411 research outputs found

    Evolving Takagi-Sugeno-Kang fuzzy systems using multi-population grammar guided genetic programming

    Get PDF
    This work proposes a novel approach for the automatic generation and tuning of complete Takagi-Sugeno-Kang fuzzy rule based systems. The examined system aims to explore the effects of a reduced search space for a genetic programming framework by means of grammar guidance that describes candidate structures of fuzzy rule based systems. The presented approach applies context-free grammars to generate individuals and evolve solutions through the search process of the algorithm. A multi-population approach is adopted for the genetic programming system, in order to increase the depth of the search process. Two candidate grammars are examined in one regression problem and one system identification task. Preliminary results are included and discussion proposes further research directions

    A Robust Multilabel Method Integrating Rule-based Transparent Model, Soft Label Correlation Learning and Label Noise Resistance

    Full text link
    Model transparency, label correlation learning and the robust-ness to label noise are crucial for multilabel learning. However, few existing methods study these three characteristics simultaneously. To address this challenge, we propose the robust multilabel Takagi-Sugeno-Kang fuzzy system (R-MLTSK-FS) with three mechanisms. First, we design a soft label learning mechanism to reduce the effect of label noise by explicitly measuring the interactions between labels, which is also the basis of the other two mechanisms. Second, the rule-based TSK FS is used as the base model to efficiently model the inference relationship be-tween features and soft labels in a more transparent way than many existing multilabel models. Third, to further improve the performance of multilabel learning, we build a correlation enhancement learning mechanism based on the soft label space and the fuzzy feature space. Extensive experiments are conducted to demonstrate the superiority of the proposed method.Comment: This paper has been accepted by IEEE Transactions on Fuzzy System

    A Fuzzy Rule-Based System to Predict Energy Consumption of Genetic Programming Algorithms

    Get PDF
    In recent years, the energy-awareness has become one of the most interesting areas in our environmentally conscious society. Algorithm designers have been part of this, particularly when dealing with networked devices and, mainly, when handheld ones are involved. Although studies in this area has increased, not many of them have focused on Evolutionary Algorithms. To the best of our knowledge, few attempts have been performed before for modeling their energy consumption considering different execution devices. In this work, we propose a fuzzy rulebased system to predict energy comsumption of a kind of Evolutionary Algorithm, Genetic Prohramming, given the device in wich it will be executed, its main parameters, and a measurement of the difficulty of the problem addressed. Experimental results performed show that the proposed model can predict energy consumption with very low error values.We acknowledge support from Spanish Ministry of Economy and Competitiveness under projects TIN2014-56494-C4-[1,2,3]-P and TIN2017-85727-C4- [2,4]-P, Regional Government of Extremadura, Department of Commerce and Economy, conceded by the European Regional Development Fund, a way to build Europe, under the project IB16035, and Junta de Extremadura FEDER, projects GR15068 and GR15130

    Evolutionary Learning of Fuzzy Rules for Regression

    Get PDF
    The objective of this PhD Thesis is to design Genetic Fuzzy Systems (GFS) that learn Fuzzy Rule Based Systems to solve regression problems in a general manner. Particularly, the aim is to obtain models with low complexity while maintaining high precision without using expert-knowledge about the problem to be solved. This means that the GFSs have to work with raw data, that is, without any preprocessing that help the learning process to solve a particular problem. This is of particular interest, when no knowledge about the input data is available or for a first approximation to the problem. Moreover, within this objective, GFSs have to cope with large scale problems, thus the algorithms have to scale with the data

    Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS

    Get PDF
    Water table forecasting plays an important role in the management of groundwater resources in agricultural regions where there are drainage systems in river valleys. The results presented in this paper pertain to an area along the left bank of the Danube River, in the Province of Vojvodina, which is the northern part of Serbia. Two soft computing techniques were used in this research: an adaptive neurofuzzy inference system (ANFIS) and an artificial neural network (ANN) model for one-month water table forecasts at several wells located at different distances from the river. The results suggest that both these techniques represent useful tools for modeling hydrological processes in agriculture, with similar computing and memory capabilities, such that they constitute an exceptionally good numerical framework for generating high-quality models

    Day ahead hourly Price Forecast in ISO New England Market using Neuro-Fuzzy Systems

    Get PDF
    Accurate electricity price forecasting is an alarming challenge for market participants and managers owing to high volatility of the electricity prices. Price forecasting is also the most important management goal for market participants since it forms the basis of maximizing profits. These markets are usually organized in power pools and administrated by the independent system operator (ISO). The aim of this study is to examine the performance of asymmetric neuro-fuzzy network models for day-ahead electricity price forecasting in the ISO New England market. The implemented model has been developed with two alternative defuzzification models. The first model follows the Takagi–Sugeno–Kang scheme, while the second the traditional centre of average method. A clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of rules in the network. Simulation results corresponding to the minimum and maximum electricity price indicate that the proposed network architectures could provide a considerable improvement for the forecasting accuracy compared to alternative learning-based scheme

    Proceedings. 23. Workshop Computational Intelligence, Dortmund, 5. - 6. Dezember 2013

    Get PDF
    Dieser Tagungsband enthält die Beiträge des 23. Workshops Computational Intelligence des Fachausschusses 5.14 der VDI/VDE-Gesellschaft für Mess- und Automatisierungstechnik (GMA), der vom 5. - 6. Dezember 2013 in Dortmund stattgefunden hat. Im Fokus stehen Methoden, Anwendungen und Tools für Fuzzy-Systeme, Künstliche Neuronale Netze, Evolutionäre Algorithmen und Data-Mining-Verfahren

    Support Vector Machine-based Fuzzy Systems for Quantitative Prediction of Peptide Binding Affinity

    Get PDF
    Reliable prediction of binding affinity of peptides is one of the most challenging but important complex modelling problems in the post-genome era due to the diversity and functionality of the peptides discovered. Generally, peptide binding prediction models are commonly used to find out whether a binding exists between a certain peptide(s) and a major histocompatibility complex (MHC) molecule(s). Recent research efforts have been focused on quantifying the binding predictions. The objective of this thesis is to develop reliable real-value predictive models through the use of fuzzy systems. A non-linear system is proposed with the aid of support vector-based regression to improve the fuzzy system and applied to the real value prediction of degree of peptide binding. This research study introduced two novel methods to improve structure and parameter identification of fuzzy systems. First, the support-vector based regression is used to identify initial parameter values of the consequent part of type-1 and interval type-2 fuzzy systems. Second, an overlapping clustering concept is used to derive interval valued parameters of the premise part of the type-2 fuzzy system. Publicly available peptide binding affinity data sets obtained from the literature are used in the experimental studies of this thesis. First, the proposed models are blind validated using the peptide binding affinity data sets obtained from a modelling competition. In that competition, almost an equal number of peptide sequences in the training and testing data sets (89, 76, 133 and 133 peptides for the training and 88, 76, 133 and 47 peptides for the testing) are provided to the participants. Each peptide in the data sets was represented by 643 bio-chemical descriptors assigned to each amino acid. Second, the proposed models are cross validated using mouse class I MHC alleles (H2-Db, H2-Kb and H2-Kk). H2-Db, H2-Kb, and H2-Kk consist of 65 nona-peptides, 62 octa-peptides, and 154 octa-peptides, respectively. Compared to the previously published results in the literature, the support vector-based type-1 and support vector-based interval type-2 fuzzy models yield an improvement in the prediction accuracy. The quantitative predictive performances have been improved as much as 33.6\% for the first group of data sets and 1.32\% for the second group of data sets. The proposed models not only improved the performance of the fuzzy system (which used support vector-based regression), but the support vector-based regression benefited from the fuzzy concept also. The results obtained here sets the platform for the presented models to be considered for other application domains in computational and/or systems biology. Apart from improving the prediction accuracy, this research study has also identified specific features which play a key role(s) in making reliable peptide binding affinity predictions. The amino acid features "Polarity", "Positive charge", "Hydrophobicity coefficient", and "Zimm-Bragg parameter" are considered as highly discriminating features in the peptide binding affinity data sets. This information can be valuable in the design of peptides with strong binding affinity to a MHC I molecule(s). This information may also be useful when designing drugs and vaccines
    corecore