
 
 

Copyright Statement 

 
This copy of the thesis has been supplied on condition that anyone who consults it is 

understood to recognise that its copyright rests with its author and that no quotation 

from the thesis and no information derived from it may be published without the 

author's prior consent. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 
 

SPECTRUM SENSING AND COOPERATION IN COGNITIVE-OFDM BASED 

WIRELESS COMMUNICATIONS NETWORKS 

By 

OWAYED A ALGHAMDI 

 

 

A PhD thesis submitted to the University of Plymouth 

in partial fulfilment for the degree of 

 

 

DOCTOR OF PHILOSOPHY 

Mobile Communications and Networks Research Group 

Electrical, Communications and Electronic Engineering 

 

 

 

July 2012 

 

 

 



 
 

 

 

 

To my parents, my wife, my sons and daughter. 

  

 

 

 

 

 

 

 



i 
 

Spectrum Sensing and Cooperation in Cognitive-OFDM Based Wireless 

Communications Networks 

Owayed Abdullah Alghamdi 

Abstract 

The world has witnessed the development of many wireless systems and 

applications. In addition to the large number of existing devices, such development of 

new and advanced wireless systems increases rapidly the demand for more radio 

spectrum. The radio spectrum is a limited natural resource; however, it has been 

observed that it is not efficiently utilized. Consequently, different dynamic spectrum 

access techniques have been proposed as solutions for such an inefficient use of the 

spectrum. Cognitive Radio (CR) is a promising intelligent technology that can identify 

the unoccupied portions of spectrum and opportunistically uses those portions with 

satisfyingly high capacity and low interference to the primary users (i.e., licensed users). 

The CR can be distinguished from the classical radio systems mainly by its awareness 

about its surrounding radio frequency environment. The spectrum sensing task is the 

main key for such awareness. Due to many advantages, Orthogonal Frequency Division 

Multiplexing system (OFDM) has been proposed as a potential candidate for the CR‟s 

physical layer. Additionally, the Fast Fourier Transform (FFT) in an OFDM receiver 

supports the performance of a wide band spectrum analysis. Multitaper spectrum 

estimation method (MTM) is a non-coherent promising spectrum sensing technique. It 

tolerates problems related to bad biasing and large variance of power estimates. 

 

This thesis focuses, generally, on the local, multi antenna based, and global 

cooperative spectrum sensing techniques at physical layer in OFDM-based CR systems. 

It starts with an investigation on the performance of using MTM and MTM with 

singular value decomposition in CR networks using simulation. The Optimal MTM 

parameters are then found. The optimal MTM based detector theoretical formulae are 

derived. Different optimal and suboptimal multi antenna based spectrum sensing 

techniques are proposed to improve the local spectrum sensing performance. Finally, a 

new concept of cooperative spectrum sensing is introduced, and new strategies are 

proposed to optimize the hard cooperative spectrum sensing in CR networks. 

 

The MTM performance is controlled by the half time bandwidth product and 

number of tapers. In this thesis, such parameters have been optimized using Monte 

Carlo simulation. The binary hypothesis test, here, is developed to ensure that the effect 

of choosing optimum MTM parameters is based upon performance evaluation. The 

results show how these optimal parameters give the highest performance with minimum 

complexity when MTM is used locally at CR. 

 

The optimal MTM based detector has been derived using Neyman-Pearson 

criterion. That includes probabilities of detection, false alarm and misses detection 

approximate derivations in different wireless environments. The threshold and number 

of sensed samples controlling is based on this theoretical work.  

 

In order to improve the local spectrum sensing performance at each CR, in the CR 

network, multi antenna spectrum sensing techniques are proposed using MTM and 

MTM with singular value decomposition in this thesis. The statistical theoretical 

formulae of the proposed techniques are derived including the different probabilities. 
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The proposed techniques include optimal, that requires prior information about the 

primary user signal, and two suboptimal multi antenna spectrum sensing techniques 

having similar performances with different computation complexity; these do not need 

prior information about the primary user signalling. The work here includes derivations 

for the periodogram multi antenna case. 

 

Finally, in hard cooperative spectrum sensing, the cooperation optimization is 

necessary to improve the overall performance, and/or minimize the number of data to be 

sent to the main CR-base station. In this thesis, a new optimization method based on 

optimizing the number of locally sensed samples at each CR is proposed with two 

different strategies. Furthermore, the different factors that affect the hard cooperative 

spectrum sensing optimization are investigated and analysed and a new cooperation 

scheme in spectrum sensing, the master node, is proposed.[1-7] 
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Chapter 1: Introduction 

1.1 Motivations 

1.1.1 Radio Spectrum 

Radio Spectrum refers to the existing, natural medium that is used in different 

wireless communication systems and services: mobile, fixed, satellite-based, and low-

power device communications systems (ultra wideband, sensors etc.). Most of the 

existing wireless communications operate on frequencies that lie within the frequency 

band of (3MHz-30GHz), including High Frequency (HF/3-30MHz), Very High 

Frequency (VHF/30-300MHz), Ultra High Frequency (UHF/300MHz-3GHz), and 

Spectra High Frequency (SHF/3-30GHz), due to their different propagation phenomena. 

Since radio spectrum is a limited natural resource, spectrum management, 

monitoring, and controlling issues are important missions in the wireless 

communication world nationally and globally. Nationally, most countries have their 

own regulatory/authority agencies. Such agencies are supported by the respective 

governments, and are connected to the regional/international agencies that are 

responsible for the usage of the spectrum. These agencies are responsible for the 

categories listed below.  

1.1.1.1 Management of the Spectrum Use in the Country 

This mission includes allocating a given frequency band for a specific service (i.e., 

allocating the band between   and    MHz for Mobile/Fixed services, for 

Military/Civil/commercial sectors or shared between them) under restricted conditions; 

and assigning a frequency channel for a specific radio station under specific conditions. 

Furthermore, spectrum management includes creating the rules and the policies required 
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for the efficient use of the national spectrum. The output from this task consists of an 

allocation chart that contains all the radio spectrum subbands with their allocated 

services and sectors, and comprises a complete database for the whole radio spectrum 

bands and all the related licenses. 

1.1.1.2 Monitoring of the Spectrum Use in the Country 

As a part of national policies, specific spectrum frequencies have been assigned to 

be used by specific radio stations. These frequencies sometimes need to be monitored to 

ensure that their use is under the required technical conditions of the station‟s license 

(centre frequency, bandwidth, transmission power, coverage area/location, etc). In 

addition to such administrative procedures, the monitoring task requires technical tools 

to analyze the spectrum and detect the location of the stations that might cause 

unwanted harmful interferences to other licensed stations. 

For example, the national spectrum in the United States is managed by two bodies. 

The Federal Communications Commission (FCC) is responsible for civil uses of the 

spectrum [8], whereas the National Telecommunications and Information 

Administration (NTIA) is responsible for federal use of the spectrum [9]. 

In The UK, the Office of Communications (OFCOM) is the regulatory body that is 

responsible for the spectrum management [10]. Figure 1.1 shows the radio spectrum 

allocation chart of the UK [11].  From the allocation chart, it is shown how the radio 

spectrum band is divided into subbands, which are allocated to different services. These 

subbands might be allocated for military use, civil use, or shared by both of them. The 

band (440-450MHz), is allocated for the mobile, radio location, and fixed services for 

military use. The chart shows the degrees of importance of the spectrum‟s allocating 

process, and gives some idea of the congestion of the services in certain spectrum 

subbands.    
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1.1.1.3 Management of the Spectrum Use Globally 

Globally, the International Telecommunication Union (ITU) [12], which is the 

leading United Nations agency for information and communication technology issues, 

plays an important role in the international management of the radio spectrum via the 

Radio Sector (ITU-R) [13]. One of the ITU-R‟s important objectives is to ensure that all 

radio communications systems operate in an interference-free manner [13]. This is 

achieved by creating and implementing radio regulations and regional agreements, and 

the efficient updating of these systems via the procedures of the world radio 

communications conferences, along with the related regional conferences and study 

groups‟ meetings.  

The ITU-R aims at the efficient and the economical use of the radio spectrum that 

is used by all radio communications services (for more information about ITU-R 

regulations of frequencies allocation, refer to Article 5 [14]). Satellite services cover 

areas larger than the other services, and span many countries. Thus the allocation of the 

satellite services‟ spectrum has to be agreed via the ITU-R [15].  

1.1.2 Radio Spectrum Classifications 

Radio spectrum bands are classified into licensed and unlicensed bands. The radio 

device needs a license from the spectrum authority to operate in a specific licensed band.  

Receiving the license is based on the availability of the free frequencies, satisfying the 

technical operation conditions, and paying the spectrum usage fees. The fees formula 

depends on different factors, such the bandwidth, the location of use, and antenna  
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Figure 1.1 The United Kingdom‟s radio spectrum allocation chart. 

 

parameters, and is different from country to country. The radios that have licenses to 

operate in the licensed bands are designed to work in such bands. 
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The spectrum authority must protect these radios from the interferences that might 

be caused by other coexisting radio systems. Some radio devices don‟t need a license 

from the spectrum authority to operate in the certain bands, and consequentially the use 

of such bands is free. These free bands‟ radio devices are designed according to specific 

standards and operational requirements in order to protect the coexisting radio systems 

from interference. Such free bands are well known as unlicensed bands. 

In the UK, the unlicensed band (2.450-2.520 GHz) is allocated to the short range, 

wireless local area networks (WLANs), and Bluetooth applications [16]. The free band 

(5.850-5.925GHz) is allocated to the high performance radio local area networks 

(HyperLANs) services, and short-range applications [16]. In the USA, the unlicensed 

band (2.4-2.4835 GHz) is allocated to Bluetooth, 802.11b, and 802.11g WLANs 

services. The unlicensed band (5.15-5.25GHz) is allocated to the indoor systems and the 

802.11a WLANs services [15]. 

1.1.3 Radio Spectrum Scarcity and Underutilization 

It is clear that spectrum management and monitoring are very complicated, and at 

the same time important tasks. They also need great amounts of efforts and financial 

budgets both nationally and internationally. In parallel with this, the radio spectrum 

allocation charts show that different subbands have been crowded and there will be no 

more available subbands for the future wireless services and applications. With the 

continuing increase in wireless technologies and applications, there is an increasing 

demand for more spectrum bands, which are a limited resource in nature. The 

allocations and assignments of frequency bands for new wireless services are 

constrained by the available airwaves, and it is a vital problem, growing day by day. 

In addition, recent measurements show that the radio spectrum at a specified 

geographical location and a specific time is inefficiently used. A study conducted by the 
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QinetiQ Proprietary for the OFCOM shows that a large amount of the spectrum is 

inefficiently used, as is shown in Figure 1.2 (the blue area) [17]. The FCC has found 

variations in the utilization of the licensed spectrum ranging from 15% to 85% [18]. 

In the previous part of this chapter, the spectrum management, monitoring, and the 

related national /international rules and policies have been reviewed. The spectrum 

scarcity and underutilization issues are discussed as well.  Before we start focusing on 

the concept of cognitive radio (CR) systems, different technical terms related to the 

system technology will be reviewed. 

1.1.4 Dynamic Spectrum Access (DSA) 

Dynamic Spectrum Access (DSA) is a term used in newer concepts and techniques 

in the spectrum management rules and policies. The current rules and policies are fixed 

and can not provide efficient spectrum management requirements; DSA provides 

dynamic techniques, rules, or policies towards the spectrum reform. Based on the ideas 

which have been presented and discussed in the first Institute of Electrical and 

Electronics Engineers (IEEE) Symposium on the Dynamic Spectrum Access Networks 

(DySPAN); DSA is classified into three main models based on [19] as follows: 

1.1.4.1 Dynamic Exclusive Use Model 

The difference between this model and the other existing spectrum management 

rules and policies is that while the last is static, the dynamic exclusive model is more 

flexible. This model is divided into two sub models. 
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Figure 1.2 Measurements of the spectrum‟s usage in different locations. 
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The first is called as spectrum property right [20]. In this sub model, the flexibility 

comes from the authorization to the licensees to lease or sell their own unused licensed 

spectrum. The secondary market and economics have the main role towards spectrum 

reform in this sub model. The second sub model is known as „Dynamic Spectrum 

Allocation‟ which was initiated by the European DriVE project [20]. In contrast to the 

static rules and policies of the spectrum allocation, this sub model allocates the 

spectrum in a specific location and at a specific time based on the different 

communications services‟ traffic statistical analysis.  

1.1.4.2 Open Sharing Model 

 A spectrum can be shared by a number of different varieties of services in a 

specific area. The concept of sharing here means the ability of heterogeneous 

technologies to share the spectrum in a dynamic manner using specific frameworks or 

protocols and under the authority‟s assistance. Such a model is called as Spectrum 

Common‟ in [21], and [22], and the idea behind it is the success and the innovation  of 

the unlicensed band wireless services (e.g,WLANs).  An example of such model is the 

spectrum common centralized model which has been proposed in [23], where there 

were two services providers, one user, and a spectrum policy server in the same area. A 

spectrum policy server aims to control the spectrum allocation between the service 

providers and the user under a competition framework. 

1.1.4.3 Hierarchical Access Model 

 This model classifies the spectrum users into two main classes: primary users (PRs) 

(i.e., licensed users), and secondary users (SUs). It allows the two users‟ classes to 

access the spectrum in a hierarchical manner where the PR must be protected from the 

interference that might be caused by the SUs. SU can access the spectrum in two ways. 
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The first is the spectrum underlay, where SU is allowed to access wide band spectrum 

by spreading its signal with very low transmitted power below the PR user signal noise 

floor. The PR will be protected and the SU will be able to access the spectrum. An 

example of this approach is the Ultra Wide Band (UWB) [24]. The second method is 

spectrum overlay; the target of this type of spectrum access is to exploit the available 

unused part of spectrum (white bands) in a specific time and location without causing 

interference to the PR user. This is mainly an idea which was initiated by Mitola in 

1999 [25]. The approach of exploiting the white spectrum in the spectrum overlay 

access way is termed  Opportunistic Spectrum Access (OSA) in the NeXT generation 

program, which is being investigated by the Defense Advanced Research Projects 

Agency [19]. 

1.1.5 Cognitive Radio 

CR, a term first coined by Joseph Mitola in 1999 [25], addresses the problem of 

spectrum utilization by opportunistically accessing portions of the spectrum that are 

unused using techniques such as spectrum sensing, being aware of the operational 

environment dynamically and autonomously and adjusting their radio operating 

parameters accordingly. The long-term vision of this concept is the demand-based 

spectrum allocation to improve the relative spectral efficiency. 

1.2 State-of-the-Art   

In the previous sections and subsections within this chapter, a number of concepts, 

rules, definitions and real facts about radio spectrum have been reviewed. Theses facts 

and concepts have motivated a huge number of national and international organizations 

(academic, industrial, or even political) to deal with spectrum scarcity. This scarcity 

lead finally to a new CR technology, enabling an efficient use of the spectrum and 
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providing communications anywhere and at any time [26]. In the remainder of this 

chapter, we review general CR‟s technical issues - enough to give the reader  a general 

and clear picture of the main aims and objectives of this thesis. More and deeper 

technical details will be found within the chapters subsequent to Chapter 1. 

An OFDM based communication system is a promising candidate for CR 

technology as a PHY layer [27]. The high data rate and the robustness against the 

wireless channel impairments are main advantages of the OFDM system. Furthermore, 

the flexibility of the OFDM is another valuable feature. An OFDM-based CR system is 

able to deactivate a number of subcarriers that lie within the PR‟s frequency subband 

and activate those that lie in the vacant subbands for communications. The Fast Fourier 

Transform (FFT) process in the OFDM–based CR receiver supports the spectral 

analysis in a wide band. Additionally, the development of OFDM-based CR systems, 

allows CR to communicate with other existing OFDM-based wireless systems,which 

permits interoperability [28]. A number of OFDM-based wireless communications 

standards widely used. An IEEE802.11 (a/g), which is called Wireless Local Area 

Networks (WLAN), and IEEE 802.16, which is called Wireless Metropolitan Area 

Networks(WMAN) or WiMAX, are examples. 

Basically, a CR system can be distinguished from the classical communications 

systems by its spectrum awareness. CR must be aware about its surrounding Radio 

Frequency (RF) environment. Of course, such awareness allows CR to define the radio 

spectrum portions that are being unoccupied by their own PRs. Spectrum sensing is a 

technique that can be done by CR to achieve full awareness about radio spectrum. In 

CR‟s cycle, spectrum sensing is a main function. After performing this function, CR 

would have  gained a number of radio spectrum portions that would be free to be used. 

The remaining steps in the CR‟s cycle would then be to define the best channels to be 
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used and then adapt its transmission parameters to achieve the highest performance. 

Details about CR and OFDM- based CR technical issues can be found in Chapter 2. 

1.2.1 The Importance of Spectrum Sensing in CR Systems 

Spectrum sensing is a key functional factor in CR systems. In order to make a 

decision with a low probability of mistakes or a high probability of accuracy, CR must 

be supported by a high performance spectrum sensing technique. Generally, correct 

decisions when the PR user is not using the spectrum portion under sensing will 

increase the capacity of the CR networks. Furthermore, this would improve the 

spectrum efficiency by exploiting the unoccupied spectrum portions opportunistically. 

An error in the decision about the availability of PR user signal in a spectrum portion, 

when it is being used, causes harmful interference to the PR network. Thus, spectrum 

sensing in CR has been given more attention and interest from research groups at 

various universities and industrial institutions. In IEEE the term „„cognitive radio 

spectrum sensing‟‟ has been included in 2011 journals and conference paper titles from 

the first mention of CR to the present day (updated on 30-09-2011). In the Google 

search machine, the same term has 267000 results (updated on 30-09-2011). 

Spectrum sensing as a technique has existed in the past and thus many classic 

spectrum sensing techniques have been suggested and modified to be used as local 

spectrum sensing techniques, per CR, in the CR network. These techniques are 

classified into different types based on different assumptions and requirements, as can 

be seen in Chapter 2.  

CR spectrum sensing techniques with a high probability of detection and a fixed 

probability of false alarm at low signal-to-noise ratio (SNR) is the main objective of CR 

applications. The sensing over wide parts of the radio spectrum is another objective. 

This has lead experts to search for more accurate spectrum sensing techniques that  are 
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robust enough when faced with the main classical problems in spectrum estimation 

methods, the spectral leakage and the large variance in the estimated spectrum. It is 

preferable for CR not be supported by prior information about the PR‟s signalling. 

However, this might pose technical challenges and performance degradation, as can be 

seen later within Chapter 5.  

1.2.2 The Importance of Using MTM as a Spectrum Sensing Technique 

for CR 

Multitaper spectrum estimation method (MTM) was proposed in 1982 by Thomson 

[29]. MTM uses an optimal bank of band pass filters (known as tapers or windows). 

These orthonromal tapers are called Discrete Prolate Slepian Sequences (DPSS) [30]. 

MTM produces a single spectrum estimate with minimum spectral leakage and good 

variance. The spectrum estimation in MTM is an approximation of the optimal estimate; 

the maximum likelihood (ML) [31, 32]. One advantage for MTM compared to ML is 

the fact that it has lower computation complexity. 

Since the first development of MTM in 1982, this advanced method has been 

widely used in many applications. In addition to the power spectrum estimation in 

signal processing and communications applications, MTM is used in neurosciences [33, 

34], geophysics [35-38], and sonar [39]. Furthermore, MTM has been given more study 

via a number of recent PhD dissertations as in [40-43]. In 2005, Haykin suggested 

MTM as an efficient spectrum sensing technique in CR [26]. Singular Value 

Decomposition (SVD) process, was added to MTM in geophysics applications, and was 

called MTM-SVD [44, 45]. MTM-SVD used to correlate the information about signal 

using different DPSS and from different locations. MTM-SVD then is suggested by 

Haykin to produce near optimal power spectrum estimate for spectrum sensing in CR 

systems [26]. 
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1.2.3 The Importance of Using Multi Antenna Based Spectrum Sensing 

in CR Systems 

In order to improve the spatial diversity, classical wireless communications use  

multi antenna at transmitter (Tx) or receiver (Rx) or both. Such diversity improvement 

increases the system data rate and capacity. The reason behind this is that as the distance 

between antennas is chosen properly there will be a high probability of receiving 

independent fading through these different antennas. Therefore, the fading effects will 

be mitigated. Similarly, CR needs to mitigate the channel fading problems too. Thus, 

using multi antenna systems in CR is highly likely in the future, and many researches 

and publications have, in their literature, considered multi antenna issues in CR systems. 

Fortunately, using multi antenna in CR supports both tasks of communication, and 

spectrum sensing. Spectrum sensing performance in CR can be improved using single 

input at the PR‟s Tx and multi output at the CR‟s Rx (SIMO). Considerable work has 

been done in spectrum sensing in SIMO CR systems, as can bee seen later in Chapters 2 

and 5.  

1.2.4 The Importance of Cooperative Spectrum Sensing (CSS) in CR 

Systems 

In the absence of any information about the PR‟s signalling and in the presence of 

the CR user in a bad location with respect to PR‟s Tx, there would be a high probability 

of CR making mistakes in its decisions about the vacancy of PR‟s spectrum portion 

under sensing. The reason behind this is that CR might not be able to detect the PR‟s 

signal due to multipath fading or shadowing (known as „hidden problem‟). Therefore, 

CSS among a number of CR users in the CR network improves the overall probability 

of detection [46]. 

 There are two main types of CSS. In the first, each CR forwards its real 

measurements to a main CR base station (CR-BS) that fuses all collected measurements 
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and declares the final decision to the CR network, as in [47]. This type of cooperation is 

called Soft Cooperative Spectrum Sensing (SCSS). In the second one, each CR detects 

the PR‟s signal locally and sends binary digits presenting the states of the PR‟s 

spectrum portion under sensing to CR-BS, which applies logical fusion rule to declare 

the final decision as in [48]. This is called Hard Cooperative Spectrum Sensing (HCSS). 

SCSS requires huge feedback overhead, which requires wide bandwidth to send the real 

measurements to CR-BS; this is the main disadvantages of using SCSS when compared 

to HCSS. For this reason, the HCSS will be considered in this thesis. 

1.2.5 The Importance of HCSS Optimization in CR Systems 

As the number of CR users in the CR network increases, huge numbers of binary 

digits must be sent to CR-BS. Such huge numbers also increase the overhead feedback. 

Thus, a number of optimization methods have been proposed in this literature to 

minimize the number of binary digits in HCSS as in [49, 50]. Another optimization 

problem is the negative effect of using the binary digits that are produced from CR users 

with low SNR. Therefore, a number of optimization methods have also been proposed 

to improve the overall (or global) probability of detection [51, 52]. However, HCSS 

optimization is still an open issue in CR HCSS, and requires more work towards the 

most optimal cooperation. Additionally, all optimization methods have been examined 

on energy detector (ED) only.     

1.3 Aims and Objectives 

The information that has been provided above in subsection 1.2 determined the 

main objectives of this thesis. The main aim initially is the undertake a performance 

evaluation of MTM-SVD, and then to define the practical challenges of this method for 

CR applications. Optimal parameters of using MTM in CR‟s spectrum sensing are the 
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next target. An optimal MTM-based detector development is necessary for CR spectrum 

sensing and the applications that are mentioned earlier in this chapter. Developing 

optimal and suboptimal multi antenna based spectrum sensing techniques to improve 

the performance of spectrum sensing in SIMO CR‟s systems is also a primary objective. 

A new, effective concept for CSS and HCSS optimization are two further vital issues. 

So proposing a new concept of CSS and a new optimization method are likewise key 

targets here. Thus, my main objectives in this thesis can be summarized as follows:  

 Since the MTM-SVD performance as a CR spectrum sensing technique has 

not been evaluated other than during some theoretical work, a simulation 

program is built to evaluate this method in OFDM-based CR. The 

simulation results indicate the method is powerful. However, practical 

implementation of this technique is found to be difficult in CR systems. The 

reasons behind this is that PR‟s signal measurements from different CR 

users using different DPSS (or tapers) must be sent via control channel to 

CR-BS. Thus, MTM-SVD is classified as SCSS with multi measurements 

(MSCSS). This requires huge control channel bandwidth, and will slow the 

spectrum sensing due to complexity. Additionally, it is found that the 

MTM-only technique requires the development of an optimal MTM-based 

detector to be used practically in CR‟s applications in either of the other 

mentioned applications. 

 The last point leads me into building a simulation model to optimize the 

MTM parameters so that they may be optimally used in OFDM-based CR 

systems. Time bandwidth product and number of DPSS (or tapers) are the 

main parameters, which control the performance of the MTM it self. They 

control the amount of spectral leakage outside the band and the variance of 

estimate. Therefore, this point has been investigated and a simulation model 
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is proposed using the Monte Carlo method to evaluate the effects of these 

parameters and determines the optimal parameters. 

· Using MTM in CR systems requires the development of the optimal 

detector that allows the designer to calibrate the threshold in order to 

achieve the highest probability of detection, or the lowest miss detection 

probability at fixed false alarm in different wireless environments using  the 

Neyman-Pearson criterion. In this thesis, the optimal detector is developed 

and closed theoretical expressions are derived theoretically including: 

- Decision statistics‟ Probability Density Functions (PDFs) for the 

different hypothesis. 

- Probability of false alarm. 

- Probability of detection. 

- Probability of miss detection. 

- Number of required sensed samples to achieve a specific 

performance. 

- The chosen threshold to achieve a specific performance. 

Simulation programes are written to evaluate the performance in Additive 

White Gaussian Noise (AWGN), Rayleigh flat fading, and multipath fading 

environments. The theoretical results match the analytical results well. The 

MTM-based spectrum sensing technique has the highest performance level 

compared to both classical and recently-proposed spectrum sensing 

techniques. 

 Supporting CR systems by a multi antenna system improves both 

communications and spectrum sensing. A review of the available multi 

antenna based spectrum sensing technique is the first task here. Based on 

this, one optimal and two suboptimal multi antenna based spectrum sensing 
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techniques are proposed using MTM. Theoretical expressions for the 

different probabilities are derived. The simulation and analytical results 

include performance evaluation in AWGN, Rayleigh flat fading, and 

multipath fading environments. Comparison between the proposed 

techniques and the ED based multi antenna based spectrum sensing 

techniques shows how the proposed ones outperform those that are ED 

based. 

 A review study of the CSS, in general, is provided here. A new effective 

concept of cooperation is one of the objectives of this part. Thus, a new 

cooperation concept is proposed and defined. Then, a concentrated study 

will focus on HCSS. Due to the importance of HCSS optimization in 

cooperation, I aim to take all existing optimization methods to the most 

optimal point. Therefore, an optimization method with two different 

strategies is proposed in this part of the thesis. 

1.4 Thesis Organization 

A full introduction that gives a clear picture about the main subject and aims of this 

thesis has now been provided.  The rest of this thesis is divided into a number of 

chapters that proceed to describe all the work up to the point where all objectives are 

achieved. These chapters can be summarized as follows: 

Chapter 2 provides a full revision of the concepts and definitions of a CR system. It 

also includes the main challenges that face practical implementation of CR. Spectrum 

sensing techniques and cooperation will be reviewed in detail, as they are the main 

challenges in CR systems. An OFDM-based CR system as a good candidate at the PHY 

layer will be reviewed as well, including, the first IEEE CR wireless standard; 

IEEE802.22.  
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Chapter 3 gives a technically detailed study of MTM, and MTM-SVD. Simulation 

results for OFDM-based CR spectrum sensing that uses the MTM-SVD is shown in this 

chapter. 

Chapter 4 provides the work behind developing an optimal MTM based detector 

for CR‟s spectrum sensing. It mainly includes two optimization targets. The first is to 

develop a simulation model that takes into account the effect of MTM parameters on the 

performance, and then determine the optimal MTM parameters. The second is to 

provide statistical theoretical derivations for the different PDFs and probabilities. This 

theoretical derivation facilitates the designing of the optimal MTM detector using  the 

Neyman-Pearson criterion, and will be useful in a number applications. Simulation and 

analytical results are provided in different wireless environments. A comparison to 

different techniques is included. 

Chapter 5 exploits the benefits of using multi antenna in CR systems and proposes 

one optimal and two suboptimal spectrum sensing techniques using MTM, and MTM-

SVD. Statistical and theoretical works are derived for the proposed techniques and for 

energy detector (ED) too.  The study here includes simulation and analytical results in 

different wireless environments.  

Chapter 6 investigates the CSS in CR‟s systems and the challenges of 

implementing such cooperation. A new concept of cooperation, the master node, is 

proposed in this chapter. An optimization method for HCSS is proposed. ED and MTM 

are examined under different assumptions to review the proposed method. 

Finally, chapter 7 concludes the thesis and defines some future work and issues. 

Figure 1.3 shows the thesis structure, including the contributions. 
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Conclusions and future work 

Figure 1.3 Thesis structure. 
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Chapter 2: Literature Review  

2.1 Introduction 

Before focusing on CR deep technical issues, an extensive revision study about the 

CR evolution, definitions, and functions will be provided in this chapter. Relevant 

names to CR such as, Software Radio (SR) or Software- Defined Radio (SDR), and 

interference temperature will also be outlined. To achieve more of a technical 

understanding about CR as communication system that is different from the classical 

radios, the CR cycle is an important issue to discuss.  

Since it is the only technical way of allowing CR to define the vacant portions of 

spectrum that are not being used by their licensed PR users, spectrum sensing is a main 

function in the CR cycle. The spectrum sensing concepts, challenges, and techniques 

will be reviewed and discussed as shall be seen later within this chapter.  

The analytical work of spectrum sensing from detection theory perspective will be 

covered, including, the problem formulation, the different probabilities, and the 

performance evaluation.  

Different spectrum sensing techniques that exist in the wide literature will be 

explored. This includes the MTM method as it is the main chosen spectrum sensing 

technique in this thesis. The concept of cooperative spectrum sensing in CR will be 

reviewed as well. This includes the local spectrum sensing cooperation using multi 

antenna and the global cooperation among number of CRs. The output from the 

spectrum sensing function, as the spectrum resource from the PHY layer needs to be 

analyzed and managed in order to efficiently use such resources. This issue will be 

given some attention by the end of spectrum sensing issues in this chapter. 

The OFDM as a promising physical layer candidate for CR will be investigated, 

including the advantages and reasons behind nominating OFDM transceivers for CR 
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systems, the transceiver structure of OFDM-based CR, the relevant IEEE wireless 

standards to IEEE802.22, and the OFDM –based spectrum sensing techniques.  

2.2 Cognitive Radio Evolution and Basic Issues 

Since the first introduction of cognitive radio in 1999, different 

national/international sectors and academic/industry research centres have been 

interested and focused on this type of radio. The ITU has considered the problem of the 

scarcity of spectrums via the Radio Communications Sector (ITU-R) [53], and has 

allocated a new agenda item to consider cognitive radio in the next World Radio 

Communications Conference 2012 (WRC-12); agenda 1.19 [54]. The IEEE 802.22 

working group is developing a standard for cognitive wireless regional area networks 

(WRAN), which will be used in the unused television channels, and the standard‟s draft 

has been released [55, 56]. 

In the next subsections we review the main concepts and functions of cognitive 

radio to raise awareness about the challenges that would face the implementation of 

such radio systems. 

2.2.1 Software Defined Radio (SDR) 

The concept of the Software Radio (SR) or Software-Defined Radio (SDR) is not 

new, it has been known as one of the radio systems design and engineering revolution 

stages [57, 58]. This type of radio is different from the traditional one as [59, 60]: 1. it is 

able to cover larger frequency ranges than the traditional through using wide band 

antennas, advanced filters, and high speed analog to digital (ADCs) and digital to 

analog converters (DACs) at the radio frequency (RF) front end. 2. Its main basedband 

processing functions such as modulation/demodulation, coding/decoding processing can 

be controlled via software programmed on a reconfigurable unit as the field 
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programmable gate array (FPGA). The main defined objectives of developing SDR 

were, firstly, to decrease the radio system‟s costs by developing an SDR that is able to 

be programmed to work in different frequency ranges using different modulations and 

transmit powers, and, secondly, to develop radio systems that able are to improve the 

provided services for both military and civil sectors [58]. A new objective for SDR now 

is to support the implementation of CRs. The physical components of a CR will be SDR 

components that will support the reconfigurability [26] feature of the CR as can be seen 

in the next subsection. 

The SDR is defined by the ITU–R as [53]: “Software-defined radio (SDR), is a 

radio in which the RF operating parameters including, but not limited to, frequency 

range, modulation type, or output power can be set or altered by software, and/or the 

technique by which this is achieved.” The CR is defined as an intelligent version of the 

SDR, where the intelligence in CR comes from its ability to know about its surrounding 

environment, adapt its transmission/receiving parameters, and learn from its mistakes. 

Figure 2.1 shows the main difference between the three classes of radios (modified from 

[61]). 

 

 

 

 

 

 

 

 

(a) Traditional Radio. 
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(b) Software Radio. 

 

 

 

 

 

 (c) Cognitive Radio. 

 

2.2.2 Cognitive Radio Definitions 

CR is an intelligent radio system able to be aware of its surrounding RF 

environment by using advanced sensing techniques to decide whether there are 

unoccupied spectrum portions (holes) available; it then changes its transmitting 

parameters (modulation type, transmission power, bandwidth, carrier frequency) to 

opportunistically exploit the unused spectrum band. The definition above is called the 

capability [26] of CR, which is one of the main features of CR. Thus, the capability here 

means the ability to be aware, adaptive, reliable, efficient, intelligent, and learnable [26]. 

The learnable word is the ability that CR makes current decision based on the last 

decisions and the prediction from the history and the mistakes toward effective use of 
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Figure 2.1 Traditional, Software Defined, and Cognitive Radios. 
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the spectrum holes. Another main feature of CR, is the reconfigurability [26], which can 

be achieved by using the SDR as a physical unit for CR. This would allow CR to cover 

a wide band range in tasks of sensing and communications. Furthermore, as the CR 

decides which carrier frequency, bandwidth, transmitted power, modulation scheme that 

will be used in communications to adaptively use the free spectrum toward a given 

Quality of Services (QoS) achievement, the transmission parameters can be simply 

modified by tuning the software. Based on these definitions, the main objectives of 

CR‟s development are defined, based on [26], as follow: 

1. To improve the spectrum efficiency by opportunistically exploiting the 

unused spectrum portions (holes) at a specific time and location as shown in 

Figure 2.2.  

2. To provide reliable communications at any time, and any place. 

These reliable communications are expected to provide different wireless services such 

as voice, data, and video[62].  
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Figure 2.2 The unoccupied spectrum portions (holes) at specific geographical location. 
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The spectrum holes here have three dimensions: the time, the frequency, and the 

geographical location. The spectrum hole is found by locating specific times or 

geographical locations not being used by the PR user; it can be used opportunistically at 

these times and locations by CR users. More descriptions of spectrum holes can be 

found in section 2.4.1. 

As CR scans a wide range of spectrum and defines the spectrum holes and 

adaptively uses them without interfering to the PRs, a more efficient use of spectrum 

can be achieved and more bandwidth is made available for different wireless services. 

Therefore, the applications of CR are classified into three categories based on [63], as 

follow: 

a. Military applications: Using CR in military wireless communications systems 

provides more dynamic use of the spectrum that would support the military, by 

exploiting the underutilized spectrum portions at any time and location. 

Therefore, in addition to the secure communications; the military will be able to 

have adaptive and continues communications anywhere [64]. 

b. Public Safety: The infrastructure-based communications systems are not robust 

when disasters or terrorist attacks happen. Therefore, public safety in 

emergency situations needs to use a system that can detect the spectrum holes 

and operate in different frequencies, transmission schemes, and bandwidths. 

Additionally, public safety will be able to contact other different 

communication systems (i.e., interoperability) when CR is used. 

c. Commercial and civil sector: more spectrum bandwidths will be available at 

any time, and any location when CR is used. This would increase the wireless 

communication networks that provide different services, such as voice, data, 

video, and images for different sectors. Additionally, such an intelligent system 
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alleviates the complicated tasks within the spectrum management in national 

and international agencies.  

Before we start focusing on more technical issues in the CR‟s cycle, an important  

and relevant definition is provided in section 2.2.3 for the Interference Temperature.  

2.2.3 Interference Temperature 

The conventional way of controlling the interference is based on the transmitter [26, 

60, 61]. The power of the transmitter is adjusted to cover a specific distance from the 

transmitter. This provides control over the transmitted power in order to protect other 

communications systems from interference. However, transmitter power controlling is a 

challenge in wireless mobile communications due to the variable location with time. In 

particular, the location variability changes the distance between the transmitter and 

receiver, which makes controlling the transmitter power [63]. Thus, the FCC has 

proposed a model to control the interference at the receiver, which is called the 

Interference Temperature [18]. Interference temperature defines a measure for the noise, 

and interfere powers within frequency bandwidth at a specific receiver, as a temperature, 

and can be written as [65]: 

                                                           
    
    

                                                                             

where      is the interference power in Watts,    is Boltzmann‟s constant (        

      Joule/Kelvin) and    is the bandwidth in Hertz. The interference temperature‟s 

unit is Kelvins. The interference temperature‟s maximum limit defines the upper limit 

where the receiver can operate well. The interference temperature at the PR receiver is 

given by [65]: 

                                                       
  

   
                                                                      

where   , is the received CR power at the PR receiver. 
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Based on interference temperature definition, the CR should measure the 

interference temperature and, based on this reading, adapt its transmitted power where 

the interference temperature does not exceed a pre-defined tolerance limit in (2.2). 

2.3 Cognitive Radio Cycle 

The CR is able to make discoveries about its surrounding RF environment by 

sensing and detecting the spectrum holes that have been left unoccupied by their 

licensed users. In the same task, the CR estimates the interference temperature of the 

surrounding RF environment in order to keep its transmitted power under the tolerated 

limit. In addition to the task of sensing and detecting holes, the receiver is responsible 

for the channel estimation. The channel state estimation (is known as channel state 

identification (CSI)) here is between a CR receiver and another CR transmitter. Using 

semi blind training [66], as an efficient method for CSI at the CR receiver has been 

proposed in [26]. The transmitter adapts its transmission parameters based on the 

received information from the receiver, and has two targets: to optimize the use of the 

available holes, and not to interfere with the PR. In [26], the author identified the 

Feedback Channel as a necessary connection tool to exchange the information between 

the CR transmitter and the receiver in the same terminal. The procedures discussed in 

this section as a summary represent the cycle of CR in one terminal, and are called CR 

cycle [26, 60, 64]. Figure 2.3 shows the CR cycle. 

Based on the figure, it is clear that the main difference between CR‟s cycle and the 

traditional radio cycle is the spectrum sensing and its relevant missions in CR. It can be 

called the backbone of the CR‟s cycle. Spectrum sensing is performed at the physical 

layer, and can be managed through different upper layers as Medium Access Control 

layer (MAC) in centralized CR network. CR‟s main functions are based on spectrum 

sensing and it is relevant tasks, which are divided into [63, 67]: 
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a. Spectrum sensing. 

b. Spectrum resource analysis. 

c. Spectrum resource management. 

d. Spectrum resource dynamic sharing and dynamic allocation.  

The different CR functions relevant to spectrum sensing functions will be reviewed in 

section 2.4. 

2.4 Cognitive Radio Functions and Missions 

  As has been discussed in the CR‟s cycle in section 2.3, the spectrum sensing and 

its relevant tasks are main challenges in CR development, and it mainly distinguishes 

CR communications from traditional wireless communications. Before we start 
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focusing on spectrum sensing technical issues, which are the main objectives of this 

thesis; a number of concepts that define CR architecture will be covered in this section. 

As has been fully known, CR uses the licensed band of a PR user, when it is not being 

used (CR can use unlicensed bands as well). CR uses this temporarily unoccupied 

licensed band with two constraints: Protecting PR from interference; and optimizing 

using this unoccupied licensed band. Note that a CR user is known as a secondary user 

(SU) and PR is well known as a primary user (PU). In this thesis the CR user is likewise 

represented as SU and PR is represented as PU. 

Figure 2.4 shows an example of CR centralized network architecture. There are 

two CR networks, CR1 (in green), and CR2 (in red), sharing a frequency band that has 

already been licensed to PR network. As it is assumed that this network is centralized, 

each CR network here has a main base station (BS): CR1-BS, and CR2-BS. Such BS 

coordinates the dynamic access of CR users to the available resources. In PR network,  

CR1 and CR2 users do not have any right to access the PR‟s frequency band unless they 

detect that the PR is away from the band and this can be known via spectrum sensing. 

On the other hand, PR users have the full right to access their licensed frequency band 

without disturbance from the CR users. As it is a centralised network, PR users can 

access their license band by coordinating with PR base station PR-BS. Note that; Figure 

2.4 here shows a representative diagram of a possible case. However, in some cases the 

CR, and/ or PR networks can be distributed networks, called Ad Hoc networks, where 

there is no infrastructure that allows using a BS as a network coordinator. 

The CR communication concept in the centralized CR network simply starts with 

performing local spectrum sensing at each CR, then the CR-BS collects enough 

information resulting from local spectrum sensing, combines the received information 

about the spectrum, then finally announces the final decision that describes how to use 

the licensed band opportunistically between different CR users, who reconfigure their 
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transmitters to adaptively use the free band. When there is more than one CR network 

sharing the opportunistic access to PR‟s licensed band; the spectrum broker [68] has 

been proposed to coordinate such access between different CR networks (e.g., CR1 and 

CR2 in Figure 2.4) [63]. Thus, no huge quantity of feedback information needs to be 

gathered at the CR node in the Ad Hoc CR network except when cooperative spectrum 

sensing is performed [67, 69]. Furthermore, each CR in the Ad Hoc network should 

exchange information about its spectrum sensing result with its neighbours to prevent 

collision in the network [70]. 
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In distributed CR architecture, there will be no BS that organizes the final spectrum 

sensing result announcement, and the opportunistic spectrum access. Most of the 

spectrum sensing and management functions will be performed at each CR 

independently in the CR Ad Hoc network [69], including spectrum sensing and analysis, 

final decision, and then transmitter reconfiguration to adaptively use the free band. 

An overview of the possible spectrum sensing and access scenarios have been 

given in this section based on the architecture concept. Such scenarios give the reader a 

clear picture about the operation procedures in CR network from spectrum sensing 

prospect at the PHY layer per each CR until spectrum sharing at the upper layers. 

However, each mission of these procedures is a challenge in itself. In the next sub 

sections, more technical details will be provided starting from spectrum sensing 

techniques. 

2.4.1 Spectrum Sensing  

Spectrum sensing in CR is the technical way that allows scanning of the 

surrounding RF environment and defines the spectrum holes that can be used 

opportunistically by CR. Very simply, CR asks spectrum sensing techniques to define 

the free spectrum portions so as to be adaptively used. However, this simple question 

introduces different technical aspects and challenges in CR communication systems. 

 Basically, the spectrum sensing in the CRs is classified into: 1. The detection of 

the power leakage that is being emitted from local oscillator (LO) of PR Rx that has 

been receiving data from the primary transmitter [71]; and 2. The detection of the PR Tx 

transmitted signal. Recent researches have focused on the PR Tx transmitted signal 

detection due to the difficulty of the first kind of spectrum sensing, and the weakness of 

such emitted signals from the PR Rx [60, 72]. Thus, this thesis focuses on PR Tx signal 

sensing issues. 
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PR‟s transmitted signal can be sensed at the CR‟s Rx, in three mains ways. Firstly, 

by estimating the received energy over a frequency band and catching the PR‟s 

transmitted signal within this band; secondly, by correlating some parameters, which are 

statistically periodic and priori known at the CR Rx with the received signal, or, finally, 

by coherently detecting the PR‟s signal by the CR Rx, which requires full knowledge 

about the PR‟s signalling. More details about the CR spectrum sensing techniques will 

be found in section 2.4.2. 

What is a spectrum hole in the context of spectrum sensing? Spectrum hole has 

been defined in [26] as: 

“A band of frequencies that are not being used by the primary user of that band at a 

particular time in a particular geographic area”. 

Based on this definition, the spectrum hole, which is a frequency dimension, 

depends on two other dimensions: time and geographical area. This means that the 

discovered vacant band in a specific time might not be vacant after a duration of time. 

Furthermore, the vacant frequency band in a specific area might not be vacant at another 

geographical area. In addition to frequency, time and geographical location, the PR‟s Tx 

beam direction is found as another dimension in defining spectrum hole [73]. The 

different codes in spread spectrum (SS) technologies are also dimensions in defining a 

spectrum hole as [73]. The azimuth and elevation angles of the PR‟s beam and the 

location of PR Tx, are useful for CR communications when they are prior known to the 

CR user [73]. Prior knowledge of these parameters to the CR user would allow it to use 

the PR‟s frequency band without causing interference. This can be achieved by 

changing the beam direction of CR Tx [73]. CR can share a PR that is based on SS 

technologies of the same frequency band and at the same time and same area. However, 

such opportunistic use requires CR to have full knowledge about the SS codes such as 
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frequency hopping (FH), and time hopping (TH)  that are used by PR in order to keep 

their transmission orthogonal, which ultimately protects PR from interference [73].  

Such knowledge would increase the complexity of the spectrum sensing task in CR in 

such cases. Additionally, the applications of such techniques are limited.  

Figure 2.5 shows a representative diagram where CR and PR networks are located 

in different areas and the frequency     that is already licensed to be used by PR which 

can be used in the other regions at any time. CR here can use the licensed spectrum 

without interfering with the PR. Figure 2.6 shows a representative diagram where CR is 

located in the same transmission area of PR, and cannot use the frequency     except 

when PR is not active. This means that CR can use the frequency     when PR is not 

using it, this can be known based on the spectrum sensing task. CR senses    and 

decides if it is vacant. Thus, in Figure 2.5, the geographical dimension plays the main 

role in the effective use of    , and in Figure 2.6, the time plays the main role, since the 

PR does not use the     the entire time. 
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Figure 2.5 CR and PR in different areas. 
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The detected spectrum hole in Figure 2.6 is classified as a temporal spectrum hole 

[74]. In this category, the spectrum hole can be used by CR in time dimension until the 

PR user claims it again. The CR then has to leave this spectrum hole for its licensed 

user-otherwise CR cannot exploit this spectrum hole. Another classification of spectrum 

hole is called spatial spectrum hole [74]. Figure 2.7 [74] shows a representative diagram 

explaining such a spectrum hole. The coverage area of the PR Tx here is defined by    , 

represents the radius of the transmission coverage of PR Tx. Assume that the PR Rx is 

located at the edge of this radius in the direction of the CR Tx as shown in the figure. At 

the same time, assume that the CR (which is supported by a receiver as well) is located 

at a distance     from the PR Rx and in a direction outside the PR Tx transmission 

coverage area. It is clear that under these assumptions, the CR Rx will not be able to 

sense the transmitted signal from PR Tx, this is because the signal cannot reach the CR 
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Figure 2.6 CR and PR are in the same area but PR is not active at a specific time 

duration. 
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Rx. In this case CR will detect no signal in the PR frequency band and the CR Tx 

therefore produces interference to the PR Rx when its transmission;    , is greater than 

or equal to    (i.e.,        ). Therefore, the problem can be summarized as: the CR 

user can not detect the PR Tx transmission because it is out of its transmitted coverage 

and can not be aware of the PR Rx that lies in its coverage. Using direction transmission 

is proposed in [75] to avoid interfering with the PR Rx in such cases. Using another CR 

node to relay the transmitted signal from CR Tx to CR Rx while avoiding interference 

with the PR is proposed in [76]. This problem is known as receiver uncertainty [60]. 

Figure 2.8 shows an illustration of the problem of shadowing in CR 

communications systems. Such a problem happens when the CR, which performs 

spectrum sensing and is named as CR Tx in the figure, is obstructed by an obstacle such 

as a building. In such a case the CR Tx is not able to detect (using its Rx) the PR Tx 

transmits in its licensed band due to the received signal with low SNR. Thus, CR Tx 

will interfere with the PR2 Rx when it transmits in the PR frequency band, as can be 

seen in the figure [60, 73]. Furthermore, the PR‟s transmitted signal that 
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Figure 2.7 Illustration of spatial spectrum holes in CR systems (or receiver uncertainty). 
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is under sensing by the CR might be suffering from deep fading and this would affect 

the decision of the CR about the frequency band vacancy. These problems are called 

hidden problems, and are one of the challenges in CR spectrum sensing [77]. A spatial 

and multi CR users diversity have been exploited in order to improve the single CR 

spectrum sensing; and this is called „Cooperative Spectrum Sensing‟ in the literature. 

There are a number of cooperative spectrum sensing methods and classifications to be 

discussed in section 2.4.2.    

An overview of some definitions and concepts about spectrum sensing has been covered 

above. Spectrum sensing is a key functional factor in CR development, and many 

challenges meet the practical implementation of such intelligence technology. Let us 

refer back to the spectrum hole definition, as a singular noun. Or, alternatively, how CR 

can detect spectrum holes, which is a multiple noun. Hardware components in CR 

should be able to support different frequency ranges and wide band sensing. This ability 

has been defined as a main challenge in the CR spectrum sensing and transmission 

schemes [60, 73]. CR needs to have RF front end components that satisfy the sensing 
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and communication in different frequency ranges and in a wide aspect (i.e., large 

bandwidth). High speed with high resolution ADC/DACs, antennas and amplifiers for 

such purposes are the main hardware requirements in practical CR implementation [46]. 

A CR with only one radio architecture will not be able to sense and transmit at the 

same time [78]. This challenge has initiated two main ideas to solve the problem. An 

implementing of CR architecture with two radios would allow CR to sense and transmit 

at the same time [79, 80]. Another idea is to deal with the problem as an optimization 

problem, keeping one CR architecture for both sensing and transmission. As has been 

mentioned above, sensing and transmission at the same time cannot be done via one CR 

architecture. Such a conflict is handled by dividing the time slot between the two tasks 

using one CR architecture. Thus, CR can achieve high throughput, which improves the 

spectrum efficiency by an opportunistic usage of the spectrum for transmission by 

decreasing the sensing duration. This decrease in sensing time would decrease the 

sensing performance. Consequently, more interference will result in the PR‟s frequency 

band due to the error in the sensing result [73]. Therefore, different optimization 

methods have been proposed in the literature to minimize the amount of interference to 

the PR‟s frequency band with maximizing the CR‟s throughput under different 

assumptions, where the spectrum sensing was performed in a periodic manner [81-84]. 

A representative illustration of the trade-off between sensing time duration     and 

transmission time duration     is shown in Figure 2.9. The time slot is divided into two 

tasks at: CR sensing, and transmission. The increase in the sensing time     produces 

greater accuracy of the sensing performance. Accurate spectrum sensing means a low 

percentage of errors in the decision about the availability of the PR‟s frequency band 

under sensing. However, this low percentage in decision error is at the expense of the 

CR throughput, because the PR‟s frequency band will be used for a short duration of 

time by the CR. In order to satisfy a specific QoS, or in  
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another words to efficiently use the licensed frequency band, the CR might be forced to 

increase the    . Such increase is at the expense of producing more interference to the 

PR‟s frequency band.  

The tolerance of this trade off problem also depends on the PR identity as well 

[73].When the PR‟s frequency band owner is a sector like public safety, the interference 

to such bands must be avoidable due to the sensitivity of these sectors [73]. Additionally, 

the availability of the public safety sector signal in its frequency is difficult to predict, 

and public safety might appear in the band any time. Therefore, interference avoidance 

is a apriority here via long and frequently sensing time duration This will keep the CR 

aware of the reappearance of a PR, which is in its own frequency band, and will 

increase the sensing accuracy in leaving the PR‟s frequency band any time that it 

becomes necessary [73]. Since the availability of the PR‟s signal in the TV channels 

does not change rapidly, the sensing time control is more flexible here. Generally, TV 

channels are active during the daytime. Thus, periodic spectrum sensing every one hour 

is proposed in the IEEE802.22 standard [55]. Additionally, the sensing time is defined 

Time Slot 

Transmission time duration:     

Sensing time duration:     

High spectrum efficiency 

                                            

High interference to PR 

                                                                  

              

Low spectrum efficiency Low interference to PR 

Figure 2.9 Tradeoff between sensing time and transmission time durations in CR 

systems. 
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as 30 seconds to be performed by the CR user in the IEEE802.22 as well [85]. 

Furthermore, the PR‟s services sensitivity degree is lower in TV broadcasting services 

than when the PR is involved in public safety for example. 

In this subsection, general definitions, technical issues, and challenges in CR 

spectrum sensing have been covered. The spectrum sensing technical background has 

been accumulated up to this point. However, the time is now due to go more deeply 

inside the spectrum sensing techniques themselves which are placed into different 

classifications and have different performances under different assumptions. The overall 

spectrum sensing performance is mainly controlled by the technique used for sensing at 

CR. Therefore, an overview of the spectrum sensing techniques that are available in the 

literature will be provided in the next subsection, including their performances, 

advantages, and disadvantages. 

2.4.2 Spectrum Sensing Techniques 

Spectrum sensing, as has been defined earlier in this chapter, is the technical 

method that can be used by CR to permit awareness of its surrounding RF environment. 

It is a main function in the CR‟s cycle. This technical method, represented by a physical 

device, employs an algorithm that allows CR to make decisions about the availability of 

the PR signal in a frequency band. The performance of such a device controls the 

following two main points: 

1. The amount of the interference that might be introduced from the CR user 

into the PR user‟s frequency band when that frequency is being exploited 

by the CR user, based on a non-correct decision from spectrum sensing, 

while the PR‟s signal is available in the frequency band. 

2. The throughput or the capacity of the CR network, which is called spectrum 

efficiency as well in CR systems. An error in the spectrum sensing decision 
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when the PR‟ s signal is not available in the frequency band will minimize 

the spectrum efficiency or CR network capacity, because the PR‟s 

frequency band is free to be used by CR but the CR decides that this is not 

the case. 

Consequently, the local spectrum sensing technique at each CR in the CR network 

should be as accurate as possible to mitigate the above two main points. Before focusing 

on the different spectrum sensing techniques, a fact should be mentioned here again; 

most of the spectrum sensing techniques that are proposed in the literature for CR 

applications are not novel, but  reintroduced from classical spectrum sensing techniques  

or detectors, which are already available in the signal processing and communication 

applications. 

2.4.2.1 Problem Formulation of CR Spectrum Sensing Using Neyman Pearson 

Criteria  

Generally, the spectrum sensing problem formulation can be classified as a signal 

detection problem of the variety found in communications systems. Fortunately, the 

signal processing in spectrum sensing is much simpler than that in demodulation 

processing [74]. However, there are still some types of spectrum sensing techniques 

requiring complex signal processing such those that apply coherent detection, as can be 

seen later in the next subsections. 

The problem formulation in spectrum sensing techniques can be defined simply by 

the distinguishing process between two hypotheses. These hypotheses define the 

possible states of the PR‟s activity in the frequency band under sensing. One hypothesis 

indicates the presence of the PR‟s signal in the band;   , which is called alternative 

hypothesis, and the other hypothesis,   , which is called null hypothesis, indicates that 

the PR‟s signal is not present in the frequency band under sensing [86]. Thus, the 

spectrum sensing here is represented by decision statistic D, which produces 



 

41 
 

observations that describe the state of the frequency band under sensing, is it   , or 

  ?. The input to the D, might be the PR‟s transmitted signal that‟s affected by channel 

or additive white Gaussian noise (AWGN) at the CR Rx, or random samples of the 

AWGN when there is no PR activity in the frequency band. The output from the 

decision is one of the hypotheses    or   . Thus, the relation between the real states of 

the activity of the PR in a frequency band and D is based on probabilities, and the 

behaviour of the D is statistically affected by the states of the frequency band under 

sensing [86]. Figure 2.10 shows an illustration of spectrum sensing problem formulation 

in CR. 

Assume that, the PR user transmits a signal     , and the signal is corrupted by an 

AWGN at the CR Rx,              
  , where   represents the time index. The D main 

function is to distinguish between the two hypotheses [87]: 

             

                                                                                                          (2.3) 

where      represents the received signal at CR Rx. 

 

 

 

 

 

 

 

 

 

 

 

Spectrum sensing technique at CR 

D 

PR‟s transmitted signal +Noise 

Noise only 

   

   

Performs Statistical 

analysis of observations 

and decides  

   or    

 

 

Figure 2.10 Illustration of spectrum sensing problem formulation in CR systems. 
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There are three well known hypothesis testing formulations; Bayesian, minimax, 

and Neyman Pearson hypothesis testing [86]. Generally, the D has probability of 

density function (PDF) for    state;        , and a another different PDF for   ; 

       . Note that D is different from one spectrum sensing technique to another. 

Therefore, each spectrum sensing technique type has different PDFs. The        , and 

        should be defined for any spectrum sensing technique in order to optimize the 

performance. Prior knowledge of the probabilities of    and    occurrences are 

necessary in optimizing the performance using Bayesian, and minimax criteria [86]. 

This statistical prior information is not the case in CR spectrum sensing due to the lack 

of information about the PR‟s activities in a specific frequency band. Hence, Neyman 

Pearson criterion is widely used in optimizing the performance of spectrum sensing in 

CR systems [87]. 

When the        , and          are known for any spectrum sensing technique, 

the optimal design can be obtained using Neyman Pearson criteria. The definitions of 

the D‟s PDFs for the different two hypotheses    and    include defining their means 

and variances. Figure 2.11 shows a representative example of such         and  

       , which are Gaussian distributions here. The D is a statistical description of the 

used spectrum sensing technique that produces the observations. The resulting 

observations are then compared to a predefined threshold  . Note that the threshold   is 

chosen based on the noise variance in the signal strength-based spectrum sensing 

techniques (e.g., energy detector) for example. In the comparison, any observation is 

greater than or equal to  , the hypothesis will be decided as     and this is indicated by 

„„yes‟‟ region, or    
. In contrast, any observation is smaller than the  , the hypothesis  

will be decided as   , which is indicated by „„ No ‟‟, or    
region. Note that as it is a 

statistical process here, there are two types of errors; type I error and type II error [87]. 
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These types of errors are known as false alarm and miss respectively [87]. The 

observations decision can be defined as follows: 

                                                         

                                                                     (2.4) 

Based on this, the possible four types of decisions are shown in Table 2.1. Thus, 

two possible decisions meet each state of the nature of the PR‟s activity in the frequency 

band under sensing. If the fact is, the PR is active in the licensed frequency band, and 

the CR spectrum sensing decides yes it is; the CR then makes the correct detection. 

Otherwise, CR misses the detection. In contrast, if the fact is, the PR user is silent in the 

licensed frequency band, and the CR spectrum sensing decides yes it is; the CR then 

makes the correct rejection. Otherwise, CR gives false alarm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 PDFs of the D and the design problem in typical spectrum sensing. 
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State of the nature CR decision; Is it   or   ? 

PR is active in the band;    Yes; correct detection No; miss  

PR is silent in the band;     Yes; correct rejection No; false alarm  

Table 2.1 The four possible decisions in CR spectrum sensing. 

 

The spectrum sensing performance can be analyzed and optimized based on the 

different probabilities; probability of detection, false alarm, and miss detection. In the 

next subsections, all these probabilities will be reviewed referring to Figure 2.11 and 

Table 2.1. 

2.4.2.1.1 Probability of Detection  

The probability of detection,   , is defined as is the probability that the CR 

detector decides correctly the presence of the PR‟s signal. Therefore, this type of 

probability is related to the         , which represents the PR‟s signal plus noise case 

as shown in Figure 2.11.    can be defined as follows [87]: 

     {   |  } 

                                                                    ∫           

 

 

                                                       

where   , represents the probability. It is clear that the    is the integration over 

        from the threshold   to infinity, or in another words, is the area under 

        starting from the    line, as shown in Figure 2.11. Since the        is 

assumed as Gaussian distribution;    can be defined finally as follows [87]: 

                                                                
   [       ]

√   [       ]
                                                        

where E and Var, are the mean and variance of the given distribution respectively. The 

term      is the complementary cumulative distribution function,     =
 

√  
∫   
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it calculates the tail probability [87]. Note that the Gaussian distribution assumption 

here is valid as an approximation for the D in many CR spectrum sensing techniques 

based on the central limit theorem [88], as can be seen later in the next subsections.  

2.4.2.1.2 Probability of False Alarm 

The probability of false alarm,   , is defined as the probability that the CR detector 

decides by mistake the presence of the PR‟s signal. Therefore, this type of probability is 

related to the        , which represents the noise only case as shown in Figure 

2.11.    can be defined as follows [87]: 

      {   |  } 

                                                                    ∫           

 

 

                                                       

In this case, it is clear that the    is the integration over         from the threshold   

to infinity, or in another words, is the area under         starting from   line as shown 

in Figure 2.11. The false alarm area is hashed in the figure. Following the same 

assumption in (2.6),    can be defined finally as follows: 

                                                                
   [       ]

√   [       ]
                                                     

where E and Var, are the mean and variance of the given distribution respectively. 

2.4.2.1.3 Probability of Miss Detection 

The probability of miss detection,   , is defined as the probability that the CR 

detector decides by mistake the absence of the PR‟s signal. Therefore, this type of 

probability is related to the        , which represents the PR‟s signal plus noise case 

as shown in Figure 2.11 by the vertically hashed lines under        .     can be 

defined as follows [87]: 

     {   |  } 
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                                                                   ∫          

 

  

                                                       

The case of   , is the complement of    case. The    is the integration over 

        from the minus infinity to   , or in another words, is the area under         

starting from minus infinity until   line as shown in Figure 2.11. Therefore,    can be 

defined finally as follows[87]: 

                                                                                    

                                                              
   [       ]

√   [       ]
                                                      

2.4.2.1.4 The Importance of Deriving Probabilities Formulae  

The different probabilities formulae for D with Gaussian distributions have been 

defined for both hypotheses   , and   . There are five main factors controlling the 

performance in such cases; the mean and variance for both          and         and 

the chosen threshold  . These statistical factors should be derived for the different CR 

spectrum sensing techniques for design and optimization purposes. As such factors have 

been derived, the spectrum sensing technique can be analyzed and optimized by 

controlling the   that will affect directly the resulting different probabilities. The 

statistical parameters, E, and Var of         are defined based on the effect of the CR 

spectrum sensing technique on the noise statistic (i.e., the noise mean and variance). In 

contrast, the statistical parameters, E, and Var of         are defined based on the 

effect of the spectrum sensing technique on the PR‟s signal plus noise statistic (i.e., the 

mean and the variance of PR‟s signal plus noise). Furthermore, the statistical parameters 

of         are affected by multipath fading and shadowing environments. 

Figure 2.12 shows a representative example of the relation between the     and    

for three different techniques, which assumed to have been used for CR spectrum 

sensing under the same conditions of wireless environment. The relation plot between 
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   and    is well known as receiver operating characteristic (ROC) in signal detection 

theory. This example is not based on any real technique, but is just to give more 

understanding of the performance of spectrum sensing technique. Both    and    

decrease together as   increases, and they both increase with the decrease in  . This 

type of relation can be represented in the opposite way by plotting    versus  . In this 

case,    increases with the increase in  , and decreases with the decrease in  . 

Therefore, the two types of errors false alarm and miss cannot be minimized together. 

The decrease in one of them increases the other one [87]. Thus, the Neyman Pearson 

Theorem’s main objective is to maximize    (i.e., minimize   ) at fixed    

          , for a decision statistic D, and can be written as follows [87]: 

                                                Maximize    subject to                                          

The likelihood ratio test (LRT) decides that the hypothesis    is valid for any D 

when the condition in (2.12) [87] is satisfied.  

                                                  
       

       
                                                

where     , is the threshold that satisfies (2.12). 

 The general likelihood ratio test (GLRT) is a well-known approach in signal 

detection theory [87]. It tolerates the detection problem blindly, when one or more of 

the parameters in the system model of (2.3) are unknown (e.g.,   
 ) . Assume that the 

noise variance   
 , is unknown to the CR; the GLRT has the following model [87]: 

         
 (  w

2̂    )

 (  w
2̂    )

       

where w
2̂  is estimated using ML. The   (  w

2̂    ), is maximized, then the w
2̂  is 

estimated for the    hypothesis and so on. The case can be extended for more unknown 

parameters such as the PR‟s power and the channel gain. 
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The ideal spectrum sensing technique, is that gives   =100% when   =0 [89]. 

Figure 2.12 shows also the    versus    curves for three different spectrum sensing 

techniques, A, B, and C, as an example. It is clear that technique C, outperforms B and 

A. This is because at any chosen point in the    axis, technique C gives higher   , or 

lower   . Note that again, the   is controlled based on   
 . The three curves can 

describe the effect of the change in SNR for a specific technique as well. In such an 

example, curve C (i.e., technique C) indicates that the SNR is higher than that in B and 

A curves. 

Let us introduce a term that is used in signal detection theory to evaluate the 

detection performance: the deflection coefficient    (is known as generalized SNR) [86]. 
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Figure 2.12 Representative example for ROC. 
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For any decision statistic D with PDFs;        , and         for both hypotheses 

   and    respectively; the    normalized to Var[       ], can be defined as follows 

[86]: 

                                                                  
  

   [       ]
                                                     

where,   = (E[       ]   E[       ] , is the means distance difference. 

The question now is how can    be used in distinguishing the performance of 

techniques A, B, and C? Figure 2.13 shows a representative example of   for three 

different techniques, A, B, and C. It can be noted that in technique C‟s PDFs, the means 

distance difference    is larger than that in A and B techniques. Therefore, the false 

alarm and miss errors areas in technique C will be smaller than those in B and A. 

Hence, C outperforms B and A. The means distance difference of technique B    is 

larger than that in technique A. Hence, technique B outperforms A. In the same used 

technique, large   indicates that the PR‟s power, is higher than the noise power (i.e., 

  
 ), or, alternatively, high SNR. In the case when   is small, it means that the noise 

power is high, or low SNR. Generally, in a large   situation, the spectrum sensing 

technique can easily distinguish between the PR‟s signal plus noise case and the noise 

only case. In contrast, in a small   situation, it can not easily distinguish if it is PR‟s 

signal plus noise or noise only. 

By the end of subsection 2.4.2 and the subsections within it, enough background 

about the spectrum sensing problem formulation in CR spectrum sensing will be 

accumulated. In the next subsections, different spectrum sensing techniques will be 

discussed. 
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Figure 2.13 Representative examples for the means distance difference for A, 

B, and C techniques: (a)     for technique C (b)    for technique B (C)    for 

technique A, where         . 
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2.4.2.2 Energy Detector 

The energy detector (ED) [90], is one of the most widely proposed spectrum 

sensing techniques in CR systems. It is, also, called as periodogram (PE) [91]. The main 

two reasons that helped the ED to become a common technique in CR spectrum sensing 

are [46, 63, 73, 92-94]: 

a. Using ED in CR spectrum sensing does not require any prior information 

about the transmitted PR‟s signal, which is under sensing by CR. 

b. The ED has noticeable low computational complexity. 

The ED is a non-coherent method since it does not need information about the PR‟s 

signal type. It simply measures the energy in the received signal. Referring to the 

system model in (2.3), the decision statistic D about whether the PR‟s signal is present 

or absent is made by making the following test on the received signal at CR Rx, which 

is given by [47]: 

                                                                    ∑|    |     

  

 

   

                                              

Thus,    , is the summation of the energy of      over   samples using ED. In some 

works as in [51, 63, 95, 96], (2.14), is defined as the average of the energy of      over 

   samples, as the performance will be the same [47, 96]. Recalling (2.5), the probability 

of detection,   
  , when ED is used is defined as follows [87]: 

                                                                          
     {     |  }                                           

Recalling (2.7), the probability of false alarm,    
  , using ED, can be defined as follows: 

                                                                           
     {     |  }                                           

Note that the threshold here    is controlled based on the noise variance (i.e., noise 

power) as has been mentioned earlier in the last subsection. The noise variance in the 

system model (2.3) is   
 . The statistical characteristics of    , are important now in 

defining the different probabilities. The     in (2.14), is a sum of the square of   
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Gaussian random variables. Therefore, the     has a central Chi-square PDF,      , 

with   degrees of freedom when    is valid [87, 93]. Otherwise,      has a non central 

Chi-square PDF with   degrees of freedom and non centrality parameter   
  

  
 
, which 

is the SNR, where    represents the energy of one sample of the PR‟s transmitted signal 

(i.e.,      based on model (2.3)). Referring to the central limit theorem [88], the    ‟s 

PDFs here can be approximated to be Gaussian distributions when   is large enough 

     [47]. Consequently, the mean E of    , when      is assumed as a PR‟s 

modulated signal with energy    |    | , is written for both hypotheses as follows 

[47]:  

                                                           [   ]  {
   

                         

       
             

                                           

and variance Var [47] 

                                                              {
    

                           

    
    

           
                                      

 

The PR‟s signal in the case above might be a modulated signal such as quadrature phase 

shift keying (QPSK), for example. In some cases, the PR‟s signal samples have been 

tolerated as Gaussian random variables,               
  , that are identical and 

independent from      [97-99]. This was for derivation only in CR spectrum sensing 

techniques [99]. The mean E in such cases is calculated as follows [97]: 

                                                     [   ]  {
   

                         

    
    

             
                                                

and variance [97] 

                                                              {
    

                           

     
    

             
                                     

Using (2.17) and (2.18) into (2.6), (2.8), and (2.10) results in the different probabilities 

formulae   
  ,    

  , and    
  as follow [47]: 



 

53 
 

                                                        
    (

         
  

√    
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√     
  
                                                                            

and  

                                                     
      (

         
  

√    
    

      
)                                                   

The probabilities formulae for the PR‟s signal that is assumed as a Gaussian noise can 

be written following the same steps by substituting (2.19), and (2.20) into (2.6), (2.8), 

and (2.10).  

The ED can be performed in two ways: time domain and frequency domain. Figure 

2.14 shows schematic diagrams for the two different ways of ED based spectrum 

sensing. In the time domain, the received PR‟s signal at the CR terminal is passed 

through a low pass filter to match to the bandwidth of interest under sensing that might 

be occupied or not occupied by PR‟s signal. Then, the signal is converted from analog 

to digital using ADC. After that, the digital samples are passed through a squarer device, 

and L samples integrator, which computes finally the energy over L samples. The 

resulting energy is then compared to the  , and the availability of the PR‟s in the sensed 

bandwidth will be decided at this stage. In the frequency domain way, which is called 

PE, the signal is down converted from RF to baseband. Then, ADC is used to convert it 

to digital samples. The serial parallel S/P device is used before the signal samples are 

passed to the fast Fourier transform (FFT). The resulting samples through the FFT 

output bins represent signal samples in the frequency domain. The energy over each 

frequency bin                  , can be computed using squarer and integrator over 

L samples as well, and the resulting energy represents the energy in the frequency bin    

(i.e., channel   ). Finally, the energy over each frequency bin will be compared to the  , 

and  
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the decision will be made for each frequency bin. Note that, the FFT size here is N, and 

the operations here might include cyclic prefix (CP) removal as can be seen in chapter 4. 

In the PE case, statistical characteristics, and the probabilities formulae of         

(i.e.,     at every frequency bin   ), are equal to the statistical characteristics and 

probabilities formulae in (2.19)-(2.23) [100]. In other words, the output from each 

frequency bin    is applied to a separate ED. Generally speaking, PE is one of the 

classical power spectrum estimation methods where the power spectral density (PSD) 

over a wide band can be estimated [91]. 

The ED based spectrum sensing technique performance in different wireless 

environments is investigated in [93]. The work included deriving probabilities formulae 

in AWGN, Rayleigh and Nakagami wireless channels. In multi band OFDM systems 

that need to coexist with indoor fixed services, it is found that the spectrum sensing of 

indoor fixed services signals using PE gives an acceptable percentage of false alarm and 

miss errors [101]. Using stochastic resonance before ED process in CR spectrum 
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Figure 2.14 Schematic diagrams of ED based CR spectrum sensing (a) Time domain 

(b) Frequency domain based (i.e., periodogram(PE)). 
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sensing is proposed in [102]. Stochastic resonance amplifies the received PR‟s signal at 

CR Rx, which results in an increase in the SNR. ED is used to analyse measurement 

results to define the time periods occupancy in WLAN [103]. 

The main advantages of using ED in CR spectrum sensing, as mentioned earlier in 

this subsection, are simplicity, and no prior information about PR‟s is required at CR. 

However, the   control is based on knowing priori the noise variance,   
 , which needs 

estimation. Such noise variance estimation is subject to some error [104]. Furthermore, 

in low SNR conditions, CR was found not able to detect PR‟s signal when ED was used 

for spectrum sensing [104]. This was because in such low SNR, noise power is large 

compared to PR‟s signal power. The SNR level where ED cannot detect the PR‟s signal 

is called the SNR wall [105]. In order to minimize the noise power estimation error, the 

work in [106], proposed an adaptive method to estimate such power. This was based on 

using the multiple signal classification algorithm (MUSIC) for the isolating of the PR‟s 

signal and the noise subspaces. The forward energy based method is, also, used to 

adaptively estimate the noise power level as in [107]. 

Finally, when ED is used for spectrum sensing in frequency domain (i.e., PE) the 

spectral leakage of the power from frequency bin to the adjacent frequency bins( known 

as bad bias property) and the large variance of the estimated power are the main 

challenges [26]. The reason behind these problems is that PE uses single rectangular 

windowing of the received signal in the time domain. Therefore, there are two main 

significant disadvantages of using PE in CR spectrum sensing: it is not accurate at low 

SNR, and suffers it from the bad-bias and large variance of the estimated power. 

2.4.2.3 Matched Filter 

When the CR has prior information about the PR‟s signal, the optimal sensing 

algorithm is the matched filter (MF) [87]. MF coherently detects the PR‟s signal. In 
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such coherent detection, CR needs to know the centre frequency, bandwidth, used 

modulation and its order, pulse shape and packet format. Additionally, CR needs to 

know some types of patterns of the PR‟s signal such as the pilot, preambles and 

midambles that are used for synchronization and equalization purposes [63, 73]. The 

MF improves the performance of the CR spectrum sensing by maximizing the SNR of 

the received signal, and minimizing the required time for detection [104] due to 

coherent detection. However, in addition to the prior information that MF needs to 

know, using MF in CR spectrum sensing consumes more power due to the signal 

processing complexity, and requires a separate receiver for each type of PR‟s 

transmitted signal [63, 73]. Furthermore, the required number of samples for sensing 

increases as the SNR decreases [105].  

Referring to the system model in (2.3), MF correlates coherently the received 

signal at the CR Rx,      , with a priori known signal     , and the decision statistic of 

MF,    , can be defined as follows [108]: 

                                               ∑             

  

 

   

                                                             

where     ,is the conjugate operator. The     has PDFs with Gaussian distribution for 

both hypotheses, and the mean E is defined as follows [108]: 

                                                  [   ]  {
                         

                       
                                                             

and variance  
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the different probabilities formulae can be written as follow[108]: 
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and  

                                                         
      (

     

√     
 
)                                                                 

2.4.2.4 Cyclostationary/Feature Method  

In cyclostationary [109] spectrum sensing, CR user detector exploits the produced 

periodicity in the PR‟s signal due to the use of sine wave carriers, pulse trains, and CP 

in the modulation of the PR‟s signal. The cyclostationary term comes from the fact that 

the signal can be characterized by its statistics, such as mean and auto correlation, 

because they exhibit periodicity [73]. This method can distinguish between the PR‟s 

signal and noise, because the noise is a wide sense stationary (WSS) signal with no 

correlation, while the PR‟s signal under sensing is a modulated signal that has spectral 

correlation [110]. The method can distinguish between different PR signals as well 

[111]. 

Compared to MF, cyclostationary spectrum sensing requires partial information 

about the PR‟s signal. Therefore, it has a lower performance and complexity compared 

to MF. Compared to ED, it is better in term of performance but with higher complexity 

than ED. Cyclostationary spectrum sensing faces difficulties in distinguishing between 

the different OFDM signals (i.e., between different OFDM-based PR signals), due to 

their similarity [63]. Different signatures that can be impeded within the OFDM-based 

PR signals are proposed in [112, 113]. Furthermore, cyclostationary spectrum sensing 

performance is affected by the noise uncertainty, and frequency selective fading in low 

SNR [63], and needs a long time period to perform spectrum sensing [60]. 

The main philosophy of cyclostationary is to exploit the periodicity in the modulated 

signals. The means and autocorrelations of such modulated signals are periodic over 

fundamental time periods. Referring again to the system model in (2.3), the PR‟s 

transmitted signal      has a mean as  [    ]; after time period    , the mean of     
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    , is  [        ]   [    ]. The autocorrelation between       and      , where    

and    are different time samples is equal to the autocorrelation between            

and           , and this can be written as [108], 

                              

where   , represents the autocorrelation of   . In CR spectrum sensing using 

cyclostationary method, the received signal at the CR that has been defined in the 

system model of (2.3) is used again here. The calculation of the Cyclic Spectral Density 

(CSD) of the received signal at CR (i.e.,      based on (2.3)) is given by [114]: 

                                                         ∑   
    

 

    

                                                         

where   
     is the cyclic autocorrelation function (CFA), and   is the cyclic frequency. 

  
     can be written as follows [114]: 

                                             
       [                   ]                                           

When   is equal to the fundamental frequencies of the PR‟s transmitted signal      , 

CSD produces peak values in (2.30) and the decision is   . Note that the fundamental 

frequencies, are 
 

   
, and hence the peaks appear at   

 

   
 ,where   is an integer number. 

In the absence of the PR‟s signal, CSD does not produce peaks at  , because the 

received signal at CR is noise only, which is WSS and does not exhibit periodicity, and 

then the decision will be   . The different probabilities formulae of using 

cyclostationary in CR spectrum sensing have not been derived theoretically due to the 

mathematical intractable in such derivation [108]. The prior information that must be 

known when cyclostationary is being used for spectrum sensing is the  , which is the 

multiple of the fundamental frequencies of the PR‟s signal ( i.e., multiple of 
 

   
), where 

    is the signal period. However, when there are different numbers of PR systems, 

which use different signal periods, the cyclostationary is required to know these 
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different time periods priori, that would increase the cyclostationary complexity as a CR 

spectrum sensing [74]. In fading environment, it is found that the cyclostationary 

method completely fails [115]. Furthermore, it is too sensitive to the sampling cyclic 

offset [116]. 

2.4.2.5 Multi Taper Spectrum Estimation Method (MTM) 

A short introduction of the MTM [29], has been given in subsection 1.2.2. The 

given introduction was general with technical outlines about MTM rather than in depth 

analysis. Basically, MTM is a nonparametric spectrum estimation method that estimates 

the PSD in a wide band aspect. The task of MTM here is the same as that of PE in 

spectrum sensing, but with a better performance than any other power spectrum 

estimation method. The reason behind this, in simple words, is that MTM mitigates the 

well-known classical problems in spectrum estimation methods, which are called bad 

bias and large variance of estimate. The MTM strength was achieved by using an 

orthonormal family of tapers; DPSS [30]. Simon Haykin [26] suggested the use of 

MTM as an efficient spectrum sensing technique for CR in his famous paper about the 

CR [26]. In addition to the definitions, and the technical background of MTM, Chapters 

3 and 4 of this thesis include a performance evaluation of MTM-SVD for CR spectrum 

sensing and challenges definitions, MTM parameters optimization for CR spectrum 

sensing and optimal MTM based detector design using Neyman Pearson criterion, to be 

used practically for CR. 

To connect the discussed spectrum sensing techniques in the last subsections with 

the MTM spectrum sensing concept, we list the following notes: 

a. MTM is an energy based spectrum sensing technique. 

b.  MTM is a wideband spectrum sensing technique. 
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c. MTM does not need any prior information about the PR‟s signal (i.e., non 

coherent nor partial coherent). 

d. MTM needs to know the noise variance to control the threshold. 

e. MTM minimizes the spectral leakage outside the band and improves the 

variance of estimate. 

2.4.2.6 Filter Bank 

The filter bank (FB) is proposed in [117] as a spectrum sensing technique to be 

used in multicarrier communication based CR systems [118]. FB estimates the power as 

well over wideband simultaneously like in PE, and MTM. In FB based spectrum 

sensing, a number of filters, which are modulated copies of the prototype filter are used 

to concentrate the energy within their sub bands as shown in Figure 2.15 [117]. The 

prototype filter is a low pass filter (LPF) representing the filter of the zeroth subband, 

and the others filters are band pass filters (BPF) that are shifted copies of the prototype 

filter at normalized frequency bins       
 

 
 
 

 
     

   

 
. After filtering the received 

samples at CR Rx using FB, the absolute square of the output from each FFT branch 

(i.e., frequency bin) represents the energy at that branch. The results in [117] included 

comparison between FB and MTM which indicated that the MTM is more efficient in 

the applications, where the spectrum estimations require smaller samples of the 

underlying process. FB required more samples to achieve the same performance that 

had been achieved by MTM. 
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Figure 2.15 Filter bank concept representation. 
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2.4.3 Cooperative Spectrum Sensing 

Subsections 2.4.2.2 to 2.4.2.6, explored different classical CR spectrum sensing 

techniques. These techniques can be called local spectrum sensing techniques at CR 

terminals/nodes. Each local spectrum sensing technique has its own requirements, 

advantages, and disadvantages. Thus, the technical philosophy of each type determines 

its advantages and disadvantages. A first stage in the engineering research of CR 

development was therefore about the local spectrum sensing technique itself. Numerous 

research publications about local spectrum sensing techniques have tried to take the CR 

spectrum sensing technique to their proposed techniques based on how they evaluate the 

advantages and disadvantages of the proposed techniques. 

The performance of any spectrum sensing techniques is evaluated via the   ,   , 

and   . For any chosen  , when a specific spectrum sensing technique is used, there are 

probabilities pair (  ,   ), or (  ,   ) that meet the chosen  . In terms of performance, 

the CR spectrum sensing techniques are comparable together based on these 

probabilities under the same conditions. Increasing   , or minimizing    locally at each 

CR has been attempted in the literature by proposing multi antenna based spectrum 

sensing techniques at the CR. Such techniques can be called local cooperative spectrum 

sensing techniques, due to the cooperation aspect of the decision between number of 

antennas at CR. 

One of the main challenges that meets local spectrum sensing in CR is the hidden 

problem due to shadowing or multipath fading as discussed in subsection 2.4.2. Thus, 

when the resulting measurements and decisions of local spectrum sensing of CRs in the 

CR network are gathered and fused at CR-BS for example, it would improve the overall 

performance. In other words, the over all    will be increased, or the overall    will be 

decreased. Such a type of spectrum sensing is called the cooperative spectrum sensing 

[77]. 
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In the next two subsections, the concept of local cooperative and global 

cooperative spectrum sensing will be reviewed. The found works in the literature will 

be explored to show the different technical issues and challenges of such cooperation 

scenarios. 

2.4.3.1 Local Cooperative Spectrum Sensing (Multi Antenna) 

In wireless communications, the main objective of using multi antenna at the 

receiver is to resolve the deep fading problems. Choosing suitable distances between the 

different antennas insures that the fading events are independent through the different 

antennas. Then one of the classical combining techniques is used to combine the 

different outputs from the different antennas [15]. Multi antenna in wireless 

communications allows an increase in the data rate and improves the spatial diversity. 

Thus, CR‟s user can use it for both communications and spectrum sensing. Figure 2.16 

shows a representative diagram of multi antenna based spectrum sensing in CR. The CR 

is supported by number of antennas that are used for both communications and 

spectrum sensing. The PR‟s signal that is being transmitted from PR‟s Tx is received at 

the CR via a number of antennas. This type of channel can be represented as a single 

input at the primary PR‟s Tx and multi output antenna at the CR‟s Rx, which can be 

called single input multi output (SIMO).  

Multi antenna spectrum sensing techniques and issues in CR‟s systems have been 

investigated in [99, 119-124]. Two main ED-based multi antenna spectrum sensing 

techniques, the linear coherent combining, and the selection processing are considered 

in [119]. In [120], each antenna is connected to an ED, where the PR‟s signal is decided 

to be present when more than one antenna decides this. In [121, 122], using ED-based 

square law combining (SLC) technique in OFDM-MIMO based CR, gave significant 

improvement in the performance compared to using single antenna. Generally, these 
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works depend on ED, which has a poor performance in low SNR; this is not practical in 

CR‟s applications. General likelihood ratio detectors (GLRDs) using multi antenna are 

derived from different assumptions in [123]. GLRD1 is derived assuming that only the 

channel gain is unknown, and is estimated using maximum likelihood (ML) estimation. 

Blind GLRD is derived when all signal variance, noise variance, and channel gain are 

unknown to the CR, requiring estimation of these parameters as well. GLRD is derived 

in [124], assuming that the PR user had three different signal sources. Deriving 

asymptotic performance of GLRDs at different assumptions can be found in [99]. We 

can say that even GLRDs in some cases do not need prior information about PR‟s signal, 

the channel and the noise, they depend on estimating, which degrades the performance 

significantly and requires high SNR to work. 

Chapter 5 of this thesis proposes three different optimal and suboptimal multi 

antenna spectrum sensing techniques for CR. Simulation and analytical results under 

different conditions are included in the chapter. Furthermore, comparison to the 

mentioned multi antenna based spectrum sensing techniques is included as well.  
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Figure 2.16 Multi antenna based spectrum sensing in CR‟s systems. 
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2.4.3.2 Global Cooperative Spectrum Sensing 

Global cooperative spectrum sensing (global CSS) in CR‟s network, exploits the 

spatial diversity among a number of CRs in the CR network to mitigate the hidden 

problem in CR spectrum sensing. Thus, the measurements or the decisions that have 

been taken locally at the CRs will be sent and combined at CR-BS in the centralized 

based CR network, for example. Then, the final decision and channel allocation 

between the different CRs will be declared, which reconfigure their transmission/ 

receiving parameters in order to utilize the PR‟s vacant frequency band. CRs in the 

centralized architecture are required to perform sensing, sending of the results, and 

responding to the declaration from the CR-BS. In the CR architecture with no 

infrastructure, such as CR Ad Hoc network, each CR exchanges its locally sensed or 

decided measurements about the PR‟s transmitted signal with its neighbours. 

Unfortunately, this increases the tasks per CR in the CR Ad Hoc network. Furthermore, 

the complexity of the networking here required more solutions, because the CR Ad Hoc 

network is assumed to work in different licensed PR frequency bands, which require 

complicated protocols to avoid collisions between different CRs [70]. Figure 2.17 

shows an illustration of the centralized and distributed cooperative spectrum sensing in 

CR [108]. It can be seen that the CRs in the CR Ad Hoc network perform the mission of 

CR-BS in terms of fusing the measurements and decisions in addition to the local 

spectrum sensing itself. Of course, this would lead to high complexity of the hardware 

and software processing at each CR, and a greater consumption of power. 
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An example for the distributed CSS is the relay based technique that is proposed in 

[125]. In the CR network, two CRs cooperate sensing of PR‟s transmitted signal. Their 

sensed measurements about the PR‟s transmitted signal are passed to a common CR in 

the CR network based on amplify and forward protocol (AF) [126]. The access based 

between the two CRs and the common CR is assumed to be time division multiplexing 

access (TDMA). The time slots are divided as follow: the first slot is assigned to the 

first CR to forward the measurement to the common CR, while the second CR listens to 

the first CR‟s transmission. In the second slot, the second CR forwards what has been 

listened from the first CR to the common CR, and so on. The work is extended for a CR 

network with multi users as in [127]. The result shows how the cooperation increases 

the overall agility. 

Until now, it has been understood that the CSS has the main advantage of 

mitigating the hidden problem in CR spectrum sensing. Cooperation in CSS results in 

an increase in the detection probability and decrease in the errors. Of course, this would 

lead to minimizing the interference to the PR‟s frequency band, and would improve the 

spectrum efficiency. The cooperation in CSS might be centralized or distributed, based 

Fusion centre 

CR performs sensing 

Figure 2.17 Illustration of the spectrum sensing cooperation in CR network: 

(a) centralized cooperation (b) distributed cooperation. 
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on the CR operation requirements. Some pictures of the difference between them have 

also been provided. Interesting questions are due now; the first: after PR‟s signal is 

sensed locally at the different CRs, what sort of the information should be sent to CR-

BS or common CR in the CR network? Secondly, how can the CR-BS decide finally the 

occupancy of the PR‟s frequency band?. The answers of these two questions fall under 

two types of CSS: soft CSS (SCCS), and hard CSS (HCSS). 

2.4.3.2.1 Soft Cooperative Spectrum Sensing (SCSS) 

Figure 2.18 shows the possible scenario of CSS in centralized CR‟s network. It‟s 

clear that CSS includes three main stages. The first is sensing the PR‟s transmitted 

signal locally by different CRs in the CR‟s network. The second is sending the resultant 

information to the CR-BS. The third is fusing the gathered information at the CR-BS, 

where CR-BS finally declares the decision to the CRs. The type of information sent to 

the CR-BS and the final decision rule at CR-BS distinguish between SCSS and HCSS. 

In SCSS, the spectrum sensing process is done through the following steps: 

a. Each CR performs local spectrum sensing independently from the others CRs. 

b. The resulting measurements from local spectrum sensing, which are energy 

measurements, are then sent from the CRs to the CR-BS via control channel (CC).  

c. CR-BS fuses the received measurements from the different CRs and declares the 

final decision. 

This type of cooperation is called data fusion as well in [128]. The CC task is crucial 

here, since the spectrum sensing information and allocation are required to be sent via 

this channel. 

Before starting to focus on SCSS, the reader can refer to the ED local spectrum 

sensing in subsection 2.4.2.2, since it is the main local spectrum sensing technique 

that has  
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been chosen in most CSS techniques. In ED based SCSS, the     for each CR is sent to 

the CR-BS via CC (the decision statistic here does not mean complete the comparison 

in (2.14)). Of course, the channel between the PR and each CR, the noise at each CR, 

the CC between CRs and CR-BS and the noise at the CR-BS all have an effect on the 

performance. An optimal linear SCSS algorithm is proposed in [47], where the 

performance is optimized by linearly combining the individual CRs‟ local decision 

statistic     at the CR-BS. The algorithm is based on giving weights for the different 

CRs depending on their local SNR. The CR with high SNR is given high weight and so 

on. In [129], the authors proposed an optimal SCSS based on deflection 

coefficient maximization criterion. The CSS performance using LRT-soft combination 

has been evaluated in [130]. It has been found that the SCSS scheme has a better 

performance in terms of probability than the “AND‟‟ based HCSS. However, the main 

disadvantage of SCSS is that it needs huge bandwidth of the CC [47, 73, 128]. This is 

actually the main reason behind avoiding any focus on SCSS in this thesis. 

An interesting and different SCSS method is MTM-SVD. In Geophysics 

applications, MTM-SVD has been used for signal detection and reconstruction in global 

temperature data over the past century [44]. The MTM-SVD methodology avoids most 
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Figure 2.18 centralized CSS structure in CR. 
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of the weakness and limitation in the detection and reconstruction of spatiotemporal 

oscillatory signals immersed in colored noise [45]. Simon Haykin recommended this 

method to estimate the interference temperature exploiting the spatial variation in an RF 

environment [26]. In MTM-SVD, the energy of the transmitted PR‟s signal at the 

frequency bin can be estimated using a number of CRs that are located at different 

locations with respect to PR, and using a number of tapers (i.e., DPSS). Since this 

method is applied practically in Geophysics and only recommended by Simon Haykin 

to be used in CR spectrum sensing, and due to the strength of this method; chapter 3 of 

this thesis evaluates its practical use in CR systems using simulation, and defines the 

challenges and requirements that face using both MTM and MTM-SVD in CR‟s 

systems. 

2.4.3.2.2 Hard Cooperative Spectrum Sensing (HCSS) 

Referring back to step (b) in the SCSS steps, one can distinguish between the two 

CSS techniques at this point. At this point, each CR detects the availability of the PR‟s 

signal in the frequency band under sensing. The detection here means deciding if the 

PR‟s signal is available or not. Thus, if ED is used as in HCSS, each CR completes the 

comparison in (2.14). The output from the     CR to the CR-BS in the CR‟s network is 

a binary digit as “1‟‟represnting     hypothesis, or “0‟‟ representing   . Therefore, the 

gathered information at the CR-BS is binary digits and the fusion rule is based on one of 

the logic rules. This type of CSS is called as decision fusion [128]. The logic rule 

“AND‟‟, is proposed as a fusion rule in the HCSS [130]. The CR-BS decides     only 

if all CRs decide     locally. Such a fusion rule decreases the interference probability to 

the PR‟s frequency band but at the expense of the spectrum efficiency. The “OR‟‟ logic 

rule at the CR-BS is proposed for HCSS in [48], where the CR-BS declares that the 

PR‟s signal is present in the band under sensing when at least one CR decides the signal 

is present. Therefore, the interference possibility percentage can be increased in such a 
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fusion rule, but higher spectrum efficiency will be achieved. The “VOTING‟‟ logic rule 

[131], is one of the classical fusion rules that can be used in HCSS [47]. In this scheme, 

the CR-BS decides the presence of the PR‟s signal in the frequency band under sensing, 

when more than one CR decides this. 

The main advantage of HCSS over SCSS is that it does not need a huge bandwidth 

for CC; this supports the main objective of CR‟ systems – namely, the more efficient 

use of the spectrum by using narrow band CC. Furthermore, the HCCS outperforms 

SCSS in term of probability when the total number of cooperated CR is large [77]. 

However, there are a number of optimization problems with HCSS, and have been 

given more attentions. The optimal fusion rule at the CR-BS has been investigated in 

[132]. It was found that the half “VOTING‟‟, is the optimal fusion rule when ED is used 

locally, and the total number of cooperative CRs was 10. The CC in their work was 

assumed to be free of error. The authors in [51], maximized the global probability of 

detection in “OR‟‟ and “AND‟‟ fusion rules by fixing the global false alarm probability 

and maximizes the local probability of detection. Optimal strategies to minimize the 

total error probability under Neyman Pearson, and Bayesian criterion have been 

considered in [133]. The CC is mostly assumed as free of error (i.e., perfect) in the 

publications about HCSS. In [95], the overall/global detection of HCSS is maximized 

where the overall false alarm is fixed by fusing the decisions from the CRs that have CC 

with low error only. This work has focused on improving the HCSS performance from 

the CC viewpoint.  

Chapter 6 of this thesis investigates different optimization conditions and strategies 

in HCSS. Furthermore, it proposes a method that takes the HCSS optimization methods 

to their optimum performance. Simulation and analytical results included in this chapter 

show such conditions and the proposed method performance. 
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2.4.4 Spectrum Resource Analysis, Management, and Dynamic 

Sharing 

After finishing the spectrum sensing in the PHY layer of the CR, the output of the 

sensing might be a number of frequency subbands. These sensed subbands might be 

allocated as licensed, unlicensed, or a mixture of both. The CR terminal should analyze 

the vacant subbands and decide which of them is or are the most suitable for use by its 

transmitter. This step is known as spectrum analysis or decision [60, 67]. In spectrum 

analysis, the sensed vacant frequency subbands usually have different characteristics, 

varying with time. The understanding of the vacant spectrum‟s characteristics by the CR 

terminal is an important task after the subbands have been sensed. In addition to the 

carrier frequency, bandwidth of each subband and the operating parameters of the PR 

user activity, there are a number of parameters that should be taken into account before 

the CR decides which subbands are going to be used. For example with [60, 67], in 

regards to the path loss factor, the vacant subbands might be in different frequency 

ranges. At the same transmission power, the transmission distance is decreased as the 

frequency is increased. Thus, when the CR increases its transmission power to 

overcome this problem it might cause harmful interference to the PR user. The 

difference in the interference level of the vacant subbands and the used modulation 

techniques causes changing in the error rate of the wireless channels. Furthermore, 

different link layer protocols are required by CR to deal with the different frequency 

subbands characteristics, which will result in different link layer delays [67]. 

Spectrum analysis/decision lies under the spectrum management function in CR 

systems. Spectrum management is defined by Simon Haykin as the connection between 

the output from the spectrum sensing step and the power control of the CR‟s transmitted 

signal [26]. The main objective of spectrum management here is to optimize the use of 

the detected vacant frequency subbands by choosing the suitable modulation scheme, 
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and to enhance reliable and seamless communication between CR users. Consequently, 

the spectrum management here aims to tolerate the problem when the required QoS 

cannot be satisfied by [26]: 1. Changing the modulation scheme, or 2. Changing the 

frequency subband. Spectrum handoff occurs when the subband that has been found 

vacant and is being used by CR, is reclaimed again by its licensed PR user [60, 67, 69, 

70]. Therefore, CR must change its frequency subband to another vacant frequency 

subband, and this is called spectrum mobility [60, 67, 69, 70]. Another spectrum handoff 

type might occur when the transmission conditions of the vacant frequency subband, 

which is being used by CR, become worse due to time varying of the wireless channel. 

When CR moves from area to area, the vacant frequency subband might not be vacant 

any more due to the change in CR‟s location where the PR is active in the frequency 

subband and in the new location [60]. This type of transition process from one vacant 

frequency subband to another one might cause packet delay [63]. Reserving a number of 

frequency subbands (i.e., channels), to be used by the CR user in spectrum handoff, can 

minimize the performance degradation [134]. CR can use one of the reserved frequency 

subbands, when it is being forced to leave the current frequency subband. In [135], the 

sensing technique is supported by location estimation to overcome the performance 

degradation in spectrum handoff. Each CR sends the vacant frequency subbands 

information and its location to a main CR-BS. Thus, CR can be aware of the 

geographical locations of the vacant frequency subbands. 

Joint sensing at the PHY layer and accessing at the MAC layer in CR systems, 

have been concentrated upon in this literature. The reason behind this is that CR can not 

sense the whole spectrum due to hardware and energy constraints. Moreover, it can not 

use all the vacant frequency subbands. Two main questions here are: which frequency 

subband can be sensed or accessed by CR with minimal interference to the PR 

transmission? When?. Such a problem is feasible in CR Ad Hoc networks, where there 
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is no CR-BS [136]. An analytical framework based on the theory of partially observable 

Markov decision process (POMPD) has been developed in [137]. A cross-layer based 

multi channel MAC protocols for CR Ad Hoc networks are proposed in [136]. The 

proposed protocols integrate the spectrum sensing at PHY with packet scheduling at 

MAC. Each CR is supported by two transceivers. The first one is for CC functions, and 

the second one is used for both sensing and communications. In [138], the authors 

considered the problem in a different way. When there are a number of available 

frequency subbands, and CR can sense and access one subband at time, then the 

question becomes how can CR choose a free and good subband very quickly? Their 

work is to optimize the sensing order in CR systems when there are number of 

frequency subbands available for sensing and accessing. This research shows how the 

spectrum sensing has more challenges at the upper layers as well.   

In CR networks, after performing spectrum sensing tasks, there might be a number 

of licensed frequency subbands available to be used by CR users. The dynamic sharing 

problem of the available frequency subbands between PR and CR users, and between 

CR users themselves is analyzed using the well know mathematical approach, game 

theory [139]. Using game theory formulation in the dynamic sharing problem allows 

analyzing the PR and CR users‟ behaviours and actions to be game based. In game 

theory, the game consists of players, players‟ strategies, and players‟ payoff functions. 

This can be applied to dynamic sharing problem, where PR and CR users are players 

with different strategies and objectives. CR users share the licensed frequency subbands 

with the PR users and pay the PR users or service providers in dynamic sharing. This is 

called spectrum trading [140]. Based on the objectives of spectrum trading for both PR 

and CR users and their behaviours, the authors in [140] proposed three different pricing 

models; market-equilibrium, competitive, and cooperative pricing models. The problem 

of power and frequency subbands allocation and sharing among Ad Hoc CR users, via 
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developing an efficient MAC mechanism, is considered as game based in [141]. A 

distributed pricing approach is proposed for an efficient power and frequency subbands 

allocation. 

2.5 Cognitive Radio Transceiver 

In sections 2.2-2.4, an overview of the CR revolution, along with relevant 

definitions and concepts have been given. The CR cycle is reviewed as well, and then 

more technical details about spectrum sensing task and its related tasks are also 

provided. A good understanding about the CR‟s spectrum sensing issues and challenges 

at both PHY and MAC layers can thereby be achieved. 

In this section, a general technical overview of the promised CR transceiver, the 

OFDM, will be provided. However, it should be taken into account that the main aims 

of this thesis are about CR spectrum sensing, and about both local and global 

cooperative spectrum sensing using multi antenna and multi CRs‟ diversities. 

2.5.1 Why OFDM for Cognitive Radio Systems? 

In CR PHY layer design, the spectrum flexibility of the transmitted signal is a main 

requirement. Such flexibility would allow CR to efficiently fill the frequency subbands 

of the PR users (i.e., spectrum holes), when they are not being used by their licensed PR 

users [27]. In OFDM-based CR systems, this is made possible by deactivating the 

OFDM subcarriers that lie within the PR users‟ frequency subbands [27]. Furthermore, 

the FFT process at the CR Rx can be used for wide spectrum analysis in the frequency 

domain. Based on [28], the main OFDM features that support practical implementation 

of CR systems, are defined as follow: 
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1. The FFT process, in CR Rx, allows monitoring the PR‟s activities in the 

frequency domain which supports spectrum sensing in OFDM-based CR 

systems. 

2. Deactivation of the CR subcarriers that lie within the frequency subband of PR 

user makes the waveform shaping much easier which supports the efficient use 

of the spectrum in OFDM-based CR systems. 

3. The OFDM parameters such as FFT size, subcarriers spacing and powers, 

modulation and coding types, and cyclic prefix (CP) length can be adapted for 

OFDM-based CR systems to meet different wireless environment conditions. 

4. There are number of already developed and successful OFDM-based wireless 

standards; this  makes the interoperability of OFDM-based CR with such 

standards much easier compared to other standards. 

5. OFDM standard supports the multi user access in OFDM-based CR 

communications by assigning a number of subcarriers for groups of users as in 

OFDM access (OFDMA). 

6.  Multi antenna techniques are used in OFDM standards due to the simple 

required equalizers. Smart antennas can be also used in OFDM standards. 

Figure 2.19 shows a representative diagram of the serial high data rate stream 

conversion to parallel with low rate sub streams in OFDM. In OFDM, the high data rate 

stream, which contains N serial symbols with symbol duration    for each symbol, is 

converted to N parallel substreams with low rate (N here represents IFFT/FFT size). The 

parallel low rate symbols have duration as    . The OFDM transmission can be 

described as follow: The serial input data samples to the OFDM transmitter are mapped 

first to phase shift keying (PSK) or quadrature amplitude modulation (QAM) arrays. 

The resultant mapped symbols are converted to parallel symbols with duration     each. 

Every symbol then is modulated onto the subcarrier using IFFT. The resultant 
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modulated symbols represent the so called OFDM symbol with duration    . The 

OFDM symbol duration here is equal to N  . The use of parallel conversion from high 

to low symbol rate on each OFDM subcarrier mitigates the inter symbol interference 

(ISI) problem, which is caused by multipath fading in high data rate transmission. The 

OFDM symbol duration is increased due to the increase in the duration of the parallel 

substreams. Therefore, the effect of time dispersion will be limited on some data 

symbols. Adding CP to the OFDM symbol eliminates the remaining effects of ISI. Such 

a feature results in a simple equalizer structure that can be used to equalize the received 

signal. Figure 2.20 shows the transmission and reception processes in an OFDM based 

system. The reception in OFDM is opposite to the OFDM transmission (e.g., using FFT 

and demodulator, etc.). The red blocks in the figure show how the CR Tx, responds to 

the results from the spectrum sensing, and deactivates subcarriers that lie in the PR 

frequency subbands. The CR Rx for both source and destination of a CR 

communication link must be aware of the activated/deactivated subcarriers. 

In order to mitigate the ISI effect, the proper CP duration must be greater than the 

expected channel time delay that resulted from multi path fading. In OFDM, the CP 

insertion is achieved by copying the last     out of N subcarriers in each OFDM 

symbol and inserting it at the beginning of that OFDM symbol. Thus, the new OFDM 

symbol length will be    + N after this insertion, where    , is the CP length. 

Therefore, the new OFDM symbol duration in time is (   + N)   . 
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Figure 2.19 High data rate stream conversion to low rate substreams in 

OFDM. 
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Figure 2.21 shows an OFDM signal consisting of 11 subcarriers. The subcarriers 

spacing, ∆   , is the spectrum distance between two adjacent subcarriers. 

Mathematically, subcarriers spacing can be represented by the division of the total 

bandwidth BW over N subcarriers, or ∆   =
  

 
 

 

   
 

 

   
 . The modulated subscribers 

in OFDM signal are kept orthogonal as the subcarriers spacing, ∆   , is kept equal to 

 

   
. 

Figure 2.22 shows an example of the deactivation and activation process of some 

subcarriers in OFDM-based CR. After performing spectrum sensing in an OFDM-based 

CR system, the subcarriers that lie within the frequency subband of PR user will be 

switched to zero in OFDM-based CR transmission, and hence CR can exploit the other 

remaining subcarriers for its transmission. The non-contiguously of subcarriers in 

OFDM-based CR system earned it another name: a non-contiguous (NC) OFDM system 

[142]. It is clear that the OFDM approach is very suitable for CR transmission in terms 

of spectrum flexibility. 
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Figure 2.20 Transmission and reception in OFDM based system. 
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Figure 2.21 Number of 11 subcarriers in OFDM signal. 

Figure 2.22 Subcarriers activation and deactivation in OFDM-based CR signal. 
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2.5.2 IEEE802.22 and the Other OFDM Based Wireless Standards 

The IEEE 802.22 standard is the first OFDM based wireless standard that supports 

the CR concept. It provides high data rate services to rural geographical areas, 

exploiting the unused TV channels in the VHF/UHF frequency ranges [56]. IEEE 

802.22 is also called wireless regional area network (WRAN), since it basically serves 

rural areas. The IEEE802.22 working group aims to develop an international standard 

for CR that operates in TV frequency ranges. The initial frequency range that is 

supported by IEEE802.22 is the North American frequency range 54-862 MHz. The 

frequency ranges of IEE802.22 is going to be extended to 41-910MHz frequency range 

to meet the international requirements [55]. Furthermore, the standard will be able to 

operate in different TV channel bandwidths, 6, 7, and 8MHz [55] 

In IEEE802.22 network, there are a number of consumer premise equipments 

(CPEs) which are served by a main entity that can be called CR-BS in a specific cell. 

Therefore, this type of wireless air interface can be called point to multi point (PMP) air 

interface. The CR-BS here fully controls the access to the frequency subbands under 

restricted conditions to protect the PR and incumbent users from interference. It also 

controls the bandwidth, power, modulation, and coding of CPEs. The PR and incumbent 

users are referred to the TV broadcasting and wireless microphones. Moreover, the CR-

BS controls the distributed spectrum sensing from different CPEs in the cell and makes 

a final decision on using the TV frequency subbands [55].  

Figure 2.23 shows a comparison between the IEEE802.22 and the other 

IEEE802.xx standards in term of transmission distance, data rate, and frequency range 

[55, 56]. The IEEE802.15, IEEE802.11, and IEEE802.16 standards are known as the 

wireless personal area network (WPAN), WLAN, and wireless metropolitan area 

network (WMAN) respectively. The WMAN is also called as WiMAX.  
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The used spectrum sensing technique in IEEE802.22 as a technique name cannot 

be specified due to the IEEE802 rules. However, IEEE802.22 working group defines 

general requirements from the spectrum sensing technique that should be taken into 

account by manufacturers [143]. For example the preferred ranges of    and    for 

spectrum sensing technique are (90-95%), and (1-10%) respectively [143]. However, 

these ranges can not be generalized for all applications. In applications where the PR 

users are military or civil rescue, the    must be kept very high at very low    

2.5.3 Spectrum Sensing Techniques in OFDM-Based CR 

Generally, all spectrum sensing techniques that have been investigated in sections 

2.4.2.2-2.4.2.6 are useful in OFDM–based CR systems. Of course, spectrum sensing 

techniques have different performances and different requirements as to what has to be. 

For example, ED does not require knowledge about the PR‟s signal parameters, but it is 

not robust in low SNR conditions. Spectrum sensing techniques that exploit the CP 

correlation in OFDM signals are proposed in [144, 145]. In autocorrelation based 

Figure 2.23 A comparison between IEEE802.22 and other IEEE802.xx standards in 

term of (transmission distance, data rate, frequency range). 

WPAN 

WLAN 

WMAN 

WRAN 

IEEE802.11: ( 150m, 11/54Mbps, 2.4 /5GHz) 

IEEE802.15 :( 10m, 1Mbps, 2.4 GHz) & (20-50m, 10Mbps, 2.4GHz) 

 

IEEE802.16: (1-2km, 54Mbps, 5 GHz) 

IEEE802.22: ( 100km, 23/27/32Mbps for 6/7/8MHz, 54-862 MHz) 
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spectrum sensing techniques, the autocorrelation coefficients are not equal to zero at 

multiple integers of the OFDM symbol [144]. This due to the presence of the CP in the 

OFDM signals. Based on this, the authors have proposed a local spectrum sensing 

technique that exploits such CP correlation. Furthermore, the proposed SCSS scheme 

would collect the decision statistics that resulted when autocorrelation based techniques 

were used by the different CR users. The CR-BS receives the decision statistics one by 

one, applies the hypothesis test each time, and if the decision is not reliable, it asks for 

another decision statistic from another CR user. The proposed technique in [145], 

decides that the PR user is active in the frequency subband under sensing when the 

correlation between two different samples representing the same CP samples that are 

reflected form different paths, give a peak value. The main drawbacks of such 

techniques are that they require full knowledge about the CP parameters for different 

OFDM PR signals, and their use is limited to spectrum sensing of OFDM PR signals 

only and can not be used widely for different types of PR signals. Furthermore, such 

techniques perform spectrum sensing of OFDM signal and know the CP parameters and 

the frequency subband as well. Regarding performance, the autocorrelation based 

spectrum sensing technique and SD SCSS will be compared to MTM in Chapter 4. 

2.6 Chapter Summary 

In this chapter, a number of definitions and concepts that are related to the CR were 

presented. The CR‟s definition itself, the CR cycle, and the CR functions and missions 

have also been reviewed. The chapter then started to focus on the spectrum sensing task 

in CR as it is a key task in developing CR systems. 

The spectrum sensing definition and its relevant concepts and challenges were 

given concentration. The spectrum sensing problem formulation using Neyman Pearson 

criterion was discussed. The discussion included the different probabilities formulae and 
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the performance evaluation. The different classical spectrum sensing techniques were 

reviewed. The cooperation in spectrum sensing was given attention in this chapter via 

technical discussions of the different local and global cooperation techniques. The 

spectrum management as an important task after the performing of spectrum sensing 

was then outlined. 

The OFDM–based CR system was the final part of this chapter. A full revision of 

this good PHY layer candidate was provided. That included, it is advantages and 

drawbacks, and its structure. Moreover, the IEEE802.22 as the first OFDM-based CR 

standard was reviewed and compared to the other IEEE802.xx standards. Finally, 

spectrum sensing techniques in OFDM-based CR were reviewed. 
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Chapter 3: Performance evaluation of MTM-

SVD spectrum sensing in CR systems  

3.1 Introduction  

This chapter focuses mainly on the MTM and MTM-SVD as efficient CR spectrum 

sensing techniques. The general reasons behind choosing MTM are provided in this 

chapter. Thereafter, a revision of the bias-variance dilemma, which is a main problem in 

the classical spectrum estimation methods, is provided to achieve deep technical 

understanding about this problem and its effect on CR spectrum sensing. The MTM 

concept, and features are then discussed. The MTM methodology in spectrum 

estimation is provided including the DPSS generation. 

There has been an interested in using MTM-SVD for spectrum sensing in CR 

networks, which is classified in chapter 2 as MSCSS, from famous researchers such as 

Simon Haykin. However, the MTM-SVD practical implementation and performance 

evaluation for CR spectrum sensing had not been investigated and analyzed in their 

literature. In this chapter a performance evaluation of MTM-SVD CR spectrum sensing 

is provided, using a simulation. A D threshold control method is proposed, exploiting 

the different levels of power between adjacent frequency subbands. Additionally, the 

challenges and requirements of practical implementation of MTM, and MTM-SVD are 

identified. Solving such defined challenges and requirements is the main objective of 

chapter 4.  

The main content of this chapter has been published in one paper that represents 

the chapter contribution. The published paper is:  

O. A. Alghamdi and M. A. Abu-Rgheff, "Performance evaluation of cognitive 

radio spectrum sensing using multitaper-singular value decomposition," in Proc. 
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4th IEEE International Conference on Cognitive Radio Oriented Wireless Networks 

and Communications (CROWNCOM '09), 2009, pp. 1-6. 

3.2 Our Chosen Spectrum Sensing Technique  

As is known, spectrum sensing is a key task in the CR systems. It allows the CR to 

opportunistically use the idle frequency subbands (i.e., spectrum holes) that have been 

left unoccupied by the PR users. Therefore, developing an accurate spectrum sensing 

technique is a main aim of industry and academic research centres in the practical 

design of CR systems, with a view to protecting PR users from interference and 

maximizing the CR throughput. The possible interference to the PR frequency subband, 

when non robust spectrum sensing techniques are used in CR, may influence political 

decisions about allowing the use of CR in a country. This is because PR users might be 

sensitive to such interference. Military, police, intelligence, and other governmental 

bodies are examples of such users. 

The RF environment surrounding the CR might consist of different PR users‟ 

signals and different frequency bands. The CR sensing algorithm should be able to deal 

with different PR signals without using any prior information about them. Accordingly, 

we exclude the prior information-based sensing algorithms from our research except for 

comparison issues. The chosen sensing algorithm should be based on the power 

spectrum estimation, and thus will support the sensing in the CR to deal with different 

PR signal levels and modulations in wide frequency bands (i.e., FFT based). Such based 

methods are classified as nonparametric methods, since they do not need to model the 

sensed signal itself [91]. The conventional nonparametric power spectrum estimation 

method is the PE [91] (or ED[90]). For finite time measurement samples, PE can be 

represented simply by squaring the absolute of the output of the analyser‟s FFT bins. PE 

has significant points of weakness, such as out-of-band leakage of the power and large 
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variance of power spectrum estimate [26]. At a low SNR, the PE will fail to detect the 

present of the PR user signal because it will not be able to distinguish between the PR 

user signal power and the background noise. Welch proposed a modified method of PE 

that depends on averaging the PE of number of overlapped data samples‟ segments 

[146]. However, the method still suffers from spectral leakage [147]. The MTM [29] 

nonparametric spectrum estimation method is the efficient spectrum sensing technique 

that accomplishes spectrum sensing with following main features [147]: 

1. Accurate. 

2.  Effective. 

3.  Robust. 

4.  Feasible computational complexity. 

A comparison between FB and MTM shows that the FB requires large numbers of 

sensed samples to achieve the same MTM performance in the same conditions [117]. 

Sections 3.3 and 3.4 discuss the spectral leakage and large variance of power estimates 

that classical spectrum estimation methods suffer from.  

3.3 Spectral Leakage 

The spectrum analyser/detector can take measurements of the signal power within a 

specific finite duration in a limited time for the signal, which is continuous. Practically, 

the digital signal processing (DSP) processor requires the signal to be observed only in 

discrete time intervals [148]. The FFT assumes that the signal repeats itself outside the 

measurement interval [148]. At the end of each signal measurement interval and the 

beginning of the next interval there will be discontinuity. Such discontinuity is not 

present in the original signal waveform and due to the sharpness between the two 

different measurements the spectrum at this point is spread out into the other 

frequencies causing spectral leakage. This is the source of the spectral leakage. Thus, in 
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spectral leakage concept, the energy that is assumed to be concentrated at a specific 

frequency leaks into other frequencies. 

To understand the spectral leakage effect, let us consider the PSD of a single 

subcarrier in a multicarrier OFDM conventional system which is given by [118]: 

                                        |               |
                                                 (3.1) 

where         
        

  
, and the subcarrier main lobe is concentrated around the 

normalized frequency,      , and       is the normalized OFDM symbol/block 

duration. Figure 3.1 shows the PSD of OFDM subcarrier in decibels (dB). The energy 

of this subcarrier will leak into all adjacent subcarriers causing errors in the CR‟s 

decisions. This is due to the sharp discontinuity at the end of the time measurements 

(i.e., rectangular pulse) which has a sinc shape in the frequency domain.  

The effect of the spectral leakage that might be caused is clear from Figure 3.1, 

where the first adjacent side lobe to the main lobe has about -13dB PSD. This amount of 

spectral leakage decreases with the increase in the spectral distance from the main lobe. 

Such spectral leakage will affect the CR decision, in spectrum sensing, about the signal 

measurements in the frequency subbands which are adjacent to the main lobe.  

Furthermore, the background noise energy from the whole spectrum will be added to 

the signal energy causing degradation to the SNR. Spectral leakage also makes it 

difficult to distinguish between different signals with different power spectrum levels 

[149]. Windowing is the classical technique employed to tolerate the problems of 

spectral leakage. Different windowing techniques have been proposed in the literature. 

In section 3.3, an overview of the windowing concept is provided. The section reviews 

three famous types of windows: rectangular, Hanning, and Hamming. 
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3.4 Windowing 

It is clear that the problem of spectral leakage comes from the discontinuity at the 

end of the measurement time interval. The windowing is multiplying the time domain 

samples by a special type window which is capable minimizing the sharpness at the 

discontinue end by smoothly returning the signal to zero [148].  

In the normal case the time samples are not multiplied by any type of window, or in 

another words, they are multiplied by one. The time samples multiplication by one is 

called rectangular windowing. This type of window is called a rectangular window. The 

problem with a rectangular window is that its spectral is a sinc function in the frequency 

domain that causes a significant leakage into the other frequency subbands. The PE 

spectrum estimation method uses rectangular windowing since the received signal 

samples at the analyzer/detector are multiplied by one. Different types of windows are 
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Figure 3.1 PSD in dB versus normalized frequency of a single OFDM subcarrier. 
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proposed to minimize the spectrum leakage, and to overcome the problems resulting 

from using rectangular windowing. The two well-known examples of such windows are 

Hanning and Hamming [148]. 

Figure 3.2 shows the magnitude response of different windows in the frequency 

domain. Hanning and Hamming windows try to overcome the problem of the spectral 

leakage that is produced from the rectangular window by minimizing the leakage 

outside the main lobe (i.e., attenuation reduction). However, this degrades the frequency 

resolution by making the main lobe much wider, as can be seen clearly from Figure 3.2. 

Another problem related to the power spectrum estimation is the large variance of 

estimate due to the single windowing. Classical windowing is based on multiplying the 

signal time samples by one taper/window. The drawback of this windowing is the loss 

of part of the information when the window smoothes the signal to zero. The power 

spectrum estimation of signal in multi carrier communication systems which are based 

on FFT is described as passing the signal in a bank of filters which they are band pass 

and narrow, and then measuring the output power at these filters [117, 118]. The 

prototype of this bank of filters is at the 0
th

 subband band, and the remaining are shifted 

copies in the other subbands. As has been mentioned before, PE is the classical method 

of the nonparametric power spectrum estimation method, which can be represented by 

measuring the average power at the FFT frequency bins.  

In conclusion, two main problems when dealing with the power spectrum 

estimation are: spectral leakage from a specific frequency into the other frequencies, 

and the variance of estimate caused by windowing using a single window/taper. The 

difficulty that is caused by these problems is called a bias-variance dilemma [26]. The 

„bias‟ term refers to the energy‟s non concentration at a specific frequency. Therefore, 

the window with minimum spectral leakage is the window that has a good biasing 

property, and vice versa. 



 

88 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5 Multitaper Spectrum Estimation Method (MTM) 

Thomson proposed using a bank of optimal band pass filters instead of rectangular 

windows; he called this method the multitaper spectrum estimation method (MTM) [29]. 

In MTM, the sampled data is multiplied by several leakage resistant tapers (i.e., 

windows) and this yields several tapered data samples from the original samples. By 

taking the FT of each of these tapered data samples, several eigenspectrums are 

produced, which can be combined to form a single spectrum estimate. 

The MTM optimises the spectrum estimation in two ways: it minimizes the spectral 

leakage outside the band and it improves the variance of estimate by using number of 

 

 

 

 

 

 

 

 

Figure 3.2 The magnitude response of rectangular, Hanning, and Hamming windows 

versus normalized frequency. 
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tapers. This technique is implemented using sequences of robust tapers, DPSS [30]. 

These sequences are reviewed and discussed in subsection 3.5.2. 

In the literature, MTM-SVD is used for signal detection and reconstruction in 

global temperature data over the past century [44]. The MTM-SVD methodology avoids 

most of the weaknesses and limitations in the detection and reconstruction of 

spatiotemporal oscillatory signals immersed in coloured noise [45]. 

The advantages of using MTM in the spectrum analysis of high frequency 

seismograms are discussed in [37]. The MTM is used in the spectrum analysis of 16 bit 

seismic recorded data. The author has compared the performance of the MTM with 

different windowing techniques such as rectangular, Hanning, and 20% cosine. 

Although the MTM consumes more time in the spectrum analysis, it nevertheless 

overcomes the drawbacks in other methods. 

Haykin in [26] suggested the use of MTM as an efficient method for spectrum 

sensing in CR. The author has described the requirements of accurate spectrum sensing 

and the spectrum estimation of the interference temperature using multiple-sensors, 

based on MTM-SVD. The MTM is applied to the TV bands spectrum analysis, and the 

performance is compared with the PE using real signal measurements [150]. The 

conclusions from the results are that MTM is fast enough to be used in real time, and 

there was a significant increase in the number of harvested channels with low false 

alarm probability. An FB for spectrum sensing in CR is proposed [117]. The 

performance of the suggested filter is compared to the MTM. It is found that the MTM 

is more efficient in the applications where the spectrum estimations require smaller 

samples of the underlying process.  

ML methods provide an optimal estimate of the power spectrum. MTM technique 

is an approximation to the ML power spectrum estimates but at reduced computation 

[31, 32]. 
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In subsection 3.5.1, the main features of MTM as an efficient CR spectrum sensing 

technique will be discussed.  

3.5.1 MTM Features for Efficient Spectrum Sensing in CR 

Based on subsection 2.4.2.5, Figure 3.3 shows the main notes that can be used to 

connect or compare MTM as a CR spectrum sensing technique to the other techniques 

that are mentioned in chapter 2. 

The MTM can be combined with Loeve transform, which would allow CR to 

perform time-frequency analysis (TFA) providing cyclostationray property [147]. 

Furthermore, combing MTM with SVD or MTM-SVD enables CR to collect RF 

measurements from different locations. All these features and properties of MTM lead 

to developing an integrated multifunction signal processor [147]. Such a processor 

supports CR spectrum sensing in the three dimensions of frequency, time, and space 

[147].  

The MTM produces power spectrum estimate in an automatic aspect compared to 

Welch‟s PE [147]. Furthermore, the way that MTM tolerates bias-variance dilemma can 

be controlled based on different parameters such as time bandwidth product and number 

of used tapers. Therefore, using MTM for CR spectrum sensing gives one an accurate, 

effective, robust, and feasible complex spectrum sensing technique. 

3.5.2 Generation of the Discrete Prolate Slepian Sequences (DPSS) 

DPSS [30], are a family of orthonormal tapers that have been proposed for use in 

MTM. DPSS concentrate the energy in the frequency interval       , where 

      is the frequency resolution, and maximize the rejection of the out-of-band 

energy. Denote the time-bandwidth product     , where   is the sequence‟s length. 

From [30], Slepian sequences are the real solution of (3.2): 
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where              , and both t and   , are time index. The eigenvalues         

in (3.2), are the eigenvalues of the     order matrix whose elements are given using 

(3.3) [30]: 

                            
   [   (    )]
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Figure 3.3 MTM‟s main distinguishing features compared to the other 

classical CR spectrum sensing techniques. 
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Note that at      , (3.3) is approximately equal to   . The   elements of the 

corresponding eigenvectors for this matrix are in fact subsequences (tapers) of the 

DPSS. The total number of tapers produced, is             . So from (3.2), and (3.3) 

we have the eigenvectors,                           , where  , represents the 

taper number. The eigenvalue, which is associated with      DPSS, is        . The 

total number of tapers that will be used in the estimation is    , with tapers own 

eigenvalues,                                        . 

For example let us consider a DPSS with tapers‟ length N=128, and half time 

bandwidth product NW=8. Therefore, W=
 

   
= 0.0625, these values are used in (3.2) and 

(3.3) to generate the different 16 DPSS. Figures 3.4 and 3.5 show the resulted first 4 out 

of 16 tapers in the time and frequency domains respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.4 DPSS in time domain where N=128 and NW=8. 
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Power spectrum estimation using MTM improves the performance of the estimated 

power as follows: it improves the variance of estimate by using a number of orthogonal 

tapers; it minimizes the spectral leakage using a number of spectral leakage resisted 

tapers. In contrast to rectangular windowing, using DPSS in MTM returns the signal 

smoothly to zero in the time domain when it is being multiplied by the different DPSS. 

Furthermore, the signal information that was missed when the first taper is used will be 

recovered using the second taper, and so on. The DPSS has low spectral leakage, as can 

been seen clearly from Figure 3.5. For example, taper 1 has about -100 dB attenuation 

at the adjacent lobe of the main lobe. 

3.5.3 Power Spectrum Estimation using MTM 

Consider a finite time series {              }  with discrete samples of a 

continuing time process that represent the PR‟s signal plus noise. Multiplying the 

 

Figure 3.5 DPSS in frequency domain with N=128, and NW=8. 
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samples with different DPSS             (dot multiplication) represents convolution in 

the frequency domain. 

The FFT of the product is taken to compute the energy concentrated in the bandwidth 

       and centred in a frequency  . Since there are    orthonormal tapers, then, 

there will be   different eigenspectrums produced from this process; this can be defined 

as [29]:  

                                  ∑               
       

   

   

                                          

where             is the DPSS which can be achieved using (3.2) and (3.3), and 

     
 

 
 
 

 
   

   

 
  are the normalized frequency bins. The first few eigenvalues are 

close to one. As the number of taper sequence increases towards the time bandwidth 

product, 2NW, the eigenvalues decrease towards 0 indicating bad bias properties, and as 

it decreases away from the time bandwidth product towards 0, the eigenvalues increase 

towards 1 indicating good bias properties. 

The spectrum estimate is given by the weighted sums of the first few 

eigenspectrums        representing the largest eigenvalues         , which are 

produced from the first few    tapers, and is given by [29]:  

                 

                                               
∑        |      |

    
   

∑           
   

                                                                  

In the conventional method of PE, the PSD, when the samples are taken at uniform 

time spacing is given by [91]: 
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3.6 Estimating the PR’s Power Using MTM-SVD 

Consider a practical RF environment where both CR and PR nodes may exist 

together and let us assume there are   nodes of CR operating in the unused spectrum of 

PR RF environment. With MTM, each CR produces different eigenspectrums from the 

different used tapers and for different CR locations. The eigenspectrums, which are 

produced at different   CRs, are sent to a main CR-BS which uses them to formulate 

the spatio-temporal complex matrix       as [45]: 
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 The complex matrix              in (3.7) has     order. Each row of        is 

produced by a different CR node, and each column represents the eigenspectrum using a 

different taper. For example the element (2,1) of the matrix       , (    
   
    ), 

represents the eigenspectrum that has been resulted at the CR node number 2 using the 

first taper (i.e., k=0). The coefficients   ,   ,...,    represent spatially variable weights 

to adjust the relative position of the CR nodes from the PR TX.  

The spatio-temporal complex matrix gives all possible eigenspectrums of different 

CR nodes. All these eigenspectrums can be decomposed into singular values via the 

singular value decomposition SVD method. This process can be applied to matrix       

in the matrices form shown in (3.8) [151]: 

                                                                           
                                                    

 where,           is a diagonal real positive matrix consisting of singular values of 

matrix   at frequency bin   . If r = min {G, K}, there will be exactly   nonzero singular 
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values       . These singular values are represented by the   nonzero diagonal elements 

of the top left     block of      , where                         . Complex 

matrix             consists of the associated left vectors. Complex matrix        

     consists of the associated right vectors; the subscript   denotes the Hermitian 

transportation. The eigenvalues of the matrix produced from      
       are 

|      |
  |      |

      |      |
   . Equations (3.7) and (3.8) can be constructed 

at each bin of the frequency domain. This means that at each frequency bin,   , there 

will be   singular values. The square of the largest singular values at each frequency bin 

is proportional to the power at that bin. 

The decision as to whether a given subband         within the PR frequency subband 

is occupied or not is based on the statistics of the RF environment. The decision‟s 

computation is carried out into two scenarios: decision        in (3.9) on each 

frequency bin, at time t, is given by using the largest singular values as follows: 

                                      ∑ |       |
 

    

    

            
 

 
  
 

 
    

   

 
                             

where   , is the number of largest singular values of  (  ) at   . The decision on the 

subband       is defined as: 

                                                        ∑    

    
   

         
     

                                                     

where,     
      is the first frequency bin in the subband       , and     

    is the last 

frequency in that subband. Basically, the subbands, which are under sensing, can be 

broadly classified into [26]:  

1. Black subband, which is occupied by the PR user signal.  

2. White subband, which is unoccupied by the PR user signal at a given location and 

time and consists mainly of noise. The threshold level can be defined as: 
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where      and      are the maximum, and minimum decision values respectively in 

the four subbands in the system model shown in Figures 3.6 and 3.7. The subband       

is occupied by PR user signal, when the             , and is unoccupied 

when             . 

3.6.1 System Model  

The CR network in our model consists of a number, G, of CRs (transmitter/receiver) 

nodes/sensors, and one PR (transmitter/receiver) node transmitting in the subband 

between    and     as shown in Figures 3.6, and 3.7 respectively.  

For each CR node, the DPSS is generated; the received samples of the PR‟s signal are 

multiplied by the DPSS and passed to the FFT to produce the eigenspectrums. The 

different eigenspectrums that have been achieved from different CR nodes are sent via 

CC to the main CR-BS. Then the Spatio-temporal complex matrix       is constructed 

and the singular values are computed at each frequency bin of the base band signal. 
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Figure 3.6 CR network model. 
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3.6.2 Simulation Results  

In this section, the PSD across the bandwidth under scrutiny is estimated using 

MTM-SVD technique, and conclusions are drawn from the results. The power from a 

licensed PR user received by CR nodes at low SNR (SNR    dB) is estimated using 

high-level software platform simulation. The eigenspectrums that resulted at each CR 

node are sent then to CR-BS via CC, which suffers from white Gaussian noise with 

variance,   
        . In the MTM method, the half time bandwidth product    is 

assumed as 8, and the number of used tapers   is 4. The system model consists of a 

single PR Tx transmits to another PR Rx. In addition to the CR-BS, the CR system 

consists of 4, and 16 CR nodes. The whole band is divided mainly into four subbands as 

shown in Figure 3.7, and each with width,        (
 

  
)      . The PR Tx is 

transmitting QPSK-IFFT signal with normalized energy to 1 over each IFFT subcarrier, 

using the subband between the frequencies          to        , which has width a 

of    . The PR Tx uses 64-IFFT (i.e., IFFT size is N=64) to generate its signal. The CR 

nodes also use 64-FFT to detect PR signal. The channel between each CR node and the 

2∆f 

∆f 

PR Signal +Noise 
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Figure 3.7 PR user‟s signal under spectrum sensing. 
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PR Tx is assumed as AWGN with zero mean and variance   
 . The channel between 

each CR node and the CR-BS is also assumed as AWGN with zero mean and variance 

  
 =3.1623. The two channels are independent and identically distributed. Note that, 

when we say SNR=   dB, it means the channel connects each CR node to the CR-BS 

(i.e., CC) has SNR=   dB, and also the channel between the PR Tx and each CR node 

has SNR=   dB. The weighting coefficients    are drawn from a uniformly distributed 

random source. 

In this scenario, we estimate the performance of the MTM-SVD and we assume we 

have perfect knowledge of the exact distribution of the subbands of the whole band 

under scrutiny. We then compare our assumption of perfect knowledge of the usage of 

the spectrum with the results obtained from the MTM-SDV results. The decision 

statistics of the frequency bins of a specific    can be amalgamated together to 

represent the decision in that    as in reference [26]. Such a scenario might speed up 

the decision process. Each decision statistic is averaged over     simulation runs.  

Figure 3.8 shows the subbands decision statistics using (3.9) and (3.10) at SNR  

  , and    dB using 4 CR nodes. The calculated threshold at SNR     dB is 0.1381 

based on (3.11). Thus, the CR will detect optimally the presence of the PR user‟s signal 

in the band           to         as can be seen from the figure. At SNR     dB, 

the calculated threshold is 3.9632, and there is a possibility of giving false alarm about 

the presence of the PR‟s signal between frequencies         to     . Such a 

situation can be resolved by increasing the averaged samples of the decision statistics, 

and/or increasing the threshold level. We find that the mean of the decision statistics, in 

the subbands which contain only noise, decreases to zero with increasing averaged 

samples. This means that the decision statistics of random white Gaussian noise is 

random itself; therefore the mean of the squared singular values of random white 

Gaussian noise is also random. 
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Figure 3.9 shows the subbands decisions at SNR            dB, using 16 CR 

sensors. The decision at the subbands that is occupied by the PR user‟s signal is larger 

than the unoccupied ones. Therefore the threshold margin is large enough to give the 

correct decision. Under these conditions, the CR-BS is capable of deciding about the 

presence of the PR‟s signal with SNR as low as    dB. The threshold margin for the 

subbands decision at SNR      dB is small compared to that used for the higher SNR. 

Increasing the number of CR nodes used in the simulation improves the decision 

between frequencies             . When 16 CR nodes are used, the calculated 

threshold at SNR     and    dB are 0.4526, and 12.9283 respectively.  

The performance of the MTM-SVD is compared with the performance of the 

conventional method of the PSD estimation, the PE, at low SNR when one CR node is 

used. Figure 3.10 shows the estimated PSD obtained using PE and the single bin 

decision when MTM-SVD is used with 16 CR nodes at SNR     dB. The PSD using 

PE is averaged over     simulation runs as well. 

Figure 3.10 shows a large variance and a bad biasing property of the PE that 

disturbs the estimated power which will produce an incorrect decision by CR-BS. The 

PE method is unable to distinguish between the noise and the PR signal unless the 

number of averaged samples is too large. Such a large number of samples needs much 

time to process the collected data. On the other hand, it is clear the MTM-SVD method 

resolves these problems, and improves the decision process.  

Figure 3.11 shows the relation between the singular value square using 4, 8, and 16 

CR nodes and the SNR and both in dB. It is clear that the decrease in the SNR causes an 

increase in the singular value square. The singular value square increases with the 

increase in the number of CR nodes as well. At SNR      dB, singular value square 

is about 25 dB using 4 CR nodes, 27 dB using 8 CR nodes, and 30 for 16 CR nodes. At 
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SNR     dB, singular value square is about  8 dB using 4 CR nodes,  5 dB using 8 

CR nodes, and  3dB for 16 CR nodes. 

Tables 3.1 and 3.2 show the probability of making the correct decision over the 

four subbands at various SNR using 4 and 16 CR nodes respectively. Each decision of 

the different four subbands is averaged over 1000 values, and then compared to the 

threshold. This decision test is repeated 100 times at each SNR. When 16 CR nodes are 

used, this yields a probability of 100% for the correct decision at SNR = 5 dB and 

higher. At SNR = 0dB, the probability of correct decision varies between 87% and 94%. 

However, at SNR below 0 dB, the decision becomes increasingly less reliable. On the 

other hand, when using 4 nodes, the decision becomes less reliable for SNR below 5 dB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Subbands Decisions versus normalized frequency at SNR=10 and 

   dB using 4 CR sensors. 
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Figure 3.9 Subbands decisions versus normalized frequency at SNR           
dB using 16 CR sensors. 

Figure 3.10 Comparison of the single bin decision results from the PE and the 

MTM-SVD using 16 CR sensors at SNR    dB. 
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Table 3.1  

 

SNR(dB) 4 CR sensors 

Subband -1 Subband -2 Subband -3 Subband -4 

-10 75% 31% 34% 72% 

-5 52% 64% 62% 53% 

0 68% 81% 79% 64% 

5 93% 98% 94% 96% 

10 100% 100% 100% 100% 

Table 3.1 Probability of MTM-SVD making the correct decision using 4 

CR sensors at various SNR. 

SNR(dB) 16 CR sensors 

Subband -1 Subband -2 Subband -3 Subband -4 

-10 41% 65% 64% 47% 

-5 76% 50% 48% 73% 

0 90% 94% 87% 89% 

5 100% 100% 100% 100% 

10 100% 100% 100% 100% 

Table 3.2 Probability of MTM-SVD making the correct decision using 16 CR 

sensors at various SNR. 

 

Figure 3.11 Singular value square using 4, 8, and 16 CR sensors versus SNR 

both in dB at   =30/64. 



 

104 
 

 

The probability of MTM-SVD making correct decision in the subbands 3, and 4  

using 4 CR nodes and 8 tapers at SNR=5dB are found as 79 and 67% respectively. 

These values are lower than using 4 tapers that are shown in Table 3.1.  

Figure 3.12 shows the threshold levels versus the SNR for 4 and 16 CR nodes 

schemes, using (3.10) that is averaged over     simulation runs. The increase in the CR 

nodes numbers produces an increase in the threshold level. As the SNR is increased, the 

difference between 4 and 16 CR nodes threshold becomes insignificant. In the higher 

SNR, the threshold levels decrease towards 0 and the difference in the 4 and the 16 CR 

nodes thresholds decreases as well. 

Figures 3.13 and 3.14 show the probability of the correct decision at each 

frequency bin using 16 CR sensors at SNR= 5dB, threshold=0.807, and the averaged 

samples are 100 and 1000 respectively. The probability of the correct decision is around 

50% for the 100 averaged samples scheme. When the averaged samples are increased to 

1000, the probability of correct decision is also increased, especially in the subbands 

which contain only noise. 

 

 

 

 

 

 

 

 

 

  

-15 -10 -5 0 5 10 15
0

20

40

60

80

100

120

140

SNR(dB)

T
h
re

s
h
o
ld

Threshold versus SNR(dB) , using 4 and 16 Sensors

thre-4sensors

thre-16sensors

Figure 3.12 Threshold levels used in the simulation. 
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Figure 3.13 Probability of the correct decision at each frequnecy bin using 16 CR 

sensors and 100 averaged samples. 

 

Figure 3.14 Probability of the correct decision at each frequnecy bin using 16 CR 

sensors and 1000 averaged samples. 
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3.6.3 Conclusion 

In section 3.5, the MTM-SVD technique is investigated for CR spectrum sensing. 

The MTM-SVD power spectrum estimation‟s theoretical analysis is applied. MATLAB 

simulation codes are written for the MTM-SVD decision statistics using 4 and 16 CR 

nodes at various SNR values to find the capability of this technique. This has been 

published in [1]. 

Although the MTM-SVD scheme requires a lot of computation compared with the 

PE, the latter has a large variance and bad biasing at low SNR (i.e., SNR= 5dB). This 

would increase the possibility that the decision process might fail to detect the presence 

of the PR signal. This will result in an inefficient use of the spectrum or causes 

interference to the PR active users. The MTM-SVD has a better performance that allows 

the CR system to distinguish between PR signal and the background noise or low 

interference. The number of mathematical operations in one round simulation at each 

frequency bin is 2 for the PE, and 21 operations in the MTM using 4 tapers. The decision 

at each frequency bin needs 40 operations in the MTM-SVD, and the decisions at each 

subband needs 56 operations. The processing time in the decision of using 4 CR nodes 

and 4 tapers is about 2.56 times that used for the PE, and is about 3.63 times the PE in 

the 16 CR nodes and 4 tapers scheme. 

The MTM-SVD performance functions across two parameters, namely: number of 

CR sensors and number of tapers used in the design of the CR system. Based on the 

results, the increase in the number of CR sensors improves the decision statistic and 

increases the threshold margin for low SNR. The number of tapers that used in the 

system is critical since using a large number of tapers may cause unwanted biasing 

properties to the spectrum estimates. The decision statistics for narrowband resolutions 

can be extended to the resolution of each subband in our model.  



 

107 
 

The next section provides a summary of chapter 3 including the auther‟s technical 

opinion of using MTM-SVD as a CR spectrum sensing technique, and the challenges of 

using MTM. The MTM challenges are then resolved in chapter 4.  

3.7 Chapter Summary 

In this chapter, the chosen spectrum sensing technique in CR, the MTM, was 

reviewed. This included what our chosen spectrum sensing technique shall be, and the 

reasons behind choosing the MTM. The spectral leakage and large variance of the 

power spectrum estimate were discussed since they are the main classical problems in 

spectrum estimation methods. Examples of different windows that tried to mitigate the 

spectral leakage are shown. The MTM was looked at in more detail and the following 

areas were explored: 

- MTM definition and history.  

- MTM features for CR spectrum sensing. 

- MTM methodology including the DPSS generation.  

The MTM-SVD had been given attention through the CR literature without any 

practical investigation of the method. This motivated the author to investigate this 

method using a simulation to explore the performance and the drawbacks. The method 

showed a promise performance compared to the PE. Based on the simulation results, the 

MTM-SVD can be classified as MSCSS since it needs multi measurements about each 

frequency bin to be sent to the CR-BS every sensing time. For example, when 8 tapers 

are used to generate the eigenspectrums in MTM, each CR must send 8 complex 

measurements of each frequency bin to the main CR-BS. This goes against the main 

objective of CR systems, since it requires huge bandwidth to exchange such 

measurements between CR users. Additionally, MTM-SVD has noticeable computation 

complexity that might slow the CR spectrum sensing decision. Therefore, the author 
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excluded the MTM-SVD as a SCSS from his research, and more concentration will be 

made on MTM. 

Through the simulation results, two main technical requirements were defined, and can 

be listed as follow: 

1. The performance of MTM or even MTM-SVD is affected and controlled by 

main two parameters: 

-The time bandwidth product NW 

-The number of used tapers K 

2. Using MTM as a CR spectrum sensing technique requires developing the 

optimal detector based on Neyman Pearson criterion to optimize the 

performance and the threshold of MTM-Based CR spectrum sensing.  

These two requirements defined the main objectives of chapter 4 as will be seen 

later.  
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Chapter 4: Optimal MTM based CR spectrum 

sensing 

4.1 Introduction 

 As has been mentioned at the end of chapter 3, the MTM has two main parameters 

which must be optimized to be efficiently used in CR spectrum sensing. Such 

optimization supports the practical use of the MTM in the OFDM-based CR systems. 

Half time bandwidth product NW and the number of used tapers K are the parameters 

that affect the MTM performance as a CR spectrum sensing technique. Therefore, 

optimizing these parameters optimizes the performance and minimizes the complexity, 

as can be seen later within this chapter.  

The MTM parameters are reviewed and discussed in order to understand their 

effects on the performance. The problem formulation and the system model of the 

optimization is developed in such a way that the parameters choosing effect on the 

spectral leakage and the variance can be taken into account. Based on this, a Monte 

Carlo simulation code is written to find the optimal MTM parameters. 

The second important optimization target here is the optimal MTM detector design 

based on Neyman Pearson criterion. Subsection 2.4.2.1 shows how such a design is very 

important for the practical implementation of any spectrum sensing technique. The 

different probabilities formulae can be controlled via threshold and the number of 

sensed samples controlling. Then, the optimal performance can be achieved. 

The optimal MTM based detector is developed in this chapter. This includes the 

PDFs derivation for the different hypotheses of the MTM decision statistic. The mean 

and variance for the different MTM decision statistic‟s hypotheses are derived within 

the PDF work. Different probabilities, the number of sensed samples, and the threshold 

formulae are then derived. Simulation codes are written to evaluate the system and 
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compare it to the theoretical works in AWGN, Rayleigh flat fading, and multipath 

fading wireless environments. A Comparison of MTM to the PE, and recently published 

spectrum sensing techniques for OFDM-based CR, are included in the results 

The main content of this chapter has been published in three papers that represent 

the chapter contributions. The published papers are: 

O. A. Alghamdi, M. A. Abu-Rgheff and M. Z. Ahmed, "MTM Parameters 

Optimization for 64-FFT Cognitive Radio Spectrum Sensing using Monte Carlo 

Simulation," in Proc. The Second International Conference on Emerging Network 

Intelligence (EMERGING 2010), 2010, pp. 107-113. 

O. A. Alghamdi, M. A. Abu-Rgheff and M. Z. Ahmed, "Probabilities of Detection 

and False Alarm in MTM- Based Spectrum Sensing for Cognitive Radio Systems," 

in Proc. The Second International Conference on Emerging Network Intelligence 

(EMERGING 2010), 2010, pp. 114-119. 

O. A. Alghamdi, M. Z. Ahmed and M. A. Abu-Rgheff, "Probabilities of detection 

and false alarm in multitaper based spectrum sensing for cognitive radio systems 

in AWGN," in Proc. 12th  IEEE International Conference on Communication 

Systems (ICCS'10), 2010, pp. 579-584. 

4.2 MTM Parameters 

The MTM parameters NW, and K, play an important role in controlling the MTM 

performance. They control the trade-off between bias and variance of the spectrum 

estimate. Additionally, the MTM complexity is affected by the different choices of such 

parameters as can be seen later within this chapter. However, such parameters were not 

given deep consideration in CR spectrum sensing, except for general recommendations 

and assumptions. In Haykin‟s work, the recommended range of NW is from 4 to 10, and 
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K from 10 to 16 tapers [147]. The NW is used as 4, and K as 3, 4, and 5 tapers for 

N=128, and 2048 in [117, 118]. In [152], a range of NW between 3 and 6 is preferred, 

and K=6 tapers is used where N=400.  

All these works did not use a specific and justified NW and K, and were based on 

recommended ranges of such parameters. Based on these recommendations, it is clear 

that such parameters are still open issues, and have to be optimized towards achieving 

high performance and low complexity by determining a specific number of tapers. Note 

that the MTM parameters were originally the DPSS parameters that are now being used 

for MTM. 

In this section, we investigate the optimization of MTM parameters in OFDM-

based CR systems. The CR transceiver carries out 64-IFFT/FFT digital processing for 

both transmission and receiving operations. Consequently, the MTM processing in the 

spectrum sensing will not add additional hardware at the receiver except for taper 

sequences generation, multiplication and adding operations. The FFT size here is N=64, 

which is also the tapers length. Therefore, as a spectrum sensing technique for OFDM-

based CR systems, the tapers length will have the FFT size of those CR systems. For 

example, IEEE 802.11(a/g) support 64-FFT (i.e., N=64), and IEEE 802.16 (d/e) support 

(128, 256, 512, 1024, 2048)-FFT (i.e., N=128, 256, 512, 1024, 2048) [28]. The N=64 

case, is the main case under optimization in this chapter. The optimal MTM parameters 

of this case can be generalized then for the different FFT sizes that are used in the 

different OFDM based systems. 

MTM tolerates the classical problems (i.e., bad bias and large variance of estimate) 

which occur in spectrum estimation by averaging over a number of orthonormal tapers 

(i.e., DPSS). The tapering sequences concentrate the energy within a bandwidth 

     , where        . The half time bandwidth product,   , determines the 

bandwidth resolution for fixed length  . As the half time bandwidth product decreases, 
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the half bandwidth   decreases resulting in higher resolution in the spectrum sensing 

and vice versa. The main spectrum lobe of each taper is 2NW frequency bins (where the 

FFT- frequency bin spacing is 1/N) [37]. Thus in OFDM-based CR applications with 

64-FFT, the main band under sensing can be divided into a number of subbands based 

on the half time bandwidth product. For example using NW=2 means that there will be 

16 subbands with 2W width each, and the main lobe is then 4 frequency bins out of the 

64. Therefore in such applications, the useful half time bandwidth products should be 

0.5, 1, 2, 4, 8, or 16, and 32 to concentrate the energy in one band, which is the whole 

band under sensing. Consequently, the higher edge of the half time bandwidth in 64-

FFT case is NW=16. 

Furthermore, the number of tapers in the higher resolution sensing is smaller than that 

found in the lower resolution since the total number of tapers is            . 

The eigenvalues         of the first few tapers for the higher bandwidth 

resolution is much smaller than eigenvalues in the lower resolution, which implies that 

lower bandwidth resolution tapers have more energy concentration than tapers in the 

higher bandwidth resolution. 

More concentration in the last paragraph means less spectral leakage. 

Asymptotically, the spectral leakage, 1-       , for a specific NW can be calculated 

using the largest eigenvalue,        , as follows [29]: 

                                                       √                                          (4.1) 

Table 4.1 shows the spectral leakages of the first taper (i.e., that has        ) for 

different NW values. The increase in NW causes significant decrease in the spectral 

leakage. 

Furthermore, the first few eigenvalues of a specific time half bandwidth product are 

close to one. As the number of taper sequences increases, the eigenvalues decrease,  
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NW 1-        1-        in dB 

2             -42.0778 

4 3.0565       -95.1477 

8 5.2569       -202.7927 

16 1.0996       -419.5877 

Table 4.1 Spectral leakages of the first taper for different NW values. 

 

indicating bad bias properties, and as number of tapers decreases, the eigenvalues 

increase towards 1, indicating good bias properties. 

Figure 4.1 shows the subband divisions that are result from using different three half 

time bandwidth product values in MTM where                               . It 

can be seen from the figure how the NW choice in MTM divides the subband under 

sensing (e.g., 64 frequency bins in 64-FFT) into a number of subbands with different 

2W. Table 4.2 shows the possible normalized tapers‟ NW values in the case of N=64. As 

has been said before, for a fixed N the increase in NW produces an increase in the 

bandwidth   , an increase in the total number of the resulted tapers and a decrease in 

the number of subband divisions. 
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           (b) 

 

 

 

 

 

 

             (c) 

 

  

                       

0.5 
0.0078 0.156 

1 
128 64 

1 
0.0156 0.03125 

2 
64 32 

2 
0.03125 0.0625 

4 
32 16 

4 
0.0625 0.125 

8 
16 8 

8 
0.125 0.250 

16 
8 4 

16 
0.250 0.500 

32 
4 2 

Table 4.2 Different possible normalized tapers‟ half time bandwidth products used in 

MTM with their associated parameters for N=64. 
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Figure 4.1 Representative examples of the subband divisions that are resulted 

from using different three half time bandwidth products in MTM, where 

                              . 
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Our work for choosing appropriate values of NW and K for MTM estimator uses 

two approaches. In the first approach, we compute the PSD using (3.5) to show that 

random choice of these values may generate a lot of leakage, causing an increase in 

false alarm probability during the estimation process. These results are presented in 

Figures 4.2 and 4.3. In the second approach, a Monte Carlo simulation is used to 

evaluate the probabilities of detection and false alarm for various values of NW, and K 

in 64-FFT based CR at SNR= 5dB, and then to find the optimal (NW, K). 

In the following subsections, the MTM parameters‟ effects on PSD will be 

investigated to achieve more understanding of the problem, and then the MTM 

optimization process will be discussed under section 4.3. 

4.2.1 Time Bandwidth Product Effect on MTM 

Figure 4.2 shows the PR‟s PSD at CR Rx using MTM with NW=4 and 16 where 

the number of used tapers is K=5 and 25 respectively at AWGN channel with 

SNR= 15Db, and the number of averaged samples is 2500. The PSD estimation using 

MTM here is based on (3.5). Number of averaged samples is 2500; this means the 

power at each frequency bin is averaged over 2500 received samples. PR transmits 

OFDM-QPSK signal from normalized frequency       to        with power 

normalized to one over the whole band. Both PR and CR use 64-IFFT/FFT signal 

processing. The CR receiver implements MTM to estimate the PR‟s PSD using different 

NW and K parameters.  

The ideal curve represents the levels of noise and noise added to PR signal. It can 

be clearly seen how much power spectral leakage there is outside the PR‟s signal band 

when using NW=16 and the number of tapers K=25. Such leakage of power will affect 

the decision outside the PR‟s band by introducing more false alarms. At the same time  
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we can see how such leakage disappears when using NW=4 and the number of tapers as 

K=5. The reader should not be confused by the result here and the spectral leakage that 

has been shown in Table 3.1. Although the first taper of NW=16 has lower spectral 

leakage compared to that of NW=4, it uses large number of tapers, K=25, which 

produces more spectral leakage in this example. The reason behind this, in NW=16 case, 

is that the high orders tapers that have bad bias properties are included in the MTM. 

4.2.2 Number of Used Tapers Effect on MTM  

Figure 4.3 shows the PSD for the same system with NW=8 computed using (3.5). 

This figure clearly shows that using a small number of tapers, K=2, introduces large 

variance in the estimate due to the averaging over small number of tapers. At the same 

time using a large number of tapers, K=14, improves the variance, but at the expense of 

spectral leakage which is noticeable in this case. Using K=5 produces leakage that is 

between the previous two cases.  

 

Figure 4.2 PSD using MTM with NW=4, and 16 and different values of K at AWGN 

with SNR= 15dB. 
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We may conclude from these two figures that an unwise choice of NW and K 

within the range suggested by Haykin and the others may have catastrophic results on 

false alarm and detection probability of the MTM estimator. 

4.3 MTM Parameters Optimization  

Figure 4.4 shows a representative diagram of the MTM parameters‟ optimization 

problem in 64-FFT based CR systems. In this case, NW axes values are NW=0.5, 1, 2, 4, 

8, and 16. On the other side K axes values are K=1, 2, 3,…, 32. In regions   , and   , 

the half time bandwidth NW has higher resolution than the others two regions   , and 

  . At the same time   , and    have a small number of tapers with good bias 

properties at the expense of higher variance when used in computing the PSD using 

(3.5).    and    regions have large number of tapers that improve the variance of the 

 

Figure 4.3 PSD using MTM with NW=8 and different values of K at AWGN with 

SNR= 15dB. 
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spectrum estimate, but at the expense of larger spectral leakage. The recommended 

values of NW, and K ranges in the literature are shown in the figure. Although these 

ranges are useful in the CR spectrum sensing, they still need to be optimized to get the 

highest performance for 64-FFT CR systems. In addition to maximizing the 

performance, optimum parameters will contribute to reduce the MTM detector 

complexity. 

The mathematical derivation of the optimal MTM parameters is intractable. 

Therefore, a Monte Carlo simulation program is used in this thesis to examine the effect 

of the different values of NW and K on the spectral leakage outside the PR‟s subband 

and the MTM detector decision statistic. Consequently the binary hypothesis at each 

frequency bin will be used to evaluate MTM detector performance. 
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Figure 4.4 Representative diagram of the MTM parameters optimization 

problem for 64-FFT based CR systems. 
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4.4 System Model and Problem Formulation 

Clearly, optimizing the MTM detector performance requires maximizing the 

probability of PR signal detection     for a predefined probability of false alarm   . The 

optimization process here will be started by defining the basic binary hypothesis test. 

This hypothesis test will be redeveloped in a way that insures that the effect of choosing 

optimum MTM parameters is based upon performance evaluation. 

Based on (2.3), the binary hypothesis test for MTM spectrum sensing at the      

time can be rewritten to be as follows [87]: 

 

                     

                                                                                                                  (4.2) 

 

where   = 0,1,…,L-1 is OFDM block‟s index,        ,      ,  and       denote the CR 

received, noise and PR transmitted samples. The transmitted PR signal is distorted by 

the zero mean AWGN               
  . The signal to noise ratio is     

  

  
 . 

The time instant   comes from the samples over different OFDM blocks, and time 

instant t comes from the samples from the same OFDM block (i.e., IFFT/FFT samples). 

Thus, the spectrum sensing time in second is           , where    represents QPSK 

symbol duration, L represents the number of OFDM blocks used in sensing and N is the 

number of samples per OFDM block (i.e., FFT size).  

 The D over time interval  , and at a specific frequency bin using the MTM can be 

formulated based on (3.4) and (3.5) to be as follows [4, 29]: 

 

      

 

(4.3)                         ∑
∑        |∑                  

          
   |

    
   

∑           
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The detection and false alarm probabilities at each frequency bin using MTM are 

defined as [87]: 

                      {          |  }                       

                                              {          |  }                                         (4.4) 

The threshold  , is defined according to the noise variance   
 . The decision statistic, 

        , is calculated at each frequency bin using (4.3), and then the probabilities of 

detection and false alarm can be evaluated by comparing the decision statistic to the 

predefined threshold over a number of realizations using (4.4). 

In order to include the spectral leakage effect on the MTM performance evaluation, 

the false alarm should be evaluated in subbands that are vacant and that are neighbours 

to occupied subbands. Therefore, the leaked power from the occupied to the adjacent 

vacant subbands can be taken into account in the probability of false alarm evaluation. 

This allows us to observe the increase and decrease in the false alarm due to using 

different NW, and K. At the same time, the increase and decrease in the detection 

probability due to a using different number of K can be observed in the occupied 

subband. Consequently, the variance effect will be included in the MTM performance 

evaluation.  

By dividing the frequency band under study into three non-overlapped subbands as 

shown in Figure 4.1, the NW, and K effects on the MTM performance will be included 

in the evaluation. The non-overlapped subbands structure consists of a PR signal in the 

middle subband, and two side adjacent subbands contain noise only. 

The binary hypothesis,   , will be examined through all frequency bins that do not 

contain PR signal (i.e., {    [            ] } . The binary hypothesis,   , will be 

examined through all frequency bins that contain the PR signal (i.e., {   [     ]}). 

Figure 4.5 shows representative diagram of the   , and    locations in the developed 

model. 
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The probability of detection     over the band under sensing can be achieved from 

the averaged summation of the individual probability of detection        of all the bins 

which lie within the subbands used by the PR user, and can be written as [2]: 

                                                    
∑       
     
     

  
                                                       (4.5) 

The probability of false alarm     over the band under sensing can be achieved 

from the averaged summation of the individual probability of false alarm        of all 

the bins which lie within the subbands outside the PR‟s subband, and can be written as 

follows [2]: 

                                             
∑       
       
    

 ∑       
  
       

  
                                        

where 32 represents the total number of frequency bins of the hypotheses     , and    

of the model. 

The optimization problem here can be written simply as [2]: 

                                    {   }                                             (4.7) 

where   is a constant false alarm, and is assumed as 10% in this part of our work. 

Generally, the performance of the CR spectrum sensing can be evaluated via the ROC 

(i.e., the pair (      )) as has been discussed in subsection 2.4.2.1.4. Moreover, the 

spectrum sensing technique‟s performance can be evaluated via observing the    at a 

Consists of 32 frequency 

bins 

PR signal +noise 

   

Consists of 16 

frequency bins 

Noise only 

Consists of 16 

frequency bins 

Noise only 

      

Figure 4.5 Representative diagram of the hypotheses distributions in the 

optimization model. 
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fixed   . Therefore, technique A is better than technique B when it gives higher    than 

technique B at the same fixed false alarm and under the same conditions. 

The simulation process of evaluating    at each frequency bin, as in (4.4), when 

the    is fixed to a predefined percentage, includes two main stages for a specific SNR. 

The first is to calculate the threshold that satisfies the predefined    when the noise only 

is exist, and the second is to use the found threshold in    calculation. These two stages 

are shown in the charts in Figures 4.6, and 4.7 respectively. The shown charts can be 

used for any other energy based spectrum sensing techniques as PE, by using its own 

equations to calculate the PSD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.6 Chart of the simulation process of finding the threshold at   =10%. 

 

No 

False alarm case,   , at    
The input:   =10%, threshold is chosen based on   

 . 

Example: for SNR =0dB,   
 =1 

 

   Evaluation  

1. Calculate the PSD over L blocks using (4.3). 

2. Set a comparison vector with length of the realizations number. 

3. Compare the resultant power from (1) to the chosen threshold as in (4.4). If 

the power is greater than the threshold, there is a false alarm and insert 1 in the 

vector. In case the power is smaller than the threshold insert 0. 

4. Repeat (1) and (2) until the comparison vector is filled. 

5. The average of the comparison vector over the realizations number is the   . 

Choose, threshold < the 

current threshold 
 

Choose, threshold   the current 

threshold 

Is    =10 %? 

The current used 

threshold will be used 

in    calculation 

Yes 

Is     10 %? 

 

No 

Repeat    evaluation 

until    =10 % is satisfied  

Repeat    evaluation 

until    =10 % is satisfied  

Yes 

End 

The output: 

threshold that 

satisfies 

    =10 % 
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Figure 4.8 shows the chart of the simulation process for the MTM parameters 

optimization in 64-FFT based CR. 

4.4.1 Wireless Environment Effect on the Optimal MTM Parameters  

 As should now be understood, the MTM is based on the use of orthonormal tapers, 

the DPSS. The way the DPSS work is as a bank of optimal band pass filters. They 

concentrate the energy within a bandwidth resolution and minimize the spectral leakage 

outside that resolution. Furthermore, the characteristics of the tapers are independent 

from the of the PR‟s power and the noise power. Therefore, the optimization of MTM 

parameters can be done at any chosen low SNR. Moreover, the fading environment 

affects the received power level; this is not related to the MTM parameters and their 

characteristics, and the optimization process can be done at AWGN noise only. Thus, 

the optimal parameters are also valid in fading environments.  

Detection case,   , at     
The input: -Threshold from false alarm case (i.e., 

threshold that satisfies     =10 %). 

 

 
    Evaluation  

1. Calculate the PSD over L blocks using (4.3). 

2. Set a comparison vector with length of the realizations number. 

3. Compare the resultant power from (1) to the threshold as in (4.4). If the power is 

greater than the threshold, the PR is detected, and one will be inserted in the vector. 

In case the power is smaller than the threshold insert zero instead. 

4. Repeat (1) and (2) until the comparison vector is filled. 

5. The average of the comparison vector over the realizations number is the  . 

End 

The output: 

   at   =10% for specific SNR. 

 

 
 

Figure 4.7 Chart of the simulation process for evaluating the    using the threshold that 

satisfies   =10%. 
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4.4.2 The MTM Complexity  

The complexity of MTM detector for producing the spectrum estimate at a specific 

frequency bin    and N-FFT over L OFDM-Blocks, in terms of the number of 

mathematical operations (i.e., adding, and multiplications) is defined as [2]: 

                                      [            ]                                          (4.8) 

Using the PE to produce spectrum estimate at a specific frequency bin   , the 

complexity can be defined as follows [153]: 

False alarm case,   ,      [            ]  
Input:   =10% 

Threshold is chosen based on   
 . 

Output: Threshold that satisfies   =10%. 

The steps here is similar to that in Figure 4.6 

 

- Start with the lowest NW in Table 4.1 

- For each number of tapers K of the chosen NW find    

as in the two consecutive boxes below 

Example: NW=0.5 

Possible K =1 

NW=1 

Possible K=1, and 2 

NW=2 

Possible K=1, 2, 3, and 4 

- Repeat for all (NW,K) pairs 

Detection case,   ,    [     ] 
Input: Threshold from false alarm case (i.e., threshold that 

satisfies     =10 %). 

Output:    
The steps here is similar to that in Figure 4.7 

 

End: 

Through all possible pairs (NW,K) 

The optimal is that gives the highest    

Output:            
 

Figure 4.8 Chart of the simulation process for the MTM parameters optimization. 
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                                                                                                                    (4.9) 

4.4.3 Simulation Results 

In our simulation, the PR user is transmitting QPSK-OFDM signal using the 

subband between the frequencies    16 to     48, and with normalized averaged 

power of 1 over the whole band. The PR‟s Tx uses 64-IFFT with sampling frequency 20 

MHz, where the QPSK symbol duration    0.05µs. The CR‟s node uses 64-FFT with 

sampling frequency 20 MHz as well. The performance is evaluated using a number of 

samples at the CR‟s node as                   1280, which corresponds to a 

sensing time of     ; this sensing process is carried out every   20 OFDM blocks. In 

all cases of simulations the results are averaged over     realizations. The channel 

considered in the simulation is AWGN with zero mean and variance   
 . 

The probabilities of detection,   , for NW= 0.5, 1, and 2 using a different number 

of tapers are shown in Table 4.3. The wireless channel is assumed to be AWGN with 

SNR     dB. The threshold   that gives a probability of false alarm,   =10%, was 

estimated by Monte Carlo simulation using a computer software platform based on 

Figures 4.6 and 4.8. This threshold is then used in the detection case box that is shown 

in Figure 4.8 to find optimum NW and K. The highest probability of detection is 

   =98.8150%, which is achieved using NW=2 and K=3 tapers in the spectrum sensing.  

Figure 4.9 shows the probability of detection,    , versus the number of tapers 

when the half time bandwidth product was as NW= 4, 8, and 16, in the same wireless 

environment applied before. We note that each curve has three different behaviours. It 

starts from a lower point that represents the minimum probability of detection which is 

achieved by the first taper. Then it increases sharply to a peak point, and starts to 

decrease again. The peak point for the different NW in this case is at K=5 tapers. Table 

4.4 summarizes the probability of detection,   , for NW=4, 8, and 16 for K=1, and 5 
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obtained from Figure 4.9. The highest probability of detection is     99.7138%, which 

is achieved using NW=4, and K=5. Generally, using 5 tapers is a good compromise 

between the good bias properties and improved variance. Additionally, NW=4 is the 

optimal resolution that gives the highest performance. 

 

NW 
    (%) 

K=1 K=2 K=3 K=4 

0.5 83.233 - - - 

1 81.2166 87.7376 - - 

2 75.9459 90.7959 98.8150 98.560 

 

Table 4.3  Probability of detection,   , for NW=0.5, 1, 2 and different K at AWGN with 

SNR= 5dB when false alarm is    =10%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

NW     (%) 

K=1 K=5 

4 73.4531 99.7138 

8 71.6678 99.2422 

16 69.1575 98.6350 

Table 4.4 Probability of detection,   ,  for NW=4, 8, 16 and different K at AWGN with 

SNR= 5dB when false alarm is    =10%. 

 

 

Figure 4.9 Probability of detection,   ,  versus number of tapers, K, using MTM 

with different half time bandwidth products NW where the probability of false 

alarm was   =10% and at channel AWGN with SNR= 5dB. 
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In NW=16 case, there is an oscillation in the probability of detection levels, which are 

below the optimal value at K=5 tapers, and can be seen beyond the point K=5 tapers. In 

order to understand the source of such oscillating levels, one should refer again to 

section 4.3 and Figure 4.4 to remember the effect of the change in NW and K on the 

terms, spectral leakage and the variance of the estimate. Figure 4.10 shows that the 

tapers with higher order have poor attenuation and at the same time there are a number 

of variable nulls that appear. Spectral leakage from these tapers will be added to the 

band under consideration that would affect the false alarm level in the vacant band 

(which affects the detection probability by the end). There are two effects to consider, as 

the number of estimates from different tapers (under the assumptions made) reduces the 

variance of the estimate (improving performance), increasing the number of tapers can 

increase the amount of leakage (as there are spectral nulls in the spectrum of the tapers, 

additional tapers might not produce additional leakage). Since the noise spectrum is 

assumed white, the distribution of the noise that accrues through leakage will be 

constant. 

 

 

 

 

 

 

 

  

Figure 4.10 DPSS in frequency domain for 10 different tapers. 
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Table 4.5 shows the complexity of the MTM spectrum sensing based on (4.8) for 

different numbers of tapers K with length N=64 over one OFDM block (i.e., L=1). 

It is clear that, in addition to the high performance achieved by K=5, it requires less 

mathematical operations computation than that for     cases. The PE complexity is 

found as 128 operations in the same conditions of MTM using (4.9). 

 

MTM K=1 K=5 K=10 K=20 K=31 

Complexity 193 973 1948 3898 6043 

Table 4.5 MTM Complexity evaluation for 64-FFT over L=1 OFDM block using 

different K. 

4.5 The Optimal MTM Based Detector Requirements  

The outputs from the last parts of chapter 4 are the optimal NW, and K that can be 

used in MTM-based spectrum sensing for OFDM-Based CR systems. Those optimal 

parameters are found as NW=4 and K= 5 tapers. The highest performance in using 

MTM for OFDM-based CR can be insured by using the mentioned optimal parameters. 

Furthermore, the complexity is minimized, since the optimal number of tapers has been 

found, which would finish the possible use of number of tapers more than 5 tapers. In 

the remaining parts of this thesis, all MTM-based spectrum sensing simulations and 

analyses will be based on using those optimal MTM parameters. 

Based on what has been written in subsection 2.4.2.1 and subsections under, 

deriving the different probabilities is a very important issue in the design and 

development of any CR spectrum sensing technique. Although MTM was first studied 

by Thomson in 1982, statistics and probabilistic theoretical works were still an open 

research issue. In [152, 154], the authors derived the probabilities of detection and false 

alarm formulae based on the spectrum estimate characteristic function (CHF) by 

formulating the MTM spectrum detector as a quadratic function of Gaussian vector. 

However, their work is based on using the inverse theory, which is too complex for our 

purpuses. 
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The MTM-based spectrum sensing technique is a powerful. Generally, the choice 

of threshold level   can degrade the performance of MTM-based CR system. Unlike 

methods used to choose   in classical spectrum sensing techniques such as ED and MF, 

choosing an appropriate   in MTM-based system is rather complex and influenced by 

interdependent system parameters. Consequently, theoretical derivation of the 

probabilities of detection and false alarm at the optimal NW, and K is mathematically 

intractable. 

In this part of chapter 4, we present closed-form formulae for the probabilities of 

detection and false alarm for the MTM-based spectrum detector using Neyman-Pearson 

criterion. The PDFs of the MTM decision statistic at both hypotheses,               , 

and                are approximated to Gaussian. The E and the Var of the PDFs 

have been derived for both hypotheses, and used in the calculation of the probabilities. 

Clearly, the chosen value of NW, the tapers, number of tapers used (i.e., K), the 

tapers‟ eigenvalues and the decision threshold level   have an effect on the probabilities 

of detection and false alarm. However, in general, the factors that control the 

probabilities of detection and false alarm and hence optimum threshold level in MTM 

are: NW, K,        ,       , noise power   
  (or SNR), PR signal power, sensing time 

duration (i.e., L) as can be seen later within the remaining subsections of section 4.4. 

 Figure 4.11 shows the possible MTM performance evaluation expressions. Such 

expressions would lead to the optimal design of MTM-based spectrum sensing that will 

support the practical design of such a technique in CR systems. 

The main steps that have been followed to derive the different MTM performance 

evaluation expressions are: 

1. After defining the system model, the statistical histograms of |      |
 , and 

         will be examined in AWGN and in different conditions. 
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2. The observations from the examined statistical histograms will be investigated 

in order to achieve deep understanding of the                and 

               which are found as Gaussian distributions, as can be seen in 

the next subsections. 

3. The E, and Var of both                , and                will be 

derived. 

4. The different probabilities expressions will be defined finally in AWGN. 

5. The situation in the multipath fading environment will be discussed including 

the different statistical parameters as in step (3), and the different probabilities 

formulae as in step (4). 

4.5.1 System Model 

The system model here is same as that in section 4.4. The eigenspectrums in MTM 

are produced using (3.4), and the power is estimated using (3.5). The decision statistic 

MTM 

performance 

Probability of detection:        

 

Probability of false alarm:       

 

Threshold:   

 

Probability of miss detection:        

 

Number of sensed samples: L 

 

Figure 4.11 MTM performance evaluation expressions. 
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over   OFDM blocks using MTM is then defined as in (4.3), and for the PE the decision 

statistic over L can be written as follows [100]: 

                                                     
 

 
∑|∑        

       

   

   

|

   

   

 

                                                      

In order to evaluate the performance of the MTM spectrum detector we have 

considered       ,        , and         at any frequency bin    based on the Neyman 

Pearson criterion as in subsections 2.4.2.1-2.4.2.3. 

4.5.2 The Probability Density Functions of the MTM Decision Statistics  

Before focusing on               , and               , the PDF of the  

eigenspectrum absolute square, |      |
 , should be examined via a statistical histogram 

in order to understand its statistical characteristics. Figure 4.12 shows the statistical 

histogram of |      |
  for    hypothesis using the 5

th
 taper (i.e.,   =5 in (4.10)) when 

SNR= 5dB (i.e.,   
 =3.1623). The histogram is observed at a specific frequency bin; 

however, the same result can be generalized for any other frequency bin. It is clear from 

the figure, the PDF of |      |
 , is central chi square for   . Hence, the PDF of 

|      |
 is a non-central chi square for   .Therefore, based on central limit theorem 

[88], the PDF of |      |
 can be approximated to Gaussian for large L, and for both 

hypotheses. The         , finally, has PDFs with Gaussian distribution for    and   . 

This is because          that in (4.3) and for large L, is a composite of balanced K 

eigenspectrums absolute squares which are correlated, as shall be demonstrated later. 

The large L, is defined in [47] as L   . Figure 4.13 shows the statistical histogram of 

         for    hypothesis when SNR=0 dB (i.e.,   
   ). It is clear from the figure, 

the                is a Gaussian. Figure 4.14 shows the statistical histograms of 

         for both    and    hypotheses when SNR=10 dB (i.e.,   
     ). The 

figures show how both hypotheses have PDFs with Gaussian distribution. Figure 4.15 
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shows the statistical histogram of          for    hypothesis when SNR=10 dB in 

Rayleigh flat fading environment. The figure shows how also the PDF of the           

in Rayleigh flat fading can be approximated to Gaussian under the mentioned 

conditions.  

Figure 4.16 summarizes the MTM decision statistic‟s PDFs defining steps for both 

  , and   . In order to derive the theoretical formulae of the different probabilities, 

number of sensed samples, and threshold that have been shown in Figure 4.11, the 

different statistical characteristics of those PDFs must be derived. The E and Var, for 

both                 , and                 are the required characteristics as shown 

in Figure 4.17. The derivation of those characteristics will be shown in the next 

subsections.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 The eigenspectrum absolute square histogram for  =5 and SNR=-

5dB. 
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Figure 4.13 The MTM decision statistic histogram for   when SNR=0dB. 

Figure 4.14 The MTM decision statistic histogram for both    and    when 

SNR=10dB. 
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4.5.2.1 The Mean of the Decision Statistic in MTM for the Null Hypothesis 

When only noise is present at frequency bin   , the mean of             over L 

sensed samples is the mean of (4.3), and can be defined as [4]: 

       [ (     (  )   )]   [ ∑
∑        |∑                  

          
   |

    
   

∑           
   

   

   

   

  ]                  

Let us define a constant   [4], 

                                           [(
 

∑           
   

)]  
 

∑           
   

                                                    

       

then (4.11) can be rewritten using (4.12) as: 

  [               ]     [(∑∑        |∑                  
       

   

   

|

    

   

 

   

   

)] 

      

  

Figure 4.15 The MTM decision statistic histogram for   when SNR=10dB in 

Rayleigh flat fading environment. 

(4.13) 
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 [ (     (  )   )]    [ (     (  )   )] 

   [ (     (  )   )] 
 [ (     (  )   )] 

Figure 4.16 Schematic diagram defining the PDFs of MTM decision statistic for 

the different hypotheses. 

 

Figure 4.17 The required statistical characteristics for the MTM decision 

statistics for both    and    . 

 

 

 

 

. . . . . . . . . . . . . . . . . . . . . .  

|      |
  

. . . . . . . . . . 

.  

Frequency 

MTM process at frequency bins (FFT bins) of 

CR 

PDF is central and non central 

Chi-squared distributions for    

and     

For enough L, central and non 

central chi-squared can be 

approximated to Gaussian 

              

|      |
  has Gaussian 

PDF now 

 
|      |

  has 

Gaussian PDF 

 

|      |
  has 

Gaussian PDF 

         is a balanced sum of correlated 

Gaussian distributions ;                and 

               are both Gaussians 

 

|        |
  has 

Gaussian PDF 



 

136 
 

since the FFT process is a linear process, and by distributing the summation over k , 

(4.13) can be written as [4]: 

 

 

 

 

 

 

The terms inside the E operator in (4.14) are a sum of K Gaussian distributions, then, 

(4.14) becomes [4]: 

    [ (       (  )   )]     ∑ ∑        

   

   

  ∑ ∑              

   

    

   

   

   

   

 

                                                 (    )                                                                    (4.15)  

 

It can be shown that (4.15) can be simplified, when     , as follows [4]: 

 

                   [ (       (  )   )]  ∑ ∑       
 

   

   

   

   

         (          )                       

From the definition of the Discrete Prolate Slepian Sequence (DPSS), we have [30]: 

 

                               ∑       
   
          (    )      {

      

      
                              (4.17) 

The orthonormality of the DPSS can be used to simplify (4.16), when     as follows 

[4]: 

                              [ (     (  )   )]  ∑   (  
    )

   

   

   

                                                      ( (     ))
 

    (     )         
   

                                                            
                                                                       (4.18) 

(4.14) 

 [ (     (  )   )]

   ∑ ∑ ∑  [                    

   

    

   

   

 (    )                 

   

   

                      (    )                   

                         (      )                  ]    
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4.5.2.2 The Mean of the Decision Statistic in MTM for the Alternative Hypothesis  

When the PR signal is present, for    case, the  [               ] at frequency 

bin    can be defined as [4]: 

 [               ]

  [(∑
∑         |∑                          

          
   |

 
    

   

∑           
   

   

   

   

)]             

Then, (4.19) can be rewritten using (4.12) to be as follows: 

      [               ]   

    [ ∑∑        |∑            (        

   

   

   

   

   

   

      ) 
       |

 

  ]                                                                                       

 

By following the same steps of (4.15) and (4.16), then, (4.20) can be finalized as 

follows: 

     [                 ]

   ∑∑ ∑ [                    

   

    

   

   

 (    )     (     

   

   

      ) (             )

                      (    )     (           ) (      
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Based on the linearity property of the FFT process, the orthonormality of the DPSS, 

and when     , (4.21) can be simplified as [4]: 

                     [               ]  ∑   (  
 
                       )

   

   

                  

Note that when        (           )    since the Gaussian samples are identical 

and independent. Finally, (4.22) becomes: 

   [               ]                                                  

                                                     
                   

                             (4.23) 

 

Since the mean of       is zero, then  (           )   . The term     
      

         is the energy over each subcarrier, and      
                 

  (     ) 
    

 . Finally, (4.23) can be written as follows [4]: 

                          [               ]            
                                            (4.24) 

4.5.2.3 The Variance of the Decision Statistic in MTM for the Null Hypothesis 

In order to complete the expressions of the different probabilities, the variances of 

               and               will be defined in the next stage of our 

theoretical derivation. Firstly, let us start to define the variance of               , 

   [ (    (  )   )]  , where the noise only is present. In order to simplify our 

derivation, (4.3) will be redefined at each frequency bin using decision statistic 

coefficients    ,              , as follows [4]: 

                                               ∑∑  

   

   

   

   

                                                                    

where coefficient    is defined as follows: 

                                    
       |      |

 

∑           
   

,                                                

Then, the variance of        can be defined as follows [4]: 
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         [         ]   
  
          [|      |

    ]

 ∑           
     

,                                                   

The variance of                 where the noise only is present for  correlated 

Gaussian samples (i.e., eigenspectrum absolute square |      |
 ), 

   [ (     (  )   )], can be defined as follows [4]: 

                              [               ]   

∑  ∑    [         ]  
   
       √   [         ]√   [         ]  

   
   

     √   [         ]√   [         ]    

      √   [         ]√   [           ]  

    √   [         ]√   [         ]  

    √   [         ]√   [         ]    

      √   [         ]√   [           ]    

        √   [           ]√   [           ]                                                                                                                                                                             

where      , is the correlation coefficient between   , and   , and since 

   [|      |
    ]     [|      |

    ] , for               applying the 

orthonormality in (4.17). Then (4.28) can be rewritten using (4.12) as follows [4]: 

                           [               ]

       [|      |
    ] ∑(∑   

      

   

   

                

   

   

                                    

                                  

                    

                    )                                                                    
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when     , and since the variance of the square of Gaussian random variable 

W,                   , then    [|      |
    ] can be defined as follows [4]: 

                              [|      |
    ]  

 (∑       
      

   

   

)

 

    [(  
    )]                              

     
                                                                                                                  

Finally,     [               ]  over    can be rewritten using (4.29) and (4.30) as 

follows [4]: 

                                         [               ]            
                                                

where   , is defined as follows [4]: 

                           ∑  
      

   

   

                                  

                                  

                                      

                                                                                               

4.5.2.4 The Variance of the Decision Statistic in MTM for the Alternative 

Hypothesis  

When the PR signal is present for    case at frequency bin   , the variance of the 

               ,    [              ] is [4]: 

                                 [              ]              [|      |
    ]                      

when     , and since    [  
    ]    in this case, and    [           ]       

  , 

then, 

                                   [|      |
    ]       [  

                   
    ] 

                                                                                  
       

                                              

Finally, (4.33) can be written as follows [4]: 
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    [              ]            
       

    

                                                                                             
         

                      

4.5.3 The Probabilities Formulae of MTM Based Spectrum Sensing 

In the last four subsections, the main statistical characteristics of the MTM decision 

statistic‟s PDFs for both    and    have been derived. Consequentially, deriving the 

MTM probability of detection   
       , MTM probability of false alarm   

       , and 

MTM probability of miss detection  
        can be defined using those characteristics 

in (2.6), (2.8), and (2.10) to be as follow [4]: 

                                                 
           

          
  

√        
    

      

                                    (4.36)             

                                                    
           

      
 

√        
 
                                              (4.37)  

                                              
             

          
  

√        
    

      

                            (4.38) 

Although the eigenspectrums that build the           in (4.3) are considered as 

correlated. The orthonormality of the DPSS can, in some cases, have an effect on the 

independence of those eigenspectrums which become independent. In such case, and 

based on the central limit theorem, the means and variances for both hypotheses that 

have been defined in subsections 4.5.2.1- 4.5.2.4 can be reformulated finally to be: 
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and then the different probabilities in (4.36)-(4.38) can be redefined to be as follows: 
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These probabilities equations give exactly the same results as those in (4.36)-(4.38). 

Note that the (
 

 
) term comes from the fact that the variance of K independent Gaussian 

samples which have the same variance is the variance of one of them divided by K, as K 

is large enough, based on the central limit theorem. Furthermore, the effect of L and K 

sizes on the PDF of           can be considered jointly (e.g., if L=20 samples, and 

K=5, total number of independent samples become 50, which is large enough). 

4.5.4 The Number of Sensed Samples L in MTM Based Spectrum 

Sensing  

By the end of the last subsection, the different MTM based spectrum sensing 

probabilities formulae were defined. Therefore, the number of sensed samples  , which 

is needed to achieve predefined probabilities of detection   
        , and false alarm  

  
         in the MTM technique can be defined by equalizing the threshold,  , in (4.36) 

to that in (4.37).  

Using (4.36), the threshold,  , can be defined as follows: 
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Using (4.37), the threshold   can be defined as follows: 
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It has been said that the threshold in (4.36) is equal to that in (4.37). Therefore, the 

number of sensed samples L in MTM based spectrum sensing can be defined using this 

fact as below [4]: 
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           (4.41) 

which can be written in (dB) to be as follows: 

               

Following the same steps above and using the probabilities equations that have 

been redefined by the end of subsection 4.5.3, the same result from (4.41) can be 

achieved using: 
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4.5.5 The Threshold Formulae in MTM Based Spectrum Sensing  

The threshold, , can be defined in MTM based spectrum sensing as a function of 

the false alarm probability   
         as follows: 

                             
   (  

        )√  
     

      
 

 
                                             (4.42) 

and as a function of the probability of detection   
         as follows: 

                   
   (  

        )√                          
  

 
                          

Note that, the threshold,  , choice in MTM spectrum sensing depends on the noise 

power (i.e., noise variance   
 )). Therefore, as energy based spectrum sensing technique 

in CR systems, prior knowledge of the noise power is required; it is similar to the PE, 

and FB. The noise power can be estimated using different noise estimation methods. 

Simply, the noise power can be calibrated during the time when the PR user is not 

active in the licensed frequency subband [108]. 

4.5.6 The Probabilities Formulae of MTM Based Spectrum Sensing in 

Multipath Fading Environment  

In multipath fading environment, the binary hypothesis test in (4.2) can be 

redefined for    to be as follows [100]:  

                                                      ∑               

   

   

                                               

where the discrete channel impulse response between the PR‟s Tx and CR‟s Rx is 

represented by   ,           , and   is the total number of resolvable paths. The 

discrete frequency response of the channel is obtained by taking the N point FFT, with 

    as follows [100]: 
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                                                     ∑   
       

   

   

                                                               

In this case, the formulae in (4.36), and (4.37) can be written as follow [3]: 
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                           (4.46) 
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   |     |
    

                      (4.47) 

The SNR can be redefined here to be as follows [15]: 

                                                             
|     |

   
   

                                                               

In this thesis, we assume that the channel gain between the PR‟s Tx and the CR‟s 

Rx is constant during the spectrum sensing duration, and |     |
    in AWGN case, 

and |     |
    in the multipath fading case. In practice, |     |

  can be estimated 

priori during the time that PR‟s transmitter occupies a specific band with specific power 

[100]. 

The number of sensed samples in such an environment can be rewritten using (4.37) 

and (4.46) to be as follows [3]: 

           (
√       

    (  
        ) √  

     
    

   |     |
     

  (  
        )

 |     |
   

)

 

           (4.49) 

4.5.7 The Performance Evaluation of the Periodogram 

It is clear that, the main processing difference between the PE and the MTM 

detector is simply multiplying the signal by a number of orthonormal tapers, the DPSS 

to produce a single estimate in MTM, while the multiplication in the PE is by a single 

rectangular taper. Thus, in order to see the effect of this difference, we use the 

probabilities formulae of the PE which can be for the same system conditions as follow 

[47, 100]: 
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The equations above, which represent the probabilities at    using PE are rewritten 

from those representing the ED as in (2.21)-(2.23). Following the same steps in deriving 

(4.46), the number of sensed samples    which is needed to achieve predefined 

probabilities of detection   
       , and false alarm    

        in the PE technique can be 

defined by equalizing the threshold,  , in (4.50) by that in (4.51). Then,  

                             (
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                         (4.53) 

In multipath fading environment, (4.50) and (4.52) become: 
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4.5.8 The Performance Evaluation of the Autocorrelation Based and 

SD Spectrum Sensing Techniques for OFDM Based CR Systems 

Subsection 2.7.3 describes two of the recent published spectrum sensing techniques 

for OFDM-based CR systems. In the local autocorrelation based spectrum sensing 

technique, the CP correlation is exploited [144]. In the SD global cooperative spectrum 

sensing technique [144], which is classified as SCSS scheme, the CR-BS collects and 

fuses the decision statistics that resulted when autocorrelation based technique is used at 

the different CR users and decides, based on this, whether the PR user is active in the 

frequency subband or not. 
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The probability of detection,   
  , when autocorrelation based spectrum sensing 

(Auto.Corr) is used for spectrum sensing in OFDM based CR systems is defined as 

[144]: 

                                              
     √     

     

  
                                              (4.56) 

and the probability of false alarm is defined as[144]: 

                                                    
     √                                                        (4.57) 

where   , is the chosen threshold in this technique,     is the total number of sensed 

samples in Auto.Corr which can be written as function of L , N , and      and as 

follows [144]: 

                                                                                                          (4.58) 

where   is the number of OFDM blocks, as has been defined before. The    in (4.56), is 

defined as follows [144]: 

                                                  (
   

     
)  (

  
      

)                                                       

The SD global cooperative spectrum sensing for OFDM based CR systems has the 

following probabilities formulae [144]: 

                                               
     

      

   
                                                    (4.60) 

and  

                                                    
     

   

   
                                                          (4.61) 

where     is the threshold for SD spectrum sensing, and   ,    , and     can be 

defined as follow [144]: 
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where g=1, 2, 3,…, G, represents the number of cooperative CR users in SD. 

The performance evaluation using simulation and theoretical work of the MTM 

based spectrum sensing, PE, Auto.Corr, and SD will be discussed in subsection 4.5.9 as 

can be seen. 

4.5.9 Simulation Results 

This subsection consists of three parts which deal with: 

1. Verification of the derived theoretical formulae of the MTM based detector and 

examination of the system performance in terms of ROC, number of sensed 

samples L, and the threshold in AWGN. This part also includes a comparison 

between the MTM and PE in terms of ROC, L in the same conditions. 

2. Comparison between the performance of MTM, Auto Corr., and SD techniques 

under the same conditions. 

3. Examination of the MTM ROC in Rayleigh flat and multipath fading wireless 

environments. This includes comparison to the PE under the same conditions. 

We evaluate our theoretical work by running a simulation program where the PR 

signal is QPSK with normalized energy equal to 1 over each subcarrier(i.e.,   ). Both 

CR and PR users employ 64-IFFT/FFT digital signal processing in their 

communications with sampling frequency 20 MHz/   =0.05μs, where    represents the 

QPSK symbol duration, the MTM parameters used are NW=4, and 5 tapers, and the 

results obtained over     realizations. Additionally, we compare the performance of 

MTM spectrum detector system to that of the PE under the same conditions. We used 

theoretical and simulation results for a chosen frequency bin at the CR FFT to examine 

the hypotheses   , and      
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Figure 4.18 shows the ROC when MTM with NW=4 and 5 tapers and PE are used 

at AWGN with SNR= 10dB and      OFDM blocks. Note that the total number of 

samples used is               1280 approximately corresponds to sensing 

time                      μ     μ . By comparing the theoretical to 

the simulation in the MTM case, we note that the theoretical results match well the 

simulated one. In the same system conditions, the probability of detection    of MTM 

outperforms that for PE by 40%, when the probability of false alarm is   =10%, and the 

miss detection    in MTM is lower than that in PE‟s case by 40%. 

Figure 4.19 shows the results of the number of OFDM blocks, L, required to 

achieve        , and        at AWGN environment with different SNR using 

MTM with NW=4 and 5 tapers and compared to the PE. It is clear that the number of 

OFDM blocks used in the sensing process in the MTM system is lower than that for the 

PE. For example, at SNR= 15dB, the   required by the MTM is 33dB, and by the PE is 

47dB. These two values correspond to 1995 and 50120 OFDM blocks for MTM and the 

PE, respectively, in the linear scale. Thus, the PE requires 25 times as many samples 

compared to MTM in order to achieve the same probabilities at the same SNR. Such a 

large number of the samples for sensing in the CR system might hinder the 

opportunistic use of the vacant channels, which is the main objective of the developing 

of CR systems. 

Figure 4.20 shows the probabilities of detection     that gives probabilities of false 

alarm       , and 10% versus the SNR at AWGN using MTM with NW=4 and 5 

tapers and     . For both predefined probabilities of false alarm the probabilities of 

detection are almost 100% for SNR= 7dB or higher with unnoticeable change for 

      % curve, which is reasonable. Both probabilities of detection curves start to 

decrease with the decrease in the SNR with noticeable outperforming of the       % 
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curve. At SNR= 25dB,         for         curve, and        for        

curve. 

Figure 4.20 shows the threshold versus probabilities of false alarm and detection 

when MTM with NW=4 and 5 tapers are used at AWGN with SNR= 7dB (i.e., 

  
         ) and     . Such a figure presents the range of the threshold that should 

be chosen in order to meet the specific probability of false alarm and detection at 

defined SNR level and L used in the spectrum sensing. As an example, for threshold=5, 

the probability of false alarm and detection pair (           is (          . By 

increasing the threshold level to 5.3, the pair becomes (          . This figure can 

be revaluated at different SNR and L conditions using (4.42) and (4.43). 

The ROC curves for different spectrum sensing techniques will be included and 

discussed in the next part of this subsection to have more range of comparison to the 

MTM performance. The Auto.Corr based, and the SD cooperative spectrum sensing 

techniques are those under comparison to the MTM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 The ROC using MTM detector with NW=4 and 5 tapers and the 

PE at AWGN with SNR= 10dB and      OFDM blocks. 
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Figure 4.19 Comparison between the MTM with NW=4 and 5 tapers and the PE 

in term of the numbers of OFDM blocks, L, required to achieve        , and 

       at AWGN with different SNR using. 

Figure 4.20 Probability of detection,      , that meets        and 10% versus 

the SNR at AWGN using MTM with NW=4 and 5 taper and       samples for 

spectrum sensing. 
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Figure 4.22 Shows the ROC curves for the MTM, Auto.Corr, and cooperative SD 

with G=2, and 3 CR users based spectrum sensing techniques at AWGN with SNRs= 

 10dB, and     . The Auto.Corr and SD based spectrum sensing techniques are 

defined here based on the information that has been given under subsection 4.5.8. 

The     and N are assumed as 8 and 32 respectively following the same work in [144]. 

It is clear from the figure, the MTM outperforms both techniques in the same conditions. 

At    =10%, the     is found as 60% using the MTM for spectrum sensing and 30% 

using Auto.Corr based spectrum sensing. Furthermore, the MTM using a single CR user 

gives higher     than using 2 or 3 CR users in SD based spectrum sensing techniques. 

Using 3 CR users in the cooperative SD based spectrum sensing technique gives     as 

50% at    =10%, while using MTM by one CR user gives    as 60%. Therefore, MTM 

gives a better performance compared to the Auto.Corr and outperforms SD which is 

 

Figure 4.21 Threshold versus    and     when MTM with NW=4 and 5 tapers is 

used at AWGN with SNR= 7dB and      samples. 
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based on cooperation. Moreover, the Auto.Corr technique exploits the CP prior 

knowledge. However, such CP is available only in OFDM based systems which makes 

this technique useful in such cases and can not be used widely in sensing different PR 

signals. Meanwhile, the MTM can be used to detect the energy in a wide frequency 

band with high performance and without need for prior information about the PR signal. 

The Auto.Corr itself is affected significantly by the length of the CP. Thus, further 

disadvantage is added to the use of Auto.Corr for OFDM based CR spectrum sensing. 

Figure 4.23 shows the ROC curves for Auto.Corr with N=64, and    =0, 4, 8, and 16 at 

AWGN with SNR= 10dB and     . As can be seen from the figure, as the     is 

increased, the    increases and vice versa. The    is found as 10%, 15%, 22%, and 40% 

for    =0, 4, 8, and 16 respectively when the    is fixed to 10%.  

The third part of this subsection deals with Rayleigh flat and multipath fading 

wireless environments. Let us assume the channel between the PR Tx and CR Rx is flat  

over the frequency subband. This type of fading is also called non selective slow fading 

since |     |
 , the channel response magnitude, is flat over the frequency subband.  

In the multipath fading, the channel magnitude response, |     |
   , varies over the 

frequency subband producing a frequency selective multipath channel. In our simulation, 

a Rayleigh channel model consisting of three paths (i.e., P=3) is used. The power delay 

profile is exponential. Each multipath component is assumed as an independent and 

identically distributed zero mean Gaussian random variable. A number of six symbols 

are used as CP by the PR Tx (i.e.,    =6). At the CR Rx, such CP is removed before 

implementing MTM for spectrum sensing. Note that the total number of samples used 

here is            which approximately corresponds to sensing time     

            . 
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Figure 4.22 The ROC curves when MTM, Auto.Corr, and cooperative SD with 

G=2, and 3 CR users are used at AWGN with SNRs=  10dB and     . 

Figure 4.23 The ROC curves when Auto.Corr is used with N=64 and    =0, 4, 8, 

and 16  at AWGN with SNRs=  10dB and     . 
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Figure 4.24 shows the ROC curves when MTM and PE are used for spectrum 

sensing at Rayleigh flat fading with SNR= 5dB  and     . The figure shows how 

the MTM outperforms the PE in such fading environment. MTM gives     as 75%, 

while PE gives 61% when the     is fixed to 10% and in the same conditions. 

Figure 4.25 shows the ROC curves for both MTM and PE spectrum sensing 

techniques at multipath fading with P=3 paths and       is used as a CP where 

SNR=0, and  10dB and     . It can be seen from the figure how the multipath 

fading wireless channel degrades the MTM and PE performances. If we compare the 

results from this figure and that from Figure 4.18 for both techniques at SNR  10dB, 

the MTM probability of detection in Figure 4.25 is decreased by 20% at    =10% due to 

the multipath fading effect. The PE probability of detection in Figure 4.25 is decreased 

by 10% at the same    . However, MTM still outperforms the PE in terms of 

performance. At SNR=0dB and in the same condition, the MTM gives     as 90% while 

PE gives 72% when     is fixed to 10% as can be seen from Figure 4.25. The increase in 

the SNR improves the performance for both techniques.  

In order to examine the effect of the increase in the number of sensed OFDM 

blocks, L, Figure 4.26 shows the ROC curves of the MTM at multipath fading with P=3 

paths and       is used as a CP where SNR=  10dB and     , and 100. The 

figure shows the improvement that can be achieved by increasing the number of the 

sensed OFDM blocks L. By increasing the number of OFDM blocks from 20 to 100, the 

    is increased by 22% when     is fixed to 10%. Note that, such an improvement 

comes at the expense of the longer time which is required time to discover the PR 

frequency subband vacancy. The total number of samples used in the 100 OFDM blocks 

case is                         7000, which approximately 

corresponds to sensing time              μ      μ . 
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Figure 4.24 The ROC curves when MTM and PE are used at Rayleigh flat fading with 

SNR= 5dB  and     . 

Figure 4.25 The ROC curves when MTM and PE are used at multipath 

fading with P=3 paths and       is used as a CP where SNR=0, and 

 10dB and     . 
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As has been mentioned under subsection 2.4.1, the longer the sensing duration, the 

more accurate sensing decisions can be achieved. However, too long a sensing duration 

may minimize the CR network throughput, even if it protects the PR frequency band 

from interference [73, 155]. The trade-off between the sensing duration and the CR 

network throughput has been tolerated as an optimization problem (as shown in Figure 

2.9) in much of the work in the literature as has been mentioned in subsection 2.4.1. 

It is interesting now to know the reason behind such improvement in the considered 

techniques in this thesis. Figure 4.27 shows the averaging over L samples (i.e., L OFDM 

blocks) process in the MTM systems under consideration which have been applied 

through all similar techniques in this thesis. Where           represents the samples 

from different L OFDM blocks and             represents the samples from each 

OFDM block (i.e., each FFT). 

 

 

Figure 4.26 The ROC curve when MTM is used at multipath fading with P=3 

paths and       is used as a CP where SNR=  10dB and     , and 100. 
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The decrease in the variation in the noise power level is achieved by increasing the 

averaging over a number of different L samples where the noise samples are 

independent [156]. Such an increase in L, then, causes an improvement in the spectrum 

sensing performance by increasing the possibility of distinguishing between the noise 

and noise added to signal levels. Figures 4.28 and 4.29 show the PDFs versus threshold 

of noise and noise added to signal cases for L=2, and 100 samples respectively when 

MTM is used with NW=4 and K =5 tapers at AWGN with SNR=  dB. This provides 

an example to understand the reason behind such improvement when L is increased. It is 

clear from Figure 4.28 that represents L=2, detector faces difficulty in distinguishing 

between the noise and noise added to signal case along the x-axis due to the small 

number of sensed samples (i.e., L=2). This can be resolved by increasing the sensed 

samples to L=100 as in Figure 4.29, where the noise and noise added to signal cases can 

be distinguished easily and the detection probability will be increased by the end. This 

is due to the reduction in the variance of the power estimate due to the increase in L. 
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Figure 4. 27 The averaging over L samples (i.e., L OFDM blocks) process in the systems under 

consideration. 
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Figure 4.28 PDFs versus threshold of noise and noise added to signal cases for L=2 

samples when MTM is used with NW=4 and K =5 tapers at AWGN with SNR=  dB. 

Figure 4.29 PDFs versus threshold of noise and noise added to signal cases for L=100 

samples when  MTM is used with NW=4 and K =5 tapers at AWGN with SNR=  dB. 
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4.6 Conclusion  
In the first part of chapter 4 within sections 4.2-4.4, we have investigated the 

effects of the system parameters, within the ranges suggested in the literature, on the 

performance of the MTM spectrum sensing for opportunistic use by OFDM-based CR 

users. We have examined the MTM parameters to find their optimality to give a higher 

probability of detection at a lower probability of false alarm, and minimal complexity. 

The MTM technique has been analysed and simulated in AWGN. Our PR and CR users 

were communicating through OFDM-based systems with 64- IFFT/FFT. This has been 

published in [2]. 

Although the first few tapers (i.e., DPSS)) have the best spectral leakage properties, 

we found that they give the worst performance in terms of detection and false alarm 

probabilities. We found that an unwise choice of the half time bandwidth NW and 

number of tapers K from the range suggested in [147] produces catastrophic false 

alarms in the system. In our chosen 64-IFFT/FFT systems, the optimal number of tapers 

was 5 for the NW=4, 8, and 16 cases, and the optimal half time bandwidth product is 

given by NW=4 for 10% false alarm when the system is operating in AWGN channel 

with SNR=  5 dB. For cases where NW< 4, for example when NW=2, the bad bias 

properties of the tapers overcome the high resolution in this system. Generally, 5 tapers 

and half time bandwidth NW=4 can be considered as optimal parameters for different 

FFT-sizes in OFDM-based CR systems ( e.g., 128, 256, 512,.., etc), since the change in 

FFT affects the resolution only. 

In the second part of chapter 4, which lies under section 4.5, we have derived 

closed-form formulae for the probabilities of false alarm, detection, and miss detection 

as functions of the parameters of the MTM spectrum detector such as threshold, number 

of sensed blocks  , number of tapers, eigenvalues of the DPSS, PR signal power and the 
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noise power. This has been published in [3, 4]. These probabilities control the 

performance of the MTM-based spectrum sensing detector. Additionally, MTM 

probabilities can be used to choose the appropriate threshold that maximizes the 

probability of detection at a fixed probability of false alarm.  

In the process of the derivation, we defined the PDF of the MTM decision statistic 

using simulation and theoretical work. Statistical characteristics, such as the mean, and 

the variance of the distribution have been derived for different hypotheses. 

The simulation and analytical works here included different wireless environments, 

AWGN, flat Rayleigh and multipath fading. Comparing the performance of the MTM 

spectrum sensing detector to that of the PE, we found the MTM detector outperforms 

the performance of the PE by about a 40% increase in the probability of detection at 

fixed probability of false alarm 10% at AWGN with SNR=  10dB and     . 

Furthermore the PE requires 25 times the number of samples to achieve the same 

probabilities of detection and false alarm given by the MTM detector operating under 

the same conditions. Auto.Corr has many disadvantages, since it depends on CP 

exploitation in OFDM based CR systems. This makes such spectrum sensing technique 

work only in environments where the PR user is OFDM based. Furthermore, it requires 

prior information about the PR CP and its frequency subbands. The results show how 

the MTM outperforms the Auto.Corr significantly. Furthermore, the SD based 

cooperative spectrum sensing techniques, which are based on Auto.Corr, require 

cooperation between more than four CRs to outperform the MTM performance.  

4.7 Chapter Summary  

 Two main objectives were studied and investigated in this chapter. Firstly, the 

MTM parameters that significantly affected the MTM performance and complexity 

were required to be optimized in order to use the MTM for spectrum sensing in CR 
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systems in an efficient manner, and with lower complexity. The parameters are known 

as the half time bandwidth product NW, and the number of used tapers, K. Therefore, 

the chapter started with a deep technical focus on such parameters and their effect on 

the MTM performance. This included different examples that showed how different 

parameter choices can affect the MTM performance in terms of spectral leakage and 

large variance of estimate. 

After understanding the effects of such parameters, the problem was formulated in 

a way that took into account the spectral leakage and variance of estimate in the 

evaluation of the MTM performance. A Monte Carlo simulation programme was then 

developed in order to find the optimal parameters for 64-FFT based CR systems. The 

optimal NW and K were found as 4 and 5 respectively. The optimization problem was 

investigated in different conditions and assumptions such as fading environments and 

the FFT size effects on the OFDM based CR system. The results showed how the use of 

the optimal parameters can give the highest performance and using K=5tapers limits the 

complexity of the MTM compared to K    cases. 

Secondly, the optimal MTM based detector design was the other main objective in 

this chapter. Such a design was carried out via a number of steps. The first step was the 

study of the statistical histogram of the MTM decision statistic for different hypotheses 

using simulation in different wireless environments and conditions. Based on this, the 

PDF of the MTM decision statistic was found as Gaussian distribution, referring the 

central limit theorem. The different MTM probabilities formulae were derived using the 

Neyman Pearson criterion. The number of sensed samples, L, and the chosen threshold 

were also derived theoretically.  

Simulation codes were written in order to examine the MTM optimal detector for 

OFDM based CR systems. The results showed how our theoretical works match the 

simulation well. Furthermore, the MTM based spectrum sensing technique was 
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compared to the PE, Auto.corr, and SD cooperative spectrums sensing. It was found that 

MTM outperforms all mentioned techniques. The MTM and the PE were examined in 

Rayleigh flat and multipath fading wireless environments using a simulation. The 

fading environments degraded the MTM and PE performance; however, MTM still 

outperformed PE under the same conditions.  
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Chapter 5: The Proposed Optimal and 

Suboptimal Multi Antenna Based Spectrum 

Sensing Techniques for CR Systems 

5.1 Introduction  

In section 2.4.3.1 of this thesis, local cooperative spectrum sensing using multi 

antenna at CR Rx is generally reviewed. As has been mentioned, using multi antenna in 

classical wireless communications allows an increase in the data rate and an 

improvement in the spatial diversity. Consequently, this chapter aims to improve the 

local spectrum sensing in CR systems by proposing multi antenna techniques at the CR 

Rx. This means that the spatial diversity using multi antenna is exploited here in order 

to improve the local spectrum sensing performance at CR Rx. 

MTM based one optimal and two suboptimal multi antenna spectrum sensing 

techniques are proposed in this chapter. In addition to the achieved spatial diversity 

when multi antenna are used in spectrum sensing, the MTM features that were 

discussed in chapters 3 and 4 support the multi antenna based spectrum sensing and 

improve the performance as well. 

Before we start focusing on the proposed multi antenna spectrum sensing 

techniques, a review about the multi antenna systems and concepts in classical wireless 

communications will be provided in section 5.2. Then, the use of multi antenna for CR 

spectrum sensing will be outlined in section 5.3. 

After defining the system model of such a case in section 5.4, the different 

proposed multi antenna based spectrum sensing techniques will be discussed under 

section 5.5. This includes deep technical descriptions of each technique, defining of the 

PDFs of two techniques, the different probabilities, and the number of sensed samples 

formulae derivations. Simulation codes are written to evaluate the different proposed 
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techniques and compare them to the theoretical works. The simulation environments in 

the results are AWGN, Rayleigh flat fading and multipath fading wireless 

environments.  

The main content of this chapter has been published in two papers that represent 

the chapter contributions. The published papers are: 

O. A. Alghamdi and M. A. Abu-Rgheff, "Local MTM-SVD based spectrum 

sensing in SIMO OFDM cognitive radio under bandwidth constraint," in Proc. 5th 

IEEE International Conference on Cognitive Radio Oriented Wireless Networks & 

Communications (CROWNCOM'10), 2010, pp. 1-6. 

O. A. Alghamdi and M. Z. Ahmed, "Optimal and Suboptimal Multi Antenna 

Spectrum Sensing Techniques with Master Node Cooperation for Cognitive Radio 

Systems," Journal of Communications (JCM), vol. 6, pp. 512-523, 2011. 

5.2 Using Multi Antenna in Classical Wireless 

Communications 

In wireless communications, multi path fading is one of the greatest challenges to 

overcome, as it degrades the communication performance between two ends (i.e., Tx 

and Rx ends). This is due to the destructive adding of the reflected signal copies at the 

Rx end. Diversity techniques can mitigate such channel impairments in wireless 

communications systems [157]. Temporal, frequency, and spatial diversities are the 

main diversity techniques [157]. Temporal diversity uses channel coding to mitigate the 

problem of fading. In addition to the loss in the bandwidth efficiency, more delay 

occurs in this type of diversity. The frequency diversity is applicable in broadband 

communications, where the energy from different paths can be estimated using ML. 

Such type of diversity can not be used in narrowband communications. 

Spatial diversity is based on the use of multi antenna at the Tx and/or the Rx in 
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order to receive the signal form independent fading paths. This would increase the 

possibility that at least one of the different paths does not suffer from deep fading [15]. 

Spatial diversity improves the performance and, at the same time, no more bandwidth or 

transmitted power is required to achieve such improvement [158]. Therefore, the spatial 

diversity, generally, aims to achieve independent fading signal paths using multi 

antenna. The improvement in performance includes: an increase in the SNR which is 

called array gain, and a change in the slope of the error probability which is called 

diversity gain [15].  

The concept of using MIMO systems in wireless communications traces back to 

1984, when Winters provided a study of evaluating the performance of the optimal 

combiner for spatial diversity in cellular mobile radio systems [159]. His results show 

how improvements in performance can be achieved by using MIMO. The achieved 

improvements are not only by mitigating fading effect in such types of combining 

techniques; an increase in the SNR is significant. Since that time, more and more 

advanced studies have contributed to spatial diversity using MIMO as in [159-165]. 

Foschini in [161] proposed an advanced MIMO based communication technique 

between Tx and Rx in Rayleigh fading environment, where the Tx does not have 

knowledge about CSI. This technique is called as Bell lab layered space-time (BLSAT). 

It simply divides the data stream into sub streams and allocates antenna to transmit each 

sub stream over the same frequency bandwidth. Therefore, the sub streams can be 

transmitted simultaneously using different antennas without the need for an increase in 

the bandwidth or the transmitted power. This is called spatial multiplexing [157], and it 

is found that the capacity of such a system is scaled linearly by M when the Tx and Rx 

have the same number of antennas M [161, 164]. This increase in capacity requires the 

availability of rich fading environment between Tx and Rx, and perfect knowledge of 

the channel parameters at Rx [161, 164]. Space time coding (STC) [166], is another 
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multi antenna based communication technique. It supports the multi antenna based 

communication system by both spatial and coding gain diversities. STC has mainly 

three advantages [157]:1) The down link performance is improved with no need for 

multi antenna at the terminals‟ Rxs, 2) the channel coding can be used in STC for 

coding gain diversity achievement, and 3) the CSI is not required at the Tx side. The 

space time trellis codes (STTC) [166] is one of the two main STC types. In STTC, the 

information bits are mapped into M symbols using STTC encoder; where M represents 

the number of transmit antennas. The mapped M symbols are then transmitted 

simultaneously using the different transmit antennas. The main problem with using 

STTC is the decoding complexity. The increase in the STTC decoding complexity is 

found to be exponential, and depends on the transmission rate and the level of diversity. 

The second type of STC is the space time block codes (STBC). In contrast to STTC, 

STBC mainly focuses on providing high spatial diversity with low decoding 

complexity. Alamouti code [167] is one of the well-known STBC that improves the 

performance using two antennas at the Tx and one antenna at the Rx. In Alamouti code, 

at the initial time instant, the two data symbols    and    are sent in antenna one and 

antenna two respectively, at the Tx end. After symbol time duration, the symbols    
  

and   
  will be transmitted in antenna one and antenna two respectively, at the Tx end. 

The reception at the Rx consists of combining the different formats, the different times, 

symbols, and applying ML for detection. However, Alamouti code does not provide 

coding gain diversity, and its decoding simplicity is in Rayleigh flat fading only. 

Referring back to the spatial diversity concept, transmit diversity and receive 

diversity are the main categories under spatial diversity. Alamouti code is an example 

of the transmit diversity. Transmit diversity is more practical in the down link (e.g., link 

between BS and terminals) due to the decrease in the cost and complexity; however, it 

requires an advanced signal processing at the Rxs to efficiently detect the desired 
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transmitted signal. Another challenge of transmit diversity is the generation of 

correlated signal samples from the main signal without CSI at the Tx [157]. In the 

receive diversity, the transmitted signal is received through a number of antennas at the 

Rx and then combined, exploiting the positive effect of the independent signal paths. 

The improvement in the performance or in the SNR becomes lower with the increase in 

the number of antennas for both transmit and receive diversities [166].The situation is 

different in spatial multiplexing techniques, where the increase in the capacity increases 

linearly with the number of antennas [157]. 

As has been discussed above, receive spatial diversity is based on combining 

independent signal paths at the Rx using a number of antennas. The combining 

techniques are divided based on the type of combiner into [15, 168]: 1) Linear 

combiner, 2) Selection combiner, 3) threshold combiner, and 4) squared law combiner 

[169].  

Note that as the Rx surrounding environment contains many scattering objects, a 

rich fading environment can be achieved at the Rx. Generally, the half wavelength, 

0.5 , separation distance between two adjacent antennas at the Rx or Tx is enough (i.e., 

     ) to achieve independent paths in mobile communications. The wavelength is 

defined as   
  

  
, where   =      meters/seconds, is the light speed, and    is the 

carrier frequency [159, 161]. Inside buildings sufficient distance separation between two 

adjacent antennas to achieve independent fading paths would be 0.25  [170]. This is 

due to the rich environment of objects and walls that surround the Tx or the Rx inside 

building.  

 General reviews about the different combiners can be seen below. 

Linear combiner: 

In linear combiner (LC), the transmitted signal, s(l), from the Tx arrives at the Rx 

through different independent paths as different copies of the original one. In this 
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process, the original signal s(l) is affected by the phase,   , and the amplitude,   , of 

the     path. Therefore, co-phasing process is necessary to eliminate the effect of the 

    branch phase before combining linearly the branches signals. Figure 5.1 shows a 

schematic diagram of the linear combiner. The signals copies that are received through 

different antenna branches need to be co-phased by multiplying the     branch received 

signal by factor       
    , where    is real, and then, the output from this 

multiplication is      
            =          . Therefore, the effect of the     

branch phase has been removed, the signals can be added up constructively. This type of 

combiner requires channel parameters estimations to complete the co-phasing, which is 

a wide subject in itself, and there are many types of channel parameters estimation 

methods in the literature. The way of controlling the number   , determines the specific 

type of the linear combiner. In equal gain-LC, the number    is assumed as one, and 

based on this, all antenna branches have the same effect on the performance, in 

maximum-ratio-LC, the     is given a weight based on how much the     branch has 

suffered from fading. Therefore, the more affected the branch the less weight is given to 

that branch. The LC does not improve only the diversity gain, it also increases the SNR. 

In AWGN, when each branch has SNR=1 as an example, the resulting SNR from using 

LC becomes M ×SNR=M [15]. 

Selection combiner: 

Selection combiner is distinguished from the LC as it is based on detecting the 

signal from only one antenna branch. This antenna branch has the highest SNR is being 

nominated by the combiner. Consequently, only one Rx is required in such cases which 

should be able to be connect to the different antenna branches based on the highest 

SNR. Unfortunately, a dedicated Rx for each antenna branch in cases that require 

continues monitoring of the SNR (i.e., continuous transmission) is needed to keep the  
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Rx connected to the highest SNR branch [15]. The co-phasing here is required only for 

the nominated antenna branch. The threshold combiner is one of the combiner‟s types 

under selection combiner. It is also called as scanning combiner, since its work is based 

on the scanning of the different antenna branches‟ SNR in sequential order until the 

branch with SNR that is greater than a predefined threshold is found. The Rx can then 

be switched to that branch finally and there is therefore no need for dedicated Rx in 

such combiners. In cases when the different antenna branches have the same SNR, the 

use of such combining techniques gives the same performance when single antenna is 

used. 

Square law combiner:  

Figure 5.2 shows a schematic diagram of classical square law combiner (SLC). The 

transmitted signal that is affected by both channel fading and the Rx noise, which is 

written as       for the     antenna branch, is squared for each antenna branch output. 

The squared copies of the original signal are then added finally. The co-phasing process 

is not required here, and this can be called non coherent detection. The SLC is used  

Figure 5.1 Schematic diagram of the linear combiner. 

Antenna branch 1 

Antenna branch M 

  s(l) 

  s(l) 

  s(l) Σ 

 

 

 

M 

combined 

signals 

 

       s(l) 

       s(l) 

       s(l) 

  
= 

    

    



 

172 
 

 

 

 

 

 

 

 

 

 

 

 

widely in radar sonar applications [171], and is preferred due to its simplicity. 

Prior to this point, an extensive revision of the use of multi antenna in classical  

wireless communications has been provided. All that has been discussed illustrates how 

using multi antenna is very important in wireless communications. 

The use of multi antenna became interesting for both research and commercial 

lines. For example, the use of MIMO is considered as one of the standardization 

requirements that support the commercial production of long term evolution (LTE) on 

Evolved universal mobile telecommunications system (UMTS) Terrestrial Radio 

Access (E-UTRA) [172]. In OFDM based wireless standards, the MIMO is useful in 

practice, since the CP insertion in OFDM based systems simplifies the equalization 

[28]. The IEEE802 standardization group considered the use of MIMO in IEEE802.16 

to improve the system performance [56, 158]. 

5.3 Using Multi Antenna in Cognitive Radio Systems 

As a summary of section 5.2, the use of multi antenna in wireless communications, 
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Figure 5.2 Schematic diagram of a classical square law combiner. 
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generally, supports the communication process by the following advantages: 

1. Increases the data rate. 

2. Increases the capacity. 

3. Mitigates the channel fading effect. 

4. Increases the SNR. 

Moreover, using multi antenna can improve the user position estimation (i.e., geo 

location purposes) such as in emergency and security based wireless systems, by 

estimating the angle of arrival (AOR) of the signal from the Tx [173]. Consequentially, 

all these advantages of using multi antenna are still useful in CR communications. The 

use of multi antenna in CR systems improves the performance of: 

1. Communications between CR users. 

2. Spectrum sensing of the PR signal existence within frequency subband. 

In terms of communication performance improvement (e.g., capacity increase, data 

rate increase, channel effect mitigation…etc), the use of multi antenna for such purposes 

in CR systems has been studied in a number of academic researches. In [174], the 

authors proposed an opportunistic spectrum sharing scheme to maximize the throughput 

of the downlink between the CR-BS and the CR users while keeping the interference to 

the PR user limited. This was achieved by implementing a multi antenna system at the 

CR-BS. Their work is extended to examine employing multi antenna at the Rxs of CR 

users. It is found that the Rx multi antenna at CR users maximizes the throughput and 

minimizes the feedback complexity. The work in [175], aimed to maximize the 

throughput in MIMO based CR systems under constraint of interference to the PR user. 

The work included the study of three different scenarios about the degree of the CR Tx 

knowledge about the channel parameters to the CR Rx. They are called, complete, 

partial, or no knowledge scenarios.  
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As has been provided in subsection 2.4.3.1, different multi antenna based spectrum 

sensing techniques are proposed in the literature to improve the spectrum sensing 

performance in CR systems. We call these types of techniques local cooperative 

spectrum sensing techniques since the cooperation is based on a number of antennas 

cooperate sensing the PR signal at the same CR Rx. Before we start focusing on the 

system model and the proposed multi antenna spectrum sensing techniques, a review 

about the available multi antenna spectrum sensing techniques in the literature will be 

provided (see also section 2.4.3.1). These techniques fall, mainly, under two categories 

as: 

1. Multi antenna PE based spectrum sensing techniques:  

The proposed PE- based multi antenna spectrum sensing techniques, generally, use 

one of the Rx combiner techniques discussed in section 5.2; linear, selection, and 

square law combiners to combine the PR independent paths received signals at the 

CR Rx. The PE, which is based on estimating the energy over L time samples by 

summing the square absolute of those samples, can be done after linearly 

combining the PR signal copies at the CR Rx, or by combining the resultant 

estimated energy over all antenna branches. In selection combiner based, the PE is 

applied to the antenna branch with the highest SNR. Note that the PE is the ED but 

in multi band (i.e., ED of the FFT frequency bins). Another PE multi antenna based 

CR spectrum sensing technique applies the PE at each antenna branch and decides 

about the existence of the PR if the majority of the antenna branches decide that. 

Subsection 2.4.3.1 contains more information about the publications of such 

techniques. 

2. Multi antenna GLRD based spectrum sensing techniques: 

GLRD is a well known detection technique in signal detection theory [87]. It is 

based on estimating the unknown parameters of the LRT in (2.12) using ML. The 
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unknown parameters are signal variance and/or noise variance, and/or channel 

gains. Consequently, the GLRD requires the ML estimation for any unknown 

parameters of the PDFs in the LRT that makes it blind or semi blind in its main 

philosophy. The multi antenna GLRD based spectrum sensing techniques that have 

been reviewed in subsection 2.4.3.1, generally, receive the transmitted PR signal 

copies under different assumptions and conditions through M antennas at the CR 

Rx. Then, the LRT (refer to (2.12) sub section 2.4.2.1.4) test is constructed 

assuming that the PDFs have Gaussian distributions for the different hypothesis, 

but with different unknown parameters which will be estimated using ML, as has 

been said. The use of ML in GLRD increases the computational complexity, and 

the GLRD‟s performance is based on estimating the unknown parameters.   

5.4 The Proposed Multi Antenna Based Spectrum Sensing 

Techniques 

In order to support the research in this field, two sub optimal and one optimal multi 

antenna spectrum sensing techniques are proposed in this chapter. The proposed 

techniques are mainly based on using the MTM to estimate the power over a wide 

frequency band (i.e., through the frequency bins of the CR Rx). Consequently, in 

addition to the performance improvement that can be achieved by exploiting spatial 

diversity using multi antenna, the bias-variance dilemma can also be mitigated due to 

the use of the MTM. 

In the remaining parts of this chapter, we consider CR spectrum sensing using 

multi antenna to detect an IFFT/FFT PR‟s transmitted signal (e.g., OFDM). Our CR 

user is assumed to be an IFFT/FFT based signal processing. This will allow for the 

practical use of MTM in spectrum sensing.  

We propose the use of linear combiner-MTM based (MTM-LC) spectrum sensing, 



 

176 
 

which is optimal when the channel coefficients can be known by CR, and this is 

possible when the PR‟s signaling is known. The linear combining here increases the 

SNR [15], and using MTM minimizes the spectral leakage, and improves the variance 

of the estimate. Two suboptimal multi antenna spectrum sensing techniques have also 

been proposed; square low combining-MTM based (MTM-SLC) and Local-MTM-SVD 

(LMS). In MTM-SLC, the MTM is performed through each antenna separately, and 

then the final spectrum estimate can be averaged over all the antennas‟ estimates. 

MTM-SLC improves the performance at low SNR, and does not require coherent 

detection. The LMS combines the received signals from the different antenna branches 

of the CR Rx and then constructs the spatio temporal matrix, which contains the 

different eigenspectrums from different tapers and different antenna branches. By 

applying SVD to the spatio temporal matrix, the PR‟s transmitted signal power, over the 

frequency bins, can be isolated from the noise. 

 Our proposed techniques have been derived theoretically and compared to 

simulation. The same techniques have been derived as well for PE and comparison 

between different techniques is presented in the results. Decision statistics‟ PDFs of the 

proposed LC and SLC based techniques have been defined for different hypothesis in 

different cases for both MTM, and PE. 

5.5 System Model  

The system model here is similar to that in section 4.4 and subsection 4.5.1 but 

with the existing of number of antennas at the CR Rx. However, we find that rewriting 

the equations and the system information for multi antenna case in this section is 

important to maintain seamless understanding. In our system model, number of 

antennas M is added to the CR for both spectrum sensing and communications as well. 

Figure 2.16 shows a representative diagram of multi antenna based spectrum sensing in 
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CR‟s systems.  

The received PR signal, at the CR receiver, is sampled to generate a finite discrete 

time samples series {  
                     } , where   denotes the 

antenna number, and t is time index. The discrete time samples are dot multiplied with 

different tapers             (tapers are DPSS). The associated eigenvalue of the     

taper is        .  

The binary hypothesis test for CR spectrum sensing at the     time, and using the 

    antenna branch is given by [87]: 

                                                                     

                                                                                                                     

where   = 0,1,…,L-1 is OFDM block‟s index,        ,          , and       denote the 

CR received, noise at the branch m, and PR‟s transmitted samples. The transmitted PR 

signal is distorted by the zero mean AWGN,                 
  , at the output from 

the different antenna branches, which are independent and with identical   
 . Note that 

at each frequency bin of CR FFT,    indicates no PR signal present while    means 

there is a PR signal occupying that frequency bin. 

Following the same model assumption in sections 4.4 and ( section 4.4.1), the time 

instant   comes from the samples over different OFDM blocks; and time instant t comes 

from the samples from the same OFDM block (i.e., IFFT/FFT samples). Thus, the 

spectrum sensing time in seconds is           , where    represents symbol duration, L 

represents the number of OFDM blocks used in sensing, and N is the number of samples 

per OFDM block (i.e., FFT size). 

For K orthonormal tapers used in the MTM, there will be  different 

eigenspectrums produced from the     antenna rewritten from (3.4) to be as [29]:  
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 are the normalized frequency bins.  

The decision statistic over   using MTM in (4.3) can be redefined for the    antenna 

as follows [6]: 
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 [29], is the power spectrum estimate using the 
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Using the PE; the decision statistic over   in (4.10)is redefined for the     antenna 

as follows [100]: 
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As has been provided in chapter 4 (subsection 4.5.2), for single antenna MTM-

based spectrum sensing, and according to the central limit theorem, if the number of 

samples L is large (i.e., L   ), the decision statistic,     
     , has asymptotically 

normally distributed PDF,  (    
 

(  )), with E for the     antenna as [4]: 
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where C and  Σ were defined in (4.12) and (4.32) respectively. 
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On the other hand for the PE, and at the same assumption, the decision 

statistic    
      using the     antenna has E [47]: 
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and Var  
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The different probabilities formulae for MTM based spectrum sensing were derived 

in (4.36)-(4.38), and the number of sensed samples was derived in (4.41). The PE based 

spectrum sensing probabilities formulae for single antenna case are shown in (4.50)-

(4.52), and the number of sensed samples when PE is used is shown in (4.53). 

5.6 The Local-MTM-SVD (LMS) Based Multi Antenna 

Spectrum Sensing  

In the LMS, the PR‟s signal power estimation at CR Rx is based on the following 

steps: 

1. Producing different eigenspectrums, using different tapers, and different 

antennas based on MTM technique at each frequency bin  .  

2. The related statistical information about the transmitted PR signal that have 

been built from step 1 can be exploited using SVD which isolates the required 

information from noise and fading components and produces a near optimal 

power estimate at each frequency bin  .  

Figure 5.3 shows a schematic diagram of the proposed LMS. 

For the binary hypothesis test in (5.1), when a number of M antennas are used, the 

complex eigenspectrums row vector        , which resulted from the     antenna 

using the different tapers, is defined as [5]: 
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                               [                                       ]                                

where          denotes the eigenspectrum which is produced from the     antenna 

using the     taper. The complex eigenspectrums column vector      , which is 

resulted from the     taper using different antennas, is defined as [5]: 

                                        [                                       ]
 
                           

where  , is the vector transpose. Now, the local spatio-temporal complex matrix       

can be constructed using either complex eigenspectrums row vectors       , or column 

vectors        as follows [5]: 
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The row complex vector             , and the column complex vector             ; 

thus based on (5.11), and (5.12) the spatio-temporal complex matrix        

    ,which represents the collected eigenspectrums from different antennas using 

different tapers. 

The SVD of the matrix      , produces three different matrices representing the 

decomposition process as [151]: 

                                                                       
                                                      

where           , is a diagonal real positive matrix consisting of singular values of 

matrix        If    min{M,K}, there will be exactly   nonzero singular values. These 

singular values are represented by the   nonzero diagonal elements of the top left     

block of       , where                            Complex matrix        
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     consists of the associated left vectors. Complex matrix             consists of 

the associated right vectors; the subscript   denotes the Hermitian transpose. The 

eigenvalues of the matrix produced from      
       are |      |

  |      |
    

|      |
    . 

The spectrum estimation using LMS can be defined based on the singular value 

squares |      |
 , |      |

 ,…, |      |
 , the number of tapers K, and the number of 

used antennas M as follows [5]: 
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where MK, is found as the scaling factor of the resulted summation of the different 

singular value squares, and V represents the number of the singular value squares which 

should be used in the LMS spectrum estimation, where      . The number of 

singular values that should be used in LMS will be discussed through our simulation 

results section. The term           represents the spectrum estimation at frequency    

using K tapers, and M antennas, while the term     
      in (3.5) represents the 

spectrum estimation that is achieved using MTM from single antenna using K tapers. 

The D when number of M antennas are used in the LMS spectrum sensing can be 

redefined using (5.14) as [5]: 
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The detection and false alarm probabilities at each frequency bin using the decision 

statistic          are defined as: 

  
          {          |  }       

  
          {    (  )   |  }   

The threshold  , is defined according to the noise variance   
  when single antenna is 

used. When a number of antennas are used as in the LMS, the overall system noise  
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variance     
  in AWGN can be defined using the noise variances for the different 

antennas branches,   
 , as [5]: 

                                                                        
  

 

 
∑   

 

   

   

                                                                    

 

Thus from (5.16), the LMS as a combining technique averages the noise variance 

over number of antennas output branches. If the different antennas output have the same 

receiver noise variance   
 ; the resulting combined noise variance will be   

  as well. 

5.7 Square Law Combining–MTM Based Multi Antenna 

Spectrum Sensing 

The second proposed sub optimal technique is the MTM-SLC, which can be 
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Figure 5.3 Schematic diagram of the proposed LMS. 
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developed by using number of antennas M at the CR Rx for spectrum sensing based on 

MTM and SLC. The decision statistic is performed via each antenna branch separately 

using MTM over L samples, and then the overall decision statistic is calculated by 

summing the outputs decision statistics from the different antennas branches as square 

law combining. MTM-SLC is compared theoretically and analytically to the PE -square 

law combining (PE-SLC) as can be seen below. 

5.7.1 Mean and Variance of MTM-SLC and PE-SLC 

The decision statistics in (5.3), and (5.4) can be redefined for square law combining 

using M antennas for both techniques MTM, and PE respectively as follow [6]: 

 

                        ∑ ∑
∑        |∑                              
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∑           
   

                     

   

   

   

   

 

and, 

                                      ∑ ∑|∑         
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Figure 5.4 shows a schematic diagram of the proposed MTM-SLC. 

From (5.17), and (5.18) the decision statistic using square law combining is a sum of 

identical and independent normally distributed M antennas decision statistics. Thus, the 

E of the             ‟s PDF,  [ (            )], using M antennas can be defined 

as follows [6]: 
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Figure 5.4 Schematic diagram of the proposed MTM-SLC. 

and the Var can be defined as follows [6]: 

                  [ (            )]  {
         

                          

         
    

         
                               

 

In the PE case, the E of the decision statistic            ‟s PDF, 

 [  (           )], using square law combining through M antennas can be defined as 

follows [6]: 

                                   [ (           ) ]  {
    

                         

        
             

                                     

 

and the Var is defined as follows: 
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Figure 5.4 Schematic diagram of the proposed MTM-SLC. 
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5.7.2 MTM-SLC and PE-SLC Probabilities Formulae 

The different probabilities can be redefined for the square law combining technique 

using M antennas for both MTM, and PE cases by substituting the means and variances 

defined in (5.19), (5.20), (5.21), and (5.22) in (2.6), (2.8), and (2.10).Thus, the different 

probabilities for MTM-SLC can be defined as follows [6]: 

                                            
       (   )     

           
  

√         
    

      

                                    (5.23)             

                                           
               

       
 

√         
 
                                              (5.24)  

                                       
                 

           
  

√         
    

      

                           (5.25) 

When the effect of the DPSS orthonormality on the eigenspectrums‟ independence 

is considered as in the end of subsection 4.5.3, the means and variances in (5.19) and 

(5.20) can be redefined to be as follows: 
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and then the different probabilities in (5.23)-(5.25) can be redefined to be as follows: 
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These probabilities equations give exactly the same results as those in (5.23)-(5.25).  

When PE-SLC is used with M antennas, the different probabilities can be written as 

follows [6]: 

 

                           
              

          
  

√     
    

      

                                             (5.26) 

                             
              

      
 

√     
 
                                                           (5.27) 

                            
                

          
  

√     
    

      

                                         (5.28) 

The threshold,   in this case, is controlled by the term     
 . 

5.7.3 MTM-SLC and PE-SLC Number of Sensed Samples 

The MTM-SLC‟s mean is K times PE-SLC‟s mean for both hypotheses, and the 

difference in the variance is defined as the variance factor (VF), which can be written as 

follows [6]: 

                                                                                                            (5.29)                            

The number of samples,         (i.e., OFDM blocks) needed to achieve 

predefined probabilities of detection,   
       , and false alarm,   

        in the 

MTM-SLC technique can be written using the resulting MTM-SLC probabilities of 

detection and false alarm formulae in (5.23) and (5.24) as follows [6]: 

                                             (
                 

    
)
 

                                   (5.30) 

where 
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This can be written in (dB) as follows: 

                        
            

         

The derivation of          is achieved by redefining the probabilities of detection 

and false alarm,   
            , and   

             that in (5.23) and (5.24) in terms of 

number of sensed samples,         , to be as: 

                           
               

                  
  

√                
    

      

                                 (5.31)                        

                               
               

              
 

√                
 
                                          (5.32) 

In order to calculate the number of samples,         , which are required to 

achieve specific probabilities of detection and false alarm, the threshold,  , used in both 

(5.31), and (5.32) are the same. Thus, after mathematical manipulation, the threshold 

form (5.31) can be defined as follows [6]: 

     (  
            )√                           

                                                                                    
                     (5.33) 

using (5.32), the threshold can be defined as [6]: 

      (  
            )√                              

                                                          

Therefore, based on the thresholds equality in (5.33) and (5.34), the           can be 

defined as in (5.30). 

Using the same steps in deriving L and referring to the probabilities equations of 

MTM-SLC that have been redefined within subsection 5.7.2, the same result from (5.30) 

can be achieved using: 

         

      (
√       

  (  
            )  √                

  (  
            )

   
)

 

 

where F is defined in subsection 4.5.4. 

  (5.34) 
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Substituting      and K=1in (5.30), produces the number of samples,   for PE-

SLC which can be written as follows [6]: 

         (
√      

  (  
           )  √               

  (  
           )

   
)

 

 

           (5.35) 

5.8 Linear Combining–MTM Based Multi Antenna Spectrum 

Sensing  
The third proposed technique is MTM-LC of the received samples from different M 

antennas at the CR receiver. The received data samples at the CR receiver are summed 

from the different M antennas branches in the time domain to be as follows [6]: 

                                                            ∑        

   

   

                                                                

Then the eigenspectrums of the resulted new received samples       can be written 

using (3.4) and (5.36) as follow: 

                                                        ∑   
              

       

   

   

                                   

The MTM-LC decision statistic over L samples of (5.36) can be defined as follows: 

                           ∑
∑        |∑                  

          
   |

    
   

∑           
   

                                    

   

   

 

Note that (5.37) and (5.38) represents the case in MTM-LC where the received signal at 

CR Rx is the sum of the signals from different M antennas as in (5.36), while the case of 

using one antenna branch is shown in (5.2) and (5.3). 

 Figure 5.5 shows a schematic diagram of the proposed MTM-LC. 
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5.8.1 Mean and Variance of MTM-LC and PE-LC 

In order to derive the different probabilities expressions of            , we need 

to derive the E and the Var of its PDF,               , for the different hypotheses. 

We follow our theoretical derivation of the MTM-single based as in sub section 4.5.2. 

The linear combiner binary hypothesis can be defined as follows [6]: 

                                                                       

                                                                                              

The main different in     between MTM, and MTM-LC is the effect of the 

combined noise signals from different antennas. Thus, the mean for K correlated 

Gaussian samples of the decision statistic in (5.38);  [                  ] can be 

defined as follows [6]: 
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Figure 5.5 Schematic diagram of the proposed MTM-LC. 
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It can be shown that (5.40) can be simplified as: 

 [                  ]  

             ∑ ∑               (    )          [           ]
   
   

   
                                (5.41)                         

In the remaining parts of this chapter, the terms        , and       will be written 

as      , and      respectively for expressions simplification.           

The orthonormality of the sequences in (4.17) can be used to simplify (5.41), over 

L (L here is for MTM-LC technique which is different from that for MTM-SLC or that 

for MTM) sensed samples, when     as follows [6]: 
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since  [          ]    , for                    ; then        can be rewritten as 

follows [6]: 
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finally,  [     ]   , and    (     )    
 , then (5.44) can be written as follows 

[6]: 

                                        [                  ]       
                                                   

The variance of K correlated Gaussian samples in (5.38); 

   [                  ]  over L sensed samples when      , can be defined as 

follows [6]: 
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Where   is defined in (5.29), then, (5.45) can be simplified to be as follows [6]: 
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where    (  
    )     

 , and    (           )     
                 

         Finally, (5.46) can be written as follows [6]: 
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When the PR‟s signal is present, the  [                  ]  over L sensed 

samples when     , can be defined as follows [6]: 
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where  [       ]      ,  [     ]   , and  [  
    ]     [     ] 

  

                
 ; then (5.48) can be simplified to be as follows [6]: 
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The variance;    [                  ] can be defined as follows [6]: 
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Finally, the different MTM-LC hypotheses‟ mean is summarized as follows [6]: 
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and the Var [6]: 
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The same derivation steps can be followed for  (            ), then the different 

hypotheses‟ mean, and variance can be written as follows [6]: 
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5.8.2 MTM-LC and PE-LC Probabilities Formulae 

The different probabilities can be redefined for the linear combining technique 

using M antennas for both MTM, and PE cases by substituting the means and variances 

defined in (5.51), (5.52), (5.53), and (5.54) into (2.6), (2.8), and (2.10). Thus, the 

different probabilities for MTM-LC can be defined as follow [6]: 
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√        
  

                                               (5.56)  

                                       
                

            
  

√       
  (  

      )
                           (5.57) 

When the effect of the DPSS orthonormality on the eigenspectrums‟ independence 

is considered as in the end of subsection 4.5.3 and subsection 5.7.2, the means and 

variances in (5.51) and (5.52) can be redefined to be as follows: 
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and then the different probabilities in (5.55)-(5.57) can be redefined to be as follow: 
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These probabilities equations give exactly the same results as same as those in 

(5.55)-(5.57).  

When PE-LC is used with M antennas, the different probabilities can be written as 

follow [6]: 

                      
             

           
  

√      
 (  

      )
                                             (5.58) 

                            
             

      
 

√(      
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The threshold,   in this case, is controlled by the term     
 . 

5.8.3 MTM-LC and PE-LC Number of Sensed Samples 

The number of samples         (i.e., number of OFDM blocks) which are needed 

to achieve predefined probabilities of detection   
      , and false alarm   

       can 

be written using the resulting MTM-LC probabilities of detection and false alarm 

formulae in (5.55) and (5.56) to be as follows [6]: 

                                         (
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                                                     (5.61) 

where 
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           ) 

and 

        √                   
  (  

           ) 

Using the same steps in deriving L and referring to the probabilities equations of 

MTM-LC that have been redefined within subsection 5.8.2, the same result from (5.61) 

can be achieved using: 
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where F is defined in subsection 4.5.4. 

Note that, in order to calculate the        , which is required to achieve specific 

probabilities of detection and false alarm, the threshold,   that used in both (5.55), and 

(5.56) are the same. Substituting      and K=1 in (5.61) produces the number of 

samples   for PE-LC, which can be written as follows: 
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5.9 Multi Path Fading Environment 

The channel model that is assumed in this chapter is similar to that in [176], where 

an AWGN is added to the PR‟s signal at the CR‟s receiver. In the multipath fading 

environment, (5.1) can be rewritten as follows [100]: 

 

                                                         

                                                      ∑                    
   
                 (5.63)                                            

where the discrete channel impulse response between the PR‟s transmitter and CR‟s 

    branch is represented by      ,           , and P is the total number of 

resolvable paths. The discrete frequency response of the channel through the     

branch is obtained by taking the N point FFT, with     as follows [100]: 

                                               ∑      
          

                                               (5.64) 

In such an environment, using MTM-SLC ,and PE-SLC does not need co-phasing 

to cancel the effect of the channel of each antenna branch. Since the decision statistic 

(5.62) 
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will be performed via each CR‟s antenna branch independently, the MTM-SLC‟s 

decision statistic can be approximated to Gaussian, and then (5.19) and (5.20) can be 

rewritten as [6]: 

   [ (            )]       {
     

                                                

      ∑ |      |
    

        
        

                  (5.65) 

 

     (            )    {
         

                                                     

        
     

      ∑ |      |
    

        

          (5.66) 

In practice, |      |
  can be estimated a priori during the time that PR‟s 

transmitter occupies a specific band with specific power [100]. In this thesis, we assume 

that the channel gain between the PR‟s transmitter and the CR‟s receiver is constant 

during the spectrum sensing duration, and this is useful for application like in 

IEEE802.22. 

When applying MTM-LC and PE-LC, the CR wants to coherently add up the 

signals from different branches by co-phasing, which requires knowing the channel 

coefficients a priori via training sequences or pilot signals. This means that under such 

conditions, the CR requires to perform coherent detection of the PR‟s transmitted 

signal. An alternative method to identify the channel coefficients is the use of blind 

equalization (i.e., co-phasing) methods [177, 178]. Consequently, CR does not need 

coherent detection to estimate the channel coefficients in spectrum sensing mission 

when blind estimation techniques are used. The blind estimation techniques are based 

on the statistical properties of the PR‟s transmitted signal. Such techniques are, mainly, 

classified into two categories; second order and higher order statistics [178]. In the 

higher order statistics based techniques, the channel phase information is retained, 

whereas second order statistics cannot distinguish between minimum and non minimum 

phase channels [179]. However, the higher order statistics based techniques require 

large number of sensed samples to achieve a more accurate estimation of the channel 
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coefficients [180]. In multi antenna based communication systems, the cyclostationary 

property of the transmitted signal can be exploited to find the non minimum phase 

channel estimation through the second order statistics [181]. In a CR spectrum sensing 

technique such as that proposed in this chapter, which is based on using multi antenna at 

the CR Rx (i.e., MTM-LC), such estimation techniques are very useful for fast and 

more reliable estimations. However, the subject of blind channel equalization is a major 

subject itself in wireless communications, and more research is required in the direction 

of blind channel equalization for CR spectrum sensing purposes. For example, the thesis 

in [179], deals only with blind equalization techniques for MIMO-OFDM systems. 

5.10 The Complexity of the Proposed Multi Antenna Based 

Spectrum Sensing Techniques  

The complexity of the proposed LMS spectrum sensing technique for producing 

the spectrum estimate at a specific frequency bin   , using M antennas and N-FFT over 

L sensed samples (i.e., OFDM-Blocks), in terms of the number of mathematical 

operations (i.e., adding, and multiplication), is defined as follows: 

                                                    [               ]                               (5.67) 

where        represents the SVD process complexity which is defined for       

     as follows [151]: 

                                                                                                       (5.68) 

The MTM-SLC complexity under the same conditions can be defined as follows: 

                                          [                 ]                        (5.69) 

The proposed optimal multi antenna spectrum sensing techniques, MTM-LC, in the 

absence of co-phasing, have a complexity as:  

                                                 [              ]                          (5.70) 
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Similarly, the other PE based multi antenna spectrum sensing techniques, PE-SLC, and 

PE-LC have complexities as: 

                                                                  [       ]                                   (5.71) 

                                                                         [    ]                                     (5.72) 

5.11 Simulation Results  

In our system, CR node uses 64-FFT with sampling frequency 20 MHz. The PR 

user‟s Tx uses 64-IFFT with symbol duration    0.05µs, and transmits QPSK signal 

with normalized energy equal to 1 over each subcarrier (i.e.,      . The results here 

start with focusing, firstly, on using LMS for spectrum sensing in CR systems, to 

discuss the proper number of singular values squares, V, which should be used in the 

LMS spectrum estimation as in (5.14). The work, in this part, includes evaluating the 

performance using M=1, 2, 3, and 4 antennas in AWGN and Rayleigh flat fading 

channels, and L=20 for spectrum sensing. Then, secondly, the multi antenna based 

spectrum sensing techniques considered in this chapter; MTM-SLC, MTM-LC, PE-

SLC, PE-LC, and LMS are examined with different number of antennas M=2, and 4.  

In MTM techniques, the used half time bandwidth product is NW=4, and the 

number of tapers is K=5 [2]. In all cases of simulations, the results are averaged over 

    realizations. The channels considered in the simulation are AWGN with zero mean 

and variance    
 , Rayleigh flat fading, and multipath fading. The performance is 

evaluated over a chosen frequency bin, when it is assumed that the whole band under 

sensing is occupied by PR‟s signal. Finally, a comparison between the different 

considered spectrum sensing techniques in terms of complexity will be discussed.  

Figure 5.6 shows the ROC curves for the LMS technique with M=1,2,3 and 4 

antennas, V=1 in M=1 case, and 2 in M=2, 3, and 4 cases. The channel is assumed as 

AWGN with SNR= 10dB per single antenna, and therefore SNR= 10dB using LMS 

as well. The number of sensed samples (i.e., OFDM blocks) is L=20. The performance 
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is compared with the MTM, and the PE using single antenna for both techniques in the 

same conditions as shown in Figure 5.6 and Table 5.1. 

Firstly, we note that both LMS and MTM spectrum estimation when single antenna 

is used have the same performance in the same system conditions. Secondly, the 

number of singular values squares, V, used in the LMS should be smaller than or equal 

to two (   ) because the improvement in the performance using more than two 

singular values is not noticeable. Thus, using   , achieves good enough performance, 

and at the same time minimizes the complexity of the processing by using enough 

singular values squares. 

The percentage of improvement using multi antenna compared to single antenna 

for the MTM is as follows: 20% using two antennas with V=2; 30% using three 

antennas with    ; and 37% using four antennas with    .  

The PE gives the probability of detection as 20% under the same conditions, thus 

the LMS outperforms the PE by 40% using single antenna, 60% using two antennas and 

V=2, 70% using three antennas with    , and finally 77% using four antennas with 

   . Although, there is an improvement in the performance with the increase in the 

number of antennas, such improvement becomes less as M increases that satisfies what 

has been mention in section 5.2. From Table 5.1, as an example, the difference between 

the probabilities of detection for M=1, and 2 cases is 20 %. This difference becomes 10% 

between M=2, and 3 cases. Finally, for M=3, and 4 cases, the difference becomes 7%. 

Figure 5.7 Shows the ROC curves for LMS with M=1, V=1, and M=2, 3, 4 where 

V=2, and the MTM and PE with M=1 when the wireless channel is Rayleigh flat fading 

with average signal to noise ratio SNR= 5dB and L=20.  The performance is compared 

with the MTM, and the PE using single antenna for both techniques in the same 

conditions as shown in Table 5.2. As can be seen from the table, the use of M=2 in LMS 
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gives probability of detection 17% higher than that when single antenna is used for 

MTM under the same conditions.  The M=3, and 4 cases improve the probability of 

detection by 22 and 24% respectively compared to the M=1 case. The PE with single 

antenna case gives probability of detection below LMS technique with M=1 by 13% in 

the same conditions. When the number of antennas is increased to M=2,3, and 4, the 

probability of detection is  increased by 30, 35, and 37%, respectively, compared to the 

PE. 

 

No. of 

antennas, M 

LMS  

MTM 

 

PE V=1 V=2 V=3 V=4 

1 60% - - - 60% 20% 

2 78% 80% - - - - 

3 89% 90% 90% - - - 

4 96% 97% 97% 97% - - 

 

Figure 5.6 The ROC curves for LMS, MTM, and the PE at AWGN with SNR= 10dB 

and L=20. 

Table 5.1 Probability of detection for local-MTM-SVD, MTM, and PE at AWGN with 

SNR= 10dB when false alarm is 10%. 
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Figure 5.8, and Figure 5.9 show ROC curves when the different spectrum sensing 

techniques are used with different number of antennas at AWGN with SNR= 10dB and 

20 OFDM blocks (i.e.,     ) used in sensing. Note that the number of samples used 

is                   , which approximately corresponds to sensing 

time    . Both figures show significant improvement in the performance using the 

proposed MTM with multi antenna techniques. Additionally, we can see how the LMS 

technique has the same performance that is achieved by MTM-SLC under the same 

conditions. This suggests, MTM-SLC is more practical for spectrum sensing since it 

does not need SVD process and gives the same performance with lower complexity, 

which will be discussed numerically by the end of this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 The ROC curves for LMS, the MTM, and the PE at Rayleigh flat fading with 

average SNR= 5dB. 
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Using M=2 antennas, when         , MTM-SLC, MTM-LC, PE-SLC, and PE-LC 

techniques have     80, 95, 21, and 29% respectively. The MTM-LC outperforms 

MTM-SLC in terms of     by 5% for M=4 case, and by 14% for M=2 case, when 

        under the same conditions. PE techniques have the poorer performance 

compared to the others in the same conditions. 

 

No. of 

antennas, M 

LMS  

MTM 

 

PE V=1 V=2 

1 75% - 75% 62% 

2 - 92% - - 

3 - 97% - - 

4 - 99% - - 

Table 5.2 Probability of detection for LMS, MTM, and PE at Rayleigh flat fading 

with SNR= 5dB when false alarm is 10%. 

 

 

 

 

 

Figure 5.8 ROC curves for MTM and PE with M=1, and LMS, MTM-SLC, MTM-LC, 

PE-SLC, and PE-LC with M=4 antennas at AWGN with SNR= 10dB and     . 
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The improvement in detection probability is significant when LC based is used as it 

multiples the SNR in AWGN by the number of antennas M [15], as has been mentioned 

in section 5.2 under the LC definition. Therefore, for signals with SNR= 10dB each 

arrive at different M=4 antenna branches at the CR Rx, and the resulting SNR from 

adding these signals using LC will be SNR= 3.98dB for both MTM-LC and PE-LC. 

Then, MTM will then be applied finally. Add to this, the improvement that can be 

achieved by averaging over L samples as has been discussed in subsection 4.5.9 

(Figures 4.27-4.29) and the advantages when MTM is used in MTM-LC. Although the 

assumed conditions and the considered systems here are different from those in Zhang‟s 

work in [154]. Figures 3 and 4 in his work show that the probability of detection when 

MTM was used is 100% at false alarm was fixed to 0.1% and the SNR= 18dB. 

The improvement in detection probability curves when SLC based with M antennas 

is used is achieved by averaging the estimated power that contains independent 

 

Figure 5.9 ROC curves for LMS, MTM-SLC, MTM-LC, PE-SLC, and PE-LC 

with M=2 antennas at AWGN with SNR= 10dB and     . 
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Gaussian samples of noise from different M antennas and over L samples. Therefore, 

the performance using M antennas in MTM-SLC with L samples over each antenna is 

equal to the performance when MTM with one antenna is used under the same 

conditions but with samples equal to L M. Figure 5.10 shows the PDFs of noise and 

noise added to signal cases when MTM with M=1 and L=80 samples and MTM-SLC 

with M=4 and L=20 samples are used where NW=4 and K =5 tapers at AWGN with 

SNR=   dB. The figure shows how the use of MTM-SLC with M=4 antennas and 

L=20 samples over each antenna produces the same PDFs for MTM with M=1 but with 

L=80 samples.  

Figure 5.11 shows the ROC curves for the different considered multi antenna based 

spectrum sensing techniques with number of antennas M=2 at Rayleigh flat fading with 

average SNR= 5dB and     . It is clear that the MTM-LC and PE-LC‟ performance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 PDFs versus threshold of noise and noise added to signal cases when 

MTM with M=1 and L=80 samples and MTM-SLC with M=4 and L=20 samples 

are used where NW=4 and K =5 tapers at AWGN with SNR=   dB. 
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are affected by fading more than that in MTM-SLC and PE-SLC. This is due to the 

destructive adding of the received signals from different antennas without co-phasing 

the channels coefficients. There is a significant outperforming of MTM against PE even 

in fading environment, and the LMS still has the same performance when using MTM-

SLC under the same conditions. The probability of detection   ‟s percentages when 

false alarm fixed to     10% using MTM-LC, MTM-SLC, PE-LC, PE-SLC, and LMS 

are 77, 93, 62, 81, and 93 % respectively. 

Figure 5.12 shows the probabilities of detection     that meet the probability of false 

alarm     10% versus the SNR at AWGN using MTM with single antenna, MTM-

SLC, and MTM-LC with M=4 antennas, and      is used for spectrum sensing. We 

can see the noticeable improvement in the performance using both proposed techniques  
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Figure 5.11 The ROC curves for LMS, MTM-SLC, MTM-LC, PE-SLC, and 

PE-LC with M=2 antennas at Rayleigh flat fading with SNR= 5dB and     . 
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compared to MTM with single antenna. At SNR= 15dB, MTM-SLC outperforms 

MTM with single antenna in terms of probability of detection     by 30%. On the other 

hand, MTM-LC outperforms MTM with single antenna by 66%. It can be seen from the 

figure that our simulations match the theory.  

Figure 5.13 shows a comparison between the number of OFDM blocks   required 

to achieve       , and         at AWGN environment with different SNR using 

the different considered techniques with M=1, and 4 antennas.  

It is clear that the number of OFDM blocks used in the sensing process in the MTM 

system is lower than that for PE in all cases. Additionally, LC techniques require a 

lower number of OFDM blocks compared to SLC for both MTM, and PE cases under 

the same conditions. For example, from the figure at SNR= 15dB the number of 

OFDM blocks L in dB that are required by PE only, PE-SLC, PE-LC, MTM only, 

MTM-SLC, and MTM-LC are 50, 42, 35, 32, 27, and 20 , or in seconds as 0.32, 0.0507, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 Probability of detection curves that meet      10% versus the SNR 

at AWGN using MTM, MTM-SLC, and MTM-LC spectrum sensing techniques 

with number of antennas M=4 and     . 
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0.0101, 0.0051, 0.0016, and            respectively. It is clear the MTM multi 

antenna based spectrum sensing techniques proposed in this chapter are faster than the 

others. For example, MTM-LC is faster than MTM only by 93.75% (i.e., faster by 

0.0048          ) and than PE-LC by 96.85%. Figure 5.14 shows the ROC curves 

when MTM, MTM-SLC, LMS with M=2, and 3 for MTM multi antenna based 

techniques are used at multipath fading with P=3 paths and       symbols is used as 

a CP where SNR   10dB and     . 

In the multipath fading, the channel magnitude response, |      |
 , varies over the 

frequency subband producing frequency selective multipath channel. In our simulation, 

the multipath fading channel over each antenna is independent from the other antennas 

and is produced, similarly, as in subsection 4.5.9, where Rayleigh channel model 

consists of three paths (i.e., P=3) is used for each antenna. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.13 Numbers of samples, L, required to  achieve        , and        

at AWGN with different SNR using MTM, MTM-SLC, MTM-LC, PE, PE-SLC, 

and PE-LC spectrum sensing techniques with number of antennas M=1, and 4. 
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The power delay profile is exponential. Each multipath component per each antenna is 

assumed as an independent and identically distributed zero mean Gaussian random 

variable. A number of six symbols are used as CP by the PR Tx (i.e.,    =6). At the CR 

Rx, such CP is removed before implementing MTM multi antenna based spectrum 

sensing. Note that, the total number of samples used here is             which 

approximately corresponds to sensing time                .  

The figure shows how the multipath fading wireless channel degrades the MTM-SLC 

and LMS with M=2 performances compared to the AWGN case in Figure 5.9. As a 

comparison, the MTM-SLC, and LMS‟s     is decreased by 29% at    =10% in the 

multipath fading model considered here compared to that in Figure 5.9 for M=2 case. 

However, the use of MTM-SLC and LMS improves the     compared to use MTM with 

single antenna in multipath fading. From Figure 5.14, using MTM-SLC, and LMS with 

M=2 increases the     by 12% compared to using MTM only with single antenna in the 

same fading conditions. When M is increased to three antennas, the improvement in     

is increased by 22% compared to MTM only with single antenna under the same 

conditions. The MTM-SLC and LMS still have the same performance even in multipath 

fading environment.  

The required SNRs in (dB) for MTM-SLC, MTM-LC, PE-SLC, PE-LC to achieve 

probability of detection 99.99%, using M=4 antennas at AWGN when the false alarm is 

1% and L=16 sensed samples, can be summarized as follow: 

 The MTM-SLC and MTM-LC give the same probability of detection, 

when the SNR for them is  7.5, and  12dB respectively. 

 The PE-SLC and PE-LC achieve the same probability of detection under 

the same conditions, when their SNRs are 5, and 0 dB respectively. 

It‟s clear that the MTM-LC has a 12dB SNR‟s gain compared to PE-LC, and 17dB 

compared to PE-SLC.  
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Figure 5.14 The ROC curves when MTM, MTM-SLC, and Local-MTM-SVD are used 

at multipath fading with P=3 paths and       is used as a CP where SNR  10dB, 

    , and M=2, and 3 antennas for MTM multi antenna based techniques. 

 

 

Table 5.3 shows the complexity of the different considered techniques, MTM, 

LMS, MTM-SLC, MTM-LC, PE, PE-SLC, and PE-LC based on (4.8), (4.9), and (5.68)-

(5.73) for K =5 in MTM based cases with length N=64, and L=1 (i.e., over one OFDM 

block). 

It is clear that MTM based techniques are more complex than the PE based in all 

cases. However, such simplicity in PE based spectrum sensing techniques comes at the 

expense of the performance, as has been shown in chapter 4 and in this section. The LC 

based multi antenna based spectrum sensing techniques, when the equalization process 

is neglected, have computation complexity lower than that for the SLC based ones. The 

LMS is more complex than the MTM-SLC; however, they have the same sensing 

performance. This similarity in performance makes the MTM-SLC more promising in 
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Technique Complexity 

M=1 M=2 M=3 M=4 

MTM 973 - - - 

PE 128 - - - 

LMS - 3515 4770 6065 

MTM-SLC - 1948 2922 3896 

MTM-LC - 975 976 977 

PE-SLC - 258 387 516 

PE-LC - 130 131 132 

Table 5.3 The complexity evaluation of the different considered techniques for K=5, 64-

FFT, and over L=1 OFDM block. 

terms of simplicity compared to the LMS. The increase in M causes an increase in the 

complexity for all multi antenna based techniques. In LC based techniques, as M 

increases by one, the complexity increases only by one. In contrast, the increase in 

complexity becomes significantly higher when M increases by one in the other cases.  

As examples, when M=2, the MTM-SLC‟s complexity is lower than that for LMS by 

55.4196%. At the same M, the PE-SLC‟s complexity is lower than that for MTM-SLC 

by 13.2444%. By increasing M to 4, the LMS‟s complexity increases by 57.9555% 

compared to the same technique when M=2.  

5.12 Conclusion 

In this chapter, different MTM-multi antenna based techniques are studied as 

efficient CR spectrum sensing techniques. Theoretical work has been derived for the 

proposed techniques in AWGN, and multipath fading wireless environments. The PE-

multi antenna based spectrum sensing techniques have also been derived and compared 

to that of MTM, and the LMS. This has been published in [5, 6] 

Using multi antenna in MTM-LC, and MTM-SLC gives more improvement in 

performance compared to that for PE-LC, PE-SLC. The LMS spectrum sensing 

technique has the same performance of MTM-SLC under the same conditions. 

Therefore, we can say that the MTM-SLC is more practical for spectrum sensing than 
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LMS as it does not need SVD processors, and this minimizes the complexity and the 

cost of the system. In MTM-LC, and MTM-SLC techniques, the required SNRs are 

found as  12 and  7.5 dB, respectively to achieve a probability of detection of 99.99% 

at false alarm 1% with AWGN using 4 antennas and L=16 samples for sensing. The 

proposed techniques represent local cooperation using multi antenna. The different hard 

and soft cooperation algorithms in the literature can be used here to improve the overall 

performance in the CR network.  

5.13 Chapter Summary 

This chapter has explored the area of multi antenna systems in wireless 

communication. Different technical concepts relevant to multi antenna based systems 

were defined and discussed. The use of multi antenna in classical wireless 

communication was reviewed, and then the benefits from using multi antenna in CR 

systems were introduced.    

One optimal, MTM-LC, and two suboptimal, MTM-SLC, and LMS multi antenna 

based spectrum sensing techniques were proposed in this chapter. The work here 

included deriving the statistical parameters of the D PDFs for MTM-LC and MTM-SLC 

for different hypotheses. The statistical work of the PE multi antenna based was also 

presented. The different probabilities and number of sensed samples formulae were 

derived for MTM-LC, MTM-SLC. Similarly, the PE based multi antenna spectrum 

sensing techniques theoretical work was presented as well. The singular values squares 

use for the power spectrum estimation in LMS techniques was discussed and the 

computational complexity of the different considered spectrum sensing techniques was 

investigated.  

Finally, simulation codes were written in order to examine the proposed multi 

antenna based spectrum sensing techniques for OFDM based CR systems. For the 
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MTM-LC, and MTM-SLC, the results showed how our theoretical works match well 

the simulation. The MTM-LC increases the SNR and then improves the performance, 

however, such techniques requires co-phasing to eliminate the channel coefficients. This 

is possible, when prior information about the PR signal is known to the CR (i.e., 

training sequence and pilot signal). The blind equalization techniques [177, 178] are 

promising in such cases. The LMS gives the performance as MTM-SLC, but with 

higher complexity. Therefore, MTM-SLC is more promising since it has less 

complexity, which would make the spectrum sensing process much faster than if LMS 

were to be used. However, the SVD process itself is useful in eliminating multi user 

interference (MUI) in the downlink and uplink paths in mobile communications systems 

as in [182]. The different considered techniques here are examined in different 

environments including AWGN, Rayleigh flat fading and multipath fading. The 

proposed techniques outperform all other discussed techniques in term of performance. 
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Chapter 6: New Optimization Method for 

Cooperative Spectrum Sensing in Cognitive 

Radio Networks 

6.1 Introduction 

Subsection 2.4.3.2 reviews the concepts and literature works relevant to CSS and 

its two main types SCSS, and HCSS. As has been mentioned in subsection 2.4.3.2.1, the 

work in this thesis concentrates on HCSS, due to the narrow bandwidth CC that is 

required in such types of cooperation. Furthermore, HCCS is able to deliver a higher 

level performance than its counterparts when large numbers of CRs share the 

cooperation in the CR network [77].  

HCSS optimization is an important issue in CR systems. Different numbers of CRs, 

in the CR network, share their binary local decisions about the PR signal at a CR-BS, 

which fuses this information and decides finally the state of the frequency subband 

under sensing. The global performance at CR-BS (i.e., overall/or global probability of 

detection, or overall/or global probability of false alarm), generally, is affected by the 

type of fusion rule, the local chosen threshold at each CR, and the total number of 

cooperated CRs when a specific spectrum sensing technique like PE is used locally at 

each CR. Therefore, some works in the literature had optimized the overall performance 

by optimizing such factors. However, we believe that the global performance can be 

taken to the optimum point by optimizing the locally sensed samples at each CR. Thus, 

two strategies have been proposed in this chapter to achieve our aim. Additionally, the 

effects of spectrum sensing technique type used locally at each CR, the number of 

locally sensed samples, the local SNR, and the total number of cooperated CRs on the 

optimal fusion rule are investigated. A PE and MTM spectrum sensing techniques are 

examined as local spectrum sensing techniques.  
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In this chapter we also introduce a new cooperation concept, the master node (MN) 

cooperation. In MN, a single CR node can be supported by advanced hardware 

components, and advanced signal processing. This improves the detection‟s probability, 

minimizes the overall CR network complexity, minimizes the overhead that is required 

when all CR‟s nodes share sensing and accelerates the decision process. 

The main content of this chapter has been published in two papers that represent 

the chapter contributions. The published papers are: 

O. A. Alghamdi and M. Z. Ahmed, "Optimal and Suboptimal Multi Antenna 

Spectrum Sensing Techniques with Master Node Cooperation for Cognitive Radio 

Systems," Journal of Communications (JCM), vol. 6, pp. 512-523, 2011. 

O. A. Alghamdi and M. Z. Ahmed, "New optimization method for cooperative 

spectrum sensing in cognitive radio networks," in Proc. 7th IEEE Wireless 

Advanced Conference (WiAd 2011), 2011, pp. 54-59. 

6.2 HCSS Optimization Techniques 

Numbers of strategies and factors have been investigated to optimize the HCSS 

performance by minimizing the total error probability, or maximizing the global 

probability of detection [51, 132, 133]. This was achieved by optimizing the number of 

cooperated CRs and the threshold as in [132]. In [51], the authors maximized the global 

probability of detection in “OR‟‟ and “AND‟‟ fusion rules by fixing the global false 

alarm probability and maximizing the local probability of detection. Optimal strategies 

to minimize the total error probability under Neyman Pearson and Bayesian criterions  

have been considered in [133]. 

In this chapter, we contribute to the HCSS optimization area by adding an 

important factor: the number of locally sensed samples L, which can be controlled in 

time to minimize the total error probability in the cooperative spectrum sensing. The 
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work here can be applied to all mentioned optimization strategies to take them to the 

optimum point. All optimization published works focused only on PE as a local 

spectrum sensing. In this thesis, PE and MTM are studied in optimization. Additionally, 

the effects of using different numbers of CRs and different SNR on the optimal fusion 

rule have been investigated. 

The next section, describes the HCSS system model, the effect of using different 

local spectrum sensing techniques on optimization, the proposed optimization strategies 

and then the effect of different numbers of cooperated CRs on the optimization. 

6.3 HCSS System Model and Optimization  

The local spectrum sensing at each CR has been described theoretically, as in 

sections 4.4 and 4.5, when PE or MTM are used. In general, the cooperation in 

spectrum sensing is achieved when a number   of CRs in the CR‟s network send their 

local decisions to the CR-BS via CC. After this, CR-BS combines these decisions and 

decides finally about the presence of PR‟s signal in frequency bin   . Note that, in our 

work here, we are interested in examining the performance when the power spectrum is 

sensed at    when the whole band under sensing is occupied by PR‟s signal in    case. 

The HCSS starts by performing local spectrum sensing using PE or MTM. The     CR 

decides,     as represented by binary digit   =“1‟‟, or     represented by binary digit 

   =“0‟‟, based on its own local decision statistic. Finally, the CR-BS combines the 

received digits from different CRs to declare the final decision about the presence of the 

PR user. The representative diagram of centralized CSS can be seen in Figure 2.18. 

The received binary digits at the CR-BS from the different CRs in the CR network, 

are fused together to declare the final decision using the following logic rule [132]: 

                                      ∑  

 

   

 {
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where          is the cooperative decision at CR-BS, and    represents the final 

decision that has been made by the CR-BS, stating that the PR‟s signal is present in   , 

and    represents that the PR‟s signal is absent. The number of CRs   that decide the 

presence of the PR‟s signal in   , determines the type of fusion rule at CR-BS. When 

    out of total   CRs; the fusion rule is “OR‟‟. The fusion rule is “AND‟‟, if only 

and if all   =   CRs decide   , and then the final decision will be   . Finally, when 

     , the fusion rule is “VOTING‟‟. This process can be written as follows: 

              {
                                                       
                                                     
                                      

                                            (6.2) 

In order to evaluate the cooperative spectrum sensing performance, we define three 

joint probabilities; the joint probability of detection       , the joint probability of false 

alarm       , and the joint probability of missed detection       . The joint probability 

of detection        can be written as follows [132]: 
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and the joint probability of false alarm        can be written as follows [132]: 
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                                 ∑(
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Note that       here means that the decision statistic of the used local sensing 

technique at each CR (i.e.,           or        that defined in (4.3) and (4.10) 

respectively). Finally, the joint probability of missed detection can be written as follows: 

                                                

                                                                                                                                        

       is defined as the probability that CR-BS decides correctly the presence of the PR 

signal in the sensed frequency subband (i.e., at    here in this case), while        is 

defined as the probability of declaring the presence of the PR signal by CR-BS when it 

is absent. The joint probabilities would be called overall or global probabilities. 

The total error probability of the cooperative CR spectrum sensing is defined as 

follows [132]: 

                                                                                                                             

The joint probability of detection,       , and the joint probability of false alarm, 

      , of the “OR‟‟ rule combining at the CR-BS using G CR with identical 

probabilities of detection and false alarm, and perfect CC, are given by [48]: 

                                      ∏            
 
                                                          (6.7) 

                                         ∏            
 
                                                       (6.8) 

where         ,          represent the probabilities of detection and false alarm achieved 

by the     CR. Such probabilities are defined in (4.36) –(4.37) for MTM and in (4.50)-

(4.51) for PE. 
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The different joint probabilities formulae can be defined for “AND‟‟ rule case, in 

the same conditions, as follow [130]: 

                                               ∏         
 
                                                                (6.9) 

                                               ∏         
 
                                                              (6.10) 

Figure 6.1 shows the joint probabilities of detection versus joint probabilities of 

false alarm when “OR‟‟ and “AND‟‟ fusion rules are used at CR-BS with G=5 CRs 

where the PE and MTM with NW=4and K=5 tapers are used locally at each CR in 

AWGN channel with SNR=  10dB and L=20 OFDM blocks. By comparing this figure 

to Figure 4.18 which shows the ROC when only one CR uses MTM and PE under the 

same conditions, it is clear that sharing the decisions of number of CRs in the CR 

network improves the performance. When the joint false alarm is fixed to 10%, fusing 

the decisions at CR-BS using “OR‟‟ rule when MTM is used locally at the five CRs 

increases the joint probability of detection by 28%, compared to that when one CR is 

used (i.e., Figure 4.18 case). The use of “AND‟‟ fusion rule increases the joint 

probability of detection by 20% compared to using one single CR. Generally, HCCS 

improves the spectrum sensing probability of detection. However, as it can be seen from 

the results, the use of “OR‟‟ gives more opportunity to access the frequency subband, 

while “AND‟‟ minimizes the interference possibility to the PR‟s frequency subband by 

ensuring that all CRs agree the presence or absence of PR signal in a specific frequency 

subband under sensing. In the same case, and compared to the PE use for single CR as 

in Figure 4.18 when PE is used locally at each CR for the five CRs, the “OR‟‟HCSS 

increases the joint probability of detection by 7%, while “AND‟‟ increases the joint 

probability of detection by 2%. The HCSS based on local MTM outperforms that based 

on PE by 60% under the same conditions when “OR‟‟ fusion rule is used at CR-BS. 
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Additionally, The HCSS-based on local MTM also outperforms that based on PE by 60% 

under the same conditions when “AND‟‟ fusion rule is used at CR-BS. 

The proposed multi antenna based spectrum sensing techniques in chapter 5 can be 

used in all types of CSS. This would improve the overall performance of the CSS by 

exploiting both local (i.e., when multi antenna are used at each CR) and global spatial 

diversities. Figures 6.2 and 6.3 show the “OR‟‟ rule joint probability of detection versus 

the joint probability of false alarm for MTM and PE with a single antenna, and MTM-

SLC, MTM-LC, PE-SLC, and PE-LC with M=3 antennas, and G=5 CR users in AWGN 

with SNR= 12dB and L=20 OFDM blocks. At joint probability of false alarm, 

   10%, the joint probability of detection is     100% using the MTM-LC, 92% 

using MTM-SLC, 45% using PE-LC, and 25% using PE-SLC. When MTM-LC with 

M=3 antennas is used locally at each CR in the HCSS, the joint probability of detection 

is increased by 40% compared to using MTM with a single antenna under the HCSS in 

the same conditions when    10%. Such a high improvement in the performance 

comes from: firstly, the increase in the SNR when LC is used as it multiplies the SNR 

by factor M at the CR Rx [15] as has been discussed in Figures 5.8 and the results under 

section 5.11. Secondly, the decrease in the noise power variation by increasing the 

number of locally sensed samples at each CR Rx (i.e., L=20 OFDM blocks), as has been 

verified in the results discussion of Figures 4.28 and 4.29 under subsection 4.5.9. 

Thirdly, Figure 5.10 verifies that the performance of using 4 antennas with L=20 in 

MTM-SLC is same as when a single antenna is used in MTM with L=80 samples. 

Thirdly, exploiting the “OR‟‟ rule HCSS [48] and finally, the advantages of using MTM 

locally at each CR. For locally used MTM-SLC, the joint probability of detection of the 

HCSS is increased by 32% compared to using MTM with a single antenna in the HCSS 

under the same conditions. For local PE cases, the increase in the joint probability of 

detection of HCSS when PE-LC with M=3 antennas is used locally is 21% compared to 
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using PE locally with single antenna under the same conditions. The PE-SLC increases 

the HCSS‟s joint probability of detection by 4% under the same conditions. The 

conclusions here is that using multi-antenna based spectrum sensing techniques locally 

at each CR improves the overall probability of detection of the HCSS by exploiting 

more spatial diversity via a number of antennas. The HCSS that is based on using MTM 

spectrum sensing techniques outperforms significantly the one based on PE in terms of 

performance under the same conditions.  

Up to this point in this section, the concept of HCSS has been analyzed using “OR‟‟ 

and “AND‟‟ fusion rules at the CR-BS when the MTM and PE are used locally at each 

CR and G=5 CRs send their binary decisions to that CR-BS. The HCSS has been 

studied using a single antenna at each CR in AWGN environment. Furthermore, the use 

of M=3 antennas locally for the proposed techniques in chapter 5 has been investigated 

to achieve more spatial diversity (i.e., local cooperation via a number of antennas at 

each CR). 

In “OR‟‟ fusion rule, as has been mentioned earlier in this chapter, the CR-BS 

needs only one CR (i.e., g=1 in (6.1)) out of G CRs decides that the PR signal is present 

in the frequency subband to declare, finally, its presence to the CR network users. In 

“AND‟‟ fusion rule, the all cooperative CRs (i.e., g=G in (6.1)) are required to decide 

the PR‟s presence in the frequency subband in order for CR-BS to declare this, finally, 

to the CR network users. 

Although, the “OR‟‟ outperforms the “AND‟‟ fusion rule in terms of giving higher joint 

probability of detection, allowing more spectrum opportunity be achieved, the “OR‟‟ 

rule is not the optimal rule. The results from [132] shows that the optimal fusion rule 

that minimizes the total error probability in (6.6), when PE is used locally at each CR, is 

the half-voting rule for G=10 CRs and SNR=10 dB. This means if G=10 CRs in the  
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Figure 6.1 Joint probabilities of detection versus joint probabilities of false alarm when 

“OR‟‟ and “AND‟‟ fusion rules are used at CR-BS with G=5 CRs where the PE and MTM 

with NW=4and K=5 tapers are used locally at each CR in AWGN with SNR=  10dB and 

L=20 OFDM blocks. 

Figure 6.2 Joint probability of detection versus joint probability of false alarm when “OR‟‟ fusion 

rule is used at CR-BS with G=5CRs where the MTM with NW=4 and K=5 tapers and single 

antenna, and MTM-SLC, MTM-LC with M=3 antennas are used locally at each CR in AWGN 

with SNR=  12dB and L=20 OFDM blocks. 
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HCSS, the optimal g is 5. However, we find that this result can not be generalized for 

the following reasons: 

- The used local spectrum sensing technique at each CR plays a crucial role on 

the optimal fusion rule since different techniques have different local 

performances under the same conditions. 

- The different local SNR at each CR might affect the optimal fusion rule. 

- The number of sensed samples at each CR has an important affect, as well, on 

the optimal fusion rule since it controls the local performance at each CR and, 

therefore, affects the optimal fusion rule. 

- The optimal fusion rule would be changed with the change in the total number 

of cooperative CRs in the CR network.  

 
Figure 6.3 Joint probability of detection versus joint probability of false alarm 

when “OR‟‟ fusion rule is used at CR-BS with G=5CRs where the PE with a 

single antenna, PE-SLC, and PE- LC with M=3 antennas are used locally at each 

CR in AWGN with SNR=  12dB and L=20 OFDM blocks. 
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Based on this, these factors are considered and analysed in the next subsections to 

achieve deeper understanding of the fusion rule optimization process in HCSS as can be 

seen later.  

As has been mentioned before in section 6.2, the HCSS optimization methods and 

strategies in the literature aimed to maximize the overall or global probability of 

detection (i.e., joint probability of detection), or to minimize the total error probability 

in (6.6). The optimal fusion rule that minimizes the total error probability is found as 

half voting in [132], when PE is used locally at each CR, and the total number of 

cooperated CRs is G=10. The local chosen threshold at each CR that minimizes the total 

error probability is found in [132] as well, when PE is used locally at each CR. the 

authors in [51], maximized the global probability of detection in “OR‟‟ and “AND‟‟ 

fusion rules by fixing the overall or global false alarm probability and maximizing the 

local probability of detection when PE is used locally at each CR. All these methods 

ignored the effect of the locally sensed samples in the optimization process. The number 

of locally sensed samples increases the local probability of detection when it is 

increased; and the total error probability will then be minimized. Therefore, optimizing 

the number of locally sensed samples is required to optimize the HCSS by minimizing 

the total error probability. This type of optimization can be added to all the optimization 

methods mentioned above to take their performance to the optimist point. Two 

strategies are proposed here to achieve this objective as can be seen in subsection 6.3.2. 

Figure 6.4 shows HCSS optimization methods and the proposed method. 
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6.3.1 Effect of Different Local Spectrum Sensing Techniques on HCSS  

In order to examine the performance optimization of the HCSS when different 

local spectrum sensing techniques are used, the total error probability           is 

evaluated at frequency bin   , using both PE and  MTM. Note that, as we mentioned 

earlier in this chapter, the different probabilities will be computed at a specific 

frequency bin   . Thus, they will be written in the reminder of the chapter without   . 

There are     CRs cooperating the spectrum sensing decisions, at a CR-BS, in the 

CR network. The local spectrum sensing techniques are PE and MTM. The local 

        , and      samples (i.e.,      OFDM blocks) are used locally for 

sensing. 

Figure 6.5 and Figure 6.6 show the total error probability (          versus the 

chosen local threshold for different number   out of   CRs that controls the fusion rule 

in (6.1) using PE, and MTM respectively. Note that the threshold here is based on the 

noise variance at each CR, as has been in discussed in section 4.4. When we compare 

the different curves that represent the total error for different numbers of   in Figure 6.5, 

we note that there are noticeable differences in the performance through using    

-Maximizing the overall/or global probability of 

detection. 

-Minimizing the total error probability 

Optimizing the 

local threshold 

Optimizing the fusion 

rule (i.e., optimizing g) 

Optimizing the local 

probability of detection 

The proposed method: Optimizing the 

number of locally sensed samples, L, at 

each CR 

Figure 6.4 The HCSS optimization methods and the proposed method. 
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         as a fusion rule of     . While,      which represent “AND” fusion 

rule, gives a high total error compared to the other curves, it is found that     gives 

the minimum total error (min       ) at the mentioned conditions. Thus,     is the 

optimal fusion rule here (i.e.,          ). It is clear from Figure 6.6 that all numbers 

of   out of   have similar min        values which are very small compared to the PE 

case. The optimal fusion is found as            as it gives the minimum total error.  

Figure 6.7 shows the minimum total error probability (min        ) versus   out 

     CRs for PE and MTM with         , and      sensed samples. 

Generally, the MTM has minimum total error probabilities (min        ), lower than 

that when PE is used through all values of  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Total error probability (        ) of   out of       CRs versus local 

threshold when PE is used locally with          and      sensed samples 

used at each CR. 
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In MTM, the optimal total error probability is found as min                   

when    , which is the optimal, or          =5. The optimal total error probability is 

found as, min               when     for PE case. This means that the 

optimization of total error probability shall be done for every type of local spectrum 

sensing technique. This can be achieved by using the local probabilities of any 

technique in (6.3)-(6.6). Figure 6.8 shows the log version of Figure 6.7, and the 

optimality of MTM is clear compared to that case when PE is used locally at each CR. 

Furthermore, powerful spectrum sensing techniques such as MTM here have 

approximately similar and very low minimum total error over the different 

combinations of  . 

 

 

Figure 6.6 Total error probability (         ) of   out of       CRs versus local threshold 

when MTM is used locally with           and      sensed samples. 
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Figure 6.7 Minimum total error probability (min        ) versus    out of      

CRs for PE and MTM  with  local          and      sensed samples. 

Figure 6. 8 Minimum total error probability (min       ) versus   out of 

     CRs for PE and MTM with local          and      sensed 

samples in Log scale. 
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Figure 6.9 shows the minimum total error probability (min        ) versus   out 

     CRs for PE and MTM with         , and      sensed samples. In this 

case of G=20 and using MTM, the optimal total error probability is found as min  

                   when    , which is the optimal, or          =9. Optimal 

total error probability is found as, min               when     for PE case. Figure 

6.10 shows the log version of Figure 6.9. 

Table 6.1 shows the optimal fusion rule (        ) for total CRs   =10, and  =10 

local sensed samples when PE and MTM are used with different local SNRs. Generally, 

         in MTM has a value higher than that in PE. For                    

    , the          is found as 5 in MTM‟s case, and 2 in PE‟s case. It is known that, in 

low     conditions, adding more CRs with low     does not improve the performance 

due to the low local     [51, 52]. Furthermore, it‟s clear that the MTM can include 

more CRs in the cooperation than PE at these low    , and gives a much better 

performance  
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Figure 6.9 Minimum total error probability (min       ) versus   out of 

     CRs for PE and MTM with local          and      sensed 

samples. 
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at the same time. At               dB, there are more than one          that 

minimize the total error to 0 in MTM;         =1, 2, 3, 4, 5, 6, 7 and 8. In PE, 

        =3 at the same case. This means that efficient spectrum sensing techniques such 

as MTM might not need cooperation in such cases if SNR is priori known to CR-BS. 

6.3.2 The Proposed HCSS Optimization Strategies  

One of the most important factors that has an effect on the optimization of the total 

error, in HCSS, is the number of sensed samples (i.e.,   at each CR).It is known that the 

                              

          

PE 2 2 2 2 3 3 3 

MTM 5 5 5 5 2-7 1-8 1-8 

Table 6.1 Optimal fusion rule for G=10 and L=10 when PE and MTM 

are used locally with different SNRs. 

 

Figure 6.10 Minimum total error probability (min        ) versus   out of      CRs for 

PE and MTM with local          and      sensed samples in Log scale. 

 



 

231 
 

increase in  , improves the local spectrum sensing performance. However, it should be 

taken into account that as long as the performance improvement is achieved by 

increasing  , as the sensing time becomes longer. 

The last might decreases the capacity of the CR network, since the vacant PR‟s 

spectrum is not being quickly exploited by the CR network. Furthermore, as the local 

spectrum sensing is performed quickly, the probability of interfering with the PR‟s 

frequency subband becomes large. Therefore, optimizing the HCSS performance in 

terms of   is one of the most important factors that affects the performance. Two 

optimization strategies will be investigated below.  

The first L optimization strategy: 

The optimization problem when  ,          , and     are known, can be 

defined by [7]: 

Find optimal   (    ), that minimizes the total error probability (        ). 

or; 

         
 

           

The optimal   (  ), can be found by [132] [7]: 
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Let us consider the local probability of false alarm    at frequency   , when PE is used; 
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Similarly, the term 
   

  
 can be defined as follows[132] [7]: 
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The term 
    

  
 can be defined, for PE based, by following the same steps above and 

referring to (4.50), as follows [100]: 
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Note that, the   is based directly on   
 , while   is a function of L  

 . Similarly, (6.14) 

and (6.16) can be redefined for MTM referring to (4.37) and (4.46), and can be written, 

respectively, as follow: 
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Using (6.13)-(6.18) into (6.12) with g=1,2,..,G, the solution of    can be computed 

numerically for PE and MTM. The fusion rule that satisfies    here is         . 

  Table 6.2 shows the optimal numbers of sensed samples and fusion rules for 

 =10, when PE and MTM are used with different SNR. We conclude that the decrease 

in SNR causes an increase in   , and with the increase in    there is an increase in the 

optimal fusion rule        . The optimal fusion rules are equal for both techniques, 

only at   . Note that    can be written in seconds as,                  .  

The second L optimization strategy: 

Until here we have found the optimal             that minimizes        to zero. 

However,    might be too large. Of course, that would minimize the spectrum 

opportunity as it is mentioned earlier in this sub section. 



 

235 
 

The optimization here can be modified in a different way, where the CR‟s network 

optimization is subject to a predefined  , which satisfies CR‟s network requirements 

with respect to the capacity and the acceptable interference to the PR‟s spectrum.  

Suppose that G,          , and      , are known; find the minimum total 

error probability (       ) that subject to     [7]. 

Note that, the g satisfies the minimum        when    , is          at    . Figure 

6.11 shows the minimum total error probability (min         ) versus   when      

CRs and PE is used with local       , and    . Generally, It is clear that min 

      , decreases with the increase in  . The min       of     curve, has a significant 

decrease with the increase in  , more than that in     . It is found that         =3 for 

 =10 to 30 for both SNRs, and         =4 for  =31 to 165. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 PE MTM 

SNR(dB)                         

5 28 3 1 3 

0 167 4 6 4 

-5 1188 5 47 5 

-10 10060 5 417 5 

Table 6.2 The Optimal number of sensed samples and fusion rules for G=10 when PE 

and MTM are used with different local SNRs. 

 

 

 

 

 

 

 

Figure 6.11 Min        versus   when      CRs and PE is used with local 

              . 



 

236 
 

6.3.3 Effect of Different Number of Total CRs, G, on HCSS  

An interesting question now: Is the          that achieves min        the same 

when the total number of CRs is different? Table 6.3 shows the optimal fusion rule and 

min       when G=10 and 30, and the PE is used locally, with         , and a 

different number of the sensed samples  . The improvement in the performance by 

increasing the total number G of CRs at fixed  , is noticeable. For example, the min 

      =0.1380 when G=10 CRs with  =30, and min       =0.0128 when G is 

increased to 30 at the same  . The increase in the number of sensed samples   causes a 

decrease in the min       . Furthermore, as the number of the total cooperated CRs, G, 

is increased, the          is increased. For example, at     ,         =4 for G=10 

case, and         =10 for G=30 case. The increase in  , causes an increase in          

as well. For example, in G=10 case, the          is increased from 3 to 5 as   increased 

from 30 to 210, and for G=30,          is increased from 8 to 12. 

Table 6.4 shows the optimal fusion rule and min       when G=10 and 30, and the 

MTM is used locally, with         , and a different number of the sensed samples 

 . It can be noticed that the increase in the total cooperative CRs, G, decreases the min 

       as will in MTM‟s case. The          is, also, increased as in PE‟s case. The 

MTM, has min        lower than that for PE in the same conditions. 

 

Table 6.3 Optimal fusion rule and min total error for G=10 and 30 when PE is used with  

SNR      and different L. 

L                     

 G=10 G=30 G=10 G=30 

30 3 8 0.1380 0.0128 

35 3 9 0.1127 0.0069 

40 4 10 0.0924 0.0041 

45 4 11 0.0756 0.0025 

120 4 11 0.0049 1.77       

208 5 12 0.00026 7544        

210 5 12 0.00024 6.439        
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6.4 Master Node Cooperation Concept 

The works in [51, 52] show that, including the decision from a CR user with a low 

SNR in the cooperation at the CR-BS degrades the probability of detection. 

Thus, the authors in [52] propose a fusion rule at the CR-BS that uses only the reliable 

decisions, which come from the CR users with a high SNR. The main drawbacks here 

are the requirements for SNR estimation, and in addition to sending decisions from 

different CR users to the CR-BS, each CR has to send its own estimated SNR to the 

CR-BS. Different hard cooperation optimization algorithms have been proposed in [49, 

132, 183-185]. The common objective of this work is the minimizing of the number of 

binary bits sent to the CR-BS that require a wideband control channel, or the choosing 

of CRs with reliable decisions to cooperate at the main station, while at the same time 

keeping the probability of opportunity high. 

Generally, implementing spectrum sensing at each CR in the cooperative CR 

network, decoding or amplifying the sensed signals and then sending the results to a 

main CR-BS, have the following main challenges: 

1) The need for sensing units at each CR that will increase the hardware 

cost, the system complexity, the sensing delay and power consumption. 

2) The need for sending the sensed information or decisions to a main CR-

L                     

 G=10 G=30 G=10 G=30 

30 5 11 1.8153       4.8036        

35 5 11 1.0468        2.617        

40 5 13 6.3845        1.532        

45 6 13 5.3845        1.088        

120 6 14 4.2111        6.770        

208 6 14 1.7354        4.445        

210 7 14 1.5284        4.939        

Table 6.4 Optimal fusion rule and min total error for G=10 and 30 when MTM is used with  

SNR      and different L. 
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BS, which requires more signal processing at both sides, the CR‟s terminals and 

CR-BS. 

3) The need for control channels and huge overhead feedback to send the 

sensed information from all CRs to the CR-BS. Additionally, algorithms for 

information sharing and coordination are required in such cases [72]. 

4) Additional information such as the SNRs at different CRs has to be sent 

to the main CR-BS in optimized cooperative sensing. 

5) The availability of some CRs in the network with reliable decisions is 

not guaranteed at all times. Thus, cooperating the sensed information produces more 

errors. 

In order to face such challenges, the CR system needs to minimize the spectrum 

sensing processing in the CR network and ensure that the performance is kept high. 

Supporting the CR network with an ideal CR node can satisfy the two above conditions. 

Adding highly advanced hardware and software components to a single CR node in the 

CR network and excluding the other CRs is a good solution. In this solution, the 

spectrum sensing using advanced high performance techniques such as those considered 

in this thesis is performed at this ideal CR, and the final decision can be sent to the main 

CR-BS. The hardware components here should allow the ideal CR node to sense 

different frequency bands at the same time. Prior information about the different PR‟s 

signals must be known at this ideal node in order to resolve multipath fading. Training 

sequences and pilot signals are examples of this information. Blind equalizations, is also 

a good candidate in estimating the channel coefficients in such cases. 

Figure 6.12 shows the MN cooperative spectrum sensing scenario in a centralized 

CR networks. The work in [186] proposes implementing spectrum sensing using 

devices that are separate from the CR network and can be provided by the CR‟s service  
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provider. In addition to the PR‟s and CR‟s system, a separate sensing system appears in 

their work. Of course, this would increase the overall system complexity, require more 

technical and management coordination protocols and sensing devices can not be used 

in the CR‟s cycle. 

6.5 Conclusion 

This chapter contributes to the HCSS optimization area by introducing an efficient 

optimization factor; the number of locally sensed samples; L. Proper controlling of L 

will take all optimization strategies and conditions to the optimum performance. 

Therefore, two strategies have been proposed to control L. This has been published in 

[7]. Based on the simulation results, the optimal number of sensed samples that 

minimizes the total error to zero is found as 417 and 10060 samples when MTM and PE 

are used respectively in AWGN with local SNR= 10dB and 10 CRs cooperate sensing. 

Thus, using MTM in cooperative sensing is much faster than using PE. The optimal 

fusion rule is found as 5 out of 10 in this case. Additionally, we investigate how the 

optimization output can be changed based on the used local spectrum sensing technique 

(i.e., PE and MTM), the different SNR, the different number of sensed samples and the 

 

 CR
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PR 

CR-BS 

CR

1 

MN-CR 

 

Figure 6.12 MN cooperative spectrum sensing scenario in a centralized CR 

network. 
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total number of cooperated CRs. Therefore, the optimization process depends on these 

different factors.  

The MN concept has been introduced in this chapter, where a MN, in the CR 

network, can be supported by advanced hardware and software components. MN sends 

its sensing decisions to the CR-BS to announce it finally to the CRs. This part has been 

published in [6].  

6.6 Chapter Summary 

This chapter has focused on contributing to the HCSS optimization field, and, 

generally, to the CSS in CR systems. A revision about the HCSS was covered, including 

the optimization methods that exist in the literature. The system model of the HCSS was 

defined, and different simulation results were shown for “OR‟‟ and “AND‟‟ fusion rules 

in AWGN environment for perfect CC case.  

The number of locally sensed samples optimization was proposed through two 

different strategies under different assumptions to optimize the HCSS. Such types of 

optimization take the reviewed optimization methods performances to the optimum 

performances. Different factors that might affect the HCSS optimization results were 

analyzed. This included, the effect of using different local spectrum sensing techniques, 

the local SNR and the total number of cooperated CRs in the CR network. 

The MN cooperation concept was defined. Such a type of cooperation might 

resolve many challenges in practical CSS development. The huge feedback, the CRs 

hardware complexity, the power consumptions, the sensing delay and the coordination 

protocols, for example, would not be needed any more in such types of cooperation. 

However, more study toward this definition is required.
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Chapter 7: Conclusion and Future Work 

7.1 Thesis Main Contributions and Conclusion 

Nowadays, the increasing demand for more radio spectrums, and the noticeable 

growth in the number of wireless services and applications, shows how the allocation 

and assignment of new frequencies for new wireless services is a big challenge 

nationally and globally. The inefficient use of the already assigned frequencies has 

promoted research centres and governments to develop different techniques to exploit 

such unused frequencies, at specific times and locations, without interfering with the PR 

user. This exploitation provides communication anywhere at any time and offers radio 

frequencies for the new wireless services. 

CR is an intelligent radio system that was proposed to enhance the concept of using 

unlicensed or licensed frequencies when they are unoccupied by their licensed users (i.e., 

PR users). The CR can be distinguished from the classical radio systems mainly by its 

awareness about its surrounding RF environment. The spectrum sensing task is the main 

key for such awareness. Therefore, academic and industrial research centres, in addition 

to international and national spectrum agencies, have focused on spectrum sensing and 

management issues. The reasons behind this are the lower interference to the PR 

frequency subbands and the fact that higher spectrum opportunity can be achieved via 

robust and reliable spectrum sensing techniques. Chapter 2 shows how the spectrum 

sensing is a complicated issue in CR systems. At the PHY layer, different techniques 

were proposed to enhance the spectrum sensing in CR systems. Such techniques operate 

under different assumptions and conditions to deal with the decision about the presences 

or absence of the PR signal in a specific frequency subband. The performance of the 

used spectrum sensing technique can be described analytically by probabilities formulae, 

which are based on the way such techniques work locally at each CR Rx. They are 
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necessary to control the different parameters at the CR Rx such as threshold and number 

of sensed samples to a achieve specific performance. Cooperative spectrum sensing 

either locally among different numbers of antennas or globally among a number of CR 

users in the CR network improves the spectrum sensing performance by exploiting 

spatial diversity. These two types of cooperation are hot topics in CR spectrum sensing 

research. 

OFDM system is a promising candidate for CR systems due to the many 

advantages that are discussed in chapter 2. Chapter 2 discusses the OFDM transceiver 

for CR applications based on the literature information. Furthermore, the challenges that 

might meet the practical implementation of OFDM-Based CR are reviewed. 

MTM is promising in OFDM-Based CR systems, since it is based on FFT 

processing. However, this method required a lot of work to be useful in CR application.  

In this thesis, we have focused on spectrum sensing and cooperation techniques for 

CR systems. Our work has started, mainly, by an extensive review and study of the CR 

and its relevant technical issues. The work, then, has focused on spectrum sensing and 

cooperation algorithms for CR systems. The following points have been investigated in 

the study in chapter 2: 

- Revision of the general definitions and concepts relevant to the CR. 

- Revision of the CR cognition cycle and its differences from classical radio. 

- Focusing on spectrum sensing technical issues as a key functional factor in CR 

systems, including, the performance evaluation of spectrum sensing and the 

problem formulation, exploring different local spectrum sensing techniques, 

multi antenna based and cooperation spectrum sensing techniques and spectrum 

management issues. 

- Revision of the OFDM system including its structure and advantages to be used 

for CR applications, the OFDM-Based CR, the IEEE802.22 standard and the 
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other OFDM based wireless standards and the spectrum sensing in OFDM-

Based CR. 

Based on the study in chapter 2, MTM has been chosen as a local spectrum sensing 

technique in our study, as discussed in subsection 2.4.2.5 and in chapter 3. The use of 

MTM-SVD (which is classified as SCSS) in a CR application required an evaluation of 

its performance and practical requirements. A simulation code was written in order to 

evaluate the MTM-SVD for spectrum sensing in CR as in [1]. A number of CR users in 

the CR network forward their measurements using different tapers (i.e., DPSS) about 

the PR to a CR-BS that uses SVD to fuse such received measurements in AWGN 

environment. It has high performance, but requires huge overhead to transmit a number 

of measurements from different CR users using different tapers. 

The optimal use of MTM in CR systems was investigated in chapter 4. The 

following work has been done: 

- Optimizing the MTM parameters in OFDM-based CR systems using Monte 

Carlo simulation [2].  

 The work included finding the optimal half time bandwidth product, 

NW, and the optimal number of tapers, K, which are found as 4 and 5 

respectively.  

 The hypothesis problem is reformulated to include the effect of the 

spectral leakage and variance of the estimate on the spectrum sensing 

decisions. The high performance and low complexity are achieved using 

such optimal parameters. 

- The optimal use of MTM as a spectrum sensing technique requires developing 

the theoretical based formulae for such a technique. The optimal MTM detector 

is developed [3, 4] and closed theoretical expressions are derived theoretically 

including: 
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 Decision statistics‟ Probability Density Functions (PDFs) for the 

different hypotheses. 

 Probability of false alarm. 

 Probability of detection. 

 Probability of miss detection. 

 Number of required sensed samples to achieve a specific 

performance. 

 The chosen threshold to achieve a specific performance. 

 Analytical expressions to evaluate the MTM complexity and 

compare it to the PE. 

Simulation codes are written to evaluate the performance in AWGN, 

Rayleigh flat fading, and multipath fading environments. The 

theoretical results match well the analytical results. MTM-based 

spectrum sensing technique has the highest performance compared to 

classical and recently proposed spectrum sensing techniques. 

In terms of supporting CR spectrum sensing by using efficient multi antenna based 

spectrum sensing techniques, the following work has been done [5, 6]: 

- One optimal MTM based spectrum sensing technique is proposed using LC. 

The work here includes deriving the PDFs for different hypotheses, the 

probabilities formulae, and the number of sensed samples.  

- One suboptimal, MTM based spectrum sensing technique is proposed using 

SLC. The work here includes deriving the PDFs for different hypotheses, the 

probabilities formulae, and the number of sensed samples. 

- One suboptimal, MTM based spectrum sensing technique, is proposed using 

SVD. 
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- Analytical expressions to evaluate the proposed techniques‟ complexities and 

compare them to the PE based techniques. 

- Simulation codes are written to evaluate the proposed techniques and compare 

them to the PE based in AWGN, Rayleigh flat, and multi path fading 

environments. The proposed techniques outperform those based on PE. 

- The proposed techniques are found more efficient in terms of performance 

compared to the GLRD based multi antenna spectrum sensing techniques. 

- The proposed SVD based suboptimal technique has a higher level of 

complexity than SLC suboptimal technique, but is found to give the same 

performance. However, SVD still have advantages when used for 

communications. 

 

The HCSS improves the spectrum sensing performance by fusing the different 

binary digits received from different CR users at the CR-BS. The HCSS optimization is 

an important subject in CR systems since the overall performance is affected by 

different factors. In order to support such a point, the following work has been done [7]: 

- The effect of using different local spectrum sensing techniques on the total 

minimum error in HCSS performance is examined when MTM and PE are used 

locally at each CR. It is found that the HCSS when MTM is used locally gives 

the total minimum error faster than that when PE is used. Furthermore, the 

different local spectrum sensing techniques give different fusion rules.  

- Two strategies are proposed in order to optimize the number of locally sensed 

samples at each CR which take all HCSS optimization strategies and methods 

to the optimum performance. These two strategies optimize the HCSS‟s 

minimum total error in two different ways based on the CR network capacity 
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requirements and the allowed amount of interference to the PR frequency 

subband. 

- The effect of use a different number of locally sensed samples at each CR, on 

the optimal fusion rule, is examined. The optimal fusion rule is affected by the 

number of sensed samples. 

- The effect of the local SNR at CRs, on the optimal fusion rule, is examined. 

The optimal fusion rule is, also, affected by the number of sensed samples. 

- The effect of the total number of cooperated CRs in the CR network, on the 

optimal fusion rule, is examined. The optimal fusion rule is, also, affected by 

the total number of cooperated CRs. 

There are number of challenges that meet the practical implementation of CSS in 

centralized CR networks, which are discussed in section 6.5. Based on this, an 

introduction to a new concept of cooperation is provided. The following work has been 

done [6]: 

- The CSS challenges are defined, and the master node cooperation concept (MN) 

is proposed. This includes listing the main requirements of such new concept of 

cooperation.  

7.2 Suggested Future Work 

The research into CR systems and networks has increased more and more since 

1999 and such innovative wireless communications systems are thus becoming more 

and more practical. The work is not restricted only to technical issues, however, 

regulations and rules that manage the practical implementation of such systems have 

been considered by different national and international agencies. 

CR is still an open research area, and a lot of work is required at PHY, MAC, and 

upper layers. The spectrum sensing mission is the key to a successful, practical CR 
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system. Through this thesis, a number of contributions have been achieved that will 

support the CR development. However, the work here can also be extended in a number 

of ways. Below, a number of suggested future work aspects are listed. 

- The study in this thesis focuses, mainly, on non-parametric spectrum estimation 

methods such as MTM and PE. However, the parametric methods of spectrum 

estimation, which are based on modelling the stochastic process under 

measurement, are interesting. Therefore, a part of my future study would 

include exploring different non-parametric methods such as autoregressive 

(AR), moving average (MA), and autoregressive moving average (ARMA) for 

CR spectrum sensing. This would include performance evaluation for different 

PR signals assumptions in different wireless environments. 

- The use of multi antenna for both spectrum sensing and communication in CR 

systems can be considered as a joint optimization problem. Achieving high 

performance for spectrum sensing and high capacity for communications should 

be studied jointly. Using similar techniques in the CR Rx for spectrum sensing 

and communications would minimize the system complexity; however, this 

might come at the expense of the performance of one of the two tasks. 

Consequently, focusing on this joint problem is necessary to achieve high 

performance with low complexity for both tasks.  

- The wideband and continuous spectrum sensing topics are still open areas for 

more research. CR is expected to operate in different frequency subbands in the 

future. However, such an expectation requires more work at both sides of 

software and hardware components. Furthermore, spectrum sensing, mostly, is 

assumed to be performed periodically. However, the exact time of PR user 

reappearance in its licensed frequency subband is unknown, this requires further 
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study of such cases, with a view to keeping PR frequency subbands free from 

interference. 

- Although cooperation in CR spectrum sensing improves the overall probability 

of detection, many practical challenges operate against such cooperation, such 

as complexity, overhead and coordination protocols and sensing delays. This 

thesis introduced a new concept of cooperation, the mater node cooperation 

(MN), where a single node in the CR network is responsible for the spectrum 

sensing task. This idea still needs some study in order to evaluate the hardware 

and software requirements for different CR systems. 

- In OFDM-based CR systems, there are a number of problems which have not 

been given full consideration and final solutions under different conditions. The 

resource allocation is an important topic in such systems. Finding optimal 

assignments of subcarriers, bits and power among a number of users in the CR 

network is interesting, since there are new factors that affect the optimization 

problem here such as mutual interference between CR and PR adjacent 

frequency subbands. Although a number of studies have been provided to solve 

the problem, more studies from the angle of minimizing the interference is 

called for. Furthermore, the provided studies have not taken into account the 

change in the frequency subbands distributions (i.e., available bandwidths) that 

are free to be used by CR. The problem needs more research for MIMO OFDM-

Based CR systems, and Ad Hoc CR networks which do not depend on CR-BS 

in their communications. The hardware components and spectrum sensing 

algorithms that might be added to the CR Rx in OFDM-Based CR systems need 

more studies to minimize the cost and computation complexity. 
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