the actual vital sign process, and can be used for accurate single source
vital sign estimation [13]. These prior research models have assumed fairly static
measurement conditions with little or no reflected signal amplitude modulation and
simple reflection modeling. To improve modeling accuracy, the signal model pre-
sented here extends the micro-Doppler vital sign model for multiantenna systems

rl,p ,‘_—*

== P,
Rx1 l_QA_Llp
Figure 6: System geometry of a one transmitter and Mp receiver SIMO CW radar
with arbitrary receiver geometry observing one source of vital sign micro-Doppler phase
modulation. To reduce modeling complexity, it is assumed that all radio elements are
observing the same face of the subject, that is 6, 0, , € (—7/2,7/2) withm =1,..., Mp.
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with more realistic propagation, reflection and interference modeling.

In order to derive the signal model used in the simulations, a more detailed un-
derstanding of the electromagnetic wave propagation losses is required. In addition
to the transmitted signal power distribution over space, part of the signal power is
lost in every reflection and scattering in the environment. Therefore accurate model-
ing of the received signal requires more detailed amplitude and reflection modeling,
which is presented in the following sections. It is worth noting that in this con-
text signal power losses mean that part of the total transmitted signal power is not
available at the receiver end, and is thus lost.

2.3.2 Amplitude Model

The amplitude model for vital sign simulations is based on the general radar equa-
tion. An ideal isotropic transmit antenna radiates the transmitted signal power
uniformly into space. In other words, the total transmit power Pr at distance r,
from the antenna is distributed over a sphere of size 47r7“12,. As a result, the signal
power experienced at the target with an effective area of A, is proportional to

A
Po(rp, p) = 471_;2 PrGr(pp), (2.3.1)
p
where Gr(¢r) is the transmit antenna gain towards the target at an azimuth angle
¢p € [—m/2,7/2]. Assuming that the target reflects all incoming power as an ideal
isotropic radiator, the signal power at a receiver antenna with effective area A,, at

a distance 7, , from the target is given by

Ap
P
A TGT(SOP)

2
p

A (Pmp)

2 )
47T7’m7p

P (Tps Ty Pps Pmp) = me{l,..., Mg} (2.3.2)

with ¢y, € [-7/2,7/2], which is the general radar equation. In the case of a non-
isotropic antenna, the receiver effective area is a function of the azimuth angle ¢, ,,
and it is usually defined via the antenna beampattern gain G,,(¢,.p) as

)‘QGm<90m,p>
47 ’

To compute the transmitted signal amplitude attenuation in a simulation, it is
assumed that the coordinates of antenna elements and reflection points are known.
In the case of a Cartesian coordinate system, the propagation path distances are
trivially obtained through the Pythagorean Theorem. Consequently, as the signal
power is proportional to the amplitude squared, the time-dependent signal ampli-
tude attenuation coefficient between the transmit and m'™ receiver element can be
approximated with

Am(pmp) = (2.3.3)

am,p(t) = \/Pm(r;m 74m7pa SOpa ‘;Om,p)y (234)

where the superscript p specifies the reflection point. Again, by using the small
amplitude assumption on cardiopulmonary activity, the attenuation coefficient time-
dependency may be omitted.
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As the transmitted power attenuates relative to the inverse square of the dis-
tance, this constrains the radar maximum operation range after which the low re-
flected signal power levels at the receiver are no longer detected. [19] Moreover, the
propagation path lengths are time-dependent due to the periodic target motion in
the vital sign application. To overcome the path loss attenuation problem, many
applications utilize directive antennas that, instead of radiating all energy isotropi-
cally, focus the transmitted energy on a narrow beam pointing at desired direction.
Such narrow beam transmitters enable higher received signal levels if the angular
position of the target is known, thus allowing efficient target illumination. How-
ever, the amount of received signal energy is also dependent on the signal angle of
incidence at the reflective surface.

The model in (2.3.4) relies on a simplifying assumption that all received signal
energy is reflected isotropically without losses. In general this is however not the
case, but part of the incoming signal energy is absorbed into the target. The amount
of absorbed energy depends on the conductive properties of the reflective material
and the angle of incidence of the electromagnetic wave. A smaller angle between the
signal and the normal of the plane implies that a larger percentage of the inbound
signal energy is absorbed. The following section improves the presented attenuation
model by including advanced reflection modeling.

2.3.3 Reflection Model

Another common source for electromagnetic signal fading are nonideal reflections
where part of the signal energy is absorbed and refracted into nonuniformities in
the transmission medium. The reflection of planar wave on a smooth surface is
characterized by the Snell’s law and Huygens principle. The Snell’s law states that
there is a linear dependence between the angle of incidence and refraction, and the
refractive indices of the interfacing mediums. On the other hand, Huygens principle
proposes that every point of an electromagnetic wave is a source of a spherical
wave. The combination of these theorems gives a model for absorbent reflection of
electromagnetic waves, which is illustrated in Figure 7. While the angle of incidence
equals to the angle of reflection, part of the incoming signal energy is absorbed
and refracted into the reflecting substance. Furthermore, by applying the Maxwell’s
equations for electromagnetic wave propagation with perpendicular polarization, it
is possible to derive the ratio of reflected signal power to the incoming signal power
as

P, |cos(01) —ncos(6-) 2

Py |cos (61) + ncos (6)

(2.3.5)

where 6; and 6y are the angle of incidence and refraction in azimuth plane, n =
ne/m = +/€2/€1 is the ratio of refractive indices and €; and ey are the respective
permittivity of primary and secondary substances [25]. Values for specific human
tissue permittivity at the 20 GHz frequency range are listed in table 2.

Based on the given permittivity values, it is possible to determine the electromag-
netic signal penetration depth ¢ in human tissues. According to [25], the penetration
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Absorbed signal

Aurriving signal

Reflected signal

Figure 7: Electromagnetic wave reflection and refraction of a smooth surface with per-
pendicular polarization, that is the signal electric field is perpendicular to the normal
of the reflection plane. Incoming, reflected, and absorbed signal powers are denoted by
P, Py, and P3. Correspondingly, E; and H; denote the electric and magnetic field for
1=1,2,3.

depth for conductors is given by

-1

5 ~ Jm {27” e(wc)] , (2.3.6)
where €(w,) is the frequency dependent permittivity of the substance. By using
the value for dry skin given in table 2, the corresponding penetration depth is
Oskin ~ 0.0016 m for a 20 GHz radar. Considering that the penetration depth is
inversely proportional to the frequency, it is evident that most of the vital signals
observed at above 20 GHz frequencies are reflections from the skin layer.

Table 2: Permittivity of specific human tissue measured at f. = 20 GHz. Here permit-
tivity is defined as a complex number €(w.) = € (w.) — je’ (w.). [26]

Tissue € (20 GHz) €"(20 GHz)

Muscle 28.27 22.01
Stomach 36.70 37.53
Skin (Dry) 22.27 15.12
Skin (Wet) 23.67 18.70
Air 1.0006 0

An important observation is that if the angle of incidence is set to ; = 0y = 0,
then equation (2.3.5) implies that approximately 48 % of the incoming signal power
is reflected back from the skin layer. On the other hand, if the angle is reduced
to 0, = w/4, the amount of reflected power increases to 59 %. However, it should
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be noted that the reflection model per se does not take into account the reduced
effective area of increasing 6, but this is done in the path loss model. Furthermore,
to benefit from the increase of reflected power, the radar system would need to be
bistatic. Considering the small physical size of potential platforms to embed vital
sign radars, it is reasonable to assume the radar system to be monostatic. Therefore,
in order to maximize the received signal power in frontal vital sign measurements,
the subject should be facing the radar at broadside.

2.3.4 General Multiantenna Signal Model

The previous sections derived realistic mathematical models for signal amplitude
attenuation and reflections. Let us use these models to formulate a multiantenna
receiver signal model by combining the respective path loss (2.3.4) and reflection
models (2.3.5).

The realistic multiantenna signal amplitude model for a single receiver is given
by simply multiplying the two models as

A A m
Am,p = \/ - PTGT(QOP) (90 p)

cos (0,) — ncos (e:p)
cos (6,) + ncos (6,)

: (2.3.7)

2 2
dmry dmre,

where 6, and ép are the respective signal angle of incidence and absorption on the
target surface, see Figure 6. Now using this amplitude fading model, the different
propagation channels can be expressed as a sum of the individual propagation paths.
For an illuminated environment with P vital sign emitting reflection points and S
interference scatterers, the antenna specific transmission channel after I1Q) sampling
can be modeled as

P
cm(k) = Za ej¢p(k+z 6”53 +amvle‘7¢l, (2.3.8)

p=1

where k£ denotes the sampling instant, ¢, (k) is the micro-Doppler phase modulation
given in (2.2.16), and a,,;6/* respresents the constant leakage term. In this thesis
the phase modulation for static background objects is assumed constant ¢4(k). How-
ever, the model (2.3.8) allows to define any motion model also for the interference
scatterers.

In the vital sign application, the SIMO CW radar system uses one transmit an-
tenna to illuminate the vibrating target. The various propagation paths essentially
function as individual SISO transmission channels, where the micro-Doppler infor-
mation is preserved in the channel phase modulation term. Finally, the IQ sampled
receiver input vector is given by

y(k) = c(k) +w(k), (2.3.9)

where y(k) = [y1(k), ..., yar, (k)]" € CM=<1is a vector of received samples, c(k) =
[er(K), ..., ear, (K)]" € CMrx1 is a vector of channel coefficients defined by (2.3.8),
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and w(k) = [wy(k), ..., wyr, (k)] € C¥2*1 are independent samples of white Gaus-
sian noise with variance 0. As a result of the compact receiver array geometry,
it is clear that unlike the noise components, the vital signals sampled at different
antennas are highly correlated. It is exactly this correlation that allows the appli-
cation of various noise cancelling and signal enhancement techniques, that are used
to improve detection and estimation of the vital signs encoded in the micro-Doppler
frequencies.

The signal model defined in (2.3.9) is a general model that is applicable for any
SIMO CW radar system independent of the array geometry or target range. Other
signal models that assume a fixed geometry or a minimum target range do not pro-
vide a similar variability as the model presented here. However, by assuming that
the target is located far from the receiver, it is possible to simplify the model know-
ing that the incoming signals behave like planar waves. It should be noted that
this simplification does not hold when distance to the target is small compared to
the array aperture. While the previously defined model does not rely on such as-
sumptions, it is more versatile in terms of applicability without any loss of modeling
accuracy.

Although such alternative models might be inaccurate for some specific measure-
ment setups, however they may provide simplified system signal model. One widely
used such signal model in radar engineering is the beamforming signal model. It is
designed for modeling returns from far away targets and therefore has a minimum
range requirement. When this requirement is met, the model gives a well-established
approximation of wave propagation within the array, thus simplifying the ensuing
mathematical analysis of the system. As a result, the following section introduces
this alternative model, which is thereafter used in the presentation of beamforming
techniques.

2.3.5 Beamforming Signal Model

When the target is located far from the radar, the incoming signals can be modeled
as planar waves. Consequently, all array elements observe the signal reflections
in an approximately same angle of arrival. As a result of the array interelement
spacing, the antennas observe different phase shifts due to the differences in signal
propagation path time delays. As opposed to the array signal model in (2.3.9),
the phase shifts can now be determined without the knowledge of global system
transmitter, receiver, and target coordinates. It is enough to know the receiver
array internal geometry. Consequently, the application of coherent processing allows
the system to determine the signal direction of arrival and apply beamforming or
adaptive noise cancelling techniques similarly as with the previous model. Because
this model is generally used in radar systems with applications to beamforming, it
is known as the beamforming model.

For the receiver array to be able to obtain coherent processing gains, the angle of
arrival for the observed signal of interest should be equal across all antenna elements.
This implies that the target has to be located far enough from the radar to fulfill the
planar wave assumption. The minimum target range is defined by the Fraunhofer
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region, which is determined by the array’s largest geometric dimension D and the
signal wavelength as ,
Tmin = 2 (2.3.10)
A

The Fraunhofer region is sometimes referred to as the far field. When the target is
located beyond 7,,;,, all receiver antennas observe the incoming signal in approxi-
mately the same angle of incidence . For example, for an optimal ULA receiver
with 5 antennas operating at f = 24 Ghz with D = (5 —1) - A\/2, the far field given
by (2.3.10) starts at 7,,;, ~ 0.1 m. However, as further discussions will show, it
might be infeasible in this case to fulfill the A\/2 requirement for antenna spacing.

As a result of the antenna colocation and the far field assumption, the concept
of a single propagation path is redefined for the beamforming model. Instead of
considering paths relative to individual antennas, one path is now defined as the
signal propagation path between chosen array center points at the transmitter and
receiver. The center need not be the geometric or physical center. Therefore, as
is illustrated in Figure 8, the vital sign modulated phase shifts are also measured
relative to the receive array center point.

Following from the assumption that the antenna coordinates d,,, = [Zm, Ym, 2m]
relative to this center are known for allm = 1,2, ..., Mg, the corresponding response
for the m'" antenna is

T

b (0.9, f) = e e (Anred) p (o — 50— 0, f), (2.3.11)

where 1(p,9) = [cos(p) cos(?9), sin(p) cos(), sin(¥)]T is a unit vector in respective
azimuth and elevation angles ¢ and 9, D = [dy,da, ..., das,] is a matrix of antenna
coordinates, and byef(p — @,0 — J, f) is the angular-frequency response for the
single antenna measured relative to its own center and rotation (&, 5,,1) [27]. The

Figure 8: In the beamforming array model, the receive elements form a linear array with
d interlement spacing.
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response of multiple antennas can be further expressed using vector notation as

bRJ(SDa 197 f)

br(p, v, f) = € CMrx1, (2.3.12)

3-

br g (@, Y, f)

Here the azimuth and elevation angles are defined with respect to the transmitter
and receiver internal coordinate axes, as is shown in Figure 8.

The phase scaling vector defined in (2.3.12) is also known as array response vector
since it determines the array transfer characteristics in a specific look direction. The
normalization of 1/y/Mpg is used for mathematical convenience to give the array
response vector unit norm. Due to the measurement complexity, the antenna specific
response vectors are generally not determined individually, but the combined array
response is measured using all antennas simultaneously. Such a response includes
the mutual coupling of antennas, which is excluded from (2.3.11). For simplicity, let
us focus the following analysis on the azimuth plane.

For the specific case of an ULA with isotropic antennas, the array is simply
defined by the antenna interelement spacing d. As a result, the array response
vector in azimuth plane simplifies to

92 sin(or) (T

1

br(p, f) = ,€ CMrx1 (2.3.13)

=

924 sin(er) (ME)
which is also the array response considered in the vital sign simulations presented
in chapter 5 [27]. As with Shannon’s theorem for discrete time sampling, in order

to avoid spatial aliasing the ULA interelement spacing d should be

d < % (2.3.14)
To minimize redundant sampling and maximize effective array aperture, this pa-
rameter is generally set to d = A/2. [28] In mobile terminals however, it might be
difficult to have /2 spacing or a uniform array geometry due to the limited space
available.

After using beamforming techniques to linearly combine the different receiver
inputs, the one transmit antenna SIMO system essentially reduces to a SISO channel.
With My = 1, the transmit array response by (@7, f) is simply a constant complex
number. Consequently, the individual SISO channels defined in (2.3.8), may be

rewritten as

P S
en(k) =Y ampbr(or, [)e® 4+ " ay, br(pr, fle* M+ (2.3.15)

p:l s=1
am,le(SOTv f)€j¢l )
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Figure 9: Beamforming signal model error may be significant if the far field assumption
is not satisfied. a) Beamforming path length approximation error, and b) corresponding
logarithmic error ambiguity function for a 5 element ULA with A/2 sensor spacing.

where the micro-Doppler phase modulation is measured relative to the receiver array
center point. Thereby, the beamforming channel model is given by

c1(k)bri(e, f)
c(k) = :

Eatn (F)brasa (0. )
— &(k) o brlem, ). (2.3.16)

where o is used to denote the element wise Hadamard product. Finally, the beam-
former output at time instant & can be modeled as

y(k)

where w(k) is complex white Gaussian noise.

The model (2.3.17) is widely used in array signal processing, but as it is based
on the assumption of planar waves, it incorporates a modeling error. The problem is
illustrated in Figure 9a, where it can be seen that neglecting the wave front curvature
results in an approximation error that is proportional to target range, DoA, and
antenna dimensions. The error can be quantified using a logarithmic array response
ambiguity function that measures the correlation between the beamforming and true
array response for different range and DoA’s. The ambiguity function is defined as

¢(k) o br(pr, f) +w(k), (2.3.17)

Famb(QD, 7') = 1Oglo (|U£§(¢v7n) ) U(Spv T)l o 1) ’ (2'3'18)

where Uys(p,7) and U(p,r) = [u(py,7),...,u(pn,r)] € CMr*N are matrices with
normalized array response vectors (2.3.11) as columns for respective beamforming
and true ULA signal models [29]. Figure 9b shows the ambiguity function for a
5 element ULA with \/2 sensor spacing. As can be seen, the model error is high
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when the target is close to the radar, especially along the broadside at ¢ = 0.
Nevertheless, when the far field assumption is met, the beamforming model error
becomes negligible F,.5(0,7) < 1072 in all look directions. To minimize modeling
error in the simulations described in Section 5, the vital sign subject is placed in the
far field.

2.4 Conclusion and Remarks of Vital Sign Modeling

As has been shown, wireless noncontact estimation of vital sign activity has an in-
creasing number of applications in various fields ranging from fire rescue to health-
care monitoring. Although the concept was already invented in the last century, re-
cent technological advances in wireless communications have inspired new research
interest in the topic, as well as decreased the size and cost of the hardware. As
presented, the estimation of vital sign activity is based on detecting the periodic
cardiopulmonary micro-motion on the subject’s body. In many applications, the
resulting periodic micro-Doppler is detected by utilizing the simple and inexpensive
hardware technology of continuous wave radars. Despite the numerous technological
advances, the vital sign estimation problem is generally far from trivial mainly due
to the dynamic measurement environment and extremely weak signals. Periodic
subject motion or interfering background scattering may render the SINR so low
that vital sign detection is no longer feasible. To mitigate the low signal condi-
tions, this chapter presented the use of receiver diversity through multiple receiver
antennas.

The introduced multiantenna vital sign signal model extends models presented
in previous research papers. Using the derived advanced path loss and reflection
modeling, the current signal model enables relatively accurate and realistic data
generation for multiantenna vital sign CW radar systems with arbitrary receiver
geometry. However, as this thesis is focusing on SIMO systems, the introduced
signal model is not fully applicable to multi-transmitter MIMO systems. The main
challenge with MIMO CW radar systems is the design of orthogonal transmit signals
that are distinguishable at the receiver side. While this topic is out of the scope of
this thesis, it certainly is an interesting subject for future research considering the
vast advantages of MIMO radar systems.

Moreover, it has been shown in [24] that even very similar cardiovascular sig-
natures can be separated with SIMO and MIMO systems based on the angle of
arrival. Such beamforming and adaptive signal enhancement techniques are pre-
sented in chapter 4. With the application of these techniques, the success rate of
vital sign estimates in low SINR conditions can be increased significantly. The fol-
lowing chapter introduces signal processing and spectral estimation techniques that
can be used to obtain the actual vital sign estimates from the received signal.
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3 Signal Processing for Vital Sign Estimation

A typical vital sign measurement is subject to various levels of interference and noise
resulting from background objects and receiver system components respectively. In
order to improve the initial SNR and the accuracy of the final vital sign rate es-
timation, it may be desirable to perform various signal pre-processing to suppress
or completely remove unwanted components such as DC offset, and high-frequency
noise [13]. With high carrier frequencies, the DC compensation is efficiently accom-
plished by using a nonlinear demodulation technique with adaptive center estimation
algorithms. Finally, after signal pre-processing, the respiratory and cardiac rates
may be estimated using any given high-resolution spectral estimation technique. To
obtain the full spatial diversity gain in multiantenna systems, there is an additional
step of combining the different inputs coherently. However, these techniques are
presented in detail in Section 4.

This section begins by describing the structure of the micro-Doppler phase mod-
ulated signal at the receiver. The received signal model was defined in Section 2.3.
By analyzing the signal frequency domain characteristics, it will be shown that the
cardiopulmonary rates cannot be estimated by directly applying spectral estima-
tion methods on the received signal. Therefore, the section describes typically used
signal demodulation techniques that are used to recover the micro-Doppler phase
information required in accurate vital sign estimation. Finally, the section presents
different approaches for estimating the vital sign frequencies from the received signal
data.

3.1 Received Signal Structure

The structure of the signal at different receiver antennas defined in (2.3.9) is il-
lustrated in Figure 10. The periodic vital sign micro-Doppler phase modulation
observed at each antenna forms an arc on the IQ-plane, with a center corresponding
to the respective DC-offset due to static reflection and leakage components. The
length of the arc depends on both the radar carrier frequency, as well as the am-
plitude of the physical cardiopulmonary motion, as was shown in (2.2.17) for the
magnitude of the micro-Doppler frequency shift. As a result of the antenna displace-
ment, each receiver observes a distinct phase modulation offset corresponding to the
respective propagation path delay and radial motion component of an individual
target, see Figure 10a.

The radius of the vital sign phasor represents the antenna specific signal ampli-
tude defined in (2.3.7), which is further used in defining the SNR at the m*™ receiver
as

SI\D

a

|
N
3

where a,,” is the signal amplitude in the IQ-plane, and o7 is the radial variance of
the arc. The presence of only one vital sign micro-Doppler phase modulating source
is assumed. Although it is typical to have reflections from multiple micro-Doppler
sources, for simplicity let us assume only one source of vital signs in what follows.
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Figure 10: The vital sign micro-Doppler effect modulates the signal phase. IQ channel
output of two receivers observing one vital sign target (SNR = 40dB), a) signal in IQ-time
space, and b) in IQ plane.

Without any pre-processing, direct estimation of the vital sign rates from the
received signals would be difficult. This is due to the signal frequency character-
istics, which contain even and odd order harmonics of the fundamental vital sign
frequencies [6, 30]. Although the power of these harmonic terms generally decays
with higher order multiples, the third and fourth breathing harmonics are typically
close to or overlap the heartbeat frequencies. Moreover, due to the small amplitude
of cardiac activity, these breathing harmonics have approximately same power as
the fundamental heartbeat frequency. In order to perform reliable vital sign pa-
rameter estimation, these harmonic terms need to be removed. The problem may
be illustrated by analyzing the vital sign reflections observed by a single receiver
system, see Figure 11. In this example, both the breathing and heartbeat frequency
information is masked by the strong breathing harmonics. To overcome the problem
of interfering harmonics, the following section gives an overview of two commonly
used signal demodulation techniques.

3.2 Complex Signal Demodulation

The purpose of signal demodulation is to convert the received data into a form
that enable reliable vital sign rate estimation. Essentially this means extracting the
signal phase, which contains the quasi-periodic micro-Doppler information of vital
sign activities. However, obtaining the phase information may be difficult especially
in the presence of large and unwanted DC offsets that shift the signal center, see
Figure 10b. That is why various demodulation techniques require DC cancellation
before estimating the micro-Doppler phase information.

This section presents and evaluates two typically applied complex signal demod-
ulation techniques known as linear and nonlinear demodulation. These techniques
are good examples, as they differ in both removing the DC offset, and obtaining the
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Figure 11: Time and frequency analysis of micro-Doppler modulated signal at one re-
ceiver, a) Cardiopulmonary activity, b) receive IQ-input signals, c) true vital sign frequen-
cies, and d) spectrum estimate of DC-compensated receive data. The breathing harmonics
make estimation of the heartbeat frequency difficult.

estimate of the signal phase. Furthermore, it can be shown that although the linear
demodulation technique has a lower computational complexity, the accuracy of the
nonlinear demodulation technique is required for reliable micro-Doppler estimation
with high frequency systems or detecting large amplitude vibration.

3.2.1 Linear Demodulation

Linear demodulation is a simple and computationally efficient way of extracting the
phase information at low carrier frequencies. More importantly, removing the DC
offset may be implemented simply by using a time average, thus requiring no high
complexity center estimation and tracking algorithms like in nonlinear demodula-
tion. As was shown in (2.2.17), the arc length is proportional to the chosen carrier
frequency. Consequently, using lower carrier frequencies yields smaller arc lengths,
thus enabling the application of principal component analysis in signal phase esti-
mation. It has been shown in [31] that when the arc length is less than 0.13 radians,
linear demodulation can achieve a high degree of accuracy in extracting the signal
phase information.

Before linear demodulation, the data DC offset need to be compensated. This
is accomplished by simply averaging the data over a short temporal window, and
removing the average from the given samples. For signal fulfilling the WSS require-
ment, it is enough to compute average once, and use it for all future samples to
remove the DC offset. However, in the application of vital sign monitoring with
nonstationary signals, the DC offset may change over time due to random body
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Figure 12: Extraction of Doppler information from the 1Q sampled data. a) Received
signal, b) linear demodulation, and c¢) nonlinear demodulation.

movement, or motion interference from the environment. As a result, the signal
needs to be averaged with regular intervals. After removing the offset, the DC com-
pensated arc is rotated parallel to the Q-axis, where after the demodulated signal is
simply obtained as the Q-component of the rotated data, as is illustrated in Figure
12b. The rotation of the arc is performed by multiplying the data with the transpose
of the eigenvector matrix of the data sample covariance matrix.

The accuracy of linear demodulation decreases by increasing the arc length. The
reason for this lies in the loss of phase information with long arc lengths, or circles,
when only the Q-component of rotated data is used for further processing. In order
to preserve all phase information, a more advanced demodulation approach known
as nonlinear demodulation is required.

3.2.2 Nonlinear Demodulation

Nonlinear demodulation preserves the complete phase information by applying cen-
ter tracking algorithms for DC offset compensation. When the circle center is esti-
mated and removed from a sample window, the cardiopulmonary phase information
can be recovered as the phase of the resulting complex phasor. This technique is
also known as arctangent demodulation.

In contrast to linear demodulation, the nonlinear demodulation applies center
estimation algorithms to track the signal DC component, which is the center of
the circle. The center is estimated using the nonlinear L.S method and Levenberg-
Maquardt algorithm for circle fitting, which is an extension of the iterative Gauss-
Newton method [32, 33]. For accurate phase recovery, the center estimate needs to
be updated periodically to compensate for random subject body movement and tem-
poral background interference. Due to the adaptive circle fitting, the computational
cost of nonlinear demodulation is significantly higher than with linear demodulation
applying simple time-averaging. Furthermore, the complexity of nonlinear demod-
ulation is increased in multiantenna systems since each receiver observes a different
DC offset, thus the center estimation need to be done individually for all receivers.

After center estimation, the signal DC component is removed to translate the
vital sign phasor center to the origin of the IQ-plane. Consequently, the demodulated
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Figure 13: Applying adaptive center tracking algorithms with nonlinear demodulation
allows extraction of the complete micro-Doppler phase information. The breathing and
heartbeat frequencies are visible as the two largest spectrum peaks at approximately 0.2
Hz and 1.5 Hz respectively, as compared to Figure 11d where heartbeat component was
overpowered by breathing harmonics.

signal is obtained by

(3.2.1)

¢/(t) = arctan <M)

Rely' ()]
where 3/(t) is the DC compensated version of the signal (2.2.11) at one receiver, as
illustrated in Figure 12c. It should be noted that the micro-Doppler phase informa-
tion is now completely preserved in ¢'(t), thus allowing accurate estimation of the
instantaneous micro-Doppler frequencies. Due to the arctan-operator, the nonlinear
demodulation is sometimes referred to as arctan demodulation.

The nonlinear demodulation technique with dc offset compensation can achieve
a high degree of accuracy, particularly with long arc lengths [31]. The advantage
is illustrated in Figure 13, which shows the absence of the harmonic terms that
were interfering the frequency spectrum of the unprocessed signal, see Figure 11d.
However, the total computational complexity of nonlinear demodulation is higher
than with linear demodulation, due to the center estimation algorithms. While
nonlinear demodulation is necessary when using high carrier frequencies, the effects
of increased complexity can be reduced by updating the center estimate infrequently
every two or three seconds, depending on the second order statistics of the observed
micro-Doppler modulation.

3.3 Overview of Spectral Estimation

The basic spectral estimation problem can be formulated as follows: From a finite
set of given samples y = [y(1),y(2),...,y(N)] € C¥*! of a second-order stationary
random process, obtain an estimate ¢(w) for the power spectral density (PSD) [34].
Many modern applications use spectrum analysis to determine hidden periodicies in
the data. The information of the power distribution is used in applications such
as speech analysis, radar and sonar systems, seismology, and medicine. In the
ideal case, the obtained spectral estimate would equal to the true spectrum of the
data. However, this is not usually possible due to limitations on the amount of
available data samples. Typically the main reason for limited sample space is that
the processed data may be considered second-order stationary for only a short period
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in time. Also, in applications such as radar monitoring, the time available for
sampling is usually limited, since it accumulates the total delay for target detection.

Different spectral estimation methods are typically classified as nonparametric or
parametric methods, depending on the a priori assumptions of the signal generating
process. As the name already implies, nonparametric methods require no prior
information of the functional form of the studied signal, but they rely solely on the
definitions of power spectral density in determining the spectral estimate, denoted
by ¢(w). That is, they can be applied to almost any data set without the need
of parameterizing or modeling the data in advance. In contrast, if a mathematical
model of the signal generating sequence is available, this information can be utilized
by the parametric methods to provide estimates with higher statistical accuracy
when compared to the nonparametric methods. In addition to the nonparametric
and parametric methods, a third approach to spectral estimation is to use a bank of
narrow selective bandpass filters for determining power distribution over respective
frequency bands. This section presents some of the typically used spectral estimation
methods from each of these three classes with a focus on the current vital sign
application.

3.3.1 Periodogram

The periodogram is a simple and straight forward approach to nonparametric spec-
tral estimation. The method relies solely on the definition of the PSD by averag-
ing the signal energy spectral density over the observed discrete-time data samples

y(k),ke{l,... N} as

2

N
> y(k)e I (3.3.1)
k=1

However, the simplicity of the formulation has its drawbacks in terms of resolution
and statistical properties of the estimator ¢,(w).

The frequency resolution, that is the ability to resolve closely spaced spectra,
of the periodogram is mainly limited by the amount of available samples N. At
best, the frequency resolution of the periodogram method equals to the reciprocal
of the temporal width N of the rectangular window. This translates to a spectral
resolution of approximately 1/N at the —3 dB points. [35] Furthermore, when N
grows to infinity, it is easy to verify that the periodogram is an asymptotically
unbiased spectral estimate [34]. However, with a finite sample space, the estimate
gzgp(w) contains a bias which results from the leakage and smoothing of the spectra
due to windowing. The main limitation of the periodogram however does not lie in
its frequency resolution, but its large statistical variance.

By analyzing the statistical properties of the estimated spectrum, it can be shown
that the periodogram is not a consistent estimate of the true spectrum ¢(w) [35], [34].
Although the finite sample variance of gzgp (w) may be difficult to establish in specific
cases, the asymptotic variance in the case of Gaussian white noise is

Qgp(“’) = %

dim var{g,(w)} = ¢*(w). (3.3.2)
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Consequently, the periodogram does not converge to the true power spectrum den-
sity. [35]

Many other classical nonparametric estimation methods that are based on the
periodogram like the Bartlett and Welch method, attempt to decrease the statistical
variance at the cost of reducing the frequency resolution. For a detailed description
of these methods, the reader is referred to [34] and [35]. Nevertheless, the simple
and fast implementation of periodogram through the use of fast Fourier transforms
(FFT) makes it a useful tool in nonparametric spectral estimation. Another well-
known approach to increasing the statistical accuracy of the spectral estimate, is to
apply data-dependent bandpass filtering known as the Capon method described in
the following section.

3.3.2 Capon

Capon is a nonparametric high resolution spectral estimation method applying op-
timized finite impulse response (FIR) filters in the estimation process [36]. Unlike
many other nonparametric methods like periodogram and refined filter-bank ap-
proach (FBA), the Capon method adapts to the available data in order to provide
more accurate spectral estimates [34].

By definition, the Capon uses one FIR bandpass filter h = [hg, hy, ..., h,|"? €
CmH+Dx1 to process the N data samples in small subsequences of size m + 1 as

yn(t) = Z hiy(t — k)

y(t)
_qr | YO . D hly (). (3.3.3)
y(t —m)

The spectrum estimate is obtained by minimizing the variance of the filtered output
sequence E{|y(t)|?} = h# Rh, while still constraining the filter to pass the passband
frequencies w undistorted. This results in an optimization criterion for the filter
coefficients as

m}}n hRh subject to ha(w) =1, (3.3.4)
where R is the autocorrelation matrix of the data sequence y(t), and a(w) =
[1,e77%, ..., e77m™]T ¢ Cm*+D*1 g the Vandermonde type Fourier transform vec-
tor. It is shown in [34], that the solution to this problem is given by

R—l
h = a(w) (3.3.5)

all(w)Rta(w)
If this optimal filter is substituted into the expression for the variance in (3.3.4), the

total power over the passband centered at w is given by

1
(w)R~a(w)

7. = E{ln®’} = 5 (3.3.6)
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Finally, the minimum variance spectral estimate is obtained by dividing the total
power by the bandwidth of the adaptive filter of length m + 1, and replacing the
autocovariance matrix with its finite sample estimate

R 1 N y(t)
R = > : [y (t) ... y(t—m) ] (3.3.7)

N —m ‘
t=mt | y(t —m)

Hence the Capon spectral estimate is given by

H(w) = aH(wT?l-;—}a(w)' (3.3.9)

While it is clear from (3.3.8) that the FIR filter is data dependent through the
autocovariance matrix, the expression implicitly assumes that its inverse R exists.
In order for R to be invertible, the value of m has to be chose appropriately to fulfill
the condition m < N/2 [34]. This inequality also sets a limit to the resolution
achievable by the Capon method as m determines the length of the adaptive filter.
On the other hand, increasing m for higher resolution will decrease the statistical
accuracy of qg(w), as there are less samples for estimating R. Hence, the choice
of m is a tradeoff between variance and resolution of the estimate. Moreover, it
is worth noting that the estimator computational complexity depends also on the
value chosen for m, which is important especially for applications with restricted
processing capabilities.

Based on empirical evidence, it has been shown that the Capon method has
a higher statistical resolution than the periodogram and its low variance exten-
sions [34], [37]. The performance of the Capon spectrum estimator is attributed
to the higher statistical stability and the resolution improvement gained through
data-dependent filter coefficient optimization. The statistical stability of the esti-
mator is especially important in applications with quasi-stationary signals like vital
sign estimation, where the signal statistics may vary with time. The following sec-
tion presents a low complexity fast recursive algorithm for computing the Capon
spectral estimate, which is eventually applied for rate estimation in the conducted
experiments presented in Chapter 5.

3.3.3 Fast Recursive Capon Estimation

The main limitation of the high resolution minimum variance Capon estimation
method (3.3.8) is the high computational cost involved in inversion of the covari-
ance matrix R. Moreover, the inversion needs to be done every time a new block of
samples is available. This results in excessive use of computational resources, espe-
cially with close to stationary signals that yield only small changes to consecutive
instances of R. However, the computational complexity of Capon can be reduced
by formulating the spectrum estimate into a recursive structure, and thus avoiding
the need for direct matrix inversion on each iteration.
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When the covariance matrix is estimated as an exponentially weighted sample
average as

R(k) = _ Nyy" (1), (3:3.9)

where A € (0, 1) is a forgetting factor, the covariance matrix can be computed using
the recursion

R(k) = AR(k — 1) + y(k)y™ (k). (3.3.10)

Consecutively, by applying the matrix inversion lemma [34] to (3.3.10), it has been
shown in [38] that the covariance matrix can be inverted using the following recursion

R™'(k) = AR (k= 1) = A Pp(k)g (kg™ (k). (3.3.11)
where g'(k) = R~ (k — 1)y(k) denotes the a priori Kalman gain vector, and

A

A = R k= Dy

(3.3.12)

Thereafter, the recursion for the spectrum estimate at angular frequency w can be
derived by pre- and post-multiplying (3.3.11) from both sides by al and a, thus
yielding to R A

Ow, k) = A"107 (w, k = 1) = A2/ (k) |vy (k) P, (3.3.13)

where ¢/(k) = (1 = A\)"*(m + 1)"'p(k), and v, = aflg/(k) [38].

The complexity of the recursive Capon spectral estimate (3.3.13) can be fur-
ther reduced by computing the product v, = af’g/(k) recursively through linear
prediction [38]. The resulting total complexity of the fast recursive algorithm for
N samples evaluated at K = N = m + 1 frequency bands is 36 N? 4+ 15N mul-
tiplications, whereas the corresponding complexity for the direct Capon spectrum
(3.3.8) is 4N? + 5N? multiplications [38]. Clearly, the fast recursive Capon method
is computationally less expensive, which is an important criterion for applications
like vital sign estimation where the spectrum needs to be estimated frequently.

3.4 Time-Frequency Analysis

Another approach to estimating the instantaneous frequency content of a signal is
to use two-dimensional time-frequency distributions (TFDs) to represent the power
distribution simultaneously in both time and frequency domains. While the pe-
riodogram and Capon methods provide estimates of the signal spectrum evaluated
over a window in time, the TFDs can be used to convey a time-frequency description
of how the spectrum content is changing over time. That is, the latter allows us to
determine what frequencies existed at a particular time instant, whereas the former
only shows which frequencies were present in the signal. This section gives a brief
overview of the general time-frequency tools and their application to the analysis of
signal micro-Doppler components.
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3.4.1 Short-Time Fourier Transform

Accurate vital sign rate estimation with pure spectrum estimation methods like the
periodogram and Capon, require repetitive computation of the frequency spectrum.
For example, in order to update the instantaneous heart rate estimate every second,
the Capon MVDR spectrum need to be computed every second to determine what
was the heartbeat frequency at a given time instant. Thereafter, by truncating
these spectra after one another in the time domain, it is possible to construct a
time-frequency spectrum that indicates how the heart rate varied over time. This is
essentially the same approach used in the two-dimensional time-frequency distribu-
tion tool known as the short-time Fourier Transform (STFT); break up the signal
into small time segments and analyze their frequency content separately [39].

In the construction of the STFT, the signal of interest is multiplied by a window
function w(t), centered at ¢, to obtain a short snapshot of the original signal as

u(r) = y(r)w(T = 1), (3.4.1)

where 7 is the integration time. Since this snapshot identifies the signal around time
t, then its Fourier transform reflects the respective frequency distribution. Hence,

the STFT is defined as

Y(t,w) = ;W/e_j“Ty(T)w(T —t)dr, (3.4.2)

N
and the corresponding time-frequency distribution is
S(t,w) = Y (t,w)|. (3.4.3)

The frequency resolution of STFT is determined, according to the time-bandwidth
product, by the chosen window shape and length w(t). If the window is rectangular,
the STFT coincides with a series of truncated periodograms. As with periodogram,
the choice of window length is always a compromise between resolution and statis-
tical variance. Taking a shorter window in time increases the temporal resolution,
but this degrades the resolution in frequency domain [39]. Figure 14a illustrates
the application of STF'T to estimating the micro-Doppler components from a vital
sign modulated CW radar signal. The applied window was a Hanning window of
length 3 seconds, giving a compromise between resolution and statistical accuracy.
Although the slowly varying breathing component is visible in the time-frequency
distribution of Figure 14a, the resolution is not enough to perform accurate estima-
tion of the heartbeat frequencies in the signal. In order to increase the resolution in
the time-frequency domain, the following section presents the Wigner distribution.

3.4.2 Wigner-Ville Distribution

The Wigner-Ville distribution (WVD) is another TFD widely used in signal pro-
cessing for high-resolution time-frequency spectrum analysis. The distribution was



36

Power (dB)

:U‘QM v

210 ! -30 ; ; ; ; ; ; ;
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 35 4

Time (s) Frequency (Hz)

(a) (b)

Figure 14: a) Time-frequency distribution of a vital sign modulated CW radar signal
using the STFT with a 3 second Hanning-window, b) frequency spectrum of the 5 second
data. Heartbeat frequency at 2 Hz may not be detected.
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originally defined by Wigner in quantum mechanics, and later applied to signal
processing by Ville [40]. For a signal y(¢), the WVD is given by

W(t,w) = %/ y(t +7/2)y*(t — 7/2)e " dr. (3.4.4)
This may be interpreted as to multiplying the signal with a time-reversed copy
of it, and integrating the product over time. Whenever the signals overlap at the
integration time instants, the WVD will have nonzero density. As a result, the WVD
may contain contribution from signals present at times ¢ £ 7/2, even if there was
no signal present at time ¢. Such contributions are called cross term interference,
as they do not represent the true characteristics of the observed signal. Moreover,
when integrating over infinite time signals, there will be always overlap, thus the
WVD is heavily crippled by noise resulting from the cross terms.

The problem with the pure Wigner distribution is that it weights all past and
future time instants equally. In order to suppress the effect of cross term noise
from signals far in the past and future, the WVD is windowed to emphasize signals
around time %, like in the case of STFT. This windowed WVD is known as pseudo
Wigner-Ville distribution (PWVD), and defined as

Wit.w) = [ wlr/2utr/2ule+ /2y (= /e dr
1 o0

:% N

Y(tw+0/2)Y*(t,w — 0/2)d6. (3.4.5)

The windowing improves the resolution of the WVD by making it more local, but on
the other hand the PWVD does not have the same marginal distribution properties
of the WVD [39]. It has been further shown in [41], that the effects of cross terms
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can be reduced, or even completely removed by introducing a narrow frequency win-
dow P(#) into (3.4.5), thus yielding the smoothed pseudo Wigner-Ville distribution
(SPWVD)

[ee]
SW(t,w) = o / POY (t,w+0/2)Y"(t,w — 0/2)d0.  (34.6)
The accuracy of the SPWVD is shown in Figure 15a, where the method is applied to
the same signal as in Figure 14a with the STFT. Now the heartbeat micro-Doppler
contribution is clearly visible, and the rate can be estimated by running the density
peak values through any frequency estimation method.

Although many of the TFD may provide a high time-frequency resolution of
the signal, they generally have the disadvantage of high computational complexity.
However, as a result of windowing in the frequency domain, the discrete time version
of the SPWVD, which is given by

SW(k,m) =Y Py(i)Y (k,m+i)Y*(k,m — i), (3.4.7)

i=—L

where Py(i) is the discrete window of length 2L + 1, can be implemented efficiently
using recursive FFT in computing Y (k,m £ 4) [41]. The fast implementation to-
gether with the high time-frequency resolution provided by the SPWVD, make it a
useful tool especially in vital sign rate estimation. However, for simplicity of imple-
mentation, the simulations presented in Section 5 applied the high resolution fast
MVDR Capon spectral estimate in vital sign rate estimation.

Frequency (Hz)
Power (dB)
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Figure 15: Application of the SPWVD to the same vital sign modulated signal as in
Figure 14a. The heartbeat frequency at approximately 2 Hz is easily recovered as the
second largest spectrum peak.
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3.5 Discussion on Suitable Algorithms

One of the main considerations in choosing appropriate algorithms for vital sign
estimation is to maximize the gain and statistical accuracy of the chosen signal
processing methods. There is an obvious driver for such thinking, since estimation
of the cardiopulmonary activities is difficult to begin with due to the weakness of
the modulated micro-Doppler components. However, choosing the signal processing
algorithms is always balancing with the tradeoff between output gain and com-
putational complexity. In accordance to the previous sections, the high-resolution
and high-accuracy processing methods typically have also the highest computational
costs. This section gives a brief discussion on selecting suitable algorithms for vital
sign monitoring, with the focus on systems with limited computational resources
such as battery operated mobile devices.

The first consideration is the choice of a suitable pre-processing algorithm for
signal demodulation and DC compensation. This decision depends more on the
CW radar specifications than the computational savings. That is because the non-
linear demodulation techniques applying center estimation and tracking algorithms
is typically necessary in high-frequency operated systems. Although the linear de-
modulation achieves great computational savings compared to the nonlinear one,
it is unable to preserve complete micro-Doppler phase information with long arc
lengths in the [Q-plane, as was seen in Section 3.2. However, it has been shown that
for vital sign estimation, the linear demodulation is as accurate as the nonlinear
demodulation with low frequency 2.4 GHz systems.

While the demodulation technique is mainly determined by the system specifi-
cations, significant computational savings can be achieved in choosing the vital sign
rate estimation algorithms, since they are run frequently. From the presented spec-
tral estimation algorithms, the periodogram would be the choice in minimizing pro-
cessing cycles, as it can be implemented simply using FF'T. On the other hand, with
a slightly increased computational cost, the fast recursive Capon method provides
minimum-variance high-resolution spectral estimates. Thereby, the latter method
would also be applicable in systems with limited processing power.

Although the TFD tools have a considerably higher complexity, partly due to
the overhead of pre-computing the FFTs, they should not be neglected. It has
been shown that these techniques may provide a high resolution in both time and
frequency domains [39, 42]. As a result, if the monitoring system has the necessary
resources and high-resolution monitoring is necessary, for example in diagnosing
heartbeat abnormalities such as arrhythmia, then the SPWVD may be the suitable
rate estimation tool. However, with battery operated monitoring devices with on-
board computation, one should consider the lower complexity algorithms. Moreover,
one should also consider the software implementation complexity of the considered
algorithms, since many software architectures may not have ready libraries for such
specific needs.
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4 Multiantenna Adaptive Signal Enhancement Tech-
niques

To obtain the full diversity gain of using multiple receive antennas, the different
input signals need to be combined coherently. As a result of the quasi-stationarity
of the vital sign modulated micro-Doppler, the use of basic signal enhancement
techniques, such as fixed linear filtering or channel equalization is not feasible. These
techniques are generally based on knowledge of the second-order statistics of the
observed signals, but like many other signal processing application, this information
is not a priori available in vital sign estimation. The temporal variations in the
multiantenna propagation channels call for signal enhancement techniques that are
time adaptive, and thus enable real time tracking of channel and signal variations.

This chapter begins by giving a brief overview of related work on vital sign
monitoring with multiantenna systems. Thereafter, the chapter presents adaptive
array signal enhancement techniques that can be used to improve receiver SINR in
a multiantenna receiver system. The firstly presented signal processing method is a
novel application of adaptive noise cancellation techniques that utilize various algo-
rithms in adaptive filtering. The following section introduces spatial methods, and
the last section briefly discusses the application of independent component analy-
sis (ICA) in vital sign estimation. All the presented techniques rely on the basics
theories of adaptive filtering and statistical signal processing. The adaptive filtering
based methods are used to suppress wideband additive noise that is masking the
narrowband vital sign signal, whereas the spatial methods enable attenuation of
directional interference and motion clutter resulting from a dynamic measurement
environment. Spatial methods can additionally be used to distinguish multiple sub-
jects even if their vital sign signatures are identical. The presented methods are
compared to the case of using a simple one receiver system.

4.1 Review of Multiantenna Vital Sign Monitoring

The application of microwave radio waves in monitoring of human respiration was
proposed already in the 1970’s [1]. A simple SISO CW radar system was intro-
duced to detect the breathing induced micro-Doppler phase modulation. Since then,
this technique has been extended to include monitoring the higher frequency heart
beat as well. During the last decade, the main research focus in wireless vital sign
monitoring has been in devising various signal processing methods to improve the
system performance [31, 43]. However, the SISO system cannot be used to mitigate
the problem of excess motion artifacts and other sources of micro-Doppler motion.
Therefore, the application of MIMO systems has been suggested to address these
problems.

To address the problem of monitored subject random body movement cancella-
tion, a fixed geometry two receiver CW radar system has been proposed [44]. The
two receivers are placed in front and behind the subject to enable monitoring of the
vital signs. Since the sign of the vital sign phase components are equal at both re-
ceivers, whereas other motion artifacts differ in sign, the random phase interferences
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may be removed by simple addition of the two receivers phase terms. The main re-
striction of this technique is the fixed measurement geometry, since observations are
needed from both sides of the monitored subject.

It has been shown in [4, 24] that multiantenna systems can be used in detection
of multiple source of micro-Doppler motion. An array of receive antennas is used to
either determine the signal direction of arrival, or the problem of determining the
number of different sources is formulated into a problem of model order selection.
The latter paper presents a generalized likelihood ratio test (GRLT) for testing a
composite hypothesis on the number of subjects present. A more complex MIMO
system utilizing the BLAST techniques to isolate unwanted interference from the
signal of interest was proposed in [45], thus enabling detection of multiple source
signals. Additional processing is however required to estimate the vital sign rates of
the different subjects.

Although it is generally known that such multiantenna techniques may be used
to increase the channel capacity, the advantage of these systems in vital sign mon-
itoring has not been studied in detail. In addition to presenting a novel approach
to vital sign monitoring with multiantenna systems using adaptive filtering tech-
niques, this thesis evaluates the performance of the proposed method, as well as
prior multiantenna processing techniques.

4.2 Adaptive Noise Cancellation

Adaptive noise cancellation is an application of adaptive filtering. Adaptive filtering
is generally used in time-variant systems where the signal or noise frequency char-
acteristics may vary with time. This is also the case in vital sign estimation, where
the cardiopulmonary signal frequencies experience natural temporal fluctuations,
thus requiring adaptation of the filter coefficients. In the vital sign application, the
baseband cardiopulmonary signal of interest is a narrowband signal at frequencies
below 4 Hz, whereas the masking additive noise is wideband with a uniform power
spectrum. Therefore the goal of adaptive filtering is to provide an accurate estimate
of this narrowband signal, while suppressing the wideband noise outside the band
of interest.

Self-tuning of the adaptive filter coefficients is generally based on the knowledge
of the desired output signal, which is either transmitted as training data or known in
advance. The multiantenna vital sign estimation system developed in this thesis uses
the former approach, where one antenna is configured as a reference receiver that
provides the ”desired” output y(k), as is illustrated in Figure 16. This setup allows
for real time filter adaptation without the need of sequential transmission breaks
due to recalibration with separate training data. Furthermore, as a result multiple
antennas observing the same phase modulating source, the signals containing vital
sign information at different receivers are highly correlated with a deterministic
delay. On the contrary, the additive noise components can be approximated as
uncorrelated samples of white Gaussian noise. By exploiting the high correlation
between the different antennas, the secondary inputs can be adaptively filtered to
obtain an estimate (k) where the wideband noise is attenuated, thus enhancing the
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Figure 16: Adaptive noise cancellation system block diagram used in multiantenna vital
sign estimation. The delay of the secondary inputs correspond to the respective propaga-
tion path delays at a given angle of arrival .

original signal. [35] An adaptive noise cancellation system like this is also known as
an adaptive line enhancer.

Since the filter is adjusted to match the correlated secondary input signal to the
primary signal, the filter becomes essentially a frequency selective bandpass filter
where the frequency response peaks at observed signal frequencies. With a long
enough filter length, it would be possible to estimate the vital sign frequencies from
the filter frequency response. However, the filter length is one important parameter
in the adaptation process, and as the performed simulations imply, should be be-
low 250 ms to guarantee fast enough adaptation. As a consequence, the resulting
frequency resolution is not enough to allow accurate estimation of the vital sign pa-
rameters from the filter frequency response; thus the advanced frequency estimation
techniques presented in Chapter 3 are necessary.

In addition to choosing the optimal length for the adaptive filter, there are
other decisions to be made on the adaptation algorithm itself. The following sec-
tion introduces a widely used optimization criterion in adaptive filtering, which is
later on applied in the presentation of three commonly used adaptation algorithms
known as the least-mean-squares (LMS), normalized least-mean-squares (NLMS)
and recursive-least-squares (RLS).

4.2.1 Minimum Mean-square-error Filtering

An important consideration in the design of adaptive filter algorithms is the opti-
mization criterion for adjusting the filter parameters. The criterion must not only
be meaningful from the applications point of view, but it needs to result in a practi-
cally realizable algorithm as well. Some optimization criterion, like minimizing the
average probability of error in a communication system, might result in a nonlinear
function of the filter coefficients, which is highly undesirable due to implementation
complexity. However, two good criteria that are known to provide good perfor-
mance measures in adaptive filtering are the least-squares (LS) and mean-square-
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error (MSE) criterion. Both criterion results in a quadratic performance index for
the filter coefficients having a unique minimum or maximum solution. This section
introduces the minimum mean-square-error (MMSE) filtering, which is later used
in derivation of the stochastic gradient based LMS algorithm used to minimize a
convex error function.

The derivation of the optimum filter using the MMSE criterion is based on the
system identification problem; determine system time-domain or frequency domain
characteristics by observing the system input and output sequences. Assuming that
the complex valued transmitted data sequence x(k) is generated from a stationary
random process and has an autocorrelation sequence

rez(m) = E{x(k)x*(k —m)}. (4.2.1)

Then by using the samples x(k), it is possible to construct an estimate of the ob-
served output sequence y(k) by filtering the input data with a causal FIR filter
of length L having unknown coefficients h(k). The output of the filter is now the
estimate g(k) of our desired sequence y(k)

(k) => h(n)x(k—n), k=0,....M—1. (4.2.2)

Due to the finite sample length and additive noise, the derived estimator will
always contain some error. The estimation error is defined as

=y(k) — h(n)x(k —n), (4.2.3)

which can be simplified by using matrix notation to
e=y — Xc, (4.2.4)

where y is a M X 1 vector of system outputs y = [y(0),y(1),...,y(M —1)]", X is a
M x L data matrix with input snapshots as rows, h is the unknown L x 1 dimensional
coefficient vector h = [h(0), h(1),...,h(L—1)]", and e is a M x 1 vector of errors. In
order to optimize the estimator accuracy, the estimation error should be constrained
with some optimization criterion. One typically used optimization criterion leading
to a quadratic optimization problem is to minimize the mean-square error of the
estimate as a function of the filter coefficients, that is

Evse = E{lel*} (4.2.5)
= E{ee}
= E{(y — Xh)"(y — Xh)}
= E{y"y} — E{(Xy)"}h — W’ E{X"y} + h" E{X*X}h (4.2.6)
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where (-)f denotes the conjugate transpose operation. By noting that E{y”y} = P,
is the signal power of the desired sequence y, E{Xfy} & r,, is the cross-correlation
vector between data X and response y, and that E{X”X} £ R,, is the Hermitian
Toepliz data autocorrelation matrix, we can rewrite the expression (4.2.6) as

Emse = Py —riih —h'r,, + h"R,;h. (4.2.7)

Finally, the minimum filter coefficient vector h and the minimum squared error can
be solved from (4.2.7) by reformulating it into a perfect square as

Evse = P, — rij—lrw + (Ryzh — 12,) "R (Rosh — 1), (4.2.8)

rx

As the input and output sequences are random variables and the minimization is
performed as a function of the filter coefficients h, the mean-square-error &5
reaches its minimum when the last term in (4.2.8) is minimized. The squared ex-
pression (R,;h — ;)R (R,.h —r,,) can only get nonnegative values, hence it
has the smallest positive contribution of zero when

R,,h—r1,, =0
R,h=r,,. (4.2.9)

These are the Wiener-Hopf equations that give the optimum linear FIR filter in the
MMSE sense [35].

A unique solution for the filter coefficients h exists whenever the autocorrelation
matrix R, is positive definite; that is a?R_!a > 0 for all a # 0. In general,
R, is guaranteed to be at least positive semidefinite. However, in most physical
applications the autocorrelation matrix is also positive definite, thus possessing an
inverse [28]. Consequently, the coefficients h are given by

h=R, r,, (4.2.10)
which is the optimum causal FIR Wiener filter, and the resulting MMSE is thereafter
EMMSE = Py — I'QI;IyR;III'xy. (4211)

Finding the solution for (4.2.10) will give the optimal filter weights. For small values
of L, the solution is usually straightforward as shown in [46], but with long filter
lengths the problem presents a significant computational burden due to the inversion
of the L x L autocorrelation matrix R,,. Furthermore, in many applications like
vital sign estimation, the input signal statistics might change slowly over time, thus
requiring continuous filter coefficient optimization. In practice, a perfect solution for
the coefficients cannot be found because the correlation values are estimated from
a finite sample space.

An approximate solution for the equation (4.2.10) can be found using steepest de-
cent gradient based iterative algorithms. One of these algorithms is the widely used
iterative stochastic gradient LMS algorithm presented in the following section for
adaptive antenna arrays. The LMS algorithm solves the convex optimization prob-
lem based on instantaneous error values, instead of the true gradient, thus removing
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the need for complex inversions and estimations. In general, for nonstationary pro-
cesses like the cardiopulmonary activity in vital sign estimation, the system weights
h need to be solved for each time instant separately. This is a problem for real time
applications utilizing gradient based algorithms that have a slow convergence time.
However, there are fast recursive algorithms for updating the weights. One such
algorithm is the RLS, which is based on LS error minimization [35]. The problem
of convergence time is thus not a problem for real time processing, but is could still
be an issue if the signal statistics change before the algorithm converges.

4.2.2 Least-Mean-Square Algorithm

The LMS algorithm is an iterative algorithm for finding an approximate solution
to the Wiener-Hopf equations (4.2.9). The LMS finds the solution by a method of
steepest-decent search using the stochastic gradient of the MMSE equation as the
direction vector. Solving the Wiener-Hopf equations directly relies on acquiring ac-
curate estimates of the auto— and cross-correlation matrices. It is computationally
expensive for long filter lengths due to the inversion of the autocorrelation matrix.
Instead of finding correlation estimates by lengthy averaging, the LMS algorithm
uses instantaneous values of the squared error for iterative optimization of the fil-
ter coefficients. The LMS algorithm has its main applications in adaptive filtering
with equalizers, adaptive noise cancellation systems. This chapter gives a mathe-
matical formulation for the LMS algorithm from an adaptive antenna array point
of view, where the algorithm is used to find optimal array input weights to suppress
interference impinging the array from a specific look direction.

Generally, the LMS algorithm finds a solution for an overdetermined system of
equations where there are more equations than unknowns. The solution is found
by starting from an initial guess, and iteratively searching the optimal solution
by changing the weights h = [h(0), h(1),...,h(L — 1)]" along the direction of the
instantaneous estimate of the true gradient of the MSE cost function. The iterative
update algorithm for the coefficients is given by

h(k +1) = h(k) + BVie*(k), (4.2.12)

where h(k+1) is the updated coeflicient vector obtained from the previous iteration
value h(k) corrected by the scaled gradient of the squared instantaneous estimation
error, that is SVye?(k) [35]. Here 8 < 0 denotes the step size controlling the
algorithm rate of convergence and stability, and k is the iteration and time index.
It is worth noting that the gradient approximation is computed for a single time
sample of the squared error, which is defined as

(k) = (y(k:)—ixz(k)hf> k=0,...,M—1
— (y(k) — h7x(k))?, (4.2.13)

where x(k) is the L x 1 array input snapshot at time instant k. Consequently, the
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approximation of the gradient using instantaneous error is given by

Vne?(k) =~ =2 (y(k) — h"x(k)) x(k)
= —2e(k)x(k). (4.2.14)

Inserting this gradient to the iterative update equation (4.2.12), the LMS algorithm
for array coefficients becomes

h(k + 1) = h(k) — 2Be(k)x(k). (4.2.15)

Whenever the value of § is chosen within the limits

< B <0, (4.2.16)

/\maac

where A4 is the maximum eigenvalue of R,,, the LMS converges towards the
optimal Wiener-Hopf solution (4.2.10), see Appendix A for detailed convergence
analysis. The LMS algorithm is not able to reach the optimal solution due to the
excess MSE, which with WSS signals is determined by the step size 5, and the
eigenvalues of the autocorrelation matrix [47]. Furthermore, this algorithm will
converge to a solution even when the autocorrelation matrix R, is not invertible
and direct application of (4.2.10) would not be possible [28].

In addition to the simplicity of the LMS algorithm, it is also robust against
disturbances like measurement noise, model mismatches, quantization errors, and
various other inaccuracies. As is shown in [48], the LMS algorithm is the most
robust adaptive algorithm in a sense that the resulting estimation error energy will
never exceed the associated energy of the disturbances.

Choosing the adaptation step size parameters [ is always a tradeoff between
speed of convergence and excess MSE in the steady state. Whenever the signal
satisfies the wide-sense stationary (WSS) condition, one can choose a small step size
in order to obtain small steady state error. However, if the WSS assumption is not
applicable, it is typically necessary to have a larger step size to enable tracking of the
changing signal statistics. This in turn results in a larger excess MSE [47]. On the
other hand, if the step size is fixed for non-stationary signals, although in reality the
signals might be quasi-stationary over some observation windows, the LMS yields
an overly MSE. This problem of fixing the step size with nonstationary signals is
overcome by using an adaptive step size version of LMS known as normalized LMS
algorithm.

4.2.3 Normalized Least-Mean-Square Algorithm

The normalized LMS algorithm is an adaptive step size variation of the previously
described LMS algorithm. They both have the same operation principle of recur-
sively updating the filter weights using a gradient estimate of the instantaneous
squared error. Additionally, the convergence of these algorithms is controlled by
one parameter that is the step size 8. However, as was already pointed out, the
LMS algorithm is mainly designed to operate in WSS signal conditions where the
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signal characteristics do not change rapidly over multiple observation periods. The
WSS assumption enables the use of a smaller fixed step size 3, resulting in slower
convergence but also a smaller steady state error. The steady state error is the mis-
match in filter coefficients with respect to the optimal filter. The error is a result of
a large step size that prevents the coefficients from converging beyond a threshold
to the optimal solution. As opposed to LMS, the NLMS algorithm is designed for
nonstationary environments where signal statistics may change within consecutive
observations. This imposes high requirements for the algorithm as it should be able
to track fast signal changes while minimizing the error resulting from too large step
size. The following presents a brief derivation of the NLMS algorithm based on the
book by [28].

The goal of NLMS algorithm is to approximate the filter coefficients hy, that
correspond to the optimal filter of a stationary signal at a given time instant. As the
signal statistics may change over time, also the respective optimal filter coefficients
hy vary with time. The recursive coefficient update rule for h(k + 1) is based
on the input signal vector x(k + 1), the desired reference response y(k + 1), and
the previous coefficient estimate h(k). The updated estimate is chosen to satisfy
[h(k+1)[| < [[h(k)||, where h(k) = h(k)—hy is the coefficient error. By decomposing
the error vector h(k) into two orthogonal components

h(k) = h,(k) + hi(k), (4.2.17)

where flx(k) is parallel, and ﬂj(k) perpendicular to the input vector x(k), the re-
sponse of the error filter h(k) with input x(k + 1) can be written as

gk +1) = b (k)x(k + 1) = hf (k)x(k + 1). (4.2.18)
Furthermore, this implies that
~ g (k+1)
h,(k) = ———=x(k+ 1), 4.2.19
AN FESTE 219

and therefore the best way to update the coefficients h(k+1) is given by subtracting
h, (k) from h(k), thus resulting in the following update recursion

g (k+1)
[x(k + D)2

Now, the time-dependency of the step size parameter can be seen by setting

h(k+1)=h(k) -3 x(k+1) (4.2.20)

s
B(k+1) I (4.2.21)
This shows that the NLMS algorithm may exhibit a faster rate of convergence than
the conventional LMS algorithm. Potential issues with this adaptive step size of the
NLMS algorithm may be introduced if the input vector x(k + 1) is small, since the
division by the squared norm could result in numerical difficulties. However, this
problem can be mitigated by modifying the equation for the step size (4.2.21) by
adding a small weight § in the denominator [47].
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4.2.4 Recursive Least-Square Algorithm

The main advantage of the LMS algorithm lies in its computational simplicity and
ease of implementation. However, a downside of the simplicity is the algorithm’s slow
convergence towards the optimal Wiener solution. The problem of slow convergence
is especially emphasized in applications, such as the vital sign estimation, where
the input signals are fluctuating over time and do not fulfill the WSS requirement.
If the adaptive algorithm is not able to reach a steady solution within a quasi-
stationary signal window, the excess MSE may not be minimized thus degrading
the performance of adaptive noise cancelling. Furthermore, the LMS algorithm has
only one adjustable parameter to control the rate of convergence, that is the step
size parameter 3. In order to obtain faster convergence, it is necessary to use more
complex algorithms like the recursive least-square algorithm.

The previously introduced LMS algorithm filter coefficient updating was designed
to minimize the MSE by employing instantaneous estimation error approximation
of the true gradient. Instead of using only instantaneous values, the RLS algorithm
is based on the least squares approach, where the cost function to be minimized
comprises of the sum of squared errors [47]. The RLS algorithm defines an recursive
iterative solution to the LS problem, where the filter coefficients always attain the
minimization of the sum of squared errors starting from the algorithm initialization.
Therefore, the cost function to be minimized at time instant & is given by

k k

E(k) = Ne(n)?] =Y N y(n) — h' (k)x(n)]?, (4.2.22)

n=0 n=0

where A is a constant forgetting factor A € (0,1], and e(n) is the instantaneous
error [28]. The forgetting factor is used to give past samples less attention than new
ones. This ensures improved filter coefficient tracking capabilities in nonstationary
signal conditions. If the forgetting factor is assigned the value A = 1, then the RLS
algorithm reduces to the conventional LS solution. When all input values are given
equal weight, the RLS is said to have growing memory because the filter coefficients
are a function of all observed input values [28].

For the recursive least squares optimization problem defined in (4.2.22), the
optimal solution is given by the normal equations

A

R(k)h(k) = #(k), (4.2.23)

where f{(k‘) is the exponentially weighted finite sample estimate of the autocorrela-
tion matrix

R(k) =) N"x(n)x"(n) (4.2.24)

and F(k) is the respective cross-correlation vector

(k) = N "x(n)y*(n). (4.2.25)
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In order to operate in nonstationary signal conditions, the filter coefficients should
be solved from (4.2.23) for each new time instant. This approach would be compu-
tationally very expensive firstly due to the inversion of the autocorrelation matrix,
and secondly as both the auto- and cross-correlation values are each time computed
from scratch. However, the computational burden can be reduced by rewriting f{(k:)
in terms of the past autocorrelation value as

R(k) = A\R(k — 1) + x(k)x (k). (4.2.26)

Similarly it is possible to compute the corss-correlation values with a time update
recursion given by

£(k) = \e(k — 1) + x(k)y* (k). (4.2.27)

Now by solving R(k—1) and #(k—1) from (4.2.26) and (4.2.27) while using (4.2.23),
the new filter coefficient vector h(k) can be determined from the old vector h(k —1)
with the following time-recursion

h(k) = h(k — 1) + g(k)e* (), (4.2.28)

where g(k) = R (k — 1)x(k) is the adaptation gain vector, and e(k) = y(k) —
h# (k)x(k) is the a priori estimation error [28]. Although the computational load is
reduced with the given recursions, the problem of inverting the correlation matrix
still prevails in the gain vector.

To further simplify the computational burden, the inverse of the correlation
matrix has to be computed recursively. By utilizing the previous rank 1 update
equation (4.2.26) and the following result of the matrix inversion lemma

A TRIx)(A TR Ix)H

AR+ xx) T = AR — . , 4.2.29
( ) 1+ A2 xHFR-1x ( )

it possible to obtain the desired update rule as
P(k) = A""P(k — 1) — g(k)g" (k), (4.2.30)

where P(k) = R™'(k), and g(k) = A'R~(k — 1)x(k) is the alternative adaptation
gain vector [28]. Now the inversion of the correlation matrix is replaced by a simple
scalar division while computing g(k). There are also square root algorithms for
updating the square root of the inverse. Such algorithms may have better numerical
properties than the conventional RLS [28].

Although the recursive computation of the correlation matrix and its inverse
decreases the computational burden, the RLS algorithm is still no match to the
simplicity of the LMS algorithm. The main complexity of the RLS algorithm results
from updating of g(k) and P (k). It has been shown in [28] that RLS can be imple-
mented with a total update complexity of 2M? + 4M operations, whereas the LMS
algorithm has a complexity of just 2M + 1. Here each operation includes one multi-
plication and addition. However, when dealing with nonstationary signals, such as
the reflections from cardiopulmonary activity, it is more important to consider the
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algorithm speed of convergence since it determines the statistical accuracy and rate
of adaptation.

As opposed to the LMS and NLMS, the RLS algorithm is typically considered
to have a faster rate of convergence in MSE sense [28, 35]. This is due to the L
elements of the gain vector g(k), that can be seen as individual parameters for
controlling each filter coefficient. On contrary, the gradient based methods have
only one parameter 3 controlling all filter coefficients. With WSS signals, this
normally results in a faster MSE convergence for the RLS. However, with quasi-
stationary signals the superiority of the RLS algorithms is not that obvious, since
the fast temporal variations in the signal second order statistics necessitate short
FIR filters. As a result, the advantage of multiple parameters may decrease for RLS,
and the rate of convergence is mainly determined by the step size g and forgetting
factor A\. A detailed convergence comparison between NLMS and RLS algorithms is
presented in Chapter 5, along with experimentally optimized adaptation parameters
for various SNR values.

Numerical instability of the RLS algorithm is another problem that is not en-
countered with the LMS. When the inverse of the correlation matrix P(k) = R™!(k)
loses the Hermitian symmetry or is no longer positive definite, the RLS becomes nu-
merically unstable. It has been shown that as long as A < 1 the RLS algorithm is
numerically stable, but diverges when A = 1. [49] Besides this, if A is given the value
1, then the algorithm loses its tracking ability with nonstationary signals, which is
critical with especially vital sign estimation. However, the stability can be preserved
by simply computing the upper triangular part of P(k), and then filling the rest of
the matrix using the relation p;;(k) = pj;(k), thus restoring the Hermitian symme-
try. Another way to mitigate the stability issues of the algorithm is to use square
root based RLS algorithms [28].

4.3 Spatial Methods

In radar applications, spatial methods are generally used with multiantenna receiver
systems to determine how the observed signal energy is distributed over space. With
coherent processing of the antenna inputs, spatial methods enable signal direction
of arrival estimation and application of various signal enhancement and noise can-
cellation techniques. These techniques can further be used to improve the received
signal SINR, thus enabling target detection and parameter estimation also in low
signal conditions. Therefore, spatial methods have found applications in numerous
fields, including radar and sonar systems, communications, seismology, underwater
surveillance, and biomedical research like the task of vital sign estimation.

In many applications the information signal is impinging the receiver array from
a specific angle, which might change over time. Therefore it would be advantageous
from the detection point of view, if the receiver could focus on signals coming from
this specific direction without physically moving the radar. As it turns out, this
can be done by linearly combining the antenna inputs with specific weights. The
weighting of antenna inputs if known as beamforming, because the process empha-
sized signals in one direction while attenuating all other directions, hence the name
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spatial filter. Beamforming can be used both on the receiver and transmitter side,
but as this thesis has its focus on receiver signal processing the former is given
more attention. Receiver beamforming is sometimes referred to as spatial spectrum
estimation as it enables estimation of the signal power over different look directions.

Beamforming is generally used in applications where the location of the target is
not known a priori, or bad transmission channel conditions require spatial filtering
for improved target detection. Beamforming techniques are widely used in military
radar and air surveillance tasks due to its ability to quickly steer the transmitter or
receiver beam by simply changing the antenna weights. Steering the array mechani-
cally would be significantly slower. [19] However from the vital sign estimation point
of view, the main advantage of beamforming is its spatial filtering properties that
enable directional noise and motion clutter attenuation. For example, if a secondary
subject is also illuminated by the radar, this subject will cause interference to the
primary vital sign estimation. Therefore, if the direction of the primary subject is
known, and the angular displacement between the two subjects is large enough rela-
tive to the radar, beamforming can be used to attenuate the directional interference
from the secondary subject. In the context of this thesis, the main advantage of
the spatial methods is ability to distinguish multiple subjects based on the received
signal angle of arrival. This information can further be used to cancel out directional
motion clutter to improve the SINR for estimation of primary vital sign parameters.

This chapter presents and evaluates typical beamforming techniques. The in-
troduced beamforming techniques are not based on any specific array geometry, as
generally in literature, but rely simply on the far field assumption and the knowl-
edge of the receiver antenna coordinates. The presented spatial methods are finally
applied in the conducted vital sign radar simulations to suppress directional inter-
ference and enhance the SINR. The simulations are discussed later on in Chapter

d.

4.3.1 Conventional Beamforming

The goal of conventional beamforming is to maximize the output SNR by linear
weighting of the inputs. Using the notation from (2.3.17), the beamformer output
signal can be defined as

y(k) = /Mg - b - (€(k) o br(pr, f) +w(k)). (4.3.1)
In conventional beamforming the array weights h = [hy, ho, ..., hy,] are chosen to

perfectly phase-align signals impinging the array from a specific direction . The
optimum steering vector satisfying this condition is simply the array response vector
in the given direction

h = b(gg, f). (4.3.2)

While this steering vector is a match to the array response for incoming signals in
look direction g, the steering vector is also known as the spatial matched filter.
With a simple matched filter output SNR analysis, it can be shown that the resulting
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beamforming SNR gain is given by

SNRuuray (dB) = Mp - 1010g10 — Mp - SNRejen (dB), (4.3.3)

ew|§“

where a2, and 02 = F {|w(k)|*} are the individual element signal and noise powers,
and SNRgjem is the SNR per antenna [28].

Although equation (4.3.3) implies that the SNR of conventional beamforming
could be improved by increasing the number of antennas, the physical reality limits
the maximum array size. Furthermore, the spatial matched filter beamformer (MFB)
maximizes the output SNR in the absence of interference, which is usually present
in practical applications like vital sign detection. Therefore the use of optimum
beamforming is preferred.

4.3.2 Optimum Beamforming

If the received signal at the array input is corrupted by interference, such as environ-
mental or secondary subject motion, the optimum beamformer seeks to maximize
the SINR by suppressing directional noise components. Let us assume that the array
input signal consists of a primary signal, interference, and uncorrelated noise as in
(4.3.1). Furthermore, assuming that all of these components are uncorrelated, the
maximum output SINR is given by

SINRDZ = Mp - a2, b" (¢r, )R b (or, f), (4.3.4)

out

where Ry, = R; + 021 is the interference-plus-noise correlation matrix [28]. The
corresponding optimum beamformer can be thereafter obtained as a solution to the
constrained optimization problem of

m&n hR, ,h subject to hfb(pg, f) = 1. (4.3.5)

As is shown in [34], the solution is the minimum-variance distortionless response
(MVDR) beamformer given by

R’L+nb(90R? f)
bH(SORa f)R'z—i-nb(gOR? f) .

h= (4.3.6)

In practice, the correlation matrix is replaced by a finite sample estimate f{Hn de-
rived from the data. Such adaptive techniques are known as sample matrix inversion
(SMI) beamformers where the correlation matrix is obtained through the average of
outer products of the array snapshots

N
1
1+n = N ; yz+n yH_n k) (437)

where N is the number of averaged sampels [28].
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Figure 17: MFB and MVDR beampatterns using Mp = 5 receive antennas with \/2
spacing with a) perfect knowledge of the target DoA, b) Apr = 2° error in estimated
target DoA. The target (solid red line) is located in look direction ¢; = 0°, and a source
of interference (dashed black line) at o = —40°. The MVDR beamformer is sensitive to
DoA and steering vector mismatches.

Because this beamformer is data dependent via R;,,, it is able to suppress the
directional interference components, as opposed to the conventional beamformer
where any interference is passed on through the sidelobes. However, in the case that
there is no interference present, the MVDR beamformer experience a small loss in
output SINR compared to the matched filter, which is given by

SINR oyt

Lsing = INR = afan(QOR,f)f{;rlan(wR, 1) (4.3.8)
array

Nevertheless, in the presence of interference, the MVDR beamformer is superior to
the conventional beamformer in terms of interference cancelling, see Figure 17a. [28]

It should be noted however, that in many applications it is not possible to obtain
a primary signal free estimate of the correlation matrix R;,,. In such applications,
like the vital sign estimation, the resulting Capon beamformer still maximizes the
output SINR as long as there are no signal mismatches present. However, if the
DoA of the primary signal is not precisely known, performance of the MVDR beam-
former can decrease significantly as the array response is adjusted according to the
inaccurate information. Figure 17b illustrates the effect of a small DoA error of
Appr = 2° to the performance of the Capon method. As can be seen, the optimum
beamformer places a null in the direction of the target due to the error in DoA esti-
mate. Thereby, to mitigate the effects of false assumptions or signal mismatches, it
is necessary to use robust beamforming methods that are less sensitive to estimation
and modeling errors.
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4.3.3 Robust Capon Beamforming

The robust Capon beamformer (RCB) is an extension of the MVDR beamformer
that enables operation under imprecise knowledge of array steering vector or pri-
mary signal DoA. Additionally, in many applications the sample size to form the
correlation matrix might be limited, thus yielding another source of error. From
the vital sign application point of view, the most probable source for inaccuracies
are errors in signal DoA estimation simply because it might be difficult to deter-
mine from which part of the thorax the reflections are observed. Therefore, robust
Capon beamforming is needed in especially live experiments to compensate for DoA
mismatches.

The robust Capon beamforming follows the same approach as the MVDR, that
is to minimize the output power while restricting the steering vector to a specific

uncertainty ellipsoid _ ~
(b-b)¥ C '(b—-b) <1, (4.3.9)

where b is an a priori assumption of the steering vector b, and C = €l is a positive
definite matrix defining the uncertainty as in [50]. Therefore the mathematical
formulation of the robust beamforming can be stated as

mbin bR "'b subject to b —Db|?=¢, (4.3.10)

when the trivial solution of b = 0 is excluded. It has been shown in [50], that
this quadratic optimization problem can be solved using the Lagrange multiplier
methodology, which yields a solution in the form

b=b- (I+AR)™'b, (4.3.11)

where b is an estimate of the steering vector to the primary signal, and A > 0 is
the Lagrange multiplier. Now A can be obtained as the solution to the constraint
equation

g\) = [T+ IAR)'B|?> = ¢ (4.3.12)

which can be simplified using the eigendecomposition of the covariance matrix, and
thereafter solved numerically as shown in [50]. The resulting beamforming weight
vector is thereafter given by

N R+11)7b
h = ARA = =— ( b )A = (4.3.13)
b"R-'b bR+ i) 'R(R+1I)"'b

It is clear from (4.3.13) that the robust Capon beamformer has the form of diagonal
loading with %, which allows for an optimal amount of loading needed for a specified
uncertainty ellipsoid.

It has been further shown in [51], that the robust Capon beamformer is robust
with respect to choosing €. This implies that the beamformer is able to adjust its
diagonal loading optimally, even if the value of ¢ is not chosen in an optimal way.
Furthermore, the RCB is also robust against small mismatches in estimated DoA
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Figure 18: Beampatterns of MFB, MVDR, and RCB using a 5-element ULA (d = \/2)
with a) perfect knowledge of target DoA and array model, and b) an error of Apr = 1°
in the DoA estimate. A primary subject (solid red line) is located at ¢; = 0°, and a
secondary interferer (dashed black line) at p2 = —40°. The RCB is more robust against
small mismatches in DoA estimate and array model.

and array model. With an error of just Apr = 1° in DoA, the RCB is able to focus
on the primary target, while still attenuating the interferer present at pp = —40°,
see Figure 18b. With a similar DoA error the MVDR sees the primary target as
interference and attenuates the signal by placing a null close to the corresponding
look direction. Due to this instability of the MVDR, it is necessary to use RCB
especially in the application of multiantenna vital sign monitoring.

Before the application of beamforming techniques, it is essential that the incom-
ing signal angle of arrival is known or estimated from the data. Thereafter, the
array beampattern can be steered towards the target. The following section intro-
duces how the DoA estimate can be obtained from the array data, and presents
a commonly used estimation method known as the Capon method. This method
is analogous to the previously described Capon method for time series signal pro-
cessing in section 3.3.2, and is based on the same MVDR criterion as the Capon
beamformer.

4.3.4 Direction of Arrival Estimation

In the presence of multiple vital sign emitting subject, the only parameter that
distinguishes the subjects apart is the signal angle of arrival, or direction of arrival.
If the DoA of the primary subject reflections are known or estimated from the
data, it is possible to apply the presented beamforming techniques to suppress any
additional interference. Although there are numerous DoA estimation methods in
the literature, this section focuses on the familiar and well known Capon method.
A general approach to the DoA problem is to scan the array using all possible
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steering vectors and determine which look direction gives the highest energy response
E{ly(k)]’} = h"R,h, (4.3.14)

where R, = E {y(k)y"(k)} is the correlation matrix comprising of the signal,
interference, and noise. With the conventional beamformer the DoA estimate is
given by inserting (4.3.2) into (4.3.14), and consequently searching for the location
of the highest peak [34]. The accuracy of the direction estimate depends of the
angular resolution capabilities of the array. Typically the resolution is defined as
the angular extent between the array main beam half-power points, that is, points
where the maximum power has dropped by 3 dB. Often the angular resolution in

radians is approximated as
A

A(,Og,dB ~ 5, (4315)
where D is the size of the array aperture in wavelengths [28]. For example, let us
again take the example of a ULA array with Mgr = 5 elements observing two tar-
gets at angles pr = 0° and pr = —20°. Now using the approximation of (4.3.15),
the angular resolution of the array with d = A\/2 element spacing is Apsqp ~ 23°.
Thereby the secondary target cannot be distinguished from the primary target using
the conventional beamformer, see Figure 19b. Furthermore, when the conventional
beamforming is used for a general case of multiple targets, the resulting DoA esti-
mates are inconsistent. This is important especially if the sources are closely spaced
or highly correlated, since then the asymptotic bias of the estimates might be signifi-
cant. A higher DoA resolution can be obtained by using the Capon based estimation
methods.

The Capon DoA estimation method is essentially based on the same approach
as with the conventional beamformer; find the steering vector b(pg, f) yielding the
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Figure 19: Spatial spectrum of MFB, MVDR, and RCB techniques with a 5-element

ULA (d = \/2) observing two targets at ¢; = 0° and a) o = —20°, and b) pg = —24°.
Capon based beamforming methods have a higher resolution than the MFB.
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highest energy response. As was already shown with the Capon beamformer, the
optimum spatial weighting coefficients h minimizing the constrained optimization
problem of (4.3.5) are given by (4.3.6). However, these weights are optimal for
beamforming in a given look direction. To estimate the signal DoA, it is necessary
to go through a range of possible steering vectors and see which look direction yields
the highest response. Therefore, the spatial energy spectrum is obtained by inserting
the weights defined by (4.3.6) into the expression of the received energy (4.3.14).
As a result, the Capon signal DoA estimate can be obtained as the highest peak of

the function )
~ , (4.3.16)

b (g, f)R,'D(¢r, f)

where f{; ! can be computed using the SMI technique given in (4.3.7) or an adaptive
sample by sample update algorithm like the RLS introduced in chapter 4.2.4. As
was shown in Figure 19, clearly both the Capon, and robust Capon methods have
better resolution, and eventually also better interference cancelling capabilities than
the conventional data-independent MF method.

In addition to these two introduced DoA estimation techniques, there are numer-
ous other alternatives like the subspace methods MUSIC and ESPRIT. For more
information about these methods, the reader is referred to [34, 35, 52].

4.4 Maximum Ratio Combining

A third approach to utilizing the high correlation between multiple receive anten-
nas is to apply maximum ratio combining (MRC). MRC is a well-known technique
used in multiantenna systems to combine the inputs of multiple receivers so that
the output SNR is maximized. In its general form, the MRC performs coherent
combining of the different signals by weighting and phase aligning receiver inputs
with the eigenvector corresponding to the largest eigenvalue of the finite sample data
covariance matrix

R(k) = x> y(R)y" (k) (141)

Here the vector y(k) € C**! denotes the array input snapshot, and N is the cor-
responding window size. There are many similarities between the MRC and beam-
forming techniques, since both attempt to perfectly phase align the receiver inputs.
With MRC, the weights depend on also on the signal quality of each individual
component. While the MRC is strictly based on covariance matrix, it is sometimes
referred to as blind beamforming, because it makes no assumptions on the receiver
geometry.

The advantage of the MRC technique is that it requires only one parameter,
which is the window size N used to obtain quasi-stationary samples of the observed
signal. The stationarity assumption is important, since averaging over too long
sequences may decrease the accuracy of the covariance matrix estimate if the sig-
nal second-order statistics change during averaging. However, the window length
should not be too short either, since this would also prevent reliable estimation
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of R. Therefore, N is dependent on the observed input second order statistics,
and should generally be chosen close to the stationarity period of the data. With
quasi-stationary data like the vital sign modulated micro-Doppler phase informa-
tion, the covariance matrix need to be periodically updated to follow the changing
data statistics.

Like other signal processing techniques relying on an estimate of the covari-
ance matrix, the MRC suffer from the problem of updating R. There are however
recursive techniques that may be used to decrease the computational burden of re-
computing the covariance matrix from scratch on every update. One such recursive
scheme was presented with the RLS algorithm in Section 4.2.4. Other factors that
affect the computational complexity of the MRC are the update frequency, window
length N, and in general case the array dimension.

4.5 Independent Component Analysis

Another recently developed method in data analysis for feature extraction and signal
separation is known as independent component analysis. The goal of ICA is to find a
linear representation of multivariate non-Gaussian data so that the components are
statistically independent, or as close to independent as possible [53]. ICA was origi-
nally developed to solve problems similar to the well-known cocktail-party problem:;
separate multiple independent source signals observing only their mixtures. Since
then, the increased interest in ICA has led to its application to many similar prob-
lems including artifact separation in magnetoencephalography (MEG) [54], feature
extraction in image and audio signal processing, financial time series analysis [55],
and separation of breathing and heartbeat in radar remote sensing [56, 57].

The basic principle of ICA can be understood through the blind source separation
(BSS) problem. Suppose that n unknown mutually independent source signals s(t) =
[s1(t),...,sn(t)] are observed through n sensors, where each sensor sees a mixture
z;i(t) = ans1(t) + ais2(t) + ains,(t) of the independent components for all i. Using
matrix notation, the observations can be written as

x(t) = As(t), (4.5.1)

where x(t) is a column vector of the mixtures, and A is the mixing matrix with
elements a;; [53]. The task is to estimate A and the independent components s(?)
solely based on the observations x(t¢), that is without further knowledge of the
source signal model or distributions, hence the name blind source separation. Once
the matrix A is estimated, the independent components are obtained simply as

s(t) = Wx(t), (4.5.2)

where W = A~ is the inverse of the mixing matrix [53]. However, the challenge is in
finding an estimate for the matrix A. Without any knowledge of the source signals,
this problem can be solve up to ambiguities in component scaling, permutation, and
sign [53]. Fortunately, these ambiguities are irrelevant in many applications, such
as vital sign estimation.
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The ICA model in (4.5.1) is solved through minimizing or maximizing certain
contrast functions that allow refromulating the ICA problem to a numerical opti-
mization problem. Although ICA requires no knowledge of the source signal models,
it relies on the simple assumptions that the components s; are statistically indepen-
dent and have non-Gaussian distributions. In fact, the former assumption may be
relaxed since ICA finds such components that are as close to independent as possi-
ble. However, the key to estimating the ICA parameters lies in the latter assumption
of nongaussianity. Therefore, adding Gaussian noise to the model (4.5.1) results in
that none of the independent components are allowed to have Gaussian distribu-
tions. With vital signs however, it is easy to show that the signal phase information
is non-Gaussian, thus enabling application of ICA [56].

According to the Central Limit Theorem (CLT) the distribution of a sum of
independent random variables tends towards a Gaussian distribution. Therefore, let
us study the linear combination of the z;, denoted by y = wTx. Since the sum of two
or more independent random variables is more Gaussian than the original variables,
wT As becomes least Gaussian when it equals to one of the independent components.
Thus, given a measure of nongaussianity such as kurtosis, or negentropy, where the
latter one is a shifted entropy, it is enough to find such w that maximizes the
nongaussianity of wrx. [53] For truly independent components, one may also use
the fact that their joint distribution factors to the product of marginal distributions.

A fast and robust algorithm used for estimating the independent components
is known as FastICA. The algorithm may be deployed as deflative component by
component based estimation, or as a symmetric simultaneous estimation of all com-
ponents [58]. The latter algorithm may be more desirable for certain applications
as it pays equal attention to all components. Although ICA has the advantage
of fast convergence and minimum presumptions on the source signals, it has the
disadvantage of being nondeterministic, that is the order, amplitude, and sign of
the independent components may not be estimated. However, all of this informa-
tion may not be relevant for specific applications, as has been shown by numerous
studies using ICA in various forms of BSS [54, 55, 56, 57].

As the typical challenge in vital sign monitoring is estimating the weak cardiac
component from the signal, the ICA model has been proposed to solve this problem
by separating the respiratory and cardiac artifacts as independent components [56].
Also, this reduces the problem of interfering breathing harmonics and other mo-
tion clutter. Interestingly enough, the technique provides good results even though
generally one might consider the respiratory and cardiac activities to be highly cor-
related, which simply emphasizes the robustness of ICA. Furthermore, it has been
shown that ICA can be used for isolating the cardiopulmonary activities of multiple
subjects [57]. This is a significant advance for example towards wireless clinical
healthcare vital sign monitoring, since ICA does not require any specific receiver
antenna geometry or large angular separation between subjects, as compared to
beamforming techniques. However, to limit the scope of this thesis, the ICA model
was not applied in vital sign simulations.
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4.6 Adaptive Vital Sign Estimation System

The main focus on this Section has been on coherently combining the multiple
received signals to improve the performance of vital sign estimation. However, a
complete wireless cardiopulmonary monitoring system comprises not only from this
signal enhancement block, but from the combination of all signal processing tech-
niques presented in Sections 3 and 4.

The complete adaptive vital sign estimation system employed in this thesis is
illustrated as a block diagram in Figure 20. The multiantenna signal propagation
model used in the simulations was presented in Section 2. With the application of
multiple receivers, the vital sign induced micro-Doppler phase modulated signal is
recorded and sampled using a sampling frequency high enough to prevent aliasing of
the Doppler content. In our work, a sampling frequency of 50 Hz was used. There-
after, the signal from each receiver may be pre-filtered to attenuate high frequency
noise before downsampling. To focus solely on evaluation of adaptive filtering tech-
niques, an allpass pre-filter was applied. Since different receivers contain various
levels of DC offset, these components are removed using center tracking algorithms
discussed in Section 3.2.2.

After all this pre-processing, the individual receiver signals are coherently com-
bined using the adaptive processing techniques presented previously in this Section.
The adaptive processing algorithms take as inputs the Mp distinct signals, and
combine them coherently to generate one output signal preserving the vital sign
micro-Doppler phase information. Depending on the chosen processing method, the
signals pass through an adaptive noise cancellation system as presented in Section
4.2, or a spatial filtering system like in Section 4.3. Hereafter, the micro-Doppler
phase content is extracted from the signal using complex signal demodulation tech-
niques presented in Section 3.2. The choice of demodulation technique depends on
the system carrier frequency, and amplitude of the micro-Doppler generating mo-
tion. Finally, the instantaneous vital sign frequency estimates are obtained with
spectral estimation methods discussed in Section 3.3. The vital sign rate estimates

Signal L »| Low-pass | L dapti
model ) 1Q- ) filter .| DC-offset | . Pi 'aptlve
/\W K sampling | & “| removal |} |Mmuitiantenna
N\ > downsample [ | | processing

Complex Vital sign
signal Spectrg 1 > rate
demodulation estimation estimate

Figure 20: A block diagram of the multiantenna vital sign estimation system employed
in this thesis. The Figure illustrates the different signal processing methods and their
relative ordering.
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are given by converting the instantaneous frequencies into beats per minute.

4.7 Challenges with Adaptive Techniques

As was shown in Section 4.2, adaptive filters can be used in estimation and track-
ing of instantaneous frequencies of human vital signs in the time-frequency domain.
Many adaptive algorithms like the LMS algorithm, are based on modeling the data
as a linear prediction filtering process, where each new data sample is estimated
based on the previously observed samples. The frequency tracking performance of
these adaptive filters is determined by the respective algorithm parameters and cho-
sen filter length. For stationary signals the selection of these parameters is trivial
since there is no need for adaptation. However, when the stationary condition is not
met, optimal parameters like the speed of convergence and filter length are deter-
mined by the signal frequency characteristics. Additionally, the optimal parameters
depend on the prevailing system SNR and performed signal pre-processing including
temporal filtering and downsampling. Therefore, finding the optimal parameter val-
ues for adaptation require computationally intensive optimization algorithms with
constraints on parameters like the output SNR and MSE, where there is no closed
form solution available. Consequently the optimization needs to be done experimen-
tally and in advance of the vital sign monitoring. Another significant disadvantage
of the adaptive noise cancellation techniques is that simultaneous estimation of two
or more subjects is not possible without spatial processing.

Although there are less parameters to consider in beamforming methods com-
pared to adaptive filtering, they are extremely sensitive to parameter misadjustment.
As was shown with the MVDR beamformer, if the is a small mismatch in the DoA
estimate, the Capon beamformer will place a null in the beampattern in the direction
of the target. Since this is highly unwanted behavior, more complex robust beam-
forming methods are required especially in real experiments where accurate array
calibration is difficult. Furthermore, since the angular resolution of the beamform-
ing techniques is directly related to the array aperture, the obtainable resolution
is usually limited by the physical dimensions of the used device. Also in practice,
acquiring accurate knowledge of the array steering vector requires complicated cal-
ibration measurements and varies between different arrays.

In order to combine the advantages of spatial beamforming and adaptive filter-
ing, the use of space-time adaptive processing (STAP) could be introduced to vital
sign estimation. Such techniques are already used in airborne moving-target indi-
cator (MTI) systems operating in nonstationary environments with high levels of
interference. [19] STAP increases the degrees of freedom by allowing simultaneous
application of spatial filtering and adaptive noise cancellation through advanced sig-
nal processing algorithms [28]. However, the application of STAP would increase
the system complexity to a level that is beyond the scope of this thesis.

Finally, the virtually parameterless ICA model provides a robust means for iso-
lating the individual cardiopulmonary components from multiantenna observations.
Although the method has almost no parameters, meaning that it requires little
configuration, it is ambiguous against the variance and order of the independent
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components. This implies that it is not possible to determine the power of the in-
dividual cardiopulmonary rates, nor to identify where the source originated from.
In other words, it would be possible to determine the amount of persons in a room
based on number of cardiac components, but there is no way of knowing which com-
ponent corresponds to a specific subject. Additionally, there is little knowledge on
the effects of ICA on the accuracy of the cardiopulmonary rate estimation. Despite
these disadvantages, ICA is a good candidate tool in multiantenna vital sign moni-
toring, however as this thesis is focused on the adaptive filtering based techniques,
the application and evaluation of ICA performance remain future research topics.
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5 Simulation results

The performance of multiantenna adaptive signal processing techniques presented in
this thesis were evaluated by a series of extensive vital sign estimation simulations.
This Chapter gives a detailed description of the developed simulation environment,
and presents the results of different simulation scenarios.

5.1 Simulation Environment and Measurement Setup

The basic simulation system implemented in MATLAB comprised of a 1 x 2 SIMO
CW radar, operating at 24 GHz frequency, illuminating one human subject whose
breathing and heart beats induce micro-Doppler effect. In order to study the per-
formance of adaptive processing techniques and to simulate the beamforming tech-
niques, two different simulation setups were constructed. The first setup is illus-
trated in Figure 21a, where one subject was located at a distance of 70 cm in front
of the transmit antenna, and the two receivers were asymmetrically placed on both
sides of the transmitter. Due to the large displacement of the receivers, this setup
was used only with adaptive noise cancellation techniques. In the second setup, see
Figure 21b, the two receivers had interelement spacing of A/2, thus enabling applica-
tion of the presented beamforming techniques in directional interference cancelling.
Also, the advantages of larger ULA array were shown by increasing the number of
receivers.

In addition to simulating reflections from vital sign targets, both setups included
static reflections from walls, floor, and other background objects. The background
material was chosen to be wood, having a complex permittivity of € &~ 2.3 4+ 73.3 at
the K-band [59]. Furthermore, various levels of additive white Gaussian noise was
included in the received signals to account for thermal noise and non-ideal circuitry
at both transmitter and receivers.
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Figure 21: Geometric setup of the MATLAB simulations with a 1 x2 CW radar observing
one subject emitting vital signs. a) Multiantenna receiver, b) multiantenna receiver with
A/2 antenna displacement.
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The received signal was modeled as a superposition of discrete reflection compo-
nents according to the mathematical model given in eq. (2.3.9). It is typical to have
this type of reflections from multiple sources, such as chest, throat, etc., or even
secondary subjects nearby. Consequently, accurate estimation of the vital sign is
more difficult. For simplicity, it is assumed in the first simulation setup with adap-
tive noise cancellation, that the phase modulating vital sign reflections are observed
from only one source. To illustrate the directional interference cancelling capabilities
of beamforming techniques, the second simulation setup is run with and without a
secondary subject in the background. As a two receiver beamformer has only one
degree of freedom for signal enhancement or interference cancelling, and the main
beam is very wide, the performance of spatial filtering is evaluated also with more
than two receivers.

The physiological motion of breathing and heartbeat are modeled according to
the presented models in Section 2.1. In the following, the physical vibration of the
human body induced by both vital sign activities, are modeled as sinusoids with
independent and slowly varying frequencies. Therefore, the natural fluctuations
in the rate of breathing and heartbeat, are modeled as random walks within a
fixed frequency range of pre-defined minimum and maximum values. For details of
implementation of the rate time-evolution, the reader is referred to [13].

5.2 Adaptive Processing Parameter Optimization

The rate of convergence and statistical performance of the NLMS and RLS adaptive
processing algorithms are highly dependent on the chosen initial algorithm parame-
ters. Therefore, to obtain the desired gains, the adaptive algorithm parameters need
to be carefully selected. The main focus of this chapter is on finding the optimal
filter length, the step size parameter, and the forgetting factor A for the respective
NLMS and RLS algorithms. The observed signal is not wide sense stationary which
makes the optimization a challenging task. Moreover, the algorithm parameters are
dependent on the receiver input SNR, pre-processing filter and downsampling, and
the size and variability of the phase modulating micro-Doppler components. As
there exists no closed form solution for choosing the data dependent parameters,
the values were optimized for micro-Doppler frequencies in the range of 0.05 — 3.00
Hz using Monte-Carlo type simulations with a fixed pre-processing stage of no pre-
filtering, and downsampling by a factor of 2. The specified range for micro-Doppler
was based on minimum and maximum simulated vital sign frequencies.

In optimizing the algorithm adaptation parameters, the adaptive processing out-
puts, denoted by ya,(k) = h (k)x(k), where h(k) is defined in (4.2.20) for NLMS,
and in (4.2.28) for RLS, were compared to a noiseless reference signal y,.r(k) con-
taining the same vital signs. Although such signal would be hard to obtain in actual
measurements, it can be used in simulations to find the parameter values that may
be employed in real world experiments as well. Therefore, the adaptation param-
eters were chosen as the values minimizing the algorithm output average squared
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error, yielding the following performance metrics for NLMS

| N
5(L)B) = szef(k?) _yap<k)|27 (5'2°1)
k=1
and for RLS N
1
e =+ > yres (k) = yap(k)]*. (5.2.2)
k=1

As a result, using the mean square error as the optimization criterion results in an
adaptation output signal that minimizes the squared residuals. In other words, the
optimal output minimizing the MSE is the reference signal itself.

Typically with adaptive algorithms, the steady state MSE depends on the speed
of adaptation. Faster adaptation yields a larger steady state MSE, whereas slower
adaptation results in smaller excess error. Consequently, the choice of adaptation
parameter values is generally a tradeoff between speed of convergence and steady
state excess error. Moreover, another constraint that need to be considered in pa-
rameter optimization for vital sign monitoring is the limited sample size. It may
not always be feasible to wait tens of seconds for algorithm convergence before es-
timating the vital signs, or the cost of acquiring more samples may be too high.
As an example, locating earthquake victims buried in the debris is a time critical
application where the usually vast areas of destruction should be searched within
approximately two days. Another way to reduce adaptation excess error is to sup-
press the measurement noise through the adaptive filter structure. As a result it is
not enough to simply optimize the adaptive algorithms for fast tracking, but also
for noise attenuation through the choice of filter length.

The filter length and adaptation parameter values for NLMS and RLS algorithms
were selected using exhaustive search. Figure 22 illustrates MSE values for both
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Figure 22: The parameter values for a) NLMS and b) RLS algorithms were found by min-
imizing the MSE, SNR = 16 dB. Results apply for one subject with both cardiopulmonary
activities present.
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algorithms with different parameter values. As can be seen, a local minimum is found
for both algorithms. The adaptive parameter values were optimized for different
levels of input SNR, and the results are listed in Table 3. Based on the optimized

Table 3: Optimized parameter values for NLMS and RLS algorithms are dependent on
the prevailing SNR level. These values assume the presence of one subject with both
cardiopulmonary activities present.

SNR (dB) NLMS RLS
L B L A
10 23 0015 1  0.9980
-8 23 0.025 3 0.9995
-6 19 0025 4  0.9999
4 15 0.030 3  0.9999
-2 18 0040 3  0.9999
0 16 0.055 3  0.9999
2 12 0.085 3 0.9991
4 12 0125 3 0.9991
6 10 0140 2  0.9991
8 8 0287 2 0.9995
10 4 0145 2 0.9995

values, it can be seen that there is a nonlinear relation between the receiver input
SNR and the adaptation parameters S and . Furthermore, when the SNR is low,
the adaptive techniques increase the FIR filter length in order to make the filter more
frequency selective. This is in line with the assumption that the adaptive techniques
enable operation at lower SNR conditions through noise cancelling. The values
given in Table 3 were used in all simulations concerning adaptive noise cancellation
techniques.

5.3 Performance of Adaptive Noise Canceller

The performances of the adaptive noise cancelling techniques presented in this thesis
were evaluated using SNR improvement and vital sign estimation success rate as
quantitative criteria. The results were compared both to the case of using only one
receiver, and MRC with multiple receivers.

5.3.1 Results for Estimating Both Cardiopulmonary Activites

The design of the adaptive filter is dependent on the chosen adaptation algorithm, as
was seen in Table 3. The frequency response of the resulting filter may vary among
other things depending on the optimal filter length for a particular SNR level. This
can be seen in Figure 23, which illustrates the differences in filter frequency domain
characteristics between the NLMS and RLS algorithms. With small filter lengths,
the adaptive algorithms need to make a tradeoff between a smooth passband for
vital sign frequencies, and sufficient noise attenuation outside the frequency band
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Figure 23: Adaptive filter frequency responses (bold blue line) using a) NLMS, and b)
RLS algorithm at SNR = 2 dB. Simultaneous processing of both breathing (solid line) and
heartbeat (dashed line) activities may result in attenuation of the vital sign frequencies
if the filter length is not sufficient. The respective normalized signal frequency spectrums
are displayed with the thin green lines.

of interest. As a result of the passband ripple, some of the vital sign frequencies
may experience attenuation, but more importantly the breathing harmonics are not
necessarily filtered out. This problem could be addressed by increasing the used
filter lengths, which would lead to suboptimal performance in the MSE sense, or by
processing the cardiopulmonary components individually. In order to demonstrate
the gains obtained by adaptive filtering, this section presents the results for process-
ing both breathing and heartbeat components together. Finding suboptimal filter
lengths in the MSE sense was left outside of the scope of this thesis.

The operation of adaptive noise cancellation techniques is illustrated in Figure
24, where a sample data sequence of 5 seconds was processed with the presented
methods using experimentally optimized parameters. Clearly, all of the illustrated
methods are able to adapt the secondary input to the reference. By comparing
the convergence of the NLMS and RLS methods in the [Q-time space, there is no
significant difference between the two methods. However, by analyzing the MSE
learning curves of both algorithms, it can be seen that the RLS converges slightly
faster in general, see Figure 25a. However, this does not imply that the RLS would
always have faster convergence, see Figure 25b, because the adaptation parameters
are dependent on the observed data as was shown in Section 5.2. Moreover, it should
be pointed out that independent of the SNR conditions, both the RLS and NLMS
have approximately same steady state MSE. Therefore, it is necessary to use other
criteria for evaluating algorithm performance.

Instead of the total MSE, more informative evaluation criterions for analyzing
the algorithm performance are the obtained SNR gain, and the success rate of vital
sign estimation following adaptive processing. These criteria give a better indication
of how the different frequency components, such as micro-Doppler frequencies, are
enhanced or attenuated during adaptive filtering.

The SNR gain of each techniques was evaluated by performing a series of 100
independent Monte-Carlo simulations, each consisting of 60 seconds of data sampled
at 50 Hz for both receivers. This data was thereafter processed using the presented
techniques in Section 4. The results are shown in Figure 26, where the input SNR
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Figure 24: Operation of the adaptive processing techniques. a) Received vital sign
signals, and output of b) NLMS, ¢) RLS, and d) MRC adaptive methods at SNR = 20 dB.
The FIR filter techniques adapt to reference input, whereas the MRC performs coherent
combining resulting in a larger signal radius in the IQ-plane.

before adaptive processing was defined as the maximum among all receive antennas

2

SNRi, (dB) = max 10 - logyg i (5.3.1)
where m = 1... Mg, a2, is the squared amplitude of the received signal arc at one
receiver, and o2 is the variance of the respective white noise. The expression (5.3.1)
is also the SNR of a SISO system that is used as a reference. The results indi-
cate that the multiantenna adaptive techniques provide a notable output SNR gain
when compared to using only one receiver, see Figure 26a. At low SNR regime, the
adaptive filtering techniques outperform also the adaptive MRC. This is explained
by the additional filter taps used for further noise cancellation, see (4.2.2). On the
other hand, if the input SNR is increased above 7 dB, the gain from adaptive noise
cancellation decreases slowly, whereas the MRC reaches a relatively steady gain of
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Figure 25: MSE learning curves of the NLMS and RLS adaptive algorithms evalu-
ated over 1000 independent Monte-Carlo simulations at a) high SNR regime, b) low SNR
regime. The rate of convergence and excess MSE depend on the experimentally optimized
algorithm parameters and the receive SNR.

+3 dB through coherent combining of the receiver signals. Again, an intuitive ex-
planation for this can be found by analyzing the adaptive filter parameters. As was
shown in Table 3, the optimized filter length generally decreases with increasing the
input SNR. Having too many degrees of freedom would result in following the noise
and finding structures in the data that do not exist. Consequently, decreasing the
filter length makes the filter transition band wider, thus resulting in worse noise can-
celling performance. Nevertheless, using two receivers with the adaptive processing
techniques enable operation at approximately 3 dB lower SNR, which is also the
typical array gain of two receivers.

After enhancing the demodulated signals, the instantaneous breathing and heart-
beat rates were estimated from the output signal §(k) using the MVDR spectrum
estimator. The spectral estimates were computed from a window of 3 seconds of
past data samples, and the estimates were updated once a second. A maximum
error of £5 % was allowed to call an estimation successful. The instantaneous rate
estimates of one simulation run are illustrated in Figure 27, showing the advantages
of employing multiple receivers with adaptive processing techniques. Even at low
input SNR regime adaptive filtering may improve the estimation success rate by up
to 20 %-units compared to the case of using a one receiver SISO system, see Figure
26b. Therefore, in addition to the SNR gain, the multiantenna adaptive processing
techniques also enable reliable vital sign estimation.

5.3.2 Results for Estimating Heartbeat Only

The vital sign estimation problem can be simplified for adaptive noise cancellation
algorithms by removing the breathing component and estimating only the heartbeat
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Figure 26: a) Adaptive processing techniques provide a significant output SNR gain,
and b) improve the success rate of both heartbeat (dashed line) and breathing (solid line)
rate estimates.

rates. Typically in sports and medicine, the heart rate is the vital sign of interest,
and therefore breathing may be considered as nuisance in measurements. Removing
the breathing component relaxes the passband width requirement for the designed
adaptive filter, which enables a more accurate filter frequency response design, as
can be seen in Figure 28. The resulting FIR filter has now a bandpass structure
for enhancing the heartbeat frequencies, and the structure is emphasized especially
with long filters.

In order for the adaptive methods to be able to focus on the heartbeat signal,
the breathing component needs to be removed before adaptive processing. However,
effective removal of the breathing component may be difficult due to the interfering
harmonic terms that are present before signal demodulation. One possible solu-
tion would be to perform adaptive processing after signal demodulation, but this
requires the use of linear demodulation due to the arctangent demodulation phase
estimation problems that arise when the SNR is low. However, the application of
linear demodulation is feasible only with small signal arc lengths in IQ plane, that
is when the breathing component is not present, or the system operation frequency
fe is below K-band, as was shown in Section 3.2. Another option would be to use
long bandpass filters for extracting the heartbeat component from the received sig-
nal, but this is problematic due to the breathing harmonics that may be present
within the filter passband, and the exact heartbeat frequency is not known a priori.
Furthermore, using tight bandpass pre-filters would already do most of the work for
adaptive noise cancellation. For simplicity, the following simulations assume that
the subject is holding his breath during monitoring, thus removing the problem of
obtaining a breathing free signal for heartbeat estimation.

The results of applying these filters for estimating the heartbeat rates are il-
lustrated in figure 29. By removing the breathing component and its harmonics,
the average success rate of heartbeat rate estimates is increased substantially. The
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Figure 27: Time-frequency spectrum illustrating vital sign estimates and respective suc-
cess rates for different methods, SNR;, = 2 dB. Solid lines represent true vital sign rates,
and dashed lines the estimates of a) SISO with no adaptive processing, b) LMS, ¢) RLS,
d) MRC. Multiantenna adaptive techniques have superior rate estimation performance
compared to a SISO system.

adaptive noise cancellation techniques utilizing NLMS, RLS and MRC algorithms
enable an acceptable estimation success rate of 80% still at an input SNR level of —9
to —7 dB. In contrast, when the breathing component was present, a corresponding
performance for heartbeat estimation was obtainable at SNR;, = 1 dB. Thereby,
the system heartbeat rate estimation dynamic range may be increased by up to 10
dB by effectively removing the breathing component along with its harmonics.

5.4 Simulation Results for Spatial Methods

The simulations were run using the system geometry of setup 2, see Section 5.1. In
order to show the advantages of using multiple antennas in signal enhancement and
directional interference cancelling, the simulations were run first with one subject,
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Figure 28: Adaptive noise cancellation filter frequency responses at SNRy, = 2 dB for
estimating heartbeat only. a) The NLMS algorithm results in a bandpass filter amplifying
the heartbeat (dashed line) frequencies, b) whereas the optimized RLS filter yields a
shorter filter with smoother lowpass type frequency response.
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Figure 29: Removing the breathing component improves the heartbeat rate estimation
success rate significantly compared to the case when both vital signs are estimated to-
gether, see Figure 26b. With low SNR values, it is necessary to use linear demodulation.

and then with two subjects in front of the transmitter. The performances of the
multiantenna spatial methods were evaluated based on the obtained SNR gain, and

vital sign estimation success rate. The results were compared to the case of using
only one receiver.

5.4.1 Results for Beamforming on One Subject

The beampatterns and operation of the three different beamforming techniques in
multiantenna vital sign monitoring are shown in Figure 30. As can be seen in Figure
30a, the conventional matched filter beamformer and robust Capon beamformer are
able to correctly steer their beampatterns to the direction of the subject. In contrast,
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Figure 30: Beampatterns of MFB, MVDR, and RCB with a) 2 receiver antennas, and
b) 8 receiver antennas under SNR;, = 2 dB. Red line represents the approximate angular
location of the subject. A two antenna array has only one degree of freedom for signal
enhancement or interference cancelling. With multiple receivers, the MVDR tries to place
a null in the direction of the signal of interest due to the robustness issues discussed in
Section 4.3.2.

when the estimated signal DoA contains error, the MVDR beamformer tries to place
a null in this direction due to the robustness issues that were discussed in Section
4.3.2. As a result, the MFB and RCB are able to enhance the signals carrying the
vital signs, whereas the MVDR sees the signals as interference and attenuates them.
Although the problems with MVDR are not that significant with using only two
receivers, increasing the number of receive antennas emphasizes its unrobustness,
as can be seen in Figure 30b. Consequently, the following performance analysis is
focused on the two former beamforming techniques.

The results of applying the presented beamforming techniques for estimating the
vital signs of one subject are shown in Figure 31. Using the beamforming techniques
with two closely spaces receivers may improve the receive output SNR by up to 3
dB, as is seen in Figure 31a. This is almost equivalent to the SNR gain obtained by
adaptive noise cancellation techniques, such as the MRC. Furthermore, increasing
the array aperture by adding more receivers gives a better angular resolution and
more degrees of freedom for resolving the signal of interest and possible interfer-
ers. In addition, there is a subtle advantage of applying the RCB over the MFB,
because the former technique attempts to attenuate any directional interference
passing through the sidelobes, while the MFB simply maximizes the gain towards
the subject without any sidelobe optimization. However, with small antenna aper-
tures, that is with a small number of antennas, the difference between these two
beamforming techniques is not significant. The corresponding advantage in view of
the vital sign estimation success rate is shown in Figure 31b.



73

100 T

% g 801
N’ 7 |
« 2 O o SISOM,=1|]
Q
§~ 5t — MEBM =2 - ReBM=2]{ 5 07 —— MFBM_=2 |1
3 a I — &5 RCBM.=2 ||
o — A MFBM=4 _A- RCBM,=4 40 R
—s— MFB M,=6
of & MFBMy=6 g RCBM,=6|] 30L 2 RCE M, =6 ||
; ; ; ; 20!_@»@‘8: ; n
0 2 4 6 8 10 -10 5 10
Input SNR (dB) Input SNR (dB)
(a) (b)

Figure 31: a) MFB and RCB techniques provide a significant output SNR gain, and b)
improve the success rate of both heartbeat (dashed line) and breathing (solid line) rate
estimates.

5.4.2 Results for Directional Interference Cancelling

In addition to enhancing the vital sign signals in a particular direction by steer-
ing the receiver beampattern, the beamforming techniques may be used to cancel
directional interference, see Section 4.3.2 and 4.3.3. To evaluate the interference can-
celling capabilities of the MFB and RCB techniques, the second simulation setup
was modified to include a secondary subject, see Figure 32. To further show the
beamforming gain dependency on the angular displacement of the two subjects, the
position of the secondary subject as well as the number of receiver antennas was
varied.

The advantage of beamforming techniques in attenuating the reflections from
the secondary subject are illustrated in Figure 33. By analyzing the spectrum of a
demodulated input of only one receive antenna, see Figure 33b, it is hard to separate
the cardiopulmonary rates of the two subjects unless there is a significant difference
in the respective breathing and heartbeat rates. However, if the angular location of
the primary subject is known or estimated from the data, the multiantenna beam-
forming techniques may be used to suppress reflections from sources of interference,
see Figure 33d. Thereafter, the vital sign of the primary subject may be estimated
accurately. It was assumed in all simulations that a priori approximate knowledge
of the primary subject angular location was available. Without this assumption,
secondary subjects closer to the radar could result in significant estimation errors.

The results of interference cancelling beamforming in vital sign estimation are
shown in Figure 34. When vital sign reflections are observed from two subjects, the
single receiver SISO system with omnidirectional antenna does not have the required
angular resolution to identify different sources. With multiple receivers however, the
beamforming techniques may be used to attenuate the interference, and therefore
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Figure 32: Beamforming technique interference cancelling capabilities were evaluated
by placing a secondary subject in range of the radar system, and varying the angular
displacement between the primary and secondary subjects. Beampatterns of RCB and
MEFB are illustrated by bold solid red, and solid green lines respectively.

improve the SINR defined as

2
SINR(dB) = log,, —o, (5.4.1)
Ui+w

where o7, is the radial variance resulting from interference and white noise. The
MFB and RCB have roughly identical SINR performance in attenuating secondary
vital signs, see Figure 34a. Typically, the RCB has superior interference cancelling
capabilities compared to MFB, due to data independent sidelobes of MFB. However,
if the directional interference is not overpowering the primary signal, the MFB
and RCB techniques yield similar beampatterns as a result of focusing most of the
receiver gain towards the primary signal of interest. The skewness of receiver SINR
performance is caused by the displacement of the transmitter and receiver.

There is a clear loss in performance when the two reflection points are closely
spaced, and thus illuminated by the beampattern main lobe. This results in amplifi-
cation of both signals, thus thwarting the advantage of directional interference can-
celling. Nevertheless, since the RCB is specifically designed to enhance the primary
signal while still attenuating interference in other directions, it obtains a slightly
better interference cancelling performance compared to the MFB. Therefore, the
RCB is preferred in multiantenna applications where the primary signal is weak, or
overpowered by interference from the environment.
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Figure 33: Beamforming techniques may be used to suppress directional interference.
Figures a) and b) show the single receiver signal in both time and frequency domain,
illustrating the interference caused by the presence of a secondary subject vital signs.
Figures c) and d) show the respective outputs of the RCB technique applied for Mr = 6
receivers. True instantaneous primary and secondary subject cardiopulmonary frequencies
are denoted by bold solid, and solid lines respectively, SNR;, = 20 dB. There is a clear
advantage of multiantenna beamforming techniques in interference cancelling.
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6 Summary

The purpose of this thesis was to study the applicability and performance of dif-
ferent adaptive processing techniques for multiantenna vital sign estimation. To
enable accurate modeling of human vital signs, mathematical motion models were
derived for both cardiopulmonary activities based on the physiology and dynamics
of heartbeat and breathing. Also, a realistic signal propagation model was derived
for multiantenna receiver systems. Three different adaptive processing techniques
were presented to increase the reliability and dynamic range of wireless vital sign
monitoring systems. The main contribution of the thesis was the novel application
of adaptive filtering in vital sign estimation to improve the performance of multi-
antenna vital sign monitoring. Finally, a paper on the presented adaptive methods
was written and submitted to the 2013 IEEE Radar Conference [16].

The applicability and performance of these multiantenna adaptive processing
techniques were evaluated based on extensive simulations using the derived realistic
signal propagation model. Based on the simulations, the adaptive methods improve
the output SNR and success rate of vital sign estimation, and may thus be used
to increase the reliability and operation range of wireless multiantenna CW radar
vital sign monitoring systems. This section gives a brief summary of the adaptive
techniques and respective simulations, and presents discussion on applications and
practical limitations of these methods within the field of vital sign monitoring.

6.1 Discussion
6.1.1 Performance and Application of Adaptive Techniques

The simulation results showed that the presented adaptive filtering techniques pro-
vide a superior vital sign estimation performance in low SNR, as compared to simply
phase aligning the signals with MRC. The advantage of the adaptive noise cancel-
lation methods was based on the additional filter taps used to bandpass filter the
vital sign components, while still attenuating the wideband additive noise. This
advantage was emphasized when the breathing component was removed to allow
shorter transition bandwidth in the FIR filter design, thus improving the success
rate of heartbeat estimation.

Although the adaptive noise cancellation techniques were shown to have good
performance and relatively low computational complexity, the main drawback of
these methods is the problem of adaptation parameter optimization. Fortunately,
the vital sign estimation performance is not too sensitive to the choice of adaptation
parameters, although subtle differences may be achieved by careful selection of these
values. While there is no closed form solution available for choosing these values,
the main computational burden lies in pre-computing the parameters. Nevertheless,
the adaptive noise cancellation methods, unlike the spatial methods, are not that
sensitive to the receiver array geometry, but perform well even if the receivers are
widely separated.

If the receiver is disturbed by directional motion clutter, the spatial methods
outperform the adaptive filtering techniques, as the latter methods rely on temporal
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processing. Due to this limitation, they are unable to identify or separate signals in
the spatial domain. Thereby, the adaptive noise cancellation techniques are suitable
for single subject vital sign estimation applications with low background motion
clutter and moderate computational resources for parameter optimization. On con-
trary, the RCB is applicable to single source vital sign monitoring even under high
directional motion clutter, and is virtually parameter free.

6.1.2 Array Size Considerations

In practice, building a radar array operating at 24 GHz with antenna interelement
spacing A\/2 &~ 6.2 mm may impose implementation challenges. Compared to the
wavelength, the sheer physical size of the individual sensors could prohibit assembly
of such a fine array structure. However, due to recent advances in micro and nano
-scale semiconductor manufacturing technologies, there exist electromagnetic sensor
manufacturers like Fujitsu and Intel that are capable of producing antenna elements
on millimeter scale. This could eventually lead to embedding such high frequency
sensors in mobile devices such as smartphones. If these radars should become a new
emerging standard within mobile phones, the growing high demand on the sensors
could reduce the component prices, thus enabling a wider range of applications. This
happened for example with CMOS active pixel sensors in the early 1990’s when the
digital camera was irreversibly integrated to mobile phones.

Even if the price of the array sensors would become affordable, another complex-
ity and scaling issue would rise from fitting individual RF frontends behind each
array element. As opposed to fixed beampattern directional array, each antenna
element would require A/D conversion and 1Q sampling circuitry to enable any of
the adaptive signal enhancement techniques presented in this thesis. Therefore, it
is not just the size of the sensors, but one has to consider the entire radar system
when designing new applications.

An obvious solution to these physical constraints laid out by the operation fre-
quency is to use a larger antenna interelement spacing. Although the noise cancella-
tion techniques are not as sensitive of receiver geometry, see Section 5.3, increasing
antenna spacing results in undersampling for spatial methods, thus leading to alias-
ing and unwanted grating lobes. Furthermore, while the far field distance is propor-
tional to the square of array geometric dimension, increasing antenna interelement
spacing would significantly increase the minimum operation range of the array for
beamforming techniques. For example, a six element array with A/2 spacing has a
theoretical far field starting at 22.5 cm, whereas the far field for a similar array with
an increased antenna element spacing of A begins at 90 cm.

Another disadvantage of small sensors is their smaller output transmit power.
As indicated by the general radar equation (2.3.2), the maximum operation range is
highly dependent on the array to target distance and the transmitted signal power.
Therefore, a low transmit power would further constrain the efficient operation range
of the system.
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6.2 Conclusion

This thesis addressed the problem of vital sign estimation with the application of
adaptive signal enhancement techniques using multiantenna CW radar. Three adap-
tive processing techniques were proposed, along with a realistic multiantenna signal
propagation model. The goal with the adaptive techniques was to enhance the
signals carrying the cardiopulmonary micro-Doppler information through coherent
combining of multiple receive inputs, while still attenuating directional interference
and noise.

The simulation results showed that high frequency CW radar systems equipped
with multiple receive antennas may be used to address the problem of vital sign
monitoring under low SNR conditions. Also, it was shown that the proposed adap-
tive noise cancellation techniques may be used in arbitrary receiver array geometry
to provide a significant increase in vital sign rate estimation accuracy, and to enable
operation at lower SNR conditions. In contrast, in addition to the increased SNR
gain, the spatial beamforming methods relying on compact receiver geometry were
shown to provide good directional interference cancelling capabilities.

While the main challenge with online location independent healthcare services
is the lack of compact and reliable mobile medical sensors, the presented techniques
were shown to provide robust tools for accurate wireless vital sign monitoring. As
a result of the low complexity algorithms, these techniques are well applicable also
in mobile devices with limited processing power and battery lifetime. Also, as the
physical size of electronic components is constantly getting smaller, it will be possible
to embed multiantenna sensors to various devices including mobile phones.

6.3 Future Work

It was shown in this thesis that both adaptive noise cancellation and spatial process-
ing techniques can be used to improve the output SNR in a multiantenna receiver
radar system. The adaptive filter techniques were however only applied to a two
receiver radar. Thereby, future studies should focus on the advantages of concate-
nating the noise cancelling filters for more than two inputs. To further improve the
robustness and reliability of vital sign monitoring, the application of multiple trans-
mit antennas should be considered. This would allow transmit beamforming, thus
enabling more efficient use of transmit resources through focusing the transmitted
energy on the primary subject only.

Another approach to interference cancellation and separation of closely spaced
targets is to apply space-time adaptive processing techniques. These techniques
are based on spatial array processing with pulse-Doppler signals, and are applied
in for example airborne radar systems to account for radar platform motion and
suppression of directional ground clutter [60]. It would be interesting to study the
applicability of STAP in vital sign monitoring for random body movement cancel-
lation.

One further interesting approach to separating the vital sign components from
excess motion clutter in multiantenna CW radar is the application of ICA. While
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ICA has been shown to work for separating individual breathing and heartbeat
components, it would be interesting to study the advantages of ICA in random body
movement cancellation, since any interfering motion such as hand waving and head
nodding, should intuitively be uncorrelated with the cardiopulmonary activities.
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A Convergence Analysis of LMS Algorithm

This appendix gives a detailed convergence analysis of the LMS algorithm. The
LMS algorithm is based on the steepest decent approach to iteratively compute the
filter coefficients starting from an initial guess of h(0) = 0. The goal is to minimize
the MSE, see eq. (4.2.7), by updating the filter coefficients in the direction of the
negative gradient. Instead of using the true gradient, LMS employs a gradient
approximation based on the instantaneous squared error

Ve (k) ~ —2e(k)x(k), (A1)

thus resulting in an iterative update rule given in (4.2.15), which is repeated here
for convenience

h(k + 1) = h(k) — 28e(k)x(k). (A2)

A simple approach to analyze the convergence of the algorithm is to take the
expectation of the weight coefficients h(k) in (A2) after a large number of iterations,
thus yielding

E{h(k+1)} = E{h(k)} — 265 {(y(k) — h" (k)x(k)) x(k)}
— [T+ 26R,, (k)] E{h(k)} — 28, (), (A3)

where I is the identity matrix, and R,,(k) and r,,(k) are the respective instanta-
neous auto— and cross-correlation matrices. Here it is assumed that h(k) is inde-
pendent of x(k), which based on the assumption that the delay between successive
iterations of the LMS algorithm is long enough so that sample inputs vectors x(k)
and x(k + 1) are independent. This restrictive assumption can however be relieved
to allow highly correlated input samples without losing the convergence, as is shown
in [46]. Using the initial value of h(0) for the weight vector, k + 1 iterations of (A3)
will result in

k
E{h(k+ 1)} = [+ 28R (k)] h(0) =28 " [T+ 28Rue (k)] 1,y (k). (A4)

1=0

To obtain a relation for the step size parameter § and the eigenvalues of the sample
autocorrelation matrix, R, (k) can be rewritten using a similarity transformation
Q as
R..(k) = Q 'AQ, (A5)
where A is a diagonal matrix with eigenvalues of R, (k) on the diagonal
N O oo 0
0 X --- 0
e (A6)

0 0 - A
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Equation (A4) can now be expressed as

k
E{h(k+1)} = [1+28Q'AQ]"" h(0) - 28" [1+28Q'AQ] 1,y (k)

1=0

k
= Q 'I+28A]"" Qh(0) —28Q "> [I+26A) Qr,, (k). (A7)
=0

Requiring that the diagonal matrix [I + 25A] has all its diagonal elements below
magnitude of unity, the first term in (A7) vanishes as the number of iterations
Increases as

lim [T+ 26A)"" = 0. (A8)

k—o00

Convergence of the second term in (A7) can be analyzed by using the geometric
series summation formula, which will result in

k
, 1
lim ; [I+26A] = —%A‘l. (A9)

Combining (A8) and (A9), it can be seen that the weight coefficients in (A7) converge
towards the Wiener-Hopf solution of optimal weights as

lim B {h(k+ 1)} = Q'A™'Qr,, (k)
= R (k)1 (K) (A10)

LMS algorithm convergence towards the optimal Wiener solution is guaranteed
only if the step size parameter [ is set within certain limits. The previous require-
ment for the magnitude of the diagonal elements of matrix [I 4+ 25A] to be less
than unity gives bounds for 3. Since all eigenvalues of R, are positive, that is the
diagonal terms of A are positive, the bounds for g are given by

11T+ 28N\ naz| < 1, (A11)
or simply
1
—57 < B <0, (A12)

where A4, is the maximum eigenvalue of R,,.
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