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Abstract

Cognitive radio is a promising technology that improves thespectral utilisation by allowing
unlicensed secondary users to access underutilised frequency bands in an opportunistic man-
ner. This task can be carried out through spectrum sensing: the secondary user monitors the
presence of primary users over the radio spectrum periodically to avoid harmful interference to
the licensed service.

Traditional energy based sensing methods assume the value of noise power asprior knowledge.
They suffer from the noise uncertainty problem as even a mildnoise level mismatch will lead
to significant performance loss. Hence, developing an efficient robust detection method is
important. In this thesis, a novel sensing technique using theF -test is proposed. By assuming
a multiple antenna assisted receiver, this detector uses theF -statistic as the test statistic which
offers absolute robustness against the noise variance uncertainty. In addition, since the channel
state information (CSI) is required to be known, the impact of CSI uncertainty is also discussed.
Results show theF -test based sensing method performs better than the energy detector and has
a constant false alarm probability, independent of the accuracy of the CSI estimate.

Another main topic of this thesis is to address the sensing problem for non-Gaussian noise.
Most of the current sensing techniques consider Gaussian noise as implied by the central limit
theorem (CLT) and it offers mathematical tractability. However, it sometimes fails to model the
noise in practical wireless communication systems, which often shows a non-Gaussian heavy-
tailed behaviour.

In this thesis, several sensing algorithms are proposed fornon-Gaussian noise. Firstly, a non-
parametric eigenvalue based detector is developed by exploiting the eigenstructure of the sam-
ple covariance matrix. This detector isblind as no information about the noise, signal and
channel is required. In addition, the conventional energy detector and the aforementionedF -
test based detector are generalised to non-Gaussian noise,which require the noise power and
CSI to be known, respectively. A major concern of these detection methods is to control the
false alarm probability. Although the test statistics are easy to evaluate, the corresponding null
distributions are difficult to obtain as they depend on the noise type which may be unknown and
non-Gaussian. In this thesis, we apply the powerful bootstrap technique to overcome this diffi-
culty. The key idea is to reuse the data through resampling instead of repeating the experiment
a large number of times. By using the nonparametric bootstrap approach to estimate the null
distribution of the test statistic, the assumptions on the data model are minimised and no large
sample assumption is invoked. In addition, for theF -statistic based method, we also propose
a degrees-of-freedom modification approach for null distribution approximation. This method
assumes a known noise kurtosis and yields closed form solutions. Simulation results show that
in non-Gaussian noise, all the three detectors maintain thedesired false alarm probability by
using the proposed algorithms. TheF -statistic based detector performs the best, e.g., to obtain
a 90% detection probability in Laplacian noise, it providesa 2.5 dB and 4 dB signal-to-noise
ratio (SNR) gain compared with the eigenvalue based detector and the energy based detector,
respectively.
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Chapter 1

Introduction

Cognitive radio is a promising technology that improves thespectrum efficiency by allowing

the unlicensed secondary user to dynamically utilise the licensed radio bands. The ability to

detect the presence of licensed user is called spectrum sensing, which is an essential function

of cognitive radio as it gives an awareness of the surrounding radio environment that prevents

harmful interference to the licensed primary service. Traditional sensing techniques generally

consider the detection of primary signals in additive Gaussian noise with a known power. How-

ever, their test performance might be limited to the sensitivity to the uncertain noise model. To

cope with this problem, this thesis focuses on the noise robust sensing techniques, where the

cases of unknown noise power and non-Gaussian noise are taken into considerations.

In this chapter, the origin and motivations of this work are introduced in Section 1.1. Then

Section 1.2 summarises the objectives and key contributions of this thesis. Section 1.3 gives an

overview of the remaining chapters.

1.1 Motivation

1.1.1 Motivation for Cognitive Radio: Spectrum is Underutilised

Radio spectrum is a nature and important resource required for wireless communications.

Throughout the world, the utilisation of spectrum bands is regulated by government or world-

wide agencies such as the Federal Communications Commission (FCC) in United States (US)

and the Office of Communications (Ofcom) in United Kingdom (UK) etc. Traditionally, they

allocate the spectrum bands to specific uses on a long-term basis, and grant licenses for these

bands to protect the services.

Recently, there is a rapid growth in wireless communications with the users’ expectation of

being always wireless connected to a variety of services. Such ubiquitous and seamless con-

nectivity requires huge demand on new wireless services, but is challenged by the radio scarcity

1
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Figure 1.1: Measured spectrum occupancy by band over a 3-day period [1],in: (a) New York
City, with an average spectrum utilisation 13.1%; and (b) Chicago, with an aver-
age spectrum utilisation 17.1%.

as most of the available spectrum bands have been assigned over the past decades [2]. There is

limited or no spectrum left for the emerging wireless services.

On the other hand, many studies and reports have shown that the licensed spectrum bands are

in fact underutilised. For example, Figure 1.1 plots the measurements of radio frequency (RF)

utilisation from 30 MHz to 3 GHz, collected in New York City and Chicago rural areas over a

3-day period [3, 4]. The data reveal that their averaged spectrum utilisations are only 13.1% and

17.5%, respectively. Furthermore, as shown in the FCC report [5], depending on the geographic

areas, a large portion licensed spectrum bands are with low occupancy, i.e., less than 15%, for

significant periods of time. In addition, some certain bands, such as the cellular frequencies
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and the industrial, scientific and medical (ISM) radio band (used in short-range and low power

communications systems such as Bluetooth and wireless computer networks) have been very

crowded in peak times, leading to a degraded quality of service and significant interference

[1, 5, 6].

Such findings suggest that the traditional fixed spectrum allocation schemes are no longer ef-

ficient, which motivates the development of cognitive radio. By allowing the unlicensed users

(secondary users) to dynamically operate at the underutilised radio spectrum assigned to the

licensed users (primary users) [7], cognitive radio offersa solution to alleviate the spectrum

congestion problem in some certain bands and yields more usable bandwidth to support the

high data rates wireless services in next-generation communication systems.

1.1.2 Motivation for Noise Robust Spectrum Sensing Techniques

Since cognitive radio is designed to co-exist with the traditional radio systems, a key require-

ment is to enable the protection of licensed primary services. Such a task can be carried out

through spectrum sensing which refers to the ability of a cognitive radio to detect the activities

of licensed users over the frequency band of interest. In order to prevent harmful interference

to the primary service, or keep the interference at a minimallevel, sensing must be quick and

robust to track the real-time variations of the surroundingradio environment.

Sensing techniques for unknown noise power

The energy detector [8–11] is the most widely used sensing scheme due to its low implementa-

tion complexity and good detection performance. It requires the exact value of noise power to

be known and uses it to construct the test statistic and determine the test threshold. However,

the central problem of the energy detector is its sensitivity to noise variance uncertainty. If

the knowledge of noise power is not accurate, the energy detector will perform rather poorly

or become invalid due to the high false alarm probability andsignificant performance loss in

detection probability [12]. Hence, sensing methods that are invariant to the noise power are

required to be considered.

Many efficient spectrum sensing techniques have been proposed to address this issue. One

popular approach is to developblind detectors [13–17], which refers to the detection without

anyprior knowledge of primary signal, fading channel and noise parameter. Or, feature based
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detectors that do not make assumptions on known noise power [18–21] can be applied if some

features of the primary signal, i.e., second-order statistic or cyclic frequencies, are known to

the cognitive radio user.

However, as summarised in Table 2.1, Chapter 2, analytical solutions for the aforementioned

detection methods are generally difficult to obtain. In addition, for the feature based detectors,

commonly a long observation time is needed to exploit the signal features and high computa-

tional complexity is required for implementation.

Sensing techniques for non-Gaussian noise

The majority of current sensing methods consider the additive noise to be Gaussian distributed

as implied by Central Limit Theorem (CLT) and it generates mathematically tractable models.

However, another important noise source in practical wireless communication systems is man-

made [22], i.e., typically caused by the automotive ignition, electromechanical switches and

industrial thermal processes etc, which exhibits impulsive behaviour and makes the whole noise

distribution heavy-tailed. For example, a measurement of impulsive noise in a digital television

(TV) radio channel, i.e., at a central frequency of 762 MHz with 10 MHz bandwidth, has

been reported in [23]. In addition, in [24], the indoor measurement in ISM band indicates the

impulsive nature of noise. More experimental measurementsof the man-made impulsive noise

can be found in [23–26], and the references therein.

In the context of cognitive radio networks, non-Gaussian noise is a more reasonable setting as

most of its applications, e.g., cellular networks [27] and public safety networks [28] etc, are

in urban environments where man-made noise must be considered. Unfortunately, under non-

Gaussian noise, standard sensing techniques tend to yield unacceptable high false alarm prob-

ability and degraded detection probability due to the uncertain distribution of the test statistic,

requiring the design of robust sensing methods that considers the possible deviations of noise

distribution from Gaussian model.

A review of current sensing techniques for non-Gaussian noise [29–35] is given in Chapter

2, Section 2.2.2. Again, the main issue of these detectors isthe difficulty to obtain analytical

solutions. Once the Gaussian noise assumption is removed, the test statistic and its distribution

are generally complicated and depend on several unknowns. To deal with this problem, a

conventional approach is to obtain the empirical solution using the Monte Carlo method [36],
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which requires the sensing conditions to be reproducible, or assumptions on large data records

are invoked so that asymptotic results can be applied [37].

1.2 Thesis Objectives and Contributions

1.2.1 Thesis Objectives

According to the aforementioned challenges for noise robust sensing schemes, this thesis has

two main objectives:

• Develop a sensing method that is invariant to noise varianceuncertainty and achieves good

detection performance with relatively low computational complexity.

• Remove the assumption on Gaussian noise. Instead, a broad class of distributions are con-

sidered which includes Gaussian noise as a special case. Depending on different operation

conditions, develop sensing algorithms that are valid in a variety of non-Gaussian noise with-

out requirements on reproducible experiment conditions and large samples.

1.2.2 Main Contributions

The main contributions of this thesis are outlined as follows:

• An F -test based sensing method is developed by considering a multiple receiving antenna

system. The proposed approach, in which channel state information (CSI) is required, of-

fers absolute robustness against noise variance uncertainty and is relatively easy to implement.

Based on the statistical properties ofF -distribution, the accurate value for test threshold and

detection probability are derived, respectively. Simulation results show that the proposedF -

test based detector achieves a significant performance improvement compared with the energy

detector. This work has been published in 2013 IEEE International Conference on Communi-

cations (ICC) [38].

• The impact of CSI uncertainty is investigated. Theoreticalanalysis indicates when the CSI

estimate is imperfect, theF -test based detector suffers a mild performance loss in probabil-

ity of detection and its false alarm probability remains unchanged. The detection probability

can be evaluated using doubly noncentralF -distribution and a simple approximated value is

also presented to avoid its computational complexity. Thiswork has been published in IEEE
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Transactions on Wireless Communications [39].

• Two sensing algorithms, the nonparametric eigenvalue based detector and the energy based

detector, are developed for arbitrary noise types with finite power. The first one employs the

eigenstructure of sample covariance matrix and the second is an extension of the conventional

energy detector. For both detectors, the powerful bootstrap resampling techniques are applied to

estimate the test statistic’s null distribution and sufficiently accurate test thresholds are obtained

for moderate sample size. The key idea is to reuse the data through resampling instead of

repeating the experiment a large number of times. Results show the two detection methods

maintain their false alarm probability in a variety of noisetypes and demonstrate superiority

when the noise is non-Gaussian. Part of this work has been published in 2014 IEEE Global

Communications Conference (GLOBECOM) [40].

•TheF -test based detector is generalised to non-Gaussian noise.To maintain the pre-determined

false alarm probability in non-Gaussian noise, two methodsare developed to estimate the null

distribution of theF -statistic by exploiting differentprior knowledge of noise. The first modi-

fied degrees of freedom (MDOF) based approach assumes the value of noise kurtosis is known

and the result is obtained in closed form. The second approach is based on the computational

bootstrap procedure which results in minimal requirementson the noise model as only a se-

quence of noise samples is needed for training purpose. Theoretical analysis shows that both

methods yield accurate statistical approximations with moderate sample size. From numerical

results, it is observed that theF -statistic based detector maintains its target false alarmproba-

bility in various types of non-Gaussian noise, achieving performance gain compared with other

robust detectors. Furthermore, this work has general validity which can be extended to other

linear regression problems with complex number measurements. This work has been submitted

to IEEE Transactions on Cognitive Communications and Networking.

1.3 Thesis Structure

The reminder of this thesis is structured as follows:

Chapter 2

This chapter provides background knowledge about the topicof thesis. It starts with an intro-

duction to the cognitive radio technology, including its origins, key functionalities, applications

6



Introduction

and related standard activities. Then a literature review of conventional spectrum sensing tech-

niques for Gaussian noise is presented, in which the robust sensing algorithms for uncertain

noise variance are highlighted. Finally, current sensing algorithms for non-Gaussian noise are

reviewed and summarised.

Chapter 3

This chapter proposes anF -test based sensing technique by considering a multiple antenna

assisted receiver. This method uses theF -statistic as the test statistic which offers absolute

robustness against noise variance uncertainty. Statistical properties ofF -distribution are ap-

plied to derive the test threshold and detection probability, respectively. In addition, since this

approach requiresprior knowledge of the fading channel, which may be imperfect in the con-

text of cognitive radio, the impact of CSI uncertainty is described and the performance loss in

detection probability is derived.

Chapter 4

This chapter removes the conventional Gaussian noise assumption and proposes two bootstrap

based sensing techniques which can be applied to a variety ofnoise types. Firstly, a nonparamet-

ric eigenvalue based approach is proposed by exploiting theeigenstructure of sample covariance

matrix. Next, the standard energy detector is generalised to non-Gaussian noise by studentizing

its test statistic. For both detectors, bootstrap technique is used to non-parametrically estimate

the test statistic’s null distribution, leading to a test threshold that meets the target false alarm

probability. The application of bootstrap is highlighted,and its advantages and accuracy are

described.

Chapter 5

This chapter generalises the conventionalF -test based detection method to non-Gaussian noise.

Since the null distribution of theF -statistic is unknown in non-Gaussian noise, two approxima-

tion methods are proposed based on differentprior knowledge of the noise. The first approach

assumes a known noise kurtosis and approximates the null distribution by anF -distribution

with modified degrees of freedom. Then a bootstrap based method is developed which relaxes

the assumption on high order noise moments and only requiresa sequence of noise samples for

training purpose. The accuracy of both methods are described. Finally, the results are extended

to a more general linear regression hypothesis testing problem.
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Chapter 6

This chapter concludes the thesis, states the limitations and describes several interesting topics

which are potentially worthy of further investigation.
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Chapter 2

Background

Cognitive radio is a novel wireless communication approachthat addresses the issues of spec-

trum inefficiency and spectrum scarcity. In order to improvethe licensed band utilisation, it

allows the unlicensed secondary users to exploit the frequency bands in an opportunistic man-

ner [1, 2]. Since the licensed primary users have a higher priority, one key issue of cognitive

radio is to check the spectrum availability periodically and keep the interference to the primary

service at a minimal level [7]. This task requires the secondary user to have a cognition of

the surrounding radio environment, or spectrum sensing. Inthis thesis, we focus on dealing

with two challenges in spectrum sensing, namely the detection in unknown noise power and

the detection in non-Gaussian noise. Such topics have attracted researchers’ attentions recently

as the traditional sensing methods are shown to suffer from the sensitivity to the noise model

uncertainty, requiring the design of the noise robust detectors.

This chapter shall start with an overall introduction to cognitive radio technology in Section

2.1. Then a review of current spectrum sensing techniques ispresented in Section 2.2 with

particular emphasis on related works for noise robust sensing algorithms.

2.1 Cognitive Radio

As discussed in Chapter 1, cognitive radio is motivated by the fast growing demand for high data

rates and the actual poor underutilisation of licensed bands coupled with heavy overutilisation

of some certain spectrum. First proposed by Mitola in 2000 [41] , cognitive radio has emerged

as a promising technology for improving spectrum efficiencyin the past decade. In this section,

some background information of cognitive radio technologywill be provided, including its

origins, key functionalities, applications and related standard activities.
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2.1.1 Cognitive Radio Technology

Cognitive radio is initially described by Mitola [41] as“a radio or system that senses, and is

aware of, its operational environment and can dynamically and autonomously adjust its radio

operating parameters accordingly ”. More precisely, S.Haykin gives a formal definition for

cognitive ratio in [7]:

“Cognitive radio is an intelligent wireless communication system that is aware of its surround-

ing environment (i.e., outside world), and uses the methodology of understanding-by-building

to learn from the environment and adapt its internal states to statistical variations in the in-

coming RF stimuli by making corresponding changes in certain operating parameters (e.g.,

transmit-power, carrier-frequency, and modulation strategy) in real-time, with two primary ob-

jectives in mind:

• highly reliable communications whenever and wherever needed;

• efficient utilisation of the radio spectrum.”

From these definitions, we can conclude that different from atraditional radio, the cognitive

radio has two main features: the cognition capability and the reconfigurability [1]. That is,

the cognitive radio should have an awareness of the surrounding spectrum usage and have

the ability to interactively make real-time decisions about the communication plan to be used.

The procedure of how these key features interact with the surrounding radio environment is

illustrated by a cognition cycle in Figure 2.1 [1].

Cognition Capability of Cognitive Radio

The cognition capability refers to the ability of cognitiveradio transceiver to capture the avail-

able spectrum band, analyse the information and make an action by transmitting signals. For

more details, it corresponds to the three components in Figure 2.1:

• Spectrum sensing/Database access. A key issue of cognitiveradio is to protect the primary

users from interference as they have a higher priority for spectrum utilisation. The incumbent

protection can be carried out through either spectrum sensing or database access. The former

one is a conventional approach in which the secondary users are required to sense the spectrum

periodically to keep the interference at a minimal level. Asshown in Figure 2.2, the secondary

users may cause interference to the primary user even if theyare outside the coverage of primary

transmitter. Hence, spectrum sensing is required to have a much higher detection sensitivity
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Figure 2.1: Functional cycle of cognitive radio [1].

than the conventional detectors. The database access is another way recommended in current

rules for the opportunistic use of TV band [42, 43]. In such rules, the channel availability is

determined by checking an authorised database, but the research on sensing is still encouraged

for spectrum efficiency improvements and further dynamic access beyond TV bands.

• Spectrum analysis. Given the spectrum band of interest, spectrum analysis aims at providing a

completed interpretation about the spectral opportunity and estimating the channel capacity for

use by the secondary user. The former one intends to create the potential spectral opportunity

by exploiting more dimensions. For example, in addition to the conventional spatial, time and

frequency domains, the spectral opportunity can also be found in the angle dimension by using

the beamforming technique, allowing the secondary user andprimary user to simultaneously

utilise a spectrum band [45]. Another task for spectrum analysis is to estimate the channel

capacity through the feedback link between the cognitive radio transceiver and secondary user

[7], i.e., as shown in Figure 2.2. These spectral characteristics, i.e., status and capacity, will be

passed into the next decision step.

• Decision. According to the outcomes of the above procedures, a set of transmission actions

will be taken, including the choice of appropriate spectrumband, modulation schemes, data

rate and transmission power, etc. At the same time, all theseparameters are gathered to be

configured, preparing for the next upcoming transmission.
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Figure 2.2: Illustration of coverage and protection area of primary transmission [44].

Reconfigurability of Cognitive Radio

Another key feature of cognitive radio that distinguishes itself from the conventional commu-

nication systems is the reconfigurability. That is, the cognitive radio should be able to adapt

its transceiver parameters to the surrounding radio environment [7]. Traditional radio network,

which uses fixed spectrum allocation schemes, is usually designed to operate at a specified

spectrum band with respect to certain communication protocols. Such rules cannot be applied

to cognitive radio network as the spectrum is only temporarily assigned to the secondary user

and must be returned if the primary user becomes active. Hence, according to the spectral op-

portunity, a cognitive radio should have the mobility to be reprogrammed at various frequency

bandwidths with different locations and sizes. Moreover, acertain communication protocol is

no longer sufficient for the dynamic spectrum access. Instead, when a new spectral opportu-

nity emerges, a cognitive radio terminal should be able to switch to an appropriate protocol

by adjusting the modulation schemes etc. Furthermore, the transition of spectrum band and

adjustment of communication technologies should be fast and smooth in order to guarantee a

seamless wireless connectivity. Therefore, hardware devices that can provide continuous allo-

cation of spectrum are required, which poses further challenges [46].
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2.1.2 Cognitive Radio Applications

Due to the ability to adapt to the surrounding spectral environment, a cognitive radio can co-

exist with a variety of wireless communication systems. Some of the major applications are

listed as follows:

• Cellular networks. The use of cellular networks is undergoing a fast growth in recent years

with the dramatical development of mobile internet requiring massive data connections, any-

where and anytime. This brings bandwidth challenges to the cellular network as it is easily

to be overloaded. For example, the hotspot used in public places generates a large amount of

data in a small area, which causes heavy data traffic in certain spectrum. Moreover, there also

exist coverage issues for cellular network in some places, especially in rural areas. Facing those

challenges, cognitive radio may offer solutions by openingthe unlicensed spectrum opportunis-

tically [27]. For instance, in certain urban area where the spectrum is overloaded, the data could

be offloaded to the new available frequency bands from other licensed holders. In rural areas

where the cellular network is not available for the cost issue, users can temporally operate at a

leased band, such as the abundant TV channels, leading to a more efficient spectrum usage.

• Public safety network. Nowadays, the wireless communications are widely used by public

safety users for a fast emergency service access, i.e., police and emergency medical aid. In or-

der to ensure an efficient communication between the commandcentre and workers/users, the

wireless services (voice, message, picture transfer and email etc.) are expected to be available

at arbitrary time and location. Such requirements conflict with the current limited frequency

resources allocated to the public safety [28]. In coping with this problem, cognitive radio

technology can be applied with an appropriate spectrum coordination standard that allows the

emergency workers to use additional spectrum if necessary.For example, the emergency re-

sponders could roam on an unoccupied TV spectrum or other potential bands in an area where

more capacity is required to operate the public safety network.

• Machine-to-machine communications. Machine-to-machine(M2M) communications, char-

acterised by the full automation among intelligent machines, is an emerging communication

technology that offers ubiquitous connectivity between networked devices for exchanging in-

formations without human intervention [47]. It is expectedthat a large amount of connected

devices will exist in the near future, i.e., 50 billion networked devices are predicted to appear

by 2020 [48]. With such a vast amount of connected devices, many issues such as spectrum

13



Background

Licensed 

spectrum 

New available spectrum 
e.g., unoccupied TV channel 

Base station 

Spectrum  

aggregation & allocation 

Cognitive 

radio users 

Figure 2.3: The application of cognitive radio.

congestion and interference will arise as the exchange of information could be between the sen-

sor, the decision maker and the action executer. Cognitive radio technology can be applied to

effectively overcome those challenges [49]. Through opportunistically exploiting the available

spectrum across both the licensed and unlicensed bands, theM2M network can support the

required data transmission for automatic inter-connectivity in a larger scale, and an improved

quality of service can be expected as the cognitive radio technology enables the selection of

better propagation bands.

In Figure 2.3, a typical cognitive radio application network is illustrated. This point-to-multipoint

communication scheme is used in IEEE 802.22 standard [50], in which a base station configures

the spectrum to operate and manages multiple cognitive radio users.

Standardisation activity in cognitive radio

Currently, the major applications of cognitive radio technology are in the unused TV spectrum,

namely the TV white space (TVWP). The idea of opportunistic access of TV channel was first

proposed by the US FCC in 2003 [51] and a number of standardisation activities have been

developed over the past decade. For example, FCC has released the final rules for the dynamic

access in 470-790 MHz TVWP [42] in 2010, and some related standards, i.e., IEEE 802.22
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[50], IEEE 802.11af [52] and IEEE DySPAN [53] etc, have been published or are in develop-

ment. Meanwhile, in 2012, the Ofcom in UK has released its decision to open the unused parts

of TV spectrum, i.e., over the 470 to 790 MHz frequency band, and the corresponding imple-

mentation issues are planed to be completed by the end of 2015[43]. In addition, the Electronic

Communications Committee (ECC) in Europe has also published a number of reports regarding

the technical principles for the operation of unlicensed wireless services in TVWP [54, 55].

2.2 Spectrum Sensing Techniques

As mentioned above, spectrum sensing is one of the most important tasks of cognitive radio

technology as it provides an awareness of the surrounding radio environment and enables sec-

ondary user to occupy the spectrum holes without interfering with the primary transmission.

The problem of interest for spectrum sensing is to decide whether the primary users are active or

not over a particular frequency band and geographical area.It can be formulated as a hypothesis

testing problem, where the null hypothesisH0 and the alternative hypothesisH1 denote the

absence and the presence of primary user, respectively. In the simplest form, we want to test

the following binary hypothesis:

H0 : y (l) = w (l) ,

H1 : y (l) = x (l) + w (l) , l = 0, 1, ..., L − 1, (2.1)

wherey (l) is the observed baseband signal with sample sizeL. x (l) = hs (l), i.e., one receiv-

ing antenna is considered, is the faded primary signal, wheres (l) denotes the signal transmitted

by the primary user andh is the channel coefficient between the primary transmitter and sens-

ing device. Generally, a block fading channel is consideredwhich means thath is assumed to

be constant during the sensing interval. The additive whitenoisew (l) is assumed to be inde-

pendent and identically distributed (i.i.d.), with zero-mean and varianceσ2
w. Note thatσ2

w is

also called noise power in this thesis. Moreover, it is worthmentioning that most of spectrum

sensing schemes are designed for one primary signal source.

Note that the signal model in (2.1) is only an example and the observed signal may be vectorial,

depending on the operation conditions. Throughout this thesis, lowercase and uppercase bold-

face letters are used to represent vectors and matrices, respectively. For instance, if a receiver

15



Background

; .T Do not reject the null hypothesisg£ ; .T Reject thenull hypothesisg>

Detection probability 

False alarm probability 

g

PDF of T under the null hypothesis PDF of T under the alternative hypothesis

 

P
ro

b
a

b
il

it
y

 d
e

n
si

ty
 

 

Figure 2.4: A schematic diagram of the hypothesis testing problem in (2.2).

antenna array with sizeM is applied, theny (l) = [y1(l), y2(l), . . . , yM (l)]T will be used to

represent the vectorial observation, whereyi (l) (i = 1, 2, ...,M ) stands for the scalar response

at theith receiver antenna and[·]T represents transpose operation.

To test the null hypothesisH0 against the alternative hypothesisH1, generally it takes the form:

T
H1

R
H0

γ, (2.2)

whereT denotes the test statistic constructed from the observations and several known param-

eters. The scalarγ is the pre-determined test threshold to ensure a target significance value

which is called false alarm probability in spectrum sensing. The performance of the binary test

(2.2) is summarised by its false alarm probability (Pf ) and detection probability (Pd), which

are defined as follows:

Pf = Pr(T > γ|H0), (2.3)

Pd = Pr(T > γ|H1). (2.4)

A schematic diagram for the hypothesis testing problem (2.2) is shown in Figure 2.4, where

the two distributions denote the probability density function (PDF) of the test statistic under

H0 andH1, respectively. It can be observed that the detection probability depends on the value

of the test threshold, which is related to the required falsealarm probability, and the distance

between the two PDFs.
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In the context of cognitive radio,Pf denotes the probability that an idle spectrum is falsely

ignored, which leads to a spectral loss. On the other hand,Pd determines the percentage of

the occupied spectrum that is truly detected, which avoids harmful interference to the primary

service. In the design of spectrum sensing techniques, we should keepPf under a pre-specified

level and choose the test statisticT to makePd as large as possible.

2.2.1 Conventional Spectrum Sensing Techniques

Gaussian noise is a conventional noise model applied in current spectrum sensing literature.

Implied by CLT, it provides a good model for noise caused by natural sources [7], such as ther-

mal noise. In addition, the Gaussian noise assumption generally leads to mathematical tractable

solutions. The detection of signal in Gaussian noise, such as the hypothesis testing problem in

(2.1), is a traditional topic that has been discussed in detail in statistical books [56, 57]. The

design of spectrum sensing algorithms is related to those long established detection theories,

more than that, the background of wireless communications and cognitive radio network should

be considered. For example, the observations are generallycomplex-valued due to the modern

modulation schemes used in the primary transmission and theinformation of the primary sig-

nal is usually limited. In this section, some state-of-the-art spectrum sensing schemes will be

introduced and explained. Particularly, the robust sensing algorithms for unknown noise power

will be highlighted and a simple summary of them will be givenin Table 2.1.

Likelihood Ratio Test/Matched Filter

The likelihood ratio test is a very general approach for testing hypothesis and it is the uniformly

most powerful (UMP) test in the Neyman-Pearson (NP) sense [56], i.e., the detection probabil-

ity is maximised for a fixed false alarm probability. Definey , [y(0), y(1), . . . , y(L− 1)]T be

the set of collected samples. Given the hypothesis testing problem (2.1), it uses the likelihood

ratio as the test statistic:

T =
f (y |H1 )

f (y |H0 )
, (2.5)

wheref (y |H0 ) andf (y |H1 ) denote the PDFs ofy under the null hypothesisH0 and the

alternative hypothesisH1, respectively. Note thatT in (2.5) measures how much more likely

the observationsy are generated fromH1 thanH0. Clearly,T will be relatively large if the

alternative hypothesisH1 fits the observations better than the null hypothesisH0. We shall
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pickH1, or declare the detection of primary signals, when the ratioT is large enough to exceed

a given threshold. The likelihood ratio in (2.5) consists ofthe PDFs of the measurementsy

under both assumption models. This means that to evaluateT , all the data parameters should

be known. Recall the spectrum sensing problem in (2.1). Whenboth the signal,x (l), and the

noise power,σ2
w, are perfectly known, we obtain the likelihood ratio test asa form of matched

filter [58]:

T = ℜ
(

∑

l

x (l)H y (l)

)

H1

R
H0

γ, (2.6)

whereℜ (·) denotes the real part of a complex-valued number.

The matched filter in (2.6) is a coherent detection, and thus less sensing time, i.e.,O (1/SNR)

samples whereO (·) denotes the order notation, is needed to satisfy a given detection proba-

bility [9]. However, in the context of cognitive radio, it isdifficult for secondary user to know

all the signal and noise parameters. A more reasonable assumption is that these parameters

are partially known, or even totally unknown. More precisely, let Θk be the set that contains

unknown parameters, where the subscript,k = 1, 2, stands forH0 andH1, respectively. In

such cases, a standard method is to use maximal likelihood (ML) to estimateΘk. Although

the optimality may not be guaranteed, it turns out that the MLtechnique usually works well in

many spectrum sensing schemes.

Energy Detector

The energy detector [8, 9] is the most widely used spectrum sensing scheme due to its simplic-

ity. It needs to know the noise powerσ2
w, but no information of the primary signal is required.

To derive the energy detector using the likelihood ratio criteria, assume that the exact value of

σ2
w is known as aprior andx (l) in (2.1) is zero-mean circularly symmetric complex Gaussian

distributed with unknown varianceσ2
x. Hence, we haveΘ0 = ∅, where∅ denotes the empty

set, andΘ1 = σ2
x.

Based on the above assumptions, the distribution ofy (l) can be written in case by:

H0 : y (l) ∼ CN
(

0, σ2
w

)

,

H1 : y (l) ∼ CN
(

0, σ2
x + σ2

w

)

. (2.7)

Using ML method to estimateΘ1 = σ2
x under the alternative hypothesis and after eliminating
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Figure 2.5: Block diagram for the energy detector.

the constant terms, the maximal likelihood ratio test takesthe form:

T =

max
Θ1

f (y |H1,Θ1 )

f (y |H0 )
=

L−1
∑

l=0

|y (l)|2
H1

R
H0

γ, (2.8)

where|·| denotes the standard scalar norm. The test (2.8) is also called the energy detector as it

compares the energy of received samples with a pre-determined threshold.

A block diagram for the energy detector is shown in Figure 2.5, where the band pass filter

(BPF) is applied to select the frequency band of interest. Asshown in the Figure, the energy

detector is easy to implement as it works in a non-coherent manner that no further knowledge

of the primary signal is required. In addition, it offers a good performance, i.e.,O
(

1/SNR2
)

samples are required to meet a target detection probability[9]. Due to these advantages, the

energy detector becomes a popular choice for spectrum sensing and often acts as a benchmark

for comparison.

A major drawback of the energy detector is its sensitivity tonoise variance uncertainty [59],

which refers to the mismatch between the exact value of noisepowerσ2
w and its estimate. Note

that we needσ2
w to set the threshold of the energy detector as its test statistic’s null distribution

depends on it. The real value ofσ2
w is usually unknown and the threshold in (2.8) is obtained

by replacing the noise power with its estimate. However, even a small amount of estimation

error will lead to a significant performance loss and make theenergy detector become invalid

[12]. An example can be found in Figure 3.6, Chapter 3. It can be observed that under noise

variance uncertainty, the detection probability of the energy detector degrades severely and the

false alarm probability far exceeds the target value.

This drawback of the energy detector motivates the researchfor robust detection methods. One

solution is to find a detector setting the test threshold independent of the noise power, such as

the Generalised Likelihood Ratio Test (GLRT) based detector and eigenvalue based detector,
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Figure 2.6: Comparison of detection algorithms using likelihood ratioprinciple.

which will be discussed later.

Generalised Likelihood Ratio Test (GLRT) based Detector

A GLRT based detection is usually considered when all the parameters are unknown. Hence,

it offers absolute robustness against noise variance uncertainty. In the context of spectrum

sensing, the GLRT based detection generally requires multiple receiving antennas as the ML

estimates ofΘ1 for data model (2.1) need to exploit the inherent structure of sample co-

variance matrix [15–17]. Suppose a sensing device comprises M receiving antennas. Let

y(l) = [y1(l), y2(l), . . . , yM (l)]T be the baseband signal vector at the receiver antenna array,

which can be written as:

H0 : y (l) = w (l) ,

H1 : y (l) = x (l) +w (l) , l = 0, 1, ..., L − 1. (2.9)

DefineY , [y(0),y(1), . . . ,y(L− 1)] be the collected sample set. By using the ML method

to estimate all the unknowns, the GLRT based detector takes the form:

T =

max
Θ1

f (Y |H1,Θ1 )

max
Θ0

f (Y |H0,Θ0 )

H1

R
H0

γ. (2.10)
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In [17], the signal part of the observationx (l) was considered as a Gaussian distributed variate

with zero-mean and unknown covariance, i.e.,x (l) ∼ CN (0,Rx) whereRx , E
[

x (l)x (l)H
]

.

Then the hypothesis testing problem in (2.9) can be converted to:

H0 : y (l) ∼ CN
(

0, σ2
wI
)

H1 : y (l) ∼ CN
(

0,Rx + σ2
wI
)

. (2.11)

By using ML to estimateΘ0 = σ2
w andΘ1 = [Rx, σ

2
w] under both hypothesis, the GLRT based

detector for (2.11) (i.e., [17]) is given by:

T =

1
M

M
∑

i=1
βi

(

M
∏

i=1
βi

)

1
M

H1

R
H0

γ, (2.12)

whereβ1 > β2 > . . . > βM denote the eigenvalues of the sample covariance matrix:

R̂y =
1

L− 1

L−1
∑

l=0

y(l)y(l)H . (2.13)

The test in (2.12) is also called the AGM detector as its test statistic computes the arithmetic-

to-geometric mean of sample eigenvalues. Although the AGM detector isblind, results in [17]

show that it achieves a better detection performance compared with the energy detector with

noise variance uncertainty.

Note that the AGM detector treats theRx in an unstructured manner. A more specified signal

structure was considered in [15, 16], where the data model underH1 is expressed as:

H1 : y (l) = hs (l) +w (l) , l = 0, 1, ..., L − 1. (2.14)

Here, the primary signals (l) is characterised by an i.i.d Gaussian random variate with zero-

mean and varianceσ2
s , i.e.,s (l) ∼ CN

(

0, σ2
s

)

. Then the covariance ofx (l) = hs (l) can be

written asRx = hhHσ2
s , and we haveΘ0 = σ2

w andΘ1 = [h, σ2
s , σ

2
w]. The consequent GLRT

detector for testing:

H0 : y (l) ∼ CN
(

0, σ2
wI
)

H1 : y (l) ∼ CN
(

0,hhHσ2
s + σ2

wI
)

(2.15)
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is (i.e., [15, 16]):

T =
β1
M
∑

i=1
βi

H1

R
H0

γ. (2.16)

Compared with the AGM detector, the test in (2.16) has an improved detection performance

as it exploits the rank one property ofRx. Moreover, the GLRT can be further adapted to a

multiple-input multiple-output (MIMO) system [60] and uncalibrated receivers [61].

For the aforementioned detection algorithms using likelihood ratio principle, i.e., based on data

model (2.1), there exists a trade-off between the detectionperformance and robustness against

parameter uncertainty. As shown in Figure 2.5, the matched filter performs the best, but has the

lowest robustness as it needs all the parameters to be known.While the GLRT detector has a

relatively lower detection performance but enjoys the highest robustness as no information of

the signal, channel and noise power is required.

Eigenvalue based Detector

As shown in the GLRT based detector, sometimes the primary signal imparts a specified struc-

ture to the sample covariance matrix that can be utilised. This happens when a multiple antenna

assisted receiver is applied, or if the signal is oversampled [13]. Unlike the GLRT based detec-

tor, the eigenvalue based detector treats the signal as if its structure is unknown. For example,

without the knowledge of the rank ofRx, we assume it is either rank-deficient or full rank but

non-white. In such cases, whenL → ∞, the sample covariance matrix̂Ry underH0 has equal

eigenvalues aŝRy → σ2
wI; but forms differently whenH1 is true asR̂y → Rx + σ2

wI. By

using this property, the well-known maximum-minimum eigenvalue (MME) detector proposed

in [13] is:

T =
β1
βM

H1

R
H0

γ. (2.17)

Note that both the MME and the GLRT based detectors exploit the eigenvalue properties of

sample covariance matrix. The difference is that the MME detector only uses the autocorrela-

tion of primary signal, while the GLRT based detectors also take the potential signal structure

into account. Clearly, the MME detector will have relatively poor performance if the signal

structure is known. Moreover, for these eigenvalue based detectors, analytical solutions for the

test thresholds are difficult to obtain or require high computational complexity [62]. Although

the empirical results can be obtained using the Monte Carlo method [36], it requires the sensing
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Figure 2.7: OFDM signal structure.

conditions to be reproducible. In addition, the simple asymptotic results derived from random

matrix theory are shown to differ significantly from the exact value if the number of receiving

antennas and the data samples are limited [63].

Feature based Detector

In the context of spectrum sensing, feature based methods refer to the detection of primary sig-

nal by exploiting its known statistical properties. The signal features, which are commonly seen

in the man-made case, are a result of the adding of coding, theinsertion of pilot or the modula-

tion scheme used at the transmitter etc. For example, the orthogonal frequency-division multi-

plexing (OFDM) modulation contains cyclic prefix (CP), which refers to adding a sequence of

symbol repetition at the end, for eliminating the inter-symbol interference. Moreover, most of

communication systems add pilot to the transmitted signal for assisting the dedicated receivers.

Doing these result in distinct signal features that can be used by detectors. In general, the fea-

ture based spectrum sensing schemes can be categorised intothe second-order statistic based

detector [19, 64, 65] and the cyclostationarity based detector [66–68].

• Second-order statistic based detector

The second-order statistic based detector, as its name indicates, makes the decision based on the

second-order statistic of the received signal. It relies onthe fact that the transmitted signal has

a correlated structure while the white noise does not. For example, consider an OFDM signal

with a CP, as shown in Figure 2.7. LetLs be the size of OFDM symbols, which is equivalent to

the number of sub-carriers, andLc be the length of CP symbols. Again, assume the transmitted

primary symbols are i.i.d with zero-mean. In this case, the autocorrelation function (ACF) of

the received signal in (2.1):

ry (l, τ) , E [y (l) y (l + τ)] (2.18)

is time-varying and periodic inl as it is non-zero only at lagτ = Ls for some value ofl.

Assuming thatLs andLc are known, this CP based non-stationary property of ACF can be
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utilised by detectors for identifying primary signals [18,19, 69].

In addition to the CP, another repetition structure we can used is the pilot [70], which is often

inserted to signal at the transmitter for assisting the dedicated receivers, channel estimation and

synchronisation purpose. Detectors based on the pilot induced structure have been proposed

in [64, 65]. Interestingly, the results in [64] show that compared with the CP based method,

the pilot based approach achieves a better detection performance and is more robust to the

synchronisation error and frequency offset.

• Cyclostationarity based detector:

A more popular approach of feature based sensing is to exploit the inherent cyclostationarity

of the received signal. The cyclostationarity is caused by the periodic patterns in the signal

statistic such as the aforementioned ACF.

For example, the cyclic spectral density (CSD) function of the received signaly (l) can be

written as [71]:

Sy (ξ, ω) =
∑

τ

Ry (ξ, τ) exp (−jωτ) , (2.19)

whereRy (α, τ) is the cyclic autocorrelation (CAC) at cyclic frequencyξ:

Ry (ξ, τ) = lim
L→∞

1

L

L−1
∑

l=0

ry (l, τ) exp (−jξl) . (2.20)

Both CSD and CAC functions output peak values ifξ is the fundamental frequencies of the

primary signal. Hence, the cyclostationarity based detection can be constructed both in the

frequency domain and time domain.

Typically, cyclic frequencies are related to symbol rate, carrier frequency or modulation scheme

used in the transmitted primary signal. They can be assumed to be known [20, 21], or they

can be estimated and used for signal detection [66, 68]. Since different modulated signals ex-

hibit different inherent patterns, cyclostationarity based detection methods have the ability to

differentiate the primary signal from the noise and interference, and thus more robust. How-

ever, large data records are required to fully exploit the cyclostationarity and generally a high

computational complexity is needed for implementation as the evaluation of CSD/CAC is two-

dimensional.

Note that the uncertain noise variance problem has been considered in some feature based
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Detector REF Assumptions Closed form solutions for
test threshold

MME [13] Oversampling data model or multi-
ple receiving antennas

Analytical/Asymptotic
solutions

Zhang and
Taherpour

[15, 17] Multiple receiving antennas Analytical/Asymptotic
solutions

Chaudhari [18] OFDM primary signal with known
Ls and low SNR scenario

Asymptotic solutions

Larsson [19] OFDM primary signal with known
Ls andLc

No

Urriza [20] Multiple receiving antennas and
known cycle frequencies

Asymptotic solutions

Huang [21] At least one known cycle frequency
and one known time delay

Asymptotic solutions

Table 2.1: Summary of sensing algorithms that are robust against uncertain noise power

detectors. For example, in [18, 19], the second-order property of the CP-OFDM primary signal

is used to construct the test statistic using the likelihoodratio criteria and the ML method is

applied to estimate the unknown noise power under both hypothesis. Moreover, one can benefit

from the spectral correlation if some knowledge of the signal’s cyclic characteristics is known.

Examples can be found in [20] and [21], where the eigenstructure of cyclic covariance matrix

and large sample statistics of CAC functions were exploited, respectively.

Other Topics

We have reviewed some of state-of-the-art spectrum sensingtechniques, assuming narrowband

signals and single sensing device. There are also other topics, which are beyond the scope of

this thesis but worth mentioning.

• Wideband spectrum sensing

By contrast to the narrowband detection methods mentioned above, wideband sensing tech-

niques aim to sense a band of spectrum that exceeds the coherence bandwidth of the channel.

A standard way to solve this problem is multi-band sensing, which divides the wide band-

width into multiple sub-bands and jointly make decisions for efficient resource utilisations [11].
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However, this method requires a high sampling rate analogue-to-digital converter (ADC) as the

signal needs to be sampled at or above the Nyquist rate. Alternatively, the parallel structure

filter-bank algorithm may be used to avoid the high sampling rate [72], at the expense of in-

creasing cost of RF component. To cope with the aforementioned drawbacks, sub-Nyquist

sensing would be another solution. This method argues that the existing of primary user is

sparse in some domain, and therefore the signal can be acquired with a relatively few measure-

ments, using a sampling rate that lower than the Nyquist rate[73]. Some relevant works are

summarised in [74].

• Cooperative spectrum sensing

The basic idea of cooperative spectrum sensing is to exploitthe spatial diversity by using mul-

tiple sensing devices, making a global decision based on thecombined measurements. It can

overcome some limitations of local spectrum sensing, i.e.,poor detection probability caused by

the multipath or shadowing fading, but has a high implementation complexity due to the use of

multiple devices and the consequent communication overhead. In general, current works can

be categorised into centralised and distributed sensing schemes, depending on different model

used in the fusion centre. In centralised schemes, the fusion centre collects the observations

from all the sensing devices directly [75]. Good detection performance can be obtained as the

decision is based on the whole data, but a high communicationoverhead is required. An alter-

native way is distributed sensing, where the sensing devices only send their local informations,

i.e., the test statistic or local decision, to the fusion centre, and a final decision is made by using

counting rules [76, 77] or optimisation techniques [78, 79].

2.2.2 Spectrum Sensing for Non-Gaussian noise

As mentioned above, most of the conventional spectrum sensing techniques make assumption

on Gaussian noise as it accords with the CLT and offers mathematical tractability. However,

this model is not always valid as the noise found in practicalwireless communications often

shows a non-Gaussian heavy-tailed behaviour [80]. The reason is that in addition to the Gaus-

sian distributed thermal noise, there exists artificial noise as well which is impulsive in nature

[7, 81]. In the presence of non-Gaussian noise, the performance of standard detectors becomes

unpredictable due to the uncertain null distribution of thetest statistic. Hence, the robust spec-

trum sensing methods are required to address possible deviations of the noise distribution from

a Gaussian model.
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In the literature, several spectrum sensing methods have been proposed to deal with non-

Gaussian noise. In general, the heavy-tailed noise is modelled to be a broad class of circularly

symmetric distributions which include Gaussian distribution as a special case. Depending on

the prior knowledge of noise, they fall into two categories: the detection with full or partial

noise knowledge [29, 31, 82] and the detection with unknown noise knowledge [32–35]. In this

section, they will be briefly reviewed and a simple summary ofthese detection algorithms is

given in Table 2.2.

Detection with full or partial noise knowledge

If the knowledge of non-Gaussian noise is fully or partiallyknown by the cognitive radio user,

detectors can be designed according the specified noise models.

• The authors in [29] consideredα-stable distributed noise. Theα-stable distribution, where

the characteristicα is used to control the level of heaviness, is circularly symmetric but only

has finite moments of order less thanα. By assuming anM antenna assisted sensing device,

the detection is based on thecovariation1 coefficient absolute value (CCAV) and exploits the

structure of covariation matrix that the off-diagonal elements are zero underH0 and have non-

zero value underH1. More precisely, let̂ρα,p (i, j), i, j = 1, 2, ...,M, 1 < p < α, be the

estimate of the covariation coefficient. The test is given by:

T (p) =

M
∑

i=1

M
∑

j=1
|ρ̂α,p (i, j)|

M
∑

i=1
|ρ̂α,p (i, i)|

H1

R
H0

γ (p) . (2.21)

Ideally, T (p) is around1 whenH0 holds and larger than1 if the primary signal exists. In

addition, the value ofT (p) also depends onp, which is picked by Monte Carol trails so that

the root mean error of̂ρα,p (i, j) is minimised. Since the choice ofp and the null distribution

of T (p) depends on many mathematically intractable terms, the testthresholdγ(p) cannot be

analytically expressed.

• Moreover, the authors in [82] considered the case of partially known noise knowledge. That

is, the exact noise distribution is unknown, but its statistical moments are available. Based on

1Covariation, which is analogous to covariance, desirablesthe statistical property of a process that does not exist
finite second order statistics. For the definition and more details, see [29].
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Detector REF Assumptions Closed form solutions for
test threshold

LO [31] Noise distribution is known No

CCAV [29] α-stable distributed noise No

Lp−norm [82] The channel and noise statistics are
known

No

Robust LO [31] ǫ−contaminated noise model No

Cyclic correlation [33] Cyclic frequency is known Asymptotic solutions

PCA [34] Real-valued data Analytical solutions

KS [32] Training noise samples Analytical solutions

t-sensing [35] Training noise samples and non-zero
mean primary signal

Asymptotic solutions

Table 2.2: Summary of sensing algorithms for Non-Gaussian noise

this, aLp−norm detector was proposed by invoking assumption on low SNR. This work is

originated from the LR detection, and the result is simplified by using a tunable parameterp to

adapt to the underlying noise distribution. The decision statistic is given by:

T =
1

L
σ2
h

∑

l

|y (l)|p , (2.22)

whereσ2
h denotes the power of channel coefficienth, i.e., h is assumed to a random variate

in this work, andp is obtained by solving an optimisation problem. Note that the Lp−norm

detector does not needprior knowledge about the primary signal, but the statistical moments

of the fading channel and the additive noise are required to be known.

• In addition, a locally optimal (LO) detector in NP sense was proposed in [31] for wideband

sensing. The detector assumes arbitrary noise types, but the noise distribution must be known.

The test statistic of the LO detector, expressed in frequency domain, is fundamentally a spectral

estimation function that correlates the periodogram of observations with the known or estimated

primary signal spectrum. The test statistic is complicatedso that there does not exist closed

form solutions for the test threshold.
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Detection with unknown noise knowledge

By contrast to the aforementioned parametric approaches that depend on the known noise

knowledge, some works have considered the case where the noise type is unknown, and only

minimal assumptions are made on the noise distribution.

• A feature based detector was proposed in [33]. This detectoruses a cyclic correlation esti-

mator as the test statistic, requiring at least one cyclic frequency of the primary signal to be

known. To make the detector quantitatively robust, the cyclic correlation estimator is based on

the spatial sign function, which is defined in sense of complex-valued data:

S (y (l)) =











y(l)
|y(l)| y (l) 6= 0

0 y (l) = 0
(2.23)

Then given a cyclic frequencyξ and a set of time delays,τ1, τ2, ..., τN , the decision rule is given

by:

T =
N
∑

i=1

∣

∣

∣
R̂s (ξ, τi)

∣

∣

∣

2 H1

R
H0

γ, (2.24)

where

R̂s (ξ, τi) = L

L−1
∑

l=0

S (y (l))S (y (l + τi)
∗) exp (−jξl) (2.25)

is the estimate of the sign cyclic correlation. The advantages of (2.24) are that only circularly

symmetric process is made on the noise PDF, and the asymptotic null distribution of the test

statistic has been derived. However, this detector is not fully nonparametric as it exploits the

cyclostationarity so that at least one cyclic frequency of the primary signal is required to be

known.

• In [32], a Kolmogorov-Smirnov (KS) test was proposed for nonparametric signal detection,

which requires a sequence of noise samples for reference purposes. This test is a goodness-of-fit

test that quantifies the distance between the empirical cumulative distribution function (CDF) of

the observations and the CDF of the reference samples. For example, letŴ|w| be the empirical

CDF of the noise magnitude, and̂W|y| be the empirical CDF of the observation magnitude. The

test uses the largest absolute distance between the two CDFsas the goodness-of-fit statistic:

T = max
z

∣

∣

∣
Ŵ|y| (z)− Ŵ|w| (z)

∣

∣

∣

H1

R
H0

γ. (2.26)
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Equation (2.26) has an explanation that we will rejectH0 when the deviation between the

underlying distribution of the observations and the reference is larger than a given threshold.

This test is easy to implement as no knowledge of the primary signal and the noise characteristic

is required, and there exists numerical tables for computing the test threshold. In addition, the

reference noise only samples are also achievable, i.e., they can be collected when the primary

user is known for sure to be absent.

• Again, by assuming a sequence of noise samples is available,a asymptotically robustt-

sensing was proposed in [35] to detect the non-zero mean primary signal. Initially derived in

Gaussian, this detector is fundamentally a test of whether the mean of collected samples is equal

to the mean of reference noise samples. Since the test statistic is asymptotically Gaussian, the

t-sensing is asymptotically nonparametric and can be applied to non-Gaussian noise when the

sample size is sufficiently large.

• A different path was considered in [34]. By considering a multiple antenna equipped receiver,

a nonparametric polarity-coincidence-array (PCA) based detector was proposed, requiring no

knowledge on the primary signal and noise characteristics.However, the detector is derived

and discussed for real-valued measurements.

• In addition, a robust LO detector was also proposed in [31] byassuming the noise consists of

100 (1− ǫ)% Gaussian and100ǫ% unknown non-Gaussian parts. In this case, the initial spec-

tral estimator is invalid and the authors propose a robust method by formulating a non-linear

cost function that minimises the impact brought by the unknown non-Gaussian distributions.

Results in [31] show that the robust approach performs slightly worse than the LO NP detector,

but is nonparametric at the cost of increasing computational complexity.

As summarised in Table 2.2, most of the aforementioned detection methods are parametric or

make assumptions on a specific signal type. Another concern is the selection of a test threshold

is generally difficult as the test statistic’s null distribution may be complicated and unknown in

non-Gaussian noise.

2.3 Conclusion

In this section, we presented a literature review of the state-of-the-art spectrum sensing tech-

niques, providing a background knowledge for the rest of thethesis. In particular, related
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works for noise robust sensing algorithms have been highlighted and summarised in Table 2.1

and Table 2.2. In Chapter 3, we shall propose a novelF -test based detector to cope with the

sensing problem in noise variance uncertainty. Under a Gaussian noise assumption, this detec-

tor is equivalent to the maximal likelihood ratio test. Thenin Chapter 4 and Chapter 5, several

robust sensing methods for non-Gaussian noise will be developed and the nonparametric boot-

strap technique will be applied to avoid making assumptionson large samples or reproducible

experiment conditions.
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Chapter 3
F -test Based Spectrum Sensing

3.1 Introduction

The energy detector [8] is the most widely used sensing scheme due to its good detection perfor-

mance and low implementation complexity. However, it requires accurate knowledge of noise

power and even a mild noise variance uncertainty will lead tofundamental limit on its detection

performance [12, 59]. As illustrated in Figure 3.6, in the presence of noise variance mismatch,

the high false alarm probability and significant performance loss in detection probability will

make the energy detector invalid.

To cope with this problem, most current research focuses onblind sensing schemes, which refer

to the detection without knowing any knowledge of the transmitted primary signal, the channel

coefficient and the power of the additive noise. They commonly assume a receiver antenna

array so that the eigenstructure of the sample covariance matrix behaves differently under the

null hypothesis and the alternative hypothesis. For example, a MME detection was proposed

in [13], which assumes that when primary signal exists, the ratio of maximum eigenvalue to

minimum eigenvalue will be relatively larger than for the noise only case. Another method is

to construct the test statistic using likelihood ratio principle [56]. Given a specified data model,

one uses the maximal likelihood to estimate all the unknownswhich yields the well-known

GLRT based detector [15–17]. As discussed in Chapter 2, the test statistics for those detectors

are all functions of eigenvalues and the corresponding testthresholds may have to be evaluated

empirically, as the closed form analytical solutions are generally difficult to obtain and the

asymptotic results invoke assumptions on large data records and large array size. In addition,

they are subject to limited test performance.

On the other hand, signal features can be considered in the design of detection criterion if the

primary signal has some known statistical properties. For example, the detectors derived in [18,

19] exploit the non-stationary property of CP-OFDM signal without knowing the knowledge

of noise power. In addition, many man-made signal give rise to a cyclostationarity property

that can be utilised, requiringprior knowledge or accurate estimate of cyclic frequencies. The
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examples of noise robust detectors using this property can be found in [20] and [21], where the

eigenstructure of the cyclic covariance matrix and large sample statistics of the CAC functions

are exploited, respectively. Compared with theblind detectors, the feature based detection

methods offer a better detection performance by exploitingthe inherent structure of primary

signal. The cost is that they can only be applied to a specifiedsignal type and generally high

computational complexity is required for implementation.

In summary, most current detectors are sensitive to noise variance uncertainty or subject to

limited test performance and high computational complexity. In this chapter, a novel multiple

antenna assistedF -test based sensing technique is developed, which offers absolute robustness

against noise variance uncertainty and is relatively easy to implement. It requires the CSI as

prior knowledge, which may be imperfect due to the lack of reciprocal communication standard

between the primary and secondary systems. Hence, the impact of channel uncertainty also

needs to be addressed. The main contributions of this chapter are summarised as follows:

• An F -test based detection scheme is proposed. By taking the CSI as prior knowledge, the

F -statistic is derived using likelihood ratio principle with all the unknowns estimated via ML

method. It is insensitive to the noise variance uncertaintyas no information of noise power is

required.

• The test statistic follows anF -distribution under the null hypothesis and a noncentralF -

distribution under the alternative hypothesis. Given a target false alarm probability, the exact

value of test threshold and probability of detection are derived based on the statistical properties

of F -distribution.

• The impact of channel uncertainty is investigated. Resultsshow that theF -test based detector

has constant false alarm probability, independent of the accuracy of channel estimation. The

detection probability under imperfect CSI can be calculated using the doubly noncentralF -

distribution. To avoid computational complexity, a simpleapproximated value for the detection

probability is also presented.

• Simulation results show that the proposedF -test based detector achieves a significant perfor-

mance improvement compared with the energy detector. In addition, it offers robustness against

noise uncertainty and suffers a mild performance loss underimperfect CSI.

The remainder of this chapter is structured as follows. The signal model for multiple antenna

33



F -test Based Spectrum Sensing

Figure 3.1: SIMO network used for spectrum sensing.

assisted spectrum sensing is described in Section 3.2. Section 3.3 introduces and derives the

F -test. In Section 3.4, theF -test based detector is proposed, and its test threshold anddetection

probability are derived, respectively. Then the impact of CSI estimation error is discussed in

Section 3.5. Simulation results are presented in Section 3.6. Finally, Section 3.7 concludes this

chapter.

3.2 System Model

Consider a single-input multiple-output (SIMO) network asshown in Figure 3.1, where there is

only one primary user and the cognitive radio transceiver isequipped withM antennas to sense

the surrounding radio environment1. Note that the multiple receiver system is applied as it is

less sensitive to multipath fading effects on the primary-secondary user channel and theF -test

based detector can be applied to such system.

In spectrum sensing, we aim at finding the idle spectrum band unoccupied by the primary user

within the range of secondary users. As discussed in Section2.2, Chapter 2, the detection of

1TheF -test can be easily extended to the case of multiple signal sources. In this work, SIMO network is applied
for simplicity. In addition, spectrum sensing schemes are generally considered and designed for one primary signal.
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primary user can be formulated as a hypothesis testing problem: the null hypothesisH0 implies

that the primary user is not active; and the alternativeH1 implies that the primary user is active.

Let y(l) = [y1(l), y2(l), . . . , yM (l)]T , (l = 0, 1, . . . , L − 1), denote the sizeM baseband

signal vectors at the receiver antenna array withL denoting the sample size. Then the spectrum

sensing problem can be expressed as the following hypothesis test:

H0 : y (l) = w (l) ,

H1 : y (l) = hs (l) +w (l) , l = 0, 1, ..., L − 1, (3.1)

wheres(l) denotes the transmitted primary signal symbol at time instant l, which is assumed to

be unknown and deterministic. The fading channel between the primary user to cognitive radio

transceiver is represented by the known CSI vectorh = [h1, h2, . . . , hM ]T . We assume thath

stays constant during the sensing period. The noise vectorw(l) = [w1(l), w2(l), . . . , wM (l)]T

is characterised by an i.i.d complex Gaussian variate with zero-mean and covariance matrix

σ2
wI, i.e.,w(l) ∼ CN (0, σ2

wI), whereσ2
w is unknown.

Since there is no existing reciprocal communication standard between primary and secondary

systems, the problem of estimating the CSIh is still an open question. One solution to this

problem was suggested in [10, 11, 83, 84]: the knowledge of CSI is acquired from the periodi-

cally transmitted pilot when the primary transmitter is active. Moreover, the authors in [84–86]

developed joint estimation based sensing schemes in which the fading channel can be recur-

sively estimated for improved sensing performance. The impact of CSI estimation mismatch

will be discussed later in Section 3.5.

3.3 Preliminaries ofF -test

The F -distribution is formed by the ratio of two independent chi-square variates [87], with

each one divided by its degrees of freedom. Since it arises from chi-square, theF -distribution

is characterised by positive values and non-symmetric distribution. TheF -test is a statistical

test in which the test statistic follows anF -distribution under the null hypothesis [88]. It is

designed to find out whether the two population variances areequal using the ratio of two

sample variances as the test statistic. So, if the null hypothesis is true, the test statistic should

be near1. We shall reject the null hypothesis when the ratio of variances is large enough to

exceed a given threshold.
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TheF -test acts as an efficient tool for the hypothesis testing problems in regression analysis.

Under a Gaussian error/noise assumption, it is equivalent to the maximal likelihood ratio test

[88] and is thus optimal in the Neyman-Pearson sense [56]. Inthe following, we shall develop

theF -test using the likelihood ratio principle.

Based on the signal model (3.1), the distribution of received datay(l) can be written in case by:

H0 : y (l) ∼ CN
(

0, σ2
wI
)

,

H1 : y(l) ∼ CN
(

hs (l) , σ2
wI
)

. (3.2)

DefineY , [y(0),y(1), . . . ,y(L − 1)] be the sample set. We apply the likelihood ratio prin-

ciple to construct the test statistic:

TLR = max
s(l),σ2

w

L
(

Y
∣

∣H1, s(l), σ
2
w

)

− max
σ2
w

L
(

Y
∣

∣H0, σ
2
w

)

, (3.3)

where

L
(

Y
∣

∣H0, σ
2
w

)

= −ML ln
(

πσ2
w

)

− 1

σ2
w

L−1
∑

l=0

‖y(l)‖2 , (3.4)

L
(

Y
∣

∣H1, s(l), σ
2
w

)

= −ML ln
(

πσ2
w

)

− 1

σ2
w

L−1
∑

l=0

‖y (l)− hs (l)‖2 , (3.5)

are the concentrated log-likelihood functions underH1 andH0, respectively.‖·‖ denotes the

Euclidean norm of a vector.

By taking derivative ofL
(

Y
∣

∣H0, σ
2
w

)

with respect toσ2
w, we obtain the maximal likelihood

estimate (MLE) ofσ2
w under the null hypothesisH0:

σ̂2
w,H0

=
1

ML

L−1
∑

l=0

‖y(l)‖2 . (3.6)

Similarly, we obtain the MLE ofs(l) andσ2
w underH1:

ŝ(l) = h†y(l), (3.7)

σ̂2
w,H1

=
1

ML

L−1
∑

l=0

y (l)H (I−P)y (l) , (3.8)
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Figure 3.2: Block diagram of theF -test with degrees of freedomn1 andn2 [56].

whereh† ,
(

hHh
)−1

hH denotes the pseudo-inverse ofh andP = h(hHh)−1hH represents

the projection onto the subspace spanned byh. Note that the solution to (3.5) is evaluated

separately, where we maximise overs(l) to obtain a function ofσ2
w first and then maximise

overσ2
w to get the whole solution.

Substituting the ML estimates, eqs. (3.6-3.8), in (3.4) and(3.5) leads to the following closed

form optimisations:

L
(

Y
∣

∣H0, σ̂
2
w

)

= − ln
(

tr
[

R̂y

])

, (3.9)

L
(

Y
∣

∣H1, ŝ(l), σ̂
2
w

)

= − ln
(

tr
[

(I−P) R̂y

])

. (3.10)

HereR̂y = 1
L

L−1
∑

l=0

y(l)y(l)H denotes the sample covariance matrix and tr[·] represents the trace

operator which is defined to be the sum of the diagonal elements of a matrix. Subtracting (3.9)

from (3.10) leads to the following maximal likelihood ratiotest statistic:

TLR = ln



1 +
tr
[

PR̂y

]

tr
[

(I−P) R̂y

]





= ln(1 +
n1

n2
TF ), (3.11)
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whereTF is the statistic given by:

TF =
n2

n1

(

σ̂2
w,H0

σ̂2
w,H1

− 1

)

=
n2

n1

tr
[

PR̂y

]

tr
[

(I−P) R̂y

] (3.12)

with degrees of freedom:

n1 = 2L, (3.13)

n2 = 2L(M − 1). (3.14)

As shown in the block diagram ofF -test in Figure 3.2, the statisticTF , also known as the

F -statistic, measures the ratio of the energy ofY that projects onto the subspace relates to the

primary signal,P, to the energy ofY that projects onto the orthogonal subspace,(I − P).

When the null hypothesis holds, tr
[

PR̂y

]

and tr
[

(I−P) R̂y

]

are two independent chi-square

distributed variates, and the statisticTF follows anFn1,n2-distribution with degrees of freedom

n1 andn2 given in eqs. (3.13) and (3.14) [87].

Given a target significance value, known as the false alarm probability in spectrum sensing,

theF -test then rejectH0 whenTF exceeds a pre-determined thresholdγ. Finally note that the

monotonicity of the logarithm function in (3.11) ensures the equivalence between the maximal

likelihood ratio test and theF -test.

3.4 F -test Based Detector

Recall the regression data model (3.1). Given the observation Y and CSI vectorh, we apply

theF -test to detect the existence of primary signal. As discussed above, the decision rule is

given by:

TF =
n2

n1

tr
[

PR̂y

]

tr
[

(I−P) R̂y

]

H1

R
H0

γ, (3.15)

where the test thresholdγ is selected to ensure a target probability of false alarm. Note thatTF

can be seen as an estimate of the increased SNR induced by the primary signal [89]. Therefore,

the decision rule (3.15) has an interpretation that we will accept the alternative hypothesisH1,
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or declare the existence of primary signal, when the SNR estimate is large enough to exceed a

given thresholdγ.

When the null hypothesisH0 holds, the test statisticTF isFn1,n2-distributed, i.e.,TF ∼ Fn1,n2.

LetWc,n1,n2 (x) be the CDF of theF -distribution with degrees of freedomn1 andn2, which is

given by [87]:

Wc,n1,n2(x) = Ik

(

1

2
n1,

1

2
n2

)

, (3.16)

wherek = n1x/ (n2 + n1x) and

Ik(
1

2
n1,

1

2
n2) =

∫ k
0 t

1
2
n1−1(1− t)

1
2
n2−1dt

∫ 1
0 t

1
2
n1−1(1− t)

1
2
n2−1dt

(3.17)

is the regularised beta function.

Then given a target false alarm probabilityα, we can obtain the test threshold through the

following relation:

α = Pr(TF ≥ γ |H0 )

= 1−Wc,n1,n2(γ). (3.18)

There are several tables ofWc,n1,n2(x) and each one corresponds to a different significance

valueα. Hence, the test thresholdγ can be easily obtained.

When the primary user is active, orH1 holds, the test statisticTF is noncentralF -distributed

[87], i.e.,TF (H1) ∼ F ′
n1,n2

(δ2). The noncentrality parameterδ2 is given by:

δ2 =

2
L−1
∑

l=0

‖hs(l)‖2

σ2
w

. (3.19)

The probability of detection is:

Pd = Pr(TF > γ|H1)

= 1−Wnc,n1,n2. (3.20)
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whereWnc,n1,n2

(

x | δ2
)

denotes the CDF of the noncentralF -distribution. It is given by [87]:

Wnc,n1,n2

(

x | δ2
)

=
∞
∑

i=0

̟i,δ2Ik

(

1

2
n1 + i,

1

2
n2

)

, (3.21)

where

̟i,δ2 = exp
(

−δ2/2
)

(

δ2/2
)i

i!
. (3.22)

It is shown thatPd is an increasing function of the noncentrality parameterδ2 [87]. From (3.19),

we can conclude that a higher probability of detection can beobtained by increasing the sample

sizeL.

It is worth mentioning that an harmonic-F test based method for spectrum sensing was dis-

cussed in [22], which is based on multitaper method to estimate the spectrum and the linear

model for settingF -test is in the frequency domain. In order to reduce the variance of spec-

trum estimate, the data is firstly windowed by a set of orthogonal eigentapers. Then given the

eigenspectra estimations and eigencoefficients (the discrete fourier transform of eigentapers),

anF test is set up to test whether a colored component (primary signal) exists or not over a

bandwidth [90]. It can be seen as a nonparametric wideband sensing and large sample size is

required to achieve reasonable performance, i.e., 2200 samples is used in [22]. The proposed

F -test based detector in this chapter, however, is based on a totally different signal model. It

assumes a multiple antenna scenario and CSI is needed to construct theF -test. Moreover, to

achieve reasonable performance, the required sample size is much smaller.

3.5 Impact of Imperfect CSI

Channel informationh is needed for constructing theF -test based method in (3.15). As men-

tioned above, it could be acquired from the periodically transmitted pilot or be jointly estimated

and updated during the sensing period. However, as shown in the data model (3.1), the fading

channelh is not be always embedded in the observations. Particularly, the received data is noise

only whenH0 holds. Hence, due to the delayed update coupled with the estimation or quanti-

sation errors, one only has access to the imperfect CSI,ĥ ∈CM×1, which can be modelled as

follows:

ĥ = h+△h, (3.23)
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where△h = [△h1,△h2, . . . ,△hM ]T denotes the uncertain term. Such uncertainty may de-

grade the performance of the proposed detector. In this section, the impact of channel uncer-

tainty will be discussed.

Test threshold and false alarm probability

The selection of test threshold depends on the target false alarm probability, which is related to

the null hypothesisH0. In this case, the received data only consists of noise so that the channel

estimate may have a significant deviation from its true value.

Note that̂h is a fixed parameter during a sensing period. Combining (3.15) and (3.12), the test

statistic under channel uncertainty can be expressed as:

TF

(

ĥ|H0

)

=
n2

n1

tr
[

P̂R̂y

]

tr
[(

I− P̂
)

R̂y

]

=
n2

n1

L−1
∑

l=0

w (l)HP̂w (l)

L−1
∑

l=0

w (l)H
(

I− P̂
)

w (l)

, (3.24)

whereP̂ = ĥ
(

ĥH ĥ
)−1

ĥH denotes the projection matrix onto the space spanned by the chan-

nel estimatêh.

Since the noise{w(l); l = 0, 1, . . . , L− 1} is complex Gaussian distributed, the test statistic

TF

(

ĥ|H0

)

isFn1,n2-distributed under the null hypothesis, with degrees of freedomn1 andn2

given by eqs. (3.13) and (3.14). Note that the characteristics of theF -distribution only relate

to the degrees of freedom [87]. As there is no change in the null distribution ofTF as well

as its corresponding degrees of freedom, the pre-computed thresholdγ will still be effective to

ensure the target false alarm probability as:

Pf = Pr
(

TF

(

ĥ
)

> γ|H0

)

= 1−Wc,n1,n2 (γ)

= α. (3.25)

In other words, theF -test based detector has constant false alarm probability,independent of

the accuracy of channel estimation.
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Detection probability

When the alternative hypothesisH1 holds, the received data consists of both signal and noise,

implying that the observations will depend on the channelh and so does the detection proba-

bility. Based on eqs. (3.15) and (3.12), when the primary signal exists, the test statistic can be

written as:

TF

(

ĥ|H1

)

=
n2

n1

L−1
∑

l=0

(hs (l) +w (l))H P̂ (hs (l) +w (l))

L−1
∑

l=0

(hs (l) +w (l))H (I− P̂) (hs (l) +w (l))

, (3.26)

which is doubly noncentralF -distribution (DNF) distributed, i.e.,TF

(

ĥ|H1

)

∼ F
′′

n1,n2

(

δ21 , δ
2
2

)

[87], with the noncentrality parameters:

δ21 =
2

σ2
w

L−1
∑

l=0

∥

∥

∥
P̂hs(l)

∥

∥

∥

2
, (3.27)

δ22 =
2

σ2
w

L−1
∑

l=0

∥

∥

∥

(

I− P̂
)

hs (l)
∥

∥

∥

2
. (3.28)

The corresponding detection probability can be obtained as:

Pd = Pr
(

TF

(

ĥ
)

> γ|H1

)

= 1−Wdnc,n1,n2

(

γ|δ21 , δ22
)

, (3.29)

whereWdnc,n1,n2

(

x | δ21 , δ22
)

denotes the CDF of DNF distribution, which is given by:

Wdnc,n1,n2

(

x | δ21 , δ22
)

=

∞
∑

i2=0

̟i2,δ22

∞
∑

i1=0

̟i1,δ21
Ik

(

1

2
n1 + i1,

1

2
n2 + i2

)

. (3.30)

For the definitions of̟ i,δ2 (̟i1,δ2 and̟i2,δ2) andIk (·) , see in eqs. (3.22) and (3.17), re-

spectively. It can be expected that the detection probability will be maximised when the perfect

channel information is available, as shown in the followingresult.

Lemma 3.1. Given a test thresholdγ, the detection probability ofF -test based detector is

maximised when̂h = h.

Proof. Combining (3.27) and (3.28), and applying the property of the projection matrix̂P, we
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have:

δ21 + δ22 =
2

σ2
w

{

L−1
∑

l=0

∥

∥

∥P̂hs(l)
∥

∥

∥

2
+

L−1
∑

l=0

∥

∥

∥(I− P̂)hs(l)
∥

∥

∥

2
}

=
2

σ2
w

L−1
∑

l=0

‖hs(l)‖2 . (3.31)

It has been shown that the probability of detectionPd given in (3.29) will rise whenδ21 increases

or δ22 decreases [91]. Sinceδ21 + δ22 is constant andδ22 > 0, Pd will be maximised when

δ21 =
2

σ2
w

L−1
∑

l=0

‖hs(l)‖2 , (3.32)

δ22 = 0. (3.33)

Both the equalities hold when and only whenP̂ is the projection onto the space spanned byh,

which implies that givenγ, the detection probability of theF -test based detector, eq. (3.29),

will reach its maximal at̂h = h.

From lemma1, we conclude that the detection performance of theF -test based approach under

perfect CSI offers a benchmark for comparison.

As shown in 3.30, the CDF of DNF distribution consists of doubly infinite sum of incomplete

beta functions and thus is difficult to evaluate. Here, in order to simplify the computation, we

apply a simple approach derived from the approximations to noncentral chi-squared distribu-

tions [87]. The approximation of the DNF distribution is given by:

1 + δ21n
−1
1

1 + δ22n
−1
2

Fv1,v2 , (3.34)

with degrees of freedom:

v1 =
(

n1 + δ21
)2 (

n1 + 2δ21
)−1

, (3.35)

v2 =
(

n2 + δ22
)2 (

n2 + 2δ22
)−1

. (3.36)

Therefore, we can utilise the table of centralF -distribution to calculate the approximated de-
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Detector Legend Assumptions Sensing Complexity

F -test based detector F -test Multiple receiving antennas O
(

M2L
)

eq. (3.15) CSI is known

Energy detector [8] EG Noise powerσ2
w is known O (ML)

GLRT based detector [15] GLRT Multiple receiving antennas O
(

M3LN
)

Table 3.1: Summary of the simulated detection algorithms.M : number of receiving antennas.
L: sample size.N : Number of Monte carol trails.

tection probability under channel uncertainty, that is:

Pd ≈ 1−Wc,v1,v2

(

1 + δ22n
−1
2

1 + δ21n
−1
1

γ

)

. (3.37)

In addition, it is worth mentioning that the detection probability of F -test based detector is

invariant to the gain and rotation transformation of channel, i.e., ĥ = Gh exp (jθ). The reason

is that for this special case,̂P is still the projection ontoh as:

P̂ = ĥ
(

ĥH ĥ
)−1

ĥH

=
G2

G2
exp (j0)h(hHh)−1hH

= P. (3.38)

3.6 Simulation Results

In this section, the proposedF -test based sensing technique will be evaluated numerically and

compared with the other two widely used detectors, namely the energy detector [8] and the

GLRT based detector [15] (given in eqs. (2.8) and (2.16), Chapter 2). A simple summary of the

three detectors to be simulated is outlined in Table 3.1. Given a target false alarm probability,

which is generally set as 0.1 due to the current requirementson spectrum sensing [92], the test

thresholds of theF -test based detector and the energy detector are evaluated using tables of

F -distribution and chi-squared distribution [8], respectively; while the threshold for the GLRT

based detector is obtained usingN = 5000 Monte Carlo trails.

All results are obtained by averaging over 5000 independentMonte Carlo trials. In each trial,
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Figure 3.3: Probability of detection versus SNR. Target false alarm probability Pf = 0.1 ,
M = 4 receiving antennas andL = 100 samples.

the channel coefficienth, the primary signals(l) and the additive white noisew(l) are gen-

erated by the zero-mean complex Gaussian distributed variates. Both the channelh ands(l)

are normalised so that‖h‖2 = ‖s(l)‖2 = ‖hs(l)‖2 = 1. The noise powerσ2
w are selected

according to the SNR level defined as:

SNR,
‖hs(l)‖2
Mσ2

w

. (3.39)

Performance under perfect CSI

In the first experiment, we assume the perfect channel knowledgeh is available to theF -test

based method and the accurate noise powerσ2
w is known to the energy detector.

The detection probabilityPd against SNR is plotted in Figure 3.3 withM = 4 receiving an-
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Figure 3.4: Probability of detection versus number of receiving antennas M . Target false
alarm probabilityPf = 0.1 , L = 100 samples and SNR= −10 dB.

tennas,L = 100 samples andPf = 0.1. We can find that the proposedF -test based method

achieves the best detection probability. For example, to achieve a 90% detection probability,

the proposed sensing method offers a2 dB and2.2 dB SNR gain compared with the energy de-

tector (EG) and the GLRT based detector, respectively. In addition, as shown in the figure, the

analytical formula for detection probabilityPd, eq. (3.20) and marked asF -test (analytical),

gives an accurate description. Since the GLRT based detection method isblind, which does not

require anyprior knowledge, it performs worse than the energy detector when the noise power

is exactly known.

In Figure 3.4, the impact of the receiver array sizeM is presented, where we fix the SNR=

−10 dB and vary the number of receiving antennas from2 to 8. It shows that whenM is

small, i.e.,M = 2, the proposedF -test has nearly the same detection probability as the energy

detector. However, whenM increases, theF -test based sensing technique has a significant per-

formance improvement. This is due to the linear regression involved in the proposed approach,
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Figure 3.5: ROC curve, forM = 4 receiving antennas,L = 100 samples and SNR= −10 dB.

e.g., it takes the channelh as the regressor and the received signaly(l) as the response variable.

In other words, theF -test based detection method compares the linear similarity between the

received signal and CSI. Therefore, a higher detection probability can be expected when more

antennas i.e., larger size of the regressorh, are available, further justifying the selection of

M = 4 in other simulations.

In addition, to quantify the trade-off between the false alarm probability and detection prob-

ability, we draw the Receiver Operating Characteristics (ROC) curve in Figure 3.5 with the

SNR fixed at−10 dB. Note that the test thresholds of all detectors change according to the

different levels of target false alarm probability. It shows that given a certain false alarm rate,

the proposedF -test based method provides a much higher probability of detection than other

detectors. For example, whenPf is fixed at5 × 10−2, the detection probability gain of theF -

test based method is about40% for the energy detector and approximately50% for the GLRT

based detector. This means that to achieve the same spectrumefficiency, the proposedF -test

based detector causes less interference to the primary user.
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Figure 3.6: Performance v.s. noise uncertaintyE. The performance for: (a) False Alarm
Probability; and (b) Detection probability is plotted. Target false alarm probability
Pf = 0.1 , M = 4 receiving antennas,L = 100 samples and SNR= −10 dB.

Performance under noise variance uncertainty

As mentioned above, the energy detector has a significant performance loss under noise vari-

ance uncertainty and the proposedF -test based sensing method enjoys the robustness. To

validate this property numerically, we assume that only theestimated noise power̂σ2
w = ησ2

w

is available. The uncertainty factor10 log10 η (in dB scale) is considered as a uniformly dis-

tributed random variable in the interval[−E,E] [13]. Note that the estimated noise power is

varied in each realisation to a certain degree as mentioned above and is used to decide the test

threshold of the energy detector.

Figure 3.6 shows the detection performance against noise mismatchE (in dB) for M = 4

receiving antennas,L = 100 samples and SNR= −10 dB. It can be observed that the perfor-

mance of the energy detector degrades severely under mismatched noise variance. For example,

in the typical uncertainty rangeE ∈ [1, 2] [13], Figure 3.6(a) indicates that the false alarm rate
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Figure 3.7: Normalised histogram of the test statistic forF -test based method under channel

uncertainty: (a)TF

(

ĥ|H0

)

; and (b)TF

(

ĥ|H1

)

. The uncertainty level is selected

asσ2
e =0, 0.3, 0.6 and 0.9, respectively, forM = 4 receiving antennas, SNR=

0 dB andL = 100 samples.

of the energy detector far exceeds the target limit0.1. In addition, Figure 3.6(b) shows that the

corresponding detection probability degrades severely and becomes substantially worse than

the GLRT based method. On the other hand, theF -test based detector and the GLRT based de-

tector are robust against the uncertain noise level as expected, while theF -test exhibits superior

detection probability.

Performance under imperfect CSI

In the following experiments, we consider the case of CSI uncertainty, i.e., only the imperfect

channel estimatêh is available to theF -test based detector. In simulation, the error term△h in

(3.23) varies in each trial, which is generated by an i.i.d. complex Gaussian distributed variate

with zero-mean and varianceσ2
eI. The variance of each entry is assumed to be from zero to

49



F -test Based Spectrum Sensing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

σ
e
2

P
ro

b.
F

la
se

 A
la

rm

 

 

F−test

EG

EG−1dB

GLRT

Figure 3.8: False alarm probability v.s. channel uncertaintyσ2
e . Target false alarm probability

Pf = 0.1 , M = 4 receiving antennas,L = 100 samples and SNR= −10 dB.

one, i.e.,0 ≤ σ2
e ≤ 1. Since we have normalised the CSI,h, the level of channel uncertainty

can be viewed as from 0% to 100%.

Firstly, to get an insight into the impact of channel uncertainty into theF -test based method,

we plot the normalised histogram of the test statistic underH0 andH1 in Figure 3.7. The er-

ror varianceσ2
e is set as0, 0.3, 0.6 and0.9 with the corresponding uncertainty level as0%,

30%, 60% and90%, respectively. Figure 3.7(a) shows that the null distribution of test statis-

tic, TF

(

ĥ|H0

)

, does not vary with channel uncertainty, verifying our analysis that theF -test

based method has constant false alarm rate. While in Figure 3.7(b), we can find that when the

alternative hypothesisH1 holds, the histogram of test statisticTF

(

ĥ|H1

)

shrinks to a smaller

value whenσ2
e rises, which implies that the probability of detection willdecrease with growing

channel uncertainty.

Then in Figure 3.8 and Figure 3.9, the false alarm probability and the detection probability
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Figure 3.9: Detection probability v.s. channel uncertaintyσ2
e . Target false alarm probability

Pf = 0.1 , M = 4 receiving antennas,L = 100 samples and SNR= −10 dB.

against the channel uncertainty are presented, withM = 4 receiving antennasL = 100 samples

and SNR= −10 dB. Note that the plot for the energy detector with1 dB noise mismatch

(EG− 1 dB) acts as a basis of comparison. Figure 3.8 shows that unlike the energy detector,

the false alarm probability of theF -test based method is still around the pre-defined level,

0.1, in the situation with parameter uncertainty. The detection probability of the proposed

detector, as shown in Figure 3.9, has a degradation under CSIerror. However, with channel

uncertainty up to47%, theF -test based detector still outperforms the ideal energy detector.

Besides, it performs better than the GLRT based detector with channel uncertainty up to83%.

Moreover, compared with the energy detector with1 dB noise mismatch, theF -test has a better

detection performance over the entire range of CSI error. Inaddition, the approximated value

for detection probability, given in eq. (3.37), marked hereasF -test(approximated), is quite

accurate.

In Figure 3.10, we increase the number of receiving antennasto 8. It can be observed that the
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Figure 3.10: Detection probability v.s. channel uncertaintyσ2
e . Target false alarm probability

Pf = 0.1 , M = 8 receiving antennas,L = 100 samples and SNR= −10 dB.

performance loss ofF -test based approach caused by channel uncertainty becomesinsignif-

icant. For instance, Figure 3.10 shows that the detection probability only has an up to12%

degradation over the whole uncertainty interval. This is also due to the fact that theF -test

based sensing method uses linear regression models, as discussed in Figure 3.4.

Discussion

In summary, in addition to enhanced robustness against noise variance uncertainty, theF -test

based detector is more powerful than several popular spectrum sensing techniques. Compared

with the traditional robust or blind detectors [13, 15], theproposed detector can be easily con-

structed and the computational complexity is moderate. Theonly prior information needed is

CSI, which can be seen as the price for improved robustness against uncertain noise level and

performance gain. Moreover, theF -test performs reasonably well for moderate CSI uncertainty
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and its false alarm probability is unchanged.

3.7 Conclusion

An F -test based approach for spectrum sensing is proposed in this chapter. This method can be

applied for multiple antenna cognitive radio systems without the knowledge of noise statistic.

It offers absolute robustness against noise variance mismatch as the test statistic is independent

from noise power. Statistical properties ofF -distribution are applied to derive the test thresh-

old and evaluate the detection probability. The onlyprior information needed is CSI, which

can be seen as the price for improved robustness against noise variance uncertainty and perfor-

mance gain. The detection performance under CSI error has been discussed and results show

that the proposedF -test based approach has constant false alarm probability and the detection

probability can be evaluated.

Simulations have been carried out to verify the proposed method. The detection performance of

theF -test based sensing schemes is superior to the widely used energy detector as a2.2 dB SNR

gain can be achieved to obtain a90% detection probability. When perfect channel information

is not available, theF -test based detector suffers a mild performance loss in probability of

detection and its false alarm probability remains unchanged. In addition, the analytical results

are verified to be sufficiently accurate. Given its superior performance, theF -test based detector

is an attractive approach for spectrum sensing.

Note that in this chapter, theF -test based detection method is developed and studied basedon

a Gaussian noise assumption. In the following Chapter 4 and Chapter 5, the sensing problem

in non-Gaussian noise will be considered.
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Chapter 4
Spectrum Sensing for Non-Gaussian

Noise Using Bootstrap Techniques

4.1 Introduction

The majority of current spectrum sensing methods consider Gaussian noise. Following the CLT,

the Gaussian distribution provides a good model for noise caused by natural sources, such as

thermal noise. In addition, it generally offers mathematically tractable results as the Gaussian

distribution can be fully characterised by the mean and the variance. However, the Gaussian

noise model cannot perfectly model reality as another important noise source in practical wire-

less communications is man-made, which is impulsive by nature and makes the whole noise

distribution heavy-tailed [7, 80, 81]. In the case of non-Gaussian noise, the performance of

standard detectors becomes unpredictable due to the uncertain distribution of the test statistic.

In the literature, several sensing methods have been proposed to deal with detection in non-

Gaussian noise [29, 31–35, 82]. As summarised in Table 2.2, Chapter 2, many of them require

prior knowledge of the noise distribution. For example, a LO detector for wideband sens-

ing assumes a perfectly known noise distribution [31]. It uses a spectral estimator as the test

statistic, which correlates the periodogram of transformed observations with the primary signal

spectrum. In addition,α-stable distributed noise is assumed in [29] and the detector exploits

the particularcovariationproperties of theα-stable distribution. Moreover, the authors in [82]

considered the situation in which the exact noise distribution is unknown but its statistical mo-

ments are available. By invoking a low SNR assumption, aLp−norm detector was proposed

wherep is the tunable parameter used to adapt to the underlying non-Gaussian noise.

Other existing approaches consider the case of unknown noise type and only minimal assump-

tions are made on the noise model. For instance, a nonparametric KS based detector was

proposed in [32], which uses a sequence of noise samples for agoodness-of-fit comparison.

In addition, some robust detectors are derived without knowing the statistics of the noise, but

particular assumptions are made on the primary signal. For example, a cyclic correlation based
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detector was studied in [33] which requires knowledge of at least one of the cyclic frequencies

of the primary signal. In [34], a PCA detector was proposed for real-valued observations and

in [35], a asymptotically robustt-sensing was proposed for non-zero mean primary signal.

As discussed in the background chapter, most of the aforementioned detection methods are

parametric, i.e., requiringprior knowledge of the signal and noise characteristics, or making

particular assumptions on the signal type. In addition, theselection of a test threshold is gener-

ally difficult, especially for parametric detectors as their test statistics are relatively complicated

and may depend on several unknowns. In this chapter, we shallapply the powerful bootstrap

technique to overcome those challenges. By using the bootstrap procedure, two detection meth-

ods are proposed which can be applied to arbitrary noise types with finite power. Firstly, by

using multiple antennas at the sensing device, ablind eigenvalue based detector is developed

by exploiting the eigenstructure of the sample covariance matrix. Next, the noise power is as-

sumed to be known and we generalise the conventional energy detector to non-Gaussian noise

by studentizing its test statistic. For both detectors, there are no closed form expressions for

the test statistic’s null distribution due to the unknown noise distribution. We shall apply the

bootstrap resampling to overcome this difficulty.

The main contributions of this chapter are summarised as follows:

• An eigenvalue based detector is proposed for unknown noise power and noise types. By

using multiple receiving antennas, this method is fundamentally a binary hypothesis test for

the difference between sample eigenvalues. In addition, inorder to reduce the bias of sample

eigenvalues, a nonparametric bootstrap bias correction step is also proposed.

• Assuming that the noise power is known, an energy based detector is developed with the test

statistic being studentized, i.e., the statistic is divided by the estimate of its standard deviation.

By doing this, the conventional energy detector is generalised to non-Gaussian noise.

• For both detectors, the nonparametric bootstrap procedureis applied to estimate the test statis-

tic’s null distribution. It works without requirements on reproducible experimental conditions

and large samples. The advantage of bootstrap is highlighted and its accuracy is described.

• Simulation results show that the bootstrap method gives a sufficiently accurate result for

short data records. In non-Gaussian noise, the eigenvalue based detector offers an overall better

detection probability while the energy based detector illustrates its superiority in the low SNR
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regime.

The remainder of this chapter is organised as follows. The signal model is described in Section

4.2. Section 4.3 introduces the bootstrap techniques. The non-parametric eigenvalue based

detector is proposed in Section 4.4 and the energy based detector is proposed in Section 4.5,

respectively. The accuracy of bootstrap method is highlighted in Section 4.6. Simulation results

are shown in Section 4.7. Finally, Section 4.8 concludes thechapter.

4.2 System Model

Recall the SIMO system model defined in Chapter 3, Section 3.2. The baseband received signal

vectory (l) can be expressed as:

H0 : y (l) = w (l) ,

H1 : y (l) = hs (l) +w (l) , l = 0, 1, ..., L − 1. (4.1)

Here we assumes(l) is the zero-mean complex primary signal with unknown powerσ2
s . The

vectorh = [h1, h2, . . . , hM ]T denotes the unknown fading channel, which remains unchanged

during the sensing period. The noisew(l) = [w1(l), w2(l), . . . , wM (l)]T consists of i.i.d

complex-valued elements,wi(l), i = 1, 2, ...,M , with zero-mean and finite varianceσ2
w. Note

that no assumption is made on the distribution of noise or signal. In addition, the primary

signal, channel and noise are assumed to be mutually independent.

4.3 Preliminaries of Bootstrap Techniques

The bootstrap is a data-based simulation method, which is anattractive tool for estimating pa-

rameters or finding confidence intervals [93]. Unlike conventional asymptotic/analytical meth-

ods, which may assume Gaussian noise or invoke large sample sizes, the bootstrap method is

non-parametric and works for moderate sample sizes. In the following, we shall give an in-

troduction to the bootstrap principle and then describe itsapplication to the hypothesis testing

problem.
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Figure 4.1: A schematic diagram of the bootstrap principle [94].

General Concept

A schematic diagram of the bootstrap principle is shown in Figure 4.1 [94]. In the “real world”

an unknown distributionF provides a set of random observed dataχ = [x0, x1, . . . , xL−1].

Here, “random” means that the samplesxl, l = 0, 1, . . . , L − 1, is i.i.d, following the same

distributionF . Let ϑ = θ (F) denote the parameter of interest, such as the mean or variance,

which is estimated by the statistiĉϑ = G (χ). Note that the “parameter” is a function of the

distributionF and the “statistic” is a function of the dataχ.

The problem of interest is to find the statistical behaviour,i.e, bias and variance, or the distribu-

tion of ϑ̂ on the basis of observed dataχ. By contrast to the conventional Monte Carlo method

which repeats the experiment for a sufficient number of times[36], the bootstrap method, en-

ables us to resample from a distribution in a way that approachesF in some sense. For example,

the observed data setχ, which can be seen as an empirical distributionF̂ , approaches the true

distributionF as the sample sizeL grows large [95].
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The Bootstrap Principle

1) Given an i.i.d data setχ = [x0, x1, . . . , xL−1].

2) Draw a bootstrap sample setχ∗ = [x∗0, x
∗
1, . . . , x

∗
L−1] via resamplingχ with replacement.

An example can be :χ∗ = [x1, x1, . . . , x8].

3) Compute the bootstrap statisticϑ̂∗ from χ∗.

4) Repeat 2) and 3)B times to obtain a set of bootstrap statistics

{ϑ̂∗(b), b = 1, 2, . . . , B}.

5) Using the empirical distribution of̂ϑ∗ to approximate the statistical behaviour or

the distribution ofϑ̂.

The “bootstrap world” can be explained in an analogous manner to the “real world”. As shown

in the bootstrap side of Figure 4.1, the empirical distribution F̂ , i.e., the original dataχ, gives

the bootstrap sampleχ∗ = [x∗0, x
∗
1, . . . , x

∗
L−1] from resampling with replacement. By “resam-

pling with replacement ” it is meant thatχ∗ may contain repeated data as it is drawn randomly

fromχ, with eachxi has an equal probability to be selected. Usingχ∗, the bootstrap statistiĉϑ∗

can be evaluated. A major advantage of bootstrap is that we can obtain as many replications of

ϑ̂∗ as we need. This yields a set of bootstrap statistics,
{

ϑ̂∗ (b) , b = 1, 2, . . . B
}

, from which

we approximate the behaviour or distribution ofϑ̂ by that ofϑ̂∗.

Bootstrap for Hypothesis Testing

As an extension of distribution estimate, the bootstrap procedure can be easily adapted to find a

confidence interval of̂ϑ or construct a hypothesis test. Consider a problem for testing the null

hypothesisH0 : ϑ ≤ ϑ0 against the alternativeH1 : ϑ > ϑ0, whereϑ0 is a given bound. The

test statistic is defined as:

T̂ =
ϑ̂− ϑ0

σ̂
, (4.2)

whereσ̂ =
√
σ̂2 andσ̂2 is an estimate of the variance ofϑ̂. Given a significant valueα, one can

compute the test thresholdγ based on the bootstrap approximation,
{

T̂ ∗ = ϑ̂∗−ϑ̂
σ̂∗

}

, through

the following relation:

α =
1

B

B
∑

b=1

I
[

(T̂ ∗(b) > γ
]

, (4.3)
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whereI[x] =











1 x > 0

0 x 6 0
denotes the indicator function.

Note that we resamplêϑ∗− ϑ̂ instead ofϑ̂∗−ϑ0 for the purpose of increasing detection proba-

bility [96]. By using a set of bootstrap statistics as reference basis, the test will rejectH0 when

ϑ̂ − ϑ0 > 0 is relatively large. If the alternative hypothesisH1 is true and the value ofϑ is

ϑ1, i.e.,θ (F |H1 ) = ϑ1, then the detection probability is expected to increase to1 asϑ1 − ϑ0

grows. However, whenH1 holds, the value of̂ϑ−ϑ0 will never be too large if we use the boot-

strap distribution based on̂ϑ∗ − ϑ0 for comparison. On the contrary, the detection probability

may degrade to at most the false alarm probability. Hence, a more appropriate comparison is

with the bootstrap distribution based onϑ̂∗ − ϑ̂. Moreover, resamplinĝϑ∗ − ϑ̂ is important to

ensure the level of accuracy, which will be discussed later in Section 4.6.

In addition, the inclusion of̂σ and σ̂∗ is known as bootstrap pivoting [96]. Under the null

hypothesisH0, the asymptotic distribution of̂ϑ − ϑ0 andϑ̂∗ − ϑ̂ may depend on an unknown

scale. To increase the accuracy of bootstrap approximation, the method of dividing bŷσ∗

andσ̂ are necessitated to ensure that the asymptotic distributions of T̂ ∗ andT̂ do not depend

on any unknowns asL → ∞. However, this technique may only be used when the square

root of variance estimate,̂σ, is perfectly known or can be effectively evaluated. There do

exist cases wherêσ is difficult to evaluate, i.e., when the statistiĉϑ is a complex function of

several unknowns. Although the bootstrap can also be applied blindly to estimatêσ, it may

be computationally expensive as it invokes nested bootstrap resampling, especially when the

functionG (χ) is nonlinear. In such cases, the bootstrap pivoting might bedisregarded, or we

can apply other techniques such as bias reduction to improvethe accuracy of bootstrap estimate

[97].

4.4 Nonparametric Eigenvalue Based Detector

In this section, the noise powerσ2
w is assumed to be unknown. By using multiple receiving

antennas, we propose an eigenvalue based detector which exploits the eigenvalue property of

sample covariance matrix. Inspired by [98], the bootstrap resampling is applied to estimate

the null distribution of the test statistic. Note that the bootstrap technique works in arbitrary

noise and does not require a large sample size. However, whenno assumption is made on

large samples, as it is in this chapter, the bias in sample eigenvalues may be significant and
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degrade the test performance. Therefore, a nonparametric bootstrap bias correction step is also

proposed.

Based on the signal model defined in (4.1), the received datay(l) can be seen as an i.i.d. random

variate with zero-mean and covariance matrix:

H0 : Ry = σ2
wI,

H1 : Ry = σ2
shh

H + σ2
wI. (4.4)

The corresponding eigenvalues [99]λi, i = 1, 2, ...,M are:

H0 : λ1 = λ2 = . . . = λM = σ2
w,

H1 : λ1 > λ2 = . . . = λM = σ2
w. (4.5)

Equation (4.5) has an interpretation that, whenH0 holds, all the eigenvalues represent noise

only. However, whenH1 is true, the largest eigenvalueλ1 = hHhσ2
s + σ2

w is contributed by

both the primary signal and noise.

Based on our assumption, the covariance matrixRy is unknown. The one we can obtain is the

sample covariance matrix:

R̂y =
1

L− 1

L−1
∑

l=0

y(l)y(l)H . (4.6)

When the sample sizeL is finite, the sample eigenvalueβi, i = 1, 2, ...,M obtained fromR̂y

are definitely distinct [99] under bothH0 andH1:

β1 > β2 > . . . > βM . (4.7)

By employing the difference of eigenvalues, the hypothesistest in (4.5) can be rewritten as:

H0 : λ1 −
1

M − 1

M
∑

i=2

λi = 0,

H1 : λ1 −
1

M − 1

M
∑

i=2

λi > 0. (4.8)

Considering that we can only obtain the sample eigenvalues,the test statistic for the above
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hypothesis testing problem (4.8) is given as follows:

T̂EV = β1 −
1

M − 1

M
∑

i=2

βi. (4.9)

Since the sample eigenvaluesβi, i = 1, 2, ...,M, are distinct from each other with probability

one, the test statistiĉTEV will be non-zero under bothH0 andH1. However, a reasonable

assumption can be made thatT̂EV will be large when primary signal exists but relatively small

in the noise only case. Therefore, the hypothesis testing problem (4.8) can be converted to the

following decision rule:

T̂EV

H1

R
H0

γ, (4.10)

whereγ is the test threshold to ensure a target false alarm probability.

Note that the evaluation ofγ needs the null distribution of the test statisticT̂EV . To the best

of our knowledge, there are no existing results on the joint distribution of eigenvalues with-

out additional assumptions on the Gaussian distributed entries. We shall apply the bootstrap

procedure [94] to overcome this difficulty.

The hypothesis testing problem (4.8) can be reformulated as:

H0 : TEV = 0,

H1 : TEV > 0, (4.11)

where

TEV = λ1 −
1

M − 1

M
∑

i=2

λi (4.12)

with T̂EV in (4.9) as the estimator. By definition,TEV andT̂EV are non-negative. As discussed

in Section 4.3, the test thresholdγ can be evaluated based on the bootstrap approximation

for the null distribution ofT̂EV . The detection procedure is outlined in Table 4.1 where the

included eigenvalue bias reduction step will be discussed later.

Note that the test statistiĉTEV is unpivoted due to the difficulty of computing the variance,and

some investigations have shown that the extra computational cost for evaluating the standard

deviation of sample eigenvalues is unnecessary [100].
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Input: Y = [y(0),y(1), . . . ,y(L− 1)] and target false alarm probabilityα.

1) Compute the bias corrected sample eigenvalues using eq. (4.15)

and obtain the test statistic:

T̂EV = β̂1 − 1
M−1

M
∑

i=2
β̂i.

2) Draw a bootstrap sample setY∗ from Y.

3) Compute the bias corrected bootstrap test statistic:

T̂ ∗
EV = β̂∗

1 − 1
M−1

M
∑

i=2
β̂∗
i .

4) Repeat 2) and 3)B times. Ranking the bootstrap statistics as:

(T̂ ∗
EV (1) − T̂EV ) ≤ . . . ≤ (T̂ ∗

EV (k)− T̂EV ) ≤ . . . ≤ (T̂ ∗
EV (B)− T̂EV )

5) From the ordered statistics, choose the indexk by:

1− k+1
B ≤ α ≤ 1− k

B .

The test threshold is then obtained as:

γ = T̂ ∗
EV (k) − T̂EV .

Output: Hypothesis testinĝTEV

H1

R
H0

γ.

Table 4.1: The bootstrap procedure for the eigenvalue based detectionproblem

Bootstrap Bias Reduction

As mentioned above, the test statisticT̂EV is constructed by the sample eigenvalues. However,

as discussed in [98, 99], the sample eigenvalue contributedby the primary signal is asymptoti-

cally unbiased, whereas the one contributed by the noise only is asymptotically biased. When

the sample size is small, the bias becomes quite significant,i.e., T̂EV may be large even if no

primary signal exists. Note that in this chapter, we do not make assumption of large data sizes.

Therefore, a bias reduction is necessary to ensure the accuracy of the sample eigenvalues.

Define the bias of sample eigenvalueβi as the difference between the expectation ofβi and the

exact eigenvalueλi, that is:

Bias(βi) = E [βi]− λi, i = 1, 2, . . . ,M. (4.13)

Since no assumption is made on the distribution of signal andnoise, we apply the distribution-
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Figure 4.2: The: (a) mean; and (b) standard deviation of the test statistic T̂EV versus the
sample sizeL, for Laplacian distributed data with Identity covariance matrix and
corresponding eigenvalues[1, 1, 1, 1]T . Number of bootstrap replicationsB1 =
30, M = 4 receiving antennas andL = 100 samples.

free bootstrap method [94] to estimate the bias of sample eigenvalueβi. That is:

ˆBias(βi) =
1

B1

B1
∑

b=1

β∗
i (b)− βi, i = 1, 2, . . . ,M, (4.14)

whereB1 is the number of bootstrap replications and empirically,B1 = 30 gives quite satis-

factory results for the bias estimate [94]. The corrected sample eigenvalue is given by:

β̂i = βi − ˆBias(βi)

= 2βi −
1

B1

B1
∑

b=1

β∗
i (b), i = 1, 2, . . . ,M. (4.15)

In Figure 4.2 and Figure 4.3, we plot the mean value and standard deviation of the test statistic
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Figure 4.3: The: (a) mean; and (b) standard deviation of the test statistic T̂EV versus the sam-
ple sizeL, for Gaussian Mixture distributed data with Identity covariance matrix
and corresponding eigenvalues[1, 1, 1, 1]T . Number of bootstrap replications
B1 = 30, M = 4 receiving antennas andL = 100 samples.

T̂EV with and without bootstrap bias reduction. To test the distribution-free property of the bias

reduction procedure, the data is generated by the zero-meanLaplacian and Gaussian Mixture

(defined later in eq. (4.25)) distributed variates, with identity covariance matrix and eigenvalues

[1, 1, 1, 1]T . Theoretically,T̂EV should be near zero in this case. However, due to the bias of

sample eigenvalues, both Figure 4.2(a) and Figure 4.3(a) show that the mean value of̂TEV

exceeds the zero line over the full range of sample sizeL, especially whenL is small. Such

bias can be efficiently decreased by applying the bias reduction procedure. For example, there

is a notable40% decrease in the mean value ofT̂EV at L = 100 samples by using the bias-

corrected sample eigenvalues, while the increase in the standard deviation, shown in Figure

4.2(b) and Figure 4.3(b), is not significant.
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4.5 Energy Based Detector

Among current spectrum sensing techniques, the energy detector [8] is the most widely used

method due to its simplicity and good detection performance. It takes the energy of received

signal as the test statistic, which follows a chi-squared distribution under null hypothesisH0

for Gaussian noise. However, when the Gaussian noise assumption no longer holds, the null

distribution of the test statistic becomes uncertain and may make the detection result become

invalid. For example, as shown in Section 4.6, the false alarm probability of the energy detector

far exceeds the target level under heavy-tailed noise, which leads to unexpected harmful inter-

ference to the primary user. In this section, we generalize the conventional energy detector to

the case of non-Gaussian noise by applying the bootstrap procedure. Note that the noise power

σ2
w is required asprior knowledge.

Recall the signal model (4.1). Define

Y (l) , ‖y (l)‖2 , l = 0, 1, . . . , L− 1, (4.16)

be the received signal energy, which can be seen as an i.i.d. variate since the sampley (l) is

assumed to be i.i.d. The statistical expectation ofY (l) can be written as:

H0 : E[Y (l)] = Mσ2
w,

H1 : E[Y (l)] > Mσ2
w. (4.17)

The expectation E[Y (l)] can be estimated by the sample mean ofY (l), i.e., 1
L

L−1
∑

l=0

Y (l), which

is the test statistic of the conventional energy detector [8]. In this work, we take E[Y (l)] as the

parameter of interest and1L
L−1
∑

l=0

Y (l) as its estimator. As discussed in Section 4.3, the statistic

for hypotheses testing problem (4.17) can be written as:

T̂EG =

1
L

L−1
∑

l=0

(

Y (l)−Mσ2
w

)

√

1
L(L−1)

L−1
∑

l=0

(

Y (l)− 1
L

L−1
∑

l=0

Y (l)

)2
. (4.18)
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HereT̂EG is studentized, where the pivotal

σ̂Y =

√

√

√

√

1

L(L− 1)

L−1
∑

l=0

(

Y (l)− 1

L

L−1
∑

l=0

Y (l)

)2

(4.19)

is as an estimate of the standard deviation of1
L

L−1
∑

l=0

Y (l).

The bootstrap resampling procedure for hypothesis testingproblem (4.17) is summarised in

Table 4.2. Note that the bootstrap version of the test statistic T̂ ∗
EG should also be asymptotically

pivotal, where we use

σ̂∗
Y =

√

√

√

√

1

L(L− 1)

L−1
∑

l=0

(

Y ∗(l)− 1

L

L−1
∑

l=0

Y ∗(l)

)2

(4.20)

to estimate the standard deviation1L
L−1
∑

l=0

Y ∗(l).

4.6 The Accuracy of Bootstrap

In previous sections, the bootstrap procedure is applied tosolve the spectrum sensing problem

for non-Gaussian noise. One issue we may raise is how much theinformation from the original

data can be kept via the bootstrap resampling. In this section, several theoretical results are

given to answer this question and we shall emphasize the important role played by the bootstrap

pivoting.

Given an i.i.d. sample setχ = [x0, x1, . . . , xL−1], let ϑ be the parameter of interest witĥϑ as

its estimator. Hall [95] gives the following results by using Edgeworth expansion:

Result 1. Consider the pivotal statisticTp =
√
L
(

ϑ̂− ϑ
)

/σ̂, whereσ̂ is an estimate of the

standard deviation of
√
Lϑ̂. Let T ∗

p =
√
L
(

ϑ̂∗ − ϑ̂
)

/σ̂∗ be the bootstrap version ofTp, de-

rived from resamplingχ. We have:

Pr
(

T ∗
p ≤ x |χ

)

− Pr(Tp ≤ x) = O
(

L−1
)

, (4.21)

whereO
(

L−1
)

represents the error term which is of orderL−1, i.e.,
Pr(T ∗

p ≤x|χ)−Pr(Tp≤x)

L−1 is

bounded with probability one.
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Input: I.i.d energy samplesY = [Y (0) , Y (1) , . . . , Y (L− 1)], noise powerσ2
w

and target false alarm probabilityα .

1) Compute the test statistic:

T̂EG =

1
L

L−1
∑

l=0

Y (l)−Mσ2
w

√

√

√

√ 1
L(L−1)

L−1
∑

l=0

(

Y (l)− 1
L

L−1
∑

l=0

Y (l)

)2
.

2) Draw a bootstrap sample setY∗ from Y.

3) Compute the bootstrap test statistic:

T̂ ∗
EG =

1
L

L−1
∑

l=0
Y ∗(l)− 1

L

L−1
∑

l=0
Y (l)

√

√

√

√ 1
L(L−1)

L−1
∑

l=0

(

Y ∗(l)− 1
L

L−1
∑

l=0

Y ∗(l)

)2
.

4) Repeat 2) and 3)B times. One obtains a set of bootstrap statistics:

[T ∗ (1) , T ∗ (2) , . . . , T ∗ (B)] .

5) Ranking the bootstrap statistics as:

T̂ ∗
EG(1) ≤ . . . ≤ T̂ ∗

EG(k) ≤ . . . ≤ T̂ ∗
EG(B)

5) Choose the indexk by:

1− k+1
B ≤ α ≤ 1− k

B .

The test threshold is then obtained as:γ = T̂ ∗
EG(k).

Output: Hypothesis testinĝTEG

H1

R
H0

γ,

Table 4.2: The bootstrap procedure for the energy based detection problem

The result shown above means that the bootstrap approximation to the distribution ofTp is in

error byL−1. This is a significant improvement compared with the standard Gaussian approx-

imation, i.e., Pr(Tp ≤ x) ∼ Φ (x) whereΦ (x) , exp
(

−1
2x

2
)

/
√
2π, which is in error by

L−1/2 [95].

Result 2. Consider the non-pivotal statisticTnp =
√
L
(

ϑ̂− ϑ
)

and its bootstrap versionT ∗
np =

√
L
(

ϑ̂∗ − ϑ̂
)

. We have:

Pr
(

T ∗
np ≤ x |χ

)

− Pr(Tnp ≤ x) = O
(

L−1/2
)

. (4.22)

Now the error term between the distribution of non-pivotal statistic Tnp and its bootstrap ap-

proximation is in a order ofL−1/2 rather thanL−1. The performance loss is due to the absence

of the scale factor̂σ, justifying the necessity of pivoting. From Result 1 and 2, we can con-

clude that the bootstrap resamples contain the statisticalinformation embedded in the original
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Figure 4.4: Normalised histogram of500 bootstrap statistic for: (a) eigenvalue based ap-
proach; and (b) energy based approach. Laplacian data is applied. The solid
line is the probability density function of their test statistic under null hypothesis,
obtained from1000 Monte Carlo simulations.M = 4 receiving antennas and
L = 100 samples.

sample, which is of importance to the bootstrap hypothesis testing that we have discussed.

Recall the proposed eigenvalue based and energy based detectors. When the null hypothesisH0

holds, the bootstrap approximation for the null distribution of the test statistic, eqs. (4.9) and

(4.18), are approximately in error byL−1/2 andL−1, respectively. Since the test threshold aims

at maintaining a target false alarm probability, i.e., declaringH1 whenH0 holds, its accuracy

only relates to the null distribution of the test statistic.As shown in the results, whenL is

large, the accuracy of the test thresholds derived from bootstrap statistics can be guaranteed. In

addition, the accuracy for the eigenvalue based detectors can be further improved by the bias

reduction procedure. As shown in the simulations, empirically L ∼ 101 leads to sufficiently

accurate results.

To have an insight into the bootstrap approximation, we plotthe density function of the test
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Figure 4.5: Normalised histogram of500 bootstrap statistic for: (a) eigenvalue based ap-
proach; and (b) energy based approach. Gaussian Mixture data is applied.M = 4
receiving antennas andL = 100 samples.

statisticsT̂EV andT̂EG under the null hypothesis, and the histogram of their bootstrap estimates

in Figure 4.4 and Figure 4.5. Laplacian and Gaussian Mixturenoise (defined later in eq. (4.25))

are applied, forM = 4 receiving antennas and sample sizeL = 100. It can be observed that for

both the eigenvalue based and energy based detectors the bootstrap gives a sufficiently accurate

approximation for the null distribution of the test statistic. In addition, Figure 4.4(b) and Figure

4.5(b) show that the pivotal statistiĉTEG and its bootstrap version are approximately Gaussian

distributed, regardless of noise types. This is a great advantage as with the help of pivoting, we

only need to deal with a standard distribution instead of a broad class of distributions.

4.7 Simulation Results

In this section, the test performance of the proposed methods will be demonstrated by numerical

experiments and we shall compare them with the conventionalenergy detector [8] and the KS
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Detector Legend Assumptions Sensing Complexity

Eigenvalue based Bootstrap-EV Multiple receiving antennas O
(

BB1M
3L
)

detector, Table 4.1

Energy based detector,Bootstrap-EG Noise powerσ2
w is known O (BML)

Table 4.2

Conventional energy EG(Original) Gaussian noise with O (ML)

detector [8] known noise powerσ2
w

Kolmogorov-Smirnov KS Training noise samples O (ML)

based detector [32] with sizeL

Table 4.3: Summary of the simulated detection algorithms.M : number of receiving anten-
nas. L: sample size.B andB1 denote the number of bootstrap replications for
distribution approximation and sample eigenvalue bias correction, respectively.

based detector [32] (given in eqs. (2.8) and (2.26), Chapter2). As discussed in Chapter 2, the

KS based detector, which requires a sequence of noise samples for training purpose, is another

robust approach that can be applied to arbitrary noise types. A simple summary of the detectors

to be simulated is outlined in Table 4.3.

For simplicity, both the primary signal and the fading channelh are generated by the zero-mean

complex Gaussian distributed variates. According to the current requirements [92], the target

false alarm is set asPf = 0.1. The number of bootstrap replications for the null distribution

approximation, i.e.,B, and the sample eigenvalue bias reduction, i.e.,B1, are set to be500

and30, respectively. All results are obtained by averaging over5000 independent Monte Carlo

trials. In addition, the SNR is defined as:

SNR,
σ2
s ‖h‖2
Mσ2

w

. (4.23)

To test the distribution-free property of the proposed detectors, we consider the following non-

Gaussian noise types that are relevant in the context of cognitive radio:

1. Generalised Gaussian Model (GGM): The GGM is a broad family which adds a shaping

parameter to the Gaussian distribution [101]. It is widely used to model the non-Gaussian

noise such as heavy-tailed and impulsive noise [102]. The probability density function
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(PDF) of GGM with a varianceσ2 and shape parameterρ is given by:

fw(w) =
ρΓ (4/ρ)

2πσ2 (Γ (2/ρ))2
exp

(

−1

c

( |w|
σ

)ρ)

, (4.24)

wherec , (Γ(2/ρ)Γ(4/ρ))ρ/2 andΓ(ρ) =
∫∞
0 xρ−1e−xdx.

The GGM is short-tailed whenρ > 2 and heavy-tailed when0 < ρ < 2. The Gaussian

(ρ = 2) and Laplacian (ρ = 1) distribution are special cases of GGM. In simulations,

heavy-tailed Laplacian noise is applied.

2. Gaussian Mixture Model (GMM): The GMM is another popular model to describe the

heavy-tailed non-Gaussian noise [81]. The corresponding PDF is:

fw(w) =
I
∑

i=1

ci
πσ2

i

exp

(

−|w|2
σ2
i

)

, (4.25)

whereci, σ2
i > 0,

∑I
i=1 ci = 1 and

∑I
i=1 ciσ

2
i = σ2. A special case isε-mixture model,

whereI = 2, c1 = 1− ǫ, c2 = ǫ, σ2
1 = σ2/(1− ǫ+ ηǫ) andσ2

2 = ησ2
1 . Here, we choose

ǫ = 0.06 andη = 10 to model the man-made noise.

Accuracy of bootstrap

In this chapter, the nonparametric eigenvalue based detector, summarised in Table 4.1, and the

energy based detector, summarised in Table 4.2, are proposed for spectrum sensing in arbitrary

noise types with finite power. For both detectors, bootstrapprocedures are applied to evaluate

the test thresholds. In the first experiment, we test their accuracy under the GGM (Laplacian

noise is applied as special case of GGM) and GMM distributed noise by evaluating their false

alarm probabilityPf against the sample sizeL in Figure 4.6 withM = 4 receiving antennas.

On one hand, it can be observed that both the two proposed bootstrap based detectors meet the

target10% false alarm probability for short data records, i.e., withL = 100 or less. Espe-

cially for the non-pivotal eigenvalue based method, with the help of bias reduction procedure,

its accuracy is guaranteed in small samples. On the other hand, as shown in the figure, the

conventional energy detector (marked as EG(Original)) fails in non-Gaussian noise as its false

alarm probability far exceeds the target limit. For instance, given 0.1 as the target value, the

false alarm probability of EG(Original) is approximately 0.2 and 0.27 under Laplacian and

Gaussian Mixture noise, respectively. The reason is that its test threshold is evaluated based on
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Figure 4.6: Probability of false alarm versus sample sizeL, for: (a) Laplacian noise; (b) Gaus-
sian Mixture noise. Target false alarm probabilityPf = 0.1 andM = 4 receiving
antennas are applied.

the Gaussian noise assumption.

Detection performance

In the following experiments, the detection probability ofthe eigenvalue based detector and

the energy based detector will be evaluated and compared with the KS based detector and the

conventional energy detector. Note that the two proposed detectors and the KS based detector

are distribution-free so they can be applied to both Gaussian and non-Gaussian noise.

In Figure 4.7, the detection probabilityPd against SNR in Gaussian noise is presented, with

M = 4 receiving antennas, sample sizeL = 100 and target false alarm probabilityPf = 0.1.

It can be observed that in Gaussian noise, the energy based detector performs the best and
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Figure 4.7: Probability of detection versus SNR under Gaussian noise. Target false alarm
probabilityPf = 0.1, M = 4 receiving antennas andL = 100 samples.

the nonparametric eigenvalue based detector has a better detection probability compared with

the KS based detector. In addition, it is shown that the proposed energy based detector and

the conventional energy detector have nearly the same detection probability in Gaussian noise.

The reason is that the test statisticT̂EG in (4.18) can be seen as a scaled test statistic of the

conventional energy detector, i.e., eq. (2.8) in Chapter 2.

Then in Figure 4.8 and Figure 4.9, their detection performance in non-Gaussian noise, i.e.,

Laplacian noise and GMM noise, is investigated. Note that the performance gain achieved by

the conventional energy detector, EG(original), should beignored since it is impaired by the

high false alarm probability in such cases, i.e., see in Figure 4.6(a) and Figure 4.6(b). Among

the other three distribution-free detectors, the nonparametric eigenvalue based detector offers

an overall superior detection performance in both Laplacian and GMM noise. For example,

for GMM noise in Figure 4.8(b), to obtain a 90% detection probability, the eigenvalue based

detector provides a1 dB SNR gain compared with the energy based detector and KS detector.
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Figure 4.8: Probability of detection versus SNR under: (a) Laplacian noise; and (b) Gaussian
Mixture noise. Target false alarm probabilityPf = 0.1, M = 4 receiving antennas
andL = 100 samples.

In addition, the proposed energy based detector holds its superiority in low SNR regime, i.e.,

an up to2 dB SNR gain is achieved by Bootstrap-EG, as shown in Figure 4.8(a) for Laplacian

noise.

In Figure 4.9, the impact of the receiver array sizeM is presented, where we fix the SNR=

−8 dB and vary the number of antennas from2 to 8. Note that the eigenvalue based method

requires at least two antennas to exploit the eigenstructure of sample covariance matrix while

others do not make this assumption. It can be observed that when M = 2, the eigenvalue

based detector is inferior to the energy based detector and KS based detector. However, when

M increases, a significant performance improvement can be achieved by the eigenvalue based

approach, i.e., it performs the best whenM ≥ 4 in both Laplacian and Gaussian mixture

noise. The reason is that the eigenvalue based approach measures the difference between sam-

ple eigenvalues. When SNR in (4.23) is fixed, largerM indicates a relatively bigger response
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Figure 4.9: Probability of detection versus number of receiving antennas, M , under: (a)
Laplacian noise; and (b) Gaussian Mixture noise. Target false alarm probabil-
ity Pf = 0.1, SNR= −8 dB andL = 100 samples.

in the signal dimension and a more significant difference between sample eigenvalues. Hence,

a performance gain can be expected for the eigenvalue based detector when multiple antennas

are available.

Discussion

In summary, by applying the bootstrap resampling procedure, both the eigenvalue based and

energy based detectors maintain the predetermined false alarm probability in a variety of noise

types. By contrast, most of state-of-art methods tend to yield unacceptably high false alarm

probabilities in non-Gaussian noise.

When the noise is non-Gaussian, the eigenvalue based detector has an overall better detection

probability. The energy based detector is simple to implement and has a good performance in
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the low SNR regime. The main issue for these two detectors is the computational complexity.

As they rely on random resampling with replacement, the complexity will grow linearly with

the number of bootstrap replications, i.e., see in Table 4.3. However, when the sample size is

moderate, such complexity is compatible with the computer power today.

4.8 Conclusion

In this chapter, we studied the spectrum sensing problem in the situation of unknown noise

type, introduced and highlighted the powerful bootstrap technique.

Two detection methods are proposed by using the bootstrap procedure. The first eigenvalue

based detector isblind, which is fundamentally a binary hypothesis test for the difference be-

tween sample eigenvalues. We assume that when primary signal exists, the difference between

eigenvalues will be relatively larger than the noise only case. When the sample size is small,

the bias in sample eigenvalue may make the test statistic under null and alternative hypothesis

not be well separated. To improve the accuracy of the test statistic, we also propose a bootstrap

bias reduction procedure. The second energy based detector, similar to the conventional energy

detector, assumes the value of noise power is known and compares it with the received sample

energy. The difference is that we studentize the test statistic and generalize its application to

arbitrary noise types by using bootstrap.

For both detectors, the bootstrap resampling is applied to non-parametrically estimate the test

statistic’s null distribution. It is shown that for a moderate sample size, such as 100 samples,

the bootstrap gives a sufficiently accurate approximation,leading to a test threshold that main-

taining a target false alarm probability. In addition, the important role of pivot is discussed.

We showed that the bootstrap test with pivoting, such as the energy based detection, has a

standardizing null distribution that does not depend on theunknown noise types.

The detection performance of proposed detectors is evaluated numerically and compared with

the nonparametric KS detector and the conventional energy detector. Simulation results have

shown that both the proposed detectors are valid in a varietyof noise types. In non-Gaussian

noise, the eigenvalue based method offers an overall betterdetection probability and a per-

formance gain can be expected when the more receiving antennas are available. The energy

based detector has relatively low computational complexity and outperforms other simulated

detection methods in the low SNR regime.
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In Chapter 5, another sensing technique for non-Gaussian noise, i.e., theF -statistic based sens-

ing, will be proposed. This detector is based on theF -test discussed in Chapter 3 and we

shall generalise its application to non-Gaussian noise. The bootstrap technique will be applied

to estimate the null distribution of theF -statistic when theprior knowledge on the noise is

limited.
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Chapter 5
F -statistic Based Spectrum Sensing for

Non-Gaussian Noise

5.1 Introduction

This chapter develops a robustF -statistic based detection method for spectrum sensing in non-

Gaussian noise. It is well known that in linear regression with Gaussian errors, theF -statistic

follows anF -distribution under the null hypothesis. Motivated by the invariance property under

different noise levels, anF -test based spectrum sensing scheme was presented in Chapter 3.

Simulation results therein showed that in addition to enhanced robustness against noise level

uncertainty, theF -test based detector is more powerful than several standardspectrum sensing

techniques. In this chapter, we shall generalise its application to non-Gaussian noise.

When the noise distribution is not Gaussian, a major concernis to control the false alarm

probability as the null distribution of theF -statistic becomes unpredictable. For example, as

shown in Section 5.6, the false alarm probability of the conventionalF -statistic based detector

far exceeds the target value under heavy-tailed noise, leading to unexpected interference to the

primary user. To tackle this problem, the null distributionof theF -statistic for general noise

distributions needs to be addressed.

Several papers in the statistical literature have considered this issue. In [103, 104], a general

investigation was carried out by evaluating the cumulants of a linear function used in theF -test.

The authors in [105] considered the case of global null, i.e., assuming the data is noise only un-

der the null hypothesis, and they approximated the mean and the variance of logF statistic by

its permutation moments. It is shown that the sensitivity tonon-Gaussian distribution depends

highly on the numerical values of regression variables. In [106], a more general null hypoth-

esis was considered and a simple degrees-of-freedom modification method was proposed to

approximate the null distribution of theF -statistic. Note that all the previous studies focus on

real-valued data, which needs to be extended to complex-valued data for I/Q-demodulation that

is used in practical communication systems.
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In this chapter, we consider a robustF -statistic based detector for non-Gaussian noise with

complex-valued measurements. By exploiting differentprior knowledge of the noise, two

novel methods are developed to estimate the null distribution of theF -statistic. The main

contributions are summarised as follows:

• Firstly, we assume that the normalised kurtosis of the noiseis finite and known. The null

distribution of theF -statistic is approximated by anF -distribution with modified degrees of

freedom (MDOF), where a simple closed form result is obtained by matching the first two

moments of the log test statistic with those of a logF distribution.

• Secondly, we relax the assumption on the noise kurtosis and propose a nonparametric ap-

proach which is based on the numerical bootstrap procedure.Given a moderate size of training

noise samples, the bootstrap approach approximates the null distribution of the test statistic by

resampling the training data and no knowledge of the underlying noise statistics is required.

• Simulation results show that by applying either of the two proposed methods with samples

L > 500, good detection probability is achieved by theF -statistic based detector under non-

Gaussian noise while maintaining the predetermined false alarm probability.

• The robustF -statistic based detector has general validity which couldbe generalised to other

linear regression problems with complex number measurements.

The rest of this chapter is structured as follows. The data model and problem statement are

demonstrated in Section 5.2. Then the degrees-of-freedom modification approach for the null

distribution approximation is developed in Section 5.3. The bootstrap based method is dis-

cussed in Section 5.4. In Section 5.5, we extends our resultsto a more general linear regression

hypothesis testing problem. Simulation results are presented in Section 5.6 and Section 5.7

concludes the chapter.

5.2 System Model and Problem Statement

Recall the SIMO system model defined in Chapter 3, Section 3.2. As shown in Figure 3.1, we

consider a cognitive radio network where one primary signalsource may exist within the range

of the secondary user and the sensing device comprisesM antennas.

Let y(l) = [y1(l), y2(l), . . . , yM (l)]T , (l = 0, 1, . . . , L − 1), be the sizeM baseband signal

79



F -statistic Based Spectrum Sensing for Non-Gaussian Noise

vectors at the receiver antenna array withL denoting the sample size. Then the spectrum

sensing problem can be formulated as the following hypothesis test:

H0 : y (l) = w (l) ,

H1 : y (l) = hs (l) +w (l) , l = 0, 1, ..., L − 1. (5.1)

wheres(l) represents the primary signal, which is assumed to be unknown and deterministic.

The vectorh = [h1, h2, . . . , hM ]T denotes the known time-invariant propagation channel. The

noisew(l) = [w1(l), w2(l), . . . , wM (l)]T is characterised by a circular, symmetric distribution

with zero mean and covarianceσ2
wI. Note that the noise varianceσ2

w is assumed to be finite.

As mentioned in Chapter 3, Section 3.2, the acquisition of CSI h is still an open question in

spectrum sensing due to lack of reciprocal communication standards between primary and sec-

ondary users. Possible solutions are acquiringh via the periodically transmitted pilot primary

signal [11, 83, 84] or recursively estimating it during the sensing period [84–86].

Given the signal model (5.1) and a Gaussian noise assumption, anF -test can be applied to

decide whether primary signals exist or not. As discussed inChapter 3, the decision rule is

given by:

TF

H1

R
H0

γ, (5.2)

whereγ denotes the test threshold and the test statisticTF , also known as theF -statistic, is

given by:

TF =
n2

n1

L−1
∑

l=0

y(l)HPy(l)

L−1
∑

l=0

y(l)H(I −P)y(l)

, (5.3)

whereP = h(hHh)−1hH represents the projection onto the subspace spanned byh. When

the noise is complex Gaussian distributed, i.e.,w(l) ∼ CN
(

0, σ2
wI
)

, the test statisticTF under

the null hypothesisH0 is Fn1,n2-distributed with degrees of freedom [87]:

n1 = 2L, (5.4)

n2 = 2L(M − 1). (5.5)

Given a target false alarm rateα, the test thresholdγ can be easily obtained using numerical

tables of theF -distribution. In this chapter, the null distribution of theF -statistic in (5.3) may
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no longer beF -distributed as the noise is not necessarily Gaussian distributed. In the following

sections, two approaches will be proposed to tackle this problem by exploiting differentprior

knowledge of the noise.

It is worth mentioning that the impact of CSI uncertainty in estimates ofh is studied in Chapter

3. Results show that under a Gaussian noise assumption, theF -test based detector has a fixed

false alarm rate, independent of the accuracy of channel estimation. The reason is that the null

distribution of theF -statistic remains unchanged in this case. When the noise isnot Gaussian

distributed, as it is in this chapter, a constant false alarmrate can also be obtained as the test

statistic (5.3) and the following approaches for the null distribution approximation are all based

on the CSI estimates.

5.3 Degrees-of-Freedom Modification

In this section, we assume the normalised kurtosis of the noise is finite and known. We shall use

it to approximate the test statistic’s null distribution byanF -distribution with modified degrees

of freedom (MDOF). This approach is inspired by the robustF -tests suggested in [88, 106]

for real number problems. For wireless communication systems, the results therein need to be

generalised to complex-valued samples.

Preliminaries

To begin with, we define the normalised kurtosis [107] of a complex random variableZ as:

Kc [Z] ,
E
[

|Z|4
]

−
∣

∣E[Z2]
∣

∣

2

[

E
[

|Z|2
]]2 − 2. (5.6)

The kurtosisKc [Z] is a measure of whether the probability distribution ofZ is peaked or flat

compared with a Gaussian distribution. The “minus 2” in thisformula acts as a correction

factor so that the kurtosis of Gaussian distribution becomes zero. The variate with positive

kurtosis tends to have a peak probability density near the mean value so that it becomes heavy-

tailed. On the contrary, the one with negative kurtosis tends to have a flat top near the mean and

thus has short tail.

Since the noise elementswi(l), i = 1, 2, ...,M , are circularly symmetric and i.i.d, the corre-
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sponding normalised kurtosisκ can be expressed as:

κ , Kc [wi(l)] =
µ4

σ4
w

− 2, (5.7)

whereµ4 , E
[

|wi(l)|4
]

andσ4
w , E

[

|wi(l)|2
]2

.

DefineP1 , P, with rankr1 = 1, andP2 , IM −P, with rankr2 = M − 1. The quadratic

form of the data vectory(l) has the following properties.

Property 5.1. Pk (k = 1, 2) is the projection matrix with rankrk. Definepk be the column

vector consisting of diagonal elements ofPk. When the null hypothesisH0 holds, the expecta-

tion, variance and covariance of the quadratic form
L−1
∑

l=0

y(l)HPky(l) are given as follows:

E

[

L−1
∑

l=0

y(l)HPky(l)|H0

]

= Lσ2
wrk. (5.8)

Var

[

L−1
∑

l=0

y(l)HPky(l)|H0

]

= Lσ4
w

(

rk + κ ‖pk‖2
)

. (5.9)

Cov

[

L−1
∑

l=0

y(l)HP1y(l),
L−1
∑

l=0

y(l)HP2y(l)|H0

]

= Lσ4
wκp

′
1p2. (5.10)

Proof. See Appendix A.

Note that the proof of Property 5.1 is similar to those based on real-valued data [88]. The main

difference is that the analysis of eqs. (A.3) - (A.10) in Appendix A takes the properties of

complex samples into account.

The properties of theF -statistic in (5.3) is difficult to evaluate numerically as it consists of a

ratio of two variates. To simplify calculations, the logarithm of theF -statistic is considered

instead, as shown in Property 5.2.

Property 5.2. Consider the logarithm ofF -statistic:

Z =
1

2
log TF (n1, n2) =

1

2
(log S2

1 − log S2
2), (5.11)

where

S2
k =

L−1
∑

l=0

y (l)HPky (l) /2Lrk, k = 1, 2. (5.12)

82



F -statistic Based Spectrum Sensing for Non-Gaussian Noise

Under the null hypothesisH0 and for largeLrk, the expectation and variance ofZ can be

expressed approximately as:

E[Z|H0] ∼
(

r−1
2 + r−2

2 κ ‖p2‖2 − r−1
1 − r−2

1 κ ‖p1‖2
)

/4L, (5.13)

Var[Z|H0] ∼
(

r−1
1 + r−2

1 κ ‖p1‖2 + r−1
2 + r−2

2 κ ‖p2‖2 − 2r−1
1 r−1

2 κ
)

/4L. (5.14)

Proof. See Appendix B .

The results described above are derived from the Taylor expansion oflog S2
k aroundlog σ2

w/2

up to the third and second order term (see eqs. (B.1) and (B.5)in Appendix B), respectively.

SinceS2
k in (5.12) is an unbiased estimate ofσ2

w/2 under the null hypothesisH0, the higher

order termsO
(

(

S2
k − σ2

w/2
)3
)

for E[Z|H0] andO
(

(

S2
k − σ2

w/2
)2
)

for Var[Z|H0] can be

neglected for large value ofLrk.

In practical communication systems, i.e., for a typical narrowband RF channel with10kHz

bandwidth, the power of thermal noise is generally around−134 dBm and man-made noise may

be20 dB stronger [108]. Hence, the noise powerσ2
w is usually in the order of10−15 ∼ 10−17

and so is the variance estimateS2
k. The approximation errors in (B.1) and (B.5) are in the order

of 10−30 ∼ 10−34 and10−45 ∼ 10−51, respectively. Therefore, the accuracy of eqs. (5.13) and

(5.14) should hold in practical systems.

Modified Degrees of Freedom (MDOF) Approach

In Property 5.2, we derived the approximate mean and variance of the logarithm ofF -statistic

for arbitrary noise types in terms of the noise kurtosisκ. For Gaussian noise,κ = 0, leading to

the following expressions:

E[ZF |H0] ∼ (m2
2L )

−1 − (m1
2L )

−1

4L
, (5.15)

Var[ZF |H0] ∼ (m2
2L )

−1 + (m1
2L )

−1

4L
. (5.16)

WhereZF = 1
2 logF (m1,m2) denotes a special case ofZ = 1

2 log TF (n1, n2)with TF (n1, n2)

replaced by anFm1,m2-distributed random variable.

To approximate the null distribution ofTF (n1, n2) in (5.3) with anF -distribution, we com-

pare the mean and variance in the Gaussian case, i.e., eqs (5.15) and (5.16), with that for the
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non-Gaussian case, i.e., eqs (5.13) and (5.14), respectively and obtain the modified degrees of

freedom as follows:

m1 = n1

(

1 + 2Lκ

(

‖p1‖2
n1

− p′
1p2

n2

))−1

, (5.17)

m2 = n2

(

1 + 2Lκ

(

‖p2‖2
n2

− p′
1p2

n1

))−1

, (5.18)

where the degrees of freedomn1 = 2Lr1 andn2 = 2Lr2. In other words, when the noise

kurtosisκ is known, the null distribution of the test statisticTF and test thresholdγ can be

approximated by theF -distribution with the help of eqs. (5.17) and (5.18).

Since the MDOF approach is based on the first two moments, its accuracy will depend on the

similarity between theF -distribution and the underlying distribution ofTF . TheF -statistic

originally arises as the ratio of two chi-squared variates [87] and the test statisticTF can be

written asTF = S2
1/S

2
2 whereS2

k(k = 1, 2) is given in (5.12). According to the CLT, for

largeL, both the chi-squared variate andS2
k are approximately Gaussian distributed [109].

Therefore, the proposed MDOF method will approach the null distribution ofTF whenL is

large and empirically it has been found thatL ∼ 101 is sufficient, as shown in the simulation

results.

5.4 The Bootstrap Approximation

As discussed in Chapter 4, the bootstrap is a data-based method that can estimate the empir-

ical distribution of a statistic via resampling with replacement. In this section, we apply the

bootstrap procedure to approximate the null distribution of the logF -statistic in non-Gaussian

noise. Unlike the MDOF method which takes knowledge of noisekurtosisκ as aprior, the

bootstrap approach is nonparametric and requires a set of noise samples with sizeL for training

purposes, i.e.,W = [w(0),w(1), . . . ,w(L− 1)], which can be collected when the primary

user is known for sure to be absence. The null distribution ofthe test statistic is approximated

by resampling the data setW repeatedly, leading to a test threshold that ensures a target false

alarm probability. Note that the assumption onW is exactly the same as used in the conven-

tional energy detector which estimates the noise power fromtraining noise samples.

Recall the hypothesis testing problem in (5.2). WhenZ = 1
2 log TF (n1, n2) is used as the test
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Input: Training noise samplesW = [w(0),w(1), . . . ,w(L− 1)].

Target false alarm probabilityα.

1) Draw a bootstrap sample setW∗ via resamplingW with replacement.

An example can be :W∗ = [w(1),w(7),w(7), . . . ,w (2)].

2) Compute the bootstrap test statisticZ∗ usingW∗.

3) Repeat 1) and 2)B times. One obtains the bootstrap test statistics :

[Z∗(1), Z∗(2), . . . , Z∗(B)].

4) Correct the mean of bootstrap test statistics:

Ẑ∗(b) = Z∗(b)− 1
B

B
∑

b=1

Z∗(b)

5) Ranking the bootstrap statistics as:

Ẑ∗(1) ≤ Ẑ∗(2) ≤ . . . ≤ Ẑ∗(B).

6) From the ordered statistics, choose the indexbα by:

1− bα+1
B ≤ α ≤ 1− bα

B .

Output: The test thresholdγ = Ẑ∗(bα).

Table 5.1: The bootstrap procedure for approximating the null distribution ofZ

statistic, the decision rule becomes:

Z
H1

R
H0

γ, (5.19)

whereγ is the corresponding test threshold. The statisticZ is applied as a sample mean correc-

tion step will be involved later and the statistical exception of a log statistic is easier to obtain.

In addition, using (5.19) is equivalent to (5.2) due to the monotonicity of the logarithm function.

When the null hypothesisH0 holds, the statisticZ(H0) can be written as:

Z(H0) =
1

2
log

n2

n1

L−1
∑

l=0

w(l)HPw(l)

L−1
∑

l=0

w(l)H(IM −P)w(l)

. (5.20)

To obtain the test thresholdγ, we run the algorithm of Table 5.1. By resamplingW with

replacement, the distribution ofZ(H0) is approximated by a set of bootstrap statistics, i.e.,
{

Ẑ∗ (b) , b = 1, 2, ..., B
}

. Then given a target false alarm probability, the test threshold γ can

be derived from the bootstrap approximation of the null distribution.

It is worth mentioning that the bootstrap resampling for testing regression hypothesis should be

based on the estimation of the i.i.d residuals [97], i.e.,ŵ(l). The evaluation of̂w(l) arises a
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Figure 5.1: Normalised histogram of500 bootstrap statistics,̂Z∗, under: (a) Laplacian noise;
and (b) Gaussian Mixture noise. The solid line is the empirical probability den-
sity function ofZ(H0), obtained from1000 Monte Carlo simulations.L = 500
samples andM = 4 receiving antennas.

problem that whether we impose the null hypothesis or not, and the corresponding effects have

been investigated in [110]. Here, this problem is simplifiedas we assume the noise only data

W is available so that the bootstrap data in Table 5.1 is generated via resamplingW directly.

To improve the accuracy of the bootstrap estimate, a sample mean correction step [97] is also

included in Table 5.1, where the bootstrap statisticZ∗(b) will be corrected by:

Ẑ∗(b) = Z∗(b)−
(

1

B

B
∑

b=1

Z∗(b)− E[Z|H0]

)

. (5.21)

As shown in the proof of Property 5.2, the first two terms of theapproximation for E[Z|H0] are

constant, independent of the higher order statistical moments of the noise. Replacing E[Z|H0]

in (5.21) with the Taylor expansion up to second order terms in (B.5) and combining with (B.7)
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lead to the following result:

E[Z|H0] ∼ 0. (5.22)

Note that the higher order terms for E[Z|H0] in (5.22) becomesO
(

(

S2
k − σ2

w/2
)2
)

rather than

O
(

(

S2
k − σ2

w/2
)3
)

for E[Z|H0] in (5.13). As discussed above, the two order approximation

is still sufficiently accurate as the error is generally in a order of10−30 ∼ 10−34 in practical

systems.

Consequently, the corrected bootstrap statistic becomes:

Ẑ∗(b) = Z∗(b)− 1

B

B
∑

b=1

Z∗(b). (5.23)

The coverage error for this non-pivotal bootstrap regression approximation is generallyO(L−1/2)

[95]. To guarantee a typical10% false alarm probability [92],L should be larger than103 sam-

ples. However, we find that empiricallyL = 500 gives satisfactory results for the simulated

noise distributions. An example is presented in Figure 5.1.It can be observed that under Lapla-

cian noise and Gaussian Mixture noise, the histogram of bootstrap statistiĉZ∗ and the empirical

distribution ofZ(H0) are well matched withL = 500 samples. Although the sample needed is

larger than the MDOF approach, note that the bootstrap method is nonparametric and does not

require knowledge of the noise kurtosisκ.

5.5 Extensions

In addition to the spectrum sensing problem, the robustF -statistic based methods can be ap-

plied to other linear regression problems with complex number measurements. Previous sec-

tions refer only to the case of single primary signal source and global null hypothesis, i.e., the

data is assumed to be noise only under the null hypothesis. Inthis section, we shall extend the

previous results by considering a more general linear regression problem.

Consider a linear data model :

H1 : y(l) =

p
∑

i=1

hisi(l) +w(l), l = 0, 1, ..., L − 1, (5.24)

wherey(l) = [y1(l), y2(l), . . . , yM (l)]T is the sizeM observation vector.si(l) is theith regres-
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sion coefficient andhi = [hi,1, hi,2, . . . , hi,M ]T denotes the corresponding regressor vector, for

i = 1, 2, . . . , p andp < M . w(l) = [w1(l), w2(l), . . . , wM (l)]T denotes the i.i.d error/noise

term.

The problem of interest is whether we can set some regressioncoefficients to be zero. Consider

a null hypothesis withsq+1(l) = sq+2(l) = . . . = sp(l) = 0, then the corresponding data

model becomes:

H0 : y(l) =

q
∑

i=1

hisi(l) +w(l), l = 0, 1, ..., L − 1. (5.25)

To testH0 in (5.25) against the alternativeH1 in (5.24), theF -statistic based detector can be

applied, with the test statistic given by:

ΛF =
nΛ,2

nΛ,1

L−1
∑

l=0

y(l)H (PA −PN )y(l)

L−1
∑

l=0

y(l)H (I−PA)y(l)

, (5.26)

wherePA and PN denote the projection onto the subspaces spanned by[h1, . . . ,hp] and

[h1, . . . ,hq], respectively. When the error/noise termw(l) is complex Gaussian distributed,

the test statisticΛF follows anFnΛ,1,nΛ,2
-distribution, with degrees of freedom:

nΛ,1 = 2L(p − q), (5.27)

nΛ,2 = 2L(M − p). (5.28)

Note thatF -statistic in (5.3) used for spectrum sensing problem considers the special case with

p = 1 andq = 0.

Whenw(l) is not Gaussian distributed, the results in Property 5.1 andProperty 5.2 still hold

since(PA −PN ), (I−PA) and (PA −PN ) + (I−PA) = (I−PN ) are projection ma-

trix. Hence, the proposed MDOF and bootstrap methods are also valid to estimate the null

distribution ofΛF .

On one hand, the MDOF method can be applied if the kurtosis ofwi(l), κ, is known. That is,

the null distribution ofΛF can be approximated by anF -distribution with the modified degrees
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of freedom:

mΛ,1 = nΛ,1

(

1 + 2Lκ

(

‖p1‖2
n1

− p′
1p2

n2

))−1

, (5.29)

mΛ,2 = nΛ,2

(

1 + 2Lκ

(

‖p2‖2
n2

− p′
1p2

n1

))−1

. (5.30)

Wherep1 andp2 denote the column vector consisting of diagonal elements of(PA −PN ) and

(I−PA), respectively.

On the other hand, when the noise kurtosisκ is unknown, we can apply the bootstrap method

summarised in Table 5.1 to estimate the null distribution. Here, the training samples needed

are the observations under the null hypothesis, i.e., the model given in eq. (5.25), instead of the

noise only dataW. In addition, the log statisticZ = 1
2 log TF (n1, n2) should be replaced by

1
2 log ΛF (nΛ,1, nΛ,2).

5.6 Simulation Results

In this section, we shall investigate the performance of theproposed methods by numerical

experiments. Both the primary signal and CSI vector are generated by the normalised zero

mean complex Gaussian distributed variates. We require thefalse alarm probabilityPf 6 0.1

and define SNR as SNR, ‖hs(l)‖2 /Mσ2
w. For the bootstrap approximation, the number

of replications are set asB = 500. All results are obtained by averaging overN = 5000

independent Monte Carlo trials.

The Generalised Gaussian Model (GGM) and Gaussian Mixture Model (GMM), see eqs. (4.24)

and (4.25) in Chapter 4, are used to generate non-Gaussian noise. As the parameters we pre-

viously used, the GGM is simulated by Laplacian noise with kurtosisκ = 1.5 in the complex-

valued case. For GMM noise, we chooseǫ = 0.06 andη = 10 to model the heavy-tailed noise

with the kurtosisκ = 2
[

1−ǫ+η2ǫ

(1−ǫ+ηǫ)2
− 1
]

= 3.85.

Accuracy of the proposed methods

In this chapter, the MDOF method, discussed in Section 5.3, and the bootstrap method, sum-

marised in Table 5.1, are proposed to estimate the null distribution of theF -statistic for non-
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Figure 5.2: Probability of false alarm versus sample size,L, for three methods calculating the
test threshold, under: (a) Laplacian noise; and (b) Gaussian Mixture noise. Target
false alarm probabilityPf = 0.1 andM = 4 receiving antennas.

Gaussian noise. In the first experiment, we test their accuracy under the Laplacian (special case

of GGM) and GMM distributions above by evaluating their false alarm probabilityPf against

the sample sizeL with M = 4 receiving antennas. As shown in Figure 5.2, both methods can

achieve the desired false alarm rate,0.1, in the non-Gaussian noise scenario. The sample sizeL

needed for the MDOF method to ensure the target false alarm isless than the bootstrap method.

For example,L ∼ 101 is sufficient for the MDOF method to obtain an accurate approximation

of the null distribution, whereas the bootstrap approach needsL ∼ 102. If we use the threshold

derived using the Gaussian noise assumption, thePf (marked as Original) is higher than the

target value over the full range ofL.

The probability of detectionPd versus the sample sizeL at SNR = −14 dB is plotted in
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Figure 5.3: Probability of detection versus sample size,L, for three methods calculating the
test threshold,under: (a) Laplacian noise; and (b) Gaussian Mixture noise. Target
false alarm probabilityPf = 0.1, SNR= −14 dB andM = 4 receiving antennas.

Figure 5.3 for Laplacian and GMM noise. Note that the performance gain achieved by the

bootstrap and the original methods for small value ofL can be ignored due to the high false

alarm probability results in Fig.5.2. ForL > 500, it can be observed that the proposed MDOF

and bootstrap approaches have nearly the same probability of detection. Comparing the results

with Figure 5.2, we conclude that the MDOF and bootstrap method have very similar test per-

formance, when the sample sizeL is sufficiently large to ensure the pre-specified false alarm

rate. ForL < 500, the MDOF method can keep thePf below the target level, but it requires

additional information on the noise statistic, i.e., the kurtosisκ.

Comparison with other detectors

In the following experiments, we shall compare the detection probability of theF -statistic

based method with other detection algorithms that are validin non-Gaussian noise, i.e., the
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Detector Assumptions Sensing Complexity

F -statistic: Multiple receiving antennas known CSI

MDOF, Section 5.3 Noise kurtosisκ is known O
(

M2L
)

Bootstrap, Table 5.1 Training noise samples with sizeL O
(

BM2L
)

Bootstrap-EV, Table 4.1 Multiple receiving antennas O
(

BB1M
3L
)

Bootstrap-EG, Table 4.2 Noise powerσ2
w is known O

(

BM3L
)

Lp-norm [30] The statistics of CSI and noise are knownO (MLN)

Table 5.2: Summary of the simulated detection algorithms.M : number of receiving antennas.
L: sample size.N : Number of Monte carol trails.B andB1 denote the number
of bootstrap replications for distribution approximationand sample eigenvalue bias
correction, respectively.

eigenvalue based detector, the energy based detector and theLp-norm detector [30]. A simple

summary of the four detectors to be simulated is outlined in Table 5.2. Note that the tunable

parameterp for theLp-norm detector, eq. (2.22) in chapter 2, is obtained by simulations . The

sample size is chosen to beL = 500 so that both the MDOF and bootstrap methods have the

same probability of detection. In Figure 5.4 and Figure 5.5,we elect to simulate the MDOF

method for theF -statistic based detection.

Figure 5.4 presents the probability of detection versus SNRwith M = 4 receiving antennas.

Results show that theF -statistic based method has the best detection performance. For instance,

as shown in Figure 5.4(a), to obtain a 90% detection probability in Laplacian noise, theF -

statistic based method provides a2.5 dB and4 dB SNR gain compared with the eigenvalue

based detector and the energy based detector, respectively. In addition, since theF -statistic

is initially derived from Gaussian, a more significant performance gain can be expected when

the noise distribution is near Gaussian, i.e., with a smaller noise kurtosisκ. For example, in

Gaussian mixture noise withκ = 3.85, the SNR gap between theF -statistic based detector

andLp-norm based detector is0.8 dB at 90% probability of detection. While if the noise is

Laplacian distributed withκ = 1.5, the SNR gap between them will increase to2 dB.

The impact of the number of receiving antennasM is shown in Figure 5.5, where we vary

the number of antennas from2 to 8 and fix the SNR at−14 dB. WhenM = 2, theF -statistic

based detector still has a superior detection probability than the eigenvalue based and the energy

based detector, whereas its performance is inferior to theLp-norm based detector. However,
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Figure 5.4: Probability of detection versus SNR(dB) under: (a) Laplacian noise; and (b) Gaus-
sian Mixture noise. Target false alarm probabilityPf = 0.1, M = 4 receiving
antennas andL = 500 samples.

whenM increases, a significant performance improvement can be achieved by theF -statistic

based approach. As theF -statistic uses linear regression models, the detection probability

increases rapidly with the regressor sizeM .

Discussion

In summary, the MDOF method requires less samples to meet a target false alarm probability

and is relatively easy to implement. However,prior knowledge of the noise kurtosisκ is re-

quired. The bootstrap method is more computationally expensive (see in Table 5.2) but only

requires a sequence of noise samples for training purpose. By applying either of the two pro-

posed methods withL > 500, good detection probability is achieved by theF -statistic based

detector under non-Gaussian noise while maintaining the predetermined false alarm probability.
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Figure 5.5: Probability of detection versus number of receiving antennas, M , under: (a)
Laplacian noise; and (b) Gaussian Mixture noise. Target false alarm probabil-
ity Pf = 0.1, SNR= −14 dB andL = 500 samples.

The main issue for theF -statistic based detector is the acquiring of CSI. As mentioned in

Chapter 3, the CSI can be estimated using the primary pilot signal but may be imperfect due to

the delay update and estimation error. In this chapter, the impact of CSI uncertainty does not be

discussed in detail as it is another topic which needs to be further investigated. Actually, when

the null hypothesis holds, the false alarm probability of the F -statistic based method remains

unchanged, independent of the accuracy of CSI estimation. The reason is that the test statistic

and the two proposed approaches for the null distribution approximation are all derived from

the CSI estimation. However, when the alternative hypothesis holds, the imperfect CSI will

lead to performance loss in detection probability.
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5.7 Conclusion

In this chapter, we investigated theF -statistic based spectrum sensing schemes for cognitive

radio, which are valid for any circularly symmetric distributed noise with finite power. To

maintain the pre-determined false alarm probability in non-Gaussian noise, two methods are

proposed to estimate the null distribution of test statistic. The first approach assumes a known

noise kurtosis and matches the first two moments of the log test statistic with those of a logF

distribution. By doing this, the null distribution of the test statistic is approximated by the

F -distribution with modified degrees of freedom and the results are obtained in closed form.

The second approach, which relaxes the assumption on the noise kurtosis, applies the non-

parametric bootstrap procedure to a set of noise only data and constructs the null distribution

by resampling. Theoretical and simulation results show that both methods achieve accurate

approximations with moderate samples, i.e., the sample size in a order of101 and 102 are

sufficient for the MDOF method and the bootstrap method, respectively.

The detection performance of proposed detectors in non-Gaussian noise is evaluated numeri-

cally and compared with other robust detection methods. Simulation results have shown that

theF -statistic based sensing schemes achieved an overall superior detection probability for the

GGM and GMM noise, i.e., compared with the energy based detector a 4 dB SNR gain can

be achieved to obtain a90% detection probability in Laplacian noise. In addition, since the

F -statistic based detector uses linear regression models, asignificant performance gain can be

expected up to array size ofM = 4− 8.

These new detection techniques now offer the potential of improved performance for primary

signal detection in non-Gaussian noise. Furthermore, the robustF -statistic based detector has

general validity which can be extended to other linear regression problems with complex num-

ber measurements.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Today the rapid growth of wireless industry has contributedto huge demand for higher data

rates wireless products and ever more bandwidth. Facing thefuture generation wireless ser-

vices, the spectrum shared technology, cognitive radio, has received much research interest.

This thesis has focused on the noise robust spectrum sensingdesigns in cognitive radio net-

works. Gaussian distributed noise with exactly known poweris a common assumption made in

current spectrum sensing schemes. However, such a assumption is not always valid in practi-

cal wireless communication systems. In order to achieve a more reliable detection, two chal-

lenging sensing conditions, e.g., the detection in unknownnoise variance and the detection in

non-Gaussian noise, have been considered in this thesis.

In Chapter 3, anF -test based sensing method has been proposed which overcomes the prob-

lem of noise variance uncertainty. It considers a multiple antenna cognitive radio system and

assumes the CSI is known. Since the test statistic,F -statistic, is independent of the noise

power, this approach offers absolute robustness against noise variance mismatch. By invok-

ing a Gaussian noise assumption, easily evaluated expressions for the test threshold and the

detection probability have been derived, respectively. Theoretical analysis indicates that when

the prior knowledge of CSI is imperfect, the false alarm probability remains unchanged and

the degraded detection probability can be evaluated. Simulation results have shown that the

F -test based detector performs superior to the widely used energy detector as a2.2 dB SNR

gain can be achieved to obtain a90% detection probability. When the CSI is imperfect, the

proposed approach has constant false alarm probability andsuffers from a mild performance

loss in detection probability, but still has an overall better performance compared with the en-

ergy detector with 1 dB noise mismatch. In addition, since the F -test uses linear regression

models, the detection probability will increase rapidly with the regressor size, i.e., number of

receiving antennasM . WhenM = 8 antennas are applied, simulation results suggest that the

performance loss caused by CSI uncertainty becomes insignificant.
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While a Gaussian noise assumption was made in Chapter 3, Chapter 4 and Chapter 5 relaxed

this requirement and considered the spectrum sensing problem for non-Gaussian noise. In

Chapter 4, by using the bootstrap technique, two detection methods have been developed which

can be applied to arbitrary noise types with finite power. Firstly, a nonparametric eigenvalue

based detector was proposed which can be applied to multipleantenna assisted cognitive radio

systems. It is fundamentally a binary hypothesis test for the difference between sample eigen-

values. Secondly, by assuming the noise power is known, the conventional energy detector was

generalised to non-Gaussian noise. For both detectors, thenonparametric bootstrap technique

has been applied to estimate the null distribution of the test statistic via resampling the collected

data with replacement. A major advantage of the bootstrap isthat it offers sufficiently accurate

approximation in a variety of non-Gaussian noise types for short data records, leading to a test

threshold that maintaining a target false alarm probability. In addition, the important role of

bootstrap pivot has been described. The bootstrap test witha pivoting statistic, such as the en-

ergy based detection, has been shown to have a standardizingnull distribution that independent

of the unknown noise types. The detection performance of proposed detectors have been eval-

uated numerically. The results illustrated that in non-Gaussian noise, the energy based detector

is a superior approach in low SNR regime and the eigenvalue based method offers an overall

better detection performance, e.g., to obtain a 90% detection probability, the eigenvalue based

detector provides an up to1.5 dB SNR gain compared with the energy based detector.

Then in Chapter 5, theF -test based detector proposed in Chapter 3 was generalised to non-

Gaussian noise. The noise distribution is characterised bycircularly symmetric with finite

kurtosis and is not necessary to be Gaussian. To maintain thepre-determined false alarm prob-

ability, two methods have been proposed to estimate the nulldistribution of theF -statistic. The

first MDOF approach requiresprior knowledge of the noise kurtosis. The null distribution is

approximated by anF -distribution with modified degrees of freedom and the expressions are

obtained in closed form. The second approach applies the nonparametric bootstrap procedure

to a set of noise only data and constructs the null distribution by resampling. It incurs compu-

tational complexity but can work without the knowledge of noise kurtosis. Theoretical analysis

shows that both methods can yield accurate statistical approximations in non-Gaussian noise,

while the sample size required for the MDOF method is less than the bootstrap method. For

example, given a target 10% false alarm probability, it has been verified that the sample size

in a order of101 is sufficient for the MDOF method, while the bootstrap methodrequires102.

When the sample size is sufficiently large to ensure the pre-specified false alarm rate, it can
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be observed that the two proposed approaches have nearly thesame probability of detection.

Compared with other state-of-the-art robust detectors, theF -statistic based detector are shown

to have a good detection probability under various types of non-Gaussian noise. For example,

it is illustrated that in Laplacian noise, the SNR gap between theF -statistic based detector and

the energy detector is4 dB at 90% detection probability.

6.2 Limitations and Future Work

This thesis has developed robust sensing techniques that consider more reasonable noise mod-

els in cognitive radio networks. However, due to the initialassumptions made on the data model

and applied techniques, there exists certain limitations and more efforts can be made to gener-

alise the proposed approaches. In addition, based on this thesis, several interesting topics are

worth further investigation.

6.2.1 Limitations

• Chapter 3 and Chapter 5: The F -statistic based approaches requireprior knowledge of

CSI. However, in the context of cognitive radio, the acquisition of CSI is an open issue due

to the lack of reciprocal standard between primary and secondary systems. Suggested by the

previous literature, possible solutions to this problem include acquiring CSI from the periodi-

cally transmitted pilot [11, 83, 84], or estimating the fading gains and the state of primary signal

jointly [85, 86]. As discussed in this thesis, the imperfectCSI leads to performance loss in de-

tection probability. Fortunately, when the primary user isabsent, i.e., the null hypothesisH0

holds, the CSI uncertainty will not degrade the performanceas the false alarm probability of

theF -statistic based detector remains unchanged in this case.

• Chapter 4 and Chapter 5: Bootstrap resampling is applied to control the false alarmproba-

bility of sensing methods in non-Gaussian noise. This leadsto increased computational cost as

the complexity will grow linearly with the number of bootstrap replications. Such a problem is

more significant in eigenvalue based method as it involves double bootstrap.
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6.2.2 Future Work

• In addition to the detectors proposed in Chapter 4 and Chapter 5, the bootstrap technique

can be further applied to other robust sensing designs by non-parametrically estimating their

test statistics’ null distributions. For example, the cyclostationarity based detection methods for

non-Gaussian noise can be considered so that the signals from the primary user and interfer-

ences can be differentiated.

• Edgeworth expansion may be a solution to reduce the complexity brought by the bootstrap

method. In the Edgeworth view, the distribution of a statistic can be expanded as the normal

distribution plus an infinite number of Edgeworth series [95]. If the statistic is pivotal, generally

a second-order approximation is sufficiently accurate. Themain issue is that the polynomials

are with coefficients depending on the cumulants of the test statistic, which may be complicated

as they are related to the non-Gaussian noise distribution.In practice, the bootstrap method is

a way to non-parametrically approximate these polynomialsat the expense of computational

complexity. However, extra efforts on Edgeworth expansions are worthwhile as they are more

efficient to cope with the limited sensing time.

• In Chapter 5, the detection probability of theF -statistic based method in non-Gaussian noise

is worth to be further studied. Similar to the MDOF method, one possible way is to approximate

the detection probability by a noncentralF -distribution with modified degrees of freedom.

Furthermore, it is interesting to investigate the performance loss in detection probability caused

by CSI uncertainty.

• In this thesis, we assume there is only one primary signal source as most of spectrum sensing

problems consider this case. In practice, all of the proposed methods can be extended to other

detection problems with multiple signal sources. Related works on theF -statistic based detec-

tor have been discussed in Chapter 5. For the eigenvalue based detector in Chapter 4, sequential

detection methods can be considered.
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Appendix A

Proof of Property 5.1

Proof. 1. WhenH0 holds, E[y(l)] = 0 and Var[y(l)] = σ2
wIM . Therefore, we have:

E

[

L−1
∑

l=0

y (l)H Pky (l) |H0

]

= E

[

L−1
∑

l=0

w (l)H Pkw (l)

]

= Lσ2
wtr [Pk] = Lσ2

wrk.

(A.1)

2. Using Property 5.1.(1), we have:

Var

[

L−1
∑

l=0

y(l)HPky(l)|H0

]

= E





(

L−1
∑

l=0

w(l)HPkw(l)

)2

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[
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w(l)HPkw(l)

]2

= E





(

L−1
∑

l=0

w(l)HPkw(l)

)2


− σ4
wL

2r2k. (A.2)

DefineR = [Rij] =
L−1
∑

l=0

w(l)w(l)H , Pij as the element of projection matrixPk (the

subscriptk in Pij is omitted for simplicity) andAij = ℜ(PijRji). Wheni = j, both Rii

and Pii are real-valued numbers. Note thatR is symmetric and the projection matrixPk

is idempotent and symmetric. Based on those properties, we have:

E




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L−1
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l=0

w(l)HPkw(l)

)2




= E
[

(tr [PkR])2
]

= E









∑

i

PiiRii + 2
∑

i

∑

j<i

ℜ(PijRji)





2

 (A.3)

= E





(

∑

i

Aii

)2

+ 4





∑

i

∑

j<i

Aij





2

+ 4

(

∑

i

Aii

)





∑

i

∑

j<i

Aij







 .

100



Proof of Property 5.1

Sincew(l) is i.i.d, E[AijAhm] can be written in case by:

E[AijAhm] =







































(

Lµ4 + (L2 − L)σ4
w

)

P2
ii i = j = h = m

(L2σ4
w)PiiPjj i = j, h = m

L(σ4
r + σ4

i )ℜ(Pij)
2 + 2Lσ2

rσ
2
iℑ(Pij)

2 i = h, j = m
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(A.4)

whereσ2
r , E

[

ℜ (wi(l))
2
]

andσ2
i , E

[

ℑ (wi(l))
2
]

denote the variance of the real

and imaginary part of noisewi(l), respectively. Sincewi(l) is assumed to be circularly

symmetric distributed, we have:

σ2
r = σ2

i =
1

2
σ2
w, (A.5)

and

E[AijAhm] =
L

2
σ4
w |Pij|2 , for i = h, j = m. (A.6)

Using the results in (A.4), we have:
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Note that for a projection matrixPk, we have tr[Pk] = rk andP2
k = Pk [88]. Hence,
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(
∑

i
Pii)
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|Pij |2 = tr

[
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= rk. Substituting (A.7-A.9) in (A.3) leads to:
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Finally, substituting (A.10) in (A.2) leads to:
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3. Note thatP1 + P2 = IM is an orthogonalM−dimensional projection and by using

(A.11), we have:
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Comparing it with the formula of variance decomposition Var[a+ b] = Var[a]+Var[b]+

2Cov[a, b] [107], finally we obtain:
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Appendix B

Proof of Property 5.2

Proof. 1. Taking a Taylor expansion oflogS2
k aboutlog σ2
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2 , we have:
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Taking expected value of both sides and using the results in Property 5.1.(2), we have:
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Substituting in:
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Using (B.6) and (B.7), we have:
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Substituting (B.8) and (B.9) in:
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and using the results in Property 5.1.(2-3), we have:
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Abstract—Spectrum sensing is an essential task in cognitive
radio technology. Most of current detectors take the noise power
as prior knowledge which makes the detection performance
sensitive to noise uncertainty. In this paper, we propose an F−test
based detector to overcome this problem. The proposed approach
is robust to noise mismatch and requires low computational
complexity. Based on the table of F−distribution, the exact value
for the test threshold and the detection probability are derived,
respectively. In addition, we shall show that the false alarm
probability of the proposed method is still under control even
with channel uncertainty. Simulation results demonstrate that
significant performance gain achieved by the proposed approach.

Index Terms—signal detection, F−test, spectrum sensing, cog-
nitive radio.

I. INTRODUCTION

Conitive Radio (CR) is proposed by FCC as an intelligent

and flexible spectral allocation scheme [1]. The key of cogni-

tive radio is to allow secondary users to operate at the licensed

band without causing unacceptable interference to primary

users [2], which makes spectrum sensing a fundamental issue:

CR users are required to reliably monitor the presence of

primary users over a certain spectrum periodically. Many

sensing approaches [3]–[8] have been proposed to address

this problem. Generally speaking, they fall into the following

categories: energy detector, matched-filter detector, feature-

based detector and blind detector. Another challenge is that

individual CR user may fail to detect the weak primary signal

due to the severe fading and hence significantly interferes the

licensed user. To improve sensing sensitivity, we investigate

the signal detection problem by considering multiple antenna

systems in this paper.

Multiple antenna techniques can overcome multipath fading

by exploiting the diversity gain without high requirement on

overhead to transmit the observation. Recently, it has been

applied in spectrum sensing for CR technology. In [9], an

optimal detector in the Neyman-Pearson sense is addressed

in which all knowledge about the signals, noise and channels

are required. The popular energy detector [3] can be applied

when noise statistic is available and it can be extended to

more complex scenarios [10]. Energy detector is simple and

optimal when noise power is the only known information

[5]. However, the main drawback is that the sensitivity to

noise uncertainty. When the noise mismatch is large, energy

detector will become invalid due to high false alarm proba-

bility and limitation of signal-to-noise radio (SNR) wall [6].

To overcome this challenge, current research concentrates on

blind detection, which exploits the received signal without any

knowledge of signal parameters. For example, the eigenvalue-

based maximum-minimum eigenvalue (MME) detector is stud-

ied in [8] and a generalized maximal likelihood radio test is

proposed in [9]. However, they all apply the random matrix

theory to decide the test threshold so that a large sample

size is required. For blind detectors without the requirement

on sample length, such as the multiple antennas assisted and

empirical characteristic function (MECF) based detector [11],

no closed-form expression for test threshold is available.

In summary, the aforementioned detection methods require

noise power or high computational complexity. In this paper,

we propose an F−test based approach to improve robustness

and computational efficiency. Assuming the channel state

information (CSI) is known, the proposed method is insensitive

to noise uncertainty and achieves a significant performance

gain. Furthermore, its computational complexity is comparable

with energy detector. Given the table of F−distribution, the

test threshold and probability of detection can be easily

derived. Simulations are carried out to verify the proposed

approach.

The rest of the paper is organized as follows. Section II

introduces the signal model for multiple antenna sensing and

develops the F−test based detector. In Section III, we discuss

the performance of the proposed detector. Simulation results

are presented in Section IV. Section V concludes the paper.

Throughout this paper, boldface letters and boldface capital

letters denote vectors and matrices, respectively. tr(·) is the

trace operator and ‖·‖ denotes the Euclidean norm of a vector.

IM represents the identity matrix of order M .

II. SIGNAL MODEL AND F−TEST BASED DETECTION

Consider a cognitive radio network system with M receiv-

ing antennas as shown in Fig.1. We formulate the spectrum

sensing problem as a hypothesis test. The null hypothesis H0

corresponds to an idle spectrum and the alternative hypothesis

H1 corresponds to an occupied spectrum. Then the received

signal vector at the CR user can be expressed as

H0 : y(l) = w(l),

H1 : y(l) = hs(l) +w(l), l = 1, 2...L, (1)

978-1-4673-3122-7/13/$31.00 ©2013 IEEE
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Fig. 1. CR networks with M antenna at the receiver

where y(l) ∈ C
M×1 represents the received signal at time

instant l and L is the number of samples. s(l) denotes the

primary signal symbol at lth time slot which is assumed

to be unknown and deterministic. The primary signal is

distorted by the known CSI vector h ∈ C
M×1, which is

supposed to stay constant during the sensing period. The noise

vector w(l) ∈ C
M×1 consists of i.i.d zero-mean, complex

Gaussian distributed elements with unknown variance σ2
n, i.e.,

wi(l) ∼ CN (0, σ2
n), i = 1, 2 . . .M . Without loss of generality,

we assume the received signal be independent across antennas

and time slots.

Note that in a CR network, the learning of CSI is via

channel reciprocity. For example, h can be estimated from

the periodically transmitted pilot primary signal [12]–[14].

Based on the linear signal model (1) and Gaussian noise

assumption, an F−test [15] can be set up to to decide the

presence of primary signal. Combining the received data set

Y = {y(l), l = 1, 2 . . . L} and channel information h, the

decision rule is given by

T
H1

R
H0

γ, (2)

where γ is the test threshold and the test statistic T is given

by

T =
n2

n1

tr(PR̂y)

tr((IM −P)R̂y)
. (3)

Here R̂y = 1

L

L
∑

l=1

y(l)y(l)H denotes the sample covariance

matrix and P = h(hHh)−1hH represents the projection

matrix onto the subspace spanned by h. The test statistic (3)

is Fn1,n2
−distributed under null hypothesis H0, with degrees

of freedom

n1 = 2L, (4)

n2 = 2L(M − 1). (5)

The test statistic T can be seen as an estimated SNR at

the CR receiver. Therefore, the decision rule (2) has the

interpretation that we will reject H0, or declare primary signal

to be detected, when the SNR level exceeds a certain threshold

γ. In addition, it is worth mentioning that the Gaussian

noise assumption implies the equivalence between F−test and

likelihood radio test [15].

III. PERFORMANCE STUDY

In this section, we shall discuss the performance and advan-

tages of the proposed detector. To begin with, the false alarm

probability (Pf ) and the detection probability (Pd) are defined

as follows

Pf = Pr(T > γ|H0), (6)

Pd = Pr(T > γ|H1). (7)

In spectrum sensing for CR networks, a high Pf results in

poor spectral efficiency and a high Pd means less interference

to primary systems. Therefore, a detector with large Pd and

low Pf is desirable in the design of sensing technique.

Depending on the system requirement, one of the two merits

can be used to choose the test threshold. However, since the

calculation of Pd requires more prior information than Pf

does, we often decide the test threshold based on false alarm

probability.

A. Test threshold and probability of detection

As mentioned above, the test statistic T is Fn1,n2
−distributed

when the primary user is not active. Let Wc,n1,n2(x) be

the cumulative distribution function (CDF) of the central

F−distribution with degrees of freedom n1 and n2 [16] (more

details are shown in Appendix A). Then the false alarm

probability Pf can be expressed as

Pf = Pr(T > γ|H0) = 1−Wc,n1,n2(γ). (8)

Given a target false alarm probability α, the test threshold γ
can be easily obtained by looking up the table of Wc,n1,n2(x),
that is

γ = W−1

c,n1,n2(1− α). (9)

The probability of detection Pd relies on the distribution of

the test statistic under H1. Due to complicated distributional

properties, the exact value of Pd is usually hard to obtain

in most designs. However, in the proposed F−test based

method, the problem can be solved easily. In the presence

of the primary user, or H1 holds, the test statistic (3) is

noncentral F -distributed [16], denoted by F ′
n1,n2

(δ2), where

the noncentrality parameter is given by

δ2 =

L

2
∑

l=1

‖hs(l)‖2

σ2
n

. (10)

Let Wnc,n1,n2(x | δ
2) denote the CDF of noncentral F -

distribution (see Appendix A). Making use of the table for
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the noncentral F -distribution, we can obtain the probability

of detection as follows

Pd = Pr(T > γ|H1) = 1−Wnc,n1,n2(γ | δ
2). (11)

According to [16], Pd is an increasing function of δ2. Since

the noncentrality parameter (10) can be seen as a scaled SNR,

we can achieve a better detection probability by increasing

sensing samples to improve the SNR level at the receiver.

B. Computational complexity

The computational complexity of the F−test based sens-

ing method comes from calculation of the test statistic (3).

Because both R̂y and P are Hermitian, the evaluation can

be simplified. For example, approximately LM(M + 1)/2
complex multiplications and M(M + 1)(L − 1)/2 complex

additions are needed to compute R̂y . In Table I, we list the

computational complexity of the F−test based method, the

energy detector and the blind MME detector (with S as the

smoothing factor [8]) for comparison.

Among these methods, the MME detector is the most

expensive one for its large sample assumption, e.g., L is typ-

ically 104, and energy detector enjoys the lowest complexity.

The computational complexity of the F−test based detector

increases linearly with the number of samples and is approxi-

mately proportional to the squared number of receive antennas.

Since L is usually much larger than M , the implementation

of F−test based detector is inexpensive in practice.

C. Discussion

The proposed method is inspired by linear regression anal-

ysis, where the CSI h acts as the regressor and y(l) is the

response variable. Since no information of noise statistic is

needed, the F−test based approach is robust against noise

uncertainty. Compared with existing detectors suggested in

[8], [9], [17], the proposed F−test based method is simple

to implement and requires only moderate sample size. In

addition, CSI is needed to construct F−test based sensing.

As shown in the simulation, the utilization of of CSI leads

to the performance gain and high robustness against noise

uncertainty.

IV. SIMULATION RESULTS

In this section, we shall evaluate the proposed F−test

based sensing numerically and compare it with other popular

detectors, namely the energy detector and the MME detector.

To keep consistency with the signal model defined here, we

extend the result of MME detector in [8] to the complex

value data case. In this circumstance, we use Tracy-Wisdom

distribution of order 2 [18] to decide the test threshold and

choose the smoothing factor S = 5. Specially, the sample

length is large so that the MME method can provide reasonable

performance. To examine the proposed approach, we consider

a 4-antenna (M = 4) scenario with Additive white Gaus-

sian noise (AWGN) channel and BPSK modulated primary
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Fig. 2. Probability of detection versus average SNR, for Pf = 0.05 and
L = 5000.
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Fig. 3. Probability of detection versus sample length, for Pf = 0.05 and
average SNR=−14dB.

signal. The known CSI vector is generated by i.i.d zero-

mean circularly symmetric complex Gaussian variables with

normalized variance. The results are obtained by averaging

5000 Monte Carlo trails. In simulation, we choose the noise

power according to the average SNR level defined by

SNR ,
‖hs(l)‖2

Mσ2
n

. (12)

A. Test performance under perfect parameter estimate

In the first experiment, we assume the parameter estimate

is perfect and compare the F−test based approach with the

energy detector (marked with EG) and MME detector. In Fig.2,

we show the Pd against average SNR with a target Pf = 0.05
and L = 5000. The proposed F−test based sensing is shown

to achieve the best detection probability among the three, i.e.,

when the detection probability is 0.9, the SNR gain of the

proposed detector is about 2dB and 4.2dB over the energy
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TABLE I
COMPLEXITY FOR F−TEST BASED METHOD, ENERGY DETECTOR AND MME DETECTOR.

Complex Multiplications Complex Additions

F−test Based Detector M(M + 1)(1 + L/2) M(M + 1)(L− 1)/2 + 2(M − 1)

Energy Detector ML (M − 1)(L− 1)

MME Detector LM(M + 1)/2 +O(M3) M(M + 1)(L− S)(S − 1)/2 +O(M3)

  ! "  ! #  ! $  ! %  ! &  ! '  ! (  ! )  ! * " ! % ! & ! ' ! ( ! ) ! * "

+ , - "   . /
0 123 45 67 6879 2:

; < + = > +? @A A ?
Fig. 4. Probability of detection v.s. noise uncertainty, for desired Pf = 0.05,
L = 5000 and average SNR= −14dB.

detector and the MME method, respectively. In addition, the

analytical result for Pd (11) provides an accurate description.

As mentioned above, the MME method needs a long sample

length to ensure the selected test statistic be effective in each

detection, while the F−test based method does not have

such limitation. In Fig.3, we plot the impact corresponding

to data length for Pf = 0.05 and average SNR=−14dB. It

can be seen that the MME detector almost fails in the small

sample scenario and the proposed detector achieves a much

better performance. For example, to obtain a 90% detection

probability, the F−test based method only needs 1/3 as many

samples as the energy detector and 1/8 as many samples as

the MME detector does, respectively.

B. Test performance under estimate error

In practice, we do not have access to the perfect parameter

estimate due to limited feedback or quantization errors. As

long as the detector needs prior knowledge, the estimation

error will degrade detection performance. In the second ex-

periment, we assume ĥ = h + △h, where ĥ denotes the

channel estimate and the error term △h is i.i.d zero-mean

complex Gaussian distributed with covariance matrix σ2
eIM ,

e.g., 0 ≤ σ2
e ≤ 1. Since the variance of h has been normalized,

the channel uncertainty can be viewed as from 0% to 100%.

For noise mismatch, we assume the imperfect power estimate

σ̂2
n = βσ2

n and the factor β is considered as a uniformly

distributed random variable in the interval
[

1

1+t
, t+ 1

]

, where

t denotes the noise uncertainty level from 0% to 100%.

In Fig.4, we plot Pd against noise uncertainty with desired

B B C D B C E B C F B C G HBB C B IB C HB C H IB C DB C D IB C JB C J IB C EB C E I

σKL
M NOP QR ST UVWT SNX Y Z [ \ ] [^ _^ _ Z H ` ab b ^

(a)

B B C D B C E B C F B C G HB C IB C I IB C FB C F IB C cB C c IB C GB C G IB C dB C d I H

σKL
M NOP Qe Vf Vgfh Oi Y Z [ \ ] [^ _^ _ Z H ` ab b ^

(b)

Fig. 5. Performance v.s. channel uncertainty σ2
e . The performance (a):Pf ;

(b):Pd, for desired Pf = 0.05, L = 5000 and average SNR= −14dB.

Pf = 0.05, L = 5000 and average SNR=-14dB. It can be seen

that the detection probability of the F−test based method and

MME detector enjoy robustness against noise mismatch. On

the other hand, the probability of detection associated with the

energy detector is severely degraded by noise uncertainty.

Based on the same scenario, we show the impact caused by

CSI error in Fig.5. Note that the performance of the energy

detector with 10 log10 t = 1dB noise uncertainty is a basis for

comparison.

The false alarm probability of F−test based sensing, as

shown in Fig.5(a), is still around the target value even with
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channel uncertainty. However, the Pf of energy detector will

be out of control with only 1dB noise uncertainty. Fig. 5(b)

shows that the detection probability of the proposed approach

degrades under channel uncertainty. However, with CSI error

up to 23% and 68%, it still outperforms the ideal energy de-

tector and MME detector, respectively. In addition, compared

with energy detector with 1dB noise mismatch, the F−test

based detector has a much higher detection probability over

the entire channel uncertainty interval.

In summary, the F−test based detector shows the best

detection performance at low SNR in the first experiment. It

requires much less samples than the energy detector and the

MME detector. Furthermore, its performance is not affected

by noise uncertainty and has a mild sensitivity to channel

uncertainty.

V. CONCLUSION

In this paper, we propose a novel sensing technique based

on F−test. The method can be used for multiple antenna CR

systems without knowledge of primary signal and noise power.

Assuming the CSI is known, the proposed detector is easy to

implement and robust to noise uncertainty. The test threshold

and detection probability are derived by applying statistical

properties of F−distribution. Simulation results show that the

proposed approach leads to significant performance gain and

enhanced robustness against noise uncertainly at low compu-

tational complexity. We believe the F−test based detector is

a promising approach for spectrum sensing.

APPENDIX A

CDF OF THE PROPOSED KINDS OF F−DISTRIBUTION

1) The central F−distribution

Wc,n1,n2(x) = Pr(T < x) = Ik(
1

2
n1,

1

2
n2), (13)

where k = n1x/(n2 + n1x), and Ik is the incomplete

beta function. The formula for the incomplete beta

function is

Ik(x,
1

2
n1,

1

2
n2) =

∫ x

0
t
1

2
n1−1(1− t)

1

2
n2−1dt

B( 1
2
n1,

1

2
n2)

, (14)

where B is the beta function

B(
1

2
n1,

1

2
n2) =

∫ 1

0

t
1

2
n1−1(1− t)

1

2
n2−1dt. (15)

2) The noncentral F−distribution

Wnc,n1,n2(x | δ
2) = Pr(T (δ2) < x)) (16)

=
∞
∑

j=0

wj,δ2Ik(
1

2
n1 + j,

1

2
n2),

where

wj,δ2 = exp(−δ2/2)
(δ2/2)j

j!
. (17)

REFERENCES

[1] FCC, Facilitating opportunities for flexible, efficient, and reliable spec-

trum use employing cognitive radio technologies, notice of proposed rule

making and order(ET Docket no.03-322), Dec. 2003.
[2] Haykin, “Cognitive radio: brain-empowered wireless communications,”

Selected Areas in Communications, IEEE Journal on, vol. 23, no. 2, pp.
201 – 220, Feb. 2005.

[3] H. Urkowitz, “Energy detection of unknown deterministic signals,”
Proceedings of the IEEE, vol. 55, no. 4, pp. 523 – 531, Apr. 1967.

[4] S. Kapoor, S. Rao, and G. Singh, “Opportunistic spectrum sensing by
employing matched filter in cognitive radio network,” in Communication

Systems and Network Technologies (CSNT), 2011 International Confer-

ence on, Jun. 2011, pp. 580 –583.
[5] A. Sonnenschein and P. Fishman, “Radiometric detection of spread-

spectrum signals in noise of uncertain power,” Aerospace and Electronic

Systems, IEEE Transactions on, vol. 28, no. 3, pp. 654 –660, Jul. 1992.
[6] R. Tandra and A. Sahai, “Fundamental limits on detection in low SNR

under noise uncertainty,” in Wireless Networks, Communications and

Mobile Computing, 2005 International Conference on, vol. 1, Jun. 2005,
pp. 464 – 469 vol.1.

[7] S. Chaudhari, V. Koivunen, and H. Poor, “Autocorrelation-based de-
centralized sequential detection of OFDM signals in cognitive radios,”
Signal Processing, IEEE Transactions on, vol. 57, no. 7, pp. 2690 –2700,
Jul. 2009.

[8] Y. Zeng and Y.-C. Liang, “Eigenvalue-based spectrum sensing algo-
rithms for cognitive radio,” Communications, IEEE Transactions on,
vol. 57, no. 6, pp. 1784 –1793, Jun. 2009.

[9] A. Taherpour, M. Nasiri-Kenari, and S. Gazor, “Multiple antenna
spectrum sensing in cognitive radios,” Wireless Communications, IEEE

Transactions on, vol. 9, no. 2, pp. 814 –823, Feb. 2010.
[10] A. Pandharipande and J.-P. Linnartz, “Performance analysis of primary

user detection in a multiple antenna cognitive radio,” in Communica-

tions, 2007. ICC ’07. IEEE International Conference on, Jun. 2007, pp.
6482 –6486.

[11] L. Shen, H. Wang, W. Zhang, and Z. Zhao, “Multiple antennas assisted
blind spectrum sensing in cognitive radio channels,” Communications

Letters, IEEE, vol. 16, no. 1, pp. 92 –94, Jan. 2012.
[12] Z. Quan, S. Cui, and A. Sayed, “Optimal linear cooperation for spec-

trum sensing in cognitive radio networks,” Selected Topics in Signal

Processing, IEEE Journal of, vol. 2, no. 1, pp. 28 –40, Feb. 2008.
[13] P. Paysarvi-Hoseini and N. Beaulieu, “Optimal wideband spectrum

sensing framework for cognitive radio systems,” Signal Processing,

IEEE Transactions on, vol. 59, no. 3, pp. 1170 –1182, march 2011.
[14] R. Zhang, “On peak versus average interference power constraints

for protecting primary users in cognitive radio networks,” Wireless

Communications, IEEE Transactions on, vol. 8, no. 4, pp. 2112 –2120,
Apr. 2009.

[15] G. A. F. Seber, Linear regression analysis / George A.F. Seber, Alan J.

Lee., ser. Wiley series in probability and statistics. New Jersey : Wiley,
c2003., 2003.

[16] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous univariate

distributions / Norman L. Johnson, Samuel Kotz, N. Balakrishnan.,
ser. Wiley series in probability and mathematical statistics: Applied
probability and statistics. New York ; London : Wiley & Sons, c1994-
1995., 1994.

[17] R. Zhang, T. Lim, Y.-C. Liang, and Y. Zeng, “Multi-antenna based spec-
trum sensing for cognitive radios: A GLRT approach,” Communications,

IEEE Transactions on, vol. 58, no. 1, pp. 84 –88, january 2010.
[18] I. M. Johnstone, “On the distribution of the largest eigenvalue in

principal components analysis.” Annals of Statistics, vol. 29, no. 2, pp.
295 – 327, 2001.

3274

110



Publications

4072 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 8, AUGUST 2013

An F−Test Based Approach for
Spectrum Sensing in Cognitive Radio

Qi Huang and Pei-Jung Chung, Senior Member, IEEE

Abstract—Spectrum sensing is a key task in cognitive radio
networks. Traditional sensing techniques such as energy detector
suffer from noise uncertainty problem or require high compu-
tational complexity. In this paper, we propose a novel sensing
technique using F−test by considering a multiple antenna cogni-
tive radio system. This method is insensitive to noise uncertainty
and easy to implement. It requires the channel state information
(CSI) as prior knowledge. Based on statistical properties of
F−distribution, we shall derive the test threshold and probability
of detection, respectively. In addition, the performance of the
proposed approach under imperfect channel information will be
discussed. Simulation results show that the proposed F−test
based detector achieves significant performance improvement
compared with several popular detectors and offers robustness
against noise uncertainty.

Index Terms—Signal detection, multiple antenna, F−test,
spectrum sensing, cognitive radio.

I. INTRODUCTION

I
N face of the steadily inceasing demand for high data rates

and limited spectral resources, traditional fixed spectrum

allocation is no longer efficient. To improve spectrum effi-

ciency, cognitive radio (CR) technology is proposed [1] to

open the licensed band by allowing secondary user to utilize

the temporally unoccupied spectrum bands. In response to this,

IEEE formed the 802.22 working group in 2004 to develop a

standard for secondary user access to the idle TV bands [2].

One of the main challenges of CR technology is that secondary

user must monitor the presence of primary users over a certain

spectrum periodically to avoid interference to primary service

[3], which brings spectrum sensing, the fundamental task for

CR technology, into account.

Many efficient sensing techniques have been proposed to

tackle this challenge [4]–[11]. Among these methods, energy

detector [4] is the most popular one due to its simplicity. It

has been shown to be optimal only when the noise statistic

is available to CR users [5]. However, the central problem

of energy detector is its sensitivity to noise mismatch. More

seriously, in the presence of large noise uncertainty, the high

probability of false alarm and signal-to-noise ratio (SNR) wall

phenomenon will make energy detector invalid [6]. Matched

filter detector [7] is considered as an optimal method when the
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full knowledge of the primary signal is known. If CR users

have some knowledge about the primary signal features, e.g.,

modulation type or symbol rate, then feature-based detector

can be applied by exploiting the cyclostatio narity embedded

in the received signal [8], [9]. But this method needs a

long observation time and high computational complexity

for implementation. On the other hand, blind detectors are

considered when no prior information is available [10], [11].

Individual CR users may suffer from a poor sensing sen-

sitivity due to severe fading or low SNRs. In this paper, the

spectrum sensing problem in a multiple antenna system is con-

sidered. Multiple antenna technique is widely used in wireless

communications to overcome multipath fading by exploiting

the spatial diversity [12]. Recently, it has been applied in spec-

trum sensing for CR technology. A Neyman-Pearson sense

based optimal detector is proposed in [13], which requires

prior knowledge about noise power, CSI and primary signals.

When noise power is known, the well-known energy detector

[4], [5] can be applied and it has been extended to more so-

phisticated scenarios. For example, the energy-based detector

proposed in [14] combines the received signals coherently.

As mentioned above, all sensing schemes in this category

suffer from the noise mismatch problem. To overcome this

difficulty, current research focuses on blind sensing scheme,

which exploits the signal structure without any information of

signal parameters. Examples are eigenvalue-based detection

[10], [15] and generalized likelihood ratio test (GLRT) based

detection [13], [16], [17]. However, as shown in [18], the

analytical test threshold for those blind detectors requires high

computational complexity and the simple asymptotic threshold

derived from random matrix theory differs significantly from

the exact value in finite sensors and data samples. In addition,

all blind detectors suffer from limited detection performance

due to the lack of prior knowledge.

In summary, most current multiantenna-assisted detectors

are sensitive to noise uncertainty or subject to limited sample

size and test performance. In this paper, we propose an F−test

based method to overcome those drawbacks. The proposed

approach, in which CSI is required, enjoys high robustness

against noise mismatch and moderate computational complex-

ity. Based on statistical properties of F−distribution [19],

the accurate value for test threshold and detection probability

are derived, respectively. In addition, we will investigate the

impact of channel uncertainty. The results indicate that when

CSI is imperfect, the false alarm probability of the proposed

approach is still under control. The detection probability can

be calculated using doubly noncentral F−distribution in this

1536-1276/13$31.00 c© 2013 IEEE
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Fig. 1. SIMO CR network.

case and we present a simple approximated value for detection

probability to avoid its computational complexity.

It is worth mentioning that an harmonic−F test based

method for spectrum sensing was discussed in [20], which

is based on multitaper method to estimate the spectrum

and the linear model for setting F−test is in the frequency

domain. It can be seen as a blind wideband sensing and large

sample size is required to achieve reasonable performance,

i.e., 2200 samples is used in [20]. The proposed F−test based

method, however, is based on a totally different signal model.

It assumes a multiple antenna scenario and CSI is needed

to construct the F−test. Moreover, to achieve reasonable

performance, the required sample size is much smaller.

The remainder of the paper is structured as follows. In

Section II, the signal model for multiple antenna sensing

is described. In Section III, we propose the F−test based

detector and derive the test threshold and detection probability.

Then Section IV analyses the performance of the proposed

approach under channel uncertainty. Comparison with several

popular spectrum sensing schemes is discussed in Section V.

Simulation results are presented in Section VI. Finally, Section

VII concludes the paper.

Throughout this paper, boldface letters and boldface capital

letters represent vectors and matrices, respectively. (·)H de-

notes conjugate transpose and (·)T represents transpose. tr()
stands for the trace operator and ‖·‖ represents Euclidean norm

of a vector. IM denotes the identity matrix of order M .

II. SIGNAL MODEL

Consider a single-input multiple-output (SIMO) CR net-

work as shown in Fig.1, where there is only one primary

user and the secondary user is equipped with M antennas. In

spectrum sensing, we aim at finding the idle spectrum band

unoccupied by the primary user within the range of secondary

users. Here the detection of primary user is formulated as a

hypothesis testing problem: the null hypothesis H0 implies

that the primary user is not active; and the alternative H1

implies that the primary user is active.

Let y(l) = [y1(l), y2(l), . . . , yM (l)]T be the received signal

vector at the M antennas, which can be expressed as

H0 : y(l) = w(l),

H1 : y(l) = hs(l) +w(l), l = 1, 2...L, (1)

where s(l) denotes the transmitted primary signal sym-

bol at time instant l, which is unknown and determinis-

tic. The flat fading channel is represented by the known

CSI vector h = [h1, h2, . . . , hM ]T . We assume that h

is constant during the sensing period. The noise vector

w(l) = [w1(l), w2(l), . . . , wM (l)]T is i.i.d zero-mean, com-

plex Gaussian distributed with covariance matrix σ2
nIM , i.e.,

w(l) ∼ CN (0, σ2
nIM ), where σ2

n is unknown. L is the number

of received samples.

Since there is no existing reciprocity standard between

primary and secondary systems, the learning of CSI h is

still an open question. One solution to this problem was

suggested in [21]–[24]: the knowledge of CSI is acquired

from the periodically transmitting pilot [25] when the primary

transmitter is known for sure to be active. Moreover, based on

this method, the synchronization procedure for acquiring pilot

is a challenge in low SNR scenario and certain code properties

can be exploited for improving synchronization [26], [27].

III. F−TEST BASED DETECTION

Given the observation Y = {y(l), l = 1, 2, . . . , L} and

CSI vector h, the problem of central interest is to detect the

existence of primary signal. To begin with, we define the

probability of false alarm (Pf ) and the probability of detection

(Pd) as follows

Pf = Pr(T > γ|H0), (2)

Pd = Pr(T > γ|H1). (3)

Where T denotes the test statistic and γ is the test threshold.

In the context of cognitive radio, Pf denotes the probability

that an idle spectrum is falsely ignored, which leads to a

spectral loss. On the other hand, Pd determines the percentage

of the occupied spectrum that is truly detected, which avoids

the harmful interference to primary system. In the design of

spectrum sensing technique, we should keep Pf under a pre-

specified significance level and make Pd as large as possible.
The linear signal model (1) ensures the applicability of

F−test [28], which is derived from likelihood ratio principle

under Gaussian noise assumption [29] and acts as an efficient

tool for hypothesis testing in linear regression analysis. Here,

it is applied to test whether there exists linear relationship

between the receive data and CSI or not. The decision rule is

given by

T
H1

R
H0

γ, (4)

where the test threshold γ is selected to ensure a target

probability of false alarm and the test statistic T is

T =
n2

n1

tr(PR̂y)

tr((IM −P)R̂y)
. (5)
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Here R̂y = 1

L

L
∑

l=1

y(l)y(l)H represents the sample convariance

matrix andP = h(hHh)−1hH denotes the projection onto the

subspace spanned by h. When H0 holds, or primary user is

not active, the test statistic (5) is Fn1,n2
−distributed [19] with

degrees of freedom

n1 = 2L, (6)

n2 = 2L(M − 1). (7)

Let Wc,n1,n2(x) be the cumulative distribution function (CDF)

of the F−distribution with degrees of freedom n1 and n2 (see

Appendix A). Then given a target false alarm probability α,
we can obtain the test threshold γ by looking up the existing

table of Wc,n1,n2(γ), that is

γ = W−1
c,n1,n2(1− α). (8)

Note that the test statistic (5) can be seen as an SNR estimate

for CR users. Therefore, the decision rule (4) implies that

we will accept the alternative hypothesis H1, or declare the

existence of primary signal, when SNR is large enough to

exceed a given threshold γ.
When primary user is active, the test statistic T is noncentral

F−distributed [19], i.e., T ∼ F ′n1,n2
(δ2). The noncentrality

parameter δ2 is given by

δ2 =

2
L
∑

l=1

‖hs(l)‖2

σ2
n

. (9)

The CDF of the noncentral F−distribution is defined as

Wnc,n1,n2(x | δ2) (see Appendix A). Hence we can obtain

the probability of detection as

Pd = Pr(F > γ|H1) = 1−Wnc,n1,n2(γ | δ
2), (10)

which is also easy to evaluate by looking up the table. The

detection probability Pd is an increasing function of the

noncentrality parameter δ2 [19]. From (9), we can conclude

that a higher probability of detection can be obtained by

increasing the sample size L.

IV. IMPACT OF CHANNEL UNCERTAINTY

As mentioned above, channel information h is needed

for constructing the F−test based method. However, due to

estimation or quantization errors, one only has access to the

imperfect CSI ĥ ∈CM×1, which can be modelled as follows:

ĥ = h+△h, (11)

where △h = [△h1,△h2, . . . ,△hM ]T denotes the error

term. Such uncertainty may degrade the performance of the

proposed detector. In this section, the impact of channel

uncertainty will be discussed.

A. Test threshold and probability of false alarm

The selection of test threshold depends on the target false

alarm probability, which is related to the null hypothesis H0.

In this case, the received data only consists of noise because no

primary user is active. Note that ĥ is a fixed parameter during

a sensing period. Combining (1) and (5), the test statistic under

channel uncertainty can be expressed as

T (ĥ|H0) =
n2

n1

L
∑

l=1

w(l)HP̂w(l)

L
∑

l=1

w(l)H(IM − P̂)w(l)

, (12)

where P̂ = ĥ(ĥH ĥ)−1ĥH denotes the projection matrix

onto ĥ. Since the noise {w(l); l = 1, 2, . . . , L} is complex

Gaussian distributed, the test statistic underH0 (12) is Fn1,n2
-

distributed, with n1, n2 given by (6) and (7). Therefore, given

the test threshold γ (8), the false alarm probability is

Pf = Pr(T (ĥ) > γ|H0) = 1−Wc,n1,n2(γ) = α. (13)

Hence, in the presence of channel uncertainty, the pre-

computed threshold γ (8) will still be effective to keep the

false alarm probability under the target value.

B. Probability of detection

When the alternative H1 holds, the received data consists

of both signal and noise, implying that the observations will

depend on the channel h and so does the detection probability.

Based on (1) and (5), when primary signal exists, the test

statistic

T (ĥ|H1) =
n2

n1

L
∑

l=1

(hs(l) +w(l))HP̂(hs(l) +w(l))

L
∑

l=1

(hs(l) +w(l))H (IM − P̂)(hs(l) +w(l))

(14)

is doubly noncentral F−distribution (DNF) distributed, i.e.,

T (ĥ|H1) ∼ F
′′

n1,n2
(δ21 , δ

2
2) [19], with the noncentrality pa-

rameters

δ21 =
2

σ2
n

L
∑

l=1

∥

∥

∥
P̂hs(l)

∥

∥

∥

2

, (15)

δ22 =
2

σ2
n

L
∑

l=1

∥

∥

∥(IM − P̂)hs(l)
∥

∥

∥

2

. (16)

We define the CDF of DNF distribution as Wdnc,n1,n2
(x |

δ21 , δ
2
2) (see Appendix A). It can be expected that the test

power will be maximized when the perfect channel informa-

tion is available, as shown in the following result.

Lemma 1: Given the degrees of freedom n1, n2 and test

threshold γ, the detection probability

Pd = Pr(T (ĥ) > γ|H1) = 1−Wdnc,n1,n2
(γ|δ21 , δ

2
2) (17)

is maximized when ĥ = h.

Proof: Combining (15) and (16), and applying the prop-

erty of the projection matrix P̂, we have

δ
2

1 + δ
2

2 =
2

σ2
n

{

L
∑

l=1

∥

∥

∥
P̂hs(l)

∥

∥

∥

2

+
L
∑

l=1

∥

∥

∥
(IM − P̂)hs(l)

∥

∥

∥

2

}

=
2

σ2
n

L
∑

l=1

‖hs(l)‖2 . (18)
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It has been shown that the probability of detection Pd given

in (17) will rise when δ21 increases or δ22 decreases [30]. Since

δ21 + δ22 is constant and δ22 > 0, Pd will be maximized when

δ21 =
2

σ2
n

L
∑

l=1

‖hs(l)‖2 , (19)

δ22 = 0. (20)

Both the equalities hold when and only when P̂ is the

projection onto h, which implies that given n1, n2 and γ,
the test power Pd will reach its maximal at ĥ = h.

From lemma 1, we conclude that the test performance of the

F−test based approach under perfect CSI offers a benchmark

for comparison.

The closed-form saddlepoint approximation of DNF distri-

bution is presented in [31], which consists of doubly infinite

sum of incomplete beta functions. In order to simplify the

computation, we apply a simple approach derived from the

approximations to noncentral χ2 distributions [19]. The ap-

proximate distribution is given by

1 + δ21n
−1

1

1 + δ22n
−1

2

Fv1,v2 , (21)

with v1 = (n1 + δ21)
2(n1 + 2δ21)

−1 and v2 = (n2 +
δ22)

2(n2 + 2δ22)
−1. Therefore, we can ultilize the table of

central F−distribution to calculate the approximated detection

probability under channel uncertainty, that is

Pd ≈ 1−Wc,v1,v2(
1 + δ22n

−1
2

1 + δ21n
−1
1

γ). (22)

V. IMPLEMENTATION

In the previous sections, we derived the test threshold and

detection probability of F−test based detector, and analysed

its performance under imperfect channel information. In this

section, the computational complexity and advantages of

F−test based approach will be discussed.

A. Computational complexity

The computational cost of the proposed detector comes

mainly from the computation of test statistic (5). Note that

both R̂y and P are Hermitian, hence the evaluation can be

simplified. In Table I, we list the complexity of F−test based

method and compare it with three popular detectors: the en-

ergy detector, the blind eigenvalue-based maximun-minimum

eigenvalue (MME) detector [10] and the blind GLRT detector

[13]. Note that the computation of blind detectors includes

both test statistic and test threshold. Because the analytical

threshold expression is very complicated [18], we only list the

blind detectors’ complexity based on asymptotic test threshold.

The energy detector, which enjoys the highest compu-

tational efficiency, only requires ML multiplications and

(M − 1)(L− 1) additions. Due to the large sample assump-

tion for asymptotic test threshold, e.g., the typical number of

L is 104, blind detectors are the most expensive one among

these approaches. The complexity of F−test based detector

grows linearly with the sample size and is approximately

proportional to the squared number of antennas. Since L
is generally much larger than M , the proposed method has

a comparable complexity with energy detector in practice.

More importantly, without any assumption on sample size L,

its analytical expression for test threshold (8) is simple and

accurate.

B. Advantages

Since the test statistic (5) is independent from noise power,

the F−test based detector offers absolute robustness against

noise mismatch. Compared with the traditional robust or

blind detectors [8], [10], the proposed detector can be easily

constructed and the computational complexity is moderate.

The only prior information needed is CSI, which can be seen

as the price for improved robustness against uncertain noise

level and performance gain. In addition, the analysis in Section

IV shows that the false alarm probability of the F−test based

detector is not affected by the channel estimation error.

VI. SIMULATION RESULTS

In this section, the proposed F−test based sensing tech-

nique will be evaluated numerically and compared with several

popular detectors. To examine the proposed method, each

experiment performs 5000 Monte Carlo trials. The channel

vector is generated by the i.i.d zero-mean circularly symmetric

complex Gaussian random variable with variance normalized

to one. We fix the sample size L = 100 and require the false

alarm probability Pf 6 0.1. In each trial, BPSK modulated

primary signal and complex Gaussian distributed noise are ap-

plied. Simulation results will be obtained using the perfect and

imperfect prior information, respectively. Note that in order

to allow the blind detectors provide a reasonable performance

in finite sample size, we shall calculate their test threshold by

simulation rather than using the asymptotic formula in [10],

[13]. In addition, the SNR is defined as

SNR ,
‖hs(l)‖2

Mσ2
n

. (23)

A. Performance under Perfect CSI

In the first experiment, we assume perfect channel knowl-

edge h is available to F−test based method and the accurate

noise power σ2
n is known to energy detector. In Fig.2, we

plot the Pd of F−test based method, energy detector (marked

with EG), MME detector and CLRT detector against average

SNR with M = 4. We can find that under the same scenario,

the proposed method achieves the best detection probability

and the analytical formula for Pd, eq (10), gives an accurate

description. Due to the lack of prior knowledge, the blind

GLRT and MME methods have a lower detection probability.

In Fig.3, we draw the Receiver Operating Characteristics

(ROC) curve for M = 4 and average SNR= −8dB. It shows

that given a certain false alarm rate, the proposed F−test

based method achieves a much higher probability of detection

than other detectors. For example, when Pf is fixed at 0.01,

the detection probability gain of the F−test based method

is about 36% for the MME and approximately 23% for the

energy and GLRT detectors.
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TABLE I
COMPUTATIONAL COMPLEXITY FOR F−TEST BASED METHOD, ENERGY DETECTOR AND BLIND DETECTORS.

Complex Multiplications Complex Additions
F−test Based Detector M(M + 1)(1 + L/2) M(M + 1)(L − 1)/2 + 2(M − 1)

Energy Detector ML (M − 1)(L − 1)
Blind Detector (MME and GLRT) LM(M + 1)/2 +O(M3) LM(M + 1)/2 +O(M3)
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Fig. 2. Probability of detection versus average SNR, for Pf = 0.1, M = 4
and L = 100.
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Fig. 3. ROC curve, for M = 4, L = 100 and average SNR= −8dB.

To test the impact of the number of antennas M , we choose

the average SNR=−8dB and vary the number of antennas from

2 to 8. Fig.4 shows that when M = 2, the proposed method

has the nearly same test power as energy detector. However,

when M increases, the F−test based sensing technique has a

significant performance improvement. This is due to the linear

regression involved in the proposed approach, e.g., it takes the

CSI h as the regressor and y(l) as the response variable. In

other words, F−test here compares the similarity between the

received signal and CSI. Therefore, a higher test power can

be expected when more antennas (larger size of the regressor

h) are available.
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Fig. 4. Probability of detection v.s. number of antennas M , for Pf = 0.1,
L = 100 and average SNR= −8dB.

B. Performance under noise uncertainty

As mentioned above, the F−test based method enjoys the

robustness against noise uncertainty. To validate this property

numerically, we assume only the estimated noise power σ̂2
n =

ησ2
n is available. The uncertainty 10 log10 η (in dB scale) is

considered as a uniformly distributed random variable in the

interval [−E,E]. Note that the estimated noise power is varied

in each realization to a certain degree as mentioned above and

is used to decide the test threshold of energy detector.

Fig.5 shows the detection performance against noise mis-

match E for M = 4 and average SNR= −8dB. It can be

observed that the performance of energy detector degrades

severely under mismatched noise variance. For example, in the

typical uncertainty range EdB ∈ [1, 2] [32], Fig.5(a) indicates
that the Pf of energy detector far exceeds the target limit

and Fig.5(b) shows that the corresponding Pd is substantially

worse than the MME method. On the other hand, the F−test

based detector, blind GLRT and MME detectors have the

favourite noise-robust property as expected.

C. Performance under channel uncertainty

In the following experiments, we consider the scenario with

imperfect CSI ĥ. In simulation, the error term △h in (11)

varies in each trial, which is generated by i.i.d. zero-mean

complex Gaussian distributed variable and the variance of each

entry is assumed to be from zero to one, i.e., 0 ≤ σ2
e ≤ 1.

Since we have normalized the variance of CSI h, the level of

channel uncertainty can be viewed as from 0% to 100%.

Firstly, to get an insight of the impact of channel uncertainty

to F−test based method, we plot the normalized histogram of
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Fig. 5. Performance v.s. noise uncertainty E. The performance (a):Pf ; (b):Pd , for desired Pf = 0.1, L = 100, M = 4 and average SNR= −8dB.
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Fig. 6. Normalized histogram of the test statistic for F−test based method under channel uncertainty, (a): T ( ĥ|H0); (b): T (ĥ|H1). The uncertainty level
is selected as σ2

e =0, 0.2, 0.5 and 0.8, respectively, for M = 4, average SNR= 0dB and L = 100.

the test statistic in Fig.6 for M = 4 and average SNR= 0dB.
The error variance σ2

e is set as 0, 0.2, 0.5 and 0.8 with the

corresponding uncertainty level as 0%, 20%, 50% and 80%,

respectively. Fig.6(a) shows that the distribution of T (ĥ|H0)
does not vary with channel uncertainty, which verifies our

analysis in Section IV. While in Fig.6(b), we can find that

the histogram of T (ĥ|H1) shrinks to a smaller value when

σ2
e rises, which implies that the probability of detection will

decrease with growing channel uncertainty.

Then in Fig.7, the test performance against the channel

uncertainty is presented, with average SNR=-8dB and M = 4.
Note that the line of energy detector with 1dB noise mismatch

acts as a basis of comparison. Fig.7(a) shows that unlike the

energy detector, the false alarm probability of the F−test

based method is still around the pre-defined level in the situ-

ation with parameter uncertainty. The detection probability of

the proposed detector, as shown in Fig.7(b), has a degradation

under CSI error. However, with channel uncertainty up to

30%, the F−test still outperforms the ideal energy detector.

Besides, it performs better than the GLRT detector and the

MME detector with channel uncertainty up to 50% and 65%,

respectively. Moreover, compared with energy detector with

1dB noise mismatch, the F−test has a better performance over

the entire interval of CSI error. In addition, the approximated

value for Pd (22) is quite accurate.

In Fig.8, we increase the number of antennas to 8. It

can be observed that the performance loss of F−test based

approach caused by channel uncertainty becomes insignificant.

For instance, Fig.8(b) shows that the detection probability only

has an up to 11% degradation over the whole uncertainty

interval.

In summary, the F−test based detector shows the best de-

tection performance at perfect channel estimate and performs

reasonably well for moderate channel uncertainty. Compared
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Fig. 7. Performance v.s. channel uncertainty σ2
e . The performance (a):Pf ; (b):Pd, for desired Pf = 0.1, L = 100, average SNR=-8dB and M = 4.
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Fig. 8. Performance v.s. channel uncertainty σ2
e . The performance (a):Pf ; (b):Pd, for desired Pf = 0.1, L = 100, average SNR=-8dB and M = 8.

with energy detector, its performance is insensitive to noise

mismatch.

VII. CONCLUSION

In this paper, we propose a spectrum sensing method based

on the F−test. The method can be applied for multiple

antenna CR systems without the knowledge of primary signal

and noise statistic. The proposed approach is simple to imple-

ment, enjoys high robustness against uncertain noise level and

achieves significant performance gain. Statistical properties

of F−distribution are applied to derive the test threshold

and evaluate the detection probability. When perfect channel

information is not available, the F−test based detector suffers

a mild performance loss in probability of detection and its false

alarm probability remains unchanged. Simulations have been

carried out to verify the proposed method. Given its superior

performance and moderate computational complexity, F−test

based approach is an attractive approach for spectrum sensing.

APPENDIX A

CDF OF F−DISTRIBUTIONS

1) The central F−distribution

Wc,n1,n2(x) = Pr(T < x) = Ik(
1

2
n1,

1

2
n2), (24)

where k1x/(n2 + n1x), and Ik is the incomplete beta

function. The formula for the incomplete beta function

is

Ik(x,
1

2
n1,

1

2
n2) =

∫ x

0
t
1

2
n1−1(1− t)

1

2
n2−1dt

B(1
2
n1,

1

2
n2)

, (25)

where B is the beta function

B(
1

2
n1,

1

2
n2) =

∫ 1

0

t
1

2
n1−1(1 − t)

1

2
n2−1dt. (26)

2) The noncentral central F−distribution
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Wnc,n1,n2(x | δ
2) = Pr(T (δ2) < x)) (27)

=

∞
∑

j=0

wj,δ2Ik(
1

2
n1 + j,

1

2
n2),

where

wj,δ2 = exp(−δ2/2)
(δ2/2)j

j!
. (28)

3) The doubly noncentral central F−distribution

Wdnc,n1,n2(x | δ
2
1 , δ

2
2) = Pr(T (δ21 , δ

2
2) < x))

=

∞
∑

k=0

wk,δ2
2

∞
∑

j=0

wj,δ2
1

Ik(
1

2
n1 + j,

1

2
n2 + k). (29)
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Abstract—This paper deals with the blind spectrum sensing
problem for arbitrary noise. The majority of current methods
consider the Gaussian noise. However, this assumption cannot
model the impulsive noise due to the artificial source. In this
paper, we remove the requirement on Gaussianity and propose
a detection method based on the bootstrap technique. By using
multiple receiving antennas, the proposed detector exploits the
eigenstructure of sample covariance matrix. Since there is no
closed-form expression for the joint distribution of eigenvalues,
the nonparametric bootstrap resampling is applied to estimate
the null distribution of the test statistic. Simulation results show
that the proposed detector performs well in different noise types
and a performance gain can be expected when the noise is non-
Gaussian.

Index Terms—signal detection, bootstrap, non-Gaussian noise,
spectrum sensing, cognitive radio.

I. INTRODUCTION

Cognitive radio (CR) is a flexible spectral allocation scheme

that opens the licensed band to the secondary user [1]. In order

to avoid harmful interference to the primary user, CR user

must perform spectrum sensing first to detect the presence of

primary signal. Based on different operational requirements,

traditional methods fall into the following categories: energy

detector [2], cyclostationarity-based detector [3], eigenvalue-

based detector [4] and generalized likelihood ratio test (GLRT)

based detection [5]. Most of them are derived from Gaussian

noise. Or, the test threshold and test performance are studied

based on Gaussianity. For the noise due to the natural sources,

such as the thermal noise, the Gaussian model is justified.

However, there still exist man-made noise in CR scenario [6],

which makes the whole noise heavy-tailed or impulsive. Under

such non-Gaussianity, the test performance of aforementioned

methods becomes uncertain.

Only several detection methods have been proposed to deal

with the non-Gaussian noise [7]–[10]. A detector based on

Kolmogorov-Smirnov test is proposed in [7], which requires a

sequence of noise samples in advance. In [8], a GLRT-based

detector is proposed based on the assumption that the noise is

Generalized Gaussian distributed. When the power of channel

gain and noise moments are known, the optimal and sub-

optimal Lp−norm detectors can be applied in low signal-to-

noise ratio (SNR) regime [9]. In [10], the polarity-coincidence-

array based approach is proposed which is suitable to the real-

valued signal.

In this paper, a bootstrap-based detector is proposed with

minimal requirements on noise. That is, no assumptions are

made on noise power and noise types. By using multiple anten-

nas at the CR sensor, the proposed method is fundamentally

a binary hypothesis test for the difference between sample

eigenvalues. We assume that when primary signal exists, the

difference between eigenvalues will be relatively larger than

the noise only case. Inspired by [11], bootstrap resampling is

applied to estimate the null distribution of the test statistic.

Note that the bootstrap technique works in arbitrary noise and

does not require large samples. However, when the sample size

is small, as it is in this paper, the bias in sample eigenvalues is

significant and may degrade the test performance. Therefore,

a blindly bootstrap bias correction step is also proposed.

The rest of the paper is organized as follows. The data model

is described in Section II before discussing the hypothesis

test in Section III. In Section IV, the detection procedure

using bootstrap is proposed, including the approximation of

null distribution and bias correction. A brief discussion is

highlighted in Section V and Simulation results are shown

in Section VI. Finally, Section VII concludes the paper.

In this paper, boldface letters and boldface capital letters

represent vectors and matrices, respectively. (·)H is conjugate

transpose and (·)T indicates transpose. IM is the identity

matrix of order M . E [·] denotes the statistical expectation.

|·| and ‖·‖ stands for Euclidean norm of a scalar and vector,

respectively.

II. DATA MODEL

Consider a single-input multiple-output (SIMO) CR net-

work where the secondary receiver is equipped with

M antennas. Based on the received signal y(t) =
[y1(t), y2(t), . . . , yM (t)]T , the problem of central interest is

to decide whether the primary signal exists or not, which can

be formulated as a hypothesis test:

H0 : y(t) = n(t),

H1 : y(t) = hs(t) + n(t), t = 1, 2, ..., L, (1)

where s(t) is the zero-mean complex primary signal to be

detected and we assume its power is σ2

s . The flat fading

channel is represented by h = [h1, h2, . . . , hM ]T , which is

unknown and assumed to be a constant during the sensing

interval. n(t) = [n1(t), n2(t), . . . , nM (t)]T represents the

complex noise vector with zero mean and covariance σ2

nIM .
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L is the sample size. Note that both σ2

s and σ2

n are unknown.

Besides, no assumption is made on the distribution of noise

or signal.

Based on the above signal model, the received data y(t)
can be seen as independent and identically distributed (i.i.d.)

with zero mean and covariance matrix:

H0 : Ry = σ2

nIM ,

H1 : Ry = σ2

shhH + σ2

nIM . (2)

The corresponding eigenvalues [12] λi, i = 1, 2, ..., M are

H0 : λ1 = λ2 = . . . = λM = σ2

n,

H1 : λ1 > λ2 = . . . = λM = σ2

n. (3)

The eq (3) has an interpretation that, when H0 holds, all

the eigenvalues are contributed by the noise only. However,

when H1 is true, the largest eigenvalue λ1 = hHhσ2

s + σ2

n is

contributed by both the primary signal and noise.

Based on our assumption, the covariance Ry is unknown.

The one we can obtain is the sample covariance matrix

R̂y =
1

L− 1

L∑

t=1

y(t)y(t)H . (4)

When the sample size L is finite, the sample eigenvalue βi,

i = 1, 2, ..., M obtained from R̂y are definitely distinct [12]

under both H0 and H1:

β1 > β2 > . . . > βM . (5)

III. HYPOTHESIS TESTING

By employing the difference of eigenvalues, the hypothesis

test (3) can be converted to

H0 : λ1 −
1

M − 1

M∑

i=2

λi = 0,

H1 : λ1 −
1

M − 1

M∑

i=2

λi > 0. (6)

Considering that we can only obtain the sample eigenvalues,

the test statistic is given as follows

T̂ = β1 −
1

M − 1

M∑

i=2

βi. (7)

Since the sample eigenvalues βi, i = 1, 2, ..., M are distinct

from each other with probability one, the test statistic T̂ will

be nonzero under both H0 and H1. However, a reasonable

assumption can be made that T̂ will be large when primary

signal exists but relatively small in the noise only case.

Therefore, the hypothesis testing problem (6) can be converted

to the following decision rule

T̂
H1

R
H0

γ, (8)

where γ is the test threshold to ensure a target false alarm

probability defined as follows

Pf = Pr(T̂ > γ|H0). (9)

Note that the evaluation of γ needs the null distribution of

the test statistic T̂ . To the best of our knowledge, there are

no existing results on the joint distribution of eigenvalues

without additional assumption on the Gaussianity. In this

paper, we shall apply a bootstrap procedure [13] to overcome

this difficulty.

IV. BOOTSTRAP-BASED METHOD

The bootstrap technique is an attractive tool for estimating

parameter or testing hypothesis when conventional methods

are no longer valid. For example, the asymptotic results,

e.g., distributions of eigenvalues derived from random matrix

theory [4], [5], make assumptions on Gaussianity and large

sample size, which are inapplicable to our case. The bootstrap

method, however, is distribution-free and works in small sam-

ples. The principle is that, rather than repeating the experiment,

one creates the bootstrap data sets via randomly resampling

the original sample set with replacement. In this section, we

shall start with a general bootstrap procedure and then apply

it to the proposed detection problem.

A. General concept

Let χ = [x1, x2, . . . , xL] be an i.i.d sample set from an

unknown distribution F and θ denotes an unknown charac-

teristic (e.g., mean or variance of F ) estimated by θ̂. The

problem of interest is to find the distribution of θ̂ or measure

its estimate accuracy, such as the bias or standard error of θ̂.
Generally, one approximates those properties of θ̂ by repeating

the experiment for a sufficient number of times. The bootstrap

method, however, treats the original data χ as an empirical

estimate of the true distribution and resamples χ directly [14].

A general bootstrap principle is outlined in Table I.

TABLE I
THE BOOTSTRAP PRINCIPLE

1) Given an i.i.d data set χ = [x1, x2, . . . , xL].
2) Draw a bootstrap sample set χ∗ = [x∗

1
, x∗

2
, . . . , x∗

L
] via

resampling χ with replacement. An example can be :
χ∗ = [x1, x1, . . . , x8].

3) Compute the bootstrap statistic θ̂∗ from χ∗.
4) Repeat 2) and 3) B times to obtain a set of bootstrap statistic

{θ̂∗(b), b = 1, 2, . . . , B}.

5) Estimate the statistical properties of θ̂ from θ̂∗(b).

As an extension of the distribution estimate, the bootstrap

method can also be applied to the hypothesis testing problem.

For a hypothesis testing problem: H0 : ϑ ≤ ϑ0 against H1 :
ϑ > ϑ0, the test statistic is defined as

T̂b = ϑ̂− ϑ0. (10)
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The null distribution of T̂b can be approximated by the

bootstrap statistics {ϑ̂∗(b) − ϑ̂} [15]. Given a significance

value (false alarm probability in spectrum sensing) α, one can
compute the test threshold γb through the following relation

α =
1

B

B∑

b=1

I[(ϑ̂∗(b)− ϑ̂) > γb], (11)

where I[·] denotes the indicator function.

B. Application to the proposed detector

The hypothesis testing problem (6) can be reformulated as

H0 : T = 0,

H1 : T > 0, (12)

where T = λ1 −
1

M−1

M∑
i=2

λi with T̂ (7) as the estimator. By

definition, T and T̂ are non-negative. As discussed above, the

null distribution of T̂ can be approximated by {T̂ ∗(b)−T̂} and
one can compute the test threshold γ based on those bootstrap

estimates. We summarize the detection procedure in Table II,

where the included eigenvalue bias correction step will be

discussed later.

TABLE II
DETECTION PROCEDURE USING BOOTSTRAP

Input: Y = [y(1), y(2), . . . , y(L)].
Target false alarm probability α.

1) Compute the bias corrected sample eigenvalues using Table III
and obtain the test statistic

T̂ = β̂1 −
1

M−1

M∑
i=2

β̂i.

2) Draw a bootstrap sample set Y∗ from Y.
3) Compute the bias corrected bootstrap test statistic

T̂ ∗ = β̂∗
1
− 1

M−1

M∑
i=2

β̂∗
i
.

4) Repeat 2) and 3) B times. Ranking the bootstrap statistics as

(T̂ ∗(1) − T̂ ) ≤ . . . ≤ (T̂ ∗(k)− T̂ ) ≤ . . . ≤ (T̂ ∗(B) − T̂ )
5) From the ordered statistics, choose the index k by α = 1− k/B.

The test threshold is obtained as γ = T̂ ∗(k)− T̂ .

Output: Hypothesis testing T̂
H1

R
H0

γ.

As mentioned above, the test statistic T̂ (7) is constructed by

the sample eigenvalues. However, as discussed in [11], [12],

the sample eigenvalue contributed by the primary signal is

asymptotically unbiased, whereas the one contributed by the

noise only is asymptotically biased. When the sample size is

limited, the bias becomes quite significant, e.g., T̂ may be

large even if no primary signal exists. Note that in this paper,

we do not make assumption on large data size. Therefore,

a bias reduction is necessary to ensure accuracy of sample

eigenvalues.

Define the bias of sample eigenvalue βi as the difference

between the expectation of βi and the exact eigenvalue λi,

that is

Bias(βi) = E(βi)− λi, i = 1, 2, . . . , M. (13)

Since no assumption is made on the distribution of signal and

noise, we apply the distribution-free bootstrap method [13] to

estimate the bias Bias(βi). That is

ˆBias(βi) =
1

B1

B1∑

b=1

β∗i (b)− βi, i = 1, 2, . . . , M, (14)

where B1 is the bootstrap replications and empirically, B1 =
30 gives quite satisfactory results. The corrected sample eigen-

value is given by

β̂i = βi − ˆBias(βi)

= 2βi −
1

B1

B1∑

b=1

β∗i (b), i = 1, 2, . . . , M. (15)

The bootstrap bias correction procedure is outlined in Table

III. Note that it should be applied to both the test statistic T̂
and bootstrap statistic T̂ ∗.

TABLE III
BOOTSTRAP BIAS CORRECTION

Input: Y = [y(1), y(2), . . . , y(L)].
1) Compute the sample eigenvalues βi, i = 1, 2, . . . M .
2) Draw a bootstrap sample set Y∗ from Y.
3) Compute the bootstrapped sample eigenvalues:

β∗
i
, i = 1, 2, . . . M .

4) Repeat 2) and 3) B1 times to obtain

Bias(βi) = 1

B1

B1∑
b=1

β∗
i
(b) − βi, i = 1, 2, . . . , M.

5) Compute the bias reduced sample eigenvalue

β̂i = βi − Bias(βi), i = 1, 2, . . . , M.
Output: The ordered bias reduced sample eigenvalue

β̂1 > β̂2 > . . . > ˆβM .

V. DISCUSSION

Since both the eigenstructure property ((3) and (5)) and

bootstrap method hold for arbitrary noise, the proposed ap-

proach is nonparametric and enjoys the distribution-free prop-

erty. As shown in Section VI, under non-Gaussianity, several

popular detectors derived in Gaussian become invalid due

to the high false alarm probability. The proposed detector,

however, works for a broad class of noise types and offers

an overall better test performance.

The main issue is the computational complexity, which

grows linearly with B1B. Simulation results show that B1B in

the order of 104 gives sufficiently accurate results. When the

sample size is moderate, such complexity is compatible with

the computer power today. Moreover, it is comparable to other

popular blind detectors. Take the GLRT-based detector [5] as

an example. To obtain an accurate test threshold in Gaussian,

the analytical expression is complex [16] and the method using

Monte Carlo simulations usually requires 105 trials [5].
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Fig. 1. Performance under Laplacian noise, for (a): Probability of false alarm versus SNR; (b): Probability of detection versus SNR.
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Fig. 2. Performance under Gaussian Mixture noise, for (a): Probability of false alarm versus SNR; (b): Probability of detection versus SNR.

It is worth mentioning that when the noise is Gaussian

distributed, the optimal test is the GLRT-based detection [5]

. In this paper, the GLRT statistic (constructed by the ratio

of sample eigenvalues) is not applied due to the bias issue,

as even the use of bias correction procedure cannot make the

sample eigenvalue be completely equal to the true eigenvalue.

Such bias will have an effect on the accuracy of bootstrap

estimate {ϑ̂∗(b)− ϑ̂}. The test statistic T̂ (7) in this paper is

applied since the bias can be further offset in {T̂ ∗(b)− T̂} by
employing the difference between sample eigenvalues.

VI. SIMULATION RESULTS

In this section, we shall present the test performance of the

proposed method by numerical experiments. For comparison,

the popular energy detector (marked with EG) [2], GLRT-

based detector [5] and Kolmogorov-Smirnov based detector

(marked with KS) [7] are also evaluated. Since the noise type

is unknown, to have a fare comparison, the test thresholds

for energy and GLRT-based detector are calculated using the

results derived in Gaussian [2], [16]. The KS based detector,

which requires a sequence of noise only samples, is another

distribution-free approach and can be applied to any noise

types.

In the following simulations, we assume M = 4 and

a Rayleigh fading channel is considered. Primary signal is

modelled as Gaussian distributed and the sample size is

fixed at L = 100. The target false alarm probability α is

10%. The bootstrap parameter B1 and B are set as 30 and

300, respectively. To test the distribution-free property of the

proposed detectors, we consider the following noise types that
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are relevant in the context of CR:

1) Generalized Gaussian Model (GGM): GGM is a broad

family which adds a shape parameter to the Gaussian

distribution [17]. It is widely used to model the non-

Gaussian noise such as heavy-tailed and impulsive noise

[18]. The probability density function (pdf) of GGM

with a variance σ2

n and shape parameter ρ is given by

Pn(n) =
ρΓ(4/ρ)

2πσ2
n(Γ(4/ρ))2

exp(−
1

c
(
|n|

σn
)ρ), (16)

where c , (Γ(2/ρ)Γ(4/ρ))ρ/2 and Γ(ρ) =∫∞
0

xρ−1e−xdx.
The GGM is short-tailed when ρ > 2 and heavy-tailed

when 0 < ρ < 2. The Gaussian (ρ = 2) and Laplacian

(ρ = 1) distribution are special cases of GGM. In this

paper, the heavy-tailed Laplacian noise is applied.

2) Gaussian Mixture Model (GMM): GMM is another

popular model to characterize the impulsive noise [19].

The corresponding pdf is

Pn(n) =

I∑

i=1

ci

πσ2

i

exp(−
|n|

2

σ2

i

), (17)

where ci, σ
2

i > 0,
∑I

i=1
ci = 1 and

∑I
i=1

ciσ
2

i = σ2
n. A

special case is ε-mixture model, where I = 2, c1 = 1−ǫ
and σ2

1
= σ2

n/(1 − ǫ + κǫ). Here, we choose ǫ = 0.06
and κ = 10 to model the impulsive man-made noise.

Note that all the results are obtained by averaging 2000

Monte Carlo trails. In addition, the SNR is defined as

SNR ,
σ2

s ‖h‖
2

Mσ2
n

. (18)

The probability of false alarm under Laplacian and Gaussian

Mixture noise are evaluated in Fig.1(a) and Fig.2(a). On one

hand, both the two distribution-free detectors (e.g., bootstrap-

based and KS-based detector) meet the target false alarm rate

and the accuracy of bootstrap method is verified. On the other

hand, the energy detector and GLRT based detector fail in such

non-Gaussianity as their false alarm probability far exceed the

target limit. For instance, given 10% as the target value, the

Pf of energy and GLRT-based detector are near 50% and 27%

under Gaussian Mixture noise, respectively. The reason is that

their test thresholds are only known under Gaussian noise.

The detection probability against SNR is described in

Fig.1(b) and Fig.2(b). Note that the performance of energy

and GLRT detector are ignored since the are impaired by the

high false alarm probability. For the rest two detectors, results

show that the proposed bootstrap method offers a better test

performance. For example, as shown in Fig.1(b), to achieve a

90% detection probability, the bootstrap method has a 1.3dB

SNR gain compared with KS detector. In addition, the KS-

based method needs a sequence of noise samples in advance

while the bootstrap method does not.

VII. CONCLUSION

In this paper, we study the blind spectrum sensing problem

in the situation of unknown noise type. The proposed detector

is based on the fact that, the eigenvalue corresponds to the pri-

mary signal is larger than the rest of eigenvalues correspond to

the noise only. The test statistic is derived from the difference

between eigenvalues and its null distribution is estimated by

the bootstrap resampling. When the data length is small, the

bias in sample eigenvalue may make the test statistic under

null and alternative hypothesis not well separated. To improve

the accuracy of test statistic, we also propose a bootstrap

bias correction procedure. Simulation results show that the

proposed bootstrap detection is valid in a variety of noise

types and demonstrate its superiority when the noise is non-

Gaussian.

In addition, several interesting topics are worth to be consid-

ered further. For example, the signal structure can be applied to

achieve a better detection performance, and we can extend the

bootstrap-based sensing by considering the case of multiple

primary transmitters.
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