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Abstract

Faced with imminent spectrum scarcity largely due to in�exible licensed band

arrangements, cognitive radio (CR) has been proposed to facilitate higher spectrum

utilization by allowing cognitive users (CUs) to access the licensed bands without

causing harmful interference to primary users (PUs). To achieve this without the aid

of PUs, the CUs have to perform spectrum sensing reliably detecting the presence or

absence of PU signals. Without reliable spectrum sensing, the discovery of spectrum

opportunities will be ine�cient, resulting in limited utilization enhancement.

This dissertation examines three major techniques for spectrum sensing, which

are matched �lter, energy detection, and cyclostationary feature detection. After

evaluating the advantages and disadvantages of these techniques, we narrow down

our research to a focus on cyclostationary feature detection (CFD). Our �rst con-

tribution is to boost performance of an existing and prevailing CFD method. This

boost is achieved by our proposed optimal and sub-optimal schemes for identifying

best hypothesis test points. The optimal scheme incorporates prior knowledge of the

PU signals into test point selection, while the sub-optimal scheme circumvents the

need for this knowledge. The results show that our proposed can signi�cantly out-

perform other existing schemes. Secondly, in view of multi-antenna deployment in

CR networks, we generalize the CFD method to include the multi-antenna case. This

requires e�ort to justify the joint asymptotic normality of vector-valued statistics and

show the consistency of covariance estimates. Meanwhile, to e�ectively integrate the

received multi-antenna signals, a novel cyclostationary feature based channel estima-

tion is devised to obtain channel side information. The simulation results demonstrate

that the errors of channel estimates can diminish sharply by increasing the sample

size or the average signal-to-noise ratio. In addition, no research has been found that

analytically assessed CFD performance over fading channels. We make a contribu-

tion to such analysis by providing tight bounds on the average detection probability
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over Nakagami fading channels and tight approximations of diversity reception per-

formance subject to independent and identically distributed Rayleigh fading.

For successful coexistence with the primary system, interference management in

cognitive radio networks plays a prominent part. Normally certain average or peak

transmission power constraints have to be placed on the CR system. Depending on

available channel side information and fading types (fast or slow fading) experienced

by the PU receiver, we derive the corresponding constraints that should be imposed.

These constraints indicate that the second moment of interference channel gain is

an important parameter for CUs allocating transmission power. Hence, we develop

a cooperative estimation procedure which provides robust estimate of this parame-

ter based on geolocation information. With less aid from the primary system, the

success of this procedure relies on statistically correlated channel measurements from

cooperative CUs. The robustness of our proposed procedure to the uncertainty of

geolocation information is analytically presented. Simulation results show that this

procedure can lead to better mean-square error performance than other existing esti-

mates, and the e�ects of using inaccurate geolocation information diminish steadily

with the increasing number of cooperative cognitive users.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The conventional spectrum management method, allocating most radio spectrum of

high economic value for licensed use, has caused a phenomenon, �spectrum scarcity�.

It made it seem as though there are no more available radio resources to keep up

with the growing demand of high-data-rate wireless transmission. However, a report,

conducted by the Federal Communications Commission (FCC), indicated that most

licensed bands are not fully utilized. The inconsistency between scarcity and under-

utilization results from in�exible spectrum management. Cognitive radio, the most

promising technology of wireless communications, shows a liberal way out of this in-

consistency by allowing unlicensed access in licensed bands in an opportunistic way.

The accessible licensed bands, which are referred to as spectrum opportunities, can
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1.1. Overview

be categorized in di�erent ways.

First, spectrum opportunities can arise when no licensed-system activities occur

temporarily or geographically in the bands of interest. To discover these opportu-

nities, a CR has to perform the task of spectrum sensing to make it aware of the

surrounding radio environment. Cyclostationary feature detection, one of the meth-

ods for spectrum sensing, has shown its superiority over other methods. Although

this method has existed for decades, there is still much room for innovation when it

comes to applying CFD to CR. One purpose of this thesis is to review recent research

into CFD and discover an e�cient and high-performance CFD scheme.

The second kind of opportunities appears when the licensed transmission can tol-

erate certain levels of interference without performance degradation. In other words,

CR transmission is permitted on the condition that the potential interference to the

licensed system is not harmful.The success of this approach relies on appropriate in-

ference constraints imposed on CR. Meanwhile, CR has to meet these constraints by

exploiting channel side information (CSI). Therefore, there are two fundamental ques-

tions that need to be addressed. What interference constraints should be imposed on

CR by a licensed system? How does CR acquire CSI and manage its radio resources

to meet interference constraints? With this in mind, our second purpose is to answer

these two questions.
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1.2. Previous Work & Author's Contributions

1.2 Previous Work & Author's Contributions

This dissertation contributes to the topics of cyclostationary feature based spectrum

sensing and interference management in cognitive radio.

Cyclostationary Spectrum Sensing

1. Previous Work: Cyclostationary feature detection is a preferred method for

spectrum sensing under low signal-to-noise ratio (SNR) or/and noise uncertainty

scenarios. To determine the presence, or otherwise, of PU signals, conventional

CFD schemes tend to use test statistics over, either, multiple cycle frequencies

for a �xed lag set, or, multiple lags for a �xed cycle frequency. These schemes

are simple to implement, but carry with them the shortcoming of ine�cient

usage of cycle frequencies and lags.

Contribution: This thesis proposed a new method that jointly utilizes cycle

frequencies and lags to produce more reliable test statistics. As the optimal

way to apply this joint utilization requires prior knowledge of the 4th-order

cyclic cumulant, which can be challenging to obtain, an alternative sub-optimal

scheme independent of this cumulant knowledge has been provided. It has been

shown that, in the low SNR region, where it is most critical for CR applications,

the proposed sub-optimal scheme can lead to similar detection performances as

the optimal maximum likelihood technique. It has also been demonstrated that,

compared to multi-cycle-frequency detection with selection combining, equal

gain combining, or maximum ratio combining, the proposed provides superior

performance.
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1.2. Previous Work & Author's Contributions

2. Previous Work: Multi-antenna-assisted CFD has been applied to enhance

spectrum sensing. However, the existing work fails to address essential pre-

requisites for forming asymptotic chi-square testing, such as joint asymptotic

normality and consistency of estimates. Additionally, no attempt was made to

justify the usage of maximum ratio combining in terms of maximizing detec-

tion performance. Another weakness is that there is no guarantee of analytical

reliability of cyclostationary feature based channel estimation.

Contribution: This thesis investigated multi-antenna-assisted cyclostationary

feature based spectrum sensing. First, it has been shown that maximum ra-

tio combining is the optimal linear pre-combining scheme for maximizing the

performance metric. As maximum ratio combining requires CSI, we developed

a blind channel estimation technique based on cyclostationary statistics for

which analytical reliability is guaranteed. For post-combining, which requires

no CSI, two practical schemes, joint combining and sum combining, have been

examined. Especially, we rigorously established the desired joint asymptotic

normality of vector-valued statistics and the consistency of the corresponding

covariance estimates.

3. Previous Work: The relevant research to date tended to focus on analyzing

energy detection over fading channels rather than CFD. Therefore, to obtain

CFD performance in fading environments heavily relies on numerical simula-

tions.

Contribution: We provided an analytical expression of a tight upper bound
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1.2. Previous Work & Author's Contributions

on the average CFD detection performance. This is achieved by simplifying an

argument which appears in the generalized Marcum Q-function. For diversity

reception subject to independent and identically distributed Rayleigh fading,

we were able to derive approximated detection probabilities in a series form

for post addition combining and post selection combining. Provided numeri-

cal results demonstrate that the theoretical detection performance can be well

approximated by our proposed method in the low average SNR region.

Interference Management

1. Previous Work: Generally, the licensed system will impose either a peak-

power or an average-power constraint on CR transmitters, depending on its

quality-of-service type. However, it is not clear what implications of using the

peak-power and average-power constraints are from a physical layer perspective.

Furthermore, it is also interesting to know what CSI is required corresponding

to di�erent constraints.

Contribution: Our analysis has shown that what constraint to place depends

on the channel fading type experienced by the licensed receiver. In slow fading

environments, CR transmission has to satisfy the peak-power constraint with

perfect CSI and the average-power constraint with partial CSI. This average-

power constraint depends on certain outage probability limit. For the case of

fast fading, a dynamic-power constraint has be imposed with perfect CSI, and

a certain ergodic capacity limit has be achieved with partial CSI.

2. Previous Work: Estimation of channel knowledge has been a �eld well studied
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in communications research. Particularly the need for cross-channel information

with CR involved in a cooperative network setting is crucial. Many techniques

in this regard have been suggested in literature, with path loss estimation being

one of them. Two existing path loss estimation schemes are mainly based on

the method of least squares.

Contribution: In this thesis, we have contributed the work on estimating path

loss by adding another measurement that allows for smaller errors in path loss

estimation, which is the de-correlation distance. For a single user system, this

may not result in signi�cant change, but the novelty lies in the performance

achievable for a generally populated radio network. Moreover, the theoretical

proof supports the improved simulation performance that guarantees a lower

mean square error for the proposed estimation approach.

1.3 Description of the Chapters

This thesis has been organized in the following way.

• Chapter 2 begins by reviewing the background knowledge of CR. The most

relevant spectrum-sensing studies and referred techniques will be examined.

• Chapter 3 provides a brief recapitulation of cyclostationary processes and the

2nd-order cyclostationary features. Based on these, a general statistical testing

model in the cycle-frequency-lag domain is introduced. The derived asymp-

totic performance is further exploited to select test points. The optimal and

sub-optimal schemes are proposed and discussed. For the purpose of compar-
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ison with our proposed method, the existing multi-cycle-frequency detection

is succinctly reviewed. Asymptotically statistical properties of cyclostationary

features of a linear modulated signal which is used as a simulation example are

analytically presented.

• Chapter 4 gives a brief recapitulation of the kth-order almost cyclostation-

ary processes and the system model for cyclostationary feature based multiple-

antenna spectrum sensing. The pre-combining and post-combining (including

joint combining and sum combining) schemes are analyzed. The su�cient con-

ditions under which CU cochannel interference will not degrade our proposed

multiple-antenna spectrum sensing performance are presented.

• Chapter 5 addresses analytical performance of CFD over fading channels. It

�rst provides the upper and lower bounds on CFD performance over Nakagami

fading channels. The case of diversity reception subject to independent and

identically distributed Rayleigh fading is investigated based on a tight perfor-

mance approximation.

• Chapter 6 discusses the suitable interference constraints to impose in a licensed-

system perspective. A more realistic CSI assumption is proposed, this is, the

statistical characterization of channels. The method of evaluating large-scale

path losses between the CR and licensed systems is analytically presented.

• Chapter 7 gives conclusions of work already undertaken and their implications.

Future work is also presented.
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CHAPTER 2

LITERATURE REVIEW

2.1 Cognitive Radio

CR is a paradigm of integrating computational intelligence and wireless technology

in which both radio environment and user needs are considered to provide personal-

ized wireless communications services [1, 2]. The �radio environment� demonstrates

enormous variety, ranging from arti�cial radio regulations to physical interference

level�in other words all perceivable information describing the surrounding wireless

environment. Hence, to allow CR to work properly, recognizing the radio environ-

ment, becomes an indispensable step. For instance, a remarkable application enabled

by CR is spectrum pooling which permits spectrum renting between licensed and un-

licensed users [3]. The radio environment that needs to be recognized by unlicensed

users in this application is exploitable licensed bands.
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2.1. Cognitive Radio

Figure 2.1: Spectrum occupancy measurements in a rural area (top), near Heathrow
airport (middle) and in central London (bottom)

2.1.1 Remedy for Spectrum Scarcity

In November 2002, the Federal Communications Commission issued a report exam-

ining the spectrum utilization at the time and providing recommendations [4]. This

report shed new light on the issue of spectrum scarcity, i.e., running out of usable

radio frequencies. One informed comment stated that

�In many bands, spectrum access is a more signi�cant problem than physi-

cal scarcity of spectrum, in large part due to legacy command-and-control

regulation that limits the ability of potential spectrum users to obtain

such access.�

In other words, the spectrum scarcity faced is largely due to in�exible spectrum

access in untapped licensed bands which are identi�ed in [5]. A similar phenomenon

of ine�cient spectrum utilization (see Fig. 2.11) was also observed by the O�ce

of Communications (Ofcom). As can be seen in this �gure, a signi�cant portion of

1Ofcom, Cognitive Radio Webpage, <http://stakeholders.ofcom.org.uk/market-data-
research/technology-research/research/emerging-tech/cograd/>
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radio resources was left unused especially in rural areas. This observation led to a

remark, [6]

�Such measurements indicate the potential gains that might be accrued

from a system which was able to sense its radio environment and utilise

it e�ectively,�

suggesting the adoption of CR-like technologies to enable the access to underutilized

licensed bands. Television (TV) whitespaces, the frequency bands assigned to TV

broadcasting services but not in use in a speci�c location, were the �rst licensed

bands where unlicensed operation was approved by the FCC in November 2008. It

was expected that a new wave of innovations would arrive in the coming years. Indeed,

several novel whitespace applications were proposed such as an alternative rural link,

wireless backhaul of a Wi-Fi hotspot, and local TV broadcasting. Later a CR-based

standard, IEEE 802.22-2011, was �nalized to enable rural broadband wireless access in

TV whitespaces. The deployment of LTE in TV whitespaces with CR was also under

consideration [7]. As a remedy for spectrum scarcity and the enabling technology of

new services, CR has become an increasingly important research area in recent years.

2.1.2 Prerequisite of License-exempt Access

The prerequisite of successful license-exempt operation in licensed bands is no harm-

ful interference to legacy (primary) systems. This is attained respectively in three

principal CR network schemes: underlay, overlay, and interweave [8].

In the underlay scheme, the interference caused by cognitive transmitters to the
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(a) Spectrum holes in time. (b) Spectrum holes in space.

Figure 2.2: Spectrum holes.

receivers of legacy systems has to be restricted to an accepted level. For the purpose

of evaluating interference level, a performance metric, interference temperature, has

been proposed by FCC [9]. Based on this metric, the network capacity analysis, taking

account of large-scale channel fading, has shown limited performance bene�ts [10].

When the knowledge of small-scale fading between a cognitive transmitter and a

primary receiver is utilized, a dynamic transmission power allocation can result in a

signi�cant gain [11]. However, this knowledge is generally unavailable to the underlay

CR system except when the channel reciprocity can be exploited.

The full interference immunity is achieved in the overlay scheme at the cost of

requiring information on codebooks and messages of the primary transmission. By

making use of more available information, an advanced precoding technique can be

applied to completely mitigate interference seen by the receivers of the overlay CR

system or the primary system. To provide an incentive for the primary system to

share its information, the cognitive transmitter can partially serve as its relay node.
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The interweave scheme allows a cognitive user to access temporarily or geograph-

ically unused licensed bands. These accessible spectrum opportunities either in time

or in space are known as spectrum holes as shown in Fig. 2.2. To access spectrum in

this opportunistic way, the interweave CR system is required to monitor primary user

activities. There are three main approaches to collecting information about the PU

activities, i.e., auxiliary beacon, geolocation database, and spectrum sensing. The

auxiliary beacon approach is proposed to protect wireless microphones in TV whites-

paces. At the PU location, enabling/disabling beacons have to be broadcast with

stronger power to inform the CR system of the spectrum occupancy status [12]. The

realistic design of beacon signaling and transmission is detailed in [13, 14]. The ge-

olocation database can provide a list of available vacant channels to a GPS-equipped

CU according to the CU's location, device type, and so on [15]. This approach has

proved applicable to primary systems that have static or slowly varying channel usage

patterns, such as TV broadcasting. A location-speci�c algorithm for the calculation

of permitted CU transmission power in TV whitespaces is presented in [16]. Spectrum

sensing requires the CR system to blindly detect the presence of the PU transmission

in the vicinity using signal processing techniques. Thus, the burden of identifying

vacant channels is largely shifted to the CU side. In addition, di�erent from the bea-

con approach, spectrum sensing has to perform successfully even if the signal level

of the PU transmission is very low. As the PU signals might be deeply faded in

wireless channels, it raises the so-called hidden node problem. One way to overcome

this problem which relies on collaboration among spatially distributed CU devices is

known as cooperative sensing. Due to its applicability to dynamic PU channel usage
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patterns and placing less burden on the PU side, spectrum sensing is still an active

research topic and is regarded as a promising long-term solution.

2.2 Spectrum Sensing

Borrowing terms from Computer Science and Cognitive Science, Simon Haykin, in

2005, gave a more engineering related de�nition of CR with two speci�c goals, that is,

reliable communications and e�cient spectrum utilization [17]. In order to interact

with the radio frequency (RF) environment, the acquisition of knowledge of the sur-

rounding environment, such as interference level, spectrum holes, and CSI, is involved

in cognitive tasks. An alternative term of white spaces, �spectrum holes�, was clearly

de�ned in the same document,

�A spectrum hole is a band of frequencies assigned to a primary user, but,

at a particular time and speci�c geographic location, the band is not being

utilized by that user.�

In licensed bands, identifying these spectrum holes is signi�cant in terms of increas-

ing spectrum utilization. Nevertheless, using some band in the mistaken belief that a

spectrum hole is in existence is having a serious e�ect, i.e., causing harmful interfer-

ence to PUs. In fact, �nding out spectrum holes is dual to being aware of the presence

of PUs. The technique for accurately determining the existence of spectrum holes or

PUs on a CR device (or by a cognitive user) is referred to as spectrum sensing.

Providing reliable communications within the CR system requires su�ciently ac-

cessible spectrum. In order to achieve this, CR will probably sense over a frequency
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span of several gigahertz-wide. It makes the high sensitivity to weak PU signals be-

come a harsh requirement on an RF front-end of a CR device. Therefore, spectrum

sensing cannot achieve high sensitivity without the aid of digital signal processing [18].

Depending on di�erent knowledge levels of PU signal characteristics, there are three

main digital signal processing techniques for spectrum sensing: matched �lter, energy

detection, and cyclostationary feature detection.

It is worth the e�ort of clarifying the di�erence between spectrum sensing and

spectrum estimation. The latter focuses on accurately measuring spectrum in terms

of unbiasedness, consistency, and high resolution [19]. Thus, spectrum estimation also

provides a CR device the knowledge of the radio scene. However, spectrum sensing

in this thesis emphasizes the accuracy of detecting active PUs. Here, the knowledge

of the radio scene is referred to as the existence of PUs rather than the values of the

spectrum. Though these values of the spectrum might be used to form a test statistic,

the more important thing is what characteristic makes a PU signal stand out from

background noise or interference. This characteristic might be a unique shape of a

waveform or the spectrum, or an energy level. The three spectrum sensing techniques

which are going to be introduced are exactly the detection strategies given di�erent

characteristic descriptions of a PU signal.

2.2.1 Formation of Detection Problems

Detecting the possible existence of the PU transmission is basically a problem of the

binary hypothesis testing. Let the noise-only case be the null hypothesis H0 and the
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PU-present case be the alternative hypothesis H1. The received discrete-time signal

{Yn}∞n=0 under each hypothesis is expressed as

H0 : {Yn}∞n=0 = {Zn}∞n=0 , noise only,

H1 : {Yn}∞n=0 = {Xn + Zn}∞n=0 , PU present, (2.1)

where {Zn}∞n=0 denotes additive white Gaussian noise (AWGN) samples with the

sample distribution N (0, σ2
Z) and the sample variance σ2

Z , and {Xn}∞n=0 represents

the samples of the PU transmitted signal. It is assumed that no interference comes

from other PUs or CUs.

Based on this hypothesis model, two terms of interest can be de�ned, i.e., the

probability of detection Pd and the probability of false alarm Pf . The probability

of detection is the odds that the hypothesis H1 is regarded as true when it is true.

The odds that the hypothesis H1 is regarded as true while it is not are named as

the probability of false alarm. These two probabilities play an important role in

evaluating the performance of a spectrum sensing technique. For the purpose of

increasing spectrum utilization, the preliminary step is to discover potentially usable

frequency bands. In the case of the binary testing, it is to make the right decision when

the noise-only hypothesis is true, i.e. to make Pf as low as possible. While trying to

accurately identify the available frequency band, CR has to avoid causing interference

to the PU. Such disturbance could occur when CR chooses the null hypothesis in the

presence of the PU and then decides to use that frequency band. Therefore, to

maintain a reasonable high probability of detection Pd is also necessary.
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It has been recognized that increasing Pd and lowering Pf are two con�icting goals

for given observations y = [Y1, Y2, . . . , YN ]
′
of the �xed length N , where ′ denotes

the transpose. The next-best thing that can be achieved is maximizing Pd under

the constraint of Pf = α. This optimum criterion is known as Neyman-Pearson

approach [20]. This criterion decides H1 if the likelihood ratio Λ (y) is no less than a

threshold λ, i.e.

Λ (y) =
fy|H1 (y|H1)

fy|H0 (y|H0)
≥ λ, (2.2)

where fy|H1 (y|H1) stands for the joint distribution of the vector y under H1, and the

threshold λ is derived from

Pf =

∫
{y:Λ(y)≥λ}

fy|H0 (y|H0) dy = α. (2.3)

2.2.2 Matched Filter Detection

The matched �lter is an optimum coherent detection method in terms of maximizing

the SNR. This technique requires the knowledge of the PU signal at a CU. In fact there

exist pilots, training symbols, or spreading codes in PU signals that can be exploited

by the CU. For example, in the standard IEEE 802.16-2009, one or two prede�ned

OFDM symbols are used for the initial acquisition. Because of prior knowledge, the

CU is enabled to distinguish the PU's signal from interference and noise. Another

advantage of the matched �lter is its shorter time, due to requiring less observations,

to satisfy the desired probability of false alarm than other schemes [18].
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To do coherent detection involves the timing synchronization or channel estima-

tion. In other words, the performance of matched �lter is subject to imperfect syn-

chronization [21]. Moreover, for sensing intended PUs of di�erent systems, there

should be di�erent dedicated algorithms [22]. Hence the high implementation com-

plexity is inevitable when the matched �lter detection is applied to multiple-PU sens-

ing.

In matched �lter detection, the transmitted PU signal vector x=[X1, X2, . . . , XN ]
′

with energy Ex , x
′
x is regarded as deterministic and known to the CU. The test

statistic derived from the likelihood ratio is T (y) , y
′
x [20]. The distribution of

T (y) is given by

H0 : T (y) ∼ N (, σZEx),

H1 : T (y) ∼ N (Ex, σ

ZEx). (2.4)

Given a false alarm probability constraint, the test threshold can be computed as λ =√
σ2
ZExQ

−1 (Pf ), where Q
−1 (·) denotes the inverse Q-function. Hence the detection

probability Pd of this threshold is

Pd = Q

(
λ− Ex√
σ2
ZEx

)
= Q

[
Q−1 (Pf )−

√
SNR

]
, (2.5)

where SNR , Ex/σ2
Z.

In Rayleigh fading channel, the received signal is rede�ned to be Yn = |h|Xn+Zn,

where the channel gain |h| is Rayleigh distributed fray (x;σray) = x
σ2
ray

exp
(
−x2

2σ2
ray

)
.

The observation time of y is assumed to be less than the coherence time of the
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channel, so the channel gain does not vary signi�cantly during this period. Therefore

the distribution of the test statistic under the alternative hypothesis can be recast to

be

H1 : T (y) ∼ N (|h|Ex, σ

ZEx). (2.6)

With the same test threshold as the previous one for the same Pf , the probability of

detection conditioned on the channel gain is given by

Pd (|h|) = Q

(
λ− |h|Ex√

σ2
ZEx

)
= Q

[
Q−1 (Pf )− |h|

√
Ex

σ2
Z

]
, (2.7)

and then the average probability of detection can be expressed as

P̄d =

∫ ∞
0

Pd (|h|) fray (|h| ;σray) d |h| . (2.8)

Figure 2.3 presents the detection performance of the matched �lter in an AWGN

channel. The sample size is N = 25. The solid lines indicate the analytical results

which are in agreement with the simulated results denoted by di�erent marks. It

can be seen that lowering the order of the desired Pf does signi�cantly decrease the

detection probability. The detection performance in a Rayleigh fading channel is

shown in Fig. 2.4. The X-axis coordinate in this �gure is the average SNR, 2σ2
rayEx/σ2

Z.

For σray = 1/
√

2, the results show that the detection performance is seriously degraded

by fading e�ects at higher SNR.
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Figure 2.3: Matched �lter detection in an AWGN channel.
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Figure 2.4: Matched �lter detection in a Rayleigh fading channel.
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2.2.3 Energy Detection

Di�erent from the matched �lter detection, energy detection is a noncoherent ap-

proach to spectrum sensing and in turn introduces less implementation complex-

ity [18]. This approach just measures the collected energy of the received signal and

compares it to the test threshold. Without ties with prior knowledge of the PU's

signal, energy detection is more applicable to wideband spectrum sensing [21].

Although measuring energy is straightforward, energy detection does not work

satisfactorily at the low SNR region [22], where the sensing ability of a CU should

reach. For instance, spread spectrum signals with very low SNR per chip cannot be

e�ciently detected by energy measuring [18, 22]. Such shortcoming can be solved

by more sophisticated spectrum sensing techniques or the cooperation with other

CUs. However, it is still hard to distinguish the PU's signal from interference of the

energy level which is higher than the noise �oor [18, 22]. This is a consequence of

having no knowledge of the PU's signal. Furthermore, in energy detection, the test

threshold determined by the noise level is supposed to be known and is constant. In

practice, there is a variation of noise �oor, causing the poor performance [18, 21, 22].

To overcome this problem requires a reliable algorithm to monitor the noise level

constantly.

Let's review this technique �rst and analyze its vulnerability to the noise variation

in the next section. As its name suggests, energy detection uses the normalized energy

of the received signal T (y) = y
′
y/σ2

Z as the test statistic whose probability density

function (PDF) is given by [20]
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H0 : T (y) ∼ χ2
N ,

H1 : T (y) ∼ χ2
N(Ex/σ


Z), (2.9)

where χ2
N represents the chi-square distribution of N degrees of freedom and its

cumulative distribution function is denoted by Fχ2
N

(·), and χ2
N(γ) denotes the non-

central chi-square distribution of N degrees of freedom with noncentrality γ and the

corresponding cumulative distribution function is Fχ2
N (γ) (·). The test threshold for

the given Pf is

λ = F−1
χ2
N

(1− Pf ) , (2.10)

where F−1
χ2
N

(·) is the inverse function of cumulative distribution of χ2
N . The probability

of detection can be computed as

Pd = 1− Fχ2
N(Ex/σ2

Z) (λ) = QN/2

(√
Ex/σ2

Z ,
√
λ

)
, (2.11)

where QM (a, b) is the generalized Marcum Q-function.

In the case of a Rayleigh fading channel, the distribution of the test statistic under

the alternative hypothesis is now given by

H1 : T (y) ∼ χ2
N

(
|h|2Ex/σ

2
Z

)
. (2.12)

The probability of detection conditioned on the channel gain is

36



2.2. Spectrum Sensing

Pd (|h|) = 1− Fχ2
N(|h|2Ex/σ2

Z) = QN/2

(√
|h|2Ex/σ2

Z ,
√
λ

)
. (2.13)

With this in mind, the average probability of detection is given by

P̄d =

∫ ∞
0

Pd (|h|) fray (|h| ;σray = 1/
√

2) d |h| ,

=

∫ ∞
0

QN/2

(√
|h|2Ex/σ2

Z ,
√
λ

)
2 |h| exp

(
− |h|2

)
d |h| , (2.14)

which can be computed through the formula [23]

∫ ∞
0

|h| exp

(
−p2 |h|2

2

)
QM (a |h| , b) d |h| ,

=
1

p2
exp

(
−b2

2

){(
p2 + a2

a2

)M+1
[

exp

(
a2b2

2p2 + 2a2

)
−

M−2∑
n=0

1

n!

(
a2b2

2p2 + 2a2

)n]

+
M−2∑
n=0

1

n!

(
b2

2

)n}
. (2.15)

Figures 2.5 and 2.6 show the detection performance of energy detection in an

AWGN channel and a Rayleigh fading channel respectively. The simulation param-

eters are the same as those in the previous section. As shown in these two �gures,

the analytical results (solid lines) are consistent with the simulated results (marks).

Also, similar to what has been observed in the matched �lter detection, the channel

fading makes it harder to improve detection probability by increasing SNR.

E�ect of Noise Uncertainty

As mentioned in the previous section, energy detection is subject to the variation of

noise �oor, also known as noise uncertainty. The noise uncertainty can be viewed

37



2.2. Spectrum Sensing

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

pr
ob

ab
ilit

y 
of

 d
et

ec
tio

n

 

 

P
f
=10−1

P
f
=10−2

P
f
=10−3

P
f
=10−4

P
f
=10−5

Figure 2.5: Energy detection in an AWGN channel.
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Figure 2.6: Energy detection in a Rayleigh fading channel.
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as a con�dent interval of the estimate of noise power. There are several sources

of noise uncertainty, such as calibration errors, changeable thermal noise, a time-

varying low noise amplify (LNA) gain [24]. All of them contribute to non-ergodic

characteristics of noise, which cannot be described by a stationary noise model. So,

it is reasonable to assume that there is always some uncertainty level no matter how

accurate the estimation technique is. In [24, 25], a rough range of noise uncertainty

at a receiving end is shown to be ±1dB. When the SNR ratio is su�ciently high, the

noise uncertainty does not cause problems. However, when it decreases to below some

level, a performance bound will be created due to this noticeable noise uncertainty.

The derivation of this performance bound can be found in [26, 27]. Here we derive

this performance bound in our setting, following the argument in [26].

Under the assumption of noise uncertainty, the test statistic becomes T (y) =

y
′
y/σ̂2

Z , where the variance σ̂
2
Z is the estimation result of actual noise power σ2

Z . The

real noise power might be time-varying and ranges between the interval
[

1
ρ
σ̂2
Z , ρσ̂

2
Z

]
in which ρ is called as the uncertainty gain. This uncertainty gain is assumed to

be greater than one. Because of the time-varying characteristic, the underlying as-

sumption of Gaussian distribution might not hold anymore. In spite of that, if the

statistical deviation is relatively small and the uncertainty gain is not too large, the

probability density function of the test statistic will keep the same form, that is,

H0 : T (y) ∼ χ2
N ,

H1 : T (y) ∼ χ2
N(NPx/σ


Z), (2.16)
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where Px , Ex/N. If the sample size N is large enough, then by central limit the-

ory, the distribution of the normalized test statistic T̃ (y) , (σ̂2
Z/N) T (y) can be

approximated by Gaussian distribution, i.e.,

H0 : T̃ (y) ∼ N
(
σ̂Z ,

σ̂Z
N

)
,

H1 : T̃ (y) ∼ N
(
σ̂Z + Px,

σ̂Z
N

+
Pxσ̂


Z

N

)
. (2.17)

The probability of false alarm, as a function of the estimated noise power, is given by

Pf
(
σ̂2
Z

)
= Q

(
(λ/σ̂2

Z)√
2/N

)
. (2.18)

The Q-function is monotonically decreasing, so the possible false alarm probability

will be in the range [Pf (σ̂2
Z/ρ) , Pf (ρσ̂2

Z)]. The robust setting of the test threshold, in

terms of achieving the target probability of false alarm P
(?)
f under noise uncertainty,

is to have Pf (ρσ̂2
Z) = P

(?)
f . It follows that

λ = ρσ̂2
Z

[
1 +

√
2

N
Q−1

(
P

(?)
f

)]
. (2.19)

Similarly, the probability of detection will range between [Pd (σ̂2
Z/ρ) , Pd (ρσ̂2

Z)]. To

achieve the target probability of detection P
(?)
d robustly, Pd (σ̂2

Z/ρ) has to be made

equal to P
(?)
d , i.e.,

40



2.2. Spectrum Sensing

−10 −8 −6 −4.33 −2 0 2 4 5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

pr
ob

ab
ili

ty
 o

f m
is

si
ng

 (1
−P

D
)

 

 

N=102

N=103

N=104

N=105

SNR wall

Figure 2.7: An illustrative simulation of SNR wall phenomenon.

P
(?)
d = Q

 λ−
(
σ̂2
Z

ρ
+ Px

)
√(

2σ̂4
Z

ρ2 +
4Pxσ̂2

Z

ρ

)
/N

 ,

= Q

ρ2Q−1
(
P

(?)
f

)
+
√
N/2 (ρ2 − 1− ρ2SNR)

√
1 + 2ρSNR

 . (2.20)

Normally, any given target detection probability P
(?)
d can be reached by increasing

the sampling number N . However, this requires the term (ρ2 − 1− ρ2SNR) to be

less than zero, which implies that the Q-function can increase monotonically with

the increasing number N . Thus, the minimum required SNR can be calculated and

denoted as the SNR wall, i.e.,

SNRwall =
ρ2 − 1

ρ2
. (2.21)

If the value of SNR is less than SNRwall, there will be some target detection
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2.2. Spectrum Sensing

probabilities, which cannot be achieved no matter how large is the sampling num-

ber N . The value of N has been assumed to be su�ciently large. Hence, the term√
N/2 (ρ2 − 1− ρ2SNR) becomes dominant and makes the detection probability ap-

proaching zero when increasing N . Figure 2.7 is a plot of (2.20) over di�erent sample

sizes, demonstrating the phenomenon of the SNR wall. The simulation parameters

respectively are: Pf = 0.1, ρ = 1.26 and SNRwall = −4.33dB. As can been seen in this

�gure, the probability of missing (1 − Pd) cannot be reduced further by increasing

the sample size if the value of SNR is below SNRwall. In other words, making the

sample size larger will not improve the detection performance once the operational

SNR region is not beyond the SNR wall.

2.2.4 CFD

Most of modulated signals in communications, such as analog TV signals, AM and FM

signals, and digital modulated signals, can be modeled as cyclostationary processes

[28].

A zero-mean complex-valued discrete-time random process {Xn}∞n=0 is said to be

second-order almost-cyclostationary in the wide sense [29, 30] if its autocorrelation

function RX [n; τ ] , E[XnX
∗
n+τ ] for a given time lag τ exhibits periodicity for a

collection of periods T = {T0, T1, . . .}, i.e.,

RX [n; τ ] = RX [n+ T ; τ ] , T ∈ T , (2.22)

where E is expectation and ∗ denotes complex conjugate. This periodic autocorrela-
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tion function accepts the Fourier-series expansion given by

RX [n; τ ] =
∑
α∈A

Rα
X [τ ] eiαn, (2.23)

where the set A = {α ∈ (−π, π]; α = 2πk/T, k ∈ Z} is a collection of cycle frequen-

cies. The Fourier coe�cients Rα
X [τ ] are known as the cyclic autocorrelation function

(CAF) which can be evaluated by

Rα
X [τ ] = lim

N→∞

1

N

N−1∑
n=0

RX [n; τ ] e−iαn. (2.24)

Several CAFs of standardized PU signals are provided in [31]. A counterpart of

the CAF, the conjugate CAF, can be de�ned similarly. In this chapter, however,

we con�ne the discussion to the CAF. A process is claimed to exhibit a 2nd-order

cyclostationary feature (or cyclostationarity) if its CAF Rα
X [τ ] is non-zero for some

cycle frequency α and some lag τ . The CAFs of an orthogonal frequency division

multiplexing (OFDM) signal and a linear modulated signal are respectively presented

in Fig. 2.8 and Fig. 2.9. The patterns of these features depend on the modulation

types, coding schemes, and so on. By utilizing these unique features, CFD is claimed

to be robust to varying noise and able to distinguish di�erent modulated signals with

the same power spectrum densities [32].

To obtain cyclostationary features requires a sampling rate higher than Nyquist

rate and a su�cient sensing time to achieve reliable estimates [33]. However, by

exploiting the sparsity of cyclostationary features, the sub-Nyquist-sampling approach

to performing CFD becomes feasible [33�35]. Moreover, a sequential CFD framework
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Figure 2.8: CAF of an OFDM signal.
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Figure 2.9: CAF of an linear modulated signal.
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for average sensing time reduction has been proposed in [36].

2.3 Conclusions

In this chapter, we have introduced the concept of CR and its potential applications.

As a remedy for spectrum scarcity, CR is required to identify accessible licensed

bands while maintaining acceptable interference to licensed users. The issue of how

to manage interference in three main CR network schemes has been brie�y discussed.

Then the focus shifts to spectrum sensing, a long-term solution to monitoring dynamic

primary user activities in the interweave CR network.

Three major digital signal processing techniques for spectrum sensing have also

been respectively examined. CFD stands out from the other two techniques, matched

�lter detection and energy detection. It is because that CFD is more robust to noise

uncertainty compared to energy detection [37], and requires less prior knowledge of

the PU signals compared to matched �lter detection in which exact knowledge of PU

signals is expected. The next chapter will continue to explore the potential usage of

CFD.
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CHAPTER 3

CYCLOSTATIONARY SPECTRUM SENSING

3.1 Introduction

Cyclostationary features appear in the common communication signals, such as OFDM

signals and linear modulated signals. Based on these features, the binary hypothesis

testing can be formed to determine the presence of PUs or otherwise. In the cyclic

spectrum, the points selected for statistical testing are normally those of the maxi-

mum magnitude and usually the probability distribution of the formed test statistic

is available under the null hypothesis [38, Eq.(10.26) ] [39, Eq.(33)]. Due to lack

of statistical descriptions under the alternative hypothesis, the likelihood-ratio test

cannot be performed, thus the best detection performance for a given false alarm rate

(FAR) is not guaranteed by using these test points. An alternative way to choose test

points is provided in [40]. This however relies on extensive computer simulations to
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3.2. CFD in Cycle-Frequency-Lag Domain

determine the test points that maximize the performance metric. In [29], Dandawate

developed a generalized likelihood-ratio test (GLRT) by using CAFs. CAF involves

two dimensions, the cycle-frequency domain and the lag domain. As this test was

initiated for blindly detecting the existence of cycle frequencies, the test points are

those in the lag domain for a given test cycle frequency. The criterion for selecting

the test points (or equivalently the test multiple lags) is to use a single or two lags

of maximum absolute cyclic autocorrelation [41,42]. Methods for utilizing the cycle-

frequency domain are proposed in [42, 43]. Basically, for a given set of lags, the test

statistics, formed over multiple cycle frequencies, are combined by using one of three

typical schemes, i.e., selection combining (SC), equal gain combing (EGC), and max-

imum ratio combining (MRC). As the detection performance can only be evaluated

by simulation, the combination of the test lag set and the combining scheme that

leads to the optimal detection performance is not analytically investigated. Another

strategy for linearly combining test statistics over multiple cycle frequencies in some

optimal sense is investigated in [44]. In this chapter, this category of statistical testing

is referred to as multi-cycle-frequency detection.

3.2 CFD in Cycle-Frequency-Lag Domain

This section aims to provide an optimal scheme to select the best test points in

the cycle-frequency-lag (CFL) domain. The optimality claimed is achieved when

the asymptotic detection performance for a �xed FAR is maximized. Though the

asymptotic optimality in the Neyman-Pearson sense is not guaranteed, the asymptotic
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3.2. CFD in Cycle-Frequency-Lag Domain

detection performance for a �xed FAR provides a sensible benchmark for choosing test

points in CAF. A similar approach can be found in [41,45], in which it was restricted

to choosing a single test point. To reach our goal, we �rst generalize the one-dimension

2nd-order statistical testing model proposed by Dandawate to the CFL domain. Based

on the derived asymptotic detection probability, we identify the required optimal test

points (or the corresponding multiple cycle frequencies and lags) by an exhaustive

search. Knowledge of the 4th-order cyclic cumulant of a PU signal, which is required

in this optimal scheme, is not normally available a priori. Therefore, an alternative

scheme that does not require knowing this cyclic cumulant is proposed. This scheme

will be shown to lead to comparable detection performance achieved using the optimal

scheme in the low signal-to-noise ratio region.

3.2.1 System Model

Consider that the PU signal is a zero-mean second-order almost-cyclostationary ran-

dom process {Xn}∞n=0. Based on prior knowledge of the CAFs of PU signals, we are

able to formulate the statistical test for the presence of cyclostationarity over multiple

cycle frequencies and lags. Let the received signal {Yn}∞n=0 under the noise-only and

PU-present hypotheses be presented as

H0 : {Yn}∞n=0 = {Zn}∞n=0 , noise-only,

H1 : {Yn}∞n=0 = {Xn + Zn}∞n=0 , PU-present, (3.1)
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3.2. CFD in Cycle-Frequency-Lag Domain

where the PU signal {Xn}∞n=0 is a zero-mean complex-valued second-order almost-

cyclostationary process with variance σ2
X , {Zn}

∞
n=0 is a circularly-symmetric white

Gaussian process with variance σ2
Z , and these two processes are assumed uncorre-

lated. The SNR is de�ned as σ2
X/σ2

Z. Given the CAF Rα
X [τ ] of the PU signal, M

points in the CFL domain, chosen for statistical testing, are denoted by the test

set J = {(α1, τ1), . . . , (αM , τM)}. The coordinate of the ith point is (αi, τi) and its

corresponding cyclic autocorrelation Rαi
X [τi] is assumed to be non-zero. Then a CAF-

estimation vector can be established for testing the presence of cyclostationarity over

these parameters based on N observations, that is,

r̂JY [N ] ,

 ûJY [N ]

v̂JY [N ]

 , (3.2)

where

ûJY [N ] ,
[
Re
{
R̂α1
Y [τ1;N ]

}
, . . . ,Re

{
R̂αM
Y [τM ;N ]

}]′
, (3.3)

and

v̂JY [N ] ,
[
Im
{
R̂α1
Y [τ1;N ]

}
, . . . , Im

{
R̂αM
Y [τM ;N ]

}]′
, (3.4)

in which Re{·} and Im{·} represent the real and imaginary parts of an argument, and

the superscript ′ denotes the transpose. The consistent estimation R̂α
Y [τ ;N ] of the

received signal's CAF Rα
Y [τ ] is provided as
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3.2. CFD in Cycle-Frequency-Lag Domain

R̂α
Y [τ ;N ] ,

1

N

N+min{0,−τ}−1∑
n=max{0,−τ}

YnY
∗
n+τe

−iαn,

= Rα
Y [τ ] + εαY Y [τ ;N ] , (3.5)

where εαY Y [τ ;N ] denotes the estimation error. The notion of N will be omitted from

now on for simplicity. Asymptotic distributions of the CAF-estimation vector r̂JY

under two hypotheses can be shown to be

H0 : lim
N→∞

√
N r̂JY

D
= N (0, ΣY ),

H1 : lim
N→∞

√
N r̂JY

D
= N

(√
NrJY ,ΣY

)
, (3.6)

where the symbol
D
= denotes �the left hand side converges in distribution to� and

N indicates a multivariate normal distribution. The vector rJY and the matrix

ΣY respectively represent the limiting vector rJY = limN→∞ E[r̂JY ] and the limiting

autocovariance matrix ΣY = limN→∞Cov(
√
N r̂JY ,

√
N r̂JY ), in which Cov (a,b) ,

E[(a− E [a]) (b− E [b])H ] and the symbol �H� denotes Hermitian transpose. An

alternative expression of the matrix ΣY , which will be used in Section 3.3, is pro-

vided here. Let's de�ne the complex vector ŵJY = ûJY + iv̂JY , the covariance ma-

trix Cŵ = limN→∞Cov(
√
NŵJY ,

√
NŵJY ), and the complementary covariance matrix

C̄ŵ = limN→∞Cov(
√
NŵJY ,

√
N(ŵJY )H). By making use of [46, Eq.(2.21-22) ], the

matrix ΣY can be recast as

ΣY =


Re(Cŵ+C̄ŵ)

2

Im(−Cŵ+C̄ŵ)
2

Im(Cŵ+C̄ŵ)
2

Re(Cŵ−C̄ŵ)
2

 . (3.7)
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The (i, j)th entries of Cŵ and C̄ŵ are given respectively by

ci,j = lim
N→∞

NCov(R̂αi
Y [τi], R̂

αj
Y [τj]), (3.8)

and

c̄i,j = lim
N→∞

NCov(R̂αi
Y [τi], R̂

αj∗
Y [τj]). (3.9)

Due to (3.6), a GLRT can be formed, giving the �nal test statistic Λ = N(r̂JY )
′
Σ̂−1
Y r̂JY

where Σ̂−1
Y signi�es a mean-square sense consistent estimation of the matrix Σ−1

Y . The

asymptotic probability density functions of this test statistic under two hypotheses

are provided respectively,

H0 : lim
N→∞

Λ
D
= χ2

2M ,

H1 : lim
N→∞

Λ
D
= χ2

2M

(
N
(
rJY
)′

Σ−1
Y rJY

)
. (3.10)

For a constant false alarm rate Pf , the asymptotic detection probability can be shown

to be

Pd = 1− F
χ2

2M

(
N(rJY )

′
Σ−1
Y rJY

) (λ) , (3.11)

where the detection threshold λ is chosen such that Pf = 1−Fχ2
2M

(λ). The asymptotic

normality exploited in (3.6) is a natural extension of the results in [29] when testing

over multiple cycle frequencies. The explicit method for obtaining Σ̂−1
Y is detailed

in [29, 47]. The convergence in distribution under H1 in (3.10) is proved in Section

3.A. We will refer to this system model as joint-utilization detection.
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3.2.2 Selecting Test Points for Joint-Utilization Detection

As the asymptotic detection performance in (3.11) is available, the asymptotically

optimal set of test points for hypothesis testing might be chosen for any given false

alarm rate. Unfortunately, it has been shown that, generally, no global optimum exists

in terms of providing the best asymptotic detection performance over all SNR regions

for a constant FAR [48]. In that analysis an alternative asymptotic distribution under

H1 is used, i.e., when N
(
rJY
)′

Σ−1
Y rJY �M ,

H1 : lim
N→∞

Λ ∼ N
(
N
(
rJY
)′

Σ−1
Y rJY , 4N

(
rJY
)′

Σ−1
Y rJY

)
, (3.12)

where α1 = · · · = αM in J . Although this distribution is conditionally true, it is su�-

cient to prove the absence of the global optimum when the more accurate asymptotic

distribution in (3.10) is considered. As a result, a suitable lag set for testing should

be a locally asymptotic optimum, depending on the SNR region within which a CU

is working. This is especially realizable when the received SNR can be estimated at a

CU end. However, to use (3.11) as a benchmark requires knowledge of the covariance

matrix ΣY . The evaluation of this matrix involves 4th-order cyclic cumulant calcu-

lation, which is normally hard to perform under the alternative hypothesis. While

a consistent estimator of this matrix exists, it is not an e�cient way to do this es-

timation for each possible combination of lags. In order to circumvent the di�culty

of calculating the 4th-order cyclic cumulant and o�er an e�cient evaluation of this

covariance matrix, we restrict our test-set selection to the low SNR region. Certainly,

this region where a CU is highly likely to cause harmful interference to a PU is critical
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for a CR system and it is well worth the e�ort to enhance detection performance by

using a suitable test set in this region. On the other hand, doing hypothesis testing

with optimal single point or points of maximum CAF magnitude, as shown in Section

3.4.3, could be su�ciently good for other SNR regions.

In our system model, the undecided test set J = {(α1, τ1), . . . , (αM , τM)} will be

determined based on the asymptotic detection probability Pd for which prior knowl-

edge of the cyclostationary process {Xn}∞n=0 is required. Let ÂCFL = {α̂1, · · · , α̂K} be

a collection of cycle frequencies of interest and L̂CFL = {τ̂1, · · · , τ̂L} be a set of feasible

lags. The test set J will consist of test points in which αi ∈ ÂCFL and τi ∈ L̂CFL for

1 ≤ i ≤M ≤Mmax where Mmax is an upper bound on the cardinality of J .

Optimal Selection Scheme

As shown in (3.11), several parameters, such as the target FAR Pf , the sample size

N , the SNR value, and the CAF of the PU signal, are required to specify Pd. Once

these parameters are given, the optimal test set Jopt of length Mopt can be chosen by

maximizing Pd, that is,

(Jopt,Mopt) = arg
J ,M<Mmax

maxPd. (3.13)

This test set Jopt is said to be locally asymptotically optimal because it depends on

the initial parameters and Pd is achieved for su�ciently large N . To check if there

exists any simpler way to identify Jopt, let's recast the detection probability as Pd =

Q2M(
√
N(rJY )′Σ−1

Y rJY ,
√
λ). The monotonicity of Qm(a, b) indicates that Pd is strictly
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increasing in M and N(rJY )
′
Σ−1
Y rJY , and is strictly decreasing in λ [49]. However, it is

impossible to increase M and decrease λ simultaneously due to F (λ; 2M) = 1 − Pf

for a �xed Pf . Moreover, there is no explicit description to show how the quantity

(rJY )
′
Σ−1
Y rJY varies with M . In other words, using more or less test points in terms

of larger or smaller M does not necessarily lead to higher Pd. Even if the optimal

length Mopt is known, �nding out Jopt that maximizes (rJY )
′
Σ−1
Y rJY will still rely on

the exhaustive search over all possible sets J = {(α1, τ1), . . . , (αMopt , τMopt)} unless

the matrix Σ−1
Y is an identity matrix.

Sub-optimal Selection Scheme

In the previous section, the asymptotic detection performance used for identifying

proper test points involves a theoretical covariance matrix ΣY under H1 . As shown

in [48], to evaluate this matrix requires knowledge of the 4th-order cyclic cumulants of

the PU signal and the noise. When considering the white Gaussian noise, it is not hard

to obtain its 4th-order cyclic cumulant. Nevertheless, to the best of our knowledge,

only a few cyclic cumulant expressions of discrete-time communication signals are

available. To circumvent the di�culty of obtaining this cyclic cumulant, we provide

an approximated inverse matrix Σ̃−1
Y of Σ−1

Y under H1 in the low SNR region. Thus,

an alternative approximate detection performance P̃d , 1− P (λ; 2M,N(rJY )
′
Σ̃−1
Y rJY )

can be used to facilitate the identi�cation of desired test points.

Let's de�ne ΣZ , ΣY under H0 and decompose ΣY under H1 as
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H1 : ΣY = ΣZ + Σ∆,

where Σ4, ΣY −ΣZ . In the following proposition, we will show that the inverse Σ−1
Y

under H1 can be well approximated by Σ−1
Z in the low SNR region. A special case of

this proposition in which ΣZ is an identity matrix has been shown in [50]. However,

in our proposition, the matrix ΣZ only has to be positive de�nite.

Proposition 1. Given a test set J = {(α1, τ1) , . . . , (αM , τM)} if the corresponding

2M × 2M matrices ΣY and ΣZ are positive de�nite. Then each entry of the matrix(
Σ−1
Y − Σ−1

Z

)
approaches zero as the SNR ratio goes to zero.

Proof. See Section 3.B.

With this proposition, we are eligible to use Σ−1
Z as Σ̃−1

Y and replace Pd with P̃d

in (3.13), yielding the sub-optimal test set Jsub of length Msub, that is,

(Jsub,Msub) = arg
J ,M<Mmax

maxP̃d. (3.14)

Compared with the optimal scheme, this sub-optimal scheme requires less knowledge

and leads to the similar performance in the low SNR region which will be shown in

numerical results.

3.2.3 Multi-Cycle-Frequency Detection

In multi-cycle-frequency detection [42, 43], a couple of test statistics are formed over

di�erent cycle frequencies and then combined to be the �nal test statistic. Let's

de�ne ÂMD = {α̂1, . . . , α̂K} and L̂MD = {τ̂1, . . . , τ̂L} respectively as the sets of cycle
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frequencies and lags of interest. For any given cycle frequency α ∈ ÂMD, a test set

is given by J α = {(α, τ1), . . . , (α, τm)} with its corresponding test statistic Λm (α),

which is obtainable by following the steps in Section 3.2.1. Typically, the lag set

Lαm = {τ1, . . . , τm} of cardinality m = 1 or 2 in use is a collection such that |Rα
X [τ ] | =

max{|Rα
X [ρ] | |ρ ∈ L̂MD} for τ ∈ Lαm. That is, Lα1 includes a single lag of maximum

absolute cyclic autocorrelation, and Lα2 includes two. Thus, we can obtain a collection

of test statistics over the cycle frequencies of interest {Λm (α) |α ∈ ÂMD}. Using any of

the di�erent diversity schemes, SC, EGC, and MRC, these test statistics are combined,

yielding the �nal test statistics, i.e., for m ∈ {1, 2},

ΛSC

m = max
α∈ÂMD

Λm (α) , (3.15)

ΛEGC

m =
∑

α∈ÂMD

Λm (α) , (3.16)

and

ΛMRC

m =
K∑
k=1

wkΛm (α̂k) , (3.17)

where

wk =
Λm (α̂k)√∑K
k=1 Λ2

m (α̂k)
. (3.18)

The asymptotic or approximated distributions of these �nal test statistics under the

null hypothesis and their cumulative distributions are discussed in [42�44].
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For the sake of completeness, it is worthwhile commenting on the complexity of

our proposed joint-utilization detection relative to the multi-cycle-frequency detec-

tion technique. In the case of joint-utilization, the test sets selected by both optimal

and sub-optimal schemes are parameter-dependent. In other words, the test sets are

not necessarily the same over di�erent initial parameter settings. In contrast, the

test sets used in multi-cycle-frequency detection are �xed. Also, in our technique, it

is required to have information, such as the fourth-order cyclic cumulants of the PU

signal and the background noise, which is not a requirement in multi-cycle-frequency

detection. Finally, while the requirement of the exhaustive search approach in joint-

utilization detection is undesirable, as most PU signals in the licensed bands are

standardized, the test sets to be exploited in joint-utilization detection can be deter-

mined in advance, hence eliminating the need for an exhaustive search. Furthermore,

the joint-utilization detection promises superior performance in the low SNR region.

3.3 Case Study of Linear Modulated Signal

For illustration, we examine an example for which the theoretical CAF vector rJY and

covariance matrix ΣY under H1 are both obtainable. Let the PU signal be the linear

modulated signal with its samples Xn =
∑∞

k=−∞ akp(nTs − kTsym), where Ts is the

sampling interval, Tsym is the symbol interval, ak denotes independent and identically

distributed zero-mean complex-valued symbols from a �nite alphabet with E[ana
∗
n] =

σ2
a and E[|an|4] = ηaσ

2
a, and p (t) is a rectangular pulse of value 1 for 0 ≤ t < Tsym

and value 0 elsewhere. This PU signal Xn is second-order almost-cyclostationary
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with the cycle frequency α = 2πκ/Nsym for some κ ∈ {k ∈ Z|k ∈ (−Nsym/2, −Nsym/2]}

where Nsym = Tsym/Ts. We restrict the possible value of τ to |τ | < Nsym. Given N

received samples {Yn}N−1
n=0 , the theoretical vector rJY and matrix ΣY under PU-present

hypothesis are derived as follows. A property, to be used, is provided below.

Property 1. For a given τ such that |τ | < Nsym, let p (nTs − kTsym) p ((n+ τ)Ts − lTsym)

be de�ned as F2p (n; τ ; k, l), then F2p (n; τ ; k, l) = 1 when k = l and kNsym+max {0,−τ} ≤

n < (k + 1)Nsym + min {0,−τ}.

Proof. It can be easily shown that p (t) p(t+ ξ) = 1 for |ξ| < Tsym and max {0,−ξ} ≤

t < Tsym + min {0,−ξ}. As F2p (n; τ ; k, l) can be expressed as p(t̂)p(t̂+ ξ̂) where t̂ =

nTs− kTsym and ξ̂ = τTs + (k − l)Tsym, we have the result that F2p (n; τ ; k, l) = 1 for

|τ+(k − l)Nsym| < Nsym and kNsym+max{0,−ξ̂} ≤ n < (k + 1)Nsym+min{0,−ξ̂}.

Due to the presumption |τ | < Nsym, a necessary condition for F2p (n; τ ; k, l) = 1 to

be true is k = l.

Due to rJY = limN→∞ E
[
r̂JY
]
and ŵJY being the alternative form of r̂JY , we seek to

evaluate the vector wJY , limN→∞ E
[
ŵJY
]
instead of rJY . The ith entry wi of wJY can

be presented as

wi = lim
N→∞

1

N

N+min{0,−τi}−1∑
n=max{0,−τi}

E
[
YnY

∗
n+τi

]
e−iαin,

= lim
N→∞

1

N

N+min{0,−τi}−1∑
n=max{0,−τi}

E
[
XnX

∗
n+τi

+ ZnZ
∗
n+τi

]
e−iαin,

by using the fact E
[
XnZ

∗
n+τi

+ ZnX
∗
n+τi

]
= 0. Applying Property 1 to the �rst part

of the previous limit yields
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lim
N→∞

1

N

N+min{0,−τi}−1∑
n=max{0,−τi}

E
[
XnX

∗
n+τi

]
e−iαin

= lim
N→∞

σ2
a

N

N+min{0,−τi}−1∑
n=max{0,−τi}

∞∑
k,l=−∞

F2p (n; τi; k, l) e
−iαin,

= lim
K→∞

σ2
a

KNsym

K−1∑
nq=0

Nsym+min{0,−τi}−1∑
nr=max{0,−τi}

e−iαinr ,

=
σ2
a

Nsym

Nsym+min{0,−τi}−1∑
nr=max{0,−τi}

e−iαinr , (3.19)

where n is replaced by nqNsym +nr for 0 ≤ nr < Nsym and N by KNsym. The second

part of the limit is given by

lim
N→∞

1

N

N+min{0,−τi}−1∑
n=max{0,−τi}

E
[
ZnZ

∗
n+τi

]
e−iαin = σ2

Zδ (τi) δ (αi) , (3.20)

where δ (·) represents a function that maps zero to one and any other real number to

zero. Finally, we evaluate wi as the sum of (3.19) and (3.20).

To obtain ΣY requires knowledge of the entries ci,j and c̄i,j of Cŵ and C̄ŵ. These

two entries can be further expanded as

ci,j = lim
N→∞

NCov
(
R̂αi
X [τi] , R̂

αj
X [τj]

)
+ lim

N→∞
NCov

(
R̂αi
Z [τi] , R̂

αj
Z [τj]

)
+ lim
N→∞

1

N

N−1∑
n=0

N−1−n∑
ξ=−n

{RXZZX [n; τi, ξ + τj, ξ] +RZXXZ [n; τi, ξ + τj, ξ]} e−j(αi−αj)nejαjξ,

(3.21)

and
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c̄i,j = lim
N→∞

NCov
(
R̂αi
X [τi] , R̂

αj∗
X [τj]

)
+ lim

N→∞
NCov

(
R̂αi
Z [τi] , R̂

αj∗
Z [τj]

)
+ lim
N→∞

1

N

N−1∑
n=0

N−1−n∑
ξ=−n

{RXZZX [n; τi, ξ, ξ + τj] +RZXXZ [n; τi, ξ, ξ + τj]} e−j(αi+αj)ne−jαjξ,

(3.22)

where RABCD [n; τ1, τ2, τ3] , E
[
AnB

∗
n+τ1,

Cn+τ2D
∗
n+τ3

]
. The six limits which appear in

(3.21) and (3.22) are evaluated in Section 3.C.

3.4 Numerical Results

3.4.1 Exploiting Multiple Lags

Let the PU signal be the 16-QAM linear modulated signal in which Nsym = 4. In this

section, we evaluate the performance in the lag domain for a �xed cycle frequency, that

is, ÂCFL = {α0 = 2π/4} and L̂CFL = {−3,−2,−1, 0, 1, 2, 3}. The simulation parameters

are chosen as follows. Three test sets used for illustration are given respectively by,

J1 = {(α0, 3)}, J2 = {(α0,−3), (α0, 3)}, and J3 = {(α0,−3), (α0,−2), (α0, 2), (α0, 3)}.

The SNR region of interest is restricted to the range between −20dB and −8dB. The

size of test samples is N = 4000.

Fig. 3.1 compares the analytical asymptotic detection performance Pd in (3.11)

with the simulated detection performance in which the detection is performed by using

the test statistic Λ = N(r̂JY )
′
Σ̂−1
Y r̂JY . The simulated detection probability is obtained

by averaging over 10000 Monte Carlo runs. It is apparent from this �gure that the

used sample size N is su�ciently large as the simulated performance approaches the
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Figure 3.1: The comparison of the theoretical detection performance and the simu-
lated detection performance over di�erent lag sets, J1, J2, and J3, given Pf = 0.1.
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Figure 3.2: Detection probability vs. false alarm rate for the lag set J2 over di�erent
SNR ratios.
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Figure 3.3: Theoretical detection probability vs. false alarm rate for di�erent multiple
lags selection schemes at SNR=-14dB.

analytical asymptotic performance. With the same sample size and �xed lag set J2,

the corresponding receiver operating characteristic (ROC) curves of the analytical

and simulated results are presented in Fig. 3.2. As can be seen from this �gure, there

is a signi�cant improvement in detection performance from the lower SNR ratio to

the higher. The same level of improvement can be observed from analytical results

and simulated results. Because there is no notable di�erence between analytical and

simulated results for the given parameter setting, the analytical performance Pd can

be used to assess the e�ectiveness of our proposed test-point selection schemes.

For the given �xed SNR ratio −14dB, the analytical probability of detection ver-

sus false alarm rate for di�erent test-point selection schemes is depicted in Fig. 3.3.

This �gure shows that, for any given FAR, the detector based on the proposed sub-

optimal scheme outperforms that using test set {(α0, τ̄1)} or {(α0, τ̄1), (α0, τ̄2)}, in
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which |Rα
X [τ ] | = max{|Rα0

X [ρ] | |ρ ∈ L̂CFL} for τ ∈ {τ̄1, τ̄2}. Furthermore, the pro-

posed scheme leads to the best performance which is achieved by the optimal scheme

for this given low SNR ratio. As claimed before, our proposed selection schemes give

parameter-dependent test sets so they are likely to use di�erent test sets at di�er-

ent simulated points over the performance curves. Thus, the explicit optimal and

sub-optimal test sets, used at each simulated point, are not listed in the �gure for

compactness.

3.4.2 Jointly Exploiting Multiple Cycle Frequencies and Lags

The simulation parameters for comparing performance of our proposed schemes and

multi-cycle-frequency detection are listed below. ÂCFL = {−α0, α0, 2α0}, Mmax = 6,

ÂMD = {α0, 2α0}, L̂MD = L̂CFL, Lα=α0
1 = {2}, and Lα=2α0

1 = {1}. In ÂCFL and ÂMD,

the case of zero-valued cycle frequency is not considered because the test points for

α = 0 are subject to noise uncertainty and interference. Another three test sets

with multiple cycle frequencies and lags are given by J4 = {(α0, 1), (2α0, 1)}, J5 =

{(α0, 1), (2α0, 1), (α0, 3), (2α0, 3)}, and J6 = {(2α0,−3), (α0,−2), (α0, 1), (α0, 2)}. The

parameters not listed are the same as those in the previous section.

The comparison between analytical and simulated performances over test sets with

multiple cycle frequencies and lags, J4, J5, and J6, is depicted in Fig. 3.4. It shows

that the analytical performance curve can match the simulated curve in the SNR

region of interest for these general test sets as expected when the sample size is large.

This veri�es that the derived analytical CAF vector rJY and covariance matrix ΣY
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Figure 3.4: The comparison between analytical performance and simulated perfor-
mance over di�erent sets J4, J5, and J6, given Pf = 0.1.
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Figure 3.5: Detection probability vs. false alarm rate for the set J5 over di�erent
SNR ratios.
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Figure 3.6: Probability of detection vs. false alarm rate for the optimal and sub-
optimal selection schemes and multi-cycle-frequency detection at SNR=-12dB.

under H1 of the PU signal are both accurate. When restricted to the test set J5, the

analytical ROC curves in Fig. 3.5 demonstrate that for any given FAR, the analytical

value of Pd can approach the simulated value. This will justify the following part of

using the analytical asymptotic performance as a benchmark, in which the analytical

optimal results are compared to the sub-optimal results and multi-cycle-frequency

detection results in terms of ROC curves.

Fig. 3.6 presents detection probability versus false alarm rate at SNR=-12dB

over di�erent test statistics formed by our proposed schemes or combining schemes

in multi-cycle-frequency detection. The probability of detection corresponding to the

optimal scheme or the sub-optimal scheme is obtained based on (3.11). For SC and

EGC in multi-cycle-frequency detection, the detection performance is a simulation

result averaged over 10000 Monte Carlo runs, where the detection thresholds are
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Figure 3.7: Probability of detection vs. false alarm rate for the optimal and sub-
optimal selection schemes and multi-cycle-frequency detection at SNR=-16dB.

calculated based on the cumulative distributions provided in [42]. As the approx-

imated distribution of the test statistic of MRC [43, 44] is not su�ciently accurate

for our setting, the performance curve of MRC is acquired via extensive simulations

over a range of thresholds to �nd the best detection probability and false alarm rate

for comparison purposes. From this �gure, we can see that our proposed schemes of

jointly using cycle-frequencies and lags signi�cantly outperform multi-cycle-frequency

detection whether SC, EGC, or MRC are used. Simulation results at SNR=-16dB

presented in Fig. 3.7 also show the comparative enhancement of our proposed.

3.4.3 Higher SNR Region and Smaller Sample Size

Previous analytical and simulated results focus on the low SNR region with su�cient

samples. It is intriguing to know what will happen if the operation moves to the
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Figure 3.8: Theoretical detection probability vs. false alarm rate for di�erent multiple
lags selection schemes at SNR=-5dB.
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Figure 3.9: Probability of detection vs. false alarm rate for the optimal and sub-
optimal selection schemes and multi-cycle-frequency detection at SNR=-5dB.
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higher SNR region with smaller sample size. In Fig. 3.8 and Fig. 3.9, we reexamine

the ROC curves at SNR=-5dB where the smaller sample size N = 400 is used. As can

be seen from these two �gures, the proposed sub-optimal scheme no longer achieves

the optimal performance in this higher SNR region. Though this sub-optimal scheme

can still provide decent performance, other existing schemes may outperform it.

3.5 Conclusions

This chapter has investigated cyclostationary feature spectrum sensing based on

jointly utilizing multiple cycle frequencies and multiple lags. Using the generalized

statistical testing model in the cycle-frequency-lag domain, an optimal scheme for se-

lecting test points has been proposed. To reduce the required prior knowledge about

PU signals, a practical method with comparable performance in the low SNR region

was also developed. When restricted to a speci�c cycle frequency, using test points

chosen by our proposed schemes, rather than using a single or two points of maxi-

mum absolute cyclic autocorrelation, can lead to notably superior performance. In

the CFL domain, the results demonstrated superiority of our proposed over multi-

cycle-frequency with SC, EGC, and MRC detection methods.

Preliminary results of using multiple lags have been published in IEEE Signal Pro-

cessing Letters [51], and the work of the joint utilization approach has been accepted

for publication by IEEE Transactions on Signal Processing [52].
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3.A Proof of Asymptotic Distribution

In [47], it has been shown that, in the case of αi = αj for αi, αi ∈ J , the asymptotic

distribution of the test statistic Λ under H1 can be approximated by the non-central

chi-square distribution. However, a stronger statement can be made, that is, this

test statistic converges in distribution to a non-central chi-square distributed random

variable. The test statistic Λ is the squared norm of the vector
√
NΣ̂

−1/2
Y r̂JY . By

making use of (3.6) and [53, Corollary 1.7], it can be shown that this vector con-

verges in distribution to a Gaussian random vector, that is, limN→∞
√
NΣ̂

−1/2
Y r̂JY

D
=

N (
√
NΣ

−1/2
Y rJY , I). Using the same corollary again and [53, Lemma 3.5], we reach a

conclusion that the statistic Λ converges in distribution to a non-central chi-square

distributed random variable with 2M degrees of freedom and a non-centrality param-

eter N(rJY )
′
Σ−1
Y rJY .

3.B Proof of Proposition 1

Due to ΣY being positive de�nite, there exists an orthonormal matrix Q such that

ΛY = Q
′
ΣY Q where ΛY denotes a diagonal matrix with diagonal entries {λY,n}2M

n=1.

This matrix Q can also diagonalize ΣZ and Σ∆. Thus we have diagonal matrices

ΛZ = Q
′
ΣZQ and Λ∆ = Q

′
Σ∆Q with their diagonal entries {λZ,n}2M

n=1 and {λ∆,n}2M
n=1

and the inequality λZ,n + λ∆,n = λY,n > 0.

The matrix Σ−1
Y can be expanded as
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Σ−1
Y = (ΣZ + Σ∆)−1 ,

= QDQ
′
,

where D = (ΛZ + Λ∆)−1. The nth diagonal element of D is given by dn = 1/(λZ,n+λ∆,n).

We recast dn as

dn =
1

λZ,n
− λ∆,n

λZ,n (λZ,n + λ∆,n)
. (3.23)

As each entry of Σ4 is a linear combination of terms such as E [XiXjXkXl] and

E [XiXjZkZl], we can represent λ4,n as anσ
4
X + bnσ

2
Xσ

2
Z for some an, bn ∈ R+. Simi-

larly, λZ,n can be expressed as cnσ
4
Z for some cn ∈ R+. Thus, dn converges to 1/λZ,n

as the SNR ratio approaches zero due to

∣∣∣∣ λ∆,n

λZ,n (λZ,n + λ∆,n)

∣∣∣∣ =
|anσ4

X + bnσ
2
Xσ

2
Z |

cnσ4
Z (cnσ4

Z + anσ4
X + bnσ2

X)
,

=

∣∣anSNR2 + bnSNR
∣∣

cnσ4
Z

(
anSNR

2 + bnSNR + cn
) .

Consequently, Σ−1
Y converges to Σ−1

Z and the required result follows.

3.C Evaluation of Limits

Here we only provide the derivation of the �rst limit in (3.21). The evaluation results

of the other limits in (3.21) and (3.22) are just listed.

Let's represent limN→∞NCov
(
R̂αi
X [τi] , R̂

αj
X [τj]

)
as
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lim
N→∞

1

N

N−1∑
n=0

N−1−n∑
ξ=−n

{R4X [n; τi, ξ + τj, ξ]

−RX [n; τi]R
∗
X [n+ ξ; τj]} × e−j(αi−αj)nejαjξ, (3.24)

where R4X [· · · ] , RXXXX [· · · ]. The fourth-order moment R4X [n; τ, ξ + ρ, ξ] can be

further expanded as

R4X [n; τ, ξ + ρ, ξ]

=
∞∑

i=−∞

ηaσ
4
aF4p (n; τ, ξ + ρ, ξ; i = j = k = l)

+
∞∑

i,k=−∞

σ4
aF4p (n; τ, ξ + ρ, ξ; i = j 6= k = l)

+
∞∑

i,k=−∞

σ4
aF4p (n; τ, ξ + ρ, ξ; i = l 6= j = k) , (3.25)

where

F4p (n; τ1, τ2, τ3; i, j, k, l) ,

p (nTs − iTsym) p ((n+ τ1)Ts − jTsym)

× p ((n+ τ2)Ts − kTsym) p ((n+ τ3)Ts − lTsym) .

Some properties for the case, |τ | < Nsym and |ρ| < Nsym, are provided below.

Property 2. F4p (n; τ, ξ + ρ, ξ; i = j = k = l) = 1 when i = nq, max {0,−τ} ≤ nr <

Nsym + min {0,−τ}, and −nr + max {0,−ρ} ≤ ξ < Nsym − nr + min {0,−ρ}.

Property 3. F4p (n; τ, ξ + ρ, ξ; i = j 6= k = l) = 1 when i = nq, max {0,−τ} ≤ nr <

Nsym + min {0,−τ}, and (k − i)Nsym − nr + max {0,−ρ} ≤ ξ < (k − i+ 1)Nsym −
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nr + min {0,−ρ}.

Property 4. F4p (n; τ, ξ + ρ, ξ; i = l 6= j = k) = 1 when i = nq and either (1) or (2),

where (1) denotes −Nsym < τ < 0, −Nsym < ρ < 0, 0 ≤ nr < −τ , and −nr ≤ ξ <

−nr − ρ, and (2) denotes 0 < τ < Nsym, 0 < ρ < Nsym, Nsym − τ ≤ nr < Nsym, and

Nsym − nr − ρ ≤ ξ < Nsym − nr.

Property 5. F2p (n; τ ; i = j)F2p (n+ ξ + ρ;−ρ; k = l) = 1 when i = nq, max {0,−τ} ≤

nr < Nsym+min {0,−τ}, and (k − i)Nsym−nr+max {0,−ρ} ≤ ξ < (k − i+ 1)Nsym−

nr + min {0,−ρ}.

Table 3.1

R4X [n; τ, ξ + ρ, ξ]−RX [n; τ ]R∗X [n+ ξ; ρ]

−Nsym < τ < 0
−Nsym < ρ < 0

= (ηa − 1)σ4
a, if −τ ≤ nr < Nsym and

−nr − ρ ≤ ξ < Nsym − nr.
= σ4

a, if 0 ≤ nr < −τ and −nr ≤ ξ < −nr − ρ.
0 < τ < Nsym

0 < ρ < Nsym

= (ηa − 1)σ4
a, if 0 ≤ nr < Nsym − τ and

−nr ≤ ξ < Nsym − nr − ρ.
= σ4

a, if Nsym − τ ≤ nr < Nsym and
Nsym − nr − ρ ≤ ξ < Nsym − nr.

τρ ≤ 0 = (ηa − 1)σ4
a, if

max{0,−τ} ≤ nr < Nsym + min{0,−τ} and
−nr + max{0,−ρ} ≤ ξ < Nsym − nr + min{0,−ρ}.

Applying Properties 1-5 gives Table 3.1, the evaluation of

R4X [n; τ, ξ + ρ, ξ]−RX [n; τ ]R∗X [n+ ξ; ρ] (3.26)

for di�erent combinations of the pair (τ, ρ). Making use of this table in (3.24), we

obtain the required limit
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lim
N→∞

NCov
(
R̂αi
X [τi] , R̂

αj
X [τj]

)
=

(ηa − 1)σ4
a

Nsym

Nsym+min{0,−τi}−1∑
nr=max{0,−τi}

Nsym−nr+min{0,−τj}−1∑
ξ=−nr+max{0,−τj}

e−j(αi−αj)nrejαjξ

+ δ [sign (τiτj)− 1] δ [sign (τi) + 1]
σ4
a

Nsym

−τi−1∑
nr=0

−nr−τj−1∑
ξ=−nr

e−j(αi−αj)nrejαjξ

+ δ [sign (τiτj)− 1] δ [sign (τi)− 1]
σ4
a

Nsym

Nsym−1∑
nr=Nsym−τi

Nsym−nr−1∑
ξ=Nsym−nr−τj

e−j(αi−αj)nrejαjξ,

(3.27)

where the function sign (·) extracts the sign of a real number.

The other limits in (3.21) and (3.22) are given as follows.

lim
N→∞

NCov
(
R̂αi
X [τi] , R̂

αj∗
X [τj]

)
=

(ηa − 1)σ4
a

Nsym

Nsym+min{0,−τi}−1∑
nr=max{0,−τi}

Nsym−nr+min{0,−τj}−1∑
ξ=−nr+max{0,−τj}

e−j(αi+αj)nre−jαjξ

+ δ [sign (τiτj) + 1] δ [sign (τi) + 1]
σ4
a

Nsym

−τi−1∑
nr=0

−nr−1∑
ξ=−nr−τj

e−j(αi+αj)nre−jαjξ

+ δ [sign (τiτj) + 1] δ [sign (τj) + 1]
σ4
a

Nsym

Nsym−1∑
nr=Nsym−τi

Nsym−nr−τj−1∑
ξ=Nsym−nr

e−j(αi+αj)nre−jαjξ.

(3.28)

lim
N→∞

NCov
(
R̂αi
Z [τi] , R̂

αj
Z [τj]

)
= σ4

Zδ (αi − αj) δ (τi − τj) . (3.29)

lim
N→∞

NCov
(
R̂αi
Z [τi] , R̂

αj∗
Z [τj]

)
= σ4

Zδ (αi + αj)
{
δ (τi) δ (τi − τj) + [1− δ (τi)] δ (τi + τj) e

−jαjτi
}
. (3.30)
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lim
N→∞

1

N

N−1∑
n=0

N−1−n∑
ξ=−n

{
RXZZX [n; τi, ξ + τj, ξ] e

−j(αi−αj)nejαjξ
}

=
σ2
aσ

2
z

Nsym

ejαj(τi−τj)δ [sign (|τi − τj| −Nsym) + 1]

Nsym+min{0,−(τi−τj)}−1∑
nr=max{0,−(τi−τj)}

e−j(αi−αj)nr .

(3.31)

lim
N→∞

1

N

N−1∑
n=0

N−1−n∑
ξ=−n

{
RXZZX [n; τi, ξ, ξ + τj] e

−j(αi+αj)ne−jαjξ
}

= δ [sign (|τi + τj| −Nsym) + 1]
σ2
aσ

2
z

Nsym

e−jαjτi
Nsym+min{0,−(τi+τj)}−1∑
nr=max{0,−(τi+τj)}

e−j(αi+αj)nr . (3.32)

lim
N→∞

1

N

N−1∑
n=0

N−1−n∑
ξ=−n

{
RZXXZ [n; τi, ξ + τj, ξ] e

−j(αi−αj)nejαjξ
}

=
σ2
aσ

2
z

Nsym

δ [sign (|τi − τj| −Nsym) + 1]

 {δ [sign (τi − τj)− 1] + δ [sign (τi − τj)]}

×


Nsym+min{0,−τi}−1∑
nr=max{0,−τj}

e−j(αi−αj)nr + δ [sign (τi) + 1]

−τi−1∑
nr=0

e−j(αi−αj)nr

+δ [sign (τj)− 1]

Nsym−1∑
nr=Nsym−τj

e−j(αi−αj)nr

+ δ [sign (τi − τj) + 1]

×


Nsym+min{0,−τj}−1∑
nr=max{0,−τi}

e−j(αi−αj)nr + δ [sign (τi)− 1]

Nsym−1∑
nr=Nsym−τi

e−j(αi−αj)nr

+δ [sign (τj) + 1]

−τj−1∑
nr=0

e−j(αi−αj)nr


 . (3.33)
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lim
N→∞

1

N

N−1∑
n=0

N−1−n∑
ξ=−n

RXZZX [n; τi, ξ, ξ + τj] e
−j(αi+αj)ne−jαjξ

=
σ2
aσ

2
z

Nsym

ejαjτjδ [sign (|τi + τj| −Nsym) + 1]

{
{δ [sign (τi + τj)− 1] + δ [sign (τi + τj)]}

×


Nsym+min{0,−τi}−1∑

nr=max{0,τj}

e−j(αi+αj)nr + δ [sign (τi) + 1]

−τi−1∑
nr=0

e−j(αi+αj)nr

+δ [sign (τj) + 1]

Nsym−1∑
nr=Nsym+τj

e−j(αi+αj)nr

+ δ [sign (τi + τj) + 1]

×


Nsym+min{0,τj}−1∑
nr=max{0,−τi}

e−j(αi+αj)nr + δ [sign (τi)− 1]

Nsym−1∑
nr=Nsym−τi

e−j(αi+αj)nr

+δ [sign (τj)− 1]

τj−1∑
nr=0

e−j(αi+αj)nr

}}
. (3.34)
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CHAPTER 4

MULTI-ANTENNA SPECTRUM SENSING

4.1 Introduction

Multi-antenna techniques, which have been widely applied in wireless communications

including CR either to increase diversity and throughput or to reduce the amount of

interference to PUs, can also be exploited to signi�cantly enhance the performance

of spectrum sensing. As spectrum sensing can be performed in synchronous or asyn-

chronous ways, multi-antenna spectrum sensing (MASS) can be considered in two

scenarios.

In the �rst scenario, the CUs perform MASS in a quiet sensing period during which

no CU transmission is allowed. In other words, the PU signals can be received without

cochannel interference from the CUs. The conventional way of exploiting multiple

receive antennas is to yield a power gain via receive beamforming, e.g., to maximize
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the output signal-to-interference-plus-noise ratio (SINR). Alternatively, one could also

bene�t from the quiet period if the received multi-antenna signals (RMSs) can be

more manipulated to maximize the probability of detection. Normally, the Gaussian

assumption is made about the received PU signals and the background noise so that

the distribution of the RMSs becomes available under the noise-only or PU-present

hypothesis. Moreover, a GLRT can be conducted, in which unknown parameters are

estimated by the maximum likelihood method. The �nal test statistic is generally

presented as the ratio of functions of eigenvalues of the sampling covariance matrix

resulting from the RMSs [54�57]. The formation of the sampling covariance matrix

depends on whether the spatial correlations or the temporal correlations of the RMSs

are used. Even without making a Gaussian assumption about the PU signals, this

sampling covariance matrix can still lead to a similar test statistic whose distribution

is evaluated by random matrix theory [58]. Generally, all the methods which use

eigenvalue-dependent test statistics are called the eigenvalue based approach. Another

approach to utilizing this covariance matrix is exploiting the di�erent matrix pro�les

under the noise-only and PU-present hypotheses [59]. Following the spirit of receive

beamforming, a more conventional approach which combines RMSs by maximizing

the output SNR and then applies energy detection can be found in [60]. The e�ect

of the correlated RMSs, when using energy detection, has been investigated in [61].

When it comes to asynchronous spectrum sensing, in which some CUs may trans-

mit at the same time, cochannel interference from these CUs has to be tackled. The

previous eigenvalue based approach can apply to this scenario when interference is

assumed to be Gaussian distributed [62]. For the general cochannel interference, there
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might be no mathematically tractable probabilistic models to describe the RMSs so

that the GLRT can be applied. In view of this, a feasible and straightforward ap-

proach to MASS is to reduce cochannel interference via receive beamforming and then

employ any detection technique on the combined signal. A considerable number of

receive beamforming algorithms have been developed, in which a class of spectral self-

coherence restoral (SCORE) algorithms is especially suitable for the purpose of spec-

trum sensing due to not requiring training signals and accurate manifold information

or a structural constraint on the antenna array [63,64]. Furthermore, cyclostationary

features exploited by this algorithm to �nd the weighting vector, can immediately

be utilized by cyclostationary feature detection to determine the presence of the

PUs. In [65], a subspace approach is proposed to make the performance of the least-

square SCORE algorithm comparable to the Cross-SCORE algorithm while having

less computational complexity. An adaptive version of the Cross-SCORE algorithm

for complexity reduction is investigated in [66]. Compared with the SCORE algo-

rithms, another three cyclostationary feature based beamforming algorithms in [67]

can lead to higher output SINR, less complexity, and faster convergence rates.

In this chapter, we explore the possible usage of the RMSs in cyclostaionary fea-

ture detection developed in [29]. The focus is on synchronous spectrum sensing for

which per-combining and post-combining schemes are examined. For pre-combining,

it will be shown that MRC, conventionally for improving output SNR, can also lead

to the best detection performance in terms of maximizing a performance metric in

the low SNR region. In addition, a blind channel estimation based on cyclostation-

ary features will be presented for the practical MRC implementation. Our proposed
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channel estimation is based on [68]. In our modi�ed technique, we can ensure that

the estimation accuracy is asymptotically achieved. This MRC reception, also in-

vestigated in [69], assumes perfect channel side information and is only used for the

purpose of improving output SNR. For post-combining, we investigate two possible

schemes, the joint combining and the sum combining, which can be performed with-

out need of the CSI. In [68], the pre-(post-)combining detectors are established based

on the cyclic spectral coherence, while our proposed detectors are based on the cyclic

autocorrelation. As cochannel interference can inherently be diminished when con-

structing cyclostationary statistics, we further indicate the conditions under which

our proposed methods can work even with cochannel CU interferes.

4.2 Signal Model and Preliminary Results

Consider that spectrum sensing is performed by a CU equipped with L receive anten-

nas. We assume that the received signal at each antenna is subject to independent and

identically distributed (i.i.d.) slow fading and additive Gaussian noise. The observed

N sample vectors under PU-absent and PU-present hypotheses are respectively given

by, for n = 0, . . . , N − 1,

H0 : yn = zn, PU-absent,

H1 : yn = sn + zn, PU-present, (4.1)

where yn = [Y
(1)
n , Y

(2)
n , . . . , Y

(L)
n ]

′
denotes the nth sample vector of the RMSs, sn =

[h1, h2, . . . , hL]
′
Xn represents the sample of the received multi-antenna PU signals in
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which Xn is a sequence of discrete-time zero-mean complex-valued cyclostationary

random variables with variance σ2
X and hl denotes the i.i.d. complex-valued fading

channel gains, and zn = [Z
(1)
n , Z

(2)
n , . . . , Z

(L)
n ]

′
is a sequence of the i.i.d. circularly-

symmetric Gaussian noise sample vectors with distribution zn ∼ CN (0, σ2
ZIL). The

noise samples are suitably assumed to be independent of the PU signal. The instanta-

neous SNR is de�ned as γl , |hl|2 σ2
X/σ2

Z and σ2
X/σ2

Z is assumed to be one throughout the

paper. Let's �rst give the de�nition of being kth-order almost-cyclostationary.

De�nition. The sequence Xn is claimed to be kth-order almost-cyclostationary [29]

if its kth-order cumulant ckX[n; τ ,♦] , cum{X♦0
n , X♦1

n+τ1 , . . . , X
♦k−1

n+τk−1
} complies with

the Fourier-series expansion,

ckX [n; τ ,♦] =
∑

α∈Ak[τ ,♦]

Cα
kX [τ ,♦] ejαn, (4.2)

where the time lag τ = (τ1, . . . , τk−1), ♦i ∈ {∗, ∗̄} indicates an optional complex conju-

gate, ∗̄ denotes that there is no conjugate operation, ♦ = (♦0, . . . ,♦k−1), Ak [τ ,♦] =

{α ∈ (−π, π]; Cα
kX [τ ,♦] 6= 0} is a set of cycle frequencies, and the Fourier coe�cient

Cα
kX [τ ,♦] , lim

N→∞

1

N

N−1∑
n=0

ckX [n; τ ,♦] e−jαn. (4.3)

Several standardized PU signals have been shown to be second-order almost cy-

clostationary with the Fourier coe�cients Cα
2X[τ,♦ = (∗̄, ∗)] and Cα(∗)

2X [τ,♦ = (∗̄, ∗̄)],

known as the cyclic autocorrelation and the conjugate cyclic autocorrelation [31,70].

For simplicity, the notation ♦ in these two coe�cients will be omitted from now on.

Let the RMSs yn be linearly combined, yielding the sequence Y LC

n = w
′
yn where
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w
′

= [w1, . . . , wL] is a complex-valued weight vector with its 2-norm ‖w‖2 = 1. A

mixing condition that facilitates the derivation of asymptotic normality is given by

A1
∞∑

τ=−∞

sup
n
|τi|
∣∣∣cum

{
X♦0
n , X♦1

n+τ1
, . . . , X♦kn+τk

}∣∣∣ < ∞, for 1 ≤ i ≤ k, ∀k ∈ N0,

(4.4)

where τ = (τ1, . . . , τk). The next lemma will show the relationship between Xn and

Y
(l)
n (or Y LC

n ).

Lemma 1. If the sequence Xn is kth-order almost-cyclostationary and satis�es the

condition A1, then the same statistical properties are inherited by the sequences Y
(l)
n =

hlXn + Z
(l)
n for 1 ≤ l ≤ L and Y LC

n under H1.

Proof. See Section 4.A.

Moreover, it can be easily shown that the sequences Y
(l)
n and Y LC

n exhibit cyclic

autocorrelations given by

Cα
2Y(l) [τ ] = |hl|2Cα

2X [τ ] , (4.5)

and

Cα
2YLC [τ ] = |w′h|2Cα

2X [τ ] , (4.6)

where h = [h1, h2, . . . , hL]
′
. This indicates that Cα

2X [τ ] is scaled up to a real number

after applying linear combination to the RMSs yn.

Next, the pre-combining and the post-combining MASS will respectively exploit
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Cα
2Y(l) [τ ] and Cα

2YLC [τ ] to form a chi-square test statistic by following the approach

in [29]. Let L = {τ1, τ2, . . . τM ;M ∈ N} be a set of lags and α be a non-zero cycle

frequency of interest. Although only single cycle frequency is considered here, the

utilization of multiple cycle frequencies is also feasible. For pre-combining, a cyclic

autocorrelation vector estimate can be constructed as

r̂LCY ,
[
Re
{
Ĉα

2YLC [τ1]
}
, . . . ,Re

{
Ĉα

2YLC [τM ]
}
,

Im
{
Ĉα

2YLC [τ1]
}
, . . . , Im

{
Ĉα

2YLC [τM ]
}]′

. (4.7)

Similarly, for post-combining, we establish the vector estimate r̂
(l)
Y based on Y

(l)
n , that

is

r̂
(l)
Y ,

[
Re
{
Ĉα

2Y(l) [τ1]
}
, . . . ,Re

{
Ĉα

2Y(l) [τM ]
}
,

Im
{
Ĉα

2Y(l) [τ1]
}
, . . . , Im

{
Ĉα

2Y(l) [τM ]
}]′

. (4.8)

Ĉα
2YLC [τ ] and Ĉα

2Y(l) [τ ] are respectively the consistent estimates of Cα
2YLC [τ ] and Cα

2Y(l) [τ ],

that is, given N observations,

Ĉα
2YLC [τ ] ,

1

N

N+min{0,−τ}−1∑
n=max{0,−τ}

Y LC

n Y LC∗
n+τe

−jαn, (4.9)

and

Ĉα
2Y(l) [τ ] ,

1

N

N+min{0,−τ}−1∑
n=max{0,−τ}

Y (l)
n Y

(l)∗
n+τe

−jαn. (4.10)

Making use of Lemma 1 and asymptotic normality shown in [29] yields the asymptotic

distributions of
√
N r̂LCY and

√
N r̂

(l)
Y , i.e.,N (

√
N |w′h|2rX ,ΣLC

Y ) andN (
√
N |hl|2rX ,Σ(l,l)

Y ),
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respectively, where hl , 0 under H0, ΣLC

Y and Σ
(l,l)
Y are the limiting autocovariance

matrices of
√
N r̂LCY and

√
N r̂

(l)
Y , and

rX = [Re {Cα
2X [τ1]} , . . . ,Re {Cα

2X [τM ]} ,

Im {Cα
2X [τ1]} , . . . , Im {Cα

2X [τM ]}]
′
. (4.11)

The method of obtaining the consistent estimates Σ̂LC

Y and Σ̂
(l,l)
Y of ΣLC

Y and Σ
(l,l)
Y

is detailed in [29, 42]. Based on r̂LCY and Σ̂LC

Y , we can perform the GRLT for the

pre-combining MASS as follows

LG =
f
(√

N r̂LCY ; |w′h|2rX = r̂LCY ,Σ
LC

Y = Σ̂LC

Y

)
f
(√

N r̂LCY ; |w′h|2rX = 0,ΣLC

Y = Σ̂LC

Y

) ,

=
exp

[
−1

2
N (r̂LCY − r̂LCY )

′
Σ̂LC−1
Y (r̂LCY − r̂LCY )

]
exp

[
−1

2
N (r̂LCY )

′
Σ̂LC−1
Y (r̂LCY )

] H1

R
H0

η, (4.12)

which leads to the �nal test statistic

TLC = N r̂LC
′

Y

(
Σ̂LC

Y

)−1

r̂LCY . (4.13)

The derivation of the test statistics for the post-combining MASS is postponed to

Section 4.4.

Another lemma concerning the product sequence ψ
(l)
n,τ , Y

(l)
n Y

(l)∗
n+τ for �xed τ and

1 ≤ l ≤ L is provided below.

Lemma 2. If the sequence Xn is almost-cyclostationary up to fourth order and sat-

is�es the condition A1, then the sequence ψ
(l)
n,τ under H1 is second-order almost-

cyclostationary and satis�es another mixing condition,
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A2
∞∑

ξ=−∞

sup
n
|ξi|
∣∣∣cum

{
ψ(l0)♦0
n,τ0

, ψ
(l1)♦1

n+ξ1,τ1
, . . . , ψ

(lk)♦k
n+ξk,τk

}∣∣∣ <∞,
for 1 ≤ i ≤ k, ∀k ∈ N0, (4.14)

where ξ = (ξ1, . . . , ξk).

Proof. See Section 4.B.

Due to this lemma, another cyclic statistic, the cyclic spectrum of Y
(l)
n , can be

de�ned as [71]

S
ψ

(l1,l2)
τ,ρ

(α;ω) , lim
N→∞

1

N

N−1∑
n=0

∞∑
ξ=−∞

cum
{
ψ(l1)
n,τ , ψ

(l2)
n+ξ,ρ

}
e−jαne−jωξ. (4.15)

Similarly, the de�nition of the conjugate cyclic spectrum is given by

S̃
ψ

(l1,l2)
τ,ρ

(α;ω) , lim
N→∞

1

N

N−1∑
n=0

∞∑
ξ=−∞

cum
{
ψ(l1)
n,τ , ψ

(l2)∗
n+ξ,ρ

}
e−jαne−jωξ. (4.16)

Later on, these cyclic spectra will be shown to be related to the evaluation of Σ
(l,l)
Y .

4.3 Pre-Combining Scheme

In the pre-combining scheme, the RMSs are �rst linearly combined and further utilized

to obtain the vector r̂LCY and the matrix Σ̂LC

Y . One possible choice of the weight

vector w is using MRC when CSI is avaliable. Conventionally, MRC can provide

either diversity gains or power gains, supporting reliable communications [72]. In

the case of spectrum sensing, this combining technique can improve the detection

performance by maximizing the output SNR, SNRo , Var(w′sn)/Var(w′zn), under H1
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without changing the statistical properties of noise under H0. So it has been applied

to either energy-based or cyclostationary-feature-based MASS [69,73]. The following

discussion will justify the usage of MRC in our proposed pre-combining scheme from

another viewpoint. Meanwhile, CSI, required for implementing MRC, will be acquired

by our proposed estimation procedure.

4.3.1 Usage of MRC

The distribution of the test statistic TLC resulting from the linearly combined sequence

Y LC

n is provided below [29,47]

H0 : TLC ∼ χ2
2M ,

H1 : TLC ∼ χ2
2M

(
N |w′h|4r′X (ΣLC

Y )−1 rX

)
.

where χ2
2M denotes the central chi-square distribution with 2M degrees of freedom

and χ2
2M(ς(TLC)) represents the non-central chi-square distribution with 2M degrees of

freedom and the noncentrality parameter ς(TLC) = N |w′h|4r′X(ΣLC

Y )−1rX . The weight

vector w is said to optimize the detection performance in the sense of maximizing a

modi�ed de�ection coe�cient (MDC) [74]

d2
m (TLC) ,

[E (TLC|H1)− E (TLC|H0)]2

Var (TLC|H1)
,

=
ς (TLC)2

2 [2M + 2ς (TLC)]
, (4.17)

which is equivalent to maximizing ς(TLC). This MDC has been shown as a generalized

SNR and a good detection performance measure [75,76]. Because of [51, Proposition],
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the matrix (ΣLC

Y )−1 in the low SNR region can be viewed as being independent of w.

Hence, the �nal metric to be maximized is |w′h|2 whose maximum is achieved by

using w
′
opt

= ejθhH/‖h‖2 ∀θ ∈ [0, 2π). The MRC weight vector, w
′
MRC

= hH/‖h‖2 , is one

of optimal choices. This justi�es the usage of MRC in the most critical SNR region

where our proposed pre-combining scheme is intended for enhancing performance. On

the other hand, the matrix (ΣLC

Y )−1 in the high SNR region can be well approximated

by |w′h|−4Σ−1
X where the matrix ΣX , resulting from the sequence Xn, is independent

of w. This makes ς(TLC) = Nr
′
XΣ−1

X rX being constant no matter what weight vector

w is used. It implies that choosing the proper wight vector becomes less important

as the SNR increases.

4.3.2 Blind Channel Estimation

Perfect CSI with which the presence or the absence of PUs becomes unambiguous

is not a practical assumption for spectrum sensing. Without the aid of PUs, two

approaches have been proposed for blindly estimating channel information based on

cyclostationary features. The �rst approach [77] utilizes spectral correlations to ac-

quire phase information and performs equal gain combining in the frequency domain.

The second [68] directly estimates the channel gains up to a phase rotation by us-

ing the cyclic crosscorrelations. Here, we recast this second approach with moderate

modi�cation and keep its original name as blind MRC (BMRC).

Let's de�ne the cyclic cross-correlation of the received signals as
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Cα
Y (l1,l2) [τ ] , lim

N→∞

1

N

N−1∑
n=0

cum
{
Y (l1)
n , Y

(l2)∗
n+τ

}
e−jαn,

= hl1h
∗
l2
Cα

2X [τ ] . (4.18)

Since Cα
2X [τ ] is known a priori, the quantity hl1h

∗
l2
can be adequately evaluated by

utilizing a consistent estimate Ĉα
Y (l1,l2) [τ ] , 1

N

∑N+min{0,−τ}−1
n=max{0,−τ} Y

(l1)
n Y

(l2)∗
n+τ e

−jαn. Con-

sider a M(L2 + L)× 1 estimated vector

r̂CEY ,
[
Re
{
r̂CEY,1
}
,Re

{
r̂CEY,2
}
, . . . ,Re

{
r̂CEY,M

}
Im
{
r̂CEY,1
}
, Im

{
r̂CEY,2
}
, . . . , Im

{
r̂CEY,M

}]′
, (4.19)

where

r̂CEY,i =
[
Ĉα
Y (1,1) [τi] , Ĉ

α
Y (1,2) [τi] , . . . , Ĉ

α
Y (1,L) [τi] ,

Ĉα
Y (2,2) [τi] , Ĉ

α
Y (2,3) [τi] , . . . , Ĉ

α
Y (2,L) [τi] , . . . ,

Ĉα
Y (L−1,L−1) [τi] , Ĉ

α
Y (L−1,L) [τi] , Ĉ

α
Y (L,L) [τi]

]
1× (L2+L)

2

.

We decompose it as

r̂CEY = RCEhCP + ε, (4.20)

where the (L2 + L) × 1 cross-product channel gain vector hCP = [Re{hcp}, Im{hcp}]
′

with the sub-vector

hcp = [h1,1, . . . , h1,L, h2,2, . . . , h2,L, . . . , hL−1,L−1, hL−1,L, hL,L]
1× (L2+L)

2

,

hl1,l2 , hl1h
∗
l2
,

the residual vector ε = (r̂CEY − RCEhCP), and the M(L2 + L) × (L2 + L) matrix
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RCE = [RCE

1,1; RCE

1,2; · · · ; RCE

1,M ; RCE

2,1; RCE

2,2; · · · ; RCE

2,M ] where

RCE

1,i =

[
Re
{
RCE

i,C
}
−Im

{
RCE

i,C
} ]

(L2+L)
2
×(L2+L)

, (4.21)

RCE

2,i =

[
Im
{
RCE

i,C
}

Re
{
RCE

i,C
} ]

(L2+L)
2
×(L2+L)

, (4.22)

and

RCE

i,C = Cα
2X [τi] I (L2+L)

2

. (4.23)

In view of this decomposition, we have the following channel estimation procedure.

Step 1 Obtain the estimated vector r̂CEY .

Step 2 Compute the least-squares estimate of hCP given by

ĥCP = [(RCE)
′
RCE]−1 (RCE)

′
r̂CEY . (4.24)

Step 3 Form a matrix estimate Ĥ of H = hhH by using the available estimates of

real and image parts of hl1h
∗
l2
, that is

Ĥ =



Re{ĥ1,1} ĥ1,2 · · · ĥ1,L

ĥ∗1,2 Re{ĥ2,2} · · · ĥ2,L

...
...

. . .
...

ĥ∗1,L ĥ∗2,L · · · Re{ĥL,L}


. (4.25)

Step 4 Let ĥ be the normalized eigenvector corresponding to the maximum eigen-

value of Ĥ.

Then, ĥ will be an estimate of h/‖h‖2 up to some phase rotation, i.e., ejθhH/‖h‖2 for
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4.3. Pre-Combining Scheme

some θ ∈ [0, 2π). According to the previous discussion, using w = ĥ will achieve the

desired result.

The matrix H is Hermitian and rank-one, so there exists a decomposition H =∑L
i=1 λiuiu

H
i where λi are eigenvalues and ui are orthonormal eigenvectors. Let's

de�ne the �rst eigenpair (λ1,u1) = (‖h‖2
2 ,

h/‖h‖2) and λi 6=1 = 0. The matrix Ĥ with

its eigenvalues λ̃i can be presented as H+ δH where δH is a perturbation matrix. The

eigenvector corresponding to λ̃max = max{λ̃i, 1 ≤ i ≤ L} is denoted by ũmax when

the algebraic multiplicity of λ̃max is one. The following lemma is going to validate the

proposed estimation procedure by showing that the perturbed eigenpair (λ̃max, ũmax)

asymptotically approaches (λ1,u1). This convergence property is based on the facts

that both H and δH are Hermitian, and the eigenpair (λ1,u1) is simple.

Proposition 2. As the sample size N goes to in�nity, the algebraic multiplicity of

λ̃max is one and both quantities |λ̃max − λ1| and ||ũmax − u1||2 decrease toward zero.

Proof. See Section 4.C.

The quality of the estimated CSI ĥ can be quanti�ed by the angle distance between

ĥ and h [78, 79], that is

∠
(
ĥ,h

)
= cos−1

∣∣∣ĥHh
∣∣∣

‖h‖2

. (4.26)

This angle distance ∠(ĥ,h) is zero if ĥ is equal to h/‖h‖2 up to a phase rotation. In

simulation results, ∠(ĥ,h) will be used to illustrate the e�ectiveness of the proposed

channel estimation procedure.
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4.4 Post-Combining Scheme

Unlike the pre-combining scheme, the received signal Y
(l)
n at the lth antenna branch

is directly utilized to form a vector estimate r̂
(l)
Y in the post-combining scheme. More-

over, CSI is not necessary in this scheme. The following will provide two possible

approaches to exploiting r̂
(l)
Y for 1 ≤ l ≤ L.

4.4.1 Joint Combining

Let's arrange the L cyclic autocorrelation vector estimates r̂
(l)
Y into one vector r̂JCY ,

[r̂
(1)′

Y , r̂
(2)′

Y , . . . , r̂
(L)′

Y ]
′
. Though joint asymptotic normality for each vector r̂

(l)
Y has been

established, it needs to be veri�ed that the same property is held by r̂JCY .

Proposition 3. If the second-order almost-cyclostationary sequence Xn satis�es the

mixing condition A1, then the scaled vector
√
N r̂JCY is asymptotically normally dis-

tributed N
(√

NRXγ,Σ
JC

Y

)
, where γ , [γ1, γ2, . . . , γL]

′
,

RX ,



rX 0 · · · 0

0 rX · · · 0

...
...

. . .
...

0 0 · · · rX


2ML×L

, (4.27)

and
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4.4. Post-Combining Scheme

ΣJC

Y ,



Σ
(1,1)
Y Σ

(1,2)
Y · · · Σ

(1,L)
Y

Σ
(2,1)
Y Σ

(2,2)
Y · · · Σ

(2,L)
Y

...
...

. . .
...

Σ
(L,1)
Y Σ

(L,2)
Y · · · Σ

(L,L)
Y


2ML×2ML

. (4.28)

The 2M × 2M limiting covariance matrix Σ
(l1,l2)
Y , limN→∞Cov(

√
N r̂

(l1)
Y ,
√
N r̂

(l2)
Y )

can be written as

Σ
(l1,l2)
Y =

 Re
{

Q(l1,l2)+Q̃(l1,l2)

2

}
Im
{

Q(l1,l2)−Q̃(l1,l2)

2

}
Im
{

Q(l1,l2)+Q̃(l1,l2)

2

}
Re
{
−Q(l1,l2)+Q̃(l1,l2)

2

}
 , (4.29)

where Q(l1,l2) and Q̃(l1,l2) are two M ×M matrices with their (i, j)th entries,

Q
(l1,l2)
i,j = S

ψ
(l1,l2)
τi,τj

(2α;α) , (4.30)

Q̃
(l1,l2)
i,j = S̃

ψ
(l1,l2)
τi,τj

(0;−α) . (4.31)

Proof. See Section 4.D.

Note that this proposition generalizes [29, Theorem 1] which takes account of the

single receive antenna case (L = 1). Corresponding to this generalization, the general

estimates of Q
(l1,l2)
i,j and Q̃

(l1,l2)
i,j are provided below.

Proposition 4. Assume that the sequence Xn is almost-cyclostationary up to fourth

order and satis�es the condition A1. The mean-square-sense consistent estimates of

the unconjugated and conjugate cyclic spectra of ψ
(l)
n,τ are given by

91



4.4. Post-Combining Scheme

Ŝ
ψ

(l1,l2)
τ,ρ

(α;ω) =
1

NS

(S−1)/2∑
s=−(S−1)/2

G (s)F (l1)
τ

(
α− ω +

2πs

N

)
F (l2)
ρ

(
ω − 2πs

N

)
, (4.32)

and

ˆ̃S
ψ

(l1,l2)
τ,ρ

(α;ω) =
1

NS

(S−1)/2∑
s=−(S−1)/2

G (s)F (l1)
τ

(
α− ω +

2πs

N

)
F (l2)∗
ρ

(
−ω +

2πs

N

)
,

(4.33)

where F
(l)
τ (ω) =

∑N−1
n=0 (ψ

(l)
n,τ −E[ψ

(l)
n,τ ])e−jωn and G(s) is an odd-length (S) smoothing

window.

Proof. The sequences ψ
(l)
n,τ for 1 ≤ l ≤ L can be viewed as the vector-valued time

series, having cyclic spectra de�ned by (4.15) and (4.16). As this vector-valued time

series satis�es [71, Assumption 1] due to Lemma 2, the consistency of the proposed

cyclic spectrum estimates Ŝ
ψ

(l1,l2)
τ,ρ

(α;ω) and ˆ̃S
ψ

(l1,l2)
τ,ρ

(α;ω) has been shown in [71] for

the real-valued ψ
(l)
n,τ . To show the consistency for the complex-valued case requires

some alterations which can be found in [80].

An immediate corollary of this proposition is:

Corollary. The consistent estimates of Q
(l1,l2)
i,j and Q̃

(l1,l2)
i,j are given by

Q̂
(l1,l2)
i,j = Ŝ

ψ
(l1,l2)
τi,τj

(2α;α) , (4.34)

ˆ̃Q
(l1,l2)

i,j = ˆ̃S
ψ

(l1,l2)
τi,τj

(0;−α) . (4.35)

Consider that prior knowledge of the conjugate cyclic autocorrelation vector rX is

acquired by the CU, while the instantaneous SNR vector γ is unknown. Performing
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4.4. Post-Combining Scheme

GLRT by using Proposition 3 can yield the test statistic

TJC = N r̂JC
′

Y

(
Σ̂JC

Y

)−1

r̂JCY , (4.36)

where Σ̂JC

Y is the estimate of ΣJC

Y by exploiting (4.34) and (4.35). The corresponding

asymptotic distribution of TJC is given by

H0 : TJC ∼ χ2
2ML,

H1 : TJC ∼ χ2
2ML

(
Nγ

′
R
′

X (ΣJC

Y )−1 RXγ
)
. (4.37)

4.4.2 Sum Combining

Let's add cyclic autocorrelation vector estimates r̂
(l)
Y for 1 ≤ l ≤ L to be r̂SUMY ,∑L

l=1 r̂
(l)
Y . By utilizing [53, Corollary 1.7], [81, Lemma 2.3.2], and the relationship

r̂SUMY = Dr̂JCY where D = [I2M , I2M , . . . , I2M ]2M×2ML, the asymptotic distribution of

√
N r̂SUMY can be given by N (

√
NγSUMrX ,Σ

SUM

Y ) where γSUM =
∑L

l=1 γl and ΣSUM

Y =∑L
l1,l2=1 Σ

(l1,l2)
Y . Hence, the GRLT statistic can be presented as

TSUM = N r̂SUM
′

Y

(
Σ̂SUM

Y

)−1

r̂SUMY , (4.38)

where Σ̂SUM

Y is an estimate of ΣSUM

Y . The distribution of TSUM is provided as

H0 : TSUM ∼ χ2
2M ,

H1 : TSUM ∼ χ2
2M

(
NγSUM

′
r
′

X (ΣSUM

Y )−1 rXγ
SUM

)
. (4.39)
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When ΣSUM

Y is decomposed as in (4.29) in which the superscript (l1, l2) is replaced by

SUM, the corresponding consistent estimate of QSUM

i,j is given by Q̂SUM

i,j = ŜψSUMτi,τj
(2α;α)

where ψSUM

n,τ ,
∑L

l=1 Y
(l)
n Y

(l)∗
n+τ and

ŜψSUMτ,ρ
(α;ω) =

1

NS

(S−1)/2∑
s=−(S−1)/2

G (s)F SUM

τ

(
α− ω +

2πs

N

)
F SUM

ρ

(
ω − 2πs

N

)
, (4.40)

in which

F SUM

τ (ω) =
N−1∑
n=0

(
ψSUM

n,τ − E
[
ψSUM

n,τ

])
e−jωn. (4.41)

The other estimate ˆ̃Q
SUM

i,j of Q̃SUM

i,j can be de�ned in the same way. Thus, the evaluation

of Σ̂SUM

Y can be performed.

Compared with joint combining, sum combining requires less computational com-

plexity due to the smaller size of covariance matrix ΣSUM

Y that needs to be estimated.

In addition, sum combining dose not necessarily lead to larger modi�ed de�ection

coe�cient d2
m(TSUM). For instance, let Σ

(l1,l2)
Y = I2M if l1 = l2 and Σ

(l1,l2)
Y = 0 if

l1 6= l2. This is the case with the low SNR region and τi 6= 0 for 1 ≤ i ≤ M . Then

the inequality,

d2
m(TSUM) =

ς (TSUM)2

2 [2M + 2ς (TSUM)]
≥ ς (TJC)2

2 [2ML+ 2ς (TJC)]
= d2

m(TJC), (4.42)

where ς(TSUM) = N/L(
∑L

l=1 γl)
2r
′
XrX and ς(TJC) = N(

∑L
l=1 γ

2
l )r

′
XrX , does not always

hold because of (
∑L

l=1 γl)
2 ≤ L(

∑L
l=1 γ

2
l ). In this sense, better detection performance

is not guaranteed by using either the sum combining or the joint combining.
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4.5 Cochannel Interference Immunity

In this section, we are interested in conditions under which the previous analysis will

not alter in the presence of cochannel interference from other CUs. Let's assume

that there are two CU cochannel interference sources X
(I1)
n and X

(I2)
n , which are

statistically independent of each other, PU signals, and noise. The hypotheses to be

considered are

H0 : yn = zn, noise-only,

H1 : yn = s(I1)
n + s(I2)

n + zn, interferece-only,

H2 : yn = s(I0)
n + s(I1)

n + s(I2)
n + zn, PU plus interferece,

H3 : yn = s(I0)
n + zn, only PU present,

where s
(I0)
n = hX

(I0)
n replaces the notation sn = hXn, s

(Ii)
n = hX

(Ii)
n for i ∈ {1, 2}

represents the sample of the received multi-antenna cochannel interference, and X
(Ii)
n

denotes a zero-mean complex sequence from the ith interference source. This case is

adequate for the purpose of illustration, although it can be generalized to include more

interference sources or more hypothese such as only-�rst-interference-source-present

hypothesis.

Pre-combining is taken as an example. If we can show that the asymptotic distri-

bution of
√
N r̂LCY under H1 is the same as that under H0, and likewise the distribution

under H2 the same as that under H3, this multiple hypotheses test can be simpli�ed

to be the original binary hypothesis test shown in (4.1). The following proposition

will give su�cient conditions under which this simpli�cation becomes feasible.
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Proposition 5. The asymptotic distribution of
√
N r̂LCY under H1 is the same as that

under H0, and likewise the distribution under H2 the same as that under H3, if the

interference sequences X
(Ii)
n for i ∈ {1, 2} satisfy the following conditions, for any

{♦0,♦1,♦2,♦3} and {τ0, τ1, τ2, τ3},

1.

Cα
2X(Ii) [τ ,♦] = 0, (4.43)

2.

S2X(Ii) (2α;α) = S2X(Ii) (0;−α) = 0, (4.44)

3.

S2X(I1)2X(I2) (2α;α) = S2X(I1)2X(I2) (0;−α) = 0, (4.45)

4.

S2X(I0)2X(Ii) (2α;α) = S2X(I0)2X(Ii) (0;−α) = 0, (4.46)

where

S2X(Ii) (α;ω) , lim
N→∞

1

N

N−1∑
n=0

∞∑
ξ=−∞

cum
{
X

(Ii)♦0

n+τ0 , X
(Ii)♦1

n+ξ+τ1

}
e−jαne−jωξ,

and

S2X(Ii)2X(Ij) (α;ω) , lim
N→∞

1

N

N−1∑
n=0

∞∑
ξ=−∞

× cum
{
X

(Ii)♦0

n+τ0 X
(Ii)♦1

n+τ1 , X
(Ij)♦2

n+ξ+τ2
X

(Ij)♦3

n+ξ+τ3

}
e−jαne−jωξ.

Proof. See Section 4.E.
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The constraints 2-3 in this proposition indicate that the second-order and fourth-

order uncorrelatedness between the cochannel CU signals is required.

Although the pre-combining MASS is proposed without considering cochannel

interference, full immunity from CU cochannel interference is achievable as indicated

in this proposition. In other words, the asynchronous cyclostationary feature based

MASS can achieve comparable performance to the synchronous one once the required

conditions are satis�ed.

4.6 Numerical Results

In this section, we establish the simulation by modeling the PU signal as a linear

modulated signal with its sample sequence Xn =
∑∞

k=−∞ akp (nTs − kTsym), where

Ts is the sampling interval, Tsym is the symbol interval, ak denotes i.i.d. zero-mean

complex-valued symbols from a �nite alphabet, and p (t) is a rectangular pulse of value

1 for 0 ≤ t < Tsym and value 0 elsewhere. This sample sequence Xn is second-order

almost-cyclostationary, having the conjugated cyclic auto-correlation given by

Rα
2X [τ ] =

e−jαmax{0,−τ} [1− e−jα(Nsym−|τ |)
]

(1− e−jα)
, (4.47)

where Nsym = Tsym/Ts and the cycle frequency α = 2πκ/Nsym for some κ ∈ {k ∈ Z|k ∈

(−Nsym/2, −Nsym/2]}. The probability density function of the instantaneous SNR γl is

given by fRay(γl) = 1
γ
exp(−γl

γ
) where γ is the average SNR. The simulation parameters

are respectively given by Nsym = 6, α = 2π/6, and the lag set L = {τ1 = −3, τ2 = 3}.

The sample size, proportional to the spectrum sensing time, is given byN = Nsym×Ns
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where Ns denotes the number of received data symbols.
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Figure 4.1: Probability of detection versus average SNR over multiple antennas using
BMRC, joint combining, or sum combining.
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Figure 4.2: Probability of detection versus false alarm rate over multiple antennas
using BMRC, joint combining, or sum combining at γ = −12 dB.
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Figure 4.1 shows the detection performance of cyclostationary feature based multi-

antenna spectrum sensing over di�erent average SNRs given the false alarm rate

PFA = 0.1 and Ns = 103. The operational average SNR region is between −18dB

and −8dB. It can be seen from this �gure that increasing the number of antennas

does improve the probability of detection whether using BMRC, joint combining,

or sum combining. Compared with joint combining and sum combining, BMRC,

taking advantage of estimated CSI, results in notablely better detection performance.

Moreover, joint combining and sum combining lead to comparable performance resutls

in the sense that neither of them can signi�cantly outperform the other over all average

SNR region.

The receiver operating characteristic curves of our proposed GLRTs over di�erent

numbers of receive antennas are presented in Fig. 4.2. The curves are obtained with

γ = −12dB. It is apparent that the performance is improved when more receive an-

tennas are utilized. Also from this �gure, we can see that the probability of detection

corresponding to BMRC appers to be higher than that of post-combining for any

given false alarm rate.
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Figure 4.3: Average angle distance versus number of symbols over multiple antennas
at the average SNR=-12 dB and -18dB.

Figure 4.3 presents how the average angle distance between ĥ and h varies with the

number of received data symbols Ns for γ = −18dB and −12dB. The average curves

are obtained from 104 Monte Carlo runs. As shown in this �gure, the average angle

distance declines rapidly with the order of the number Ns. This result demonstrates

the e�ectiveness of our proposed blind channel estimation and supports the claim

in Proposition 2. It can also be observed that performing channel estimation in the

higher average SNR region can result in higher average angle distance. In addition,

increasing the number of antennas does not lead to signi�cantly greater average angle

distance when the sample size is su�ciently large.
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Figure 4.4: Average angle distance versus average SNR over multiple antennas with
the symbol size 3× 102 or 3× 103.

The depiction of how the average angle distance varies with the average SNR over

multiple antennas is shown in Fig. 4.4. The sizes of symbols utilized for acquisition

of cyclic statistics are Ns = 3×102 and 3×103. As can be seen in this �gure, there is

a negative correlation between the average angle distance and the average SNR. This

negative correlation becomes stronger when larger symbol size is used.

4.7 Conclusions

This chapter has given an account of cyclostationary feature based multi-antenna

spectrum sensing with its two possible schemes, pre-combining and post-combining.

We have shown that MRC is the optimal linear per-combining strategy which max-

imizes the detection performance metric in the low SNR region. The asymptotic
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performance guarantee of our proposed cyclic crosscorrelation based channel esti-

mation has been analytically examined. For post-combining, the joint asymptotic

normality required in joint combining and sum combining has been validated once a

mixing condition is met. Concerning the presence of CU cochannel interference in

asynchronous spectrum sensing, we present the su�cient conditions which should be

satis�ed by CU transmission signals such that the full interference immunity can be

achieved.

The results presented in this chapter have been submitted to IEEE Transactions

on Signal Processing and IEEEWireless Communications and Networking Conference

2014.
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4.A Proof of Lemma 1

First, we show that ckY (l) [n; τ ,♦] can be presented in the required form, that is

ckY (l) [n; τ ,♦] = cum
{
Y (l)♦0
n , Y

(l)♦1

n+τ1 , . . . , Y
(l)♦k−1

n+τk−1

}
,

= h♦0
l h♦1

l · · ·h
♦k−1

l cum
{
X♦0
n , X♦1

n+τ1
, . . . , X

♦k−1

n+τk−1

}
+ cum

{
Z(l)♦0
n , Z

(l)♦1

n+τ1 , . . . , Z
(l)♦k−1

n+τk−1

}
, (4.48)

=
∑

α∈Ak[τ ,♦]

{
h♦0
l h♦1

l · · ·h
♦k−1

l Cα
kX [τ,♦]

+Cα
kZ [τ,♦]

}
ejαn, (4.49)

where the properties [82, eq. (6a) (6e)] are applied in the �rst equality and

Cα
kZ [τ ,♦] =


σ2
Zδ (α) , for k = 2, τ = (0), and ♦ = (∗̄, ∗) or (∗, ∗̄) ,

0, elsewhere,

(4.50)

where the fact that the joint cumulants (order greater than 2) of jointly Gaussian

random variables are all zero [83] is used. Therefore, it follows that Y
(l)
n is kth-order

almost-cyclostationary.

By exploiting the expansion (4.48), it can be easily veri�ed that the sequence Y
(l)
n

satis�es A1 for k ≥ 3. This statement is also true for 1 ≤ k ≤ 2 because of

∞∑
τ1=−∞

sup
n
|τ1|
∣∣∣cum{Z(l)♦0

n , Z
(l)♦1

n+τ1

}∣∣∣ = 0, (4.51)

and
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cum
{
Z(l)♦0
n

}
= 0. (4.52)

The same conclusions can be reached when it comes to the sequence Y LC

n .

4.B Proof of Lemma 2

Lemma 3. For 1 ≤ i ≤ k, ∀k ∈ N0, and 1 ≤ l0, . . . , lk ≤ L,

∞∑
ξ1,...,ξk=−∞

sup
n
|ξi|
∣∣∣cum

{
Y (l0)♦0
n , Y

(l1)♦1

n+ξ1
, . . . , Y

(lk)♦k
n+ξk

}∣∣∣ < ∞. (4.53)

Proof. The proof is similar to that of Lemma 1.

For simplicity, let's discard the superscript (l) for a moment, i.e., using ψn,τ and

Yn rather than ψ
(l)
n,τ and Y

(l)
n . By the de�nition of the second-order cumulant, we have

c2ψn,τ [n; ξ,♦] = cum
{
ψ♦0
n,τ , ψ

♦1
n+ξ,τ

}
,

= E
[
Y ♦0
n Y ♦0∗

n+τ Y
♦1
n+ξY

♦1∗
n+ξ+τ

]
− E

[
Y ♦0
n Y ♦0∗

n+τ

]
E
[
Y ♦1
n+ξY

♦1∗
n+ξ+τ

]
,

= c4Y [n; τ 1 = (τ, ξ, ξ + τ) ,♦1 = (♦0,♦0∗,♦1,♦1∗)]

+ c2Y [n; τ 2 = (ξ) ,♦2 = (♦0,♦1)] c2Y [n+ ξ + τ ; τ 3 = (−ξ) ,♦3 = (♦1∗,♦0∗)]

+ c2Y [n; τ 4 = (ξ + τ) ,♦4 = (♦0,♦1∗)] c2Y [n+ τ ; τ 5 = (ξ − τ) ,♦5 = (♦0∗,♦1)] ,
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=
∑

α∈A4[τ1,♦1]

Cα
4Y [τ 1,♦1] eiαn

+
∑

α∈A2[τ2,♦2]

Cα
2Y [τ 2,♦2] ejαn

∑
β∈A2[τ3,♦3]

Cβ
2Y [τ 3,♦3] ejβ(n+ξ+τ)

+
∑

α∈A2[τ4,♦4]

Cα
2Y [τ 4,♦4] ejαn

∑
β∈A2[τ5,♦5]

Cβ
2Y [τ 5,♦5] ejβ(n+τ),

=
∑

α∈A4[τ1,♦1]∪A2

Cα
2ψn,τ [ξ,♦] ejαn, (4.54)

where

A2 = {α1 + β1, α2 + β2|α1 ∈ A2 [τ 2,♦2] , β1 ∈ A2 [τ 3,♦3] ,

α2 ∈ A2 [τ 4,♦4] , β2 ∈ A2 [τ 5,♦5]} , (4.55)

Cα
2ψn,τ [ξ,♦] = Cα

4Y [τ 1,♦1] +

+
∑

{α1∈A2[τ2,♦2],β1∈A2[τ3,♦3]|α1+β1=α}

Cα1
2Y [τ 2,♦2]Cβ1

2Y [τ 3,♦3] ejβ1(ξ+τ)

+
∑

{α1∈A2[τ4,♦4],β1∈A2[τ5,♦5]|α1+β1=α}

Cα1
2Y [τ 4,♦4]Cβ1

2Y [τ 5,♦5] ejβ1τ , (4.56)

[29, eq. (89)] is applied in the third equality and the property, Yn being almost-

cyclostationary up to fourth order due to Lemma 1, is used in the fourth equal-

ity. This Fourier-series expansion (4.54) indicates that ψ
(l)
n,τ is second-order almost-

cyclostationary.

Moreover,
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cum
{
ψ(l0)♦0
n,τ0

, ψ
(l1)♦1

n+ξ1,τ1
, . . . , ψ

(lk)♦k
n+ξk,τk

}
= cum

{
Y (l0)♦0
n Y

(l0)♦0∗
n+τ0 , Y

(l1)♦1

n+ξ1
Y

(l1)♦1∗
n+ξ1+τ1

, . . . , Y
(lk)♦k
n+ξk

Y
(lk)♦k∗
n+ξk+τk

}
,

=
∑
ν

cum {ν1} · · · cum {νp} , (4.57)

where [84, Theorem 2.3.2] is used in the second equality in which ν1 ∪ · · · ∪ νp forms

an indecomposable partition of the following (k + 1)× 2 array:

Y
(l0)♦0
n Y

(l0)♦0∗
n+τ0

Y
(l1)♦1

n+ξ1
Y

(l1)♦1∗
n+ξ1+τ1

...
...

Y
(lk)♦k
n+ξk

Y
(lk)♦k∗
n+ξk+τk

, (4.58)

each νi is a subset of entries of this array, and ν represents the collection of all

indecomposable partitions. Applying Lemma 3 gives, for 1 ≤ i ≤ p,

∞∑
ξi=−∞

sup
n
|ξim| |cum {νi}| <∞ (4.59)

where

ξi ,
(
ξim for 1 ≤ im ≤ k

∣∣∣Y (lim )♦im
n+ξim

or Y
(lim )♦im∗
n+ξim+τim

∈ νi
)
. (4.60)

Thus, we have

106



4.C. Proof of Proposition 2

∞∑
ξ=−∞

sup
n
|ξi|
∣∣∣cum

{
ψ(l0)♦0
n,τ0

, ψ
(l1)♦1

n+ξ1,τ1
, . . . , ψ

(lk)♦k
n+ξk,τk

}∣∣∣
≤
∑
ν

{
∞∑

ξ=−∞

sup
n
|ξi| |cum {ν1}| · · · |cum {νp}|

}
,

≤
∑
ν

{
∞∑

ξ=−∞

sup
n

[
max

{(
sup
1m

|ξ1m|
)
, 1

}
|cum {ν1}|

· · ·max

{(
sup
pm

|ξpm |
)
, 1

}
|cum {νp}|

]}
,

≤
∑
ν


∞∑

ξ1=−∞

sup
n

[
max

{(
sup
1m

|ξ1m |
)
, 1

}
|cum {ν1}|

]

· · ·
∞∑

ξp=−∞

sup
n

[
max

{(
sup
pm

|ξpm|
)
, 1

}
|cum {νp}|

] ,

≤
∑
ν


 ∞∑

ξ1=−∞

sup
n

[(
sup
1m

|ξ1m|
)
|cum {ν1}|

]
+

∑
ξ1=(0,...,0)

sup
n
|cum {ν1}|

 · · ·
 ∞∑

ξp=−∞

sup
n

[(
sup
pm

|ξpm |
)
|cum {νp}|

]
+

∑
ξ1=(0,...,0)

sup
n
|cum {ν1}|

 <∞, (4.61)

where the factorization (4.57) is applied in the �rst inequality and the condition (4.59)

in the last inequality, showing that the condition A2 is met by the sequence ψ
(l)
n,τ .

The same conclusions can be drawn about the sequence Y LC

n .

4.C Proof of Proposition 2

By replacing r̂CEY in (4.24) with RCEhCP+ε, it can be easily shown that ĥCP approaches

hCP asymptotically. Due to ||δH||F ≤ 2||ĥCP − hCP||2, Ĥ approaches H as N goes to

in�nity.

Let U = [u2 u3 . . . uL] and assume that 4||δH||2 < (λ1− |uH1 δHu1| − ||UHδHU||)2
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for N > N1. As a result of [78, Theorem (3.11)], there exist a scalar ϕ and a vector p

such that (λ̃, ũ) = (λ1 +ϕ,u1 +Up) where (λ̃, ũ) is an eigenpair of Ĥ. The quantities

|ϕ| and ||Up||2 have been shown to be of order O(||δH||2). If we can show that the

algebraic multiplicity of λ̃max is one and λ̃ = λ̃max, then the required results will

follow.

Let's de�ne an index set Imax = {1 ≤ i ≤ L | λ̃i = λ̃max}. Assume that the

cardinality of Imax is greater than one. Applying [85, Theorem (4.3.1)] gives |λ̃i−λ1| ≤

||δH||2 for i ∈ Imax and |λ̃j| ≤ ||δH||2 for j 6= i ∈ Imax. Let N2 be an integer such that

||δH||2 < λ1/2 for N > N2. Given N > N2, there exists λ̃i 6= λ̃j for i, j ∈ Imax, which

is a contradiction. Therefore, the cardinality of Imax is one for N > N2 and so is the

algebraic multiplicity of λ̃max.

Assume that λ̃ = λ̃i for some i /∈ Imax. Let N3 > max{N1, N2} be an integer

such that |ϕ| = |λ̃i − λ1| < λ1/2 for N > N3. Given N > N3, using [85, Theorem

(4.3.1)] again gives |λ̃i| ≤ ||δH||2 < λ1/2, which is a contradiction. Hence, λ̃ = λ̃max

for N > N3.

4.D Proof of Proposition 3

The mean vector
√
NRXγ is easily obtained by using the asymptotic property of

√
N r̂

(l)
Y . To show the joint asymptotic normality of

√
N r̂Y , we need to verify that

cumulants of
√
NĈα

2Y (l) [τ ] with order greater than 2 approach to zero asymptotically,

that is, for 1 ≤ li ≤ L and m ≥ 2,
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lim
N→∞

cum
{√

NĈα♦0

2Y (l0) [τ0] , . . . ,
√
NĈα♦m

2Y (lm) [τm]
}

= 0. (4.62)

Exploiting the multilinearity of cumulants [84] gives

Nm+1 cum
{
Ĉα♦0

2Y (l0) [τ0] , . . . , Ĉα♦m
2Y (lm) [τm]

}
=

N−1∑
n0,...,nm=0

cum
{
ψ(l0)♦0
n0,τ0

, . . . , ψ(lm)♦m
nm,τm

}
e−jα(±n0±···±nm),

=

(N−1)∑
ξ1,...,ξm=−(N−1)

nb∑
n=na

cum
{
ψ(l0)♦0
n,τ0

, . . . , ψ
(lm)♦m
n+ξm,τm

}
e−jα[±n±(n+ξ1)···±(n+ξm)], (4.63)

where ± to be plus or minus depends on ♦i, the setting, n0 , n, ξi , ni − n for

1 ≤ i ≤ m, na , −min (0, ξ1, . . . , ξm), and nb , N − 1 −max (0, ξ1, . . . , ξm), is used

in the second equality. By using Lemma 2, we have

∣∣∣cum
{
Ĉα

2Y (l0) [τ0] , . . . , Ĉα
2Y (lm) [τm]

}∣∣∣
≤ N−(m+1)

(N−1)∑
ξ=−(N−1)

nb∑
n=na

∣∣∣cum
{
ψ(l0)♦0
n,τ0

, . . . , ψ
(lm)♦m
n+ξm,τm

}∣∣∣ ,
≤ N−m

(N−1)∑
ξ=−(N−1)

sup
n

∣∣∣cum
{
ψ(l0)♦0
n,τ0

, . . . , ψ
(lm)♦m
n+ξm,τm

}∣∣∣ ,
= O

(
N−m

)
, (4.64)

where ξ = (ξ1, . . . , ξm). Therefore, the limit (4.62) immediately follows.

Following closely the derivation in [29, eq. (86-88)], we can also obtain the results

of (4.30) and (4.31).
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4.E Proof of Proposition 5

Assume that the asymptotic normality of
√
N r̂LCY under any hypothesis is true, i.e.,

limN→∞
√
N r̂LCY ∼ N (rLCY,Hi ,Σ

LC

Y,Hi) under Hi for 0 ≤ i ≤ 3. Applying Condition 1 can

lead to the conclusion that rLCY,H0
= rLCY,H1

and rLCY,H2
= rLCY,H3

. As shown in [29], the

entries of ΣLC

Y,Hi are the real or imaginary parts of the linear combinations of

SψLCτ,ρ (2α;α) , lim
N→∞

1

N

N−1∑
n=0

∞∑
ξ=−∞

cum
{
ψLC

n,τ , ψ
LC

n+ξ,ρ

}
e−j2αne−jαξ, (4.65)

and

S̃ψLCτ,ρ (0;−α) , lim
N→∞

1

N

N−1∑
n=0

∞∑
ξ=−∞

cum
{
ψLC

n,τ , ψ
LC∗
n+ξ,ρ

}
ejαξ, (4.66)

where ψLC

n,τ = Y LC

n Y LC∗
n+τ . Hence, we need to show that SψCEτ,ρ (2α;α) and S̃

ψ
(l1,l2)
τ,ρ

(0;−α)

under H0 are respectively the same as those under H1, and likewise under H2 and

H3. For the sake of simplicity, only the case of SψLCτ,ρ (2α;α) being the same under H0

and H1 is proved here.

The cumulant cum
{
ψLC

n,τ , ψ
LC

n+ξ,ρ

}
under H1 can be expanded as

cum
{
ζLCn ζLC∗n+τ , ζ

LC

n+ξζ
LC∗
n+ξ+ρ

}
+
∣∣∣w′h∣∣∣4 [cum

{
X(I1)
n X

(I1)∗
n+τ , X

(I1)
n+ξX

(I1)∗
n+ξ+ρ

}
+ cum

{
X(I2)
n X

(I2)∗
n+τ , X

(I2)
n+ξX

(I2)∗
n+ξ+ρ

}
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+ cum
{
X(I1)
n X

(I2)∗
n+τ , X

(I1)
n+ξX

(I2)∗
n+ξ+ρ

}
+ cum

{
X(I1)
n X

(I2)∗
n+τ , X

(I2)
n+ξX

(I1)∗
n+ξ+ρ

}
+ cum

{
X(I2)
n X

(I1)∗
n+τ , X

(I2)
n+ξX

(I1)∗
n+ξ+ρ

}
+ cum

{
X(I2)
n X

(I1)∗
n+τ , X

(I1)
n+ξX

(I2)∗
n+ξ+ρ

}]
+
∣∣∣w′h∣∣∣2 σ2

Z

{
δ (ξ + ρ)

[
cum

{
X

(I1)∗
n+τ , X

(I1)
n+ξ

}
+ cum

{
X

(I2)∗
n+τ , X

(I2)
n+ξ

}]
+δ (τ − ξ)

[
cum

{
X(I1)
n , X

(I1)∗
n+ξ+ρ

}
+ cum

{
X(I2)
n , X

(I2)∗
n+ξ+ρ

}]}
, (4.67)

where ζLCn = w
′
zn is a sequence of the i.i.d. circularly-symmetric complex Gaussian

noise samples with variance σ2
Z . Replacing the cumulant in (4.65) with (4.67) and

utilizing Condition 2 and 3 simplify SψLCτ,ρ (2α;α) under H1 to be that under H0.
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CHAPTER 5

SPECTRUM SENSING OVER FADING CHANNELS

5.1 Introduction

The performance of spectrum sensing is subject to wireless channel uncertainty, in-

cluding large-scale fading and small-scale fading. It is highly desirable to have an-

alytical expressions of detection and false alarm probabilities, taking into account

of various fading distributions. These analytical expressions make performance over

fading channels predictive and facilitate further system analysis in cognitive radio

networks.

There is a sizable literature on the study of energy detection over fading chan-

nels. The closed-from expressions that describe the average detection probability over

Nakagami and Rician fading channels have been presented in [86]. In the same pa-

per, diversity reception (using equal gain combining, selection combining, and switch
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and stay combining (SSC)) subject to i.i.d. Rayleigh fading has also been investi-

gated. The performance of two low-complexity reception schemes, square-law com-

bining (SLC) and square-law selection (SLS), was subsequently analyzed in [87]. A

more general κ− µ fading distribution has been recently discussed in [88]. When en-

ergy detection is implemented in the spectral domain, the corresponding performance

analysis based on di�erent spectral density estimates has been addressed in [89, 90].

While the above analyses mainly focus on small-scale fading, the composite e�ect

of small-scale and large-scale fading has its importance. To circumvent the issue of

complicated composite fading distributions, such as chi-square-gamma or Nakagami-

lognormal distributions, alternative distribution approximations have to be applied

to get the closed-form results [91,92]. In CR networks, the scenarios of relay-assisted

and cooperative energy detection are considered in [93].

Cyclostationary featuer detection plays an important role in the performance en-

hancement of spectrum sensing. However, far too little attention has been paid to

the analytical analysis of CFD over fading channels. It is partly because some CFD

approaches are lacking in analytical descriptions of detection probability conditioned

on the channel gain. The existing analysis of detection probability relies on numerical

simulation [94]. In view of the shortage of analytical results, this chapter seeks to

analytically examine the detection probability of CFD proposed in [29] over fading

channels. In fading environments, the asymptotic detection performance conditioned

on the fading channel gain can be shown to be a generalized Marcum Q-function.

In the �rst part, we aim to provide analytical expressions of detection performance

bounds without requiring integrating over the Marcum Q-function. The di�culty of
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obtaining this kind of analytical expressions arises from a complicated argument in

the generalized Marcum Q-function. Inspired by [95], we seek alternative expressions

of this argument, i.e., its upper and lower bounds. By further exploiting monotonicity

of the generalized Marcum Q-function, the upper and lower bounds of detection per-

formance averaged over the probability density function of the fading channel gain

can be obtained. The second part will analyze the detection performance of post-

combining over i.i.d. Rayleigh fading channels. This analysis is based on two tight

approximations of detection performance over Nakagami fading channels at low aver-

age SNR. Two post-combining techniques to be examined are post addition combining

(PAC) and post selection combining (PSC), which are �rst proposed for exploiting

multiple cycle frequencies in [42].

5.2 Performance Bounds over Nakagami Fading Chan-

nels

Let's introduce the complex-valued fading channel gain h in the binary hypothesis

testing model presented in (3.1), giving the modi�ed model,

H0 : {Yn}∞n=0 = {Zn}∞n=0 , noise only,

H1 : {Yn}∞n=0 = {hXn + Zn}∞n=0 , feature-present. (5.1)

The instantaneous SNR is de�ned as γ , |h|2 σ2
X/σ2

Z and σ2
X/σ2

Z = 1 is assumed through-

out this chapter. The probability density function of γ is given by
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fNak (γ; l) =
ll

Γ (l) γl
γl−1exp

(
− l
γ
γ

)
, (5.2)

where γ is the average SNR, l is the fading parameter, and Γ (·) is the Gamma

function. To simplify the notation, we restrict our analysis to the case of single cycle

frequency, i.e., α1 = · · · = αM = α in the test set J de�ned in Chapter 3, and denote

the lag set L = {τ1, τ2, . . . τM}. As the counterparts of the CAF-vector estimate

r̂JY [N ] in (3.2) and the test statistic Λ in Section 3.2.1, we have

r̂αY ,
[
Re
{
R̂α
Y [τ1;N ]

}
, . . . ,Re

{
R̂α
Y [τM ;N ]

}
,

Im
{
R̂α
Y [τ1;N ]

}
, . . . , Im

{
R̂α
Y [τM ;N ]

}]′
, (5.3)

and

T = N (r̂αY )
′
Σ̂−1
Y r̂αY . (5.4)

For a constant false alarm rate, the asymptotic detection performance Pd|γ conditioned

on the SNR is given by

Pd|γ = QM

(
γ

√
N (rαX)

′
Σ−1
Y rαX ,

√
λ

)
, (5.5)

where λ is a detection threshold and γrαX is the limiting vector of r̂αY under the feature-

present hypothesis. The matrix ΣY underH1 can be written as ΣY = γ2Σ4X+γΣ̄XZ+

Σ4Z where

Σ̄XZ = ΣXXZZ + ΣZZXX + ΣXZXZ + ΣZXZX + ΣXZZX + ΣZXXZ , (5.6)
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and

ΣABCD =

 Re
{

CABCD+C̃ABCD

2

}
Im
{

CABCD−C̃ABCD

2

}
Im
{

CABCD+C̃ABCD

2

}
Re
{
−CABCD+C̃ABCD

2

}
 . (5.7)

CABCD and C̃ABCD are two M ×M covariance matrices with their (i, j)th entries,

Ci,j
ABCD , lim

N→∞

1

N

N−1∑
n=0

∞∑
ξ=−∞

Cov
(
AnB

∗
n+τi

, Cn+ξD
∗
n+ξ+τj

)
e−jαξe−j2αn, (5.8)

and

C̃i,j
ABCD , lim

N→∞

1

N

N−1∑
n=0

∞∑
ξ=−∞

Cov
(
AnB

∗
n+τi

, C∗n+ξDn+ξ+τj

)
ejαξ. (5.9)

Without loss of generality, the covariance matrices Σ4Z and ΣY are assumed

positive-de�nite as the pair (α,L) can always be modi�ed to make this assumption

ture. Therefore, there exists an orthogonal matrix Q such that ΣY = QΛY Q
′
where

ΛY = diag (λy,i; 1 ≤ i ≤ 2M). The eigenvalue λy,i is equal to (γ2λx,i + γλxz,i + λz,i)

in which λx,i, λxz,i, and λz,i are respectively the diagonal entries of matrices ΛX =

Q
′
Σ4XQ, Λ̄XZ = Q

′
Σ̄XZQ, and ΛZ = Q

′
Σ4ZQ. Let's de�ne a vector as v , Q

′
rαX =

[v1, v2, . . . , v2M ]
′
. The average probability of detection can be presented as

Pd =

∫ ∞
0

Pd|γfNak (γ; l) dγ,

=
ll

Γ (l) γl

∫ ∞
0

QM

(√
Nf (γ),

√
λ
)
ξl−1e−

l
γ
γ dγ, (5.10)

where
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f (γ) =
2M∑
i=1

(
v2
i γ

2

λx,iγ2 + λxz,iγ + λz,i

)
. (5.11)

As the closed form of (5.10) is not obtainable, we seek for upper and lower per-

formance bounds. To do this, �rst, some properties of the function f (γ) and the

generalized Marcum Q-function are provided. Then we exploit some available series

expansion and exponential-type bound of Qm (a, b) to acquire the wanted analytic

performance bounds.

5.2.1 Upper and Lower Bounds of f (γ)

The function f (γ) involves a sum of rational functions of di�erent types resulting

from the facts that Σ4X is positive semi-de�nite, Σ̄XZ is not necessarily positive

semi-de�nite, and Σ4Z and ΣY are positive de�nite. The possible types of rational

functions involved are given by f1 (γ; a1, b1, c1, d1) = a1γ2

b1γ2+c1γ+d1
, a1, b1, c1, d1 > 0,

f2 (γ; a2, b2, d2) = a2γ2

b2γ2+d2
, a2, b2, d2 > 0, f3 (γ; a3, c3, d3) = a3γ2

c3γ+d3
, a3, c3, d3 > 0, and

f4 (γ; a4, b4, c4, d4) = a4γ2

b4γ2+c4γ+d4
, a4, b4, d4 > 0, −

√
4b4d4 < c4 < 0. Thus, without

loss of generality, the function f (γ) can be expanded as

∑
i∈E1

f1

(
γ; v2

i , λx,i, λxz,i, λz,i
)

+
∑
i∈E2

f2

(
γ; v2

i , λx,i, λz,i
)

+
∑
i∈E3

f3

(
γ; v2

i , λxz,i, λz,i
)

+
∑
i∈E4

f4

(
γ; v2

i , λx,i, λxz,i, λz,i
)
,

where Ei ⊂ {1, 2, · · · , 2M} and Ei ∩Ej = ∅ for i 6= j. Some upper and lower bounds

of f (γ) are provided below.

Property 6. f (γ) ≤ s1γ
2 for γ ≥ 0, where
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s1 =
∑

i∈{∪3
n=1En}

(
v2
i

λz,i

)
+
∑
i∈E4

(
4λx,iv

2
i

4λx,iλz,i − λ2
xz,i

)
. (5.12)

Proof. It can be easily shown that fn (γ) ≤ v2
i

λz,i
γ2 where i ∈ En for γ ≥ 0 when

n = 1, 2, 3. When i ∈ E4,

λx,iγ
2 + λxz,iγ + λz,i ≥

4λx,iλz,i − λ2
xz,i

4λx,i
, for γ ≥ 0. (5.13)

Therefore,

f4 (γ) ≤ 4λx,iv
2
i

4λx,iλz,i − λ2
xz,i

γ2, for i ∈ E4 and γ ≥ 0. (5.14)

Property 7. f (γ) ≤ s2γ for γ ≥ 0, where

s2 =
∑

i∈{∪2
n=1En}

[
fn

(√
λz,i
λx,i

)
/
√

λz,i
λx,i

]
+
∑
i∈E3

(
v2
i

λxz,i

)
+
∑
i∈E4

(
v2
i

λxz,i +
√

4λx,iλz,i

)
.

Proof. Let gn (γ) = fn(γ)
γ

for γ ≥ 0 and gn (γ) = 0 elsewhere.

For n = 1, 2, g′n (γ) = 0 when γ =
√

λz,i
λx,i

, and g′′n

(√
λz,i
λx,i

)
< 0. Thus, gn (γ) ≤

gn

(√
λz,i
λx,i

)
.

For n = 3, it can be easily shown that g3 (γ) ≤ v2
i

λxz,i
.

For n = 4. It can be veri�ed that λx,iγ
2 + λxz,iγ + λz,i ≥

(
λxz,i +

√
4λx,iλz,i

)
γ for

γ ≥ 0. Thus, g4 (γ) ≤ v2
i

λxz,i+
√

4λx,iλz,i
.

Property 8. f (γ) ≤ s3γ + t3 for γ ≥ 0, where s3 =
∑

i∈E3

(
v2
i

λxz,i

)
and

t3 =
∑

i∈{∪2
n=1En}

(
v2
i

λx,i

)
+
∑
i∈E4

(
4λz,iv

2
i

4λz,iλx,i − λ2
xz,i

)
. (5.15)
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Proof. It can be easily shown that fn (γ) ≤ v2
i

λx,i
where i ∈ En for γ ≥ 0 when n = 1, 2.

For n = 4. It can be shown that λx,iγ
2 +λxz,iγ+λz,i ≥

(
λx,i −

λ2
xz,i

4λz,i

)
γ2 for γ ≥ 0.

Thus, f4 (γ) ≤ 4λz,iv
2
i

(4λz,iλx,i−λ2
xz,i)

.

By using the fact that f3 (γ) ≤ v2
i

λxz,i
γ for i ∈ E3, the desired result can be obtained.

Property 9. f (γ) ≥ s4γ
2 for γ ∈ [0, γ0], where

s4 =
∑

i∈{∪3
n=1En}

fn (γ0)

γ2
0

+
∑
i∈E4

v2
i

λx,iγ2
0 + λz,i

. (5.16)

Proof. For γ ∈ [0, γ0], it can be easily shown that fn (γ)− fn(γ0)

γ2
0
γ2 ≥ 0 when n = 1, 2, 3.

When n = 4, λx,iγ
2 + λxz,iγ + λz,i ≤ λx,iγ

2 + λz,i. Therefore, f4 (γ) ≥ v2
i γ

2

λx,iγ2+λz,i
≥

v2
i γ

2

λx,iγ2
0+λz,i

for γ ∈ [0, γ0].

Property 10. f (γ) ≥ s5γ + t5 for γ ∈ [γ0,∞), where s5 =
∑

i∈E3
f ′3 (γ0) and

t5 =
∑

i∈{∪3
n=1En}

fn (γ0) +
∑
i∈E4

v2
i γ

2
0

λx,iγ2
0 + λz,i

−

[∑
i∈E3

f ′3 (γ0)

]
γ0. (5.17)

Proof. When n = 1, 2, it can be shown that fn (γ) is monotonically increasing for

γ ∈ [0,∞). Therefore, fn (γ) ≥ fn (γ0) for γ ∈ [γ0,∞).

When n = 3, f3 (γ) ≥ f3 (γ0) + f ′3 (γ0)(γ − γ0) for γ ∈ [γ0,∞) as f ′3 (γ) > 0 and

f ′′3 (γ) > 0 for γ ∈ [0,∞).

When n = 4, it has been indicated that f4 (γ) ≥ v2
i γ

2

λx,iγ2+λz,i
for γ ∈ [0,∞). Thus,

f4 (γ) ≥ v2
i γ

2
0

λx,iγ2
0+λz,i

for γ ∈ [γ0,∞).
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5.2.2 Upper Bounds on the Average Detection Probability

To apply the upper and lower bounds in the previous section requires a monotonicity

property of the generalized Marcum Q-function, which is provided below.

Property 11. Qm (a, b) is greater than zero and monotonically increasing on a ∈

(0,∞) for each b > 0, m ∈ N.

Proof. Employing [96, Eq.(4.44) ], we can show that for each b > 0, m ∈ N,

Qm (0, b) =
Γ (m, b2/2)

Γ (m)
> 0. (5.18)

Di�erentiating Qm (a, b) with respect to a by using [97, Eq.(16)] yields

d

da
Qm (a, b) = −a [Qm (a, b)−Qm+1 (a, b)] ,

> 0,

where the inequality holds because Qr (a, b) is strictly increasing on r ∈ (0,∞) for

each a ≥ 0, b > 0 [98].

By making use of Property 6 and Property 11, the detection performance can be

upper bounded by

Pd ≤
ll

Γ (l) γl

∫ ∞
0

QM

(√
Ns1γ2,

√
λ
)
γl−1e−

l
γ
γ dγ,

=
ll

Γ (l) γl

∞∑
n=0

1

n!

(
Ns1

2

)n [n+M−1∑
k=0

e−
λ
2

(
λ
2

)k
k!

]
G01

(
0,∞; 2n+ l − 1;−Ns1

2
,− l

γ
, 0

)
,

, Pd,UB01, (5.19)

where the generalized Marcum Q-function is replaced by its series expansion [96,

Eq.(4.47)]. The function G01 (u, v;n; a, b, c) is de�ned below
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∫ v

u

xnexp
(
ax2 + bx+ c

)
dx, for n ≥ 0 and a < 0,

= exp

(
4ac− b2

4a

) n∑
k=0

 n

k

(− b

2a

)n−k−Γ
[
k+1

2
,−ay2

]
2 (−a)(k+1)/2

∣∣∣∣∣
v+ b

2a

y=u+ b
2a

 ,

, G01 (u, v;n; a, b, c) ,

where [99, Eq.(2.33.10)] is applied. Similarly, applying Property 7 and [87, Eq.(7,8)]

yields another upper bound, namely

Pd,UB02 , A1 + βle−
λ
2

M−1∑
n=1

(
λ
2

)n
n!

1F1

(
l;n+ 1;

λ (1− β)

2

)
, (5.20)

where β = (2l)
(2l+Ns2γ)

, 1F1 denotes the con�uent hypergeometric function, and A1 is

given by

A1 = e−
λβ
2

[
βl−1Ll−1

(
−λ (1− β)

2

)
+ (1− β)

l−2∑
n=0

βnLn

(
−λ (1− β)

2

)]
, (5.21)

where Ln stands for Laguerre polynomial of degree n.

Subsequently, making use of Property 8 will lead to the third upper bound. In

this section, this third upper bound is not discussed because it is e�ective at high

average SNR.

5.2.3 Lower Bound on the Average Detection Probability

A lower bound [100, Eq.(11,12)] on the generalized Marcum Q-function Qm (a, b) to

be used is presented below,
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1 − 1

2
exp

[
−(a− b)2

2

]
+

[
m−1∑
k=1

(
b
2

)k
k!

+
1

2

]
exp

[
−(a+ b)2

2

]
, for 0 < b < a. (5.22)

By making use of Property 9 and Property 10, we can de�ne a lower bound fLB (γ)

of f (γ) as

fLB (ξ) =


s4γ

2 if 0 ≤ γ < γ0,

s5γ + t5 if γ0 ≤ γ <∞,

(5.23)

where γ0 , γab and γab is the point such that f (γab) = λ
N
. With this in mind, a lower

bound on Pd can be given by

Pd,LB ,
ll

Γ (l) γl

{∫ γab

0

QM

(√
Ns4γ2,

√
λ
)
γl−1e−

l
γ
γ dγ

+

∫ ∞
γab

QM

(√
N (s5γ + t5),

√
λ
)
γl−1e−

l
γ
γ dγ

}
. (5.24)

Applying the same technique used in (5.19) to the �rst integral of (5.24), we obtain

its lower bound

∫ γab

0

QM

(√
Ns4γ2,

√
λ
)
γl−1e−

l
γ
γ dγ

≥
∞∑
n=0

1

n!

(
Ns1

2

)n
G01

(
0, ξab; 2n+ l − 1;−Ns4

2
,− l

γ
, 0

) n+M−1∑
k=0

e−
λ
2

(
λ
2

)k
k!

. (5.25)

If s5 6= 0, we rewrite the second integral in (5.24) as
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∫ ∞
γab

QM

(√
N (s5γ + t5),

√
λ
)
γl−1e−

l
γ
γ dγ

= 2exp

(
lt5
γs5

) l−1∑
k=0

 l − 1

k

(− t5s5

)l−1−k

×
∫ ∞
ψ0

QM

(√
Ns5ψ2,

√
λ
)
ψ2l−1e−

l
γ
ψ2

dψ. (5.26)

where ψ =
√
γ + t5

s5
and ψ0 ,

√
γab + t5

s5
. By using (5.22), the integral in (5.26) can

be lower bounded by

∫ ∞
ψ0

QM

(√
Ns5ψ2,

√
λ
)
ψ2l−1e−

l
γ
ψ2

dψ

≥ G02

(
ψ0,∞; 2l − 1, 2;

l

γ

)
+

M−1∑
k=1

(√
λ

2

)k
k!

+
1

2


×G01

(
ψ0,∞; 2l − 1;

−Ns5

2
− l

γ
,−
√
λNs5,

−λ
2

)
− 1

2
G01

(
ψ0,∞; 2l − 1;

−Ns5

2
− l

γ
,
√
λNs5,

−λ
2

)
, (5.27)

where applying [99, Eq.(2.33.10)] yields

G02 (u, v; l, n; a) ,
∫ v

u

xl−1e−ax
n

dx, for a 6= 0, n 6= 0,

=
Γ
(
l
n
, aun

)
− Γ

(
l
n
, avn

)
na

l
n

.

If s5 = 0, we have

∫ ∞
γab

QM

(√
Nt5,

√
λ
)
γl−1e−

l
γ
γ dγ = QM

(√
Nt5,

√
λ
)
G02

(
γab,∞; l, 1;

l

γ

)
. (5.28)

With the above results (5.24)~(5.28), the required lower bound Pd,LB can be obtained.
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5.3. Post-Combining over IID Rayleigh Fading Channels

5.3 Post-Combining over IID Rayleigh Fading Chan-

nels

In this section, we examine the detection performance of J-branch post-combining

where each branch is subject to i.i.d. Rayleigh fading. Based on the same tested cycle

frequency α and lag set L, each branch generates a statistic Tj = Nfj (γj) where j is

the branch index and the PDF of γj is given by

fRay (γj) =
1

γ
exp

(
−γj
γ

)
. (5.29)

The statistics resulting from J branches are integrated by using either post addition

combining or post selection combining. Di�erent from two post-combining schemes

introduced in Section 4.4, the statistics Tj rather than the CAF-vector estimates r̂αY,j

for 1 ≤ j ≤ J are exploited.

Instead of providing performance bounds, we will �rst introduce two approximated

detection performance over Nakagami fading channels and utilize them to derive

approximated closed-form results. Numerical results will show the tightness of the

approximated performance.

Two approximations of f (γ) to be used are given below.

Approximation 1. f (γ) ≈ s6γ
2 at low SNR, where

s6 =
∑

i∈{∪4
n=1En}

(v2
i/λz,i) . (5.30)
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Approximation 2. f (γ) ≈ s7γ + t7 at high SNR, where s7 =
∑

i∈E3
(v2
i/λxz,i) and

t7 =
∑

i∈{E1∪E2∪E4}

(v2
i/λx,i) . (5.31)

By making use of Approximation 1, the average detection performance over Nak-

agami fading channels can be approximated by

Pd ≈
ll

Γ (l) γl

∫ ∞
0

QM

(√
Ns6γ2,

√
λ
)
γl−1e−

l
γ
γ dγ,

, P̃d,01, (5.32)

where the closed form of the integral can be obtained with the similar way shown in

(5.19). As Approximation 1 is used, P̃d,01 is expected to serve as a good approxima-

tion at low average SNR. On the other hand, once Approximation 2 is applied, we

expect to approximate the detection performance well at high average SNR. For CR

applications, the interesting operational region is at low SNR, so we focus on the �rst

approximation in this section.

Let's de�ne an approximation f̃ (γ) of f (γ) as

f̃ (γ) =


s6γ

2 if 0 ≤ γ < γ0,

fmax if γ0 ≤ γ <∞,

(5.33)

where γ0 =
√

λ/Ns1, fmax = t7 if s7 = 0, and fmax =∞ if s7 6= 0. With this in mind,

another approximated detection probability can be given by
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Pd ≈
ll

Γ (l) γl

{∫ γ0

0

QM

(√
Ns6γ2,

√
λ
)
γl−1e−

l
γ
γ dγ

+

∫ ∞
γ0

QM

(√
Nfmax,

√
λ
)
γl−1e−

l
γ
γ dγ

}
, P̃d,02. (5.34)

After some manipulation, the second approximation can be represented by

P̃d,02 =
ll

Γ (l) γl

{
∞∑
n=0

1

n!

(
Ns1

2

)n
×

[
n+M−1∑
k=0

e−
λ
2

(
λ
2

)k
k!

]
G01

(
0, γ0; 2n+ l − 1;−Ns1

2
,− l

γ

)

+QM

(√
Nfmax,

√
λ
)
G02

(
γ0,∞; l, 1;

l

γ

)}
. (5.35)

It will be shown using computer simulation that the series in P̃d,02 converges faster

than that in P̃d,01.

5.3.1 Post Addition Combining

The PAC combiner simply produces the sum of statistics from each branch, i.e.,

TPAC =
∑J

j=1 Tj. This sum is noncentral chi-square distributed with 2JM DOFs and

the noncentrality parameter N
∑J

j=1 fj (γj). Thus, the corresponding conditional

detection probability can be given by

Pd|{γj}Jj=1
= QJM

√√√√N

J∑
j=1

fj (γj),
√
λ

 . (5.36)

Applying Approximation 1 to (5.36) gives

Pd|{γj}Jj=1
≈ QJM

(√
Ns1γ2

PAC
,
√
λ
)
, (5.37)
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where γPAC ,
√∑J

j=1 γ
2
j . The closed-form PDF of γPAC is unknown, so we seek for

its simple approximation. By using the method proposed in [101], we can obtain

a precisely approximated PDF of γ2
PAC

in terms of an α − µ distribution, and then

further approximate the PDF of γPAC with a gamma distribution, namely

fPAC (γPAC) ≈ 1

θκΓ (κ)
γ

(κ−1)
PAC exp

[
−γPAC

θ

]
, (5.38)

where the method of obtaining κ and θ is presented in Section 5.A. By employing the

similar technique in the previous section, two approximations of the average detection

probability of J-branch PAC can be given respectively by

P̃d,PAC1 =
1

θκΓ (κ)

∞∑
n=0

1

n!

(
Ns1

2

)n [n+JM−1∑
k=0

e−
λ
2

(
λ
2

)k
k!

]

×G01

(
0,∞; 2n+ κ− 1;−Ns1

2
,−1

θ

)
, (5.39)

and

P̃d,PAC2 =
1

θκΓ (κ)

{
∞∑
n=0

1

n!

(
Ns1

2

)n [n+JM−1∑
k=0

e−
λ
2

×
(
λ
2

)k
k!

]
G01

(
0, γ0; 2n+ κ− 1;−Ns1

2
,−1

θ

)

+QJM

(√
Nfmax,

√
λ
)
G02

(
γ0,∞;κ, 1;−1

θ

)}
. (5.40)

Without performing multiple integration which is required for obtaining the average

detection probability, two approximations can be attained.
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5.3.2 Post Selection Combining

The PSC combiner selects the branch with the largest test statistic, i.e., TPSC =

max{T1, · · · , TJ}. The corresponding SNR γPSC is max {γ1, · · · , γJ} with its PDF

given by

fPSC (γPSC) = J
J−1∑
i=0

 J − 1

i

 (−1)i

i+ 1

1

γ/ (i+ 1)
exp

[
− γPSC
γ/ (i+ 1)

]
, (5.41)

which is a linear combination of exponential PDFs with the parameter γ/(i+1). There-

fore, the approximations of the average detection probability for the PSC scheme can

be presented as

P̃d,PSC1 = J
J−1∑
i=0

 J − 1

i

 (−1)i

i+ 1
P̃d,01

(
1,

γ

i+ 1

)
, (5.42)

and

P̃d,PSC2 = J

J−1∑
i=0

 J − 1

i

 (−1)i

i+ 1
P̃d,02

(
1,

γ

i+ 1

)
, (5.43)

where P̃d,01 (1, γ/(i+1)) and P̃d,02 (1, γ/(i+1)) are respectively P̃d,01 and P̃d,02 in which

l = 1 and γ is replaced by γ/(i+1).

5.4 Numerical Results

In this section, we examine an example for which the analytical CAF vector rαY and the

covariance matrix ΣY under H1 are both obtainable. Let's de�ne a communication

signal Xn =
∑∞

k=−∞ akp (nTs − kTsym), where Ts is the sampling interval, Tsym is
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Figure 5.1: Upper and lower bounds of the ROC curve for a Nakagami fading channel
(N =6000, l=1, γ̄ = −12dB)

the symbol interval, ak denotes identically and independently distributed zero-mean

complex-valued 16-QAM symbols, and p (t) is a rectangular pulse with value 1 for

0 ≤ t < Tsym and value 0 elsewhere. This signal exhibits cyclostationary features

at cyclic frequencies α = 2πk/Nsym, where k ∈ Z and Nsym = Tsym/Ts. Assuming that

Nsym = 6. The cycle frequency and the lag set for testing are given respectively by

α = 2π/6 and L = {−3, 3}.

5.4.1 Performance Bounds

Fig. 5.1 presents the receiver operating characteristic curve and its upper and lower

bounds over a Nakagami fading channel (l = 1) with low average SNR γ̄ = −12dB.

The number of used samples is N = 6000. The ROC curve results from the numerical

integration of (5.10). As shown in this �gure, the �rst upper bound Pd,UB01, the sum
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Figure 5.2: Upper and lower bounds of the ROC curve for a Nakagami fading channel
(N =6000, l=4, γ̄ = −12dB)

of �rst 80 terms in the series expression (5.19), approaches its limiting values and can

serve as a tight approximation. The explanation for Pd,UB01 being a tight performance

bound is that the upper bound in Property 6 captures the behavior of f (γ) very well

at low average SNR when the set E4 is empty. It is apparent that Pd,UB02 does not

provide a satisfactory performance bound. For the lower bound, Pd,LB can properly

bound the ROC curve from below to some extent. The case of l = 4 is shown in Fig.

5.2. It can be seen that the upper bound Pd,UB02 is still loose, while Pd,UB01 keeps as

a tight upper bound.

The ROC curve and its upper bounds at higher average SNR γ̄ = 0dB with sample

size N = 600 over di�erent Nakagami fading settings (l=1 and 2) are plotted in Fig.

5.3. The curve due to the upper bound Pd,UB01 is presented by using limiting values.

As can be seen in Fig.5.3(a) and Fig.5.3(b), the upper bound Pd,UB02 becomes tighter
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Figure 5.3: Upper bounds of the ROC curve for Nakagami fading channels (N =600,
γ̄ = 0dB)
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Figure 5.4: Approximated ROC curve for a Nakagami fading channel (l=2).

at this higher average SNR and can be tighter than Pd,UB01 for small false alarm rates.

This is partly because the upper bound in Property 7 captures well the behavior of

f (γ) at higher average SNR.

5.4.2 Post-Combining

Fig. 5.4 illustrates the receiver operating characteristic curve and its two approx-

imations, resulting from P̃d,01 and P̃d,02, over a Nakagami fading channel with the

parameter l = 2. As shown in this �gure, the ROC curve due to the limiting values

of P̃d,01 is tighter than the curve due to P̃d,02. Moreover, the ROC curve resulting

from the partial sum of �rst 10 terms in the series of P̃d,02 has almost converged to

its limiting curve. On the other hand, the ROC curves resulting from �rst 10 or 40

terms in the series of P̃d,01 obviously have not converged to its limiting curve. In other
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Figure 5.5: Approximated ROC curves for D-branch PAC.

words, the sequence of partial sums due to P̃d,02 converges to its limit faster than the

sequence due to P̃d,01.

Fig. 5.5 and Fig. 5.6 respectively present the ROC curves and the complemen-

tary ROC curves for J-branch PAC over i.i.d. Rayleigh fading channels. In these two

�gures, only the limiting curves due to P̃d,PAC1 and P̃d,PAC2 are plotted. It can be seen

that the ROC curves or their complementary curves due to our proposed approxima-

tions, P̃d,PAC1 and P̃d,PAC2, can closely approach the curves due to the analytical Pd or

1− Pd.

The numerical results for J-branch PSC can be found in Fig. 5.7 and Fig. 5.8. In

both �gures, it is apparent that both the ROC curves and the complementary ROC

curves can be tightly approximated by our proposed.
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Figure 5.6: Approximated complementary ROC curves for D-branch PAC.
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Figure 5.7: Approximated ROC curves for J-branch PSC.
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Figure 5.8: Approximated complementary ROC curves for J-branch PSC.

5.5 Conclusions

An analytic investigation of the second-order cyclostationary feature detection has

been carried out in this chapter. A tight upper bound of average detection perfor-

mance at low average SNR is presented as an in�nite series. For the higher average

SNR region, the proposed closed-form upper bound can serve as a reasonable approx-

imation of detection performance. In addition, approximated detection performances

in a series form are analytically presented for post addition combining and post se-

lection combining. These approximations are especially e�ective at low average SNR

which is the region of interest for cognitive radio applications.

The results of performance bounds over fading channels have been presented in

IEEE Wireless Communications and Networking Conference (WCNC) [102]. The

analysis of post-combining schemes is going to be presented in IEEE Global Commu-

nications Conference (GLOBECOM) 2013 [103].
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5.A Derivation of (5.38)

As shown in (5.29), the variate γj is exponentially distributed. So its square ψj = γ2
j is

Weibull distributed, i.e., fWei (ψj) = 1/2γ
√
ψjexp

(
−
√
ψj/γ
)
. Let's de�ne ψPAC as γ2

PAC
,

the sum of i.i.d. Weibull variates. In [101], an α − µ distribution used to precisely

approximate the PDF of the variate ψPAC is given by

f (ψPAC) ≈ βµµψβµ−1
PAC

ΩµΓ (µ)
exp

(
−µψ

β
PAC

Ω

)
, (5.44)

where the parameters, β, µ, and Ω, are determined through a moments matching

method. Employing the similar idea, we try to approximate the PDF of γPAC with a

gamma distribution as shown in (5.38). The reason for using the gamma distribution

is that it is a generalized exponential distribution in which two parameters, κ and θ,

need to be determined. Another reason is that this distribution is mathematically

tractable for evaluating the average detection probability. Matching the �rst and the

second moments, E [γPAC] = E
[√
ψPAC

]
and E [γ2

PAC
] = E [ψPAC], yields

κ =
ζ2

1

ζ2 − ζ2
1

, (5.45)

and

θ =
ζ2 − ζ2

1

ζ1

, (5.46)

where ζ1 = βµµ

ΩµΓ(µ)
G02

(
0,∞; βµ+ 1

2
, β; µ

Ω

)
and ζ2 = βµµ

ΩµΓ(µ)
G02

(
0,∞; βµ+ 1, β; µ

Ω

)
.
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CHAPTER 6

INTERFERENCE CHANNEL ESTIMATION

6.1 Introduction

The conventional strategies for interference management, such as transmission power

limit, spectral masking, and transmitter location arrangement, are transmitter-centric

[104, 105]. All these strategies are intended for minimizing interference to receivers

without knowing the actual level of interference experienced by them. It means that

the transmitter-centric strategies are less adaptive to the real interference level. If

applying these strategies to the CR network, it will lead to less e�cient CR commu-

nications.

In 2002, FCC proposed a new metric, interference temperature, measuring the RF

interference received by a PU receiver with which the CR network has to coexist. Since

then, the past decade has seen a rapid development of receiver-centric CR interference
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management. The immediate bene�t of using this metric is that it provides the

criterion to judge if harmful interference has been introduced in the band of interest.

At the same time, the maximum tolerable interference level, which should not be

exceeded by cumulative interference from the CR network, can also be estimated.

Hence, a more �exible and accurate cap can be derived and placed on CU transmission

power. CR communications can be performed whenever the amount of interference

to each PU receiver is within the limit.

The scheme to utilize interference temperature can be presented as follows. First,

each PU receiver measures its own interference temperature and decides its own in-

terference limit based on its receiver sensitivity. Being informed of this PU-side in-

formation by the PU system, the CR system should transmit signals within a power

constraint. In addition, computing this power constraint requires knowledge of the

channel gains between an intended CU transmitter and each PU receiver. It is because

the amount of increased interference temperature at PU receivers is directly related

to these channel gains. For clarity, channel gains between the PU system and the

CU system are referred to as interference channel gains (or interference gains). With

this CSI, the CU system can reliably predict the increased interference temperature

at the PU receivers based on its transmission power. Moreover, the CU system can

allocate more power for the transmission causing less interference, especially when

the interference gain is signi�cantly low.

A considerable amount of literature has been published on power control in CR

networks. Perfect CSI including interference gains is assumed in most studies. Knowl-

edge of interference gains can be obtained either from the primary system or from a
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6.2. Interference Constraints with Partial CSI

Figure 6.1: Interference channel.

band manager [106]. In [107], a method of evaluating interference gains is suggested.

It involves close cooperation with the primary system in terms of the PU receiver feed-

backing its measured SNR and SINR to the CR system. In this chapter, we consider a

more realistic scenario in which perfect CSI is not assumed and interference gains are

estimated with less primary-system-side aid, i.e., without CSI feedback from the PU

system. First, with partial CSI, the issue of what interference constraints should be

imposed on the CR system is addressed. Furthermore, a novel approach to obtaining

this partial CSI is presented. Our proposed method will rely heavily on cooperation

within the CR network and be based on knowledge such as geolocations of PUs and

CUs, and the cross-correlation between two interference gains. Although only partial

CSI is acquired, it serves as a key parameter for the CR network to satisfy peak or

average interference power constraints.

6.2 Interference Constraints with Partial CSI

In Fig. 6.1, the interference channel has two pairs of the transmitter and the receiver,

{PUtx, PUrx} and {CUtx, CUrx} from primary and CR systems respectively. Let hij
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6.2. Interference Constraints with Partial CSI

denote the channel gain between ς (i)
tx
and ς (i)

rx
where ς (0) = PU and ς (1) = CU.

These channel gains are assumed to be statistically independent. The transmission

from CUtx depends on h10 and h11 , and has to satisfy its own transmission-power

constraint and the interference-power constraint imposed by the primary system.

Under the assumption of perfect information of h10 at CUtx, a peak-interference-

power constraint or an average-interference-power constraint is normally placed on

CUtx. This section will examine what interference-power constraints the PU system

should impose, assuming that CUtx only knows the statistical distribution of h10

instead of the exact value h10. This issue is discussed in two di�erent scenarios,

both channels {h00, h10} being slow fading or fast fading. Some common assumptions

in both scenarios are given as follows. Let the received SINR at PUrx denoted by

SINRPU = P0 |h00|2 /
(
P1 |h10|2 + Iex +N0

)
where P0 and P1 are transmission powers

of PUtx and CUtx respectively, Iex denotes the stable interference from other sources,

and N0 is the power spectral density of AWGN at PUrx. It is further assumed that

the overall interference
(
P1 |h10|2 + Iex

)
behaves like white Gaussian noise.

6.2.1 Slow Fading Channel

In the slow fading situation, the absolute values {|h00| , |h10|} remain constant for the

period of interest but follow some fading distribution with the second moment µ2,hij =

E
[
|hij|2

]
. The maximum reliable transmission rate log (1 + SINRPU) bits/s/Hz is a

function of {|h00| , |h10|}. PUrx is said to be in outage whenever log (1 + SINRPU) <

RPU where RPU is the data transmission rate from PUtx [72]. The outage probability
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is de�ned as Pout (RPU) , P {log (1 + SINRPU) < RPU}.

When PUrx has already been in outage (i.e., log (1 + SINRPU) < RPU with P1 = 0),

no interference power constraint is needed to be imposed on CUtx. So CUtx might

transmit signals at any power levels without consideration of |h10|. On the other hand,

if PUrx is not in outage (i.e., log (1 + SINRPU) > RPU with P1 = 0), the opportunity

to access the licensed band is still available. This time a reasonable interference

constraint should be placed such as

P1 |h10|2 ≤ ~, (6.1)

where ~ ,
[
P0 |h00|2 /2(RPU−1) − (Iex +N0)

]
. Hence the inequality log (1 + SINRPU) ≥

RPU can be maintained. However, this can be achieved only when the knowledge of

|h10| is available at CUtx.

What if CUtx knows the fading distribution of |h10| instead of its value? Ob-

viously, whatever transmission power P1 6= 0 is used, the interference constraint

(6.1) is no longer guaranteed. In other words, an outage can occur with probability

P
{
P1 |h10|2 > ~

}
. Therefore, the overall outage probability is increased by

[1− Pout (RPU;P1 = 0)]P
{
P1 |h10|2 > ~

}
. (6.2)

From the perspective of the primary system, this increase in the outage probability

should be upper bounded, which suggests another constraint, i.e.,

P
{
P1 |h10|2 > ~

}
≤ ε, for some  < ε < . (6.3)
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For illustration, let |h10| be Rayleigh distributed fray

(
|h10| ;σh10 =

√
µ2,hij/2

)
. To

satisfy (6.3), CUtx should follow the peak-power limit

P1 ≤ ~/
[
2σ2

h10
ln (1/ε)

]
. (6.4)

Now the probabilistic constraint (6.3) has been translated into a practical power limit

which can be placed on CUtx. Compared to the power limit in (6.1), this peak-power

limit in (6.4) has a high chance of being more stringent. However, the knowledge of

the exact value |h10| is no longer required in the new peak-power limit.

6.2.2 Fast Fading Channel

In the case of fast fading channels, the channel gains {h00, h10} are assumed to be

stationary and ergodic. With CSI about h00 at PUrx, an achievable ergodic capacity is

given by Ceg (h00) = Eh00 [log (1 + SINRPU)] in which the received interference power

has to be kept constant P1 |h10|2 [72]. This scheme is feasible when CUtx knows the

interference channel gain h10 and dynamically adjusts its transmission power P1. The

value P1 |h10|2 to be maintained should be derived from the inequality Ceg (h00) ≥ RPU.

Take the capacity at low SINR (i.e.,
[
P0/

(
P1 |h10|2 + Iex +N0

)]
� 1) as an example.

The ergodic capacity can be approximated by [72]

Ceg (h00) ≈ (log2 e)Eh00

[
P0 |h00|2(

P1 |h10|2 + Iex +N0

)] ,
=

(log2 e)P0µ2,h00(
P1 |h10|2 + Iex +N0

) , (6.5)

which implies the interference constraint
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Table 6.1: Interference constraints for di�erent scenarios.

Slow fading channel Fast fading channel

CSI (channel realization
h10) at a CU transmitter

P1 |h10|2 ≤ ~ P1 |h10|2 = k such that
Ceg (h00) ≥ RPU

CSI (statistical
characterization fh10) at a

CU transmitter
P
{
P1 |h10|2 > ~

}
≤ ε Ceg (h00, h10) ≥ RPU

P1 |h10|2 ≤
[

(log2 e)P0µ2,h00

RPU

− (Iex +N0)

]
. (6.6)

Similarly, with information about {h00, h10} at PUrx, the ergodic capacity Ceg (h00, h10) =

Eh00,h10 [log (1 + SINRPU)] is an average over two independent variables {h00, h10}.

The inequality Ceg (h00, h10) ≥ RPU implicitly determines the required interference

constraint. At low SINR,

Ceg (h00, h10) ≈ (log2 e)P0µ2,h00

(P1µ2,h10 + Iex +N0)
, (6.7)

which suggests the constraint

P1µ2,h10 ≤
[

(log2 e)P0µ2,h00

RPU

− (Iex +N0)

]
. (6.8)

In this constraint, no prior knowledge of the channel realization h10 but its statistical

characterization is required at CUtx. Although the interference constraint can still be

imposed on CUtx without knowing exact channel realization, it is done at the cost of

requiring more CSI at PUrx. The summary of results is given in Table 6.1.
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6.2.3 Remarks

The previous discussion indicates the possibility of placing interference constraint on

the CR transmitter with information of channel statistical characterization rather

than the channel realization. The next question is how to obtain the statistical infor-

mation of the interference channel between the primary system and the CR system.

A key statistical parameter which has been shown above is the second moment of

the channel gain. This second moment is taken account of in an empirical large-scale

path-loss model as follows. In a wireless channel model, the channel power gain |hij|2

in decibels consists of a large-scale path loss and a small-scale fading

|hij|2dB = −PLijdB + 10 log10

(
|gij|2

)
, (6.9)

where the path loss PLijdB = −10 log10

(
µ2,hij

)
and the normalized small-scale fading

gain gij = hij/
√
µ2,hij . To evaluate the second moment µ2,hij is equivalent to evaluate

the large-scale path loss. A method for estimating this large-scale path loss within

the CR network will be presented in the next section.

In the case of slow fading, the interference constraint is derived based on the

outage probabiliy which is acceptable to the primary system. If a primary receiver

undergoes an outage even without interfernce, then any CR transmission power can

be allowed. However, if this outage is due to CR transmission, CR should have some

mechanism to detect this event and stop its own transmission. Otherwise, this outage

can last for an intolerable duration.
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6.3 Cooperative Interference Channel Estimation

Underlay CR systems allow a CU to access a licensed band provided that the intro-

duced interference at any PU receiver is below a certain threshold. It is possible for

a CU to transmit data at high power when an interference channel, the link between

a CU transmitter and a PU receiver, experiences deep fades. In [11], the capacity

of such systems has been analyzed under the assumption that perfect CSI, including

large-scale and small-scale propagation e�ects, is available a priori. However, in prac-

tice, CSI feedback delay and channel time variations introduce channel errors, thus

only partial and outdated CSI at a CU could be available. It has been shown that

the capacity loss increases notably with decreasing correlation between the outdated

and instantaneous channels [108]. Hence, in [109], a power control scheme based on

mean-value CSI instead of perfect CSI has been developed, putting large-scale-only

CSI to practical use. This mean-value CSI is referred to here as the large-scale path

loss.

For clari�cation, an example is given below. Let's denote the instantaneous inter-

ference channel power gain by g and the outdated one by ĝ, where ĝ is exponentially

distributed with mean g. The probability density function of g given ĝ can be ex-

pressed as [110]

fg|ĝ (g|ĝ) =
g

(1− ρ2)
exp

[
−g (g + ρ2ĝ)

(1− ρ2)

]
I0

(
2gρ

1− ρ2

√
ĝg

)
, (6.10)

where I0 (·) denotes the zeroth-order modi�ed Bessel function and ρ is a correlation

coe�cient. We are interested in two mean square errors (MSEs), E
[
(g − ĝ)2] and
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E
[
(g − g)2], where E denotes expectation. When the former is greater than the

latter, it implies that using g rather than ĝ can lead to better performance. The

di�erence between them, that is the former minus the latter, is given by (1− 2ρ2) g2,

which is greater than zero as ρ < 1/
√

2. In [109], the value ρ for real systems such

WiMAX and 3GPP LTE can be less than 1/
√

2, which justi�es the usage of the mean-

value CSI.

In this section, we propose a cooperative scheme among CUs for estimating

the large-scale path loss in interference channels. The novel contributions of our

scheme are two-fold. First, unlike conventional estimation schemes such as channel-

reciprocity-based estimation and PU-aid channel estimation [77,111], no assumption

about the PU-system duplex mode is made, nor do we assume that the signal-to-

interference-and-noise ratio measurements at the PU receiver are fed back to a CU

transmitter. Secondly, by making use of the geolocation information of CUs and the

PU receiver, path loss model parameters can be inferred by using maximum likelihood

estimation instead of the least squares (LS) estimation proposed in [112,113]. More-

over, cross-correlations among shadow fading factors are exploited to estimate the

shadow fading factor at the PU receiver using the minimum MSE (MMSE) criterion.

Analytical performance of our scheme is presented in terms of the MSE. Compared

to LS based estimators, it will be shown that the proposed method o�ers a better

estimate of the path-loss component of the channel between a PU and a CU. The

robustness of our proposed method is veri�ed via matching analytical and simulation

results.
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Figure 6.2: A primary receiver appears in a CR network.

6.3.1 System Model

Fig. 6.2 presents a centralized CR network in which a PU receiver PUrx is situated at

the center of a disc of radius rdis, and N CUs (CU1 ∼ CUN) are uniformly distributed

over this disc. The aim is to estimate the large-scale path loss between the CU base

station CU0 and PUrx. We denote the relative distance between CUi and CUj by

di,j, and the distance between CUi and PUrx by di,r. The log-normal path loss (in dB

units) between CU0 and another user, which could be either a CU or a PU, is given

by [114]

PL (d0,j)dB = PL (d0) + 10ν log (d0,j/d0) + ψj, (6.11)

for j =  ∼ N or r, where d0 is the close-in reference distance, ν is the path loss ex-

ponent, and ψi is a shadow fading factor with a normal distribution N (, σψ). This

propagation model has been adopted for power control in CR networks [115]. It has
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been shown that this model matches empirical data from urban and suburban envi-

ronments [116]. Taking the random vector [ψ1, ψ2, . . . , ψN , ψr] to be jointly Gaussian

distributed, the cross-correlation between the shadow fading factors follows the empir-

ical formula E [ψiψj] = σ2
ψγi,j where γi,j = exp (−di,j/dc) and dc is the de-correlation

distance which is determined empirically. This empirical formula was �rst proposed

under the assumption that correlated shadow fading factors are measured along a

straight line [116]. Here, we assume that CU1 ∼ CUN and the PU receiver PUrx do

not need to be aligned along a straight line. However, since these CUs are geograph-

ically close to PUrx, their corresponding coe�cients ν, N (, σψ) and dc tend to be

correlated. The coe�cients ν and σ2
ψ are unknown, while the de-correlation distance

dc is obtainable from the geolocation database.

6.3.2 Path Loss Estimation

Estimating the path loss PL (d0,r) is equivalent to estimating the values of two co-

e�cients ν and ψr. We propose that this is to be performed in two steps. First,

obtain estimates ν̂ and σ̂2
ψ with respect to ν and σ2

ψ based on the observations

{PL (d0) , PL (d0,i) ; i = 1, . . . , N}. Then, an MMSE estimator of ψr can be formed

by assuming ψi = PL (d0,i) − PL (d0) − 10ν̂ log (d0,i/d0) and E [ψiψr] = σ̂2
ψγi,r for

i = 1, . . . , N . Here are the detailed steps of our proposed method:

Step 1: estimating the path loss exponent and the shadow fading factor

variance.

For simplicity, let's de�ne Xi = PL (d0,i) − PL (d0), which is Gaussian distributed
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N (νδi, σ

ψ) with δi = 10 log (d0,i/d0), X = [X1, X2, . . . , XN ]

′
, where the superscript

′ denotes the transpose, µX = νd, and d = [δ1, δ2, . . . , δN ]
′
. The relative distances

between users within the CR system can be estimated by using the method proposed

in [117]. A possible scheme to obtain information of path losses PL (d0,i) for i =

1 ∼ N is described below. When measuring the channel gains between CUs in the

licensed band, the CR system can transmit at a conservative power level such that the

introduced interference seen by the PU receiver is acceptable, that is, the SINR at a

PU receiver being above a certain threshold. At the same time, the SINR requirement

should be met at each CU receiver. Due to the expected SINR at a CU receiver

being higher than that at the PU receiver, a CU receiver should be more sensitive

compared to a PU receiver. These SINR values can be evaluated using geolocation

information, the known PU transmission power, and prior statistical knowledge of

channels. Moreover, the e�ects of small-scale fadings at a CU can be averaged out if

each CU is equipped with multiple antennas or has a certain level of mobility such

that independent observations can be collected [112]. Therefore, the vector X is

obtainable and its distribution is given by

PX =
1√

(2π)N |ΣX|
exp[
−(X− µX)′Σ−1

X (X− µX)

2
], (6.12)

where |·| denotes the matrix determinant, ΣX = σ2
ψH, and H is an N -by-N matrix

with the (i, j)-th entry γi,j. Generally, the symmetric and positive-valued matrix is

not positive-semide�nite, so it is not an eligible covariance matrix. However, it has be

shown that the matrix ΣX of this type is positive-de�nite by the following proposition.
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Proposition 6. Suppose that there are N points {xi}Ni=1 on a plane and any two

points of them do not overlap. The relative distance between any two points, xi and

xj, is denoted by di,j. The N-by-N matrix AN = [ai,j]N×N with the i-th row and j-th

column entry ai,j = exp (−di,j) is positive-de�nite for N ∈ N.

By exploiting [81, Theorem 3.2.1], the maximum likelihood estimators of these

two parameters are respectively given by

ν̂ =
d
′
H−1X

d′H−1d
, (6.13)

and

σ̂2
ψ =

1

N
(X− ν̂d)

′
H−1 (X− ν̂d) . (6.14)

The estimator ν̂ of the path loss exponent is an unbiased estimate of uniformly min-

imum variance and its distribution is N (ν, σψ/(d
′
H−d)). It can also be shown (see

proof below) that the estimator σ̂2
ψ is a weighted sum of chi-square distributed random

variables, i.e.,

σ̂2
ψ =

1

N

M∑
m=1

λmχ
2
1

(
µ2
Ym

)
. (6.15)

Step 2: estimating the shadowing factor and the interference path loss.

With the estimates ν̂ and σ̂2
ψ, we can compute the shadow fading factor ψ̂i = Xi−δiν̂

and assume that the cross-correlation E
[
ψ̂iψ̂r

]
= σ̂2

ψγi,r holds for 1 ≤ i ≤ N . To

evaluate γi,r requires the information of the relative distances between a CU and a

PU receiver. This information is obtainable to the CR system from the geolocation
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database [118]. Making use of [119, Eq.(4.52)] yields the MMSE estimator of ψr, that

is

ψ̂r = γ
′

rH
−1ψ̂CU , (6.16)

where γr = [γ1,r, γ2,r, . . . , γN,r]
′
and ψ̂CU =

[
ψ̂1, ψ̂2, . . . , ψ̂N

]′
= X− ν̂d. Finally, the

desired estimate of the path loss PL (d0,r) follows as

P̂L (d0,r) = PL (d0) + 10ν̂ log (d0,r/d0) + ψ̂r. (6.17)

The MSE of the estimation P̂L (d0,r) can be expressed as

MSE = E
{[
P̂L (d0,r)− PL (d0,r)

]2
}
,

= σ2
ψ

[(
δr − d

′
H−1γr

)2

d′H−1d
+ 1− γ ′rH−1γr

]
, (6.18)

where δr = 10 log (d0,r/d0). The derivation of (6.18) is provided in Section 6.C.

6.3.3 Robustness in an Asymptotic Sense

In practice, the parameter of the de-correlation distance in use might not be accurate.

However, we are going to show that even using inaccurate de-correlation distance d̃c

will asymptotically lead to the same performance of using the accurate one. That is,

the MSE of the proposed path loss estimator MSE
(
d̃c

)
due to d̃c will converge to

MSE in (6.18) as the number of cooperative users N increases. The expression of

MSE
(
d̃c

)
is given by
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MSE
(
d̃c

)
= σ2

ψ

d
′
H̃−1HH̃−1d

(
δr − d

′
H̃−1γ̃r

)2

(
d′H̃−1d

)2 + γ̃
′

rH̃
−1
(
HH̃−1γ̃r − 2γr

)

+
2δrd

′
H̃−1

(
HH̃−1γ̃r − γr

)
d′H̃−1d

+ 1 +
2γ̃
′

rH̃
−1dd

′
H̃−1

(
γr −HH̃−1γ̃r

)
d′H̃−1d

 , (6.19)

where H̃ and γ̃r are inaccurate versions of H and γr in which γa,b is replaced by

γ̃a,b = exp
(
−da,b/d̃c

)
. The following proposition will show that our assertion is true

for a one-dimensional scenario.

Proposition 7. Assume that N cooperative CUs are aligned along a line and the

relative distance between CUi and CUj is de�ned as di,j = 2rdis
N−1
|i− j| for 1 ≤ i, j ≤ N .

PUrx is situated at the center of these CUs. Then, limN→∞MSE
(
d̃c

)
= MSE.

Proof. The matrix H corresponding to this scenario is a symmetric Toeplitz matrix

with its tri-diagonal inverse [120]

H−1 =
1

1− γ2
0



1 −γ0 0 · · · 0

−γ0 1 + γ2
0 −γ0 · · · ...

0
. . . . . . . . . 0

... · · · −γ0 1 + γ2
0 −γ0

0 · · · 0 −γ0 1


, (6.20)

where γ0 = exp
[
−2rdis

(N−1)dc

]
. Similarly, H̃−1 is H−1 in which γ0 is replaced by γ̃0 =

exp
[
−2rdis

(N−1)d̃c

]
. It can be easily shown that limN→∞ H̃−1 = d̃c

dc
H−1 because of limN→∞

1−γ2
0

1−γ̃2
0

=

d̃c
dc
, limN→∞

1+γ̃2
0

1+γ2
0

= 1, and limN→∞
γ̃0

γ0
= 1. Likewise, limN→∞ γ̃r = dc

d̃c
γr. Replacing

H̃−1and γ̃r in (6.19) with their limits results in MSE
(
d̃c

)
= MSE.
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Figure 6.3: MSE of path loss estimation using di�erent schemes versus the number
of cooperative CUs over di�erent sizes of discs.

This proposition also points that the same asymptotic property, limN→∞MSE
(
d̃c

)
=

MSE, is held in the two-dimensional scenario. As N is su�ciently large, it is

very likely to have a subset of CUs approximately arranged as the mentioned one-

dimensional scenario. Meanwhile, the path loss estimation is mainly determined by

reports from this subset of CUs. In other words, the MSE performance depends

strongly on observations from this subset of CUs. Thus, we can argue that our asser-

tion holds in a general two-dimension scenario.

6.4 Simulation Results

To verify the proposed path loss estimator, we consider an outdoor path loss model

established using measurements in urban environments [121]. The relevant param-

153



6.4. Simulation Results

4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−4

N : number of cooperative users

n
o
rm

a
li
z
e
d
M
S
E

 

 

∆dc= −0.8*dc
∆dc= −0.5*dc
∆dc= 0
∆dc= +0.5*dc

r
dis

=0.5*d
c

r
dis

=d
c

Figure 6.4: MSE of path loss estimation using inaccurate de-correlation distances
versus the number of cooperative CUs over di�erent sizes of discs.

eters are given by ν = 3, σψ (dB) = 7.9, dc = 55m, and PL (d0) (dB) = 31.7 at

d0 = 1m. The distance between CU0 and PUrx is 500 meters. To evaluate the e�ect

of MSE, we will use the normalized MSE as the performance measure, i.e.,

MSE =
MSE

E2 [PL (d0,r)]
. (6.21)

Fig. 6.3 shows that the mean square error of the proposed path loss estimator

decreases signi�cantly when the density of the cooperative CUs within a given disc

increases. The simulated results perfectly match the averaged analytical values given

by (6.18) over 100,000 di�erent CUs' location realizations. Compared to the MSE

curve due to the �rst LS based scheme [112], in which only the mean-value part

PL (d0) + 10ν log (d0,r/d0) is evaluated, our proposed estimator can lead to lower
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MSE. Moreover, our proposed method is also superior to the second LS based scheme

[113], in which ψr is inferred by linear estimation. The reason for this is that more

information, such as the de-correlation distance, has been exploited in our scheme.

In Fig. 6.4, the impact of using inaccurate de-correlation distances d̃c has been

depicted in terms of increases in MSEs when compared to the performance curve of

using accurate information dc. For the curve with rdis = dc and ∆dc = −0.8dc, where

∆dc , d̃c−dc, the increase in MSEs caused by using d̃c diminishes with the increased

N . This illustrates the robustness mentioned in Section 6.3.3. It is also apparent

from this �gure that the absolute deviation |∆dc| = 0.5dc does not cause signi�cant

increases in MSEs for rdis = dc or 0.5dc. Numerically a higher level of robustness

is guaranteed in the sense that the MSE increase is negligible as |∆dc| below some

threshold.

6.5 Conclusions

The proper interference constraint, corresponding to what CSI is at the CU trans-

mitter and at the PU receiver, has been explored. Conventional peak and average

transmission-power constraints are imposed, depending on whether the quality of ser-

vice of the primary system is delay sensitive or not. Nevertheless, our results indicate

that what constraint to place in di�erent scenarios is according to outage probability

or ergodic capacity of the primary system.

The second part of this chapter proposed and analyzed a new method for esti-

mating the large scale path loss of a CR interference channel without primary-user
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feedback. This method is performed mainly through cooperation among CUs. Both

analytical and simulation results are in agreement and indicate that the proposed

method can provide excellent performance relative to existing techniques. This part

of work has been published in IEEE SPL [122].
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6.A Proof of Proposition 6

When N = 1 or 2, the statement can be easily shown to be true. Assume that the

statement is true for N = k, we must show that the matrix Ak+1 is positive-de�nite.

Let's express Ak+1 as

Ak+1 =

 Ak y

y′ 1

 , (6.22)

where y′ = [a1,k+1, a2,k+1, · · · , ak,k+1]. By Sylvester's criterion, if the determinant of

Ak+1, |Ak+1|, is greater than zero, then Ak+1 must be positive-de�nite. With the

expansion |Ak+1| =
(
1− y′A−1

k y
)
|Ak|, |Ak+1| is greater than zero as y′A−1

k y < 1.

The rest of work is to show y′A−1
k y < 1.

Let a1,k+1 and a1,k respectively be the �rst and the second largest values in the set

{a1,i}k+1
i=2 . The matrixAk+1 can be turned into this form by performing row exchanges

and matrix transposes without changing the value |Ak+1|. As shown in Fig. 6.5(a),

it means that the points xk+1 and xk are respectively the �rst and the second closest

points to x1, that is, 0 < d1,k+1 < d1,k < d1,i for 2 ≤ i ≤ k − 2. The case of two

or more points at the same distance from x1 is excluded here. However, the proof

presented below can be easily extended to include this case. By making use of the

triangle inequality, we can get the possible ranges of the elements in the vector y,

that is, a1,ia1,k+1 < ai,k+1 <
a1,i

a1,k+1
for 2 ≤ i ≤ k. These ranges are further extended

to be a1,ia1,k+1 ≤ ai,k+1 ≤ a1,i

a1,k+1
for 2 ≤ i ≤ k because of the possibility of the three

points, x1, xk+1, and xi, lying on the same line. All these ranges together de�ne a
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(a) scattered points (b) aligned points

Figure 6.5: Geometric illustration

closed compact region D (a1,k+1) which depends on a1,k+1.

The quadratic-form function f (y) = y′A−1
k y is concave up because of A−1

k being

positive-de�nite. Therefore, the maximum value of f (y), ∀y ∈ D (a1,k+1), will appear

at the upper boundary of D (a1,k+1), that is, ai,k+1 =
a1,i

a1,k+1
for 2 ≤ i ≤ k. When y

approaches this upper boundary, it forces all the points {xi}k+1
i=1 to lie on the same

line and the point xk+1 to lie between xi and x1 for 2 ≤ i ≤ k. This is demonstrated

in Fig. 6.5(b). Let's expand the function f (y) on this upper boundary as

f (a1,k+1) = y′
Ck

|Ak+1|
y =

1

|Ak+1|

{
C1,1a

2
1,k+1

+2
k∑
i=2

C1,ia1,i + (
∑k
i,j=2 Ci,ja1,ia1,j)/a2

1,k+1

}
,

where Ck = [Ci,j] denotes the k-by-k cofactor matrix with the cofactor Ci,j of the

(i, j) entry of Ak and the possible range of a1,k+1 is given by a1,k < a1,k+1 < 1.
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The second derivative f ′′ (a1,k+1) = 2C1,1 + 6
(∑k

i,j=2Ci,ja1,ia1,j

)
a−4

1,k+1 is strictly

positive for a1,k < a1,k+1 < 1. Thus, the function f (a1,k+1) is concave up and has

the maximum at either a1,k+1 = a1,k or a1,k+1 = 1. When a1,k+1 approaches a1,k, it

means that the point xk+1 is getting close to xk. Thus, ai,k+1 is forced to become

ai,k for 2 ≤ i ≤ k. The value f (a1,k+1 = a1,k) can be shown to be one by using the

fact CkAk = |Ak+1| Ik where Ik denotes the identity matrix of size k. With similar

arguments, f (a1,k+1 = 1) can also be shown to be one. Hence, y′A−1
k y is strictly less

than one and the statement in the proposition holds.

6.B Derivation of Equation (6.15)

The derivation of this proof follows the idea in [123]. First, rewrite the estimator σ̂2
ψ

as

σ̂2
ψ =

1

N
X
′
D
′
H−1DX, where D ,

(
I− dd

′
H−

d′H−d

)
. (6.23)

Let Q be an orthonormal matrix such that Λ , QΣ
1/2
X AΣ

1/2
X Q

′
= diag (λ1, λ2, . . . , λN)

where A , D
′
H−1D. If the rank of the matrix A is M , then we can assume that

λm = 0 for m > M . Let's de�ne Y = QΣ
−1/2
X X, then its distribution is N (µY, I)

where µY = [µYi
]N×1 = νQΣ

−1/2
X d. As a result, we can recast the estimator σ̂2

ψ as
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σ̂2
ψ =

1

N
X
′
AX,

=
1

N
X
′
Σ
−1/2
X Σ

1/2
X AΣ

1/2
X Σ

−1/2
X X,

=
1

N
X
′
Σ
−1/2
X Q

′
ΛQΣ

−1/2
X X,

=
1

N
Y
′
ΛY =

1

N

M∑
m=1

λmχ
2
1

(
µ2

Yi

)
. (6.24)

The mean and variance of the estimator are respectively given by

µσ̂2
ψ

=
1

N

(
M∑
m=1

λm +
M∑
m=1

λmµ
2
Ym

)
, (6.25)

and

σ2
σ̂2
ψ

=
2

N2

(
M∑
m=1

λ2
m + 2

M∑
m=1

λ2
mµ

2
Ym

)
. (6.26)

6.C Derivation of Equation (6.18)

The MSE of the estimated path loss P̂L (d0,r) is given by

MSE = E
[((

δrν̂ + ψ̂r

)
− (δrν + ψr)

)2
]
,

= E
[
δ2
r (ν̂ − ν)2 + 2δr (ν̂ − ν)

(
ψ̂r − ψr

)
+
(
ψ̂r − ψr

)2
]
. (6.27)

The expectation in (6.27) can be evaluated in three parts. The �rst two are given by

E
[
δ2
r (ν̂ − ν)2] = δ2

r

σ2
ψ

d′H−1d
, (6.28)

and
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E
[
2δr (ν̂ − ν)

(
ψ̂r − ψr

)]
= 2δrE

[
ν̂ψ̂r − ν̂ψr − νψ̂r + νψr

]
,

= −2δrσ
2
ψ

d
′
H−1γr

d′H−1d
, (6.29)

where

E
[
ν̂ψ̂r

]
= E

[
ν̂γ
′

rH
−1ψ̂CU

]
,

= E
[
ν̂γ
′

rH
−1 (X− ν̂d)

]
,

= γ
′

rH
−1E

[
ν̂X− ν̂2d

]
,

= γ
′

rH
−1
{
E [ν̂X]− E

[
ν̂2d
]}
,

= γ
′

rH
−1

{
E
[
XX

′]
H−1d

d′H−1d
− E

[
ν̂2
]
d

}
,

= γ
′

rH
−1

{(
σ2
ψH + ν2dd

′)
H−1d

d′H−1d
−
(
ν2 +

σ2
ψ

d′H−1d

)
d

}
= 0;

E [ν̂ψr] = E
[

d
′
H−1X

d′H−1d
ψr

]
,

= E
[

d
′
H−1 (νd +ψCU)

d′H−1d
ψr

]
,

= E [νψr] +
d
′
H−1E [ψCUψr]

d′H−1d
, ψCU = [ψ1, ψ2, . . . , ψN ]

′
,

=
σ2
ψd
′
H−1γr

d′H−1d
, ∵ E [ψCUψr] = σ2

ψγr;

E
[
νψ̂r

]
= E

[
νγ
′

rH
−1 (X− ν̂d)

]
= 0;

E [νψr] = νE [ψr] = 0.

For the third,
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E
[(
ψ̂r − ψr

)2
]

= E
[
ψ̂2
r − 2ψ̂rψr + ψ2

r

]
,

= σ2
ψ

[
1− γ ′rH−1γr +

γ
′
rH
−1dd

′
H−1γr

d′H−1d

]
, (6.30)

where

E
[
ψ̂2
r

]
= γ

′

rH
−1E

[
(X− ν̂d) (X− ν̂d)

′
]

H−1γr,

= γ
′

rH
−1

[
σ2
ψH− σ2

ψ

dd
′

d′H−1d

]
H−1γr,

= σ2
ψ

[
γ
′

rH
−1γr −

γ
′
rH
−1dd

′
H−1γr

d′H−1d

]
;

E
[
ψ̂rψr

]
= E

[
γ
′

rH
−1 (X− ν̂d)ψr

]
,

= γ
′

rH
−1E [Xψr]− γ

′

rH
−1dE [ν̂ψr] ,

= γ
′

rH
−1E [ψCUψr]− γ

′

rH
−1d

(
σ2
ψd
′
H−1γr

d′H−1d

)
,

= σ2
ψ

(
γ
′

rH
−1γr −

γ
′
rH
−1dd

′
H−1γr

d′H−1d

)
;

E
[
ψ2
r

]
= σ2

ψ.

As a result of (6.27), (6.28), (6.29), and (6.30), Equation (6.18) follows.
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CHAPTER 7

CONCLUSIONS

7.1 Final Remarks

The research presented in this thesis has investigated cyclostationary spectrum sens-

ing, multi-antenna spectrum sensing, detection performance over fading channels, and

interference channel estimation. This work �rst contributes to existing multi-cycle-

frequency detection by ensuring better utilization of PU cyclostationary features and

in turn achieving relatively higher detection probability. As the counterpart of an

existing single-antenna scheme, multi-antenna cyclostationary spectrum sensing has

been proposed and rigorously examined. The required mixing conditions which estab-

lish joint asymptotic normality of the test statistics, have been analytically veri�ed.

Moreover, the performance bounds and approximations of cyclostationary spectrum

sensing over fading channels are provided to make CR system performance more pre-
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dictable. Finally, a novel cooperative estimate of the path loss between the primary

and CR systems is proposed. This vital information about the path loss can be used

to facilitate e�cient CR communications.

A number of caveats need to be noted regarding the present study. First, the

current investigation was limited by the assumption of centralized networks. Due to

this, the proposed detection and estimation methods are not immediately applicable

in distributed CR networks. To make our proposed methods distributed might re-

quire application of principles in Game Theory. Another limitation of this study is

that the proposed spectrum sensing methods were restricted to single frequency band

detection. To sense over multiple frequency bands will inevitably increase the com-

putational complexity. It is not surprising that there will be some trade-o� between

computational complexity and e�cient utilization involved in the multiband spectrum

sensing. Thirdly, the study did not evaluate the use of indoor path loss models in

interference channel estimation. This makes our proposed path loss estimation only

applicable for outdoor environments.

7.2 Future Works

In this thesis, several detection and estimation techniques have been explored for

cognitive radio applications. The broadness and depth of this work can be made

greater if the following tasks are carried out.

• Chapter 3 presents the optimal and sub-optimal schemes to identify test points

in the cycle-frequency-lag domain. Though our sub-optimal scheme requires less
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prior knowledge of PU signals, it still relies on the exhaustive search. A compu-

tationally e�cient scheme might exist in the �eld of Mathematical Optimiza-

tion. It means that the problem of identifying test points might be formulated

in some canonical form for which an e�cient solver exists. Another possible

extension could be to provide analytical expression of the fourth-order cumu-

lant of OFDM signals which are commonly seen in the primary system. The

derivation of this analytical expression could be based on our work of deriving

the 4th-order cyclic cumulant of linear modulated signals.

• Multi-antenna spectrum sensing discussed in Chapter 4 mainly focuses on the

synchronous scenario. As asynchronous spectrum sensing can occur in the dis-

tributed CR networks, it is well worth the e�ort to address this scenario, in

which it may arise the issue such as using multiple antennas to minimize CR

interference while maintaining the received PU signal level. It is also intrigu-

ing to come up with some eigenvalue-based methods for tackling interference

issues. Most existing eigenvalue-based methods only work on the assumption

of no interference.

• The detection performance analysis of cyclostationary spectrum sensing over

fading channels has been presented in Chapter 5. As �nding closed-form ex-

pressions of average detection probability is generally di�cult, some alterna-

tive close-form performance bounds or series-expansion approximations are pro-

vided. The tightness of these bounds and approximations has not yet been

quantitatively expressed. On top of this, several diversity reception schemes,
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7.2. Future Works

such as maximum ratio combining and switch and stay combining, have not

been analytically discussed.

• In Chapter 6 we investigate the interference constraints which should be imposed

on the CR system with perfect or partial channel side information. There are

some scenarios that can be considered in the future such as the PU transmission

undergoing slow fading while the CR interference is fast faded, and vice versa.

In addition, it is interesting to know what will happen without the assumption

that interference from other sources seen by the PU receiver remains stationary.

• In our proposed cooperative path loss estimation, the geographical information

plays an important role. However, the sensitivity of our proposed method to

relative distance uncertainty has not been analyzed. Moreover, the simulation

results have shown an interesting phenomenon that the accuracy of the pa-

rameter of the de-correlation distance is not very important. The quantitative

analysis of how this inaccuracy a�ects our proposed method should be further

addressed.
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