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a b s t r a c t

Online learning is a key methodology for expert systems to gracefully cope with dynamic environments. In
the context of neuro-fuzzy systems, research efforts have been directed toward developing online learning
methods that can update both system structure and parameters on the fly. However, the current online
learning approaches often rely on heuristic methods that lack a formal statistical basis and exhibit limited
scalability in the face of large data stream. In light of these issues, we develop a new Sequential Probabilistic
Learning for Adaptive Fuzzy Inference System (SPLAFIS) that synergizes the Bayesian Adaptive Resonance
Theory (BART) and Rule-Wise Decoupled Extended Kalman Filter (RDEKF) to generate the rule base struc-
ture and refine its parameters, respectively. The marriage of the BART and RDEKF methods, both of which
are built upon the maximum a posteriori (MAP) principle rooted in the Bayes’ rule, offers a comprehensive
probabilistic treatment and an efficient way for online structural and parameter learning suitable for large,
dynamic data stream. To manage the model complexity without sacrificing its predictive accuracy, SPLAFIS
also includes a simple procedure to prune inconsequential rules that have little contribution over time. The
predictive accuracy, structural simplicity, and scalability of the proposed model have been exemplified in
empirical studies using chaotic time series, stock index, and large nonlinear regression datasets.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Soft computing technologies have over the years witnessed
great successes in real-world applications (Zadeh, 1994; Lin &
Lee, 1996). Two main constituents of soft computing technologies
closely related to expert systems research are fuzzy inference sys-
tem (FIS) and neural network (NN) (Lin & Lee, 1996). Chiefly, a FIS
comprises a set of IF-THEN fuzzy rules that can model complex in-
put–output mappings in the domain of interest, and realize
approximate reasoning to deal with uncertainty/imprecision in
decision-making. FIS has proven its viability through numerous
practical applications ranging from nuclear power plants safety
(Ruan & Benítez-Read, 2005) to home appliances such as washing
machines (Driankov, Hellendoorn, & Reinfrank, 1996). The design
of a FIS, however, traditionally involves extensive human interven-
tion in crafting the rules, which remain static after their initial set-
up. By contrast, NN is a trainable dynamical system that can learn,
recall, and generalize from data automatically. As such, the NN
technology has found its applications in a variety of real-world
tasks, such as text and speech recognition, image processing,

medical engineering (Haykin, 2009). However, the structure of an
NN is generally opaque to the users and difficult to understand.

Given their complementary nature, a promising approach
would be to marry the NN and FIS technologies in a way that com-
bines their merits while simultaneously overcoming their individ-
ual shortcomings. This gives birth to a powerful hybrid modeling
approach called neuro-fuzzy system (NFS) (Lin & Lee, 1996;
Lughofer, 2011), which is currently under active investigations in
expert system research. Specifically, NFS employs NN-based adap-
tive learning mechanisms to automatically induce, from numerical
data, decision logic for inference in the form of intuitive IF-THEN
fuzzy rules. As such, it exhibits the learning ability, parallelism,
and robustness of NN as well as the human-like logical and approx-
imate reasoning traits of FIS. The NFS approach is more appealing
than conventional black-box methods (including NN), which lack
the ability to explain the salient knowledge structures in data.
NFS also helps eliminate the extensive efforts in manually design-
ing rule-based expert systems, whereby rules are usually fixed and
not able to adapt to changes in the task domain.

1.1. From offline to online learning

The learning methods for NFS can be broadly categorized into
two main types: offline (batch) learning and online learning (Lin &
Lee, 1996; Rong, Sundararajan, Huang, & Saratchandran, 2006).

http://dx.doi.org/10.1016/j.eswa.2014.01.034
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Offline learning assumes that all data points are available before
learning commences and can be accessed repeatedly, whereas on-
line learning assumes data arrive one at a time from a (possibly
infinite) stream. Early works on NFS focused largely on offline
learning methods. A classic example is the Adaptive-Network-
based Fuzzy Inference System (ANFIS) (Jang, 1993), which has been
used in many applications (e.g., Wahab, Quek, Tan, & Takeda, 2009;
Yajun et al., 2010). While the original ANFIS included a parameter
learning mechanism, its rule base structure (i.e., the node and link
constructs) is fixed and needs to be handcoded. In this light,
various methods for automated structural learning have been
developed (Kim & Kasabov, 1999; Lin, Lin, & Shen, 2001; Cheu,
Quek, & Ng, 2012), which typically utilize fuzzy clustering to form
the rules and/or initialize their antecedent (premise) parameters
prior to an offline parameter tuning process.

In many real-world applications, however, not all training
points are available a priori, and often they arrive as a continuous
long stream. Offline learning will, in this case, incur high computa-
tional cost; as a new data point comes in, the system needs to be
retrained all over again, resulting in long training and large mem-
ory requirement to retain all previous points. As such, offline learn-
ing methods are not suitable for large, nonstationary data, where
regime shift exists and a fast response is needed. By contrast, on-
line learning provides a natural means to continuously adapt to
new incoming points without a need for retraining. Hence, online
learning methods have substantial practical and scalability bene-
fits over offline learning in real-time, dynamic enviroments.

In our research endeavor, we take into account several desider-
ata of an online learning NFS model. In particular, we adopt the
four key characteristics of online learning as advocated in Huang,
Saratchandran, and Sundararajan (2005) and Rong et al. (2006):

1. All training observations are sequentially (i.e., one-by-one)
presented to the system

2. At any time, only one observation is seen and learned
3. An observation is discarded immediately after learning on

that observation is completed
4. The system has no prior knowledge on how many total

observations will be presented

A similar concept of online learning in data stream mining was
recently given in Gama (2010).

1.2. Semi-online vs. online learning

Various approaches dubbed ‘‘online learning NFS’’ have been
proposed, but many of them only partially satisfy the above four
features and so are not strictly online (Rong et al., 2006)–we here-
after call such approaches semi-online learning. For example, the
Dynamic Evolving Neural-Fuzzy Inference System (DENFIS)
(Kasabov & Song, 2002) normalizes data prior to training, which re-
quires the upper and lower bounds of the data (and implicitly all
points) to be known beforehand. Other dynamic NFS methods such
as the Self-Organizing Fuzzy Neural Network (SOFNN) (Leng,
McGinnity, & Prasad, 2005), Dynamic Fuzzy Neural Network
(DFNN) (Wu & Er, 2000) and its variants (Wu, Er, & Gao, 2001;
Wang, Er, & Meng, 2009) support inference in real-time. However,
to prune or simplify the rule base structure, SOFNN uses the opti-
mal brain surgeon method (Leng et al., 2005), and DFNN the error
reduction ratio (Wu & Er, 2000), all of which are not truly online as
they need to revisit all data points seen so far.

Likewise, the Flexible Fuzzy Inference System (FLEXFIS)
(Lughofer, 2008) and its extended model (Lughofer, 2011) employ
an incremental vector quantization method to generate the rules.
However, the initial rule base in this approach is generated using
some pre-collected data points, and thus it is not fully online either.

The more recent Dynamic Parsimonious Fuzzy Neural Network
(DPFNN) (Pratama et al., 2013) utilizes the extended self-organizing
map and localized least square algorithms to update the rule ante-
cedent and consequent parameters respectively. Nevertheless, the
latter algorithm requires several recent data points to be stored in
a sliding window, which makes it a semi-online system as well.

To address these limitations, several fully online NFS methods
have been developed. The Self-cOnstructing Neural Fuzzy Inference
Network (SONFIN) (Juang & Lin, 1998), for instance, generates fuzzy
rules on the fly for every point presented. However, SONFIN never
removes the rules once created, regardless of whether they are still
relevant. Another seminal work is the Evolving Takagi–Sugeno (eTS)
(Angelov & Filev, 2004), which creates new rules from high potential
data when the existing rules are not sufficiently representative. Sim-
ilar to SONFIN, however, eTS has no rule pruning procedure, leading
to a growing number of inconsequential rules over time. In this light,
the Simplified eTS (simpl_eTS) (Angelov & Filev, 2005) and Evolving
Extended Takagi–Sugeno (exTS) (Angelov & Zhou, 2006) were devel-
oped, whereby rules with low support are disabled (though not
explicitly removed from physical memory). An improved eTS was
recently presented in Angelov (2010, 2012), which applies the con-
cept of rule age, utility, and support for rule pruning.

An alternative method to online learning NFS is the Sequential
Adaptive Fuzzy Inference System (SAFIS) (Rong et al., 2006), which
features dynamic rule growing and pruning mechanisms devel-
oped in Huang et al. (2005). SAFIS dynamically creates and deletes
rules based on significance criteria that are directly linked to the
output accuracy, and the rule base parameters are updated using
the Extended Kalman Filter (EKF). More recently, inspired by the
neurobiological principle of meta-plasticity in associative learning,
a Self-reorganizing Fuzzy Associative Machine (SeroFAM) was
developed (Tan & Quek, 2010). SeroFAM features fully online learn-
ing with a sliding threshold-based self-correcting mechanism that
can modulate the learning intensity based on pre- and post-synap-
tic activities of the rule nodes. Tung, Quek, and Guan (2011)
presented a Self-adaptive Fuzzy Inference Network (SaFIN), which
uses a new one-pass clustering technique that can recruit new
clusters (rules) in each input–output dimension when the existing
clusters are insufficient to represent a new incoming data point.

The latest developments in (fully) online learning NFS include
the works presented in Lughofer and Buchtala (2013), Lin, Chang,
Pal, and Lin (2013), Pratama, Anavatti, Angelov, and Lughofer
(2014) and Lin, Chang, and Lin (2014). In Lughofer and Buchtala
(2013), a seminal evolving NFS method was developed to address
the problem of multi-class classification in an online manner. In
this approach, multi-class classification is achieved by building a
regression NFS model for each class pair. Pratama et al. (2014) pre-
sented a Parsimonious Network-based Fuzzy Inference System
(PANFIS) that features a new projection method to provide inter-
pretation for the hyper-ellipsoidal rules as well as an enhanced
recursive least square method for pruning inconsequential rules.
The online learning methodology was also recently investigated
under the framework of type-2 fuzzy system (Lin et al., 2013,
2014), which generalizes conventional (type-1) fuzzy system for
better handling of uncertainty. Such approach improves the system
robustness in noisy environments, but also results in a more com-
plex and less comprehensible model.

1.3. Research motivation and proposed method

While the above-mentioned full online NFS methods exhibit
good modeling accuracy and support continuous adaptation to
data stream, there remain several rooms for improvement:

(1) The learning mechanisms of the existing online NFS methods
are generally heuristic and lack a formal theoretical

R.J. Oentaryo et al. / Expert Systems with Applications 41 (2014) 5082–5096 5083
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foundation. For example, when determining which rule is the
most suitable to represent a given data point, the current
methods typically utilize distance- or density-based metrics
(e.g., Angelov & Filev, 2004; Rong et al., 2006; Tan & Quek,
2010) that solely consider the likelihood of the rules matching
that data point. Such approach does not take into account the
prior estimate of the rule importance (‘‘mass’’), resulting in a
lack of sound probabilistic/statistical interpretation.

(2) The present online NFS methods typically employ either sto-
chastic gradient descent (SGD) (e.g., Juang & Lin, 1998; Tung
et al., 2011; Lin et al., 2014) or recursive least square (RLS)-
style algorithms (e.g., Angelov & Filev, 2004; Rong et al.,
2006; Pratama et al., 2014) for online updating of the model
parameters. The SGD method is simple and efficient, but not
ideal for online learning due to its sensitivity to noise/outli-
ers and the tendency to easily forget previously learned pat-
terns. On the other hand, the RLS method (aka Kalman
filtering) is more robust and has good statistical properties,
but often requires computing the full correlation between
all pairs of model parameters, which is expensive and not
scalable. There is thus a need to balance between system
robustness and efficiency.

(3) The ever-increasing complexity of the recently developed
online learning methods leads not only to high variability in
the outcomes of different realizations of an NFS model on dif-
ferent datasets, but also a less practical system that is difficult
to implement. Simplicity is much wanted. Meanwhile, empir-
ical studies on the existing online NFS algorithms have so far
been conducted on relatively small datasets (typically having
< 10;000 data points), and their scalability against long data
stream has not been comprehensively tested.

In light of the above-mentioned issues, our research goal is to
develop a new type of online learning mechanism that conforms
to established statistical (probabilistic) principles as well as
exhibits an effective tradeoff between simplicity, robustness and
scalability. To this end, adapting from the four features of online
learning described in Section 1.1 (cf. Huang et al., 2005; Rong
et al., 2006), we consider several additional requirements in build-
ing our own online NFS framework:

(1) Both the structural and parameter learning mechanisms in
the NFS should be statistically tractable and adhere to sound
probabilistic principles, in particular to the Bayes rule (Duda,
Hart, & Stork, 2001)

(2) The NFS should exhibit parsimonious rule base structure,
achieving satisfactory modeling accuracy with concise set
of rules and/or model parameters

(3) The NFS is efficient and can gracefully scale up to long data
stream

(4) The NFS can adapt to time-varying characteristics in
dynamic environments without catastrophically forgetting
the knowledge structure previously learned

(5) The NFS can dynamically generate its parameters and struc-
tures from scratch with no prior knowledge on the optimal
number of rules or parameters.

To realize all these traits, we develop and present in this paper a
new Sequential Probabilistic Learning for Adaptive Fuzzy Inference Sys-
tem (SPLAFIS). Deviating from the contemporary online NFS meth-
ods, our proposed model features a unique learning mechanism
that is built upon the sound concepts of posterior, likelihood, and
prior probability in Bayesian statistics (Duda et al., 2001). In partic-
ular, we cast the structural and parameter learning in SPLAFIS as a
maximum a posteriori (MAP) problem, where the posterior of the
model structure and parameters depends on the data likelihood

as well as prior probability estimates. To our best knowledge, this
constitutes the first approach providing a comprehensive probabi-
listic treatment to online learning in fuzzy inference systems.

We summarize the main contributions of our SPLAFIS frame-
work as follows:

(1) We develop a modified Bayesian Adaptive Resonance Theory
(BART) algorithm (Vigdor & Lerner, 2007) to generate the
rule base structure of the SPLAFIS model. The key strength
of the BART method is that it facilitates a robust online
structural learning method that takes into account for both
the density of a given rule (i.e., prior) and the similarity of
the rule with an incoming data (i.e., likelihood). Our modi-
fied BART approach is not only statistically tractable, but is
also able to dynamically evolve the rule base structure from
scratch, with no prior knowledge on the rule base structure.
The account for both prior and likelihood in the structural
learning process also generally leads to a sparse rule base
structure with small number of rules.

(2) We devise a scalable and robust parameter learning mecha-
nism termed the Rule-Wise Decoupled Extended Kalman Filter
(RDEKF), which computes new rule parameter estimates at
current time step (i.e., posterior) based on the parameter fit-
ting to the current data (i.e., likelihood) and the parameter
estimates from previous time step (i.e., prior). Exploiting
the fact that the rules crafted by BART are generally sparse,
the RDEKF algorithm performs a localized update of the rule
parameters that concentrates on the pairwise correlation of
parameters within a particular rule. This is far more efficient
than the global EKF method (that computes the pairwise
parameter correlation across all rules), but still maintains
the robustness of the global method.

(3) We present a simple procedure to prune inconsequential
rules that have little contribution to the overall performance
over time. The rule contribution is computed based on a sim-
ple criterion that approximates the cumulative posterior of
the rules over time. This pruning strategy nicely comple-
ments the BART and RDEKF methods in ensuring a good bal-
ance between the predictive accuracy and structural
simplicity of the rule base constructed.

The synergy of these three mechanisms results in a powerful
and statistically-principled online learning NFS model. As such,
the SPLAFIS model has many practical implications in real-world
applications: it can accurately model the task domains using a
compact, intuitive rule base structure, it can gracefully scale up
against large nonstationary data stream, and the model setting
can be easily adjusted based on the available computational bud-
get. These capacities are evident in our empirical studies on several
complex tasks and have been compared with the state-of-the-art
learning methods.

The remainder of this paper is organized as follows. In Section 2,
we introduce the BART and Kalman filter methods. Section 3
describes the SPLAFIS model architecture, followed by its detailed
learning procedure in Section 4. Section 5 presents several empir-
ical studies for evaluating the efficacy of the proposed approach. Fi-
nally, Section 6 concludes this paper.

2. Preliminaries

2.1. Bayesian adaptive resonance theory

The BART algorithm (Vigdor & Lerner, 2007) is an extension of
the fuzzy ART (FART) (Carpenter, Grossberg, Markuzon, Reynolds,
& Rosen, 1992) algorithm that features a fast unsupervised learn-
ing for online discovery of clusters from continuous data stream.

5084 R.J. Oentaryo et al. / Expert Systems with Applications 41 (2014) 5082–5096



Author's personal copy

Armed with the ART learning (Grossberg, 1976), the FART algo-
rithm is able to identify clusters (also called categories in the ART
framework) by itself without knowing a priori the possible number
and type of clusters. The clusters crafted by FART are also suffi-
ciently stable to preserve important past knowledge, but remain
adaptable enough to grasp novel information.

One issue with the FART method is the inadequacy of its data rep-
resentation, i.e., its category selection and learning steps are based on
fuzzy ‘min’ and ‘max’ operators, giving hyper-rectangular clusters
that are not suitable for real-world data in practice (often with nor-
mal distribution). Also, for high-dimensional data, the hyper-rectan-
gular category would cover high volume with very few or no point
supporting it (e.g., at the hyper-rectangle corners). Moreover, novel
or noisy points may lead to an overproduction of highly-overlapping
clusters, aka category proliferation (Carpenter et al., 1992).

To mitigate these issues, BART utilizes Gaussian representation
in place of the hyper-rectangular category in FART. In BART, a
Gaussian category is defined by its mean vector, covariance matrix,
and prior probability, reflecting the category’s central of mass,
shape of distribution, and dominance with respect to other catego-
ries, respectively (Vigdor & Lerner, 2007). This is more intuitive
than the weight vector of a FART category (vaguely characterized
by its two extreme corners Carpenter et al., 1992), and results in
fewer/sparser categories. Moreover, in contrast to FART that uses
fuzzy set operators, the category selection in BART is based on
the statistically-established Bayes’ rule; it considers not only the
distance of a category to a point, but also its dominance to other
categories in terms of prior probability (Vigdor & Lerner, 2007).
As a result of statistical learning, a category in BART can grow or
shrink, whereas the categories in FART only grow over time. In this
work, we exploit the capabilities of the BART algorithm in our
SPLAFIS model, with several modifications for improvement as la-
ter described in Section 4.1.

2.2. Kalman filter

In essence, Kalman filter (Kalman, 1960) formulates sequential
learning as an iterative prediction-correction process. In the predic-
tion step, time update takes place where one-step ahead prediction
of observation is computed. In the correction step, measurement
update is taken where correction to the estimate of the current
state is calculated. Kalman filter can be viewed as a whitening fil-
ter, and is optimal in that it is an unbiased, minimum variance esti-
mator. Moreover, it has a nice probabilistic interpretation derived
from Bayesian framework, i.e., it reduces to a maximum a posteri-
ori (MAP) solution (Ho & Lee, 1964). By utilizing the state-space
concept, Kalman filter elegantly overcomes the stationarity
assumption and gives an exact solution for linear Gaussian predic-
tion/filtering tasks.

In practice, however, the use of the original Kalman filter is lim-
ited by the ubiquitous nonlinearity of the physical world. Gener-
ally, a nonlinear filtering task consists of finding the conditional
probability distribution/density of the state given the observations
up to current time. A solution to nonlinear filtering task is by line-
arization about estimate of the current mean and covariance, a
method widely known as Extended Kalman Filter (EKF) (Jazwinski,
1970). The EKF algorithm considers, at each cycle, linearization of
the nonlinear dynamics around the last consecutive predicted
and filtered estimates of the state. The prediction and correction
functions need to be differentiable. Accordingly, a matrix of partial
derivatives (i.e., Jacobian) can be computed and evaluated with
current predicted states at each time step. The matrix can then
be used in the Kalman filter equations. This process linearizes
the non-linear function around the current estimate.

Our interest is to exploit the unique properties of the EKF so as to
update our system’s parameters in a computationally feasible

manner without compromising its tracking abilities. The answer
can be found in a decoupled form of the EKF, in which the computa-
tional complexity is made to suit the requirements of a particular
application and of the available computing resources (Puskorius &
Feldkamp, 1991). In particular, we exploit the fact that the BART
algorithm generally produces sparse rules (clusters) with small
overlap, and thus the parameters of one rule are fairly uncorrelated
with those of other rules. This leads us to develop the Rule-wise
Decoupled EKF (RDEKF), whereby we treat the parameters of a rule
as one block and perform parameter refinement on each block
locally. This decoupling imposes significant reduction in memory
and time requirements, with similar solution quality to that of the
(global) EKF. Details on our RDEKF procedure are given in Section 4.2.

3. SPLAFIS architecture

3.1. System structure

The SPLAFIS model, as illustrated in Fig. 1, consists of a five-
layer, multi–input–multi–output (MIMO) network structure.
Nodes in the input layer, termed input variable nodes IVi, capture
the ith input features of interest xi. The antecedent layer comprises
rule antecedent nodes Ai;k, each representing a fuzzy linguistic la-
bel. Each node Rk in the rule layer represents a fuzzy IF-THEN asso-
ciative rule. Nodes Ck;m in the consequent layer correspond to the
rule consequent function. Lastly, each output variable node OVm

in the output layer denotes the mth output feature ym. The total
numbers of inputs, outputs, and rules are I; M and K respectively.

Essentially, the aforementioned structure realizes the first-or-
der Takagi–Sugeno–Kang (TSK) fuzzy inference system (Takagi &
Sugeno, 1985), which comprises fuzzy rules in the form of (1):

IF x1 is A1;k ^ . . . xi is Ai;k ^ . . . xI is AI;k

THEN y1 ¼ Ck;1 ^ . . . ym ¼ Ck;m ^ . . . yM ¼ Ck;M
ð1Þ

Here, the antecedent label Ai;k of rule Rk is defined using Gaussian
membership function as per (2), while the consequent function
Ck;m is computed using linear Eq. (3):

lAi;k
¼ exp �ðxi � ci;kÞ2

2r2
i;k

 !
ð2Þ

Ck;m ¼
XI

i¼0

wi;k;mxi ð3Þ

where ci;k and ri;k are the center and width of the Gaussian mem-
bership function, respectively, wi;k;m is the consequent weight
parameter, and x0 ¼ 1.

3.2. Inference scheme

The decision-making process of the proposed SPLAFIS model in-
volves the following inference scheme, in which the system outputs
ym are computed based on given inputs xi. First, each input layer
node IVi simply captures xi and directly propagate it to the next
(antecedent) layer. Then, the antecedent layer computes the Gauss-
ian membership degree lAi;k

of the rule antecedents based on (2).
The firing strength of each rule Rk in the rule layer is subsequently
computed using the product (fuzzy) T-norm of lAi;k

, as per (4):

lRk
¼
YI

i¼1

lAi;k
¼ exp �1

2

XI

i¼1

ðxi � ci;kÞ2

r2
i;k

 !
ð4Þ

Next, the consequent outputs Ck;m are calculated in the conse-
quent layer via (3), and the normalized firing strength of each rule
Rk is calculated using (5):

R.J. Oentaryo et al. / Expert Systems with Applications 41 (2014) 5082–5096 5085
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kRk
¼

lRkPK
l¼1lRl

ð5Þ

Based on (3) and (5), the overall system outputs ym are finally in-
ferred using (6):

ym ¼
XK

k¼1

kRk
Ck;m ¼

XK

k¼1

kRk

XI

i¼0

wi;k;mxi

 !
ð6Þ

4. SPLAFIS learning procedure

The online learning of the SPLAFIS model consists of three
phases, namely: rule construction, parameter adjustment, and rule
pruning, all carried out for every single data point. SPLAFIS starts
with an empty rule base and continually updates its structure
and parameters as a new data point arrives. Algorithm 1 outlines
the proposed learning procedure, and Sections 4.1, 4.2, 4.3 further
elaborate the three phases. A complexity analysis of the procedure
is also given in Section 4.4.

Algorithm 1. SPLAFIS Learning Procedure

Define: Input-target pair

ð~x;~tÞ ¼ ð½x1 . . . xi . . . xI�T ; ½t1 . . . tm . . . tM �TÞ, vigilance
parameter q 2 ð0;1�, width scale a 2 ð0;1�, and pruning
threshold b 2 ½0;1�

/⁄ Phase 1: Rule Construction Using BART ⁄/
Compute pðRkj~xÞ and bV k of all rules Rk via (7) and (10)bV max  q

PK
k¼1
bV k

Ktmp  K
for j ¼ 1 to K do

kp  arg maxkðpðRkj~xÞÞ
if bV kp

6 bV max then

Perform learning on rule Rkp
using~x via (16)–(18)

j jþ K /⁄ break the for loop ⁄/
else

pðRkp j~xÞ  0 /⁄ remove from competition ⁄/
end if

end for
if pðRkp

j~xÞ ¼ 0 then

Create a new rule RKþ1 based on~x and a via (13)–(15)
K  K þ 1

end if
/⁄ Phase 2: Parameter Adjustment Using RDEKF ⁄/
if Ktmp ¼ K then

Compute the memberships lRk
of all rules Rk using (4)

kw  arg maxkðpðRkj~xÞÞ
Do RDEKF procedure on rule Rkw

using~t via (20)–(22)
else

Initialize the parameters of the new rule RK via (33) and (34)
Reset the covariance matrices of rules R1-RK�1 via (35)

end if
/⁄ Phase 3: Rule Pruning ⁄/
Compute influences wk of all rules Rk using (36)
kp  arg mink wkð Þ
if wkp

< b then
Prune rule Rkp

/⁄ prune the least influential rule ⁄/
Delete the covariance matrix of Rkp

K  K � 1
end if

4.1. Rule construction

In this phase, a modified BART algorithm is used to construct
rules (categories) on the fly, which comprises three main steps,
namely category choice, vigilance test, and category learning. We
shall describe each step hereafter.

(1) Category choice: In this step, all existing rules compete to rep-
resent the current data point. The posterior probability of
rule Rk given input point ~x ¼ ½x1; . . . ; xi; . . . ; xI�T is computed
using the Bayes’ rule (Duda et al., 2001), as defined in (7):

pðRkj~xÞ ¼
pð~xjRkÞpðRkÞPK
l¼1pð~xjRlÞpðRlÞ

ð7Þ

where K is the total number of rules, pðRkÞ is the estimated
prior probability of rule Rk, and pð~xjRkÞ is the estimated like-
lihood of Rk with respect to~x. The prior probability and like-
lihood are defined in (8) and (9) respectively:

pðRkÞ ¼
NkPK
l¼1Nl

ð8Þ

pð~xjRkÞ ¼
1

2pð ÞI=2 bV 1=2
k

exp �1
2

XI

i¼1

ðxi � ci;kÞ2

r2
i;k

 !
ð9Þ

where Nk is the number of times Rk has won the competition,
and bV k is the hypervolume of data space covered by Rk, esti-
mated via the product of sides as defined in Vigdor and Lern-
er (2007) and (10):

bV k ¼
YI

i¼1

r2
i;k ð10Þ

For each competition step, the winning rule Rkp is defined as
one with the maximum a posteriori (MAP) as per (11):

kp ¼ arg max
k
ðpðRkj~xÞÞ ð11Þ

That is, the winning rule Rkp is either more populated (i.e.,
higher pðRkÞ) than the other rules, or more likely to be true
(i.e., higher pð~xjRkÞ as it is the closest to ~x), or both. The
MAP criterion is expected to select a winning rule more accu-
rately than using likelihood or prior probability alone. For
example, it may prefer a rule with higher prior probability
over another rule, though the normalized distance (i.e., the
term

PI
i¼1
ðxi�ci;kÞ2

r2
i;k

in (9)) between the former to ~x is larger.
(2) Vigilance test: The goal of this test is to ensure that the

chosen rule Rkp is limited in size. That is, the test restricts
the hypervolume (coverage) bV kp of the chosen rule to the
maximal hypervolume bV max allowed for a rule, as per (12):

bV kp 6
bV max ¼ q

XK

k¼1

bV k ð12Þ

where q 2 ð0;1� is the vigilance parameter. In practice, we
typically choose q to be 6 0:1. When Rkp meets (12), category
learning is performed (as described shortly). Otherwise, the
rule is removed from the competition for the current point
~x (e.g., by resetting its posterior probability pðRkj~xÞ ¼ 0), and
a search for another rule with high posterior probability that
complies with (12) is conducted. If all rules fail the vigilance
test, then a new rule RKþ1 is created and its center vector
~cKþ1 ¼ ½c1;Kþ1; . . . ; ci;Kþ1; . . . ; cI;Kþ1�T , width vector
~rKþ1 ¼ ½r1;Kþ1; . . . ;ri;Kþ1; . . . ;rI;Kþ1�T , and winning count NKþ1

are initialized using (13)–(15), respectively:

~cKþ1 ¼~x ð13Þ
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~rKþ1 ¼ a�min
K

k¼1
~x�~ckk k ð14Þ

NKþ1 ¼ 1 ð15Þ

where k:k is the Euclidean norm and a 2 ð0;1� is the user-de-
fined width scale parameter.

(3) Category learning: When a chosen rule Rkp passes the
vigilance test, the parameters ~ckp ; ~rkp ;Nkp of that rule are
updated using (16)–(18) respectively:

~cnew
kp
¼~cold

kp
þ
~x�~cold

kp

Nold
kp
þ 1

ð16Þ

~rnew
kp

� �2
¼ ~rold

kp

� �2
þ

~x�~cnew
kp

� �2
� ~rold

kp

� �2

Nold
kp
þ 1

ð17Þ

Nnew
kp
¼ Nold

kp
þ 1 ð18Þ

The update formulae in (16) and (17) are essentially ex-
panded from sequential maximum likelihood estimation for
a single Gaussian to the multidimensional case (Vigdor &
Lerner, 2007).

The above modified BART algorithm differs from the original
BART in several ways:

(1) In the original BART, each category is defined by a full
covariance matrix (in addition to the mean vector). From a
fuzzy rule viewpoint, though, such representation is not
interpretable; a fuzzy rule is usually viewed as conjunction

of input feature-wise fuzzy membership functions. To
improve the semantics, our modified BART uses a diagonal
covariance matrix instead. This simplifies the likelihood cal-
culation and reduces the computational cost, though it may
lose flexibility in the cluster representation. Regardless, our
focus is the prediction performance at the output rather than
clustering quality at the inputs. The later RDEKF procedure
(cf. Section 4.2) will be used to tweak the cluster parameters.

(2) To restrict the size of a category during learning, the original
BART uses an absolute maximum hypervolume parameter,
which is positive and unbounded. While intuitive, finding a
suitable configuration for such unbounded parameter is dif-
ficult in practice. In our modified BART approach, we instead
define the maximum hypervolume as a fraction q 2 ð0;1� of
the sum of the hypervolumes of all categories, which is eas-
ier to configure.

(3) When a new rule is created, the original BART initializes the
rule’s width (variance) vector using a small value, resulting
in a small hyper-spherical category that has low coverage.
To improve the initialization, our modified BART method
sets the initial widths of a new category based on the
(Euclidean) distance of the current point to the nearest cat-
egory, similar to Rong et al. (2006).

These modifications are reflected in the formulae (9), (12) and
(14), respectively.

4.2. Parameter adjustment

This phase consists of two alternative scenarios. The first sce-
nario is when no new rule is created in the rule construction phase

Fig. 1. Structure of the proposed SPLAFIS model.
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(i.e., when Ktmp ¼ K in Algorithm 1) and involves updating the
parameters of the winning rule that passes the vigilance test. The
second case is about how to initialize the consequent parameters
of the new rule, which is created when all the other (existing) rules
fail the vigilance test. The two scenarios are detailed hereafter:

(1) Winning rule update: In this scenario, the parameters of the
winning rule (selected by (11)) are adjusted via the RDEKF
procedure, an adaptation of Puskorius and Feldkamp
(1991). Let uðnÞ ¼ ½~hð1Þ; . . . ;~hðnÞ� be a set of observations
up to time step n, whereby each observation ~hðnÞ comprises
input vector ~xðnÞ and target vector ~tðnÞ. The RDEKF algo-
rithm aims at maximizing the posterior pðuðnÞjhðnÞÞ, where
hðnÞ is the set of rule base parameters at time n. Using Bayes’
rule, this can be written as (19):

pðhðnÞjuðnÞÞ ¼ pð~hjhðnÞÞpðhðnÞjuðn� 1ÞÞ
pð~hðnÞjuðn� 1ÞÞ

ð19Þ

Treating the parameters of each rule as one block and
assuming that pð~hjhðnÞÞ and pðhðnÞjuðn� 1ÞÞ follow a
Gaussian distribution, we arrive at the RDEKF updating
procedure as per (20)–(22):

Gkw ðnÞ ¼ Pkw ðt

� 1ÞHkw ðnÞ R þHT
kw
ðnÞPkw ðt � 1ÞHkw ðnÞ

h i�1
ð20Þ

Pkw ðnÞ ¼ IZ�Z � GkwðnÞH
T
kw
ðnÞ

h i
Pkwðt � 1Þ ð21Þ

~hkwðnÞ ¼~hkw ðt � 1Þ þ Gkw ðnÞ ~t �~y
� �

ð22Þ

where Gkw ðnÞ; Pkw ðnÞ; Hkw ðnÞ and~hkw ðnÞ are the Kalman gain,
covariance matrix, Jacobian matrix, and parameter vector of
rule Rkw at time n, respectively. R is the observation noise var-
iance, IZ�Z is identity matrix such that Z ¼ 2I þ ðI þ 1ÞM is the
length of ~hkw ðnÞ, and ~t ¼ ð½t1; . . . ; tm; . . . ; tM�T and
~y ¼ ð½y1; . . . ; ym; . . . ; yM�

T are the target and system output
vectors, respectively. For simplicity and to avoid an extra free
parameter, we set R as identity matrix (i.e., R ¼ IM�M).

The parameter vector ~hkw ðnÞ is decomposed into

~hkw ðnÞ ¼ ~wT
kw
;~cT

kw
; ~rT

kw

h iT
, which respectively correspond to

(23)–(25):

~wkw ¼ w0;kw ;1 . . . wi;kw ;1 . . . wI;kw ;1;
�

w0;kw ;m . . . wi;kw ;m . . . wI;kw ;m;

w0;kw ;M . . . wi;kw ;M . . . wI;kw ;M
�T ð23Þ

~ckw ¼ ½c1;kw . . . ci;kw . . . cI;kw �
T ð24Þ

~rkw ¼ ½r1;kw . . .ri;kw . . . rI;kw �
T ð25Þ

Meanwhile, the Jacobian matrix Hkw ðnÞ is given by (26):

HkwðnÞ ¼

@Ckw ;1
@~wkw ;1

. . . 0 . . . 0

0 . . .
@Ckw ;m
@~wkw ;m

. . . 0

0 . . . 0 . . .
@Ckw ;M
@~wkw ;M

@Ckw ;1
@~ckw

. . .
@Ckw ;m
@~ckw

. . .
@Ckw ;M
@~ckw

@Ckw ;1
@~rkw

. . .
@Ckw ;m
@~rkw

. . .
@Ckw ;M
@~rkw

266666666664

377777777775
ð26Þ

where the gradient vectors are defined in (27)–(29):

@ym

@~wkw ;m
¼ @ym

@w0;kw ;m
. . .

@ym

@wi;kw ;m
. . .

@ym

@wI;kw ;m

� �T

ð27Þ

@ym

@~ckw

¼ @ym

@c1;kw

. . .
@ym

@ci;kw

. . .
@ym

@cI;kw

� �T

ð28Þ

@ym

@~rkw

¼ @ym

@r1;kw

. . .
@ym

@ri;kw

. . .
@ym

@rI;kw

� �T

ð29Þ

and each element in the vectors is computed using (30)–(32):

@ym

@wi;kw ;m
¼ kRkw

xi ð30Þ

@ym

@ci;kw

¼ kRkw
Ckw ;m � ym

� 	 xi � ci;kw

� 	
r2

i;kw

ð31Þ

@ym

@ri;kw

¼ kRkw
Ckw ;m � ym

� 	 xi � ci;kw

� 	2

r3
i;kw

ð32Þ

The full derivations for (30)–(32) can be found in Appendix A.
Notably, the RDEKF procedure is able to produce a solution
quality approaching that of the global (original) EKF, but with
much less time and memory requirements. Whereas the glo-
bal EKF tracks the correlations between every pair of rule
parameters, the RDEKF procedure updates the parameters
of each rule locally. Indeed, in practice the correlations be-
tween parameters of different rules tend to be very small
(i.e., � 0), thanks to the small overlap among the rules pro-
duced by the BART clustering. Fig. 2(a) and (b) illustrate the
difference between the EKF and RDEKF procedures. The for-
mer requires to store and update a full covariance matrix of
size Z2 � K2, while the latter maintains only K (sub) matrices
of size Z � Z each (see the grey blocks), which is much
smaller.

(2) New rule initialization: When a new rule is created, its conse-
quent parameters are set as the weighted average of the con-
sequent parameters of the existing rules, where the weights
are normalized rule strengths as per (5). The consequent
parameters of a new rule RKþ1 are initialized via (33):

wi;Kþ1;m ¼
XK

k¼1

kRk
wi;k;m ð33Þ

Here the key idea is to use the existing rule base parameters
as an estimate for the initial consequent parameters of the
new rule; this introduces smoother and more stable change
to the (next) RDEKF update than initializing with the target
vector (Angelov & Filev, 2004). Meanwhile, the parameters
of the other rules remain the same and are simply inherited
from the previous time step.

On the other hand, the covariance matrix of the new rule
RKþ1 is initialized using (34):

PKþ1ðnÞ ¼ IZ�Z ð34Þ

At the same time, the covariance matrices of all the other
rules Rk (k 2 1; . . . ;K) are reset via (35):

PkðnÞ ¼
K2 þ 1

K2

 !
Pkðt � 1Þ ð35Þ

In this manner, the covariance matrix belonging to the new
rule RKþ1 is initialized as usual (here using identity matrix),
and the covariance matrices of the remaining rules Rk are up-
dated by multiplication of K2þ1

K2

� �
. The latter correction is

done to reflect the contribution that the new rule would have
if it existed from the beginning. The mathematical rationale
for this is further explained in Appendix B.
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4.3. Rule pruning

A simple and intuitive procedure for rule pruning is carried out
in this phase. The key idea is to remove a rule that has the least
contribution since it was first created. The contribution uk of each
rule Rk at time instance t is estimated using (36):

uk ¼
Pt

t0¼tk
lRk
ðt0Þ

t � tk
2 ½0;1� ð36Þ

where the numerator is the cumulative firing strength of rule Rk, as
per (4), and tk is the time instance at which Rk was created. The
numerator can be viewed as approximation to the cumulative pos-
terior probability pðRkj~xÞ, which measures the relevance of rule Rk

over time with respect to the input features~x. Here the cumulative
strength is updated recursively, with initial condition lRk

ðtkÞ ¼ 1.
Next, the least influential rule Rkq is identified using (37):

kq ¼ arg min
k
ðukÞ ð37Þ

and it is pruned if ukq
< b, where b 2 ½0;1� is a user-defined pruning

threshold. When pruning takes place, the covariance matrix Pkq of
the pruned rule Rkq is deleted accordingly. This imposes a minimal
effect on the overall modeling accuracy while keeping the size of
the rule base bounded. Over time, this also aids the SPLAFIS model
in adapt to the changes in the task domain better. Typically, b can be
set to be a small value (e.g., b 6 0:01).

4.4. Complexity analysis

Using the notations in the previous sections, Table 1 provides a
summary of the (worst) time complexity of the above three learn-
ing phases for a single data point. It can be seen that the computa-
tional load of the SPLAFIS model lies in the rule construction and

Fig. 2. Error covariance matrices in global and decoupled EKF.

Table 1
Time complexity of the SPLAFIS learning phases.

Learning phase Time
complexity

Description

Rule construction OðK2 þ I � KÞ Find a winning rule and adjust its parameters only if it passes the vigilance test. If no rule meets the test, a new rule is
created.

Parameter
adjustment

OðI2 �M3Þ Carry out RDEKF procedure to fine-tune the parameters of the best-fit rule, or otherwise initialize those of the newly created
rule.

Rule pruning OðK þ I �MÞ Prune the least influential rule if the ratio of its cumulative firing strength and life span is below a certain specified level
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Fig. 3. Training traces for Mackey–Glass data.
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parameter adjustment steps, especially when the number of inputs
I and number of rules K are large. For a training data stream com-
prising N points, the total time complexity of the learning process
is given by (38):

O K2 þ I � K þ I2
h i

� N
� �

ð38Þ

Such complexity is fairly low nonetheless, as in most cases K is
much smaller than N (i.e., K � N). This may be attributed to the vig-

ilance test (12) and pruning procedure (36), which together restrict
the size of the rule base. Also, since the SPLAFIS learning procedure
assumes no prior domain knowledge and that each training point is
fed into the system only once (i.e. no data revisit), its speed perfor-
mance compares favorably to that of other conventional NFS
approaches (e.g., Jang, 1993; Wu & Er, 2000; Kasabov, 2001;
Kasabov & Song, 2002; Wang et al., 2009). This benefit is evident
in our simulation studies (see e.g., Section 5.3).

On the other hand, the overall space complexity of the learning
procedure is given by (39):

O K � I2
� �

ð39Þ

which can be largely attributed to the size of the covariance matrix
PkðnÞ, as given by (21) and (34). This requirement is reasonable nev-
ertheless, recalling that K � N. It is also an order-of-magnitude
lower than that of the global (original) EKF algorithm (Kadirkama-
nathan & Niranjan, 1993), which requires storing the full covariance

matrix that induces a total complexity of O K2 � I2
� �

.

5. Experimental studies

To evaluate the efficacy of the SPLAFIS model, we performed a
series of experiments on both static and dynamic tasks. All exper-
iments were done in MATLAB� R2010b, running on an Intel Core i5
machine with 4 GB RAM. In each case study, the vigilance
parameter q, width scale a, and pruning threshold b were chosen
empirically from ½0:001;0:01�; ½0:1;0:9�, and ½0:001;0:01�,
respectively. Detailed results and analysis are presented in
Section 5.1, 5.2 and 5.3.

5.1. Standard benchmark: chaotic Mackey–Glass time series

As our preliminary study to verify the efficacy of the proposed
SPLAFIS model in online modeling of volatile data, we experi-
mented with the chaotic Mackey–Glass time series (Mackey &
Glass, 1977) data. The data has been used to benchmark the
approximation abilities of various neural and fuzzy neural tech-
niques (Platt, 1991; Kasabov & Song, 2002; Angelov & Filev,
2004; Rong et al., 2006). The time series was generated using a dif-
ferential delay equation in (40):
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Fig. 4. Actual and predicted outputs for Mackey–Glass data.

Table 2
Benchmark results on Mackey–Glass data.

Method Type Learning mode No. of rules/nodes Test NDEI

EFuNN TSK-1 Semi-online 193 0.401
DENFIS TSK-1 Semi-online 58 0.276
eTS TSK-1 Online 99 0.356
SAFIS TSK-0 Online 21 0.380
SeroFAM Mamdani Online 52 0.345
SPLAFIS TSK-1 Online 30 0.279

TSK-0/1: zero/first-order Takagi–Sugeno–Kang fuzzy system. Mamdani: Mamdani
fuzzy system.

Fig. 5. S&P-500 daily index from 3 January 1950 to 12 March 2009.
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dyðnÞ
dt
¼ 0:2yðt � sÞ

1þ x10ðt � sÞ � 0:1yðnÞ ð40Þ

Originally, the equation was used to illustrate the complex dynam-
ics in physiological control systems by way of bifurcations in the
dynamics (Mackey & Glass, 1977). This suggests that many physio-

logical disorders (or dynamical diseases) can be characterized by
changes in qualitative features of dynamics.

Following the setup in Angelov and Filev (2004), 6000 observa-
tions were generated via the 4th-order Runge–Kutta method using
a step-size 0.1 and delay coefficient s ¼ 17. The observations for
201 6 t 6 3200 and 5001 6 t 6 5500 were uniformly distributed
in the range ½0:4;1:4�, and were used as the train and test sets
respectively. The goal is to predict a few steps ahead of the current
time t. Four input features were used: ½yðnÞ, yðt � 6Þ;
yðt � 12Þ; yðt � 18Þ�, and the output to be predicted was yðt þ 85Þ.

The training traces of the SPLAFIS model are summarized in
Fig. 3. Fig. 3(a) depicts the evolution of the rule base, which grows
and shrinks at the beginning of training process and stabilizes to-
ward the end. Fig. 3(b) shows the trace of the output error during
the course of training. As shown, the output error tends to decrease
as more data points are fed in, which demonstrates the ability to
learn the data more accurately over time. Fig. 4 compares the test-
ing output forecasted by SPLAFIS and the target (testing) series. As
shown, the system manages to approximate the target series well.

Table 3
Benchmark results on S&P-500 data.

Method Type Learning
mode

No. of rules Test NDEI

EFuNN TSK-1 Semi-online 114.3 0.1544
DENFIS TSK-1 Semi-online 6.0 0.0200
ANFIS TSK-1 Offline 32.0 0.0154
eTS TSK-1 Online 14.0 0.0155
SeroFAM Mamdani Online 29.9 0.0272
SPLAFIS TSK-1 Online 10.2 0.0153

TSK-0/1: zero/first-order Takagi–Sugeno–Kang fuzzy system. Mamdani: Mamdani
fuzzy system.
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Fig. 6. Forecasting trace for S&P-500 data.

Fig. 7. Actual and forecast outputs for S&P-500 data.
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The consolidated results of the SPLAFIS model are presented
in Table 2 and compared with those published results of popular
neuro-fuzzy approaches: EFuNN (Kasabov, 2001), DENFIS
(Kasabov & Song, 2002), eTS (Angelov & Filev, 2004), and SAFIS
(Rong et al., 2006). The generalization performance of the system
on the test set is evaluated based on non-dimensional error index
(NDEI), i.e., the root mean square error on the test set divided by
the standard deviation of the target (testing) series (Kasabov &
Song, 2002).

From Table 2, we can conclude that SPLAFIS produces compet-
itive performances. It achieves relatively low NDEI ¼ 0:279, and
performs well with moderate 30 rules. Although DENFIS gives
comparable NDEI in this study, its rule base size is nearly twice
that of SPLAFIS, implying higher storage requirement. Moreover,
the DENFIS learning procedure normalizes data before training,
which assumes a prior knowledge of the upper and lower bounds
of the data (and thus all training points). As such, DENFIS is not a
fully online system. On the other hand, SPLAFIS yields slightly
more rules than SAFIS. Regardless, the former’s predictive accuracy
is substantially better than the latter. In sum, the results show that
SPLAFIS achieves good balance between model accuracy and com-
plexity, while yielding competitive performance with respect to
contemporary NFS methods.

5.2. Time-varying data modeling: stock index forecasting

This study aims at investigating the self-organizing ability of
the SPLAFIS model in non-stationary time-series forecasting task
based on the Standard and Poor’s 500 (S&P-500) market index.
Following (Tan & Quek, 2010), the dataset comprises 60 years of
daily index values collected from Yahoo! Finance website on the
ticker symbol ‘‘ĜSPC’’ from 3 January 1950 to 12 March 2009. In to-
tal, there are 14,893 data (stock index) points. Fig. 5 shows the
time-varying behavior of the index values with a nonuniform dis-
tribution in the range of [16.66, 1565.15]. In this study, we focus on
the trajectory shifts of the index values after the 1980s (i.e., the
second half of Fig. 5), where there is a noticeable increase in the
volatility of daily differences.

We carried out an online simulation of the daily forecast of the
S&P-500 index. Four input features were used: ½yðt � 4Þ,
yðt � 3Þ; yðt � 2Þ; yðt � 1Þ; yðnÞ�, where yðnÞ is the absolute value of
S&P-500 index at the tth day, and the output feature to be forecast
is yðt þ 1Þ. The result of the SPLAFIS model for this stepwise task is
shown in Table 3, along with the results of NFS methods including
EFuNN (Kasabov, 2001), DENFIS (Kasabov & Song, 2002), ANFIS
(Jang, 1993), eTS (Angelov & Filev, 2004), and SeroFAM (Tan &
Quek, 2010).
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Fig. 8. Forecasting trace for S&P-500 with market reversal.

Fig. 9. Desired and predicted outputs for S&P-500 with simulated market reversal.
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We can see that SPLAFIS gives competitive performance in
terms of the test NDEI, comparable to that of ANFIS and eTS. How-
ever, SPLAFIS yields fewer rules than the other two. Meanwhile,
although DENFIS has fewer rules than SPLAFIS, the former has sub-
stantially higher NDEI. It is also important to note that ANFIS is an
offline system, while DENFIS and EFuNN are not fully online learn-
ing systems. That is, DENFIS requires normalization of data prior to
training, while the rule layer in EFuNN only self-organizes the rule
nodes (i.e., the membership functions are fixed during evolution).
By contrast, SPLAFIS and SeroFAM are able to train and predict
recursively without prior knowledge of the complete dataset at
any time. Clearly from the results, however, SPLAFIS is superior
to SeroFAM in terms of rule base size and forecasting accuracy
(i.e., NDEI).

Fig. 6(a) illustrates the structural reorganization processes in
the SPLAFIS rule base over 60 years. Major reorganization takes
place in the first 4000 days (about 16 years), whereby the system
initially tries to settle from a coarse to reasonable rule structure,
and in the last 5000 days (about 20 years), whereby high volatility
occurs in the S&P index. On the other hand, the rule base structure
is stable for the 6000 days in between, indicating low volatility
during this period. Fig. 6(b) shows that, despite the high initial er-
ror, the daily NDEI value stabilizes over the period of 60 years.

Altogether, these results show the ability of the SPLAFIS to closely
track the major trajectory shifts in time-varying environments.
This can be further justified by comparing the actual and forecast
S&P-500 index values in Fig. 7, i.e., the system can nicely follow
the changes in the index value regime, including the two peaks
(around year 2000 and 2007) and valley in between (around year
2003).

Another study was conducted to see what happens to the
generated rule base if the environment returns to its original con-
dition. To this end, additional 60 years of reversed-order S&P index
values were appended to the original index series. The same user
parameters of the SPLAFIS are used. Figs. 8 and 9 summarize the
results. As seen, SPLAFIS continues to follow through the reversal
in the trajectory shifts for the following years (till year 2068).
Interestingly, Fig. 8(a) shows that the rule trace for the original
series is not exactly a mirror-image of that for the reversed series.
This can be attributed to the fact that the system already has some
existing knowledge by the time the reversed series comes in.
Nevertheless, rule reorganization (i.e., pruning) still gradually
occurs upon the presentation of the reversed series. Such result
demonstrates the system’s ability to adapt to the changing envi-
ronment without radically overwriting the knowledge previously
gained. This can be contrasted to the result of SeroFAM (Tan &
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Quek, 2010), which revamps its rule base quite frequently, and is
more susceptible to catastrophic forgetting and unstable learning.

5.3. Scalability test: large nonlinear regression

The last empirical study reported in this paper involves a large
function approximation problem based on Friedman’s data gener-
ator (Friedman, 1991). The objective is to test the scaling proper-
ties of the SPLAFIS model in the face of data having large number
of points. In this study, the input features ½x1; x2; x3; x4; x5� were
generated independently, each of which is uniformly distributed
within the range of [0, 1]. The target output, on the other hand,
is given by (41):

y ¼ 10 sin px1x2ð Þ þ 20 x3 � 0:5ð Þ2 þ 10x4 þ 5x5 þ rð0;1Þ ð41Þ

where rð0;1Þ is the noise term normally distributed with mean and
variance of 0 and 1, respectively. For performance and scalability
evaluations, we generated datasets of varying sizes from 1; 000 to
500;000 data points. Fig. 10(a) shows a projection of the Friedman’s
dataset comprising 1;000 points.

We conducted a 5-fold CV procedure and evaluate the results
based on three metrics: test NDEI, training time, and number of
rules (all averaged across 5 folds). We benchmark our SPLAFIS
model against two scalable NFS methods: ANFIS (Jang, 1993) and
DENFIS (Kasabov & Song, 2002) (Other NFS methods are not
scalable enough for the task, or their implementations are not
available). We also compare our result with that of core vector
regression (CVR) (Tsang, Kwok, & Zurada, 2006), a fast solver for
support vector regression. For this experiment, the SPLAFIS prun-
ing threshold was fixed as b ¼ 0:01, and the CVR’s approximation
parameter set as � ¼ 10�5 (as recommended in Tsang et al.,
2006). For ANFIS, its number of rules was set as M ¼ 25 ¼ 32 so
as to keep the rule base size moderate. All other parameters of
the four systems are determined based on a validation set contain-
ing 20% points (randomly) taken from every dataset.

Fig. 10(b)–(d) present the consolidated benchmark results for
varying data sizes, in terms of test NDEI, training time, and rule
base size, respectively. Fig. 10(b) shows that SPLAFIS performs
quite well in terms of test NDEI, although it does not outperform
ANFIS. We attribute the latter to the offline multi-pass learning
in ANFIS, as opposed to the one-pass online learning in SPLAFIS.
Nevertheless, SPLAFIS exhibits much faster training time and smal-
ler rule base than ANFIS as well as all other methods, as evident
from Fig. 10(c)–(d). We also note that DENFIS initially has low
NDEI for small data sizes (6 10;000), but its performance deterio-
rates rapidly for larger number of data points, along with substan-
tial increase of its rule base size and training time. These can be
largely attributed to the absence of pruning procedure in the DEN-
FIS method. It is also shown that SPLAFIS outperforms CVR in terms
of test NDEI and speed when the data size gets larger. All in all,
these results suggest that the proposed SPLAFIS model is scalable
and, at the same time, able to balance between predictive accuracy
and rule base size.

6. Conclusion

In this paper, we present a new online probabilistic learning
method for fuzzy inference systems termed the SPLAFIS model. A
unique contribution of the proposed model is that it is the first
kind of fuzzy inference system that derives both its structural
and parameter learning mechanisms from the statistically-sound
principle of maximum a posterior (MAP) based on the Bayes’ rule.
For its structural learning, SPLAFIS employs a fast online BART
algorithm that can automatically evolve the structure of fuzzy rule
base from scratch in accordance to the MAP principle. Parameter

learning is then carried out by the RDEKF algorithm, which also
stems from MAP and offers an efficient localized sequential optimi-
zation method. Finally, SPLAFIS also incorporates a simple method
to prune inconsequential rules without compromising the predic-
tive accuracy. Experiments on chaotic time series, stock index,
and large nonlinear regression datasets have exemplified the effi-
cacy of the SPLAFIS approach. The results show that SPLAFIS is
not only efficient, but also exhibits competitive predictive accuracy
and compact rule base structure in both static and dynamic tasks.

The proposed SPLAFIS methodology brings about several broad-
er impacts on the advances in expert systems as well as their appli-
cations. First, it presents a new type of online learning approach
that bridges the gap between two major camps in expert system
research: fuzzy rule-based system and probabilistic learning. That
is, the development of SPLAFIS offers insights to the possibility of
marrying the two camps in a synergistic way, giving birth to an
effective, statistically-sound online learning framework. Second,
as our experimental results have demonstrated, our SPLAFIS ap-
proach possesses the efficiency and scalability traits necessary to
cope with the ever-increasing amount of data generated by many
real-world applications today. This would pave a way to a new
generation of expert system technologies that can gracefully
analyze continuous data streams for knowledge extraction, adapt
system management rapidly based on changes of the environment,
and make numerous real-time decisions about priorities of things
to examine and/or execute.

Although the proposed SPLAFIS framework offers a powerful
online learning methodology, there remain several rooms for
improvement. For instance, the current SPLAFIS learning algorithm
does not explicitly take into account the interpretability of the rule
base constructed. Several interesting directions for improving rule
interpretability in online NFS have been proposed in Oentaryo,
Pasqier, and Quek (2011), Angelov (2012) and Lughofer (2013),
but these methods are still heuristic in general, and we would like
to develop a more theoretically-sound probability-based technique
for rule reduction and interpretability enhancement. Also, the cur-
rent Kalman filter-based parameter learning of the SPLAFIS model
implicitly assumes that the rule base parameters follow a normal
(Gaussian) distribution, which may not necessarily hold for all
tasks. A plausible generalization to the RDEKF method in SPLAFIS
is the particle filtering algorithm (Doucet & Johansen, 2011). Parti-
cle filter uses a set of particles to estimate the posterior density in
an online manner, and makes no restrictive assumption about the
shape of the density function (i.e., it is applicable to non-Gaussian
parameters). Last but not least, the current SPLAFIS learning
algorithm is not designed to handle high-dimensional data with
large (e.g., thousands) input features. Our future endeavor would
consist of embedding a new probabilistic online feature selection
algorithm into the SPLAFIS model.
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Appendix A. Derivation of RDEKF Adjustment

This Appendix describes the mathematical derivation of the
formulae in (27)–(29), associated with the RDEKF procedure in
Section 4.2. First, based on (6), the gradient with respect to the
consequent weights wi;kw ;m can be computed via (42):
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@ym
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On the other hand, the derivative for the center of the (Gauss-
ian) membership function can be computed using the standard
chain rule. This is given by (43), based on the inference procedure
defined in (4)–(6):
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where
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@ci;kw

can be resolved as in (44):
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Substituting (44) into (43), the formula (45) is finally obtained:
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In a similar manner to (43), the gradient of the Gaussian width can
be resolved as in (46):
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The term
@lRkw
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can subsequently be resolved as per (47):
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Substituting (47), the overall gradient can be written as (48):
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The Eqs. (42), (45) and (48) complete the proofs for the gradient
formulae given in (30)–(32), respectively.

Appendix B. Update of covariance matrix

Based on (30)–(32), it can be seen that the derivatives share a
common factor kRkw

. In turn, we can extract kRkw
out and write

the Jacobian matrix Hkw ðnÞ given by (26) as in (49):

Hkw ðnÞ ¼ kRkw
XkwðnÞ ð49Þ

where Xkw contains the residual elements (i.e., Hkw ðnÞ divided by
kRkw

). Meanwhile, by substituting (20), the update formula (21) for
the RDEKF covariance matrix (assuming a multi-input–single-out-
put system and R ¼ 1) can be expressed as (50):

Pkw ðnÞ ¼ IZ�Z � Gkw ðnÞH
T
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h i
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T
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1þHT
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ðnÞPkw ðt � 1ÞHkw ðnÞ
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Accordingly, substituting (49) into (50) results in (51):

Pkw ðnÞ ¼ Pkwðt � 1Þ ð51Þ
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Then, using the definition in (5), (51) translates to (53):
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or we can express the history until time t in an explicit way using
(54):

Pkw ðnÞ ¼ IZ�Z �
Xt

u¼1

Au

F þ Bu
ð54Þ

where Au ¼ l2
Rkw
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PK
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Now supposing a rule added at time t has been added from the
beginning, the covariance matrix at time t should be in the form of
(55):

ePkw ðnÞ ¼ IZ�Z �
Xt

u¼1

AuPK
l¼1lRl

þ lRKþ1

� �2
þ Bu

¼ IZ�Z �
Xt

u¼1

Au

F þ dF1 þ dF2 þ Bu
ð55Þ

where dF1 ¼ l2
RKþ1

and dF2 ¼ 2lRKþ1

PK
l¼1lRl

. In sum, adding a rule at
time t leads to a corruption of the covariance matrix, i.e., increase of
the denominator of the part subtracted from P0 ¼ IZ�Z . Note that
dF1 � 1 and dF2 � 1 in practice, since both are quadratic forms of
fuzzy membership values. By contrast, Bu may be large because it
is a quadratic form of the input data multiplied by the covariance
matrix. Also note that F > F1 as it is a sum of K positive membership
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values, whereas F1 stems simply from a single membership value.
Moreover, F > F2 holds if lRKþ1

> 1
2

PK
l¼1lRl

. As such, the influence
of the addends will be more significant only when all values of
the input xi for all time steps tend to zero or the covariance matrix
tends to zero. Practical tests using several functions shows the cor-
ruption of the covariance matrix due to the addition of a new rule is
marginal.

In SPLAFIS, this small influence is estimated as follows: Based
on (54) and (55), the corrupted covariance matrix ePkw ðnÞ is a func-
tion of the original matrix Pkw ðnÞ, as per (56):ePkw ðnÞ ¼ f Pkw ðnÞð Þ ð56Þ

A reasonable approximation of the f ð:Þ would be the inverse
squared mean given in (57), as the effect of the corruption will de-
crease when the number of rules K increases. This is essentially a
squared dependency given by (57):

ePkw ðnÞ ¼
K2 þ 1

K2

 !
PkwðnÞ ð57Þ

which corresponds to the reset mechanism described in (35).
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