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Abstract

Cognitive radio is a promising technology that improves spectral utilisation by allowing
unlicensed secondary users to access underutilised fregimmnds in an opportunistic man-
ner. This task can be carried out through spectrum sensmgsdcondary user monitors the
presence of primary users over the radio spectrum peribdiceavoid harmful interference to
the licensed service.

Traditional energy based sensing methods assume the Valo&se power aprior knowledge.
They suffer from the noise uncertainty problem as even a noide level mismatch will lead
to significant performance loss. Hence, developing an efficiobust detection method is
important. In this thesis, a novel sensing technique usiedg-ttest is proposed. By assuming
a multiple antenna assisted receiver, this detector useB-Hiatistic as the test statistic which
offers absolute robustness against the noise variancetaimtg In addition, since the channel
state information (CSI) is required to be known, the imp&€ 8l uncertainty is also discussed.
Results show thé'-test based sensing method performs better than the enetggtar and has
a constant false alarm probability, independent of the royuof the CSI estimate.

Another main topic of this thesis is to address the sensioglem for non-Gaussian noise.
Most of the current sensing techniques consider Gaussiae ae implied by the central limit
theorem (CLT) and it offers mathematical tractability. Hawer, it sometimes fails to model the
noise in practical wireless communication systems, whitdnoshows a non-Gaussian heavy-
tailed behaviour.

In this thesis, several sensing algorithms are proposeddiorGaussian noise. Firstly, a non-
parametric eigenvalue based detector is developed byigrglthe eigenstructure of the sam-
ple covariance matrix. This detectorlidind as no information about the noise, signal and
channel is required. In addition, the conventional enemgpgdor and the aforementionéd
test based detector are generalised to non-Gaussian wigd, require the noise power and
CSI to be known, respectively. A major concern of these disteenethods is to control the
false alarm probability. Although the test statistics aasyeto evaluate, the corresponding null
distributions are difficult to obtain as they depend on thiseatype which may be unknown and
non-Gaussian. In this thesis, we apply the powerful baaypstechnique to overcome this diffi-
culty. The key idea is to reuse the data through resamplistgda of repeating the experiment
a large number of times. By using the nonparametric bogistpproach to estimate the null
distribution of the test statistic, the assumptions on #a dnodel are minimised and no large
sample assumption is invoked. In addition, for fiestatistic based method, we also propose
a degrees-of-freedom modification approach for null distion approximation. This method
assumes a known noise kurtosis and yields closed form epkutiSimulation results show that
in non-Gaussian noise, all the three detectors maintainl¢seed false alarm probability by
using the proposed algorithms. THestatistic based detector performs the best, e.g., torobtai
a 90% detection probability in Laplacian noise, it proviége®.5 dB and 4 dB signal-to-noise
ratio (SNR) gain compared with the eigenvalue based deteci the energy based detector,
respectively.
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Chapter 1
Introduction

Cognitive radio is a promising technology that improves spectrum efficiency by allowing
the unlicensed secondary user to dynamically utilise #enbed radio bands. The ability to
detect the presence of licensed user is called spectrunmgemgich is an essential function
of cognitive radio as it gives an awareness of the surrognchdio environment that prevents
harmful interference to the licensed primary service. i@auhl sensing techniques generally
consider the detection of primary signals in additive Geusgoise with a known power. How-
ever, their test performance might be limited to the sarisitto the uncertain noise model. To
cope with this problem, this thesis focuses on the noisestodensing techniques, where the

cases of unknown noise power and non-Gaussian noise areitdkieconsiderations.

In this chapter, the origin and motivations of this work amgdduced in Section 1.1. Then
Section 1.2 summarises the objectives and key contritgiabthis thesis. Section 1.3 gives an

overview of the remaining chapters.

1.1 Motivation

1.1.1 Motivation for Cognitive Radio: Spectrum is Underutilised

Radio spectrum is a nature and important resource requiedvifeless communications.
Throughout the world, the utilisation of spectrum bandsgutated by government or world-
wide agencies such as the Federal Communications Commi@3&C) in United States (US)
and the Office of Communications (Ofcom) in United KingdonK{letc. Traditionally, they
allocate the spectrum bands to specific uses on a long-tesiwy, laand grant licenses for these

bands to protect the services.

Recently, there is a rapid growth in wireless communicatioith the users’ expectation of
being always wireless connected to a variety of servicegh Sibiquitous and seamless con-

nectivity requires huge demand on new wireless servicess bbhallenged by the radio scarcity
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Figure 1.1: Measured spectrum occupancy by band over a 3-day periodrl]a) New York
City, with an average spectrum utilisation 13.1%; and (bjdago, with an aver-
age spectrum utilisation 17.1%.

as most of the available spectrum bands have been assigeethepast decades [2]. There is
limited or no spectrum left for the emerging wireless segsic

On the other hand, many studies and reports have shown thit¢imsed spectrum bands are
in fact underutilised. For example, Figure 1.1 plots the sneaments of radio frequency (RF)
utilisation from 30 MHz to 3 GHz, collected in New York City drChicago rural areas over a
3-day period [3, 4]. The data reveal that their averagedtgpaautilisations are only 13.1% and
17.5%, respectively. Furthermore, as shown in the FCC t¢plpdepending on the geographic
areas, a large portion licensed spectrum bands are withdowpancy, i.e., less than 15%, for

significant periods of time. In addition, some certain barsigh as the cellular frequencies

2
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and the industrial, scientific and medical (ISM) radio bamske@ in short-range and low power
communications systems such as Bluetooth and wireless tempetworks) have been very
crowded in peak times, leading to a degraded quality of serand significant interference
[1,5,6].

Such findings suggest that the traditional fixed spectruotation schemes are no longer ef-
ficient, which motivates the development of cognitive raddy allowing the unlicensed users
(secondary users) to dynamically operate at the undesedilradio spectrum assigned to the
licensed users (primary users) [7], cognitive radio offersolution to alleviate the spectrum
congestion problem in some certain bands and yields motdeusandwidth to support the

high data rates wireless services in next-generation carnuation systems.

1.1.2 Motivation for Noise Robust Spectrum Sensing Techniges

Since cognitive radio is designed to co-exist with the tiadal radio systems, a key require-
ment is to enable the protection of licensed primary sesvic®uch a task can be carried out
through spectrum sensing which refers to the ability of anttog radio to detect the activities
of licensed users over the frequency band of interest. lardaprevent harmful interference
to the primary service, or keep the interference at a minimadl, sensing must be quick and

robust to track the real-time variations of the surroundiamjo environment.

Sensing techniques for unknown noise power

The energy detector [8—11] is the most widely used sensingnse due to its low implementa-
tion complexity and good detection performance. It requtte exact value of noise power to
be known and uses it to construct the test statistic andrdaterthe test threshold. However,
the central problem of the energy detector is its sengititdt noise variance uncertainty. If
the knowledge of noise power is not accurate, the energ\cieteill perform rather poorly

or become invalid due to the high false alarm probability aighificant performance loss in
detection probability [12]. Hence, sensing methods thatiavariant to the noise power are

required to be considered.

Many efficient spectrum sensing techniques have been pedpmsaddress this issue. One
popular approach is to develdgind detectors [13—-17], which refers to the detection without

any prior knowledge of primary signal, fading channel and noise patam Or, feature based

3
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detectors that do not make assumptions on known noise pa&eR]] can be applied if some
features of the primary signal, i.e., second-order stat@t cyclic frequencies, are known to

the cognitive radio user.

However, as summarised in Table 2.1, Chapter 2, analytidatisns for the aforementioned
detection methods are generally difficult to obtain. In &ddj for the feature based detectors,
commonly a long observation time is needed to exploit theaifeatures and high computa-

tional complexity is required for implementation.

Sensing techniques for non-Gaussian noise

The majority of current sensing methods consider the agditoise to be Gaussian distributed
as implied by Central Limit Theorem (CLT) and it generateshramatically tractable models.
However, another important noise source in practical wgglcommunication systems is man-
made [22], i.e., typically caused by the automotive igmifielectromechanical switches and
industrial thermal processes etc, which exhibits impeltighaviour and makes the whole noise
distribution heavy-tailed. For example, a measurememnnptisive noise in a digital television
(TV) radio channel, i.e., at a central frequency of 762 MHthwi0 MHz bandwidth, has
been reported in [23]. In addition, in [24], the indoor measwuent in ISM band indicates the
impulsive nature of noise. More experimental measurenmaritee man-made impulsive noise

can be found in [23-26], and the references therein.

In the context of cognitive radio networks, non-Gaussiaiseés a more reasonable setting as
most of its applications, e.g., cellular networks [27] antlx safety networks [28] etc, are
in urban environments where man-made noise must be coadideinfortunately, under non-
Gaussian noise, standard sensing techniques tend to yiatateptable high false alarm prob-
ability and degraded detection probability due to the uaiedistribution of the test statistic,
requiring the design of robust sensing methods that corssitie possible deviations of noise

distribution from Gaussian model.

A review of current sensing technigues for non-Gaussiasenf#9-35] is given in Chapter
2, Section 2.2.2. Again, the main issue of these detectdtmiglifficulty to obtain analytical

solutions. Once the Gaussian noise assumption is remdwetkdt statistic and its distribution
are generally complicated and depend on several unknownsdedl with this problem, a

conventional approach is to obtain the empirical solutisimgi the Monte Carlo method [36],

4
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which requires the sensing conditions to be reproducilslassumptions on large data records

are invoked so that asymptotic results can be applied [37].

1.2 Thesis Objectives and Contributions

1.2.1 Thesis Objectives

According to the aforementioned challenges for noise robeissing schemes, this thesis has

two main objectives:

e Develop a sensing method that is invariant to noise variamoertainty and achieves good

detection performance with relatively low computationainplexity.

e Remove the assumption on Gaussian noise. Instead, a basxlafl distributions are con-
sidered which includes Gaussian noise as a special caseenflieg on different operation
conditions, develop sensing algorithms that are valid imety of non-Gaussian noise with-

out requirements on reproducible experiment conditionslarge samples.

1.2.2 Main Contributions
The main contributions of this thesis are outlined as fodpw

e An F'-test based sensing method is developed by considering tgplaukceiving antenna
system. The proposed approach, in which channel statematoyn (CSI) is required, of-
fers absolute robustness against noise variance undgréaid is relatively easy to implement.
Based on the statistical properties Bfdistribution, the accurate value for test threshold and
detection probability are derived, respectively. Sinioglatesults show that the proposéd
test based detector achieves a significant performancevwament compared with the energy
detector. This work has been published in 2013 IEEE Inteynak Conference on Communi-
cations (ICC) [38].

e The impact of CSI uncertainty is investigated. Theoretaradlysis indicates when the CSI
estimate is imperfect, thé'-test based detector suffers a mild performance loss inahibb

ity of detection and its false alarm probability remains harged. The detection probability
can be evaluated using doubly noncentradistribution and a simple approximated value is

also presented to avoid its computational complexity. Tosk has been published in IEEE
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Transactions on Wireless Communications [39].

e Two sensing algorithms, the nonparametric eigenvaluedbdstector and the energy based
detector, are developed for arbitrary noise types withdipibwer. The first one employs the
eigenstructure of sample covariance matrix and the secoad éxtension of the conventional
energy detector. For both detectors, the powerful bogsasampling techniques are applied to
estimate the test statistic’s null distribution and sudfitly accurate test thresholds are obtained
for moderate sample size. The key idea is to reuse the dasagihrresampling instead of
repeating the experiment a large number of times. Resulte she two detection methods
maintain their false alarm probability in a variety of notyges and demonstrate superiority
when the noise is non-Gaussian. Part of this work has beelispet in 2014 IEEE Global
Communications Conference (GLOBECOM) [40].

e The F'-test based detector is generalised to non-Gaussian foiseaintain the pre-determined
false alarm probability in non-Gaussian noise, two methardsdeveloped to estimate the null
distribution of thef'-statistic by exploiting differenprior knowledge of noise. The first modi-
fied degrees of freedom (MDOF) based approach assumes tleeofatoise kurtosis is known
and the result is obtained in closed form. The second appnsdzased on the computational
bootstrap procedure which results in minimal requirememntshe noise model as only a se-
gquence of noise samples is needed for training purpose. rétiead analysis shows that both
methods yield accurate statistical approximations witldenate sample size. From numerical
results, it is observed that tHé-statistic based detector maintains its target false afaoha-
bility in various types of non-Gaussian noise, achievinggrenance gain compared with other
robust detectors. Furthermore, this work has generalitalichich can be extended to other
linear regression problems with complex number measuren&his work has been submitted

to IEEE Transactions on Cognitive Communications and Neking.

1.3 Thesis Structure

The reminder of this thesis is structured as follows:
Chapter 2

This chapter provides background knowledge about the tfgilcesis. It starts with an intro-

duction to the cognitive radio technology, including itgyars, key functionalities, applications
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and related standard activities. Then a literature reviegooventional spectrum sensing tech-
niques for Gaussian noise is presented, in which the roleunstirsg algorithms for uncertain
noise variance are highlighted. Finally, current sensiggré¢hms for non-Gaussian noise are

reviewed and summarised.
Chapter 3

This chapter proposes dii-test based sensing technique by considering a multipienaat
assisted receiver. This method uses Mstatistic as the test statistic which offers absolute
robustness against noise variance uncertainty. Stafigitoperties ofF'-distribution are ap-
plied to derive the test threshold and detection probgbildspectively. In addition, since this
approach requiregrior knowledge of the fading channel, which may be imperfect endbn-
text of cognitive radio, the impact of CSI uncertainty is ciitsed and the performance loss in

detection probability is derived.
Chapter 4

This chapter removes the conventional Gaussian noise gésunand proposes two bootstrap

based sensing techniques which can be applied to a varietjs# types. Firstly, a nonparamet-

ric eigenvalue based approach is proposed by exploitingig@nstructure of sample covariance
matrix. Next, the standard energy detector is generalsedn-Gaussian noise by studentizing

its test statistic. For both detectors, bootstrap teclmigwsed to non-parametrically estimate
the test statistic’s null distribution, leading to a teseshold that meets the target false alarm
probability. The application of bootstrap is highlighteahd its advantages and accuracy are
described.

Chapter 5

This chapter generalises the conventiohakst based detection method to non-Gaussian noise.
Since the null distribution of thé'-statistic is unknown in non-Gaussian noise, two approxima
tion methods are proposed based on diffepgidr knowledge of the noise. The first approach
assumes a known noise kurtosis and approximates the ntribdigon by an F-distribution

with modified degrees of freedom. Then a bootstrap basedathésideveloped which relaxes
the assumption on high order noise moments and only recuseguence of noise samples for
training purpose. The accuracy of both methods are descriieally, the results are extended

to a more general linear regression hypothesis testinggrob



Introduction

Chapter 6

This chapter concludes the thesis, states the limitatind-dascribes several interesting topics

which are potentially worthy of further investigation.



Chapter 2

Background

Cognitive radio is a novel wireless communication apprahei addresses the issues of spec-
trum inefficiency and spectrum scarcity. In order to imprdive licensed band utilisation, it
allows the unlicensed secondary users to exploit the fremyubands in an opportunistic man-
ner [1, 2]. Since the licensed primary users have a higherify;i one key issue of cognitive
radio is to check the spectrum availability periodicaldd®ep the interference to the primary
service at a minimal level [7]. This task requires the seappdiser to have a cognition of
the surrounding radio environment, or spectrum sensinghifnthesis, we focus on dealing
with two challenges in spectrum sensing, namely the det@dti unknown noise power and
the detection in non-Gaussian noise. Such topics havei@itraesearchers’ attentions recently
as the traditional sensing methods are shown to suffer frmsénsitivity to the noise model

uncertainty, requiring the design of the noise robust detec

This chapter shall start with an overall introduction to mibtige radio technology in Section
2.1. Then a review of current spectrum sensing techniqueseisented in Section 2.2 with

particular emphasis on related works for noise robust sgradgorithms.

2.1 Cognitive Radio

As discussed in Chapter 1, cognitive radio is motivated bydlst growing demand for high data
rates and the actual poor underutilisation of licensed $aondpled with heavy overutilisation
of some certain spectrum. First proposed by Mitola in 200Q [4ognitive radio has emerged
as a promising technology for improving spectrum efficieimthe past decade. In this section,
some background information of cognitive radio technolegil be provided, including its

origins, key functionalities, applications and relateghsiard activities.
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2.1.1 Cognitive Radio Technology

Cognitive radio is initially described by Mitola [41] a% radio or system that senses, and is
aware of, its operational environment and can dynamicaiig autonomously adjust its radio
operating parameters accordingly. "More precisely, S.Haykin gives a formal definition for

cognitive ratio in [7]:

“Cogpnitive radio is an intelligent wireless communicatigstem that is aware of its surround-
ing environment (i.e., outside world), and uses the metloggioof understanding-by-building
to learn from the environment and adapt its internal statestatistical variations in the in-

coming RF stimuli by making corresponding changes in certgerating parameters (e.g.,
transmit-power, carrier-frequency, and modulation stgt) in real-time, with two primary ob-
jectives in mind:

e highly reliable communications whenever and wherever eged

o efficient utilisation of the radio spectruim.

From these definitions, we can conclude that different frotraditional radio, the cognitive
radio has two main features: the cognition capability arelrdconfigurability [1]. That is,
the cognitive radio should have an awareness of the suriogirgpectrum usage and have
the ability to interactively make real-time decisions atine communication plan to be used.
The procedure of how these key features interact with theosnding radio environment is

illustrated by a cognition cycle in Figure 2.1 [1].

Cognition Capability of Cognitive Radio

The cognition capability refers to the ability of cognitixedio transceiver to capture the avail-
able spectrum band, analyse the information and make amduyi transmitting signals. For

more detalils, it corresponds to the three components imé& @l

e Spectrum sensing/Database access. A key issue of cogratiie is to protect the primary
users from interference as they have a higher priority fecspm utilisation. The incumbent
protection can be carried out through either spectrum sgrmi database access. The former
one is a conventional approach in which the secondary usergquired to sense the spectrum
periodically to keep the interference at a minimal level.shewn in Figure 2.2, the secondary
users may cause interference to the primary user even ifileeyutside the coverage of primary

transmitter. Hence, spectrum sensing is required to havedh migher detection sensitivity
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Figure 2.1: Functional cycle of cognitive radio [1].

than the conventional detectors. The database accesstieamay recommended in current
rules for the opportunistic use of TV band [42, 43]. In suclesuthe channel availability is
determined by checking an authorised database, but therchsen sensing is still encouraged

for spectrum efficiency improvements and further dynamaeas beyond TV bands.

e Spectrum analysis. Given the spectrum band of interestirepe analysis aims at providing a

completed interpretation about the spectral opportunity estimating the channel capacity for
use by the secondary user. The former one intends to creafmthntial spectral opportunity

by exploiting more dimensions. For example, in additionh® tonventional spatial, time and

frequency domains, the spectral opportunity can also bedfduthe angle dimension by using

the beamforming technique, allowing the secondary userpainthry user to simultaneously

utilise a spectrum band [45]. Another task for spectrum \aiglis to estimate the channel

capacity through the feedback link between the cognitidiorgransceiver and secondary user
[7], i.e., as shown in Figure 2.2. These spectral charaties;j i.e., status and capacity, will be
passed into the next decision step.

e Decision. According to the outcomes of the above procedarsst of transmission actions
will be taken, including the choice of appropriate spectibamd, modulation schemes, data
rate and transmission power, etc. At the same time, all thasgmeters are gathered to be

configured, preparing for the next upcoming transmission.
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Protection area of primary transmission Transceiver of
cognitive radio

Figure 2.2: lllustration of coverage and protection area of primarynisanission [44].

Reconfigurability of Cognitive Radio

Another key feature of cognitive radio that distinguishsglf from the conventional commu-

nication systems is the reconfigurability. That is, the déthgm radio should be able to adapt
its transceiver parameters to the surrounding radio emriemt [7]. Traditional radio network,

which uses fixed spectrum allocation schemes, is usualligmed to operate at a specified
spectrum band with respect to certain communication paigoSuch rules cannot be applied
to cognitive radio network as the spectrum is only temptyrassigned to the secondary user
and must be returned if the primary user becomes active. ¢iecording to the spectral op-
portunity, a cognitive radio should have the mobility to bpnogrammed at various frequency
bandwidths with different locations and sizes. Moreovaredain communication protocol is

no longer sufficient for the dynamic spectrum access. ldst@hen a new spectral opportu-
nity emerges, a cognitive radio terminal should be able titcemto an appropriate protocol

by adjusting the modulation schemes etc. Furthermore,rémesition of spectrum band and
adjustment of communication technologies should be fagtsamooth in order to guarantee a
seamless wireless connectivity. Therefore, hardwarecdswthat can provide continuous allo-

cation of spectrum are required, which poses further chgdie [46].
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2.1.2 Cognitive Radio Applications

Due to the ability to adapt to the surrounding spectral emvirent, a cognitive radio can co-
exist with a variety of wireless communication systems. 8arhthe major applications are

listed as follows:

e Cellular networks. The use of cellular networks is undergaa fast growth in recent years
with the dramatical development of mobile internet reaugrmassive data connections, any-
where and anytime. This brings bandwidth challenges to dfielar network as it is easily
to be overloaded. For example, the hotspot used in publaeplgenerates a large amount of
data in a small area, which causes heavy data traffic in nespEctrum. Moreover, there also
exist coverage issues for cellular network in some placg®aally in rural areas. Facing those
challenges, cognitive radio may offer solutions by opetiregunlicensed spectrum opportunis-
tically [27]. For instance, in certain urban area where ffectum is overloaded, the data could
be offloaded to the new available frequency bands from otbended holders. In rural areas
where the cellular network is not available for the costéssisers can temporally operate at a

leased band, such as the abundant TV channels, leading tcezeffioient spectrum usage.

e Public safety network. Nowadays, the wireless commurooatiare widely used by public
safety users for a fast emergency service access, i.ecepiid emergency medical aid. In or-
der to ensure an efficient communication between the comroamite and workers/users, the
wireless services (voice, message, picture transfer amdl etm.) are expected to be available
at arbitrary time and location. Such requirements conflith whe current limited frequency
resources allocated to the public safety [28]. In copinghviitis problem, cognitive radio
technology can be applied with an appropriate spectrumdatation standard that allows the
emergency workers to use additional spectrum if neces$ay.example, the emergency re-
sponders could roam on an unoccupied TV spectrum or othenpal bands in an area where

more capacity is required to operate the public safety nétwo

e Machine-to-machine communications. Machine-to-mackii2M) communications, char-
acterised by the full automation among intelligent mackjrie an emerging communication
technology that offers ubiquitous connectivity betweetwoeked devices for exchanging in-
formations without human intervention [47]. It is expectédt a large amount of connected
devices will exist in the near future, i.e., 50 billion netked devices are predicted to appear

by 2020 [48]. With such a vast amount of connected devicesiynssues such as spectrum
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Figure 2.3: The application of cognitive radio.

congestion and interference will arise as the exchangdafiration could be between the sen-
sor, the decision maker and the action executer. Cogniigleo technology can be applied to
effectively overcome those challenges [49]. Through oppustically exploiting the available
spectrum across both the licensed and unlicensed bandbj2kkenetwork can support the
required data transmission for automatic inter-connigtin a larger scale, and an improved
quality of service can be expected as the cognitive radibnigogy enables the selection of

better propagation bands.

In Figure 2.3, a typical cognitive radio application netwiillustrated. This point-to-multipoint
communication scheme is used in IEEE 802.22 standard f5@jhich a base station configures

the spectrum to operate and manages multiple cognitive rasrs.
Standardisation activity in cognitive radio

Currently, the major applications of cognitive radio teckugy are in the unused TV spectrum,
namely the TV white space (TVWP). The idea of opportunisticess of TV channel was first
proposed by the US FCC in 2003 [51] and a number of standgimtisactivities have been
developed over the past decade. For example, FCC has itkbasknal rules for the dynamic
access in 470-790 MHz TVWP [42] in 2010, and some relateddstals, i.e., IEEE 802.22
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[50], IEEE 802.11af [52] and IEEE DySPAN [53] etc, have beeblghed or are in develop-
ment. Meanwhile, in 2012, the Ofcom in UK has released itsstl@tto open the unused parts
of TV spectrum, i.e., over the 470 to 790 MHz frequency bamd, tae corresponding imple-
mentation issues are planed to be completed by the end ofi28]L9n addition, the Electronic
Communications Committee (ECC) in Europe has also puldisireumber of reports regarding

the technical principles for the operation of unlicensetkeiess services in TVWP [54, 55].

2.2 Spectrum Sensing Techniques

As mentioned above, spectrum sensing is one of the most tenpdiasks of cognitive radio
technology as it provides an awareness of the surroundifig esavironment and enables sec-

ondary user to occupy the spectrum holes without interfenith the primary transmission.

The problem of interest for spectrum sensing is to decidehan¢he primary users are active or
not over a particular frequency band and geographical #rean be formulated as a hypothesis
testing problem, where the null hypothe$is and the alternative hypothesi$; denote the

absence and the presence of primary user, respectiveljelsimplest form, we want to test

the following binary hypothesis:

Ho : y(l)=w(l),
Hi - y(O)=20)4+wl),l=0,1,...,L —1, (2.1)

wherey () is the observed baseband signal with sample 5ize(l) = hs (1), i.e., one receiv-
ing antenna is considered, is the faded primary signal, @@y denotes the signal transmitted
by the primary user and is the channel coefficient between the primary transmitelr sens-
ing device. Generally, a block fading channel is considevhith means thak is assumed to
be constant during the sensing interval. The additive windisew () is assumed to be inde-
pendent and identically distributed (i.i.d.), with zer@am and variance?. Note thato? is
also called noise power in this thesis. Moreover, it is wondntioning that most of spectrum

sensing schemes are designed for one primary signal source.

Note that the signal model in (2.1) is only an example and bserved signal may be vectorial,
depending on the operation conditions. Throughout thisishéowercase and uppercase bold-

face letters are used to represent vectors and matricggcte®ly. For instance, if a receiver
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Figure 2.4: A schematic diagram of the hypothesis testing problem &) (2.

antenna array with siz&/ is applied, thery (1) = [y1(1), y2(1), - .., yar(1)]* will be used to
represent the vectorial observation, wher€l) (i = 1,2, ..., M ) stands for the scalar response

at theith receiver antenna arid” represents transpose operation.

To test the null hypothesid against the alternative hypothesis, generally it takes the form:
>

wherel’ denotes the test statistic constructed from the obsenstiad several known param-
eters. The scalay is the pre-determined test threshold to ensure a targeifisgnce value
which is called false alarm probability in spectrum sensifige performance of the binary test
(2.2) is summarised by its false alarm probabilify;} and detection probability/;), which

are defined as follows:

Py = Pr(T >~|Ho), (2.3)
P, = PI“(T > ’7|7‘[1). (2.4)

A schematic diagram for the hypothesis testing problem) (8.2hown in Figure 2.4, where
the two distributions denote the probability density fumet(PDF) of the test statistic under
Ho andH4, respectively. It can be observed that the detection piitityadbepends on the value
of the test threshold, which is related to the required falaem probability, and the distance

between the two PDFs.
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In the context of cognitive radiol’; denotes the probability that an idle spectrum is falsely
ignored, which leads to a spectral loss. On the other h&adietermines the percentage of
the occupied spectrum that is truly detected, which avoaskul interference to the primary
service. In the design of spectrum sensing techniques, addskeepP; under a pre-specified

level and choose the test statistico makeP; as large as possible.

2.2.1 Conventional Spectrum Sensing Techniques

Gaussian noise is a conventional noise model applied irestigpectrum sensing literature.
Implied by CLT, it provides a good model for noise caused kyired sources [7], such as ther-
mal noise. In addition, the Gaussian noise assumption giy&rads to mathematical tractable
solutions. The detection of signal in Gaussian noise, sa¢heahypothesis testing problem in
(2.1), is a traditional topic that has been discussed inildatatatistical books [56,57]. The

design of spectrum sensing algorithms is related to thasg éstablished detection theories,
more than that, the background of wireless communicatiodsagnitive radio network should

be considered. For example, the observations are geneaaiplex-valued due to the modern
modulation schemes used in the primary transmission anthfiilenation of the primary sig-

nal is usually limited. In this section, some state-of-#iespectrum sensing schemes will be
introduced and explained. Particularly, the robust s@naigorithms for unknown noise power

will be highlighted and a simple summary of them will be giverTable 2.1.

Likelihood Ratio Test/Matched Filter

The likelihood ratio test is a very general approach foinigghypothesis and it is the uniformly
most powerful (UMP) test in the Neyman-Pearson (NP) ser8ei[8., the detection probabil-
ity is maximised for a fixed false alarm probability. Define® [y(0),y(1),...,y(L — 1)]T be
the set of collected samples. Given the hypothesis testimigigm (2.1), it uses the likelihood
ratio as the test statistic:

f(yHo)
where f (y |Ho) and f (y |1) denote the PDFs of under the null hypothesi#, and the
alternative hypothesi®(;, respectively. Note thdf’ in (2.5) measures how much more likely
the observationy are generated frorfi{; thanH,. Clearly, T will be relatively large if the

alternative hypothesi3{; fits the observations better than the null hypothégjs We shall
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pick #1, or declare the detection of primary signals, when the fAti®large enough to exceed
a given threshold. The likelihood ratio in (2.5) consistsltd PDFs of the measurements
under both assumption models. This means that to evaltiadd the data parameters should
be known. Recall the spectrum sensing problem in (2.1). Wimeh the signalg (1), and the
noise powerg?, are perfectly known, we obtain the likelihood ratio tesaderm of matched

filter [58]:
Ha

T="% (Zm HHy (z>> = 4, (2.6)
l

Ho

whereR (-) denotes the real part of a complex-valued number.

The matched filter in (2.6) is a coherent detection, and tbss $ensing time, i.60 (1/SNR)
samples wher® (-) denotes the order notation, is needed to satisfy a giverctitaieproba-
bility [9]. However, in the context of cognitive radio, it difficult for secondary user to know
all the signal and noise parameters. A more reasonable pfisnnis that these parameters
are partially known, or even totally unknown. More pregisédt ©, be the set that contains
unknown parameters, where the subscript= 1,2, stands forH, and #, respectively. In
such cases, a standard method is to use maximal likelihodd {Mestimate®,. Although
the optimality may not be guaranteed, it turns out that thetbtihnique usually works well in

many spectrum sensing schemes.

Energy Detector

The energy detector [8, 9] is the most widely used spectruraisg scheme due to its simplic-
ity. It needs to know the noise poweg,, but no information of the primary signal is required.
To derive the energy detector using the likelihood ratitecia, assume that the exact value of
o2 is known as aprior andz (1) in (2.1) is zero-mean circularly symmetric complex Gaussia
distributed with unknown variance?. Hence, we hav®, = (), where() denotes the empty

set, andd; = o2,

Based on the above assumptions, the distribution(df can be written in case by:

Ho @ y()~CN (0,0120) ,
Hi :+ y() ~CN (0,02 + o). (2.7)

Using ML method to estimat®; = o2 under the alternative hypothesis and after eliminating
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Figure 2.5: Block diagram for the energy detector.

the constant terms, the maximal likelihood ratio test takedorm:

rr(])axf (y|H1,01) L-1 ,
T O _ NE = 2.8
IR LA e

where|-| denotes the standard scalar norm. The test (2.8) is alsaldalk energy detector as it

compares the energy of received samples with a pre-detedntimeshold.

A block diagram for the energy detector is shown in Figure 2ubere the band pass filter
(BPF) is applied to select the frequency band of interestsi#svn in the Figure, the energy
detector is easy to implement as it works in a non-coheremnerathat no further knowledge
of the primary signal is required. In addition, it offers aogoperformance, i.e() (1/SNR2)
samples are required to meet a target detection probaf8lityDue to these advantages, the
energy detector becomes a popular choice for spectrumngeasd often acts as a benchmark

for comparison.

A major drawback of the energy detector is its sensitivityntase variance uncertainty [59],
which refers to the mismatch between the exact value of rpmgeero? and its estimate. Note
that we need?2 to set the threshold of the energy detector as its testtatatisull distribution
depends on it. The real value of, is usually unknown and the threshold in (2.8) is obtained
by replacing the noise power with its estimate. Howevernewesmall amount of estimation
error will lead to a significant performance loss and makeethergy detector become invalid
[12]. An example can be found in Figure 3.6, Chapter 3. It cambserved that under noise
variance uncertainty, the detection probability of thergpaletector degrades severely and the

false alarm probability far exceeds the target value.

This drawback of the energy detector motivates the resdarecbbust detection methods. One
solution is to find a detector setting the test threshold pedeent of the noise power, such as
the Generalised Likelihood Ratio Test (GLRT) based detesal eigenvalue based detector,
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Figure 2.6: Comparison of detection algorithms using likelihood ragtrinciple.

which will be discussed later.

Generalised Likelihood Ratio Test (GLRT) based Detector

A GLRT based detection is usually considered when all tharpaters are unknown. Hence,
it offers absolute robustness against noise variance taiagr In the context of spectrum
sensing, the GLRT based detection generally requires pheilteceiving antennas as the ML
estimates of©, for data model (2.1) need to exploit the inherent structuresample co-

variance matrix [15-17]. Suppose a sensing device congpfiseeceiving antennas. Let

y(1) = [y1(1),y2(0), ..., yn(1)]" be the baseband signal vector at the receiver antenna array,
which can be written as:

Ho = y(l)=w(l),
Hi - y()=xO)+w(),l=0,1,...,L -1 (2.9)

DefineY = [y(0),y(1),...,y(L — 1)] be the collected sample set. By using the ML method
to estimate all the unknowns, the GLRT based detector télecotm:

maxf (Y [H1,01) %,
1

= Z 7. 2.10
maxf (Y [Ho.00) , 7 (2.10)
0
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In [17], the signal part of the observatien!) was considered as a Gaussian distributed variate
with zero-mean and unknown covariance, ixg(l) ~ CN (0, R, ) whereR,, = E [x ()x (l)H] .

Then the hypothesis testing problem in (2.9) can be corvé¢ote

Ho :+ y(I) ~CN (0,021
Hi + y()~CN(0,R, +02]). (2.11)

By using ML to estimat®, = ¢2 and©®; = [R,, o2 ] under both hypothesis, the GLRT based
detector for (2.11) (i.e., [17]) is given by:

1 M
MZ/BZ Hi
J = U 2.12)

M 1\14 o
(1)

wheres, > (2 > ... > By denote the eigenvalues of the sample covariance matrix:

R 1 L—1
R, = ﬁgya)y(l)ff- (2.13)

The test in (2.12) is also called the AGM detector as its tedistic computes the arithmetic-
to-geometric mean of sample eigenvalues. Although the A@Mator isblind, results in [17]
show that it achieves a better detection performance cardpaith the energy detector with

noise variance uncertainty.

Note that the AGM detector treats tiig, in an unstructured manner. A more specified signal

structure was considered in [15, 16], where the data modiEnid, is expressed as:
Hi:y(Q)=hs()+w(),1=0,1,..,L —1. (2.14)

Here, the primary signal (1) is characterised by an i.i.d Gaussian random variate with-ze
mean and variance?, i.e., s (I) ~ CN (0,02). Then the covariance of (I) = hs (1) can be

written asR, = hh o2, and we hav®, = o2 and©; = [h, 02,02 ]. The consequent GLRT

yY 8w

detector for testing:

Ho :+ y () ~CN(0,021)
Hi : y(l) ~CN (0,hh"o? +021) (2.15)
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is (i.e., [15, 16]):

z 5. (2.16)

Compared with the AGM detector, the test in (2.16) has an dwvgut detection performance
as it exploits the rank one property B,. Moreover, the GLRT can be further adapted to a

multiple-input multiple-output (MIMO) system [60] and uadibrated receivers [61].

For the aforementioned detection algorithms using likedih ratio principle, i.e., based on data
model (2.1), there exists a trade-off between the detegioformance and robustness against
parameter uncertainty. As shown in Figure 2.5, the matclied fierforms the best, but has the
lowest robustness as it needs all the parameters to be kntiliite the GLRT detector has a
relatively lower detection performance but enjoys the bgitrobustness as no information of

the signal, channel and noise power is required.

Eigenvalue based Detector

As shown in the GLRT based detector, sometimes the primgnakimparts a specified struc-
ture to the sample covariance matrix that can be utiliseds Adppens when a multiple antenna
assisted receiver is applied, or if the signal is oversathfdl8]. Unlike the GLRT based detec-
tor, the eigenvalue based detector treats the signal assfriicture is unknown. For example,
without the knowledge of the rank &, we assume it is either rank-deficient or full rank but
non-white. In such cases, whén— oo, the sample covariance matrfky under#, has equal
eigenvalues aﬁy — o2 I, but forms differently wher#{; is true asf{y — R, +021. By
using this property, the well-known maximum-minimum eigglne (MME) detector proposed
in [13] is:

Hi
7oz 5. (2.17)

=3 7?0
Note that both the MME and the GLRT based detectors expleiteigenvalue properties of
sample covariance matrix. The difference is that the MMEcter only uses the autocorrela-
tion of primary signal, while the GLRT based detectors add@tthe potential signal structure
into account. Clearly, the MME detector will have relativgdoor performance if the signal
structure is known. Moreover, for these eigenvalue bastztties, analytical solutions for the
test thresholds are difficult to obtain or require high cotapianal complexity [62]. Although

the empirical results can be obtained using the Monte Caelihod [36], it requires the sensing
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e

Figure 2.7: OFDM signal structure.

conditions to be reproducible. In addition, the simple astotic results derived from random
matrix theory are shown to differ significantly from the exeaalue if the number of receiving

antennas and the data samples are limited [63].

Feature based Detector

In the context of spectrum sensing, feature based methéetstoghe detection of primary sig-
nal by exploiting its known statistical properties. Thersitfeatures, which are commonly seen
in the man-made case, are a result of the adding of codingndkeion of pilot or the modula-
tion scheme used at the transmitter etc. For example, thegwhal frequency-division multi-
plexing (OFDM) modulation contains cyclic prefix (CP), whicefers to adding a sequence of
symbol repetition at the end, for eliminating the inter-&ghinterference. Moreover, most of
communication systems add pilot to the transmitted sigmad$sisting the dedicated receivers.
Doing these result in distinct signal features that can leel iy detectors. In general, the fea-
ture based spectrum sensing schemes can be categorisedeirsecond-order statistic based
detector [19, 64, 65] and the cyclostationarity based det¢66—68].

e Second-order statistic based detector

The second-order statistic based detector, as its nanoaird] makes the decision based on the
second-order statistic of the received signal. It relieshenfact that the transmitted signal has
a correlated structure while the white noise does not. Famgie, consider an OFDM signal
with a CP, as shown in Figure 2.7. LB} be the size of OFDM symbols, which is equivalent to
the number of sub-carriers, aiid be the length of CP symbols. Again, assume the transmitted
primary symbols are i.i.d with zero-mean. In this case, theorrelation function (ACF) of
the received signal in (2.1):

ry (L7) 2 Ely () y (1 +7)] (2.18)

is time-varying and periodic i as it is non-zero only at lag = L, for some value of.

Assuming thatL; and L. are known, this CP based non-stationary property of ACF @an b
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utilised by detectors for identifying primary signals [18, 69].

In addition to the CP, another repetition structure we cadus the pilot [70], which is often

inserted to signal at the transmitter for assisting theaddd receivers, channel estimation and
synchronisation purpose. Detectors based on the pilocedistructure have been proposed
in [64, 65]. Interestingly, the results in [64] show that quamed with the CP based method,
the pilot based approach achieves a better detection pafare and is more robust to the

synchronisation error and frequency offset.
e Cyclostationarity based detector:

A more popular approach of feature based sensing is to éxtpminherent cyclostationarity
of the received signal. The cyclostationarity is causedheygeriodic patterns in the signal

statistic such as the aforementioned ACF.

For example, the cyclic spectral density (CSD) function le# teceived signag (/) can be
written as [71]:
Sy (& w) = Ry (&) exp (—jwr), (2.19)

whereR, («, 7) is the cyclic autocorrelation (CAC) at cyclic frequengy

L—1
o1 .
R, (&)= Lhm —Z:ry (I,7)exp (—5¢1) . (2.20)
Both CSD and CAC functions output peak valueg is the fundamental frequencies of the
primary signal. Hence, the cyclostationarity based diteatan be constructed both in the

frequency domain and time domain.

Typically, cyclic frequencies are related to symbol raterier frequency or modulation scheme
used in the transmitted primary signal. They can be assuméd known [20, 21], or they

can be estimated and used for signal detection [66, 68].eSlifferent modulated signals ex-
hibit different inherent patterns, cyclostationarity édsletection methods have the ability to
differentiate the primary signal from the noise and intenfee, and thus more robust. How-
ever, large data records are required to fully exploit theastationarity and generally a high
computational complexity is needed for implementatiorhasavaluation of CSD/CAC is two-

dimensional.

Note that the uncertain noise variance problem has beendeved in some feature based
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Detector REF | Assumptions Closed form solutions fo
test threshold
MME [13] Oversampling data model or multj- Analytical/Asymptotic
ple receiving antennas solutions
Zhang and| [15,17] | Multiple receiving antennas Analytical/Asymptotic
Taherpour solutions

Chaudhari [18] OFDM primary signal with known Asymptotic solutions
L, and low SNR scenario

Larsson [19] OFDM primary signal with known No
L,andL,
Urriza [20] Multiple receiving antennas andAsymptotic solutions

known cycle frequencies

Huang [21] At least one known cycle frequengyAsymptotic solutions
and one known time delay

Table 2.1: Summary of sensing algorithms that are robust against uatcenoise power

detectors. For example, in [18, 19], the second-order ptpéthe CP-OFDM primary signal
is used to construct the test statistic using the likelihcateb criteria and the ML method is
applied to estimate the unknown noise power under both hggit. Moreover, one can benefit
from the spectral correlation if some knowledge of the digreyclic characteristics is known.
Examples can be found in [20] and [21], where the eigenstraabf cyclic covariance matrix

and large sample statistics of CAC functions were exploitegpectively.

Other Topics

We have reviewed some of state-of-the-art spectrum setsthgiques, assuming narrowband
signals and single sensing device. There are also otharstophich are beyond the scope of

this thesis but worth mentioning.
¢ Wideband spectrum sensing

By contrast to the narrowband detection methods mentiobesiea wideband sensing tech-
nigues aim to sense a band of spectrum that exceeds the cobdrandwidth of the channel.
A standard way to solve this problem is multi-band sensinhickwv divides the wide band-

width into multiple sub-bands and jointly make decisionsdificient resource utilisations [11].
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However, this method requires a high sampling rate anattgraigital converter (ADC) as the
signal needs to be sampled at or above the Nyquist rate. natieely, the parallel structure
filter-bank algorithm may be used to avoid the high sampletg [72], at the expense of in-
creasing cost of RF component. To cope with the aforemesdiadrawbacks, sub-Nyquist
sensing would be another solution. This method argues ligaexisting of primary user is
sparse in some domain, and therefore the signal can be ediith a relatively few measure-
ments, using a sampling rate that lower than the Nyquist[i@e Some relevant works are

summarised in [74].
e Cooperative spectrum sensing

The basic idea of cooperative spectrum sensing is to explispatial diversity by using mul-
tiple sensing devices, making a global decision based ondh®ined measurements. It can
overcome some limitations of local spectrum sensing,p@or detection probability caused by
the multipath or shadowing fading, but has a high implemeriacomplexity due to the use of
multiple devices and the consequent communication ovdrhigageneral, current works can
be categorised into centralised and distributed sensingnses, depending on different model
used in the fusion centre. In centralised schemes, therficgatre collects the observations
from all the sensing devices directly [75]. Good detectienfgrmance can be obtained as the
decision is based on the whole data, but a high communicatierhead is required. An alter-
native way is distributed sensing, where the sensing dewnly send their local informations,
i.e., the test statistic or local decision, to the fusionteerand a final decision is made by using

counting rules [76, 77] or optimisation techniques [78, 79]

2.2.2 Spectrum Sensing for Non-Gaussian noise

As mentioned above, most of the conventional spectrum sgnschniques make assumption
on Gaussian noise as it accords with the CLT and offers mattieah tractability. However,
this model is not always valid as the noise found in practigiaéless communications often
shows a non-Gaussian heavy-tailed behaviour [80]. Theneiaghat in addition to the Gaus-
sian distributed thermal noise, there exists artificiakaas well which is impulsive in nature
[7,81]. In the presence of non-Gaussian noise, the perfocenaf standard detectors becomes
unpredictable due to the uncertain null distribution of tibst statistic. Hence, the robust spec-
trum sensing methods are required to address possiblgidegiaf the noise distribution from

a Gaussian model.
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In the literature, several spectrum sensing methods haea peoposed to deal with non-
Gaussian noise. In general, the heavy-tailed noise is reatil be a broad class of circularly
symmetric distributions which include Gaussian distitntas a special case. Depending on
the prior knowledge of noise, they fall into two categories: the dgdacwith full or partial
noise knowledge [29, 31, 82] and the detection with unknowaisenknowledge [32—-35]. In this
section, they will be briefly reviewed and a simple summaryhelse detection algorithms is

given in Table 2.2.

Detection with full or partial noise knowledge

If the knowledge of non-Gaussian noise is fully or partidhown by the cognitive radio user,

detectors can be designed according the specified noisdsnode

e The authors in [29] consideregtstable distributed noise. Thestable distribution, where
the characteristier is used to control the level of heaviness, is circularly syetrio but only
has finite moments of order less than By assuming ar/ antenna assisted sensing device,
the detection is based on thevariationt coefficient absolute value (CCAV) and exploits the
structure of covariation matrix that the off-diagonal etmts are zero undé{, and have non-
zero value unde#{;. More precisely, lep,, (i,7), i,5 = 1,2,..,M, 1 < p < «, be the

estimate of the covariation coefficient. The test is given by

M M

>3 e )]
—= Z (). (2.21)
2 1oy (i) Ho

T(p) =

Ideally, T'(p) is aroundl when#, holds and larger that if the primary signal exists. In
addition, the value of'(p) also depends op, which is picked by Monte Carol trails so that
the root mean error o, ,, (4, j) is minimised. Since the choice pfand the null distribution
of T'(p) depends on many mathematically intractable terms, thefhtestholdy(p) cannot be

analytically expressed.

e Moreover, the authors in [82] considered the case of phrikalown noise knowledge. That

is, the exact noise distribution is unknown, but its statédtmoments are available. Based on

Covariation, which is analogous to covariance, desirablestatistical property of a process that does not exist
finite second order statistics. For the definition and motailde see [29].
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Detector REF | Assumptions Closed form solutions fo
test threshold
LO [31] | Noise distribution is known No
CCAV [29] | a-stable distributed noise No
L,—norm [82] | The channel and noise statistics ardlo
known
Robust LO [31] | e—contaminated noise model No
Cyclic correlation| [33] | Cyclic frequency is known Asymptotic solutions
PCA [34] | Real-valued data Analytical solutions
KS [32] | Training noise samples Analytical solutions
t-sensing [35] | Training noise samples and non-zerédsymptotic solutions
mean primary signal

Table 2.2: Summary of sensing algorithms for Non-Gaussian noise

this, aL,—norm detector was proposed by invoking assumption on low .SN#s work is
originated from the LR detection, and the result is simplifiyy using a tunable parametgto

adapt to the underlying noise distribution. The decisiatistic is given by:
1
T = fazzlj y (I, (2.22)

whereo—,% denotes the power of channel coefficiénti.e., h is assumed to a random variate
in this work, andp is obtained by solving an optimisation problem. Note thath—norm
detector does not neqatior knowledge about the primary signal, but the statistical ot

of the fading channel and the additive noise are requiree tnown.

e In addition, a locally optimal (LO) detector in NP sense wesppsed in [31] for wideband

sensing. The detector assumes arbitrary noise types, duabike distribution must be known.
The test statistic of the LO detector, expressed in frequdomain, is fundamentally a spectral
estimation function that correlates the periodogram oéolations with the known or estimated
primary signal spectrum. The test statistic is complicatedhat there does not exist closed

form solutions for the test threshold.

28



Background

Detection with unknown noise knowledge

By contrast to the aforementioned parametric approachesdépend on the known noise
knowledge, some works have considered the case where the typie is unknown, and only

minimal assumptions are made on the noise distribution.

o A feature based detector was proposed in [33]. This detetes a cyclic correlation esti-
mator as the test statistic, requiring at least one cyctiquency of the primary signal to be
known. To make the detector quantitatively robust, theicyarrelation estimator is based on

the spatial sign function, which is defined in sense of compued data:

min v (D) #0

Iy (2.23)
0 y(l)=0

S) =

Then given a cyclic frequendyand a set of time delays;, 7, ..., 7, the decision rule is given

by:

N A o Hi
T=Y|R€m)| =, (2.24)
i=1 Ho
where
. L—1
Ry (&) =LY Sy () S (y(l+m)") exp (—jél) (2.25)

1=0
is the estimate of the sign cyclic correlation. The adveesagf (2.24) are that only circularly
symmetric process is made on the noise PDF, and the asymnptatidistribution of the test

statistic has been derived. However, this detector is rilyt fimnparametric as it exploits the
cyclostationarity so that at least one cyclic frequencyhef primary signal is required to be

known.

e In [32], a Kolmogorov-Smirnov (KS) test was proposed for parametric signal detection,
which requires a sequence of noise samples for referenpes®s. This test is a goodness-of-fit
test that quantifies the distance between the empirical @iiveidistribution function (CDF) of
the observations and the CDF of the reference samples. Bor, IetW|w‘ be the empirical
CDF of the noise magnitude, af[ﬁzﬁy‘ be the empirical CDF of the observation magnitude. The
test uses the largest absolute distance between the two &the goodness-of-fit statistic:

A A~ Hl
T= max Wiy (2) = Wiy (2) z 7. (2.26)
Ho
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Equation (2.26) has an explanation that we will rejgt when the deviation between the
underlying distribution of the observations and the rafeeeis larger than a given threshold.
This test is easy to implement as no knowledge of the primgnasand the noise characteristic
is required, and there exists numerical tables for comgutie test threshold. In addition, the
reference noise only samples are also achievable, i.g.ctrebe collected when the primary

user is known for sure to be absent.

e Again, by assuming a sequence of noise samples is availaldsymptotically robust-
sensing was proposed in [35] to detect the non-zero mearaprigignal. Initially derived in
Gaussian, this detector is fundamentally a test of wheltgemtean of collected samples is equal
to the mean of reference noise samples. Since the testistitiasymptotically Gaussian, the
t-sensing is asymptotically nonparametric and can be appi@on-Gaussian noise when the

sample size is sufficiently large.

¢ A different path was considered in [34]. By considering atipié antenna equipped receiver,
a nonparametric polarity-coincidence-array (PCA) basstéalor was proposed, requiring no
knowledge on the primary signal and noise characteristitewever, the detector is derived

and discussed for real-valued measurements.

¢ In addition, a robust LO detector was also proposed in [31ddsuming the noise consists of
100 (1 — €)% Gaussian an@l00e% unknown non-Gaussian parts. In this case, the initial-spec
tral estimator is invalid and the authors propose a robushodeby formulating a non-linear
cost function that minimises the impact brought by the umkmmon-Gaussian distributions.
Results in [31] show that the robust approach performsthjigbhorse than the LO NP detector,

but is nonparametric at the cost of increasing computdticmaplexity.

As summarised in Table 2.2, most of the aforementioned tletemethods are parametric or
make assumptions on a specific signal type. Another conse¢he iselection of a test threshold
is generally difficult as the test statistic’s null distrilin may be complicated and unknown in

non-Gaussian noise.

2.3 Conclusion

In this section, we presented a literature review of theesththe-art spectrum sensing tech-

niques, providing a background knowledge for the rest ofthiesis. In particular, related
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works for noise robust sensing algorithms have been higtddyand summarised in Table 2.1
and Table 2.2. In Chapter 3, we shall propose a néwtst based detector to cope with the
sensing problem in noise variance uncertainty. Under a $i@usoise assumption, this detec-
tor is equivalent to the maximal likelihood ratio test. TherChapter 4 and Chapter 5, several
robust sensing methods for non-Gaussian noise will be dpgdland the nonparametric boot-

strap technique will be applied to avoid making assumptmm$arge samples or reproducible
experiment conditions.
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Chapter 3
F-test Based Spectrum Sensing

3.1 Introduction

The energy detector [8] is the most widely used sensing seltera to its good detection perfor-
mance and low implementation complexity. However, it regsliaccurate knowledge of noise
power and even a mild noise variance uncertainty will leddibolamental limit on its detection
performance [12,59]. As illustrated in Figure 3.6, in theg@nce of noise variance mismatch,
the high false alarm probability and significant performaitwss in detection probability will

make the energy detector invalid.

To cope with this problem, most current research focusdslion sensing schemes, which refer
to the detection without knowing any knowledge of the traiti&ga primary signal, the channel
coefficient and the power of the additive noise. They comme@slsume a receiver antenna
array so that the eigenstructure of the sample covariantexnbghaves differently under the
null hypothesis and the alternative hypothesis. For exaraMME detection was proposed
in [13], which assumes that when primary signal exists, #i® rof maximum eigenvalue to
minimum eigenvalue will be relatively larger than for theseonly case. Another method is
to construct the test statistic using likelihood ratio priote [56]. Given a specified data model,
one uses the maximal likelihood to estimate all the unknowhih yields the well-known
GLRT based detector [15-17]. As discussed in Chapter 2¢e#iestatistics for those detectors
are all functions of eigenvalues and the correspondinghessholds may have to be evaluated
empirically, as the closed form analytical solutions areegelly difficult to obtain and the
asymptotic results invoke assumptions on large data recmd large array size. In addition,

they are subject to limited test performance.

On the other hand, signal features can be considered in #igndef detection criterion if the
primary signal has some known statistical properties. kample, the detectors derived in [18,
19] exploit the non-stationary property of CP-OFDM signathaut knowing the knowledge
of noise power. In addition, many man-made signal give tisa tyclostationarity property

that can be utilised, requiringrior knowledge or accurate estimate of cyclic frequencies. The
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examples of noise robust detectors using this property edaund in [20] and [21], where the
eigenstructure of the cyclic covariance matrix and largea statistics of the CAC functions
are exploited, respectively. Compared with thlend detectors, the feature based detection
methods offer a better detection performance by exploitirginherent structure of primary
signal. The cost is that they can only be applied to a spediigmuhl type and generally high

computational complexity is required for implementation.

In summary, most current detectors are sensitive to noigsange uncertainty or subject to
limited test performance and high computational compjexit this chapter, a novel multiple
antenna assistefl-test based sensing technique is developed, which offed#b robustness
against noise variance uncertainty and is relatively easgnplement. It requires the CSI as
prior knowledge, which may be imperfect due to the lack of recipreommunication standard
between the primary and secondary systems. Hence, the timpabhannel uncertainty also

needs to be addressed. The main contributions of this ahamesummarised as follows:

e An F'-test based detection scheme is proposed. By taking the 8lat knowledge, the
F-statistic is derived using likelihood ratio principle Wwiall the unknowns estimated via ML
method. It is insensitive to the noise variance uncertaastyio information of noise power is

required.

e The test statistic follows ai’-distribution under the null hypothesis and a noncenkal
distribution under the alternative hypothesis. Given gdafalse alarm probability, the exact
value of test threshold and probability of detection aréveéerbased on the statistical properties
of F-distribution.

e The impact of channel uncertainty is investigated. Restitsv that the'-test based detector
has constant false alarm probability, independent of tloeiracy of channel estimation. The
detection probability under imperfect CSI can be calcdaising the doubly noncentrdl-

distribution. To avoid computational complexity, a simpfgroximated value for the detection

probability is also presented.

e Simulation results show that the propogédest based detector achieves a significant perfor-
mance improvement compared with the energy detector. Itiaddt offers robustness against

noise uncertainty and suffers a mild performance loss uinaieerfect CSI.

The remainder of this chapter is structured as follows. Titpeas model for multiple antenna
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Figure 3.1: SIMO network used for spectrum sensing.

assisted spectrum sensing is described in Section 3.2i08&c8B introduces and derives the
F-test. In Section 3.4, the-test based detector is proposed, and its test thresholdetaction

probability are derived, respectively. Then the impact 81 €stimation error is discussed in
Section 3.5. Simulation results are presented in Sect@nR3nally, Section 3.7 concludes this

chapter.

3.2 System Model

Consider a single-input multiple-output (SIMO) networksaewn in Figure 3.1, where there is
only one primary user and the cognitive radio transceivegispped with\/ antennas to sense
the surrounding radio environmeht Note that the multiple receiver system is applied as it is
less sensitive to multipath fading effects on the primagemdary user channel and tRetest

based detector can be applied to such system.

In spectrum sensing, we aim at finding the idle spectrum baedaupied by the primary user

within the range of secondary users. As discussed in Se2tiynChapter 2, the detection of

The F-test can be easily extended to the case of multiple signates. In this work, SIMO network is applied
for simplicity. In addition, spectrum sensing schemes areegally considered and designed for one primary signal.
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primary user can be formulated as a hypothesis testinggmmalthe null hypothesisl, implies
that the primary user is not active; and the alternaiy@mplies that the primary user is active.
Let y(I) = [y1(1),y2(),...,yns(D], (I = 0,1,...,L — 1), denote the sizé/ baseband
signal vectors at the receiver antenna array Withenoting the sample size. Then the spectrum

sensing problem can be expressed as the following hypettesi

HO : y(l):W(l)7
Hi : y(l)=hs()+w(),l=0,1,...,L—1, (3.1)

wheres(l) denotes the transmitted primary signal symbol at time msgtavhich is assumed to
be unknown and deterministic. The fading channel betweepitimary user to cognitive radio
transceiver is represented by the known CSlI vehter [hy, ho, .. ., hM]T. We assume thai
stays constant during the sensing period. The noise veatir= [w; (1), ws (1), ..., wu (1)]"

is characterised by an i.i.d complex Gaussian variate wetio-mean and covariance matrix

o21,i.e.,w(l) ~ CN(0,021), wheres? is unknown.

Since there is no existing reciprocal communication steh@atween primary and secondary
systems, the problem of estimating the Gfis still an open question. One solution to this
problem was suggested in [10, 11, 83, 84]: the knowledge ¢fisC& quired from the periodi-
cally transmitted pilot when the primary transmitter is\eet Moreover, the authors in [84—86]
developed joint estimation based sensing schemes in whelfatling channel can be recur-
sively estimated for improved sensing performance. Theaghpf CSI estimation mismatch

will be discussed later in Section 3.5.

3.3 Preliminaries of I'-test

The F-distribution is formed by the ratio of two independent shjidare variates [87], with
each one divided by its degrees of freedom. Since it arises thi-square, thé'-distribution

is characterised by positive values and non-symmetriciloigion. TheF'-test is a statistical
test in which the test statistic follows ar-distribution under the null hypothesis [88]. It is
designed to find out whether the two population variancesegrel using the ratio of two
sample variances as the test statistic. So, if the null ngsis is true, the test statistic should
be nearl. We shall reject the null hypothesis when the ratio of varémnis large enough to

exceed a given threshold.
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The F-test acts as an efficient tool for the hypothesis testingplpros in regression analysis.
Under a Gaussian error/noise assumption, it is equivatetiie maximal likelihood ratio test
[88] and is thus optimal in the Neyman-Pearson sense [5@hdffollowing, we shall develop

the F'-test using the likelihood ratio principle.

Based on the signal model (3.1), the distribution of reackiatay (/) can be written in case by:

Ho : y()~CN(0,021),
Hi : y(l) ~CN (hs(l),02]). (3.2)

DefineY £ [y(0),y(1),...,y(L — 1)] be the sample set. We apply the likelihood ratio prin-

ciple to construct the test statistic:

Tip = g;ax.z(Y\Hl, , 5)—m9w(Y\Ho,ai), (3.3)
where
1L—l
2
Z (Y [Ho,02) = —MLn (o}, _%Z (3.4)
Z(Y|M,s(1),04) = —MLln(noy, —% \ 0|*, (3.5

=0

are the concentrated log-likelihood functions un@éigrand #,, respectively.|-|| denotes the

Euclidean norm of a vector.

By taking derivative ofZ (Y |Ho, 02, ) with respect tarZ, we obtain the maximal likelihood
estimate (MLE) ofr2, under the null hypothesik:

o = 117 Zny : (3.6)

Similarly, we obtain the MLE of(/) ando?, under#;:

s() = hiy(), (3.7)
1 L—-1
bory = UL 2=V O I-Pyy (@), (3.8)
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Figure 3.2: Block diagram of the’-test with degrees of freedom andn; [56].

whereht £ (hHh)_1 h* denotes the pseudo-inverselndndP = h(h"h)~'h’ represents
the projection onto the subspace spannedcbyNote that the solution to (3.5) is evaluated
separately, where we maximise owgf) to obtain a function ot2 first and then maximise

overo? to get the whole solution.

Substituting the ML estimates, eqgs. (3.6-3.8), in (3.4) ¢h8) leads to the following closed

form optimisations:

L (Y |Ho,62) = —ln(tr [ﬁyD, (3.9)
L (Y [Hy,5(1),62) = —ln(tr [(I—P)RyD. (3.10)

. L-1

HereR, = + 3 y(I)y (1) denotes the sample covariance matrix arid tepresents the trace
1=0

operator which is defined to be the sum of the diagonal elesvafrat matrix. Subtracting (3.9)

from (3.10) leads to the following maximal likelihood ratiest statistic:

( tr [Pf{y} )
T = In| 1+ - < T
tr [(I _P) Ry}
— In(1+ 27p), (3.11)
ng
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whereTr is the statistic given by:

~2
n Ow
Tr = n—? (62}[0 - 1)
w,H1
o U[PRJ 612
g [(I _P) Ry}
with degrees of freedom:
ny = 2L(M —1). (3.14)

As shown in the block diagram df'-test in Figure 3.2, the statistifr, also known as the
F-statistic, measures the ratio of the energyothat projects onto the subspace relates to the
primary signal,P, to the energy ofY that projects onto the orthogonal subspade;- P).
When the null hypothesis holds,[ﬂaf{y] and tr{(I -P) f{y} are two independent chi-square
distributed variates, and the statisTig follows anF;,, ,,,-distribution with degrees of freedom
n1 andns given in egs. (3.13) and (3.14) [87].

Given a target significance value, known as the false alawbatility in spectrum sensing,
the F-test then reject, whenTr exceeds a pre-determined threshgld=inally note that the
monotonicity of the logarithm function in (3.11) ensures #yuivalence between the maximal
likelihood ratio test and thé'-test.

3.4 F-test Based Detector

Recall the regression data model (3.1). Given the observafiand CSI vectoh, we apply
the F'-test to detect the existence of primary signal. As disaisdm®ve, the decision rule is
given by:
tr [Pf‘ly] Hq
Tp=" = (3.15)
i tr [(I - P) Ry] Ho
where the test threshofdis selected to ensure a target probability of false alarnie Nwat7T
can be seen as an estimate of the increased SNR induced byntiagypsignal [89]. Therefore,

the decision rule (3.15) has an interpretation that we witept the alternative hypothesis,
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or declare the existence of primary signal, when the SNRnas$é is large enough to exceed a

given thresholdy.

When the null hypothesi®, holds, the test statistiCr is F;,, ,,-distributed, i.e.7r ~ F,, .
Let We 1,02 (x) be the CDF of the"-distribution with degrees of freedom andnz, which is
given by [87]:

1 1
Wc,nl,n2($) = I <§n17 5”2) > (316)

wherek = nyz/ (ng + niz) and

11 JEgamt(1 — )2t
Ik(_nla _n2) = 1.1 1
2 2 f(] t§n1—1(1 _ t)§n2_1dt

(3.17)

is the regularised beta function.

Then given a target false alarm probability we can obtain the test threshold through the

following relation:

a = Pr(Tr >~|Ho)

= 1- Wc,nl,n2(’7)- (318)

There are several tables Wf. ,,;1 »2(x) and each one corresponds to a different significance

valuea. Hence, the test thresholdcan be easily obtained.

When the primary user is active, &, holds, the test statisti€r is noncentralF'-distributed

[87],i.e..Tr (H1) ~ F}, ,,,(6%). The noncentrality parametét is given by:

L—-1 9
23 [hs@)l
R (3.19)

2
Ow

The probability of detection is:

P; = Pr(TF > ’7|7‘[1)
= 1- Wnc,nl,nZ- (320)
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whereW,,c 1.2 (z | ?) denotes the CDF of the noncenti@ddistribution. It is given by [87]:

1
Wnc nl,n2 l’ | 52 Zwl 52Ik < ni —|—Z 2 > s (321)

where ,
(52/2)’

w; 52 = €XP (—52/2) p

(3.22)

Itis shown thatP; is an increasing function of the noncentrality paramétgB7]. From (3.19),
we can conclude that a higher probability of detection caoliiained by increasing the sample

sizeL.

It is worth mentioning that an harmonic-test based method for spectrum sensing was dis-
cussed in [22], which is based on multitaper method to eséirttee spectrum and the linear
model for settingF'-test is in the frequency domain. In order to reduce the magaof spec-
trum estimate, the data is firstly windowed by a set of ortmag@igentapers. Then given the
eigenspectra estimations and eigencoefficients (theedesourier transform of eigentapers),
an I test is set up to test whether a colored component (primgrnabi exists or not over a
bandwidth [90]. It can be seen as a nonparametric widebamsrgpand large sample size is
required to achieve reasonable performance, i.e., 2200Isans used in [22]. The proposed
F-test based detector in this chapter, however, is based atally tdifferent signal model. It
assumes a multiple antenna scenario and CSl is needed tioutbrike F'-test. Moreover, to

achieve reasonable performance, the required samplessizech smaller.

3.5 Impact of Imperfect CSI

Channel informatiorh is needed for constructing thié-test based method in (3.15). As men-
tioned above, it could be acquired from the periodicallysraitted pilot or be jointly estimated
and updated during the sensing period. However, as showeiddta model (3.1), the fading
channeh is not be always embedded in the observations. Particuthdyeceived data is noise
only whenH, holds. Hence, due to the delayed update coupled with theattin or quanti-
sation errors, one only has access to the imperfectﬁ:S[CMXl, which can be modelled as
follows:

h=h+ Ah, (3.23)
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whereAh = [Ahy, Ahs, ..., Ahy]T denotes the uncertain term. Such uncertainty may de-
grade the performance of the proposed detector. In thigosethe impact of channel uncer-

tainty will be discussed.

Test threshold and false alarm probability

The selection of test threshold depends on the target fiels® @robability, which is related to
the null hypothesig{y. In this case, the received data only consists of noise s$ahbahannel

estimate may have a significant deviation from its true value

Note thath is a fixed parameter during a sensing period. Combining &8 (3.12), the test

statistic under channel uncertainty can be expressed as:

A tr PR
Tr <h|H0> - Z_itr{(l [— P)y]f{y]
S () Bw (1)
n9 =0

= 2 , (3.24)

PPN
whereP = h (hH h) h* denotes the projection matrix onto the space spanned bytre c

nel estimatéh.

Since the noisdw(l);l =0,1,...,L — 1} is complex Gaussian distributed, the test statistic
Tr (ﬁmo) is F,, ,-distributed under the null hypothesis, with degrees afdemn, andn;
given by egs. (3.13) and (3.14). Note that the charactesistf the F'-distribution only relate

to the degrees of freedom [87]. As there is no change in thledmsilibution of 7= as well

as its corresponding degrees of freedom, the pre-complteshioldy will still be effective to

ensure the target false alarm probability as:

Py = Pr(Tr (B) > /Ho)
= 1—Wenin2 (7)
= a. (3.25)

In other words, thd'-test based detector has constant false alarm probalnilitgpendent of

the accuracy of channel estimation.
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Detection probability

When the alternative hypothesis, holds, the received data consists of both signal and noise,
implying that the observations will depend on the charinahd so does the detection proba-
bility. Based on egs. (3.15) and (3.12), when the primarpaigxists, the test statistic can be

written as:

> (s (1) +w ()" P (hs (1) +w (1))

Te (5‘7{1) _ @L_ll=0 , (3.26)
lgo (hs (1) +w (1) (T P) (hs (1) + w (1))

which is doubly noncentraf-distribution (DNF) distributed, i.eZ (ﬁ\m) ~FL (57,62
[87], with the noncentrality parameters:
_ 2
2 = %Z HPhs ‘ , (3.27)
Tw 1=
L-1
2 ~ 2
B o= = H I-P hs(l)H . (3.28)
239
The corresponding detection probability can be obtained as
P; = Pr (TF (fl) > ’Y‘Hl)
= 1- dec,nl,nz (’7|5%7 5%) 5 (329)

whereWgpcn, n, (% | 6%, 63) denotes the CDF of DNF distribution, which is given by:

1 .
Winent,n2 ;L' | 51,52 Z:me 82 Z:Ow“ (SQIk < n1 + 11, 2n2 —|—22> . (3.30)
12 1

For the definitions oto; 52 (w;, 52 andw;, 52) and Iy (-) , see in egs. (3.22) and (3.17), re-
spectively. It can be expected that the detection protaliil be maximised when the perfect

channel information is available, as shown in the followiagult.

Lemma 3.1. Given a test threshold, the detection probability of'-test based detector is

maximised wherh = h.

Proof. Combining (3.27) and (3.28), and applying the property effiiojection matrid®, we
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have:

, 9 (L=l L—1 ) )
26 = U—{ H +ZH(I—P)hs(l)H}

2
L—-1

[hs (D)% (3.31)
=0

eqw| o

It has been shown that the probability of detectigygiven in (3.29) will rise wher? increases

or 63 decreases [91]. Sind& + &3 is constant and3 > 0, P, will be maximised when

6 = %Z s (1) (3.32)
0

w

62 = 0. (3.33)

Both the equalities hold when and only whBris the projection onto the space spannechby
which implies that giveny, the detection probability of thé-test based detector, eq. (3.29),

will reach its maximal ah = h. O

Fromlemmal, we conclude that the detection performance offhiest based approach under

perfect CSI offers a benchmark for comparison.

As shown in 3.30, the CDF of DNF distribution consists of dguhfinite sum of incomplete
beta functions and thus is difficult to evaluate. Here, ireottd simplify the computation, we
apply a simple approach derived from the approximationsotzcantral chi-squared distribu-

tions [87]. The approximation of the DNF distribution is givby:

1+ 02n;t
5752_1 s (3.34)
with degrees of freedom:
vo= (n 4637 (n+263)7", (3.35)
vy = (na+03)° (na+263) " (3.36)

Therefore, we can utilise the table of centfaldistribution to calculate the approximated de-
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Detector Legend| Assumptions Sensing Complexity

F-test based detector F-test | Multiple receiving antennas O (ML)

eg. (3.15) CSlis known

Energy detector [8] EG Noise poweir?, is known O (ML)

GLRT based detector [15] GLRT | Multiple receiving antennas O (M3LN)

Table 3.1: Summary of the simulated detection algorithms. number of receiving antennas.
L: sample sizeN: Number of Monte carol trails.

tection probability under channel uncertainty, that is:

1+ 63ny " )
Pi=1—W.pp, | ———=7]. 3.37
d 1,2<1+5%n1_17 ( )

In addition, it is worth mentioning that the detection prbttity of F-test based detector is
invariant to the gain and rotation transformation of chdrire, h = Ghexp (j0). The reason

is that for this special cas® is still the projection ontd as:

P = h(R¥A) B
2

= % exp (j0) h(hh)~th#

- P (3.38)

3.6 Simulation Results

In this section, the proposedd-test based sensing technigue will be evaluated numsriaat
compared with the other two widely used detectors, nameadyetiergy detector [8] and the
GLRT based detector [15] (given in egs. (2.8) and (2.16)081a2). A simple summary of the
three detectors to be simulated is outlined in Table 3.1eG& target false alarm probability,
which is generally set as 0.1 due to the current requiren@mnipectrum sensing [92], the test
thresholds of the'-test based detector and the energy detector are evalusitegl tables of
F-distribution and chi-squared distribution [8], respeely; while the threshold for the GLRT

based detector is obtained usiig= 5000 Monte Carlo trails.
All results are obtained by averaging over 5000 indepenifnite Carlo trials. In each trial,
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Figure 3.3: Probability of detection versus SNR. Target false alarmbplility P; = 0.1 ,
M = 4 receiving antennas anfl = 100 samples.

the channel coefficierih, the primary signak(!) and the additive white noise (l) are gen-
erated by the zero-mean complex Gaussian distributedteari®oth the channdi ands(l)
are normalised so thah||> = |s(1)||* = ||hs(])|* = 1. The noise powet? are selected

according to the SNR level defined as:

Ihs (D]

SNR:& =20
Mo?2

(3.39)

Performance under perfect CSI

In the first experiment, we assume the perfect channel kmigelh is available to the-test

based method and the accurate noise peweis known to the energy detector.

The detection probability?; against SNR is plotted in Figure 3.3 wifd = 4 receiving an-
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Figure 3.4: Probability of detection versus number of receiving antenn/. Target false
alarm probability Py = 0.1, L = 100 samples and SNR —10 dB.

tennas,L = 100 samples and’; = 0.1. We can find that the proposdd-test based method
achieves the best detection probability. For example, lwese a 90% detection probability,
the proposed sensing method offez@B and2.2 dB SNR gain compared with the energy de-
tector (EG) and the GLRT based detector, respectively. ditiad, as shown in the figure, the
analytical formula for detection probabiliti;, eq. (3.20) and marked ds-test (analytical),
gives an accurate description. Since the GLRT based datettethod idlind, which does not
require anyprior knowledge, it performs worse than the energy detector wihemoise power

is exactly known.

In Figure 3.4, the impact of the receiver array sieis presented, where we fix the SNR
—10 dB and vary the number of receiving antennas frdno 8. It shows that whenV/ is
small, i.e.,M = 2, the proposed-test has nearly the same detection probability as the gnerg
detector. However, whel! increases, thé'-test based sensing technique has a significant per-

formance improvement. This is due to the linear regressieolved in the proposed approach,
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Figure 3.5: ROC curve, fotM = 4 receiving antennad, = 100 samples and SNR —10 dB.

e.g., it takes the channhlas the regressor and the received sigr{al as the response variable.
In other words, thei-test based detection method compares the linear singilagitween the

received signal and CSI. Therefore, a higher detectionglitity can be expected when more
antennas i.e., larger size of the regresepare available, further justifying the selection of

M = 4 in other simulations.

In addition, to quantify the trade-off between the falserralgrobability and detection prob-
ability, we draw the Receiver Operating CharacteristicO R curve in Figure 3.5 with the
SNR fixed at—10 dB. Note that the test thresholds of all detectors changerdirg to the
different levels of target false alarm probability. It shethat given a certain false alarm rate,
the proposed -test based method provides a much higher probability afadiein than other
detectors. For example, whéty is fixed at5 x 1072, the detection probability gain of the-
test based method is abolit% for the energy detector and approximatéys for the GLRT
based detector. This means that to achieve the same spesfficiency, the proposed’-test

based detector causes less interference to the primary user
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Figure 3.6: Performance v.s. noise uncertainfy. The performance for: (a) False Alarm
Probability; and (b) Detection probability is plotted. Tget false alarm probability
P; =0.1, M = 4 receiving antennag], = 100 samples and SNR —10 dB.

Performance under noise variance uncertainty

As mentioned above, the energy detector has a significafdrpence loss under noise vari-
ance uncertainty and the proposgéetest based sensing method enjoys the robustness. To
validate this property numerically, we assume that onlyetsiémated noise power’, = no?,

is available. The uncertainty factaf log;,n (in dB scale) is considered as a uniformly dis-
tributed random variable in the intervgt E, E] [13]. Note that the estimated noise power is
varied in each realisation to a certain degree as mentionekaand is used to decide the test

threshold of the energy detector.

Figure 3.6 shows the detection performance against noisemat¢hF (in dB) for M = 4
receiving antennad, = 100 samples and SNR- —10 dB. It can be observed that the perfor-
mance of the energy detector degrades severely under nalsaaahoise variance. For example,

in the typical uncertainty rangg < [1, 2] [13], Figure 3.6(a) indicates that the false alarm rate
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Figure 3.7: Normalised histogram of the test statistic fBrtest based method under channel
uncertainty: (a)I'» <B|H0) cand (b) T (ﬁ|7—[1>. The uncertainty level is selected

aso? =0, 0.3, 0.6 and 0.9, respectively, fdf = 4 receiving antennas, SNR
0 dB andL = 100 samples.

of the energy detector far exceeds the target limit In addition, Figure 3.6(b) shows that the
corresponding detection probability degrades severelybmtomes substantially worse than
the GLRT based method. On the other hand,fhest based detector and the GLRT based de-
tector are robust against the uncertain noise level as tegheghile theF'-test exhibits superior

detection probability.

Performance under imperfect CSI

In the following experiments, we consider the case of CSkdainty, i.e., only the imperfect
channel estimath is available to thé"-test based detector. In simulation, the error téximin
(3.23) varies in each trial, which is generated by an i.i@mplex Gaussian distributed variate

with zero-mean and variane€I. The variance of each entry is assumed to be from zero to
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Figure 3.8: False alarm probability v.s. channel uncertainty. Target false alarm probability
P; =0.1, M = 4 receiving antennag], = 100 samples and SNR —10 dB.

one, i.e.0 < ag < 1. Since we have normalised the C8l,the level of channel uncertainty

can be viewed as from 0% to 100%.

Firstly, to get an insight into the impact of channel undatiainto the I'-test based method,
we plot the normalised histogram of the test statistic uidgrand? in Figure 3.7. The er-
ror varianceag is set ag), 0.3, 0.6 and 0.9 with the corresponding uncertainty level @%,
30%, 60% and90%, respectively. Figure 3.7(a) shows that the null distidhutof test statis-
tic, Tp (B|H0), does not vary with channel uncertainty, verifying our e that thef'-test
based method has constant false alarm rate. While in Figd(b)3we can find that when the
alternative hypothesigl/; holds, the histogram of test statisfig <B|H1> shrinks to a smaller
value whenv? rises, which implies that the probability of detection vdéicrease with growing

channel uncertainty.

Then in Figure 3.8 and Figure 3.9, the false alarm probghdiid the detection probability
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Figure 3.9: Detection probability v.s. channel uncertainty. Target false alarm probability
P; =0.1, M = 4 receiving antennag], = 100 samples and SNR —10 dB.

against the channel uncertainty are presented, Mith 4 receiving antennas = 100 samples
and SNR= —10dB. Note that the plot for the energy detector witklB noise mismatch
(EG — 1 dB) acts as a basis of comparison. Figure 3.8 shows thateutiiik energy detector,
the false alarm probability of thé'-test based method is still around the pre-defined level,
0.1, in the situation with parameter uncertainty. The detectioobability of the proposed
detector, as shown in Figure 3.9, has a degradation undeei®@l However, with channel
uncertainty up tol7%, the F-test based detector still outperforms the ideal energgatiet
Besides, it performs better than the GLRT based detectdr ahiannel uncertainty up 88%.
Moreover, compared with the energy detector WitliB noise mismatch, thE-test has a better
detection performance over the entire range of CSI erroadtfition, the approximated value
for detection probability, given in eq. (3.37), marked hasel'-test(approximated), is quite

accurate.
In Figure 3.10, we increase the number of receiving antetm@&sIt can be observed that the
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Figure 3.10: Detection probability v.s. channel uncertainty. Target false alarm probability
P; =0.1, M = 8 receiving antennag], = 100 samples and SNR —10 dB.

performance loss of-test based approach caused by channel uncertainty bedosigsf-
icant. For instance, Figure 3.10 shows that the detectiobghility only has an up ta2%
degradation over the whole uncertainty interval. This salue to the fact that the-test

based sensing method uses linear regression models, ass#iddn Figure 3.4.

Discussion

In summary, in addition to enhanced robustness against maisance uncertainty, the-test
based detector is more powerful than several popular spadensing techniques. Compared
with the traditional robust or blind detectors [13, 15], fireposed detector can be easily con-
structed and the computational complexity is moderate. drtg prior information needed is
CSI, which can be seen as the price for improved robustnesasigincertain noise level and

performance gain. Moreover, tliétest performs reasonably well for moderate CSI uncestaint
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and its false alarm probability is unchanged.

3.7 Conclusion

An F'-test based approach for spectrum sensing is proposedicttapter. This method can be
applied for multiple antenna cognitive radio systems withihe knowledge of noise statistic.
It offers absolute robustness against noise variance nosnaa the test statistic is independent
from noise power. Statistical properties Bfdistribution are applied to derive the test thresh-
old and evaluate the detection probability. The optor information needed is CSI, which
can be seen as the price for improved robustness againstvasiance uncertainty and perfor-
mance gain. The detection performance under CSI error tes discussed and results show
that the proposed’-test based approach has constant false alarm probalitityhe detection

probability can be evaluated.

Simulations have been carried out to verify the proposedhauktThe detection performance of
the F'-test based sensing schemes is superior to the widely usegladetector as22 dB SNR
gain can be achieved to obtair9@’% detection probability. When perfect channel information
is not available, the'-test based detector suffers a mild performance loss inaitity of
detection and its false alarm probability remains unchdnde addition, the analytical results
are verified to be sufficiently accurate. Given its super@fgrmance, thé'-test based detector

is an attractive approach for spectrum sensing.

Note that in this chapter, thE-test based detection method is developed and studied based
a Gaussian noise assumption. In the following Chapter 4 drapter 5, the sensing problem

in non-Gaussian noise will be considered.
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Chapter 4

Spectrum Sensing for Non-Gaussian
Noise Using Bootstrap Technigues

4.1 Introduction

The majority of current spectrum sensing methods consideis&lan noise. Following the CLT,
the Gaussian distribution provides a good model for noisses by natural sources, such as
thermal noise. In addition, it generally offers mathemnalyctractable results as the Gaussian
distribution can be fully characterised by the mean and Hreance. However, the Gaussian
noise model cannot perfectly model reality as another itambinoise source in practical wire-
less communications is man-made, which is impulsive byreatind makes the whole noise
distribution heavy-tailed [7, 80, 81]. In the case of nond&daan noise, the performance of

standard detectors becomes unpredictable due to the aimceigtribution of the test statistic.

In the literature, several sensing methods have been prdposdeal with detection in non-
Gaussian noise [29, 31-35, 82]. As summarised in Table ha@pter 2, many of them require
prior knowledge of the noise distribution. For example, a LO detefor wideband sens-
ing assumes a perfectly known noise distribution [31]. Esua spectral estimator as the test
statistic, which correlates the periodogram of transfatmleservations with the primary signal
spectrum. In additiong-stable distributed noise is assumed in [29] and the detestaloits
the particularcovariation properties of thex-stable distribution. Moreover, the authors in [82]
considered the situation in which the exact noise distigipuis unknown but its statistical mo-
ments are available. By invoking a low SNR assumptioti,anorm detector was proposed

wherep is the tunable parameter used to adapt to the underlying3aarssian noise.

Other existing approaches consider the case of unknowe tyge and only minimal assump-
tions are made on the noise model. For instance, a nonpaiard& based detector was
proposed in [32], which uses a sequence of noise samplesgoo@ness-of-fit comparison.
In addition, some robust detectors are derived without knguthe statistics of the noise, but

particular assumptions are made on the primary signal. anple, a cyclic correlation based
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detector was studied in [33] which requires knowledge oéast one of the cyclic frequencies
of the primary signal. In [34], a PCA detector was proposeddal-valued observations and

in [35], a asymptotically robugtsensing was proposed for non-zero mean primary signal.

As discussed in the background chapter, most of the aforioned detection methods are
parametric, i.e., requiringrior knowledge of the signal and noise characteristics, or ngakin
particular assumptions on the signal type. In addition séflection of a test threshold is gener-
ally difficult, especially for parametric detectors as thesgt statistics are relatively complicated
and may depend on several unknowns. In this chapter, weahaly the powerful bootstrap
technique to overcome those challenges. By using the bbaptstocedure, two detection meth-
ods are proposed which can be applied to arbitrary noisestwyii finite power. Firstly, by
using multiple antennas at the sensing devicblirad eigenvalue based detector is developed
by exploiting the eigenstructure of the sample covariana&im Next, the noise power is as-
sumed to be known and we generalise the conventional enetggtdr to non-Gaussian noise
by studentizing its test statistic. For both detectorsretere no closed form expressions for
the test statistic’s null distribution due to the unknownseadistribution. We shall apply the

bootstrap resampling to overcome this difficulty.
The main contributions of this chapter are summarised &safsl

e An eigenvalue based detector is proposed for unknown nagempand noise types. By
using multiple receiving antennas, this method is fundaedigna binary hypothesis test for
the difference between sample eigenvalues. In additionrder to reduce the bias of sample

eigenvalues, a nonparametric bootstrap bias correctemistalso proposed.

e Assuming that the noise power is known, an energy basedtdetsaeveloped with the test
statistic being studentized, i.e., the statistic is didithy the estimate of its standard deviation.

By doing this, the conventional energy detector is gersgdlto non-Gaussian noise.

o For both detectors, the nonparametric bootstrap procéslapplied to estimate the test statis-
tic’s null distribution. It works without requirements oaproducible experimental conditions

and large samples. The advantage of bootstrap is hightigirid its accuracy is described.

e Simulation results show that the bootstrap method givesffecismtly accurate result for
short data records. In non-Gaussian noise, the eigenvakedldetector offers an overall better

detection probability while the energy based detectostithtes its superiority in the low SNR
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regime.

The remainder of this chapter is organised as follows. Tireesimodel is described in Section
4.2. Section 4.3 introduces the bootstrap techniques. ©heparametric eigenvalue based
detector is proposed in Section 4.4 and the energy basectateig proposed in Section 4.5,
respectively. The accuracy of bootstrap method is highdiglin Section 4.6. Simulation results

are shown in Section 4.7. Finally, Section 4.8 concludesiiagpter.

4.2 System Model

Recall the SIMO system model defined in Chapter 3, SectionTh& baseband received signal

vectory (1) can be expressed as:

7'[O : y(l):W(Z),
Hi : y()=hs()+w(),l=0,1,..,L —1. 4.1)

Here we assume(l) is the zero-mean complex primary signal with unknown power The
vectorh = [hy, ha, ..., hy]T denotes the unknown fading channel, which remains uncliange
during the sensing period. The noisg(l) = [w1(l),w2(l),...,wy(1)]T consists of i.i.d
complex-valued elements;;(1),i = 1,2, ..., M, with zero-mean and finite varianeg,. Note
that no assumption is made on the distribution of noise amadigIn addition, the primary

signal, channel and noise are assumed to be mutually indeptn

4.3 Preliminaries of Bootstrap Techniques

The bootstrap is a data-based simulation method, which &teactive tool for estimating pa-
rameters or finding confidence intervals [93]. Unlike conimral asymptotic/analytical meth-
ods, which may assume Gaussian noise or invoke large saimpte the bootstrap method is
non-parametric and works for moderate sample sizes. IndlfmvMing, we shall give an in-

troduction to the bootstrap principle and then describapigication to the hypothesis testing

problem.
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Real World Bootstrap World
Unknown Observed Empirical Bootstrap
distribution data distribution sample
F L X = [‘%'07:1717"'7'%‘[/71] ﬁ . X*:[$87$T,..-,xz_1]

e S

Parameter of Statistic Bootstrap statistic
interest

9 =0(F) ) =G (x) 0 =G (x")

Figure 4.1: A schematic diagram of the bootstrap principle [94].

General Concept

A schematic diagram of the bootstrap principle is shown gukeé 4.1 [94]. In the “real world”

an unknown distributionF provides a set of random observed dgta= [z¢,z1,...,z5—1].
Here, “random” means that the samplesi = 0,1,..., L — 1, is i.i.d, following the same
distribution 7. Letd¥ = 6 (F) denote the parameter of interest, such as the mean or vayianc
which is estimated by the statistit= G (x). Note that the “parameter” is a function of the

distribution 7 and the “statistic” is a function of the data

The problem of interest is to find the statistical behavioar,bias and variance, or the distribu-
tion of J on the basis of observed dataBy contrast to the conventional Monte Carlo method
which repeats the experiment for a sufficient number of tif8é} the bootstrap method, en-
ables us to resample from a distribution in a way that apre&€ in some sense. For example,
the observed data sgt which can be seen as an empirical distributibnapproaches the true

distribution F as the sample sizk grows large [95].
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The Bootstrap Principle

1) Givenani.i.d data set = [xo,z1,...,21-1]
2) Draw a bootstrap sample sgt = [z, z7, ..., 2} _,] via resamplingy with replacement.
An example can bex* = [z1,z1, ..., zs].

3) Compute the bootstrap statistit from y*.

4) Repeat 2) and 3P times to obtain a set of bootstrap statistics
{0*(b),b=1,2,...,B}.

5) Using the empirical distribution of* to approximate the statistical behaviour or

the distribution ofy.

The “bootstrap world” can be explained in an analogous maturthe “real world”. As shown

in the bootstrap side of Figure 4.1, the empirical distiitnut?, i.e., the original data;, gives

the bootstrap sample* = [z, 27, ...,z _;] from resampling with replacement. By “resam-
pling with replacement ” it is meant thgt* may contain repeated data as it is drawn randomly
from x, with eachz; has an equal probability to be selected. Usyrigthe bootstrap statisti¢*

can be evaluated. A major advantage of bootstrap is that welzi@in as many replications of
J* as we need. This yields a set of bootstrap statisﬁq%,(b) ,b=1,2,... B}, from which

we approximate the behaviour or distributiom%lby that ofJ*.

Bootstrap for Hypothesis Testing

As an extension of distribution estimate, the bootstragguare can be easily adapted to find a
confidence interval off or construct a hypothesis test. Consider a problem fomigstie null
hypothesisH, : ¥ < ¥y against the alternative{; : ¥ > 1, wherev, is a given bound. The

test statistic is defined as:

T = 19_A190’ (4.2)

g

wheres = V42 ands? is an estimate of the variance ©f Given a significant value, one can

compute the test threshotdbased on the bootstrap approximatie[ni‘ «_ 0 —d } through

a*

the following relation:

1S 1.
a==31 [(T*(b) > 7] , (4.3)

b=1
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1 z>0 o ]
where![z] = denotes the indicator function.

0 <0

Note that we resamplé* — o instead of)* — 9, for the purpose of increasing detection proba-
bility [96]. By using a set of bootstrap statistics as refeebasis, the test will rejeét, when

¥ — ¥ > 0 is relatively large. If the alternative hypothedis is true and the value af is

91, 1.e.,0 (F|H1) = 91, then the detection probability is expected to increasedsy; — ¥y
grows. However, wheft; holds, the value of — ¥ will never be too large if we use the boot-
strap distribution based aff — 1, for comparison. On the contrary, the detection probability
may degrade to at most the false alarm probability. Hencegre mppropriate comparison is
with the bootstrap distribution based 6h — 1J. Moreover, resampling* — ¢ is important to

ensure the level of accuracy, which will be discussed lat&sction 4.6.

In addition, the inclusion of andé* is known as bootstrap pivoting [96]. Under the null
hypothesist,, the asymptotic distribution af — 9, andd* — 9 may depend on an unknown
scale. To increase the accuracy of bootstrap approximatiocsm method of dividing bys*
andé are necessitated to ensure that the asymptotic distritaité7* and 7~ do not depend
on any unknowns ag — oo. However, this technique may only be used when the square
root of variance estimatey, is perfectly known or can be effectively evaluated. Theoe d
exist cases wheré is difficult to evaluate, i.e., when the statistidis a complex function of
several unknowns. Although the bootstrap can also be appliadly to estimates, it may
be computationally expensive as it invokes nested boptsgsampling, especially when the
function G () is nonlinear. In such cases, the bootstrap pivoting mightibeegarded, or we
can apply other techniques such as bias reduction to imphevaccuracy of bootstrap estimate
[97].

4.4 Nonparametric Eigenvalue Based Detector

In this section, the noise powet, is assumed to be unknown. By using multiple receiving
antennas, we propose an eigenvalue based detector whilditexbe eigenvalue property of
sample covariance matrix. Inspired by [98], the bootstegampling is applied to estimate
the null distribution of the test statistic. Note that theotstrap technique works in arbitrary
noise and does not require a large sample size. However, whessumption is made on

large samples, as it is in this chapter, the bias in samplenegues may be significant and
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degrade the test performance. Therefore, a nonparametrtsttap bias correction step is also

proposed.

Based on the signal model defined in (4.1), the receivedydajaan be seen as an i.i.d. random

variate with zero-mean and covariance matrix:
Ho = R, =021
Hi : R, =oc’hh? + 21 (4.4)

The corresponding eigenvalues [99]i = 1,2, ..., M are:

7‘[0 . )\1:>\2:...:/\M:O‘
Hi : M >h=...=Iy=o0>. (4.5)

Equation (4.5) has an interpretation that, whég holds, all the eigenvalues represent noise
only. However, whert{; is true, the largest eigenvalug = h’ho? + o2 is contributed by

both the primary signal and noise.

Based on our assumption, the covariance mdtrjxs unknown. The one we can obtain is the

sample covariance matrix:

) =
R, = H;Y(Z)Y(Z)H- (4.6)

When the sample sizk is finite, the sample eigenvalusg, i = 1,2, ..., M obtained fromfiy
are definitely distinct [99] under botHy and#;:

81> 0B >...> By (4.7)

By employing the difference of eigenvalues, the hypothtsisin (4.5) can be rewritten as:

1
Y 12& > 0. (4.8)

Considering that we can only obtain the sample eigenvalilrestest statistic for the above
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hypothesis testing problem (4.8) is given as follows:

R 1 M
Tpv =P1— 37— 1;@- (4.9)
Since the sample eigenvalugs i = 1,2, ..., M, are distinct from each other with probability
one, the test statisti¢,, will be non-zero under both{, andH,. However, a reasonable
assumption can be made tHat, will be large when primary signal exists but relatively smal
in the noise only case. Therefore, the hypothesis testiolglem (4.8) can be converted to the

following decision rule:
~ Hl
Tev Z v, (4.10)
Ho

where~y is the test threshold to ensure a target false alarm pratyabil

Note that the evaluation of needs the null distribution of the test statistig,,. To the best
of our knowledge, there are no existing results on the joisiridution of eigenvalues with-
out additional assumptions on the Gaussian distributedesntWe shall apply the bootstrap

procedure [94] to overcome this difficulty.

The hypothesis testing problem (4.8) can be reformulated as

Ho : Tgy =0,
7‘[1 : TEV > 0, (411)

where

1 M
Toy =M = 37— 12} (4.12)
=2

with Ty in (4.9) as the estimator. By definitiofi;;, and7 sy are non-negative. As discussed
in Section 4.3, the test thresholdcan be evaluated based on the bootstrap approximation
for the null distribution of7'%.. The detection procedure is outlined in Table 4.1 where the

included eigenvalue bias reduction step will be discusatst. |

Note that the test statistit; is unpivoted due to the difficulty of computing the varianaed
some investigations have shown that the extra computatans for evaluating the standard

deviation of sample eigenvalues is unnecessary [100].
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Input: Y = [y(0),y(1),...,y(L — 1)] and target false alarm probability.
1) Compute the bias corrected sample eigenvalues using %) (
and obtain the test statistic:

. N 1 M
Tey = B1 — 3r=1 2_ Bi-
=2
2) Draw a bootstrap sample €t fromY.
3) Compute the bias corrected bootstrap test statistic:

. . M,
Tpy =61 — _Ml—I gﬁf .
1=
4) Repeat 2) and 3% times. Ranking the bootstrap statistics as:
(Tiy (1) = Tev) < ... < (Thy (k) = Tev) < ... < (Thy(B) — Tey)
5) From the ordered statistics, choose the inkléy:
k+1 k
11— <a<1-4.
The test threshold is then obtained as:
v =Ty (k) — Try.
Ha

Output: Hypothesis testingzy = .
Ho

Table 4.1: The bootstrap procedure for the eigenvalue based deteptmblem

Bootstrap Bias Reduction

As mentioned above, the test statigtigy is constructed by the sample eigenvalues. However,
as discussed in [98, 99], the sample eigenvalue contridutdte primary signal is asymptoti-
cally unbiased, whereas the one contributed by the noisei®malsymptotically biased. When
the sample size is small, the bias becomes quite significant/ s, may be large even if no
primary signal exists. Note that in this chapter, we do nokeressumption of large data sizes.

Therefore, a bias reduction is necessary to ensure theamycaf the sample eigenvalues.

Define the bias of sample eigenvalficas the difference between the expectatioy,adind the

exact eigenvalug;, that is:

Since no assumption is made on the distribution of signalreisk, we apply the distribution-
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Figure 4.2: The: (a) mean; and (b) standard deviation of the test sfati#};, versus the
sample sizd., for Laplacian distributed data with Identity covarianceatrix and
corresponding eigenvalugs, 1, 1, 1]7. Number of bootstrap replication8; =
30, M = 4 receiving antennas anfl = 100 samples.

free bootstrap method [94] to estimate the bias of sampkneajues;. That is:

B
Bias(8,) = Bilzﬁj(b) B i=1,2,.. M, (4.14)
b=1

where B; is the number of bootstrap replications and empiricalty, = 30 gives quite satis-

factory results for the bias estimate [94]. The correctedm@a eigenvalue is given by:

~

Bi = fBi— Bias(5;)

By
1
= 2B, — =Y Bf(b),i=1,2,...,M. 4.15
g Blb;ﬁ() (4.15)

In Figure 4.2 and Figure 4.3, we plot the mean value and stdrikviation of the test statistic
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Figure 4.3: The: (a) mean; and (b) standard deviation of the test statiBt; versus the sam-
ple sizeL, for Gaussian Mixture distributed data with Identity colsarce matrix
and corresponding eigenvalués, 1, 1, 1]7. Number of bootstrap replications
By, = 30, M = 4 receiving antennas anfl = 100 samples.

Ty with and without bootstrap bias reduction. To test the ittistion-free property of the bias
reduction procedure, the data is generated by the zero-tregalacian and Gaussian Mixture
(defined later in eq. (4.25)) distributed variates, withitily covariance matrix and eigenvalues
[1, 1, 1, 1]7. Theoretically, Tz should be near zero in this case. However, due to the bias of
sample eigenvalues, both Figure 4.2(a) and Figure 4.3@j shat the mean value &gy
exceeds the zero line over the full range of sample sizespecially wherl is small. Such
bias can be efficiently decreased by applying the bias remtuptocedure. For example, there

is a notablet0% decrease in the mean valueBfy at L = 100 samples by using the bias-
corrected sample eigenvalues, while the increase in timelatd deviation, shown in Figure
4.2(b) and Figure 4.3(b), is not significant.
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4.5 Energy Based Detector

Among current spectrum sensing techniques, the energgtde{@] is the most widely used
method due to its simplicity and good detection performaritéakes the energy of received
signal as the test statistic, which follows a chi-squaredrithution under null hypothesi&y
for Gaussian noise. However, when the Gaussian noise atisanmo longer holds, the null
distribution of the test statistic becomes uncertain angl make the detection result become
invalid. For example, as shown in Section 4.6, the falsarafaobability of the energy detector
far exceeds the target level under heavy-tailed noise,wlk&ds to unexpected harmful inter-
ference to the primary user. In this section, we generalizecbnventional energy detector to
the case of non-Gaussian noise by applying the bootstrajgguoe. Note that the noise power

o2 is required aprior knowledge.

Recall the signal model (4.1). Define
YO £y O, 1=0,1,....L -1, (4.16)

be the received signal energy, which can be seen as an idréhter since the sampie(l) is

assumed to be i.i.d. The statistical expectatioi’dt) can be written as:

Ho : E[Y()] = Mo?

wr

H, : E[Y()] > Mo2. (4.17)

=

The expectation B (/)] can be estimated by the sample mea'df), i.e., 1 Z Y (1), which
=0

is the test statistic of the conventlonal energy detectprl{Bthis work, we take B (1)] as the

parameter of interest ang Z Y (I) as its estimator. As discussed in Section 4.3, the statistic

for hypotheses testing problem (4 17) can be written as:

Tre = =0 . (4.18)
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HereTx¢ is studentized, where the pivotal

;L = 2
by = mz (Y(l) - EZY(Z)) (4.19)
=0 =0

L—1
is as an estimate of the standard deviatiod: of" Y ().
=0

The bootstrap resampling procedure for hypothesis tegtinglem (4.17) is summarised in
Table 4.2. Note that the bootstrap version of the test Eitaﬁ‘%(; should also be asymptotically

pivotal, where we use

;L = 2
6y = F7iA) (Y*(l) - E;Y*(Z)> (4.20)

=0

L-1
to estimate the standard deviationy_ Y*(1).
=0

4.6 The Accuracy of Bootstrap

In previous sections, the bootstrap procedure is applisdli@ the spectrum sensing problem
for non-Gaussian noise. One issue we may raise is how muéhftreation from the original

data can be kept via the bootstrap resampling. In this sectieveral theoretical results are
given to answer this question and we shall emphasize thertariagole played by the bootstrap

pivoting.

Given an i.i.d. sample set = [zg,x1,...,2—1], letd be the parameter of interest withas

its estimator. Hall [95] gives the following results by ugiBdgeworth expansion:

Result 1. Consider the pivotal statisti¢, = /L (19 — 79) /&, whereg is an estimate of the
standard deviation of/Z9. Let 7 = VL (79* — 19) /&* be the bootstrap version 6, de-

rived from resampling,. We have:

Pr(7T; <zlx)—Pr(T,<z)=0 (L"), (4.21)

Pr( T,y <a|x )—Pr(Tp<z)

whereO (L™') represents the error term which is of order!, i.e., ( — is

bounded with probability one.
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Input:  Li.d energy sample¥ = [V (0),Y (1),...,Y (L — 1)], noise power?,
and target false alarm probability .
1) Compute the test statistic:

L—1
I XY ()-Mo?,
=0

TE‘G — ok
i L—1 . 1 L71Y .
A=) l;) Y-z 2 Y()
2) Draw a bootstrap sample sgt from ).
3) Compute the bootstrap test statistic:

L-1 L—1
T Y (D-1 XY
i=o =0

Tio = _.
1 L—-1 . 1Lfl .
4) Repeat 2) and 3B times. One obtains a set of bootstrap statistics:
[T (1), 1% (2),..., T (B)].
5) Ranking the bootstrap statistics as:
Tpe() < ... <Tpe(k) < ... <Tpg(B)
5) Choose the indek by:
k k
1-El <a<1- £

The test threshold is then obtained as= T}, (k).
A Hl
Output: Hypothesis testingpe = 7,
Ho

Table 4.2: The bootstrap procedure for the energy based detectiongmob

The result shown above means that the bootstrap approgimtithe distribution off,, is in
error by L—!. This is a significant improvement compared with the stash@aussian approx-
imation, i.e., P(7, < z) ~ ® (z) where® (z) £ exp (—32?) /v/2m, which is in error by
L~1/2195].

Result 2. Consider the non-pivotal statistiG,, = VL (19 — 19) and its bootstrap versidfy;, =
VL (19* — 19). We have:

Pr(7:, < @|x) = Pr(Tp <) = O <L‘1/2) . (4.22)

Now the error term between the distribution of non-pivotatistic 7,, and its bootstrap ap-
proximation is in a order of.~'/2 rather thar.—*. The performance loss is due to the absence
of the scale facto#, justifying the necessity of pivoting. From Result 1 and 2 @an con-

clude that the bootstrap resamples contain the statistifaimation embedded in the original
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Figure 4.4: Normalised histogram 0500 bootstrap statistic for: (a) eigenvalue based ap-
proach; and (b) energy based approach. Laplacian data isliagp The solid
line is the probability density function of their test sttt under null hypothesis,
obtained from1000 Monte Carlo simulations.M = 4 receiving antennas and
L =100 samples.

sample, which is of importance to the bootstrap hypothesisng that we have discussed.

Recall the proposed eigenvalue based and energy basetbdet&¢hen the null hypothesis,
holds, the bootstrap approximation for the null distribatiof the test statistic, eqs. (4.9) and
(4.18), are approximately in error By /2 and L~ !, respectively. Since the test threshold aims
at maintaining a target false alarm probability, i.e., ddalg #; when?#, holds, its accuracy
only relates to the null distribution of the test statistits shown in the results, wheh is
large, the accuracy of the test thresholds derived fromdb@qt statistics can be guaranteed. In
addition, the accuracy for the eigenvalue based detectorde further improved by the bias
reduction procedure. As shown in the simulations, empiyich ~ 10! leads to sufficiently

accurate results.
To have an insight into the bootstrap approximation, we filetdensity function of the test
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Figure 4.5: Normalised histogram o500 bootstrap statistic for: (a) eigenvalue based ap-
proach; and (b) energy based approach. Gaussian Mixtura taapplied.M = 4
receiving antennas anfl = 100 samples.

statistics 'y and1 s under the null hypothesis, and the histogram of their boagtetstimates

in Figure 4.4 and Figure 4.5. Laplacian and Gaussian Mixtoise (defined later in eq. (4.25))
are applied, foll = 4 receiving antennas and sample size- 100. It can be observed that for
both the eigenvalue based and energy based detectors tistr@ogives a sufficiently accurate
approximation for the null distribution of the test statisin addition, Figure 4.4(b) and Figure
4.5(b) show that the pivotal statistid;; and its bootstrap version are approximately Gaussian
distributed, regardless of noise types. This is a greatrddyga as with the help of pivoting, we

only need to deal with a standard distribution instead ofcatclass of distributions.

4.7 Simulation Results

In this section, the test performance of the proposed mestiviilthe demonstrated by numerical

experiments and we shall compare them with the conventiemalgy detector [8] and the KS
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Detector Legend Assumptions Sensing Complexityf

Eigenvalue based Bootstrap-EV| Multiple receiving antennas O (BB M?>L)

detector, Table 4.1

Energy based detector,Bootstrap-EG| Noise powewr? is known | O (BML)

Table 4.2

Conventional energy | EG(Original) | Gaussian noise with O (ML)
detector [8] known noise power?
Kolmogorov-Smirnov | KS Training noise samples O (ML)
based detector [32] with size L

Table 4.3: Summary of the simulated detection algorithmid.: number of receiving anten-
nas. L: sample size.B and B; denote the number of bootstrap replications for
distribution approximation and sample eigenvalue biageciion, respectively.

based detector [32] (given in egs. (2.8) and (2.26), Chafjtefs discussed in Chapter 2, the
KS based detector, which requires a sequence of noise safopkeaining purpose, is another
robust approach that can be applied to arbitrary noise typsanple summary of the detectors

to be simulated is outlined in Table 4.3.

For simplicity, both the primary signal and the fading charinare generated by the zero-mean
complex Gaussian distributed variates. According to theect requirements [92], the target
false alarm is set aBy = 0.1. The number of bootstrap replications for the null distfidu
approximation, i.e.B, and the sample eigenvalue bias reduction, ., are set to b&00
and30, respectively. All results are obtained by averaging &80 independent Monte Carlo

trials. In addition, the SNR is defined as:

2
os |[b]

SNR2 )
Mo?2,

(4.23)

To test the distribution-free property of the proposed ctetrs, we consider the following non-

Gaussian noise types that are relevant in the context ofitbagradio:

1. Generalised Gaussian Model (GGM): The GGM is a broad fawiilich adds a shaping
parameter to the Gaussian distribution [101]. It is widedgdito model the non-Gaussian

noise such as heavy-tailed and impulsive noise [102]. Thbalility density function
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(PDF) of GGM with a variance? and shape parametgiis given by:

wi = e (2 (5)) &2

wherec £ (T'(2/p)T'(4/p))?/? andT'(p) = JoZ aP~ e  dw.

The GGM is short-tailed whep > 2 and heavy-tailed whef < p < 2. The Gaussian
(p = 2) and Laplacian{ = 1) distribution are special cases of GGM. In simulations,

heavy-tailed Laplacian noise is applied.

2. Gaussian Mixture Model (GMM): The GMM is another populapdsl to describe the

heavy-tailed non-Gaussian noise [81]. The correspondiDig iB:

, 2
fw(w) = Z 776;,2 exp (—%) ) (4.25)

wherec;,0? > 0,1 ¢; = 1andY"!_, ¢;0? = 0. A special case is-mixture model,

wherel =2,¢; =1—¢,¢3 = ¢, 0% = 02/(1 — e +ne) ando3 = no?. Here, we choose

e = 0.06 andn = 10 to model the man-made noise.

Accuracy of bootstrap

In this chapter, the nonparametric eigenvalue based detscimmarised in Table 4.1, and the
energy based detector, summarised in Table 4.2, are pmpmsgpectrum sensing in arbitrary
noise types with finite power. For both detectors, bootspragedures are applied to evaluate
the test thresholds. In the first experiment, we test thaiu@cy under the GGM (Laplacian
noise is applied as special case of GGM) and GMM distributsidenby evaluating their false

alarm probabilityP; against the sample siZein Figure 4.6 with)\/ = 4 receiving antennas.

On one hand, it can be observed that both the two proposedttabased detectors meet the
target10% false alarm probability for short data records, i.e., with= 100 or less. Espe-

cially for the non-pivotal eigenvalue based method, with lielp of bias reduction procedure,
its accuracy is guaranteed in small samples. On the othet, le@nshown in the figure, the

conventional energy detector (marked as EG(Original)3 fainon-Gaussian noise as its false
alarm probability far exceeds the target limit. For insigngiven 0.1 as the target value, the
false alarm probability of EG(Original) is approximateh20and 0.27 under Laplacian and

Gaussian Mixture noise, respectively. The reason is thaedt threshold is evaluated based on
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Figure 4.6: Probability of false alarm versus sample sizdor: (a) Laplacian noise; (b) Gaus-
sian Mixture noise. Target false alarm probabiliy = 0.1 and M = 4 receiving
antennas are applied.

the Gaussian noise assumption.

Detection performance

In the following experiments, the detection probabilitytbé eigenvalue based detector and
the energy based detector will be evaluated and comparadhatkKS based detector and the
conventional energy detector. Note that the two proposeetttes and the KS based detector

are distribution-free so they can be applied to both Ganssi@ non-Gaussian noise.

In Figure 4.7, the detection probabilit§); against SNR in Gaussian noise is presented, with
M = 4 receiving antennas, sample size= 100 and target false alarm probabilify; = 0.1.

It can be observed that in Gaussian noise, the energy basectateperforms the best and
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Figure 4.7: Probability of detection versus SNR under Gaussian noissaget false alarm
probability P; = 0.1, M = 4 receiving antennas anfl = 100 samples.

the nonparametric eigenvalue based detector has a betidetide probability compared with
the KS based detector. In addition, it is shown that the egcenergy based detector and
the conventional energy detector have nearly the sametetgrobability in Gaussian noise.
The reason is that the test statisfige; in (4.18) can be seen as a scaled test statistic of the

conventional energy detector, i.e., eq. (2.8) in Chapter 2.

Then in Figure 4.8 and Figure 4.9, their detection perforreaim non-Gaussian noise, i.e.,
Laplacian noise and GMM noise, is investigated. Note thafiérformance gain achieved by
the conventional energy detector, EG(original), shouldgoered since it is impaired by the

high false alarm probability in such cases, i.e., see intfeigué(a) and Figure 4.6(b). Among

the other three distribution-free detectors, the nonpatémeigenvalue based detector offers
an overall superior detection performance in both Laptaegiad GMM noise. For example,

for GMM noise in Figure 4.8(b), to obtain a 90% detection tibty, the eigenvalue based

detector provides & dB SNR gain compared with the energy based detector and KStdet
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Figure 4.8: Probability of detection versus SNR under: (a) Laplaciaisapand (b) Gaussian
Mixture noise. Target false alarm probabilify; = 0.1, M = 4 receiving antennas
and L = 100 samples.

In addition, the proposed energy based detector holds pesrguity in low SNR regime, i.e.,
an up to2 dB SNR gain is achieved by Bootstrap-EG, as shown in Fig@@for Laplacian

noise.

In Figure 4.9, the impact of the receiver array sizeis presented, where we fix the SNR
—8 dB and vary the number of antennas fr@no 8. Note that the eigenvalue based method
requires at least two antennas to exploit the eigenstreiafisample covariance matrix while
others do not make this assumption. It can be observed thah Wh = 2, the eigenvalue
based detector is inferior to the energy based detector &blased detector. However, when
M increases, a significant performance improvement can bdewachby the eigenvalue based
approach, i.e., it performs the best wh&h > 4 in both Laplacian and Gaussian mixture
noise. The reason is that the eigenvalue based approachimee#ise difference between sam-

ple eigenvalues. When SNR in (4.23) is fixed, largérindicates a relatively bigger response
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Figure 4.9: Probability of detection versus number of receiving angesyn\/, under: (a)
Laplacian noise; and (b) Gaussian Mixture noise. Targesdahlarm probabil-
ity Pr = 0.1, SNR= —8 dB and = 100 samples.

in the signal dimension and a more significant differencevbet sample eigenvalues. Hence,
a performance gain can be expected for the eigenvalue basectar when multiple antennas

are available.

Discussion

In summary, by applying the bootstrap resampling proceduséh the eigenvalue based and
energy based detectors maintain the predetermined fals® arobability in a variety of noise
types. By contrast, most of state-of-art methods tend tll yieacceptably high false alarm

probabilities in non-Gaussian noise.

When the noise is non-Gaussian, the eigenvalue basedaletast an overall better detection

probability. The energy based detector is simple to implanaed has a good performance in
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the low SNR regime. The main issue for these two detectotgisdmputational complexity.
As they rely on random resampling with replacement, the dexity will grow linearly with
the number of bootstrap replications, i.e., see in Table A@vever, when the sample size is

moderate, such complexity is compatible with the computsvey today.

4.8 Conclusion

In this chapter, we studied the spectrum sensing problerhdrsituation of unknown noise

type, introduced and highlighted the powerful bootstraghtéque.

Two detection methods are proposed by using the bootstizgegure. The first eigenvalue
based detector islind, which is fundamentally a binary hypothesis test for théedénce be-

tween sample eigenvalues. We assume that when primaryl sxjets, the difference between
eigenvalues will be relatively larger than the noise onlgecaWWhen the sample size is small,
the bias in sample eigenvalue may make the test statistierundl and alternative hypothesis
not be well separated. To improve the accuracy of the tets$tstawe also propose a bootstrap
bias reduction procedure. The second energy based detotdar to the conventional energy
detector, assumes the value of noise power is known and ecemjavith the received sample
energy. The difference is that we studentize the test 8tatind generalize its application to

arbitrary noise types by using bootstrap.

For both detectors, the bootstrap resampling is appliedteparametrically estimate the test
statistic’s null distribution. It is shown that for a moderaample size, such as 100 samples,
the bootstrap gives a sufficiently accurate approximatienling to a test threshold that main-
taining a target false alarm probability. In addition, thepbrtant role of pivot is discussed.
We showed that the bootstrap test with pivoting, such as tleegg based detection, has a

standardizing null distribution that does not depend orutilahown noise types.

The detection performance of proposed detectors is eealuaimerically and compared with
the nonparametric KS detector and the conventional enestgctbr. Simulation results have
shown that both the proposed detectors are valid in a vanietpise types. In non-Gaussian
noise, the eigenvalue based method offers an overall bagtection probability and a per-
formance gain can be expected when the more receiving ageame available. The energy
based detector has relatively low computational compleitd outperforms other simulated

detection methods in the low SNR regime.
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In Chapter 5, another sensing technique for non-Gaussiar,ne., theF'-statistic based sens-
ing, will be proposed. This detector is based on fest discussed in Chapter 3 and we
shall generalise its application to non-Gaussian noise. bidotstrap technique will be applied

to estimate the null distribution of th&-statistic when thegrior knowledge on the noise is

limited.

e



Chapter 5

F-statistic Based Spectrum Sensing for
Non-Gaussian Noise

5.1 Introduction

This chapter develops a robuststatistic based detection method for spectrum sensingrin n
Gaussian noise. It is well known that in linear regressioth@aussian errors, the-statistic
follows anF'-distribution under the null hypothesis. Motivated by thveariance property under
different noise levels, at'-test based spectrum sensing scheme was presented in ICBapte
Simulation results therein showed that in addition to escbkdrrobustness against noise level
uncertainty, the’-test based detector is more powerful than several starsg@cirum sensing

techniques. In this chapter, we shall generalise its agpbic to non-Gaussian noise.

When the noise distribution is not Gaussian, a major congeto control the false alarm
probability as the null distribution of thé'-statistic becomes unpredictable. For example, as
shown in Section 5.6, the false alarm probability of the emtional F'-statistic based detector
far exceeds the target value under heavy-tailed noiseinigao unexpected interference to the
primary user. To tackle this problem, the null distributiohthe £-statistic for general noise

distributions needs to be addressed.

Several papers in the statistical literature have consgiéris issue. In [103, 104], a general
investigation was carried out by evaluating the cumulahgslimear function used in the'-test.
The authors in [105] considered the case of global null,agsuming the data is noise only un-
der the null hypothesis, and they approximated the meantendatriance of log' statistic by

its permutation moments. It is shown that the sensitivitp@aa-Gaussian distribution depends
highly on the numerical values of regression variables.106], a more general null hypoth-
esis was considered and a simple degrees-of-freedom natidificmethod was proposed to
approximate the null distribution of thE-statistic. Note that all the previous studies focus on
real-valued data, which needs to be extended to compleedalata for I/Q-demodulation that

is used in practical communication systems.
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In this chapter, we consider a robuststatistic based detector for non-Gaussian noise with
complex-valued measurements. By exploiting differpnibr knowledge of the noise, two
novel methods are developed to estimate the null distdbudif the F-statistic. The main

contributions are summarised as follows:

o Firstly, we assume that the normalised kurtosis of the nisigmite and known. The null
distribution of theF'-statistic is approximated by aF-distribution with modified degrees of
freedom (MDOF), where a simple closed form result is obthibg matching the first two

moments of the log test statistic with those of afodistribution.

e Secondly, we relax the assumption on the noise kurtosis asgbpe a nonparametric ap-
proach which is based on the numerical bootstrap proce@iven a moderate size of training
noise samples, the bootstrap approach approximates thaistribution of the test statistic by

resampling the training data and no knowledge of the unigylgoise statistics is required.

e Simulation results show that by applying either of the twopmsed methods with samples
L > 500, good detection probability is achieved by tRestatistic based detector under non-

Gaussian noise while maintaining the predetermined faésengorobability.

e The robustt'-statistic based detector has general validity which cbeldeneralised to other

linear regression problems with complex number measuresmen

The rest of this chapter is structured as follows. The datdehand problem statement are
demonstrated in Section 5.2. Then the degrees-of-freedodification approach for the null

distribution approximation is developed in Section 5.3.e Hootstrap based method is dis-
cussed in Section 5.4. In Section 5.5, we extends our résudtsnore general linear regression
hypothesis testing problem. Simulation results are pteseim Section 5.6 and Section 5.7

concludes the chapter.

5.2 System Model and Problem Statement

Recall the SIMO system model defined in Chapter 3, Section/Zhown in Figure 3.1, we
consider a cognitive radio network where one primary sigoarce may exist within the range

of the secondary user and the sensing device complisastennas.
Lety() = [yi(D),y2(D), ..., yar(D]*, (I = 0,1,...,L — 1), be the sizeM baseband signal
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vectors at the receiver antenna array withdenoting the sample size. Then the spectrum

sensing problem can be formulated as the following hypathest:

Ho y(l):W(l),
Hi @ y()=hs(l)+w(),l=0,1,..,L —1. (5.1)

wheres(l) represents the primary signal, which is assumed to be unkrow deterministic.
The vectoth = [hy, ho, ..., hM]T denotes the known time-invariant propagation channel. The
noisew (1) = [wy (1), wa(l),. .., wa(1)]" is characterised by a circular, symmetric distribution

with zero mean and covarianed I. Note that the noise varianeé, is assumed to be finite.

As mentioned in Chapter 3, Section 3.2, the acquisition of &% still an open question in
spectrum sensing due to lack of reciprocal communicatiandstrds between primary and sec-
ondary users. Possible solutions are acquitinga the periodically transmitted pilot primary

signal [11, 83, 84] or recursively estimating it during tlemsing period [84—86].

Given the signal model (5.1) and a Gaussian noise assum@alioA-test can be applied to
decide whether primary signals exist or not. As discusse@hapter 3, the decision rule is
given by:

Hi

Ho

where~ denotes the test threshold and the test statigticalso known as thé’-statistic, is
given by:

L—-1
> y()Py(l)
n2 =0

Tr = ny L1
EOY(Z)H(I - P)y(l)

, (5.3)

whereP = h(h"h)~'h” represents the projection onto the subspace spannéd byhen
the noise is complex Gaussian distributed, () ~ CA (0,02 1), the test statisti@» under

the null hypothesis{, is F,, ,,-distributed with degrees of freedom [87]:

n, = 2L, (5.4)
ny = 2L(M—1). (5.5)

Given a target false alarm rate the test threshold can be easily obtained using numerical

tables of thef-distribution. In this chapter, the null distribution ofetli’-statistic in (5.3) may
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no longer beF'-distributed as the noise is not necessarily Gaussianhiiged. In the following
sections, two approaches will be proposed to tackle thibleno by exploiting differenprior

knowledge of the noise.

It is worth mentioning that the impact of CSl uncertainty stimates oh is studied in Chapter

3. Results show that under a Gaussian noise assumptioh;-thst based detector has a fixed
false alarm rate, independent of the accuracy of chanriet@#bn. The reason is that the null
distribution of theF'-statistic remains unchanged in this case. When the noiset i§aussian
distributed, as it is in this chapter, a constant false alat® can also be obtained as the test
statistic (5.3) and the following approaches for the nudtribbution approximation are all based

on the CSI estimates.

5.3 Degrees-of-Freedom Modification

In this section, we assume the normalised kurtosis of theerisifinite and known. We shall use
it to approximate the test statistic’s null distribution dayF'-distribution with modified degrees
of freedom (MDOF). This approach is inspired by the robfistests suggested in [88, 106]
for real number problems. For wireless communication systeéhe results therein need to be

generalised to complex-valued samples.

Preliminaries

To begin with, we define the normalised kurtosis [107] of a pam random variable as:
2
E[121'] - [E12?)
2
Efizr]]

The kurtosisK,. [Z] is a measure of whether the probability distributionZofs peaked or flat

K.[2] =

- (5.6)

compared with a Gaussian distribution. The “minus 2" in tlismula acts as a correction
factor so that the kurtosis of Gaussian distribution bemero. The variate with positive
kurtosis tends to have a peak probability density near trenmaalue so that it becomes heavy-
tailed. On the contrary, the one with negative kurtosis sendave a flat top near the mean and

thus has short tail.
Since the noise elements({),: = 1,2, ..., M, are circularly symmetric and i.i.d, the corre-

81



F-statistic Based Spectrum Sensing for Non-Gaussian Noise

sponding normalised kurtosiscan be expressed as:

k2K w(l)] =22 9, (5.7)

2
wherey, £ E [\wi(l)f‘] ando? 2 E [\wi(l)\Q] :
DefineP; £ P, with rankr; = 1, andP, £ I, — P, with rankr, = M — 1. The quadratic

form of the data vectoy (/) has the following properties.

Property 5.1. P (k = 1,2) is the projection matrix with rank;. Definep; be the column
vector consisting of diagonal elementsi®f. When the null hypothesi& holds, the expecta-

L1
tion, variance and covariance of the quadratic fopmy (1) P,y(l) are given as follows:
1=0

L—1
E [ZY(Z)HPkY(l)|H0 = Loy (5.8)
1=0
L—-1
Var | Sy () Py ()| Ho| = Lok, (re+ i) (5.9)
1=0
L—-1 L-1
Cov | > y(1)"Piy(1), Zy(l)Hsza)mo] = Loy, kp'P2. (5.10)
=0 =0
Proof. See Appendix A. O

Note that the proof of Property 5.1 is similar to those bagedeal-valued data [88]. The main
difference is that the analysis of eqs. (A.3) - (A.10) in Apgix A takes the properties of

complex samples into account.

The properties of thé’-statistic in (5.3) is difficult to evaluate numerically dasonsists of a
ratio of two variates. To simplify calculations, the lodam of the F'-statistic is considered

instead, as shown in Property 5.2.

Property 5.2. Consider the logarithm af'-statistic:

1 1
Z = 3log Tr(n1,n2) = 7 (log SF — log 53), (5.11)
where
L—1
St=> vy ) "Pry (1) /2Lry, k=1,2. (5.12)
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Under the null hypothesi{, and for largeLr;, the expectation and variance &f can be

expressed approximately as:

ElZHol ~ (rz' 4732 lpal® =17t =72 loul?) /AL, (5.13)

Varizito] ~ (rit o7 llp? + gt oy 2l ? - 2r7 iy k) /AL (5.14)
Proof. See Appendix B . O

The results described above are derived from the Taylorresipa oflog S7 aroundlog o2, /2

up to the third and second order term (see egs. (B.1) and {iBAppendix B), respectively.
SinceS,? in (5.12) is an unbiased estimate @f /2 under the null hypothesi®, the higher
order termsO ((S,% - 03/2)3> for E[Z|H,] and O ((S,% — 03/2)2> for Var[Z|H,] can be

neglected for large value dfry.

In practical communication systems, i.e., for a typicalroaband RF channel withOkHz
bandwidth, the power of thermal noise is generally aroumd@4 dBm and man-made noise may
be 20 dB stronger [108]. Hence, the noise powser is usually in the order of0~1° ~ 10717

and so is the variance estimﬂ%. The approximation errors in (B.1) and (B.5) are in the order
of 10739 ~ 1073* and10~%° ~ 10~°!, respectively. Therefore, the accuracy of egs. (5.13) and

(5.14) should hold in practical systems.

Modified Degrees of Freedom (MDOF) Approach

In Property 5.2, we derived the approximate mean and vagiahthe logarithm off'-statistic
for arbitrary noise types in terms of the noise kurtasisor Gaussian noise, = 0, leading to

the following expressions:

E[Zr|Ho] ~ ; (5.15)

Var[Zp|Ho] ~ 2L L7 (5.16)

WhereZp = log F(m1, ms) denotes a special casef= 3 log T (n1,n2) with Tr(n1, no)

replaced by arf},,, ,,,-distributed random variable.

To approximate the null distribution &fg(nq,n9) in (5.3) with an F-distribution, we com-

pare the mean and variance in the Gaussian case, i.e., €% &bd (5.16), with that for the
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non-Gaussian case, i.e., eqs (5.13) and (5.14), respgciind obtain the modified degrees of

freedom as follows:

2 ’ -1
m = m (1 oLk <M - w)) , (5.17)
niq ng
2 / -1
my = ng (1 oLk <@ . %)) , (5.18)
2 1

where the degrees of freedom = 2Lr; andny = 2Lrs. In other words, when the noise
kurtosisk is known, the null distribution of the test statisti¢- and test threshold can be
approximated by thé’-distribution with the help of egs. (5.17) and (5.18).

Since the MDOF approach is based on the first two momentsgatgacy will depend on the
similarity between the-distribution and the underlying distribution @f=. The F-statistic
originally arises as the ratio of two chi-squared variai&g fand the test statisti¢= can be
written asTr = S7/S3 where S?(k = 1,2) is given in (5.12). According to the CLT, for
large L, both the chi-squared variate atﬂﬁ are approximately Gaussian distributed [109].
Therefore, the proposed MDOF method will approach the nistridution of 7w when L is
large and empirically it has been found tHat~ 10! is sufficient, as shown in the simulation

results.

5.4 The Bootstrap Approximation

As discussed in Chapter 4, the bootstrap is a data-baseddnttht can estimate the empir-
ical distribution of a statistic via resampling with repéacent. In this section, we apply the
bootstrap procedure to approximate the null distributibthe log F'-statistic in non-Gaussian
noise. Unlike the MDOF method which takes knowledge of néisdosisx as aprior, the
bootstrap approach is nonparametric and requires a setsaf smmples with sizé for training
purposes, i.eV = [w(0),w(1),...,w(L — 1)], which can be collected when the primary
user is known for sure to be absence. The null distributiotheftest statistic is approximated
by resampling the data s&Y repeatedly, leading to a test threshold that ensures & fatge
alarm probability. Note that the assumption dhis exactly the same as used in the conven-

tional energy detector which estimates the noise power fraining noise samples.
Recall the hypothesis testing problem in (5.2). Wkes- %log Tr(n1,n2) is used as the test
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Input:  Training noise samplég’ = [w(0), w(l),...,w(L — 1)].

Target false alarm probability.

1) Draw a bootstrap sample sat* via resampling/V with replacement.
An example can beWW* = [w(1),w(7),w(7),...,w (2)].

2) Compute the bootstrap test statistit using*.

3) Repeat 1) and 2B times. One obtains the bootstrap test statistics :
[Z*(1),Z*(2),...,Z*(B)].

4) Correct the mean of bootstrap test statistics:

B

2*(b) = Z*(b) — %ble*(b)

5) Ranking the bootstrap statistics as:
Z*(1) < Z*(2) < ... < Z*(B).

6) From the ordered statistics, choose the indehy:
1-betl <q<1-ta

Output:  The test threshold= Z*(b,,).

Table 5.1: The bootstrap procedure for approximating the null diattibn of Z

statistic, the decision rule becomes:

7;1
ZZ, (5.19)
Ho

wherev is the corresponding test threshold. The statigtis applied as a sample mean correc-
tion step will be involved later and the statistical exceptof a log statistic is easier to obtain.

In addition, using (5.19) is equivalent to (5.2) due to thewstonicity of the logarithm function.

When the null hypothesi#,, holds, the statisti&Z (%) can be written as:

L—1
> w(h)Pw(l)
(5.20)

To obtain the test thresholgl, we run the algorithm of Table 5.1. By resamplihig with
replacement, the distribution df(%,) is approximated by a set of bootstrap statistics, i.e.,
{Z* b,b=1,2,.., B}. Then given a target false alarm probability, the test tiwleky can

be derived from the bootstrap approximation of the nullriigtion.

It is worth mentioning that the bootstrap resampling fotitgsregression hypothesis should be

based on the estimation of the i.i.d residuals [97], We([). The evaluation of¥(l) arises a
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Figure 5.1: Normalised histogram dfo0 bootstrap statisticsZ*, under: (a) Laplacian noise;
and (b) Gaussian Mixture noise. The solid line is the emairfrobability den-
sity function ofZ(#,), obtained froml000 Monte Carlo simulations.L = 500
samples and/ = 4 receiving antennas.

problem that whether we impose the null hypothesis or nattha corresponding effects have
been investigated in [110]. Here, this problem is simpliffsdve assume the noise only data

W is available so that the bootstrap data in Table 5.1 is gesgbrda resamplingV’ directly.

To improve the accuracy of the bootstrap estimate, a sampénroorrection step [97] is also

included in Table 5.1, where the bootstrap statigti¢b) will be corrected by:

B
Z*(b) = Z*(b) — (%ZZ*(Z)) - E[Z|’H0]> . (5.21)
b=1

As shown in the proof of Property 5.2, the first two terms ofapproximation for EZ|H,] are
constant, independent of the higher order statistical nmbsnaf the noise. Replacing E|H,)
in (5.21) with the Taylor expansion up to second order tem{8i5) and combining with (B.7)
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lead to the following result:
E[Z|Ho] ~ 0. (5.22)

Note that the higher order terms fofBH,] in (5.22) become® ((5,3 - 03/2)2) rather than
O ((S,% — 03/2)3) for E[Z|Ho] in (5.13). As discussed above, the two order approximation
is still sufficiently accurate as the error is generally inrdes of 10730 ~ 10~3* in practical

systems.

Consequently, the corrected bootstrap statistic becomes:
- 1
Z(b) = Z°(b) — =Y _Z*(b). (5.23)

The coverage error for this non-pivotal bootstrap regegsapproximation is generalt9 (L—1/2)
[95]. To guarantee a typicah% false alarm probability [92]L should be larger that0? sam-
ples. However, we find that empirically = 500 gives satisfactory results for the simulated
noise distributions. An example is presented in Figure Bbdan be observed that under Lapla-
cian noise and Gaussian Mixture noise, the histogram ofshaqt statisticZ* and the empirical
distribution of Z(#,) are well matched witl. = 500 samples. Although the sample needed is
larger than the MDOF approach, note that the bootstrap rdethmonparametric and does not

require knowledge of the noise kurtosis

5.5 Extensions

In addition to the spectrum sensing problem, the rolfustatistic based methods can be ap-
plied to other linear regression problems with complex nemheasurements. Previous sec-
tions refer only to the case of single primary signal sourw global null hypothesis, i.e., the
data is assumed to be noise only under the null hypothesthidisection, we shall extend the

previous results by considering a more general linear ssgye problem.

Consider a linear data model :

P
MHi:y(D) =) hisi() +w(l), 1=0,1,...L - 1, (5.24)
=1

wherey (1) = [y1(1), y2(1), - . ., yar(1)]7 is the sizeM observation vectors; (1) is theith regres-
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sion coefficient andh; = [h; 1, hi2, . .. ,hivM]T denotes the corresponding regressor vector, for
i=1,2,...,pandp < M. w(l) = [wi(l),ws(l),...,wp(l)]" denotes the i.i.d error/noise
term.

The problem of interest is whether we can set some regressgfficients to be zero. Consider
a null hypothesis withs,1 1 (1) = sq2(l) = ... = s,(I) = 0, then the corresponding data

model becomes:

q
Ho:y(l) =) hisi(l) +w(l), 1=0,1,...,L — 1. (5.25)
i=1

To testH, in (5.25) against the alternativié, in (5.24), theF'-statistic based detector can be
applied, with the test statistic given by:

L-1

Sy (Pa—Pr)y(0)
Ap = A2 150

na1 L=

: (5.26)

l::ya)H 1P y()

whereP 4 and Py denote the projection onto the subspaces spannefhpby.., h,] and
[hy,...,h,], respectively. When the error/noise tem!) is complex Gaussian distributed,

the test statistic\ r follows anF;, -distribution, with degrees of freedom:

A, 1HTA 2

nap = 2L(p—q), (5.27)
na2 = 2L(M —p). (5.28)

Note thatF-statistic in (5.3) used for spectrum sensing problem ctarsithe special case with

p=1andqg =0.

Whenw (l) is not Gaussian distributed, the results in Property 5.1Rnoperty 5.2 still hold
since(P4 —Py), I-Py) and(P4, —Py) + (I-P4) = (I-Py) are projection ma-
trix. Hence, the proposed MDOF and bootstrap methods acevalid to estimate the null

distribution of Ar.

On one hand, the MDOF method can be applied if the kurtosis; @, «, is known. That is,

the null distribution ofA z can be approximated by drtdistribution with the modified degrees
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of freedom:

2 / -1
ot = s <1+2M (M_Q» | (5.29)

ni na
2 / -1
M2 = Tag (1 + 2Lk (% - p;—?Q)) . (5.30)

Wherep; andp, denote the column vector consisting of diagonal elementPaf— P ) and

(I—P,), respectively.

On the other hand, when the noise kurtosis unknown, we can apply the bootstrap method
summarised in Table 5.1 to estimate the null distributiorerd;l the training samples needed
are the observations under the null hypothesis, i.e., trgehgven in eq. (5.25), instead of the
noise only data/V. In addition, the log statisti&Z = %log Tr(n1,n2) should be replaced by

$log Ap(na1,na2).

5.6 Simulation Results

In this section, we shall investigate the performance ofptaposed methods by numerical
experiments. Both the primary signal and CSI vector are gée@ by the normalised zero
mean complex Gaussian distributed variates. We requiréatse alarm probability?; < 0.1
and define SNR as SNR |hs(l)||* /Mo2. For the bootstrap approximation, the number
of replications are set aB = 500. All results are obtained by averaging ovr = 5000

independent Monte Carlo trials.

The Generalised Gaussian Model (GGM) and Gaussian Mixtw@di{GMM), see egs. (4.24)
and (4.25) in Chapter 4, are used to generate non-Gausses s the parameters we pre-
viously used, the GGM is simulated by Laplacian noise withidgis< = 1.5 in the complex-
valued case. For GMM noise, we choase 0.06 andn = 10 to model the heavy-tailed noise

with the kurtosiss = 2 [% - 1] — 3.85.

Accuracy of the proposed methods

In this chapter, the MDOF method, discussed in Section 518 tlae bootstrap method, sum-

marised in Table 5.1, are proposed to estimate the nullilwligion of the F-statistic for non-
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Figure 5.2: Probability of false alarm versus sample siZe for three methods calculating the
test threshold, under: (a) Laplacian noise; and (b) Gauss$wixture noise. Target
false alarm probabilityP; = 0.1 and M = 4 receiving antennas.

Gaussian noise. In the first experiment, we test their acgurader the Laplacian (special case
of GGM) and GMM distributions above by evaluating their éakarm probabilityP; against

the sample sizé with M = 4 receiving antennas. As shown in Figure 5.2, both methods can
achieve the desired false alarm rdtd, in the non-Gaussian noise scenario. The samplelsize
needed for the MDOF method to ensure the target false aldeadghan the bootstrap method.
For exampleL ~ 10" is sufficient for the MDOF method to obtain an accurate apipnasion

of the null distribution, whereas the bootstrap approa@tsé ~ 102. If we use the threshold
derived using the Gaussian noise assumption,/thémarked as Original) is higher than the

target value over the full range @f.
The probability of detectionP; versus the sample sizé at SNR = —14 dB is plotted in
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Figure 5.3: Probability of detection versus sample siZe,for three methods calculating the
test threshold,under: (a) Laplacian noise; and (b) GaussWixture noise. Target
false alarm probabilityP; = 0.1, SNR= —14 dB andM = 4 receiving antennas.

Figure 5.3 for Laplacian and GMM noise. Note that the perfamoe gain achieved by the
bootstrap and the original methods for small valueg.afan be ignored due to the high false
alarm probability results in Fig.5.2. Fdr > 500, it can be observed that the proposed MDOF
and bootstrap approaches have nearly the same probalbitigtection. Comparing the results
with Figure 5.2, we conclude that the MDOF and bootstrap otktiave very similar test per-
formance, when the sample sizes sufficiently large to ensure the pre-specified false alarm
rate. ForL < 500, the MDOF method can keep th& below the target level, but it requires

additional information on the noise statistic, i.e., thet@sisx.

Comparison with other detectors

In the following experiments, we shall compare the detectioobability of the F-statistic

based method with other detection algorithms that are \mlidon-Gaussian naise, i.e., the
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Detector Assumptions Sensing Complexityf
F-statistic: Multiple receiving antennas known CSI

MDOF, Section 5.3 Noise kurtosiss is known O (ML)
Bootstrap, Table 5.1 | Training noise samples with size O (BM*L)
Bootstrap-EV, Table 4.1 Multiple receiving antennas O (BB1M?L)
Bootstrap-EG, Table 4.2 Noise powelr2, is known O (BM3L)
L,-norm [30] The statistics of CSl and noise are knowi) (M LN)

Table 5.2: Summary of the simulated detection algorithms. number of receiving antennas.
L: sample size.N: Number of Monte carol trails.B and B; denote the number
of bootstrap replications for distribution approximati@md sample eigenvalue bias
correction, respectively.

eigenvalue based detector, the energy based detectoreng-tiorm detector [30]. A simple
summary of the four detectors to be simulated is outlinedabld 5.2. Note that the tunable
parametep for the L,,-norm detector, eq. (2.22) in chapter 2, is obtained by satranis . The
sample size is chosen to lie= 500 so that both the MDOF and bootstrap methods have the
same probability of detection. In Figure 5.4 and Figure @&8,elect to simulate the MDOF

method for thel'-statistic based detection.

Figure 5.4 presents the probability of detection versus SMR M = 4 receiving antennas.
Results show that the-statistic based method has the best detection perform&océstance,
as shown in Figure 5.4(a), to obtain a 90% detection proipalil Laplacian noise, the -
statistic based method provide2& dB and4 dB SNR gain compared with the eigenvalue
based detector and the energy based detector, respectinehddition, since the’-statistic

is initially derived from Gaussian, a more significant periance gain can be expected when
the noise distribution is near Gaussian, i.e., with a smalbése kurtosis<. For example, in
Gaussian mixture noise with = 3.85, the SNR gap between thé-statistic based detector
and L,-norm based detector 58 dB at90% probability of detection. While if the noise is
Laplacian distributed witlk = 1.5, the SNR gap between them will increasetdB.

The impact of the number of receiving anteniésis shown in Figure 5.5, where we vary
the number of antennas fro2nto & and fix the SNR at-14 dB. WhenM = 2, the I'-statistic
based detector still has a superior detection probabiilay the eigenvalue based and the energy

based detector, whereas its performance is inferior ta’teorm based detector. However,
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Figure 5.4: Probability of detection versus SNR(dB) under: (a) Lagaanoise; and (b) Gaus-
sian Mixture noise. Target false alarm probabilifyy = 0.1, M = 4 receiving
antennas and. = 500 samples.

when M increases, a significant performance improvement can bewachby thel -statistic
based approach. As thE-statistic uses linear regression models, the detectiobatmility

increases rapidly with the regressor size

Discussion

In summary, the MDOF method requires less samples to meeget false alarm probability
and is relatively easy to implement. Howevprior knowledge of the noise kurtosisis re-

quired. The bootstrap method is more computationally esigen(see in Table 5.2) but only
requires a sequence of noise samples for training purpogepplying either of the two pro-
posed methods witth > 500, good detection probability is achieved by thestatistic based

detector under non-Gaussian noise while maintaining thegtermined false alarm probability.
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Figure 5.5: Probability of detection versus number of receiving angesyn\/, under: (a)
Laplacian noise; and (b) Gaussian Mixture noise. Targesdahlarm probabil-
ity Py = 0.1, SNR= —14 dB andL = 500 samples.

The main issue for thd -statistic based detector is the acquiring of CSl. As maetibin
Chapter 3, the CSI can be estimated using the primary pgogsibut may be imperfect due to
the delay update and estimation error. In this chapterntipact of CSl uncertainty does not be
discussed in detail as it is another topic which needs to fteduinvestigated. Actually, when
the null hypothesis holds, the false alarm probability & frstatistic based method remains
unchanged, independent of the accuracy of CSI estimatiba.rdason is that the test statistic
and the two proposed approaches for the null distributiqggr@pmation are all derived from
the CSI estimation. However, when the alternative hypasghlesids, the imperfect CSI will

lead to performance loss in detection probability.
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5.7 Conclusion

In this chapter, we investigated tle-statistic based spectrum sensing schemes for cognitive
radio, which are valid for any circularly symmetric distited noise with finite power. To
maintain the pre-determined false alarm probability in-@aussian noise, two methods are
proposed to estimate the null distribution of test statistihe first approach assumes a known
noise kurtosis and matches the first two moments of the ldgstasstic with those of a lof
distribution. By doing this, the null distribution of thestestatistic is approximated by the
F-distribution with modified degrees of freedom and the rssafte obtained in closed form.
The second approach, which relaxes the assumption on tke kartosis, applies the non-
parametric bootstrap procedure to a set of noise only dataamstructs the null distribution
by resampling. Theoretical and simulation results show timéh methods achieve accurate
approximations with moderate samples, i.e., the sampkigiza order ofl0! and 10? are
sufficient for the MDOF method and the bootstrap method,aetsgely.

The detection performance of proposed detectors in nors€kau noise is evaluated numeri-
cally and compared with other robust detection methods.ulition results have shown that
the F'-statistic based sensing schemes achieved an overaliGugetection probability for the
GGM and GMM noise, i.e., compared with the energy based tetact dB SNR gain can
be achieved to obtain % detection probability in Laplacian noise. In addition, cgrthe
F-statistic based detector uses linear regression modsighiicant performance gain can be

expected up to array size &f = 4 — 8.

These new detection technigques now offer the potential pfaved performance for primary
signal detection in non-Gaussian noise. Furthermore,ahest F'-statistic based detector has
general validity which can be extended to other linear r&gjom problems with complex num-

ber measurements.
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Chapter 6
Conclusions and Future Work

6.1 Conclusions

Today the rapid growth of wireless industry has contributediuge demand for higher data
rates wireless products and ever more bandwidth. Facinfutbee generation wireless ser-
vices, the spectrum shared technology, cognitive radis,rbeeived much research interest.
This thesis has focused on the noise robust spectrum setsgigns in cognitive radio net-
works. Gaussian distributed noise with exactly known pas@rcommon assumption made in
current spectrum sensing schemes. However, such a aseangtiot always valid in practi-
cal wireless communication systems. In order to achieve g madiable detection, two chal-
lenging sensing conditions, e.g., the detection in unknowaise variance and the detection in

non-Gaussian noise, have been considered in this thesis.

In Chapter 3, arf’-test based sensing method has been proposed which overtoenprob-
lem of noise variance uncertainty. It considers a multipileana cognitive radio system and
assumes the CSl is known. Since the test statidfistatistic, is independent of the noise
power, this approach offers absolute robustness agaits# mariance mismatch. By invok-
ing a Gaussian noise assumption, easily evaluated expnsskir the test threshold and the
detection probability have been derived, respectivelyedratical analysis indicates that when
the prior knowledge of CSl is imperfect, the false alarm probabilgynains unchanged and
the degraded detection probability can be evaluated. &itioal results have shown that the
F-test based detector performs superior to the widely usedygrdetector as 2.2 dB SNR
gain can be achieved to obtaind@% detection probability. When the CSI is imperfect, the
proposed approach has constant false alarm probabilitysaffielrs from a mild performance
loss in detection probability, but still has an overall betherformance compared with the en-
ergy detector with 1 dB noise mismatch. In addition, sina fhtest uses linear regression
models, the detection probability will increase rapidiyttwihe regressor size, i.e., number of
receiving antennad/. WhenM = 8 antennas are applied, simulation results suggest that the

performance loss caused by CSI uncertainty becomes ifisgymt.
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While a Gaussian noise assumption was made in Chapter 3t&ifapnd Chapter 5 relaxed
this requirement and considered the spectrum sensingemnofdr non-Gaussian noise. In
Chapter 4, by using the bootstrap technique, two detectethods have been developed which
can be applied to arbitrary noise types with finite powersthir a nonparametric eigenvalue
based detector was proposed which can be applied to mudiipésnna assisted cognitive radio
systems. It is fundamentally a binary hypothesis test ferdifference between sample eigen-
values. Secondly, by assuming the noise power is known aimeentional energy detector was
generalised to non-Gaussian noise. For both detectorsiottyfgarametric bootstrap technique
has been applied to estimate the null distribution of thiestiadistic via resampling the collected
data with replacement. A major advantage of the bootstréaist offers sufficiently accurate
approximation in a variety of non-Gaussian noise typestiortsdata records, leading to a test
threshold that maintaining a target false alarm probabilih addition, the important role of
bootstrap pivot has been described. The bootstrap testwithoting statistic, such as the en-
ergy based detection, has been shown to have a standardigimistribution that independent
of the unknown noise types. The detection performance gfqeed detectors have been eval-
uated numerically. The results illustrated that in non-€&&n noise, the energy based detector
is a superior approach in low SNR regime and the eigenvalsecbmethod offers an overall
better detection performance, e.g., to obtain a 90% detegptiobability, the eigenvalue based

detector provides an up o5 dB SNR gain compared with the energy based detector.

Then in Chapter 5, thé'-test based detector proposed in Chapter 3 was generatissaht
Gaussian noise. The noise distribution is characterisediroularly symmetric with finite
kurtosis and is not necessary to be Gaussian. To maintapréhdetermined false alarm prob-
ability, two methods have been proposed to estimate thelistitibution of theF-statistic. The
first MDOF approach requirgsrior knowledge of the noise kurtosis. The null distribution is
approximated by ad’-distribution with modified degrees of freedom and the esgi@ns are
obtained in closed form. The second approach applies theanametric bootstrap procedure
to a set of noise only data and constructs the null distwouily resampling. It incurs compu-
tational complexity but can work without the knowledge ofsgokurtosis. Theoretical analysis
shows that both methods can yield accurate statisticaloappations in nhon-Gaussian noise,
while the sample size required for the MDOF method is lesa tha bootstrap method. For
example, given a target 10% false alarm probability, it hesnbverified that the sample size
in a order of10" is sufficient for the MDOF method, while the bootstrap metheguires10?.

When the sample size is sufficiently large to ensure the peeiied false alarm rate, it can
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be observed that the two proposed approaches have neasgriee probability of detection.
Compared with other state-of-the-art robust detectoesfHstatistic based detector are shown
to have a good detection probability under various typesoof@aussian noise. For example,
it is illustrated that in Laplacian noise, the SNR gap betwie F'-statistic based detector and
the energy detector isdB at 90% detection probability.

6.2 Limitations and Future Work

This thesis has developed robust sensing techniques thsitleo more reasonable noise mod-
els in cognitive radio networks. However, due to the inisgumptions made on the data model
and applied techniques, there exists certain limitationsraore efforts can be made to gener-
alise the proposed approaches. In addition, based on #ssstlseveral interesting topics are

worth further investigation.

6.2.1 Limitations

e Chapter 3 and Chapter 5 The F'-statistic based approaches requwrer knowledge of
CSI. However, in the context of cognitive radio, the acdiasi of CSI is an open issue due
to the lack of reciprocal standard between primary and stangnsystems. Suggested by the
previous literature, possible solutions to this problewiude acquiring CSI from the periodi-
cally transmitted pilot [11, 83, 84], or estimating the fagligains and the state of primary signal
jointly [85, 86]. As discussed in this thesis, the imperf€&I leads to performance loss in de-
tection probability. Fortunately, when the primary usealisent, i.e., the null hypothesig,
holds, the CSI uncertainty will not degrade the performaag¢he false alarm probability of

the F'-statistic based detector remains unchanged in this case.

e Chapter 4 and Chapter:3ootstrap resampling is applied to control the false alproba-
bility of sensing methods in non-Gaussian noise. This l¢adscreased computational cost as
the complexity will grow linearly with the number of bootspr replications. Such a problem is

more significant in eigenvalue based method as it involvebiddoootstrap.
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6.2.2 Future Work

e |In addition to the detectors proposed in Chapter 4 and Chéaptthe bootstrap technique
can be further applied to other robust sensing designs bypatametrically estimating their
test statistics’ null distributions. For example, the ogthtionarity based detection methods for
non-Gaussian noise can be considered so that the signaisthiprimary user and interfer-

ences can be differentiated.

e Edgeworth expansion may be a solution to reduce the contplbsdught by the bootstrap
method. In the Edgeworth view, the distribution of a statisan be expanded as the normal
distribution plus an infinite number of Edgeworth serieq[98the statistic is pivotal, generally
a second-order approximation is sufficiently accurate. @ issue is that the polynomials
are with coefficients depending on the cumulants of the tassc, which may be complicated
as they are related to the non-Gaussian noise distribuliopractice, the bootstrap method is
a way to non-parametrically approximate these polynomaalthe expense of computational
complexity. However, extra efforts on Edgeworth expansiare worthwhile as they are more

efficient to cope with the limited sensing time.

¢ In Chapter 5, the detection probability of thestatistic based method in non-Gaussian noise
is worth to be further studied. Similar to the MDOF methodg possible way is to approximate
the detection probability by a noncentratdistribution with modified degrees of freedom.
Furthermore, it is interesting to investigate the perfanoaloss in detection probability caused

by CSI uncertainty.

e In this thesis, we assume there is only one primary signatscas most of spectrum sensing
problems consider this case. In practice, all of the proposethods can be extended to other
detection problems with multiple signal sources. Relatedks/on theF'-statistic based detec-

tor have been discussed in Chapter 5. For the eigenvalud datector in Chapter 4, sequential

detection methods can be considered.
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Appendix A
Proof of Property 5.1

Proof.
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2. Using Property
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DefineR = [R;;] = Y. w()w(l)¥, P,; as the element of projection matr®; (the
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subscriptk in P;; is omitted for simplicity) and4,; = R(P;;R;;). Wheni = j, both R;
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Proof of Property 5.1

Sincew(!) is i.i.d, E[A;; Ay, ] can be written in case by:

(Lpa + (L? = L)ol) P2 i=j=h=m

(22

(L2073, )PyiPj; i=j, h=m
E[Aij Apm] = " (A.4)
L(O’;1 + U?)%(PZJ)Z + QLJzO'ZZ%(Pw)Z 7= h, j =m

0 others

whereo? £ E [&E (wi(l))ﬂ ando? 2 E [S (wi(l))ﬂ denote the variance of the real
and imaginary part of noise; (1), respectively. Since;(l) is assumed to be circularly

symmetric distributed, we have:

o2 = g2 — %agﬁ (A5)
and
E[A;j Apm] = gampijﬁ, fori=h,j=m. (A.6)
Using the results in (A.4), we have:
2
E (ZA) = E ZA?ﬁZZAMAﬂ
i i i ji
= (Lpa+ (L* = L)oy) > Pi+L%00 > > PuPj; (A7)
i i ji
[T - &[ST s LT ate
i j<i i j<i i j<ih#im<h
= gﬁZZlPﬁIz (A-8)

E [(ZAM)(ZZAU)} ~0. (A.9)

Note that for a projection matri®;,, we have tfP;] = r, andP? = P}, [88]. Hence,
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(ZP,-,-)2 =7} andy">> P;j|* = tr [P?] = r;.. Substituting (A.7-A.9) in (A.3) leads to:
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Finally, substituting (A.10) in (A.2) leads to:
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Var

3. Note thatP; + P, = I, is an orthogonall/ —dimensional projection and by using
(A.11), we have:
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Comparing it with the formula of variance decomposition [Wa¥ b] = Var|a] 4 Var[b] +
2CoVa, b] [107], finally we obtain:

L—-1 L-1
Cov|> y(1)"Piy(1), Zy<Z>HP2y<Z>|Ho] = Lo kpip2. (A.13)
=0 =0
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Appendix B
Proof of Property 5.2

Proof. 1. Taking a Taylor expansion dfg S,% aboutlog % we have:

0% SE-oh/2 _(Sh—oh/2)

2 Tw 2 2 /9)3
log Sj; = log 5 T 272 202 /2 +O<(Sk 0i/2) > (B.1)

Taking expected value of both sides and using the resultsopdpty 5.1.(2), we have:
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Substituting in:
1
E[Z] = 3 (E[log S7] — E[log S3]) (B.3)
leads to: ) ) ) ) ) )
E[Z’?‘[O] ~ Ty +T2 K ”p2” - N "inlu ) (B4)
4L
2. By ignoring the third term in (B.1)pg 5,3 can be written as:
2 2 2
2 _ T Sk~ 0w/2 2 2 /9)2
log S} = log = + A28+ 0 ((s2-02/2)%). (B.5)
which leads to: ) ) )
2 0w Sk Ow/2
and
o2
E[log S7] ~ log 7“} (B.7)
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Proof of Property 5.2

Using (B.6) and (B.7), we have:

2\ 2
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Similarly,

2 2
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Substituting (B.8) and (B.9) in:
1
VarlZ] = 5 [Varflog S7] + Varllog S3] — 2Cov{log St log S3]] , (B.10)

and using the results in Property 5.1.(2-3), we have:

rit s e gt g e el = 2 ey e

Var [Z|7‘[0] ~ 1L

(B.11)
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Abstract—Spectrum sensing is an essential task in cognitive
radio technology. Most of current detectors take the noise power
as prior knowledge which makes the detection performance
sensitive to noise uncertainty. In this paper, we propose an F'—test
based detector to overcome this problem. The proposed approach
is robust to noise mismatch and requires low computational
complexity. Based on the table of F'—distribution, the exact value
for the test threshold and the detection probability are derived,
respectively. In addition, we shall show that the false alarm
probability of the proposed method is still under control even
with channel uncertainty. Simulation results demonstrate that
significant performance gain achieved by the proposed approach.

Index Terms—signal detection, /"—test, spectrum sensing, cog-
nitive radio.

I. INTRODUCTION

Conitive Radio (CR) is proposed by FCC as an intelligent
and flexible spectral allocation scheme [1]. The key of cogni-
tive radio is to allow secondary users to operate at the licensed
band without causing unacceptable interference to primary
users [2], which makes spectrum sensing a fundamental issue:
CR users are required to reliably monitor the presence of
primary users over a certain spectrum periodically. Many
sensing approaches [3]-[8] have been proposed to address
this problem. Generally speaking, they fall into the following
categories: energy detector, matched-filter detector, feature-
based detector and blind detector. Another challenge is that
individual CR user may fail to detect the weak primary signal
due to the severe fading and hence significantly interferes the
licensed user. To improve sensing sensitivity, we investigate
the signal detection problem by considering multiple antenna
systems in this paper.

Multiple antenna techniques can overcome multipath fading
by exploiting the diversity gain without high requirement on
overhead to transmit the observation. Recently, it has been
applied in spectrum sensing for CR technology. In [9], an
optimal detector in the Neyman-Pearson sense is addressed
in which all knowledge about the signals, noise and channels
are required. The popular energy detector [3] can be applied
when noise statistic is available and it can be extended to
more complex scenarios [10]. Energy detector is simple and
optimal when noise power is the only known information
[S5]. However, the main drawback is that the sensitivity to
noise uncertainty. When the noise mismatch is large, energy
detector will become invalid due to high false alarm proba-
bility and limitation of signal-to-noise radio (SNR) wall [6].

978-1-4673-3122-7/13/$31.00 ©2013 IEEE

To overcome this challenge, current research concentrates on
blind detection, which exploits the received signal without any
knowledge of signal parameters. For example, the eigenvalue-
based maximum-minimum eigenvalue (MME) detector is stud-
ied in [8] and a generalized maximal likelihood radio test is
proposed in [9]. However, they all apply the random matrix
theory to decide the test threshold so that a large sample
size is required. For blind detectors without the requirement
on sample length, such as the multiple antennas assisted and
empirical characteristic function (MECF) based detector [11],
no closed-form expression for test threshold is available.

In summary, the aforementioned detection methods require
noise power or high computational complexity. In this paper,
we propose an F'—test based approach to improve robustness
and computational efficiency. Assuming the channel state
information (CSI) is known, the proposed method is insensitive
to noise uncertainty and achieves a significant performance
gain. Furthermore, its computational complexity is comparable
with energy detector. Given the table of F'—distribution, the
test threshold and probability of detection can be easily
derived. Simulations are carried out to verify the proposed
approach.

The rest of the paper is organized as follows. Section II
introduces the signal model for multiple antenna sensing and
develops the '—test based detector. In Section III, we discuss
the performance of the proposed detector. Simulation results
are presented in Section IV. Section V concludes the paper.

Throughout this paper, boldface letters and boldface capital
letters denote vectors and matrices, respectively. ¢t7(-) is the
trace operator and ||-|| denotes the Euclidean norm of a vector.
I, represents the identity matrix of order M.

II. SIGNAL MODEL AND F'—TEST BASED DETECTION

Consider a cognitive radio network system with M receiv-
ing antennas as shown in Fig.1. We formulate the spectrum
sensing problem as a hypothesis test. The null hypothesis Hg
corresponds to an idle spectrum and the alternative hypothesis
#H, corresponds to an occupied spectrum. Then the received
signal vector at the CR user can be expressed as

HO Y(Z) = W(l)7

Hi : y()=hs(l)+w(l), I=1,2...L, (1)
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Fig. 1. CR networks with M antenna at the receiver

where y(I) € CM*! represents the received signal at time
instant [ and L is the number of samples. s(I) denotes the
primary signal symbol at [th time slot which is assumed
to be unknown and deterministic. The primary signal is
distorted by the known CSI vector h € CM*1, which is
supposed to stay constant during the sensing period. The noise
vector w(l) € CM*1 consists of i.i.d zero-mean, complex
Gaussian distributed elements with unknown variance aﬁ, ie.,
w;(l) ~ CN(0,02),i=1,2... M. Without loss of generality,
we assume the received signal be independent across antennas
and time slots.

Note that in a CR network, the learning of CSI is via
channel reciprocity. For example, h can be estimated from
the periodically transmitted pilot primary signal [12]-[14].

Based on the linear signal model (1) and Gaussian noise
assumption, an F'—test [15] can be set up to to decide the
presence of primary signal. Combining the received data set

= {y(l),l = 1,2...L} and channel information h, the
decision rule is given by
7;1
T = Y5 (2)
Ho

where + is the test threshold and the test statistic 7" is given
by

no tr(PR,)

T=—"—rim—.
n1tr((Iy — P)Ry)

3

Here R, (Dy (1) denotes the sample covariance

L&
= IE
matrix and P = h(hfh)"'h¥ represents the projection
matrix onto the subspace spanned by h. The test statistic (3)
is F),, n,—distributed under null hypothesis H,, with degrees
of freedom

The test statistic 7" can be seen as an estimated SNR at
the CR receiver. Therefore, the decision rule (2) has the
interpretation that we will reject H, or declare primary signal
to be detected, when the SNR level exceeds a certain threshold
7. In addition, it is worth mentioning that the Gaussian
noise assumption implies the equivalence between F'—test and
likelihood radio test [15].

ITII. PERFORMANCE STUDY

In this section, we shall discuss the performance and advan-
tages of the proposed detector. To begin with, the false alarm
probability (Py) and the detection probability (P;) are defined
as follows

P =
Py

PI(T > "y|7'lfo)7 (6)
Pr(T > ~|H,). %)

In spectrum sensing for CR networks, a high Py results in
poor spectral efficiency and a high P; means less interference
to primary systems. Therefore, a detector with large Py and
low P is desirable in the design of sensing technique.

Depending on the system requirement, one of the two merits
can be used to choose the test threshold. However, since the
calculation of P; requires more prior information than Pj
does, we often decide the test threshold based on false alarm
probability.

A. Test threshold and probability of detection

As mentioned above, the test statistic 7" is F3,, ,, —distributed
when the primary user is not active. Let W, 1 ,2(x) be
the cumulative distribution function (CDF) of the central
F—distribution with degrees of freedom n; and ng [16] (more
details are shown in Appendix A). Then the false alarm
probability P; can be expressed as

Pf = PI(T > V‘HO) =1- Wu,nl,nZ(’Y)~ (8)

Given a target false alarm probability «, the test threshold ~
can be easily obtained by looking up the table of W 1 n2(x),
that is

WL nl, 7L2( O[). (9)

The probability of detection P relies on the distribution of
the test statistic under H;. Due to complicated distributional
properties, the exact value of Py is usually hard to obtain
in most designs. However, in the proposed F—test based
method, the problem can be solved easily. In the presence
of the primary user, or #; holds, the test statistic (3) is

noncentral F-distributed [16], denoted by F}, .. (5%), where
the noncentrality parameter is given by
L .
23 [hs())||*

52 == (10)

2
On

n = 2L, “) Let Wye 1 n2(x | 62) denote the CDF of noncentral F-
ny = 2L(M —1). (5) distribution (see Appendix A). Making use of the table for
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the noncentral F-distribution, we can obtain the probability
of detection as follows

Py =Pr(T > 4|H1) =1 = Waenin2(v | 6%). 1n

According to [16], P, is an increasing function of §2. Since
the noncentrality parameter (10) can be seen as a scaled SNR,
we can achieve a better detection probability by increasing
sensing samples to improve the SNR level at the receiver.

B. Computational complexity

The computational complexity of the F'—test based sens-
ing method comes from calculation of the test statistic (3).
Because both fty and P are Hermitian, the evaluation can
be simplified. For example, approximately LM (M + 1)/2
complex multiplications and M (M + 1)(L — 1)/2 complex
additions are needed to compute f{y. In Table I, we list the
computational complexity of the F'—test based method, the
energy detector and the blind MME detector (with .S as the
smoothing factor [8]) for comparison.

Among these methods, the MME detector is the most
expensive one for its large sample assumption, e.g., L is typ-
ically 10, and energy detector enjoys the lowest complexity.
The computational complexity of the F'—test based detector
increases linearly with the number of samples and is approxi-
mately proportional to the squared number of receive antennas.
Since L is usually much larger than M, the implementation
of F'—test based detector is inexpensive in practice.

C. Discussion

The proposed method is inspired by linear regression anal-
ysis, where the CSI h acts as the regressor and y(l) is the
response variable. Since no information of noise statistic is
needed, the F'—test based approach is robust against noise
uncertainty. Compared with existing detectors suggested in
[8], [9], [17], the proposed F'—test based method is simple
to implement and requires only moderate sample size. In
addition, CSI is needed to construct F'—test based sensing.
As shown in the simulation, the utilization of of CSI leads
to the performance gain and high robustness against noise
uncertainty.

IV. SIMULATION RESULTS

In this section, we shall evaluate the proposed F'—test
based sensing numerically and compare it with other popular
detectors, namely the energy detector and the MME detector.
To keep consistency with the signal model defined here, we
extend the result of MME detector in [8] to the complex
value data case. In this circumstance, we use Tracy-Wisdom
distribution of order 2 [18] to decide the test threshold and
choose the smoothing factor S = 5. Specially, the sample
length is large so that the MME method can provide reasonable
performance. To examine the proposed approach, we consider
a 4-antenna (M = 4) scenario with Additive white Gaus-
sian noise (AWGN) channel and BPSK modulated primary

Prob. Detection

-
=N

F-test(analytical
: —O— F-test
—A—EG
P —%— MME
~20 -18 -16 -14 -12 -10 -8 -6
Average SNR(dB)

Fig. 2. Probability of detection versus average SNR, for Py = 0.05 and
L = 5000.
x
3
&
02
F-test(analytical
—o— F-test
o1y —A—EG
b —%— MME
202 10° 10
L
Fig. 3. Probability of detection versus sample length, for Py = 0.05 and

average SNR=—14dB.

signal. The known CSI vector is generated by i.i.d zero-
mean circularly symmetric complex Gaussian variables with
normalized variance. The results are obtained by averaging
5000 Monte Carlo trails. In simulation, we choose the noise
power according to the average SNR level defined by

g 2 IO

Mo?2 a2

A. Test performance under perfect parameter estimate

In the first experiment, we assume the parameter estimate
is perfect and compare the F'—test based approach with the
energy detector (marked with EG) and MME detector. In Fig.2,
we show the Py against average SNR with a target Py = 0.05
and L = 5000. The proposed F'—test based sensing is shown
to achieve the best detection probability among the three, i.e.,
when the detection probability is 0.9, the SNR gain of the
proposed detector is about 2dB and 4.2dB over the energy
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TABLE I
COMPLEXITY FOR F'—TEST BASED METHOD, ENERGY DETECTOR AND MME DETECTOR.

Complex Multiplications

Complex Additions

F'—test Based Detector

MM+ 1)(1 + L/2)

MM + 1)(L — 1)/2 + 2(M — 1)

Energy Detector ML

M —D(L-D

MME Detector

LM(M +1)/2 + O(M?)

M(M +1)(L - S)(S—1)/2 + O(M?)

Prob.Detection

051

4 05
1(x100%)

Fig. 4. Probability of detection v.s. noise uncertainty, for desired Py = 0.05,
L = 5000 and average SNR= —14dB.

detector and the MME method, respectively. In addition, the
analytical result for P; (11) provides an accurate description.

As mentioned above, the MME method needs a long sample
length to ensure the selected test statistic be effective in each
detection, while the F—test based method does not have
such limitation. In Fig.3, we plot the impact corresponding
to data length for Py = 0.05 and average SNR=—14dB. It
can be seen that the MME detector almost fails in the small
sample scenario and the proposed detector achieves a much
better performance. For example, to obtain a 90% detection
probability, the F'—test based method only needs 1/3 as many
samples as the energy detector and 1/8 as many samples as
the MME detector does, respectively.

B. Test performance under estimate error

In practice, we do not have access to the perfect parameter
estimate due to limited feedback or quantization errors. As
long as the detector needs prior knowledge, the estimation
error will degrade detection performance. In the second ex-
periment, we assume h = h + Ah, where h denotes the
channel estimate and the error term Ah is i.i.d zero-mean
complex Gaussian distributed with covariance matrix ogIM,
eg.,0< (rz < 1. Since the variance of h has been normalized,
the channel uncertainty can be viewed as from 0% to 100%.
For noise mismatch, we assume the imperfect power estimate
62 = PBo? and the factor 3 is considered as a uniformly
distributed random variable in the interval [l%rt, t+ 1} , where
t denotes the noise uncertainty level from 0% to 100%.

In Fig.4, we plot P; against noise uncertainty with desired

0.45 T - - -
0.
035 1
0.3} : 1
£
E
< 0.25[ 1
8
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L o02r 1
<
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b EG
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(52
e
(b)
Fig. 5. Performance v.s. channel uncertainty o2. The performance (a):Py;

(b): Py, for desired Py = 0.05, L = 5000 and average SNR= —14dB.

Py =0.05, L = 5000 and average SNR=-14dB. It can be seen
that the detection probability of the F'—test based method and
MME detector enjoy robustness against noise mismatch. On
the other hand, the probability of detection associated with the
energy detector is severely degraded by noise uncertainty.

Based on the same scenario, we show the impact caused by
CSI error in Fig.5. Note that the performance of the energy
detector with 10log;, ¢ = 1dB noise uncertainty is a basis for
comparison.

The false alarm probability of F'—test based sensing, as
shown in Fig.5(a), is still around the target value even with
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channel uncertainty. However, the Py of energy detector will
be out of control with only 1dB noise uncertainty. Fig. 5(b)
shows that the detection probability of the proposed approach
degrades under channel uncertainty. However, with CSI error
up to 23% and 68%, it still outperforms the ideal energy de-
tector and MME detector, respectively. In addition, compared
with energy detector with 1dB noise mismatch, the F'—test
based detector has a much higher detection probability over
the entire channel uncertainty interval.

In summary, the F'—test based detector shows the best
detection performance at low SNR in the first experiment. It
requires much less samples than the energy detector and the
MME detector. Furthermore, its performance is not affected
by noise uncertainty and has a mild sensitivity to channel
uncertainty.

V. CONCLUSION

In this paper, we propose a novel sensing technique based
on F'—test. The method can be used for multiple antenna CR
systems without knowledge of primary signal and noise power.
Assuming the CSI is known, the proposed detector is easy to
implement and robust to noise uncertainty. The test threshold
and detection probability are derived by applying statistical
properties of F'—distribution. Simulation results show that the
proposed approach leads to significant performance gain and
enhanced robustness against noise uncertainly at low compu-
tational complexity. We believe the F'—test based detector is
a promising approach for spectrum sensing.

APPENDIX A
CDF OF THE PROPOSED KINDS OF F'—DISTRIBUTION

1) The central F'—distribution

1 1
Wenin2(z) =Pr(T < z) = ]k(inl’ —ng), (13)

2
where k = nyz/(n2 + nyxz), and I is the incomplete
beta function. The formula for the incomplete beta
function is
1 1

75”17 5”2)

B fdzt%nl—l(l _ t)%71271dt
B(in1, in,) '

where B is the beta function

11 !
B(§n1,5n2):/ (1 —)ineTld,. (15)
0

2) The noncentral F'—distribution

Iz (14)

Whenina(z | 6%) Pr(T(6%) < 2)) (16)

= 1 1
= Zowj,52fk(§ﬂ1 +J7§n2)7
J=

where
w; 52 = exp(—0°/2) . (17

(62/2)7
J°
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An F'—Test Based Approach for
Spectrum Sensing in Cognitive Radio

Qi Huang and Pei-Jung Chung, Senior Member, IEEE

Abstract—Spectrum sensing is a key task in cognitive radio
networks. Traditional sensing techniques such as energy detector
suffer from noise uncertainty problem or require high compu-
tational complexity. In this paper, we propose a novel sensing
technique using F'—test by considering a multiple antenna cogni-
tive radio system. This method is insensitive to noise uncertainty
and easy to implement. It requires the channel state information
(CSI) as prior knowledge. Based on statistical properties of
F—distribution, we shall derive the test threshold and probability
of detection, respectively. In addition, the performance of the
proposed approach under imperfect channel information will be
discussed. Simulation results show that the proposed F'—test
based detector achieves significant performance improvement
compared with several popular detectors and offers robustness
against noise uncertainty.

Index Terms—Signal detection, multiple antenna, F —test,
spectrum sensing, cognitive radio.

I. INTRODUCTION

N face of the steadily inceasing demand for high data rates

and limited spectral resources, traditional fixed spectrum
allocation is no longer efficient. To improve spectrum effi-
ciency, cognitive radio (CR) technology is proposed [1] to
open the licensed band by allowing secondary user to utilize
the temporally unoccupied spectrum bands. In response to this,
IEEE formed the 802.22 working group in 2004 to develop a
standard for secondary user access to the idle TV bands [2].
One of the main challenges of CR technology is that secondary
user must monitor the presence of primary users over a certain
spectrum periodically to avoid interference to primary service
[3], which brings spectrum sensing, the fundamental task for
CR technology, into account.

Many efficient sensing techniques have been proposed to
tackle this challenge [4]-[11]. Among these methods, energy
detector [4] is the most popular one due to its simplicity. It
has been shown to be optimal only when the noise statistic
is available to CR users [5]. However, the central problem
of energy detector is its sensitivity to noise mismatch. More
seriously, in the presence of large noise uncertainty, the high
probability of false alarm and signal-to-noise ratio (SNR) wall
phenomenon will make energy detector invalid [6]. Matched
filter detector [7] is considered as an optimal method when the
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full knowledge of the primary signal is known. If CR users
have some knowledge about the primary signal features, e.g.,
modulation type or symbol rate, then feature-based detector
can be applied by exploiting the cyclostatio narity embedded
in the received signal [8], [9]. But this method needs a
long observation time and high computational complexity
for implementation. On the other hand, blind detectors are
considered when no prior information is available [10], [11].

Individual CR users may suffer from a poor sensing sen-
sitivity due to severe fading or low SNRs. In this paper, the
spectrum sensing problem in a multiple antenna system is con-
sidered. Multiple antenna technique is widely used in wireless
communications to overcome multipath fading by exploiting
the spatial diversity [12]. Recently, it has been applied in spec-
trum sensing for CR technology. A Neyman-Pearson sense
based optimal detector is proposed in [13], which requires
prior knowledge about noise power, CSI and primary signals.
When noise power is known, the well-known energy detector
[4], [5] can be applied and it has been extended to more so-
phisticated scenarios. For example, the energy-based detector
proposed in [14] combines the received signals coherently.
As mentioned above, all sensing schemes in this category
suffer from the noise mismatch problem. To overcome this
difficulty, current research focuses on blind sensing scheme,
which exploits the signal structure without any information of
signal parameters. Examples are eigenvalue-based detection
[10], [15] and generalized likelihood ratio test (GLRT) based
detection [13], [16], [17]. However, as shown in [18], the
analytical test threshold for those blind detectors requires high
computational complexity and the simple asymptotic threshold
derived from random matrix theory differs significantly from
the exact value in finite sensors and data samples. In addition,
all blind detectors suffer from limited detection performance
due to the lack of prior knowledge.

In summary, most current multiantenna-assisted detectors
are sensitive to noise uncertainty or subject to limited sample
size and test performance. In this paper, we propose an F'—test
based method to overcome those drawbacks. The proposed
approach, in which CSI is required, enjoys high robustness
against noise mismatch and moderate computational complex-
ity. Based on statistical properties of F'—distribution [19],
the accurate value for test threshold and detection probability
are derived, respectively. In addition, we will investigate the
impact of channel uncertainty. The results indicate that when
CSI is imperfect, the false alarm probability of the proposed
approach is still under control. The detection probability can
be calculated using doubly noncentral F'—distribution in this

1536-1276/13$31.00 © 2013 IEEE
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Fig. 1. SIMO CR network.

case and we present a simple approximated value for detection
probability to avoid its computational complexity.

It is worth mentioning that an harmonic—F' test based
method for spectrum sensing was discussed in [20], which
is based on multitaper method to estimate the spectrum
and the linear model for setting F'—test is in the frequency
domain. It can be seen as a blind wideband sensing and large
sample size is required to achieve reasonable performance,
i.e., 2200 samples is used in [20]. The proposed F'—test based
method, however, is based on a totally different signal model.
It assumes a multiple antenna scenario and CSI is needed
to construct the F—test. Moreover, to achieve reasonable
performance, the required sample size is much smaller.

The remainder of the paper is structured as follows. In
Section II, the signal model for multiple antenna sensing
is described. In Section III, we propose the F'—test based
detector and derive the test threshold and detection probability.
Then Section IV analyses the performance of the proposed
approach under channel uncertainty. Comparison with several
popular spectrum sensing schemes is discussed in Section V.
Simulation results are presented in Section VI. Finally, Section
VII concludes the paper.

Throughout this paper, boldface letters and boldface capital
letters represent vectors and matrices, respectively. (1) de-
notes conjugate transpose and ()7 represents transpose. tr()
stands for the trace operator and ||-|| represents Euclidean norm
of a vector. Iy, denotes the identity matrix of order M.

II. SIGNAL MODEL

Consider a single-input multiple-output (SIMO) CR net-
work as shown in Fig.1, where there is only one primary
user and the secondary user is equipped with M antennas. In
spectrum sensing, we aim at finding the idle spectrum band
unoccupied by the primary user within the range of secondary
users. Here the detection of primary user is formulated as a
hypothesis testing problem: the null hypothesis Ho implies
that the primary user is not active; and the alternative H;
implies that the primary user is active.
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Let y(I) = [y1(1),y2(0), . .., yar(1)]” be the received signal
vector at the M antennas, which can be expressed as

Ho = y(l)=w(),
Hy 0 y()=hs(l) +w(l), | =1,2..L, 1)

where s(l) denotes the transmitted primary signal sym-
bol at time instant [, which is unknown and determinis-
tic. The flat fading channel is represented by the known
CSI vector h = [hy,ha,...,hy]7. We assume that h
is constant during the sensing period. The noise vector
w(l) = [wi(1),w2(1),...,war(1)]T is ii.d zero-mean, com-
plex Gaussian distributed with covariance matrix UﬁI M, 1.€.,
w(l) ~ CN(0,021,), where o2 is unknown. L is the number
of received samples.

Since there is no existing reciprocity standard between
primary and secondary systems, the learning of CSI h is
still an open question. One solution to this problem was
suggested in [21]-[24]: the knowledge of CSI is acquired
from the periodically transmitting pilot [25] when the primary
transmitter is known for sure to be active. Moreover, based on
this method, the synchronization procedure for acquiring pilot
is a challenge in low SNR scenario and certain code properties
can be exploited for improving synchronization [26], [27].

III. F—TEST BASED DETECTION

Given the observation Y = {y(I),! = 1,2,...,L} and
CSI vector h, the problem of central interest is to detect the
existence of primary signal. To begin with, we define the
probability of false alarm (Py) and the probability of detection
(Py) as follows

P =
P, =

PI’(T >y H()), 2)
Pr(T > y[H4). 3)

Where 7" denotes the test statistic and ~ is the test threshold.
In the context of cognitive radio, Py denotes the probability
that an idle spectrum is falsely ignored, which leads to a
spectral loss. On the other hand, P; determines the percentage
of the occupied spectrum that is truly detected, which avoids
the harmful interference to primary system. In the design of
spectrum sensing technique, we should keep Py under a pre-
specified significance level and make Py as large as possible.

The linear signal model (1) ensures the applicability of
F—test [28], which is derived from likelihood ratio principle
under Gaussian noise assumption [29] and acts as an efficient
tool for hypothesis testing in linear regression analysis. Here,
it is applied to test whether there exists linear relationship
between the receive data and CSI or not. The decision rule is
given by

Ha
TZ o, @
Ho
where the test threshold v is selected to ensure a target
probability of false alarm and the test statistic 7" is

o t'r‘(PRy)A . )
ni tT‘((I]\,[ — P)RU)
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Here R, —LZY() o

matrix and P = h(h”h) 'h# denotes the projection onto the
subspace spanned by h. When #, holds, or primary user is
not active, the test statistic (5) is F,, n, —distributed [19] with
degrees of freedom

represents the 98.1’1‘11)16 convariance

ny = QL, (6)
ny = 2L(M—1). (7

Let We 5,1,n2(x) be the cumulative distribution function (CDF)
of the F'—distribution with degrees of freedom n; and ns (see
Appendix A). Then given a target false alarm probability «,
we can obtain the test threshold + by looking up the existing
table of We. ;1 n2(7), that is

=W (1 —a). 8)

c,nl,n2

Note that the test statistic (5) can be seen as an SNR estimate
for CR users. Therefore, the decision rule (4) implies that
we will accept the alternative hypothesis H;, or declare the
existence of primary signal, when SNR is large enough to
exceed a given threshold ~.

When primary user is active, the test statistic 7" is noncentral
F—distributed [19], i.e., T ~ F}, ,.(6%). The noncentrality
parameter 62 is given by

L 2
23 sl

2 =1
0% = R )]

The CDF of the noncentral F'—distribution is defined as
Wienin2(z | 02) (see Appendix A). Hence we can obtain
the probability of detection as

Py =Pr(F >~|H1) =1~ Waenin2(y ] 6%), (10)

which is also easy to evaluate by looking up the table. The
detection probability FP; is an increasing function of the
noncentrality parameter 6 [19]. From (9), we can conclude
that a higher probability of detection can be obtained by
increasing the sample size L.

IV. IMPACT OF CHANNEL UNCERTAINTY

As mentioned above, channel information h is needed
for constructing the F'—test based method. However, due to
estimation or quantization errors, one only has access to the
imperfect CSI h eCM*1, which can be modelled as follows:

h=h+Ah, a1

where Ah = [Ahy, Ahg,...,Ahy]T denotes the error
term. Such uncertainty may degrade the performance of the
proposed detector. In this section, the impact of channel
uncertainty will be discussed.

A. Test threshold and probability of false alarm

The selection of test threshold depends on the target false
alarm probability, which is related to the null hypothesis Hy.
In this case, the received data only consists of noise because no
primary user is active. Note that h is a fixed parameter during
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a sensing period. Combining (1) and (5), the test statistic under
channel uncertainty can be expressed as
L

> w()Pw(l)
r n2 =1
T(RlHo) = 72— RGP
S w(l)H Ty — P)w(l)
=1
where P = h(h®h)~'h# denotes the projection matrix

onto h. Since the noise {w(l);l=1,2,...,L} is complex
Gaussian distributed, the test statistic under Hg (12) is Fy,, p,-
distributed, with n1, na given by (6) and (7). Therefore, given
the test threshold 7 (8), the false alarm probability is

Py =Pr(T(h) > y[Ho) =1 — Wenina(y) =a.  (13)

Hence, in the presence of channel uncertainty, the pre-
computed threshold v (8) will still be effective to keep the
false alarm probability under the target value.

B. Probability of detection

When the alternative 7 holds, the received data consists
of both signal and noise, implying that the observations will
depend on the channel h and so does the detection probability.
Based on (1) and (5), when primary signal exists, the test
statistic

(hs(l) + w(D)TP(hs(l) + w(l))

gl

» n2 1=

(hs(l) + w(D)H (Tnr — P)(hs(l) + w(l))

(14)

is doubly noncentral F—distribution (DNF) distributed, i.e.,

T(h|H1) ~ Fl, n5(67,63) [19], with the noncentrality pa-
rameters

L

52 = %ZHPhs H2 (15)
2lz 3 2

% = 52| @ - s (16)
=1

We define the CDF of DNF distribution as Wanc ny n, (@ |
§2,62) (see Appendix A). It can be expected that the test
power will be maximized when the perfect channel informa-
tion is available, as shown in the following result.

Lemma 1: Given the degrees of freedom n, ny and test

threshold ~, the detection probability
Py = PT(T(H) >y H1) =1 = Wane,n e (7|6%75§) a7)

is maximized when h = h.
Proof: Combining (15) and (16), and applying the prop-
erty of the projection matrix P, we have

2 Lo 2 L N 5

2 Sl + o -pneo )

, Ll:1 =1

= O_—QZHhs(l) 2
=1

0065 =

(18)
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It has been shown that the probability of detection Py given
in (17) will rise when 6% increases or 53 decreases [30]. Since
82 + 03 is constant and 63 > 0, P; will be maximized when

19

L
Z |hS )

52 = 0. (20)

Both the equalities hold when and only when P is the
projection onto h, which implies that given ni, ny and 7,
the test power P, will reach its maximal at h=h n

From lemma 1, we conclude that the test performance of the
F—test based approach under perfect CSI offers a benchmark
for comparison.

The closed-form saddlepoint approximation of DNF distri-
bution is presented in [31], which consists of doubly infinite
sum of incomplete beta functions. In order to simplify the
computation, we apply a simple approach derived from the
approximations to noncentral x? distributions [19]. The ap-
proximate distribution is given by

1+63n"

————F,
2 —1 11,02
1+ d5n,

(21
with v; = (n1 + 62)%(ny + 262)~% and va = (no +
02)%(ng + 202)~ 1. Therefore, we can ultilize the table of
central F'—distribution to calculate the approximated detection
probability under channel uncertainty, that is

1+ 63n;"

Py~1-—
¢ 14 62n;?

We ,vz( '7)~ (22)

V. IMPLEMENTATION

In the previous sections, we derived the test threshold and
detection probability of F'—test based detector, and analysed
its performance under imperfect channel information. In this
section, the computational complexity and advantages of
F—test based approach will be discussed.

A. Computational complexity

The computational cost of the proposed detector comes
mainly from the computation of test statistic (5). Note that
both fty and P are Hermitian, hence the evaluation can be
simplified. In Table I, we list the complexity of F'—test based
method and compare it with three popular detectors: the en-
ergy detector, the blind eigenvalue-based maximun-minimum
eigenvalue (MME) detector [10] and the blind GLRT detector
[13]. Note that the computation of blind detectors includes
both test statistic and test threshold. Because the analytical
threshold expression is very complicated [18], we only list the
blind detectors’ complexity based on asymptotic test threshold.

The energy detector, which enjoys the highest compu-
tational efficiency, only requires M L multiplications and
(M —1)(L — 1) additions. Due to the large sample assump-
tion for asymptotic test threshold, e.g., the typical number of
L is 10%, blind detectors are the most expensive one among
these approaches. The complexity of F'—test based detector
grows linearly with the sample size and is approximately
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proportional to the squared number of antennas. Since L
is generally much larger than M, the proposed method has
a comparable complexity with energy detector in practice.
More importantly, without any assumption on sample size L,
its analytical expression for test threshold (8) is simple and
accurate.

B. Advantages

Since the test statistic (5) is independent from noise power,
the F'—test based detector offers absolute robustness against
noise mismatch. Compared with the traditional robust or
blind detectors [8], [10], the proposed detector can be easily
constructed and the computational complexity is moderate.
The only prior information needed is CSI, which can be seen
as the price for improved robustness against uncertain noise
level and performance gain. In addition, the analysis in Section
IV shows that the false alarm probability of the F'—test based
detector is not affected by the channel estimation error.

VI. SIMULATION RESULTS

In this section, the proposed F'—test based sensing tech-
nique will be evaluated numerically and compared with several
popular detectors. To examine the proposed method, each
experiment performs 5000 Monte Carlo trials. The channel
vector is generated by the i.i.d zero-mean circularly symmetric
complex Gaussian random variable with variance normalized
to one. We fix the sample size L = 100 and require the false
alarm probability Py < 0.1. In each trial, BPSK modulated
primary signal and complex Gaussian distributed noise are ap-
plied. Simulation results will be obtained using the perfect and
imperfect prior information, respectively. Note that in order
to allow the blind detectors provide a reasonable performance
in finite sample size, we shall calculate their test threshold by
simulation rather than using the asymptotic formula in [10],
[13]. In addition, the SNR is defined as

» [hsOI?
SNR £ T8 (23)

A. Performance under Perfect CSI

In the first experiment, we assume perfect channel knowl-
edge h is available to F'—test based method and the accurate
noise power o2 is known to energy detector. In Fig.2, we
plot the Py of F'—test based method, energy detector (marked
with EG), MME detector and CLRT detector against average
SNR with M = 4. We can find that under the same scenario,
the proposed method achieves the best detection probability
and the analytical formula for P, eq (10), gives an accurate
description. Due to the lack of prior knowledge, the blind
GLRT and MME methods have a lower detection probability.

In Fig.3, we draw the Receiver Operating Characteristics
(ROC) curve for M = 4 and average SNR= —8dB. It shows
that given a certain false alarm rate, the proposed F'—test
based method achieves a much higher probability of detection
than other detectors. For example, when P is fixed at 0.01,
the detection probability gain of the F'—test based method
is about 36% for the MME and approximately 23% for the
energy and GLRT detectors.
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TABLE I
COMPUTATIONAL COMPLEXITY FOR F'—TEST BASED METHOD, ENERGY DETECTOR AND BLIND DETECTORS.
Complex Multiplications Complex Additions
F—test Based Detector M(M+1)(1+L/2) MM+ 1)(L-1)/2+2(M —1)
Energy Detector ML (M-1(L-1)
Blind Detector (MME and GLRT) | LM (M + 1)/2 + O(M?) LM(M +1)/2 + O(M?3)
1 T r
0.9
0.8
0.7
s s
S 0sf 5
a a
5 05} 5
a o
0.4r
F-test(theoretical)[] F-test(theoretical)|
—06— F-test 0.5F —O— F-test H
=k- EG il == EG
= © = GLRT y = © = GLRT
10 MME [} O MME
-12 -10 -8 -6 -4 -2 0 0>42 3 4 5 6 7 8
Average SNR(dB) M
Fig. 2. Probability of detection versus average SNR, for Py = 0.1, M =4  Fig. 4. Probability of detection v.s. number of antennas M, for Py = 0.1,
and L = 100. L =100 and average SNR= —8dB.
B. Performance under noise uncertainty
As mentioned above, the F'—test based method enjoys the
robustness against noise uncertainty. To validate this property
A numerically, we assume only the estimated noise power 62 =
50-7< ,«*/‘oy, no? is available. The uncertainty 10log;,7 (in dB scale) is
8 x-2 e considered as a uniformly distributed random variable in the
% o6l X PN B ; ; ; . .
2 SRS interval [—E, E]. Note that the estimated noise power is varied
& sl *,~’;K B o Ll in each realization to a certain degree as mentioned above and
: Beald o . .
* o 0 is used to decide the test threshold of energy detector.
040”7 o - rostresraicall Fig.5 shows the detection performance against noise mis-
—test(theoretical
—6— F-tes match £ for M = 4 and average SNR= —8dB. It can be
0'3‘;, ° ::: (ES(ERT I observed that the performance of energy detector degrades
02 : 0 MME severely under mismatched noise variance. For example, in the
107° 10° 107 10° typical uncertainty range Fqp € [1,2] [32], Fig.5(a) indicates
Prob. False alarm ..
that the Py of energy detector far exceeds the target limit
i 3 ROC for M — 4 L — 100 and SNR 8B and Fig.5(b) shows that the corresponding P is substantially
18 3 curve, for =4, £ = 100 and average SNR= —odb. worse than the MME method. On the other hand, the F'—test

To test the impact of the number of antennas M, we choose
the average SNR=—8dB and vary the number of antennas from
2 to 8. Fig.4 shows that when M = 2, the proposed method
has the nearly same test power as energy detector. However,
when M increases, the F'—test based sensing technique has a
significant performance improvement. This is due to the linear
regression involved in the proposed approach, e.g., it takes the
CSI h as the regressor and y(l) as the response variable. In
other words, F'—test here compares the similarity between the
received signal and CSI. Therefore, a higher test power can
be expected when more antennas (larger size of the regressor
h) are available.

based detector, blind GLRT and MME detectors have the
favourite noise-robust property as expected.

C. Performance under channel uncertainty

In the following experiments, we consider the scenario with
imperfect CSI h. In simulation, the error term Ah in (11)
varies in each trial, which is generated by i.i.d. zero-mean
complex Gaussian distributed variable and the variance of each
entry is assumed to be from zero to one, i.e., 0 < az < 1.
Since we have normalized the variance of CSI h, the level of
channel uncertainty can be viewed as from 0% to 100%.

Firstly, to get an insight of the impact of channel uncertainty
to F'—test based method, we plot the normalized histogram of
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Fig. 5. Performance v.s. noise uncertainty F. The performance (a): Py; (b): Py, for desired Py = 0.1, L = 100, M = 4 and average SNR= —8dB.
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Fig. 6. Normalized histogram of the test statistic for F'—test based method under channel uncertainty, (a): T'( h|#o); (b): T'(h|#1). The uncertainty level
is selected as ag =0, 0.2, 0.5 and 0.8, respectively, for M = 4, average SNR= 0dB and L = 100.

the test statistic in Fig.6 for M = 4 and average SNR= 0dB.
The error variance UZ is set as 0, 0.2, 0.5 and 0.8 with the
corresponding uncertainty level as 0%, 20%, 50% and 80%,
respectively. Fig.6(a) shows that the distribution of T'(h|H,)
does not vary with channel uncertainty, which verifies our
analysis in Section IV. While in Fig.6(b), we can find that
the histogram of T(ﬁ|7~[1) shrinks to a smaller value when
o2 rises, which implies that the probability of detection will

decrease with growing channel uncertainty.

Then in Fig.7, the test performance against the channel
uncertainty is presented, with average SNR=-8dB and M = 4.
Note that the line of energy detector with 1dB noise mismatch
acts as a basis of comparison. Fig.7(a) shows that unlike the
energy detector, the false alarm probability of the F'—test
based method is still around the pre-defined level in the situ-
ation with parameter uncertainty. The detection probability of
the proposed detector, as shown in Fig.7(b), has a degradation

under CSI error. However, with channel uncertainty up to
30%, the F'—test still outperforms the ideal energy detector.
Besides, it performs better than the GLRT detector and the
MME detector with channel uncertainty up to 50% and 65%,
respectively. Moreover, compared with energy detector with
1dB noise mismatch, the F'—test has a better performance over
the entire interval of CSI error. In addition, the approximated
value for P; (22) is quite accurate.

In Fig.8, we increase the number of antennas to 8. It
can be observed that the performance loss of F'—test based
approach caused by channel uncertainty becomes insignificant.
For instance, Fig.8(b) shows that the detection probability only
has an up to 11% degradation over the whole uncertainty
interval.

In summary, the F'—test based detector shows the best de-
tection performance at perfect channel estimate and performs
reasonably well for moderate channel uncertainty. Compared
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Fig. 8. Performance v.s. channel uncertainty 03 The performance (a):Pf; (b): P4, for desired Pf = 0.1, L = 100, average SNR=-8dB and M = 8.

with energy detector, its performance is insensitive to noise
mismatch.

VII. CONCLUSION

In this paper, we propose a spectrum sensing method based
on the F—test. The method can be applied for multiple
antenna CR systems without the knowledge of primary signal
and noise statistic. The proposed approach is simple to imple-
ment, enjoys high robustness against uncertain noise level and
achieves significant performance gain. Statistical properties
of F—distribution are applied to derive the test threshold
and evaluate the detection probability. When perfect channel
information is not available, the ['—test based detector suffers
a mild performance loss in probability of detection and its false
alarm probability remains unchanged. Simulations have been
carried out to verify the proposed method. Given its superior
performance and moderate computational complexity, F'—test
based approach is an attractive approach for spectrum sensing.

APPENDIX A
CDF OF F—DISTRIBUTIONS

1) The central F'—distribution

1 1
Wc‘nlm,z(f) = PI(T < l‘) = [k(—'flh —le)7

2 2 @4

where ky2/(n2 + nyz), and I is the incomplete beta
function. The formula for the incomplete beta function

is
11 [T — )l
Ip(z, =nq, =ng) = =2 , (25
w( 2n1 2n2) B(%nl,%ng) (29

where B is the beta function

1 1 ! lni—1 Lno,—1
B(—Th, —Tlg) = t2"t (1 — t)2 272 dt. (26)
2 2 0

2) The noncentral central F'—distribution
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Wn(:.nl,nZ(-T | 62) PI(T(52) < ZL'))

- 1 1
ij?(;zlk(—m +7, —nz),
= 2 2

@27

where (62/2))
wj g2 = exp(f52/2)T.

3) The doubly noncentral central F'—distribution

(28)

Wane,nt,n2(7 | 5%7 5%) = Pr(T(‘s%»&S) <))

oo o0 1 ) 1
=3 wy s Zw_i‘éffk(gnl +igna k). (29)
k=0 J=0
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Abstract—This paper deals with the blind spectrum sensing
problem for arbitrary noise. The majority of current methods
consider the Gaussian noise. However, this assumption cannot
model the impulsive noise due to the artificial source. In this
paper, we remove the requirement on Gaussianity and propose
a detection method based on the bootstrap technique. By using
multiple receiving antennas, the proposed detector exploits the
eigenstructure of sample covariance matrix. Since there is no
closed-form expression for the joint distribution of eigenvalues,
the nonparametric bootstrap resampling is applied to estimate
the null distribution of the test statistic. Simulation results show
that the proposed detector performs well in different noise types
and a performance gain can be expected when the noise is non-
Gaussian.

Index Terms—signal detection, bootstrap, non-Gaussian noise,
spectrum sensing, cognitive radio.

I. INTRODUCTION

Cognitive radio (CR) is a flexible spectral allocation scheme
that opens the licensed band to the secondary user [1]. In order
to avoid harmful interference to the primary user, CR user
must perform spectrum sensing first to detect the presence of
primary signal. Based on different operational requirements,
traditional methods fall into the following categories: energy
detector [2], cyclostationarity-based detector [3], eigenvalue-
based detector [4] and generalized likelihood ratio test (GLRT)
based detection [5]. Most of them are derived from Gaussian
noise. Or, the test threshold and test performance are studied
based on Gaussianity. For the noise due to the natural sources,
such as the thermal noise, the Gaussian model is justified.
However, there still exist man-made noise in CR scenario [6],
which makes the whole noise heavy-tailed or impulsive. Under
such non-Gaussianity, the test performance of aforementioned
methods becomes uncertain.

Only several detection methods have been proposed to deal
with the non-Gaussian noise [7]-[10]. A detector based on
Kolmogorov-Smirnov test is proposed in [7], which requires a
sequence of noise samples in advance. In [8], a GLRT-based
detector is proposed based on the assumption that the noise is
Generalized Gaussian distributed. When the power of channel
gain and noise moments are known, the optimal and sub-
optimal L,—norm detectors can be applied in low signal-to-
noise ratio (SNR) regime [9]. In [10], the polarity-coincidence-
array based approach is proposed which is suitable to the real-
valued signal.

In this paper, a bootstrap-based detector is proposed with

minimal requirements on noise. That is, no assumptions are
made on noise power and noise types. By using multiple anten-
nas at the CR sensor, the proposed method is fundamentally
a binary hypothesis test for the difference between sample
eigenvalues. We assume that when primary signal exists, the
difference between eigenvalues will be relatively larger than
the noise only case. Inspired by [11], bootstrap resampling is
applied to estimate the null distribution of the test statistic.
Note that the bootstrap technique works in arbitrary noise and
does not require large samples. However, when the sample size
is small, as it is in this paper, the bias in sample eigenvalues is
significant and may degrade the test performance. Therefore,
a blindly bootstrap bias correction step is also proposed.

The rest of the paper is organized as follows. The data model
is described in Section II before discussing the hypothesis
test in Section III. In Section IV, the detection procedure
using bootstrap is proposed, including the approximation of
null distribution and bias correction. A brief discussion is
highlighted in Section V and Simulation results are shown
in Section VI. Finally, Section VII concludes the paper.

In this paper, boldface letters and boldface capital letters
represent vectors and matrices, respectively. (-)7 is conjugate
transpose and (-)” indicates transpose. I,; is the identity
matrix of order M. E[-] denotes the statistical expectation.
|] and ||-|| stands for Euclidean norm of a scalar and vector,
respectively.

II. DATA MODEL

Consider a single-input multiple-output (SIMO) CR net-
work where the secondary receiver is equipped with
M antennas. Based on the received signal y(t) =
[y1(t),y2(t), ..., yar(t)]”, the problem of central interest is
to decide whether the primary signal exists or not, which can
be formulated as a hypothesis test:

Ho
Hy

where s(¢) is the zero-mean complex primary signal to be
detected and we assume its power is 2. The flat fading
channel is represented by h = [hy, ha, ..., ha]T, which is
unknown and assumed to be a constant during the sensing
interval. n(t) = [n1(¢),na2(t),...,na(t)]7 represents the
complex noise vector with zero mean and covariance 0,211 M-

y(t) =n(t),
y(t) =hs(t) +n(t), t=1,2,...L, (1)
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L is the sample size. Note that both o2 and ¢ are unknown.
Besides, no assumption is made on the distribution of noise
or signal.

Based on the above signal model, the received data y(t)
can be seen as independent and identically distributed (i.i.d.)
with zero mean and covariance matrix:

Ho Rl/ = a'i:[]u,
H; : Ry, =ac?hh? 4 021y, )

The corresponding eigenvalues [12] A;, ¢ = 1,2, ..., M are

Ho A=A =...=\y =02,
Hy )\1>)\2:...:)\MZO'Z. 3)

The eq (3) has an interpretation that, when H, holds, all
the eigenvalues are contributed by the noise only. However,
when H is true, the largest eigenvalue \; = hho? + o2 is
contributed by both the primary signal and noise.

Based on our assumption, the covariance R, is unknown.
The one we can obtain is the sample covariance matrix

. 1 &
R, = m;y(t)y(t)"- @

When the sample size L is finite, the sample eigenvalue Bis

1 =1,2,..., M obtained from R, are definitely distinct [12]
under both Hy and H;:

B1> P2 >...> Bum. (5)
III. HYPOTHESIS TESTING

By employing the difference of eigenvalues, the hypothesis
test (3) can be converted to

1 M
HO N )\1 — m%)w = 07

1 M
Hi Alfmg)\i>0. (6)

Considering that we can only obtain the sample eigenvalues,
the test statistic is given as follows

N 1 M
Tzﬁlfmi;ﬂi. )

Since the sample eigenvalues (3;, i = 1,2,..., M are distinct
from each other with probability one, the test statistic T will
be nonzero under both Hy and H;. However, a reasonable
assumption can be made that T will be large when primary
signal exists but relatively small in the noise only case.
Therefore, the hypothesis testing problem (6) can be converted
to the following decision rule

Ha

T

AV

s (8)
Ho

where v is the test threshold to ensure a target false alarm

probability defined as follows

Py = Pr(T > ~[Ho). ©)

Note that the evaluation of v needs the null distribution of
the test statistic 7°. To the best of our knowledge, there are
no existing results on the joint distribution of eigenvalues
without additional assumption on the Gaussianity. In this
paper, we shall apply a bootstrap procedure [13] to overcome
this difficulty.

IV. BOOTSTRAP-BASED METHOD

The bootstrap technique is an attractive tool for estimating
parameter or testing hypothesis when conventional methods
are no longer valid. For example, the asymptotic results,
e.g., distributions of eigenvalues derived from random matrix
theory [4], [5], make assumptions on Gaussianity and large
sample size, which are inapplicable to our case. The bootstrap
method, however, is distribution-free and works in small sam-
ples. The principle is that, rather than repeating the experiment,
one creates the bootstrap data sets via randomly resampling
the original sample set with replacement. In this section, we
shall start with a general bootstrap procedure and then apply
it to the proposed detection problem.

A. General concept

Let x = [z1,%2,...,21] be an ii.d sample set from an
unknown distribution F' and 6 denotes an unknown charac-
teristic (e.g., mean or variance of F') estimated by 6. The
problem of interest is to find the distribution of 6 or measure
its estimate accuracy, such as the bias or standard error of 6.
Generally, one approximates those properties of 6 by repeating
the experiment for a sufficient number of times. The bootstrap
method, however, treats the original data x as an empirical
estimate of the true distribution and resamples x directly [14].
A general bootstrap principle is outlined in Table I.

TABLE I
THE BOOTSTRAP PRINCIPLE

1) Given an i.i.d data set x = [z1,@2,...,2L].

2) Draw a bootstrap sample set x* = [z}, z3,...,2]] via
resampling x with replacement. An example can be :
x* = [z1,21,..., 28] .

3) Compute the bootstrap statistic 6* from x*.

4) Repeat 2) and 3) B times to obtain a set of bootstrap statistic
{6*(b),b=1,2,...,B}.

5) Estimate the statistical properties of § from 6* (b).

As an extension of the distribution estimate, the bootstrap
method can also be applied to the hypothesis testing problem.
For a hypothesis testing problem: H : ¥ < 1y against H; :
9 > Uy, the test statistic is defined as

Ty =9 — Y. (10)

852

120



Publications

Globecom 2014 - Cognitive Radio and Networks Symposium

The null distribution of 7}, can be approximated by the
bootstrap statistics {0 (b) — 9} [15]. Given a significance
value (false alarm probability in spectrum sensing) «, one can
compute the test threshold 73 through the following relation

B}:I&

where I[-] denotes the indicator function.

= 9) > ], an

B. Application to the proposed detector
The hypothesis testing problem (6) can be reformulated as

Ho
H1

T=0,
T >0, (12)

M .
where 7' = A\ — 37~ Z)\,; with T' (7) as the estimator. By

definition, T and T are non-negative. As discussed above, the
null distribution of 7" can be approximated by {T*( T} and
one can compute the test threshold  based on those bootstrap
estimates. We summarize the detection procedure in Table II,
where the included eigenvalue bias correction step will be
discussed later.

TABLE 11
DETECTION PROCEDURE USING BOOTSTRAP

Input: Y = [y(1),y(2),...,y(L)].
Target false alarm probability av.
1) Compute the bias corrected sample eigenvalues using Table III
and obtain the test statistic

T =0~ M— 12[31

2) Draw a boolstrap sample set Y* from Y.
3) Compute the bias corrected bootstrap test statistic

‘s
N 1 .
=0i - = 25
i=2
4) Repeat 2) and 3) B times. Ranking the bootstrap statistics as
(F*(1) =) < ... < (T*(k) =) < ... < (T*(B) -
5) From the ordered statistics, choose the index k£ by o =1 — k/BA
The test threshold is obtained as v = 7™ (k) —
H1
Output: Hypothesis testing T E 5.
Ho

As mentioned above, the test statistic T (7) is constructed by
the sample eigenvalues. However, as discussed in [11], [12],
the sample eigenvalue contributed by the primary signal is
asymptotically unbiased, whereas the one contributed by the
noise only is asymptotically biased. When the sample size is
limited, the bias becomes quite significant, e.g., T may be
large even if no primary signal exists. Note that in this paper,
we do not make assumption on large data size. Therefore,
a bias reduction is necessary to ensure accuracy of sample
eigenvalues.

Define the bias of sample eigenvalue [3; as the difference
between the expectation of (; and the exact eigenvalue \;,
that is

Bias(f;) = E(8:) — (13)

Since no assumption is made on the distribution of signal and
noise, we apply the distribution-free bootstrap method [13] to
estimate the bias Bias((;). That is

Bias (Bi) = (14)

2 Z/)’
where B is the bootstrap replications and empirically, B; =
30 gives quite satisfactory results. The corrected sample eigen-
value is given by

Li=1,2,..., M,

B; f; — Bias(B;)

By
1
- =—N"B®),i=12..., M.
Bué@@)% 2,

The bootstrap bias correction procedure is outlined in Table
III. Note that it should be applied to both the test statistic 7'
and bootstrap statistic 77*.

15)

TABLE III
BOOTSTRAP BIAS CORRECTION

Input: Y = [y(1),y(2),...,y(L)].

1) Compute the sample elgenvalues Bi,i=1,2,... M.

2) Draw a bootstrap sample set Y* from Y.

3) Compute the bootstrapped sample eigenvalues:
,i=1,2,... M.

4) Repe‘lt 2) dnd 3) B] times to obtain

Bias(B;) = Bl Zﬁ*

5) Compute the blas reduced sample eigenvalue
i = i — Bias(8;), i = 1,2,..., M

Output: The ordered bias reduced sample eigenvalue
B1>B2>...> By

—Bi,i=1,2,..., M.

V. DISCUSSION

Since both the eigenstructure property ((3) and (5)) and
bootstrap method hold for arbitrary noise, the proposed ap-
proach is nonparametric and enjoys the distribution-free prop-
erty. As shown in Section VI, under non-Gaussianity, several
popular detectors derived in Gaussian become invalid due
to the high false alarm probability. The proposed detector,
however, works for a broad class of noise types and offers
an overall better test performance.

The main issue is the computational complexity, which
grows linearly with B; B. Simulation results show that B1 B in
the order of 10 gives sufficiently accurate results. When the
sample size is moderate, such complexity is compatible with
the computer power today. Moreover, it is comparable to other
popular blind detectors. Take the GLRT-based detector [5] as
an example. To obtain an accurate test threshold in Gaussian,
the analytical expression is complex [16] and the method using
Monte Carlo simulations usually requires 10° trials [5].
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It is worth mentioning that when the noise is Gaussian
distributed, the optimal test is the GLRT-based detection [5]
. In this paper, the GLRT statistic (constructed by the ratio
of sample eigenvalues) is not applied due to the bias issue,
as even the use of bias correction procedure cannot make the
sample eigenvalue be completely equal to the true eigenvalue.
Such bias will have an effect on the accuracy of bootstrap
estimate {¥%(b) — ¥}. The test statistic 7' (7) in this paper is
applied since the bias can be further offset in {17™*(b) — 7'} by
employing the difference between sample eigenvalues.

VI. SIMULATION RESULTS

In this section, we shall present the test performance of the
proposed method by numerical experiments. For comparison,
the popular energy detector (marked with EG) [2], GLRT-

1 T T T T T T
09 1
0.8 4
0.7 1
c
S 06 B
o
2
© 056 4
8 o5
o
S 04f 1
a
03 4
0.2
Bootstrap
——KS§
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0 I I I I I | T
-20 -18 -16 -14 -12 -10 -8 -6 -4
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(b)

Performance under Laplacian noise, for (a): Probability of false alarm versus SNR; (b): Probability of detection versus SNR.

09 1
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Prob. Detection
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K
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T

o ; ; ; ; ; ]
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(b)

Performance under Gaussian Mixture noise, for (a): Probability of false alarm versus SNR; (b): Probability of detection versus SNR.

based detector [5] and Kolmogorov-Smirnov based detector
(marked with KS) [7] are also evaluated. Since the noise type
is unknown, to have a fare comparison, the test thresholds
for energy and GLRT-based detector are calculated using the
results derived in Gaussian [2], [16]. The KS based detector,
which requires a sequence of noise only samples, is another
distribution-free approach and can be applied to any noise
types.

In the following simulations, we assume M = 4 and
a Rayleigh fading channel is considered. Primary signal is
modelled as Gaussian distributed and the sample size is
fixed at L = 100. The target false alarm probability « is
10%. The bootstrap parameter By and B are set as 30 and
300, respectively. To test the distribution-free property of the
proposed detectors, we consider the following noise types that
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are relevant in the context of CR:

1) Generalized Gaussian Model (GGM): GGM is a broad
family which adds a shape parameter to the Gaussian
distribution [17]. It is widely used to model the non-
Gaussian noise such as heavy-tailed and impulsive noise
[18]. The probability density function (pdf) of GGM
with a variance o2 and shape parameter p is given by

pL'(4/p) exp(i

_ In|
= 2ro2(0a/p)? TP e

P,(n) )7, a6

where ¢ 2 (T(2/p)T(4/p)?/? and T(p) =
JoS et da.

The GGM is short-tailed when p > 2 and heavy-tailed
when 0 < p < 2. The Gaussian (p = 2) and Laplacian
(p = 1) distribution are special cases of GGM. In this
paper, the heavy-tailed Laplacian noise is applied.
Gaussian Mixture Model (GMM): GMM is another
popular model to characterize the impulsive noise [19].
The corresponding pdf is

2

N

I 2
¢ |
Py(n) =2 T{;z exp(—~5),

i i

arn

i=1

where ¢;,02 >0, Y1 i =Tand S/ ;02 = 02, A
special case is e-mixture model, where I = 2,¢; = 1—¢
and 02 = 02 /(1 — € + ke). Here, we choose ¢ = 0.06
and x = 10 to model the impulsive man-made noise.

Note that all the results are obtained by averaging 2000
Monte Carlo trails. In addition, the SNR is defined as

o2 |||
SNR & 5.
Mo?2

(18)
The probability of false alarm under Laplacian and Gaussian
Mixture noise are evaluated in Fig.1(a) and Fig.2(a). On one
hand, both the two distribution-free detectors (e.g., bootstrap-
based and KS-based detector) meet the target false alarm rate
and the accuracy of bootstrap method is verified. On the other
hand, the energy detector and GLRT based detector fail in such
non-Gaussianity as their false alarm probability far exceed the
target limit. For instance, given 10% as the target value, the
Py of energy and GLRT-based detector are near 50% and 27%
under Gaussian Mixture noise, respectively. The reason is that
their test thresholds are only known under Gaussian noise.

The detection probability against SNR is described in
Fig.1(b) and Fig.2(b). Note that the performance of energy
and GLRT detector are ignored since the are impaired by the
high false alarm probability. For the rest two detectors, results
show that the proposed bootstrap method offers a better test
performance. For example, as shown in Fig.1(b), to achieve a
90% detection probability, the bootstrap method has a 1.3dB
SNR gain compared with KS detector. In addition, the KS-
based method needs a sequence of noise samples in advance
while the bootstrap method does not.

VII. CONCLUSION

In this paper, we study the blind spectrum sensing problem
in the situation of unknown noise type. The proposed detector
is based on the fact that, the eigenvalue corresponds to the pri-
mary signal is larger than the rest of eigenvalues correspond to
the noise only. The test statistic is derived from the difference
between eigenvalues and its null distribution is estimated by
the bootstrap resampling. When the data length is small, the
bias in sample eigenvalue may make the test statistic under
null and alternative hypothesis not well separated. To improve
the accuracy of test statistic, we also propose a bootstrap
bias correction procedure. Simulation results show that the
proposed bootstrap detection is valid in a variety of noise
types and demonstrate its superiority when the noise is non-
Gaussian.

In addition, several interesting topics are worth to be consid-
ered further. For example, the signal structure can be applied to
achieve a better detection performance, and we can extend the
bootstrap-based sensing by considering the case of multiple
primary transmitters.
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