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Abstract

Reliable prediction of binding affinity of peptides is one of the most chal-

lenging but important complex modelling problems in the post-genome era

due to the diversity and functionality of the peptides discovered. Generally,

peptide binding prediction models are commonly used to find out whether a

binding exists between a certain peptide(s) and a major histocompatibility

complex (MHC) molecule(s). Recent research efforts have been focused on

quantifying the binding predictions.

The objective of this thesis is to develop reliable real-value predictive models

through the use of fuzzy systems. A non-linear system is proposed with the

aid of support vector-based regression to improve the fuzzy system and ap-

plied to the real value prediction of degree of peptide binding. This research

study introduced two novel methods to improve structure and parameter

identification of fuzzy systems. First, the support-vector based regression is

used to identify initial parameter values of the consequent part of type-1 and

interval type-2 fuzzy systems. Second, an overlapping clustering concept is

used to derive interval valued parameters of the premise part of the type-2

fuzzy system.

Publicly available peptide binding affinity data sets obtained from the liter-

ature are used in the experimental studies of this thesis. First, the proposed

models are blind validated using the peptide binding affinity data sets ob-

tained from a modelling competition. In that competition, almost an equal

number of peptide sequences in the training and testing data sets (89, 76,

133 and 133 peptides for the training and 88, 76, 133 and 47 peptides for

the testing) are provided to the participants. Each peptide in the data sets

was represented by 643 bio-chemical descriptors assigned to each amino acid.

Second, the proposed models are cross validated using mouse class I MHC

alleles (H2-Db, H2-Kb and H2-Kk). H2-Db, H2-Kb, and H2-Kk consist



of 65 nona-peptides, 62 octa-peptides, and 154 octa-peptides, respectively.

Compared to the previously published results in the literature, the support

vector-based type-1 and support vector-based interval type-2 fuzzy models

yield an improvement in the prediction accuracy. The quantitative predic-

tive performances have been improved as much as 33.6% for the first group

of data sets and 1.32% for the second group of data sets.

The proposed models not only improved the performance of the fuzzy system

(which used support vector-based regression), but the support vector-based

regression benefited from the fuzzy concept also. The results obtained here

sets the platform for the presented models to be considered for other ap-

plication domains in computational and/or systems biology. Apart from

improving the prediction accuracy, this research study has also identified

specific features which play a key role(s) in making reliable peptide binding

affinity predictions. The amino acid features “Polarity”, “Positive charge”,

“Hydrophobicity coefficient”, and “Zimm-Bragg parameter” are considered

as highly discriminating features in the peptide binding affinity data sets.

This information can be valuable in the design of peptides with strong bind-

ing affinity to a MHC I molecule(s). This information may also be useful

when designing drugs and vaccines.
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Chapter 1

Introduction

1.1 Motivation

The first human genome was sequenced more than a decade ago [1], [2] and has become

available for further scientific research studies. It is undoubtedly a great discovery

and the completed sequence contained more than three billion base pairs. One aspect

of the project is that not only did the project get the benefit of advanced molecular

biology methods, but also computational methods. The project relied heavily on the

computational efforts, particularly during the final phase. Hence, one consequence of

this great project is that the computer aided biological research is and will be essential.

The completion of sequence of human genome means a new era of research studies

began which is referred to as post-genome era. Advances in the genome-technology have

yielded vast amount of data during this era. An intense analysis was required in order to

discover biological knowledge and derive clinical information from the underlying data.

The developments in biological complex problems and genomic technologies with huge

amount of data inevitably require the connection of computational methods and life

sciences. Promising solutions and approaches were offered by the algorithms dedicated

to solve particular problems in biological systems. Nevertheless, data produced by these

technologies challenges research studies, forcing them to develop new strategies to better

analyse and model the information and integrate them with biological systems [3].

The need to better analyse and retrieve valuable information in biological data sets bloom

the field of bioinformatics. It is an interdisciplinary research area one step towards the

1
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better analysis of biological data sets using computational methods and appropriate

software tools in order to address the complex bio-problems. As being a young field,

bioinformatics contain some uncertainty in its definition. It may mean different to dif-

ferent people. In the post-genome era, it is no denying that bioinformatics will take the

center stage in contributing to modern biology and even become the major part of it.

Janet Thornton, a professor at Cambridge University, says that “if the computational

tools are well designed, then gradually all biologists will become applied bioinformati-

cians at some level” [4].

The bioinformatics data sets are often challenging in the post-genome era. Not only

they are vast and high-dimensional, but also measured data is often incomplete and

contains uncertainty. Therefore, computational methods under the development aim at

reducing noise and high-dimensionality as well as dealing with the incompleteness and

uncertainty in such data sets.

Prediction of binding affinity is one of the application domains in bioinformatics where

data is often complex, uncertain and high-dimensional. Human reasoning can mostly

process low-dimensional data sets as compared to computers that can capable of pro-

cessing big amounts of data in high-dimensions. Conventional methods are often not

adequate and solely limited to human reasoning capability. Moreover, information pro-

duced in wet-labs is extremely limited. Therefore, the computer aided prediction of

binding affinity is crucial in order to leverage the analysis of these biological data sets.

This thesis mainly addresses modelling non-linear system in the post genome era and

concerned quantitative predictions related to bioinformatics and systems biology. The

range of application domains in computational biology is broad as reviewed in the liter-

ature review of this thesis. From these wide range of topics, this research study focuses

on the quantitative prediction of peptide binding affinity being regarded as one of the

difficult modelling problems in bioinformatics.

In this research study a novel fuzzy system than can efficiently model a non-linear

system is proposed. Fuzzy systems are able to model uncertain and imprecise knowledge

and forms a structure for representing human reasoning. Usually, fuzzy systems can

be constructed by obtaining the knowledge from human experts. Nonetheless human

experts may not be available all the time, and building a model using a classical non-

linear system with a limited prior knowledge is often difficult [5]. Among the various
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fuzzy systems, Takagi-Sugeno-Kang (TSK) is commonly used for modeling complex

systems [6], [7]. TSK fuzzy systems can be combined with other methods, particularly

learning methods, and enhanced with learning and adaptation capabilities [8]. SVR

concept is incorporated in our model with TSK-FS to better train the consequent part

of the TSK-FS. In addition, fuzzy clustering has been used to derive the premise part

of fuzzy system to approximate the membership functions that characterise each fuzzy

set found in the rule-base and to identify structure of the fuzzy model [9], [10].

In the consequent section (Section 1.2) an overview of amino acids, peptides and proteins

is presented. Section 1.3 introduces the peptide binding affinity problem. Contributions

of the PhD study is provided in Section 1.4. Finally, the structure of thesis is explained

in Section 1.5.

1.2 Amino Acids, Peptides and Proteins

An amino acid is a bio-molecule that contains an amine (NH) and a carboxylic (CO)

acid group. A peptide bond joins carboxyl acid group of one amino acid to amine group

of another as shown in Fig. 1.1.

Figure 1.1: The formation of a peptide bond through the linking of atoms.

A peptide is a small molecule as compared to protein with a two or more amino acids

attached to each other by peptide bonds. A peptide has a molecular structure similar

to protein.
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Figure 1.2: The course of protein production.

There are twenty different amino acids. The list of amino acids and their side chain

information are given in the Table 1.1. Each amino acid contains information about its

specifics such as molecular weight, volume, polarity and composition.

Proteins are made up of amino acids, attached to each other by peptide bonds. The

tertiary structure and biological activities of proteins are often decided through the use

of sequence of amino acids. Twenty different amino acids are bound together in a variety

of combinations forming a folded structure and yielding proteins that have distinct three

dimensional structure and biological functions. Fig. 1.2 depicts the course of a protein

production.

1.3 Peptide Binding Affinity

Our body is always under the attack of unwanted guests or intruders, namely bacteria,

fungi, parasites or viruses. Apart from these pathogens, it is also possible that healthy

cells may become tumor cells [11]. Security and protection mechanisms are needed in

order to fight and deal with such cases. It is gratifying that our immune system is in
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charge. White blood cells (leukocytes) in the immune system protect our body from

infection. T-cells, B-cells and natural killer cells are the principal types (lymphocytes)

of white blood cells. Immune system recognises antigens that invades into our body

and triggers a protection response [12]. The adaptiveness of the immune system allows

different response mechanisms for different kind of antigens.

The main response mechanism on the cell level is the cytotoxic T-cells which are respon-

sible to initiate response mechanism when the cell is infected by a virus or become ma-

lignant. When the infection happens whether it is cancer or viral, the proteins remained

as the cause of the infection resides within the cell. Through a digestion procedure per-

formed by proteoses these proteins converted into a number of peptides. The generated

peptides are translocated to the endoplasmic reticulum of the cell. These translocated

peptides are bound to MHC molecules. The 3D structure of a peptide binding to MHC

Table 1.1: List of amino acids with their symbolic representations and side chain
information.

Amino Acid 3-Letter 1-Letter Side Chain Description

Alanine Ala A non-polar and neutral

Arginine Arg R polar and basic

Asparagine Asn N polar and neutral

Aspartic acid Asp D polar and acidic

Cysteine Cys C polar and neutral

Glutamine Gln Q polar and neutral

Glutamic acid Glu E polar and acidic

Glycine Gly G non-polar and neutral

Histidine His H polar and basic

Isoleucine Ile I non-polar and neutral

Leucine Leu L non-polar and neutral

Lysine Lys K polar and basic

Methionine Met M non-polar and neutral

Phenylalanine Phe F non-polar and neutral

Proline Pro P non-polar and neutral

Serine Ser S polar and neutral

Threonine Thr T polar and neutral

Tryptophan Trp W polar and neutral

Tyrosine Tyr Y polar and neutral

Valine Val V non-polar and neutral
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Figure 1.3: 3D structure of peptide binding to MHC class I.

class I molecule is shown in Fig. 1.3 (figure adapted from [13]). Then the MHC-peptide

complex is translocated on the surface of the infected cells so that it can be an activa-

tion signal for a T-cell receptor present at the T-cell surface [14]. These bindings have

outmost importance in that they induce cellular immune responses [15]. This process is

illustrated on a diagram as shown in Fig. 1.4.

Revealing the association of peptides with the MHC molecules can be crucial for a drug

design and development. A common assessment to elicit these associations is to find

peptide binding affinity. One of the most challenging and complex aspect of the peptide

binding is the prediction of protein-peptide binding affinity.

Peptide binding prediction models are commonly used to find out whether a binding

exists between peptide and MHC molecule [16]. The prediction methods that are com-

monly used of this kind are BIMAS [17] and SYFPEITHI [18]. Many other prediction

methods are also available such as RANKPEP [19] and SVMHC [20] which are based on

the position specific scoring matrices (PSSMs) and SVM to find out whether a peptide

might bind, respectively. They are often able to determine the tendency and strength of

the bindings in order to save time as well as experimental efforts. The qualitative models

further improved and focused on modeling to classify binders as strong and weak binders

rather than determining the existence of a binding as binders or non-binders [21], [22],
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[23]. Recent research efforts that are of particular interest in this application domain

have been focused on quantifying the binding predictions [24], [25].

This thesis is concerned with the binding affinity problem in which high-dimensionality of

data sets and uncertainties involved in them are common issues. Proposed models aim

at predicting quantitative peptide binding affinities rather than peptides might bind

or not such as SYFEPEITHI does. Finding a feasible solution to this bioinformatics

problem remains an open issue. Moreover, there is still need for new methods, which

take into account the complexity of the problem. Fuzzy systems are highly capable of

dealing with the uncertainties in the measurements therefore it is considered they can

be useful in dealing with such a problem as this.

1.4 Contributions of the PhD Study

Since it is believed that fuzzy systems are capable of tackling with complex problems, this

thesis suggests quantitative predictive fuzzy models that can provide a feasible solution

to the binding affinity problem. The research studies in this thesis that are considered

to contribute to the literature are summarised as follows:

◦ A support vector based fuzzy system is proposed and applied to the binding affinity

prediction problem which is one of the complex modelling problems in bioinfor-

matics due to the diversity of peptides discovered. The results clearly suggest

a positive impact of the fuzziness concept on SV-based methods. The improved

generalisation ability of the fuzzy system is experimented and tested with two

validation methods. The results are clearly better than the presented results in

the literature. (conference papers are published [26], [27] and journal article is in

preparation [28])

◦ A novel clustering approach is developed to identify premise parameter values

for type-2 fuzzy systems. There is no straight-forward method in order to find

the initial parameters of type-2 fuzzy membership functions. These parameters

are commonly arbitrarily initialised in the generation process of rule-based type-2

fuzzy systems. Overlapping clustering framework is proposed to reveal the param-

eters of interval type-2 membership functions. The experiments showed that the
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Figure 1.4: The process of the peptide binding.

proposed approach yielded better determination of parameters of interval type-2

fuzzy membership functions as compared to the arbitrary initialisation of these

membership functions. (journal article is in preparation [29])

◦ A novel type-reduction and defuzzification approach is developed for the SV-based

type-2 fuzzy modelling. In this approach, the support vector based regression

is used to identify the structure and parameter values of the consequent part

and integrated with a closed mathematical form where the type-reduction is not

necessary. (conference paper is published [30] and journal article is in preparation

[29])

◦ An extensive review that covers the quantitative prediction problems and proposed

solutions to them in the fields of bioinformatics and systems biology, is conducted.

Regression-based methods that are used to confront presented problems, are pre-

sented. (journal article is in preparation [31])
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1.5 Thesis Structure

The rest of this thesis is organised as follows:

Chapter 2 reviews the literature that relates quantitative prediction in bioinformatics

and systems biology. This literature review focuses on describing related biological

background and the state-of-the-art of the field and latest developments in quantitative

prediction in bioinformatics and systems biology. Comparative analysis of the developed

methods is discussed to focus and address various kinds of biological complex problems.

Furthermore, regression based methods that are used in the proposed models in the

literature are explored. The review chapter will be turned into a review journal paper

as there doesn’t seem to be such a comprehensive review in this growing field.

Chapter 3 presents the background theory for the construction of SVR-based fuzzy

systems. The proposed models of this thesis are composed of fields of computational

intelligence such as clustering methods, fuzzy system modelling and regression-based

methods and hybridisation of these that can address quantitative nature of biological

complex problems.

Chapter 4 presents the construction of peptide data sets through the AA indices of

which the descriptions and their scales collected from literature. The pre-processing of

the bioinformatics data sets through the feature extraction and selection process are

described intensively to provide insight view of the characteristics of the data sets that

are dealt with.

Chapter 5 presents and characterises an SVR-based type-1 fuzzy system that encom-

passes a series of experiments to demonstrate the robustness of this experimental method-

ology on separate peptide binding affinity data sets and mouse class I alleles. The

improvements in comparison with the literature for both data sets are presented.

Chapter 6 presents the development of a type-2 fuzzy system that is based on overlapping

clustering concept for determining the structure of premise part. Furthermore, SVR-

based regression is used for initializing the coefficients of the consequent part. A closed

mathematical form for type-reduction and defuzzification is incorporated to the SVR-

based type-2 fuzzy modelling. Preliminary results demonstrate the ability of SVR-based

type-2 fuzzy system framework in predicting real-values of peptide bindings.
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Chapter 7 discusses and concludes this research study, emphasizes strengths and weak-

nesses, and presents contributions and future works.



Chapter 2

Literature Review

2.1 Introduction

High-throughput technologies such as next generation sequencing technologies in life sci-

ences generate big biological data in variety of application domains. The data generated

is exponentially increasing and often high-dimensional, complex and non-linear. Com-

putational methods are therefore needed in order to ease the organization and analysis

of this kind of data and help derive clinically and biologically meaningful information.

There are three main methods commonly applied in the analysis of post-genomic data.

They are clustering, classification, and quantitative prediction. Clustering methods

such as (e.g. fuzzy c-Means clustering) is generally applied to unlabelled data (e.g.

microarray gene expression profile analysis [32]). In order to partition data into small

subsets, similarity/dissimilarity of the data samples are considered. The other method is

classification (e.g. sum classifier, naive bayes classifier) to be able to develop a predictive

model capable of distinguishing pre-labelled classes (e.g. cancer vs. control [33]). The

third method is quantitative prediction where the output was generally continuous or

discrete real values. One example to quantitative prediction in the post-genome era

is the binding affinity of peptides. However, this is not only a predictive method (e.g.

linear or non-linear regression) but also the attribute selection highly effects the outcome

of such methods.

This chapter reviews the literature and highlight the importance of the quantitative

prediction in the research studies of bioinformatics and systems biology. The keyword

11
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Figure 2.1: Number of publications per year in PubMed related to the prediction
studies in bioinformatics based on classification and regression.

sets; ”systems biology and regression”, ”bioinformatics and regression”, ”computational

biology and prediction and regression”, ”systems biology and prediction and regression”,

”bioinformatics and prediction and regression” were used to reveal the papers from the

well-known academic research databases such as Scopus, Web of Science, and PubMed.

More than five hundred papers were revealed to carry out the survey but the challenge

is to find out which of these studies actually were related to the quantitative prediction

as most of the papers in databases were irrelevant or mainly related to the classification

and clustering studies in bioinformatics.

The keywords containing classification and regression are searched separately and com-

pared with each other. According to PubMed, the number of publications per year for

the prediction studies in bioinformatics based on classification and regression is shown

in Fig. 2.1. As it is clearly seen from the graph, there is a lack of quantitative prediction

studies in the new era of post-genome biology as compared to classification. It should

also be noted that the number of publications rose gradually from the early 2000s until

present. The literature suggests that classification have been extensively studied whereas

there seems a considerable smaller number of studies in the quantitative prediction. The

remaining graphs of these keyword sets are presented in Appendix E.
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The next section of this chapter, Section 2.2, reviews the state-of-the-art of quantita-

tive prediction problems in bioinformatics and systems biology for various application

domains. In Section 2.3, regression-based methods used in order to tackle the presented

problems are briefly described. Section 2.4 provides an overview of the feature selec-

tion and reviews its use in quantitative prediction problems that have high-dimensional

data sets. In Section 2.5, the importance of fuzzy systems in bioinformatics is briefly

presented. Finally, Section 2.6 concludes the chapter with a final remark.

2.2 Application Domains in Bioinformatics and Systems

Biology

There exists a variety of application domains in bioinformatics research studies. This

section groups and reviews quantitative prediction problems into four different appli-

cation domains. They are computational omics studies, systems biology, structural

bioinformatics, gene expression.

2.2.1 Computational Omics Studies

Computational omics studies are the research studies in biology having the suffix -omics,

which may be proteomics, genomics, metabolomics, or transcriptomics. This section

presents widely used quantitative prediction research studies in computational omics

studies from the selected literature (Table 2.1).

Proteomics is an emerging field concerned with the proteins expressed in an organism

[34]. The studies in this omics field focus on identifying all the proteins expressed in

the cells or tissues. Mass spectrometry is the method of choice widely used in order

to identify and detect proteins [35]. The information in this area of research requires

large-scale study and is often different from the information provided from DNA or RNA

sequences [36].

A digestion procedure takes place in order to form the peptides from the proteins using

enzymes such as trypsin. Mass spectrometry identifies these peptides and proteins within

the biological mixture. The analysis of mass spectra involves revealing the amino acid

composition of a peptide and later proteins were identified from the peptide groups.
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The protein inference problems come from that these peptides can not directly related

with their correct proteins due to the fact the existence of degenerate peptides and

one-hit wonders. Protein inference problem can be formulated as a Logistic regression

task that predicts the probability of the identified peptides with their belonging proteins

[37]. ProteinLasso is a method based on peptide detectability and used as a constrained

Lasso regression problem to formulate the protein inference problem [38]. Peak intensity

prediction gets the use of regression methods including SVR and Linear regression and

peak intensities in the measured mass spectrometry are predicted in order to identify

proteins by comparing them from a database of known proteins [39], [40], [41]. Shah et

al proposed a model having a set of amino acid descriptors to predict ion mobility drift

times for the identification of peptides using two regression approaches, Partial Least

Squares (PLS) and SVR [42].

Mass spectrometry cannot reveal all the proteins that may exist in a sample but only

a portion of them [43]. The accuracy and interpretability of mass spectra is crucial

in order to identify proteins. One approach that helps to improve the understanding

of spectrometry data is the prediction of spectrum peak intensities using the existing

molecular descriptors [44].

One of the important features of a protein is its melting temperature as it can be

used particularly in efforts for drug design and development. Goronia et al collected the

melting temperature of 230 proteins varying between 25°C and 113°C. They used Neural

Networks (NN) and Neuro-Fuzzy methods separately to predict melting temperature of

a protein from its amino acid composition [45].

Intrinsic disorders in proteins or protein regions aid understanding fundamental pro-

cesses occurring in protein folding and function. Yan et al used SVR to predict intrinsic

disorder on proteomic scale based on the protein sequence [46].

Genomics is the study of groups of genes in large-scale. There has been an exponen-

tial growth of data collected for genome wide association studies during last decade.

Bioinformatics is heavily used in order to derive meaningful information from these

genome-wide data sets. A single-nucleotide polymorphism (SNP) is the variation of a

single position within the DNA sequence among individuals in a population. When a

SNP occurs in a gene, it may lead a different composition of its corresponding amino

acid sequence, leading to more than one allele. Although many of SNPs may not lead to
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a disorder, but some of them are closely related with particular diseases. Imputations

of single-nucleotide polymorphisms can be predicted using regression models. Huang et

al used v-SVR to estimate the quality score of imputations of SNPs with unknown true

genotypes [47].

Eukaryotic cells have wrapped sections of DNA which are called nucleosomes. Revealing

nucleosome organisation is important as it provides insight information about transcrip-

tion regulation. One of the factors that affect nucleosome positions is the DNA sequence.

Zhang et al estimated linear factors with Linear regression and non-linear factors with

SVR to predict nucleosome occupancy statistically based on di-nucleotide features of

the DNA sequence [48]. Rube et al proposed a model of statistical positioning that uses

Linear regression to calculate variance structure of nucleosome locations in individual

genes [49].

MicroRNAs (miRNAs) are the small fragments of RNA (approximately 21 bp in length).

An miRNA can interact with its corresponding target messenger RNA (mRNA) and

inhibits the translation of mRNA into a protein due to imperfect binding between them.

Muniategui et al uses Lasso regression for predicting miRNA-mRNA interactions [50].

Small interfering RNA (siRNA) with a length between 21 and 25 bp binds to its target

mRNA causing the mRNA to degrade and cleave. This process is important and research

studies focus on inhibiting or silencing gene expression in order to find prospective

therapeutic solutions for cancer disease in particular. Liu et al used Ridge regression

for the prediction of siRNA efficacy prediction [51]. Jiang et al used Random Forest

regression to quantitatively estimate siRNAs efficiacy values [52].

During the transcription process, transcribing DNA into RNA, gene expression is reg-

ulated mostly by some specific proteins, namely transcription factors. These proteins

have DNA-binding domains that help them to interact with some distinct DNA frag-

ments called enhancer or promoter sequences. Mordelet et al used regression based

model for the transcription factor-DNA binding specifity [53]. Their model contained

features based on the occurrences of higher-order k-mers at various positions within or

near the transcription factor binding sites.

Copy number indicates the number of copies of a given gene or parts of sequence in the

whole genome [62]. Alterations in DNA copy number may indicate progress in severe

disease such as cancer. These alterations are often caused from the genetic events in the
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case of extreme variations in contiguous parts of the genome. Therefore, revealing DNA

copy number alterations is crucial in order to follow the progression of human cancers

in specific [63]. The whole genome partitioned into segments in order to find out and

quantify copy number variations exists between contiguous segments. Many regression-

based models including Lasso and Quantile regression proposed to analyse DNA copy

number data and derive alterations that exist in such data [57], [58].

Compos et al used Lasso based model to quantitatively predict genetic values for com-

plex traits [55]. Chen et al used Linear regression to predict causative genes for the

discovery of diseases [56]. Cosgun et al uses a mixture of regression methods including

SVR, Random Forest, and Regression Tree in order to predict necessary warfarin dose

requirements in a cohort of African Americans [54].

Studies on protein-ligand complex and its scoring function gives valuable information

regarding drug discovery. Ballester et al proposed a scoring function using Random

Table 2.1: Selection of widely used quantitative prediction research studies in com-
putational omics.

Ref. Method Application Domain
[47] Support vector regression imputed genotypes
[48] Linear regression/SVR nucleosome occupancy
[38] Lasso protein inference
[44] Artificial neural networks protein inference
[50] Lasso miRNA-mRNA interactions
[51] Ridge regression siRNA efficacy analysis
[40] Support vector regression protein inference
[41] Support vector regression protein inference
[39] Linear regression protein inference
[37] Logistic regression protein inference
[42] Mixture of regression methods sequence analysis
[54] Mixture of regression methods genetics and population analysis
[53] Support vector regression transcription factor DNA binding affinity
[45] Neural networks melting temperature of a protein
[55] Bayesian regression quantitative traits
[49] Linear regression nucleosome occupancy
[56] Linear regression gene inference
[57] Lasso copy number alterations
[58] Quantile regression copy number alterations
[46] Support vector regression intrinsic disorder
[59] Random Forest regression molecular docking
[60] Partial least squares protein - ligand binding affinities
[61] Support vector regression cancer cell sensitivity
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Forest to implicitly acquire binding effects of protein-ligand complexes to analyse the

outcomes of the molecular docking [59]. Deng et al used PLS in order to predict protein-

ligand binding affinities [60].

In modern oncology, prediction of a response of a cancer disease to a therapy may provide

crucial insight information that may lead to the design of a personalized medicine.

Menden et al proposed a computational framework using Random Forest and Neural

Network separately based on genomic and chemical properties to predicting cancer cell

sensitivity to drugs [61]. The study not only suggests identification of new drug design

opportunities but also it is useful for personalized medicine associating genomic traits

of patients to drug sensitivity.

2.2.2 Systems Biology

Systems biology is the field of study concerned with the understanding of interactions

and predicting dynamical behaviour of biological components such as molecules and

cells. Computational models are proposed and quantitative measurements are used in

order to ease the tediousness of understanding the complex and dynamic behaviour of

interacting biological components of living systems. Thus, systems problems of biology

could be better studied, leading to proper design of drugs that can effectively bind to

its biological target. This section presents widely used quantitative prediction research

studies in systems biology from the selected literature (Table 2.2).

Gene regulatory networks (GRN) inferring is a reverse-engineering process in bioinfor-

matics in order to unravel gene regulation system in a cell. Many microarray experiments

produce different gene expression data. On the contrary, the genes that will be discov-

ered are much less than the experiments being conducted. One common consequence

is that the model set up is high-dimensional and can suffer from over-parameterization.

There are some reviews on inferring gene regulatory networks that provide challenges

in this area as well as overview common modelling schemes and applied computational

methods [64].

Chan et al proposed a Least Angle regression (LARS) based model for GRN inference on

a time-series microarray data of Schizosaccharomyces pombe yeast-cell cycle genes and

the model produced biologically relevant GRN and important insight information related
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to yeast cell-cycle regulation [65]. Regulatory networks found are biologically relevant

and functionally correct. Xiong et al decomposed the GRN inference problem among

genes and for each target gene, the expression level is predicted using Linear regression

from the expression level of a potential regulation gene [66]. Xun et al inferred molecular

interactions in biological systems using a Bayesian model averaging for Linear regression

[67]. Andrec et al estimates the connection coefficients from noisy perturbation responses

using Total Least Squares and show that the accuracy of the network structure depends

not only on the noise level but on the strength of the interactions within the network

[68]. Bayar et al formulates reverse-engineering genetic networks as a Multiple Linear

regression (MLR) problem [69]. Qin et al uses an extended version of Lasso to infer

gene regulatory network in mouse embryonic stem cells [70]. Wang et al reconstructs

gene network using Lasso which uses prior information [71]. Supper et al predicts the

expression level of a gene using Multiple Linear regression from a minimal combination

of genes which are considered as probable regulators for that gene when unraveling

GRN [72]. Yeung et al identifies a network which is sparse using Robust regression

from a family of candidate networks constructed by singular value decomposition [73].

Brouard used Output Kernel regression to derive a protein-protein interaction network

[74]. Qabaja used Lasso-based method to reveal functional interactions between miRNAs

and diseases using miRNA gene signature [75]. Berthoumleux et al proposed a Linear

regression approach in order to infer metabolic network models [76]. Castellini used a

Linear regression method to reveal biological network regulations from time series [77].

Strength of binding affinity between biomolecule interactions is important for under-

standing biological processes happening in our body. There can be many types of

biomolecular interactions. Protein-peptide interactions are one type of such interac-

tions essential to initiate necessary responses to protect the host during his lifetime.

Peptides bind to MHC proteins over the course of cell activities. Although there are

potentially large numbers of peptides, they are often limited in size due to the difficulty

of identification of bindings to MHC molecules. Therefore, a recent bioinformatics prob-

lem, peptide binding affinity prediction gets the aid of computational methods to ease

the identification process of those peptides and to what degree that bindings can occur.

Liu et al proposed a quantitative modelling method based on SVR, namely SVRMHC,

for an accurate prediction of mouse class I peptide-MHC binding affinity [25]. Sub-

sequently, SVRMHC is used to construct and validate prediction models for over 40
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MHC alleles [78]. Doytchinova and Flower studied on human MHC allele HLA-A*0201

and proposed a model to predict continuous binding affinities using Multiple Linear re-

gression [79]. Giguere et al proposed a peptide-protein binding affinity predictor based

on Ridge regression with a reasonable accurate binding affinity prediction of any pep-

tide to any protein [80]. Demir et al used L1/L2 regularization to predict regression

based typical biological problems provided from Comparative Evaluation of Prediction

Algorithms contest [81]. Ivanciuc and Braun used several regression based methods in

order to predict peptide-MHC binding affinities and compare them to each other [82].

Hattotuwagama et al proposed an iterative self-consistent Partial Least Squares based

additive method in order to predict class II MHC-peptide binding affinity [83]. Guo et

al proposed a novel string kernel and uses SVR to predict class II MHC-peptide bind-

ing affinity [84]. Shao et al used SVR to predict PDZ domain-peptide interaction from

primary sequence [85]. Doytchinova et al used Linear regression to fit actual binding

affinities of test peptides to the predicted ones [86]. In a further work, Doytchinova

et al used MLR in order to assess their additive method for the prediction of binding

affinity [87]. Guan et al proposed a method called MHCpred and used PLS to evaluate

its statistics [88]. Subsequently, MHCpred is enhanced with the addition of mouse class

I models and the removal of computational constraints and become MHCpred 2.0 [89].

Previously, the prediction server contained human class I and II models. Bordner et al

proposed methods called RTA [90] and MultiRTA [91] and used L1/L2 regularization to

select a subset of initial parameters in order to avoid overfitting from their model. Chang

et al uses PLS to predict class II MHC-peptide binding based on peptide length [92].

El-manzalawy used Multiple Instance regression to predicting MHC-II binding affinity

[93].

Determining the protein-protein interaction affinity is a significant research area of

systems biology where binding affinity takes place in order to infer real status of the

protein-protein interaction networks. However, not many promising solutions suggested

to address the problems of protein-protein interactions including binding affinity and

structure of those interactions. Proteins interact each other and with other biological

molecules to perform high level biological tasks. A protein to protein interaction (PPI)

network, also known as protein interactome, is a graph that is formed by a set of vertices

corresponds to proteins and a set of edges correspond to physical interactions between

the pairs of proteins. Protein interaction networks may provide valuable observations
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about the modularity of cellular processes and the interpretation of protein functions

[97]. Over the last decade more protein interactions data become available as a result

of research on finding complete genome sequences particularly on model living organ-

isms including Escherichia coli, Caenorhabditis elegans, Drosophila melanogaster and

Saccharomyces cerevisiae [98]. Thus analysing protein interactions help more to fully

understand the cell mechanism [99], [100]. Furthermore they help understand the mod-

ularity of cell activities and how proteins regulate and support each other in a protein

interaction network. Recent reviews describe the advances in computational methods

Table 2.2: Selection of widely used quantitative prediction research studies in systems
biology.

Ref. Method Application Domain
[66] Linear regression GRN inference
[69] Multiple linear regression GRN inference
[68] Linear regression GRN inference
[65] Least angle regression GRN inference
[74] Ridge regression PPI inference
[71] Lasso GRN inference
[70] Lasso GRN inference
[75] Lasso miRNA-disease asssociation
[76] Linear regression metabolic network modelling
[72] Linear regression GRN inference
[73] Robust regression GRN inference
[67] Linear regression molecular interactions
[94] Support vector regression protein-protein binding affinity
[95] Support vector regression protein-protein binding affinity
[96] Statistical potentials protein-protein binding affinity
[25] Support vector regression protein-peptide binding affinity
[80] Ridge regression protein-peptide binding affinity
[81] L1/L2 protein-peptide binding affinity
[83] Partial least squares protein-peptide binding affinity
[84] Support vector regression protein-peptide binding affinity
[85] Support vector regression protein-peptide binding affinity
[87] Linear regression protein-peptide binding affinity
[88] Additive method protein-peptide binding affinity
[86] Partial least squares protein-peptide binding affinity
[90] Lasso protein-peptide binding affinity
[91] L1/L2 protein-peptide binding affinity
[92] Partial least squares protein-peptide binding affinity
[78] Support vector regression protein-peptide binding affinity
[82] Mixture of regression methods protein-peptide binding affinity
[93] Multiple instance regression protein-peptide binding affinity
[89] Additive method protein-peptide binding affinity
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for the analysis of biological networks in the post-genomic era which infer functional

modules and functional annotation of proteins [101], [102].

Li et al proposed an SVR based method in their studies that takes into account binding

contributions implicitly as it is difficult to express them in the practice of modelling

protein-protein binding affinity [94], [95]. Su et al studied structure-derived statistical

potentials aiming at prediction of binding energy of protein-protein interactions [96].

2.2.3 Structural Bioinformatics

One of the fields of bioinformatics widely studied is the structural bioinformatics or com-

putational structural biology. This section presents widely used quantitative prediction

research studies in structural bioinformatics from the selected literature (Table 2.3). One

main branch of structural bioinformatics is to analyse and predict biomolecular struc-

tures, in particular protein structures. Proteins are essential building blocks of a cell and

the biological processes are mediated and regulated through proteins and interactions

of proteins. Protein structure prediction is a challenging problem in bioinformatics that

helps elucidating the structure of 3D and function of a protein.

Predicting the 3D structures solely from amino acid sequences is a difficult task. The first

step achieving this purpose is to reveal the secondary structure of the protein or the sol-

vent accessibilities of protein‘s structure [103], [104], [105], [106], [107] . This way can be

more convenient as it provides simpler 1D projections of the secondary structure to work

on to reveal complicated 3D structure [108]. Solvent accessibility is one of the important

attributes of amino acid residues that aids predicting structures of proteins. Surface area

of a macromolecule which is accessible to a solvent is referred to as solvent-accessible sur-

face area or in short accessible surface area (ASA). ASA is generally measured in square

angstroms which is a standard metric in molecular biology. The prediction of solvent ac-

cessibility helps to elucidate relation between structure of a protein and its interactions

[109]. The prediction finds the degree to which residues in the structure interact with the

solvent molecules. Conventionally, residues can be considered as two (exposed/buried)

or three (exposed/intermediate/buried) classes for the given protein structure. This

burial degree of a residue helps to understand sequence-structure-function relationship

and predict structural and functional properties of proteins. Nevertheless, the real value

prediction is getting important due to the ill-defined classes of solvent accessibility in
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real structures of proteins. The burial core residues are of crucial importance during the

folding process of the protein [110]. On the contrary exposed residues help understand-

ing proteins function as the active sites that make bound with bio-molecules found are

on the surface of a protein [111]. SVR is a common regression approach to predict real

values of solvent accessibility surface area in square angstroms from their amino acid

sequences/primary structures [112], [113], [114], [115]. The other regression approaches

for the real value prediction, also possible in this regard, include Neural Network-based

regression [116], [117] and Multiple Linear regression [118], [119]. A linear dependency

exists between the contribution of individual residue to folding stability of a protein

and its buried solvent-accessible surface area [120]. Xu et al gets the benefit of this

linear dependence and used Quadratic programming and a statistical energy function to

predict solvent accessibility by performing constrained optimisation of protein stability

upon burial of amino acid residues [121].

Different from the solvent accessible surface area prediction, that studies residues which

are mostly on the surface of a protein, the protein burying depth prediction, as a struc-

tural descriptor, provides how residues are arranged within the inner structure of a

protein and how deep they bury themselves in the formation of protein folding process.

Thus, more accurate information as in the form of real residue depth values would be

obtained as compared to solvent accessibility related to residues arrangement from pro-

tein sequences rather than knowing solely whether they are exposed or buried [122],

[123], [124]. Accurately predicting residue depth values have many uses including fold-

ing process and recognition and functional site prediction. Protein folding determines

the three-dimensional shape of a protein from its primary structure. Therefore under-

standing the folding mechanism of a protein will provide a valuable insight about its

structure. Huang et al used Quadratic regression to predict folding rate change of a

protein based on amino acid substitutions [125].

The sequence driven prediction of 3D structure of a protein and its function are a crucial

task in bioinformatics due to the big difference between the number of protein structures

and the number of protein sequences revealed from conducted laboratory experiments.

Protein-folding problems start mostly with the secondary structure prediction from the

available protein sequence. The torsion angles (Φ) and (Ψ) are commonly used to

determine the backbone structure of a protein. These angles rotate around the peptide

bonds. Predicting or knowing the torsion angles helps to identify the structure of a
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protein due to the plane nature of linked rigid peptide bonds. The backbone angles

constantly vary due to the continuous movement of proteins. Prediction is performed

through the information provided from the amino acid residues. Neural Network-based

regression is mainly used for improving the torsion angle prediction [126]. One of the

approaches that improves the torsion angle also gets benefit from the angle periodicity

[127]. Song et al uses a two-level SVR approach for an accurate prediction using the

descriptors derived from the amino acid sequences [128].

As many protein structure models suggested in the literature fail to produce desired

results, there is a need for experimental validation of those structures and assessment

of their qualities. Many scoring functions attempt to sort and rank separate models

that are driven with the same sequence. For particular application domains, however,

assessment of quality of structure is crucial in order to apply the model to specific

problems. There are attempts reported based on the regression for the assessment of

quality of protein structures. SVR is commonly used to develop a scoring function to

assess the accuracy of protein structures [129], [130]. Tondel used Multivariate regression

for the prediction of homology model quality directly from the sequence alignment [131].

Yang et al developed regression equations including Linear and Logistic regressions to

assess the quality of structure models of whole Escherichia coli proteome [132].

Seeking and finding the correct positions of residue contacts or coordination number

in proteins partly characterizes protein tertiary fold structure. Each residue center

has a spherical cutoff that involves residues falling inside this sphere. Determining

an accurate functional relationship between amino acid sequence and the number of

stabilizing contacts is crucial in predicting protein structure. Therefore, predicting the

number of contacts for each residue, or coordination number is another key attribute

toward predicting particularly secondary structure of a protein [133], [134]. Finding the

correct positions of residue contacts in proteins help in the prediction process. As a

regression task, SVR is the method of choice in general to predict this kind of prediction

problem [135], [136].

Disulfide bonds are one of the structural elements within a protein that contribute the

stability of the protein structure and give insight information about the proteins folding

process. SVR commonly used to predict disulfide connectivity patterns in order to

improve the prediction of protein secondary structure [137], [138]. Lund et al used a
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Neural Network prediction approach in order to find interatomic distances in proteins

[139].

The research studies are mostly focused on the prediction of protein structures. On the

contrary, prediction of genomic structures are also studied such as the RNA secondary

structure prediction [140]. However, protein structure predictions take the centre stage

in structural bioinformatics.

Table 2.3: Selection of widely used quantitative prediction research studies in struc-
tural bioinformatics.

Ref. Method Application Domain
[105] Support vector regression protein secondary structure
[123] Support vector regression residue depth
[140] Support vector regression RNA secondary structure
[127] Neural networks backbone torsion angle
[133] Neural networks residue contacts
[134] Neural networks residue contacts
[139] Neural networks interatomic distance
[135] Support vector regression residue contacts
[121] Quadratic programming solvent accessibility
[116] Neural networks solvent accessibility
[114] Support vector regression solvent accessibility
[118] Linear regression solvent accessibility
[128] Support vector regression backbone torsion angle
[132] Mixture of regression methods quality assessment
[136] Support vector regression quality assessment
[131] Multivariate regression quality assessment
[137] Support vector regression disulfide connectivity
[115] Support vector regression solvent accessibility
[125] Quadratic regression folding change rate
[112] Support vector regression solvent accessibility
[129] Support vector regression quality assessment
[106] Logistic regression protein secondary structure
[130] Support vector regression quality assessment
[117] Neural networks solvent accessibility
[126] Neural networks backbone torsion angle
[113] Support vector regression solvent accessibility
[122] Support vector regression residue depth
[107] Logistic regression protein secondary structure
[138] Support vector regression disulfide connectivity
[119] Linear regression solvent accessibility
[124] Support vector regression residue depth
[104] Linear regression protein secondary structure
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2.2.4 Gene Expression Analysis

Gene expression analysis studies and analyses a set of genes to understand the transcrip-

tional behaviour of cell functions. It is widely used in order to subclassify the diseases,

identify the key genes, and elucidate the biological pathways [141]. This section presents

widely used quantitative prediction research studies in gene expression analysis from the

selected literature (Table 2.4).

Microarray experiments produce gene expression profiles that contain the expression

levels of thousands of genes. Cell activities in an organism can be observed by using

these profiles. When there is a substantial change occurs between the profiles of an

organism, this may be a sign of disease. In their proposed work, Raghava and Han

studied an SVR based method to correlate and predict gene expression level from amino

acid composition of a protein [142].

These gene expression data sets are huge in size and inevitably contain missing values

due to the fact that resolution may be insufficient or image may be corrupted. Wang et

al uses SVR as an impute method to predict the missing values that reside within the

one row of certain microarray gene expression profile [143].

The microarray technology can also be used to reveal phenotypes of patients quantita-

tively from their gene expression profiles as well as disease studies. Fitting quantitative

phenotypes becoming important in bioinformatics as it is often hard to classify samples

into proper classes where high variability of individuals exists. Quantitative phenotype

Table 2.4: Selection of widely used quantitative prediction research studies in gene
expression analysis.

Ref. Method Application Domain
[144] Support vector regression gene expression analysis
[145] Support vector regression quantitative phenotypes
[146] Gaussian process regression gene expression analysis
[147] Logistic regression molecular pathway identification
[143] Support vector regression gene expression analysis
[148] Least angle regression cancer studies
[149] Logistic regression cancer studies
[142] Support vector regression gene expression analysis
[150] Logistic regression cancer studies
[151] Support vector regression cancer studies
[152] Support vector regression expression noise
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prediction from genotype or gene expression data can be required particularly when

studying the complex common diseases in order to classify samples into their correct

classes. Gui et al proposed a study related to the survival of patients that suffers from

cancer after they took the chemotherapy. This study uses Least Angle regression to

identify genes during the course of survival of the patient [148]. Levin et al used a

Logistic regression based approach in order to identify chromosomal regions that have

significant changes in gene expression in human tumors [149]. Chen et al proposed a

new regularized least squares SVR for gene selection and used many data sets related

to cancer [151]. Bielza et al proposed a Logistic regression method without a penalty

term and applied this method to several microarray data sets for the purpose of cancer

classification [150].

Guzetta et al used SVR to fit quantitative phenotypes from genotypes and used L1/L2

regularization to output the optimal weight vector [145]. Gene and pathway selection is

also a challenging task in bioinformatics, in particular when they are indicative of some

sort of disease. Zhang et al identifies molecular pathway with subtypes of disease using

Logistic regression from gene expression profiles [147].

Some other regression based methods proposed as well in the literature that related

to issues with microarray data. Liu et al estimate replicate time shifts caused by the

biological development time of each replicate using Gaussian process regression from

time-course gene expression data sets [146]. Myasnikova et al used SVR to address

the estimation of the embryo age of a Drosophila melanogaster according to its gene

expression pattern [144]. Dong et al proposed a predictive model to predict expression

noise of a gene using SVR [152].

2.3 Regression-based Methods

There are many regression methods reported and applied to the various problems in

bioinformatics and systems biology. In this section, commonly used ones in separate

application domains, are going to be explained (Table 2.5).

Linear regression is one of the fundamental and extensively used regression methods in

statistics. It uses the least squares method as an objective function to minimise the

sum of residuals which is squared difference between the dependent and independent
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real-values of the given data set. The method seeks to capture the relationship between

multiple predictor variables and the response variable. The input and output variables

are mostly denoted with capital X and Y, respectively. When only one dependent

variable is used then this is a simple Linear regression. However, the models are mostly

constructed in real-world problems with multiple descriptors. This is called the Multiple

Linear regression. It should be stated here that the both cases involve only one response

variable Y. The case of multiple response linear regression is called the Multivariate

Linear regression.

Quantile regression is a regression method proposed as an alternative to commonly

used Linear regression that estimates a conditional mean [153]. The method aims at

estimating conditional percentile functions rather than a conditional mean. The main

advantage of Quantile regression is that it is more robust against outliers as compared

to the Least squares estimation.

Random Forests are a cohort of decision trees from randomly generated repeated samples

of a training data set [154]. As a computational method, the Random Forests can

represent information related to conditional relations between variables and can be used

not only for classification tasks, but also for regression tasks as well [155]. Its regression

ability is reported to yield a high-prediction accuracy as compared to its counterparts

for omics data.

Least angle regression is a recent computationally efficient model selection algorithm

derived from the traditional forward selection methods and different from them as it

is less greedy but more useful [156]. LARS has three main properties. The first is it

can implement Lasso and calculate all possible Lasso estimates for a given problem in a

much faster way. The second is it can implement Forward Stagewise Linear regression

and provides similar results as compared the Lasso and Stagewise. The third is it can

provide a simple approximation for the degrees of freedom of a LARS estimate.

The Support Vector Machines, initially formulated by Vapnik based on statistical learn-

ing theory [157] aiming at structural risk minimisation, can be used for both continu-

ous (Support Vector Regression) or discrete (Support Vector Classification) estimation

problems. In comparison with Linear regression, SVR ensures high generalizability and

performance as it is capable of tolerating errors up to a value from the expected response

variables.
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2.4 Feature Selection for Quantitative Prediction Models

Feature selection methods and application domains will be discussed in the following

subsections to highlight the importance of feature selection in the study of bioinformatics

and systems biology.

Feature selection aims to find the least number of dimensions (features) that contribute

most to the performance and accuracy of a model. It is frequently used for data prepro-

cessing. Feature selection helps simplify a model and alleviates the effect of the curse

of dimensionality problem. It also helps better generalization and interpretation of the

model. Guyon and Elisseff [158], in their methodological paper, have focused on two

categories of feature selection methods, namely feature ranking methods and variable

selection methods. This research study focused also on these two categories of feature

selection as their wide use in the application domains of bioinformatics and systems bi-

ology. In feature ranking methods, the features are ranked by a metric. These methods

apply a ranking criterion to distinguish between the variables. Those who have a good

predictive power in the prediction performance of the model are ranked as top features.

On the other hand, subset selection methods search for an optimal subset of features

that contribute most to the accuracy. One disadvantage of feature selection methods

is that an additional computational cost is involved in the preprocessing stage of the

model building process. A subset of features needed to be searched and ranked in the

feature space to get rid of irrelevant features. Therefore, feature selection methods are

more applicable when the data set is high-dimensional and the model suffers from the

effect of curse-of-dimensionality. Nevertheless, interestingly, feature selection methods

themselves can be sensitive to curse of dimensionality [159]. Many of them can be prone

to overfitting. There are studies related to improve the feature selection process, partic-

ularly to reduce the curse-of-dimensionality effect [160]. Therefore, one main advantage

of a feature selection method amongst others is its ability to avoid from overfitting and

its resistance against the effect of curse-of-dimensionality.

It should be noted here that the main concern of this thesis is to propose a predictive

modelling approach for the studied bioinformatics problem. This section is added as

the feature selection is the preprocessing stage of the computational predictive models

that involve high-dimensionality. Rather than the supervised feature selection methods
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commonly appear in high-dimensional bioinformatics applications, an unsupervised fea-

ture selection is used throughout this thesis. Compared to supervised feature selection

methods, unsupervised feature selection methods do not require the target variables in

the selection process. Therefore, they are less likely dependent on the target variables

and more data samples - even their target variables are absent - can be used in searching

for relevant information.

2.4.1 Application Domains

Scherbart et al [44] used a Neural Network approach for mass spectrometry prediction

by peptide prototyping. In the proposed work, a feature selection is applied heuristically

and the feature space is formed of 18 features.

In the work of Chen et al [114], a sequence based prediction of relevant solvent accessi-

bility is presented and included a custom-selected subset of features based on Pearson

correlation coefficient.

Zhang et al [122], proposed a method that predicts sequence-based residue depth using

evolutionary information and predicted secondary structure. High-dimensionality of the

feature set is addressed using a correlation-based feature selection.

In Compos et al [55], dense molecular markers and pedigree in the regression model

to predict quantitative traits is presented. The model uses Bayesian regression coupled

with Lasso to fit marker affects in the regression model from a large number of markers.

In the work of Liu et al [51], a multi-task learning method for cross-platform siRNA

efficacy prediction is presented. L1-norm regularization (Lasso) is used to control the

features learned in the multi-task learning process.

In the proposed work of Guzetta et al [145], the model fits quantitative phenotypes from

genotypes and used L1/L2 regularization to output the optimal weight vector.

Demir-Kavuk et al [81] used a two-step regularization procedure to predict typical pep-

tide problems provided from an online prediction contest. They used Lasso regularization

for the feature selection stage of their model building process and subsequently followed

Ridge regularization for the prediction stage with the use of these selected features.
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In the work of Mordelet et al [53], stability selection for regression-based models of

transcription factor-DNA binding specificity is presented. The features are based on the

occurrences of k-mers at different positions in transcription factor binding sites. As the

generated feature set from k-mers is formed of thousands of parameters and leads to

overfitting in the training data, Lasso regression is used as a feature selection method.

Uslan and Seker [26], [27] proposed a support vector-based fuzzy system to predict

binding affinity of peptides for various peptide data sets and mouse class I MHC alleles.

To reduce the dimensionality of the large feature set that is about 5500 features, an

unsupervised feature selection approach is used.

Chen et al [56] proposed a work that integrates different human omics data sources to

prioritize candidate genes whose genetic bases are completely unknown. Lasso is used

as to filter the irrelevant data sources by zeroing the weight of them. The remaining

data sources are considered to as good data sources and used in computing candidate

gene scores.

In Dong et al [152], variability in gene expression that can be used in predicting stochastic

noise level is presented. This work uses the feature selection based on several criteria of

mutual information [161] to select the most relevant features in predicting noise level.

2.4.2 Methods for Feature Selection in Biological Domains

In the previous section the applications in different application domains in bioinformat-

ics and systems biology are overviewed. This section focuses on the feature selection

methods used in these applications. As can be clearly seen from Table 2.6, the fea-

ture selection methods mostly used are the Lasso and correlation-based methods. This

section describes them briefly.

The L1 penalty of Lasso regression eliminates irrelevant features and helps to decrease

the size of the feature set [162]. The model output is often presented as a linear function

of inputs. The regression aims for estimating the coefficient vector based on the least

square error and the coefficient weight absolute values. At the end of the regression

process, many of the absolute value of coefficient weights becomes zero. The features
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Table 2.6: Selection of widely used feature selection methods in bioinformatics and
systems biology.

Ref. Method Application Domain
[44] Heuristic Proteomics
[114] Correlation-based Systems Biology
[122] Correlation-based Structural Bioinformatics
[55] Lasso Genomics
[51] Lasso Systems Biology
[145] Lasso Genomics
[81] Lasso Systems Biology
[53] Lasso Genomics
[26] Unsupervised Systems Biology
[27] Unsupervised Systems Biology
[56] Lasso Genomics
[152] Correlation-based Gene Expression

having zero coefficients are eliminated as they do not have any effect on the output value

of the regression process. The objective function of the Lasso regression given as follows:

min
λ

2
‖w‖1 +

n∑
i=1

(yi − wTxi)2 (2.1)

where lambda is the regularization parameter denotes the trade-off between fit and sparse

of inputs and w denotes the vector of regression coefficients. Based on the penalty term,

as the lambda value increases the L1 norm of weight vector becomes sparser. On the

other hand; as the lambda value approaches to zero, it becomes more like ordinary least

squares. In the end, the solution involves zeroing out some elements of w so that a

reduced feature set is obtained. Therefore, effective setting the value of the lambda

parameter is important. One disadvantage of Lasso regression is that the perturbations

within the training data set can negatively affect the feature set to be produced.

The correlation based feature selection is based on the linear correlation coefficient r

[163], [164]. This approach filters the redundancy within the feature set yielding a

subset of features. The linear correlation coefficient r, for the x and y variables, is given
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as follows:

r =

∑
i=1(xi − xi)(yi − yi)√∑

i=1(xi − xi)2
√∑

i=1(yi − yi)2
(2.2)

where xi and yi denote the mean values of x and y, respectively. The value of r is in the

interval between -1 and +1. The strong correlation between x and y variables indicated

by the higher absolute values of r. A full correlation means, the value of r is -1 or +1. A

zero correlation means, the value of r is 0 indicating x and y are completely independent

from each other. In the correlation based feature selection, each feature can be ranked

based on the r value between the feature value and the actual output value.

2.5 Fuzzy Systems in Bioinformatics

Bioinformatics and medicine research studies generate large data sets. These data sets

often involve biologically meaningful information. They are also uncertain and imprecise

to some extent due to their characteristics of being complex, high-dimensional and non-

linear. Computational methods are therefore required to handle and analyse this kind of

data. One such method is the fuzzy systems (extensively studied in the next chapter),

a computational tool capable of handling and minimizing the levels of uncertainties and

imprecision. Fuzzy logic is utilized in many application domains of bioinformatics [165],

[166].

2.6 Final Remark

In this chapter, the state-of-the-art of the quantitative prediction in the research studies

of bioinformatics and systems biology are reviewed. As one can see in the review,

variety of regression methods are used and applied in this manner. Regression methods

that are commonly used in various application domains are briefly explained. The

availability of the quantitative predictive solutions or those proposed as a tool that are

covered in this review are presented in Table 2.7. The high-dimensionality is another

concern when building the models. Feature selection methods are highly utilised in
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order to eliminate such concerns. It has been noticed that in the context of regression-

based models, Lasso and correlation are the feature selection methods that commonly

used. It should be noted that, accuracy is much important than the computational

efficiency in bioinformatics research studies. However, computational efficiency may

become important in order to conduct the data analysis in the case of limited computer

hardware availability.

The literature suggests that the number of research studies in the quantitative prediction

are less than those studies in classification. However, an increasing trend in the number

of quantitative prediction studies is observed during the course of period (from 2001

onwards). Since it is believed that many quantitative bioinformatics problems remain

an open issue, more research efforts need to be directed towards such problems.

The literature review showed that support vector regression is the method of choice

in various application domains of bioinformatics. To our best knowledge, there are no

methods suggested in bioinformatics literature benefiting from the collective strengths

of fuzzy logic and SVR. Therefore, this research study considers the cooperation of fuzzy

systems with the support vector based systems in order to provide generalizability as well

as minimizing the levels of uncertainties in predicting the affinities of peptide bindings.
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Chapter 3

Background Theory

3.1 Introduction

Bioinformatics and systems biology data sets often involve uncertainty. There is no

guarantee for a bioinformatician that the data set received is fully reliable. The raw

data produced could be unreliable and erroneous in some degree even though thorough

quality control steps were applied [167]. Furthermore, quality steps performed may not

be adequate to this data set prior to initiating the bioinformatics analysis. In that sense,

fuzzy systems can provide mechanisms to handle and minimise such uncertainty/unre-

liability for a better judgement and increase statistical power on the data sets that is

dealt with.

Firstly, in Section 3.2, fuzzy logic systems are presented. Sections 3.3 and 3.4 are

concerned with the structure and parameter identification of the fuzzy modelling. SVM-

based regression, presented in Section 3.3, and cluster analysis, presented in Section 3.4,

provide background information about the presented methods. Feature selection that is

used to decrease the dimensionality of feature space is discussed in Section 3.5. Finally,

Section 3.6 provides measurements used to assess the performance of the predictive

models.

36
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(a) A discrete type-1 fuzzy set.

(b) A continuous type-1 fuzzy set.

Figure 3.1: A type-1 fuzzy set.
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3.2 Fuzzy Logic Systems

Zadeh’s work in 1965 introduced a new dimension on the thinking upon the classical

(crisp) set theory [168]. This new dimension is the uncertainty. Classical binary (two-

valued) logic considers membership of the objects to a set in that an object could be a

member or not a member of the set. Fuzzy sets bring a new dimension by relaxing the

sharp boundary that exists between membership or non-membership. Therefore, it is

important to understand the relationship between crisp and fuzzy sets.

The uncertainty is common in real-life, it is very hard for humans to consider everything

in the sense that it is crisp (true or false). There are always thoughts beyond the

two-valued logic especially when the interpretations are based on information that is

incomplete, imprecise, unreliable or vague [169]. Humans express thoughts in their

natural language with the use of linguistic words. Due to this fact, Zadeh introduces the

linguistic variable [170] as a computing term in contrast the numerical variables which

the computing is based on.

3.2.1 Type-1 Fuzzy Logic Systems

Uncertainties are often handled with a rule-based fuzzy system, namely a type-1 fuzzy

system, based on a set of fuzzy sets. Fuzzy sets extends the concept of the sharp

boundary that exists between membership or non-membership of elements in classical

sets by enabling them to have membership degrees in the interval of 0 and 1.

A type-1 fuzzy system contains four main components: fuzzification, rule-base, inference

engine and defuzzification. In the fuzzification stage type-1 fuzzy sets are generated. A

type-1 fuzzy set can be either discrete or continuous. The former has discrete values

of xi where each xi associated with a membership grade ui (3.1) and the latter has

continuous values of x and its associated membership grade u (3.2). A type-1 fuzzy set

is illustrated in Fig. 3.1.

A =
u1
x1

+
u2
x2

+ ...+
un
xn

=
n∑
i=1

ui
xi

(3.1)
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A =

∫
x

u

x
(3.2)

Among different fuzzy systems, there are two models widely used in the literature,

namely Mamdani fuzzy systems [171] and Takagi-Sugeno-Kang fuzzy systems [6], [7].

The former can be designed as linguistic models and the latter as approximate models.

Both models are formed of a set of if-then rules with the identical antecedent structures.

However, consequent structures of these models are different.

Mamdani fuzzy systems are first designed as a set of linguistic rules obtained from

human knowledge to control a steam engine and boiler combination. Antecedent and

consequent structures of a Mamdani fuzzy rule is a fuzzy set. A typical Mamdani fuzzy

system is illustrated in Fig. 3.2. To keep it simple, this fuzzy model has formed of two

fuzzy rules where each rule comprised of two inputs (x1 and x2) and a single output

(y). A Mamdani fuzzy rule can be defined as an IF-THEN proposition and can have the

form of

IF x1 is A1 and x2 is A2 THEN y is B (3.3)

where A1, A2 and B are the fuzzy sets. In the Mamdani model, each rule generates a

consequent fuzzy set and then the final output fuzzy set is obtained by aggregating all

these fuzzy sets using an aggregation method (e.g. max). The final output is obtained

from the aggregate output fuzzy set. This process called defuzzification, where a fuzzy

quantity is converted into a precise quantity. Several defuzzification methods suggested

in the literature such as the center of maximum, the mean of maximum, and the center

of area in order to resolve a single scalar quantity from the aggregate output fuzzy set

[172]. One commonly used method to defuzzify fuzzy output function is the center of

area (also called center of gravity) method [173], [174]. Although the center of area is

computationally inefficient as compared to other two methods, it is the most applied

method [175]. In this method, centroid of the aggregate output fuzzy set is calculated

to find out a single output value.

The TSK fuzzy models have a linear function in the consequent part, which makes them

different from Mamdani fuzzy models in which the consequent part is constructed using
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membership functions. TSK fuzzy systems have been shown to form computationally

more efficient model as they can work well with linear methods [176], [177], [178]. More-

over, optimization and adaptive methods are also more applicable to TSK fuzzy systems

as both linear and non-linear optimisation techniques can be used to train such a sys-

tem, which generally makes its construction faster. However, the design and training

of the consequent part of the TSK fuzzy system is still open problem due to inefficient

linear least square estimations. In addition, number of parameters to be trained for

TSK Fuzzy systems is less than those in the Mamdani fuzzy systems. This increases the

complexity of the Mamdani fuzzy system exponentially as number of input variables get

higher, which is the case in most of biological system modelling problems.

The bioinformatics problem concerned in this thesis is related to the quantitative predic-

tion of peptide binding affinity aiming at finding approximate numeric values of peptide

bindings. As the regression analysis are widely used for predicting the binding degree

of new peptides, it is considered to focus on designing fuzzy systems as TSK fuzzy sys-

tems. In addition, as relatively higher number of input variables is required to predict

the peptide binding affinity, TSK fuzzy system is considered in order to avoid increasing

computational complexity of the predictive model. Figure 3.3 shows a typical TSK fuzzy

model with two fuzzy rules, two inputs (x1 and x2) and a single output (y). The rules

are defined as conditional statements and can have the form of

IF x1 is A1 and x2 is A2 THEN y = f(x1, x2) (3.4)

where A1, A2 are the fuzzy sets and y = f(x1, x2) is a linear function in the consequent

part. This function can be defined as

f(x1, x2) = a0 + a1x1 + a2x2 (3.5)

where a0, a1, a2 are the coefficients of input parameters (x1 and x2). In the TSK model

each rule generates a crisp output and then the final output is obtained by aggregat-

ing all rule outputs. This process is called defuzzification, and the weighted average

defuzzification value Y is computed as follows:

Y =

r∑
i=1

fiyi/

r∑
i=1

fi (3.6)
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where f is the firing level of the fuzzy rule and its value is determined by using a

conjunction operator, namely t-norm operator, which would usually be minimum or

product, involved in the inference.
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Figure 3.2: Mamdani fuzzy model with two inputs and single-output.
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Figure 3.3: TSK fuzzy model with two inputs and single-output.



Background Theory 44

3.2.2 Type-2 Fuzzy Logic Systems

Type-2 fuzzy sets, which were introduced by Zadeh [179], have been shown to help better

model a non-linear system and minimize the effects of uncertainties in rule-based fuzzy

logic systems [180], [181], [182], [183], [184], [185]. Type-2 fuzzy sets are an extension

of type-1 fuzzy sets. The membership functions that characterize type-2 fuzzy sets are

themselves fuzzy. Mendel and John further improved the theoretical background of

type-2 fuzzy sets and proposed a term-set to define them more precisely [186], [187],

[188]. A typical type-2 fuzzy logic system structure can be shown in Figure 3.4. The

definition of a type-2 fuzzy set (adopted from [186]) can be given as: A type-2 fuzzy set,

denoted Ã, is characterized by a type-2 membership function µÃ(x, u), where x ∈ X and

u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), µÃ(x, u) | ∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]} (3.7)

in which 0 ≤ µÃ(x, u) ≤ 1. For the continuous universe of discourse, the type-2 fuzzy

set can be expressed as:

Ã =

∫
x∈X

∫
u∈Jx

µÃ(x, u)/(x, u), Jx ⊆ [0, 1] (3.8)

and for the discrete universe of discourse, the type-2 fuzzy set can be expressed as:

Ã =
∑
x∈X

∑
u∈Jx

µÃ(x, u)/(x, u), Jx ⊆ [0, 1] (3.9)

where
∫ ∫

and
∑∑

denote union over all admissible x and u, respectively.

Interval type-2 fuzzy logic systems are practical and widely used as the computations

associated with the interval type-2 fuzzy sets are manageable when compared with

the computational complexity of general type-2 fuzzy sets (general T2-FS) [187], [189].

Three-dimensional representations of general type-2 fuzzy set and interval type-2 fuzzy

set are depicted in Fig. 3.5 and Fig. 3.6, respectively.

When the type-2 membership function, (i.e., secondary membership function) is an

interval set then type-2 fuzzy logic system becomes an interval type-2 fuzzy logic system

[190]. All the secondary grades µÃ(x, u) equal to 1 for an IT2-FS. IT2-FS can still be

expressed as a special case of the general T2-FS. For the continuous universe of discourse,
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the interval type-2 fuzzy set can be expressed as:

Ã =

∫
x∈X

∫
u∈Jx

1/(x, u), Jx ⊆ [0, 1] (3.10)

and for the discrete universe of discourse, the interval type-2 fuzzy set can be expressed

as:

Ã =
∑
x∈X

∑
u∈Jx

1/(x, u), Jx ⊆ [0, 1] (3.11)

Figure 3.7 shows a typical representation of an interval type-2 fuzzy set. The bounded

region is the footprint of uncertainty (FOU), which represents the blurring of a type-1

membership function. The FOU defines the uncertainty of an IT2-FS as:

FOU(Ã) =
⋃
x∈X

Jx (3.12)

where
⋃

denotes the union of all primary memberships. Two type-1 fuzzy sets that

bound FOU are the lower and upper membership functions. The lower membership

function is associated with the lower bound of FOU and the upper membership function

is associated with the upper bound of FOU.

Figure 3.4: Type-2 Fuzzy Logic System.
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Figure 3.5: Example of a general type-2 membership function.

Figure 3.6: Example of an interval type-2 membership function.
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Figure 3.7: Interval Type-2 Fuzzy Set. UMF: upper membership function; LMF:
lower membership function. The bounded region is called a footprint of uncertainty.

The output is an interval type-1 fuzzy set and represented by only left (yl) and right

(yr) end points:

y = [yl, yr] (3.13)

y =

∫
f1∈[f1,f1]

...

∫
fr∈[fr,fr]

1/

r∑
i=1

fiyi

r∑
i=1

fi

(3.14)

and the overall output can be calculated as:

Y =
yl + yr

2
(3.15)

The TSK fuzzy model as discussed previously can be extended to its interval type-2

counterpart [191]. In this case, interval-valued fuzzy sets are used for antecedents, and

a crisp output is used for the consequent part of the fuzzy rule. The fuzzy rule with two
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inputs (x1 and x2) and single output (y) for a TSK fuzzy model has the form of

IF x1 is Ã1 and x2 is Ã2 THEN y = f(x1, x2) (3.16)

where Ã denotes an interval type-2 fuzzy set and y = f(x1, x2) is a linear function in

the consequent part and can be defined as

f(x1, x2) = a0 + a1x1 + a2x2

where a0, a1, a2 are the coefficients of input parameters (x1 and x2). The interval type-2

membership functions µÃ(x) are used for the antecedent part of the fuzzy rule as follows:

µÃ(x) = [µ
Ã

(x), µÃ(x)] (3.17)

The firing strengths are determined by using the implication operator. This operator is

commonly chosen as minimum or product t-norms in the inference engine. The firing

strengths, computed using the product t-norm, can be in the form of

f = µÃ(x1) ∗ µÃ(x2) (3.18)

f = µ
Ã

(x1) ∗ µÃ(x2) (3.19)

The defuzzified output can be computed by the Karnik-Mendel algorithms [192], [193],

[194] with the steps involved from (3.13) to (3.15).
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3.2.3 The Structure and Parameter Identification of a Fuzzy Model

This section presents the structure and parameter identification for two types of fuzzy

models. In the next subsection, the methods used in order to identify parameters of a

type-1 fuzzy system are described. In subsection 3.2.3.2, the approaches to initialize the

parameters for type-2 fuzzy systems are presented.

3.2.3.1 Identification of Parameters for Type-1 Fuzzy System

For construction of rule-base and membership functions to automate the rule-based fuzzy

system, clustering based methods have been commonly used, in particular, for type-1

fuzzy systems [195], [196], [197], [9], [198]. Cluster analysis can be used to construct

fuzzy rule-base and design membership functions. The clustering concept in relation to

the rule-base extraction is briefly depicted in Fig. 3.8. The parameters of the MFs are

obtained from the partitions. Each partition provides information such as centroid of

a cluster, standard deviation of data objects within the cluster, all which can be easily

used to derive membership functions.

As fuzzy sets are fully characterized by their membership functions, it is important to

determine a set of appropriate membership functions for construction of a rule-based

fuzzy logic system. Once the fuzzy sets have been established, the next step is to

associate them with their membership functions. A membership function may come

in many shapes such as triangular, trapezoidal, Gaussian, general bell, and sigmoidal.

Some of membership functions that characterize fuzzy sets are widely used because of

the ease of determining the parameters that specify them. It has been reported that

the shapes of membership functions can effect the fuzzy inference in a rule-based fuzzy

system [199] and the shape of if-part fuzzy set has been found to effect fuzzy logic systems

that approximate continuous functions [200]. In addition to the shape of membership

functions, values of the parameters used to design membership functions are equally

important as they highly effect performance of the fuzzy logic systems.

The premise parameters of a rule-based fuzzy system are often non-linear in nature

[201]. To ease the structure identification process, sample probability distributions were

suggested in order to identify parameters of membership functions of input variables
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using the centres of cluster-like regions [202]. On the other hand, it is a common practice

to use an MF shape with a simpler representation and easier implementation [203].

The consequent part of a TSK fuzzy model is usually determined by the estimation

of parameters of the linear regression models [201]. In order to find the consequent

coefficient parameters defined in the linear regression model the least squares approach

is commonly used. The linear regression model can be expressed as:

Y = LW (3.20)

W =


f1i fix

1
i1 · · · fix

1
ik

...
...

...
...

fni fix
n
i1 · · · fix

n
ik

 (3.21)

L =
[
a10 a11 · · · a1k · · · an0 an1 · · · ank

]
(3.22)

where W is the weighted matrix of inputs and n is the number of input-output data

pairs of the training data set; and L represents the unknown regression coefficients. The

least squares method minimises the squared error E in order to approximate the linear

function determined:

E =
n∑
i=1

(yi − f(~xi))
2 (3.23)

where yi and f(~xi) are observed data and predicted data respectively, and n is the

number of samples.
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3.2.3.2 Identification of Parameters for Type-2 Fuzzy System

To our best knowledge, there is no established method addressed in the literature to

initialize the parameters of a type-2 fuzzy system. Common practice is the arbitrary

initialization of these parameters then a learning method used in order to optimize them.

The clustering approach that is used to identify the parameters for a type-1 fuzzy sys-

tem can also be considered to be used in type-2 fuzzy rule-based systems. Moreover,

improvements over existing clustering methods to be applicable to type-2 fuzzy system

may be possible. Therefore, one aim of this research study is to develop a new clus-

tering concept in order to identify the parameters of an interval type-2 fuzzy system.

The clustering methods that will be employed in this research study are described and

analysed in the consequent sections.

In a type-2 fuzzy logic system, the parameters of the membership functions are often

need to be set. In the case of the Gaussian membership function, for an IT2-FS, the

parameters of the membership functions can be uncertain. The primary membership

functions for each antecedent IT2 fuzzy set may have uncertain means and fixed standard

deviations or uncertain standard deviations and fixed means as depicted in Fig. 3.9 and

Fig. 3.10, respectively [193]. A Gaussian type-1 fuzzy set can be characterized by the

Figure 3.9: Gaussian membership function with fixed standard deviation and uncer-
tain means.
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following membership function:

µ(x) = e
− (x−c)2

2(σ)2 (3.24)

where µ(x) is the degree of membership for input variable x; and c and σ are the centre

and standard deviation that characterizes the Gaussian type-1 fuzzy set, respectively.

The bounded region of a Gaussian interval type-2 fuzzy set is often formed by the

blurring of mean or standard deviation of a Gaussian type-1 membership function [204].

In the case of blurring the mean to form an interval [c1, c2], the UMF can be expressed

as:

µ(x) =

{ e
− (x−c1)2

2(σ)2 , x < c1

1, c1 ≤ x ≤ c2

e
− (x−c2)2

2(σ)2 , x > c2

(3.25)

and the LMF can be expressed as:

µ(x) = min(e
− (x−c1)2

2(σ)2 , e
− (x−c2)2

2(σ)2 ) (3.26)

Figure 3.10: Gaussian membership function with fixed mean and uncertain standard
deviations.
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In the case of blurring the standard deviation to form an interval [σ1, σ2], the UMF can

be expressed as:

µ(x) = e
− (x−c)2

2(σ2)2 (3.27)

and the LMF can be expressed as:

µ(x) = e
− (x−c)2

2(σ1)2 (3.28)

In addition to arbitrary approach, there exists a few alternative methods suggested in the

literature for adjusting the bounded region for the interval type-2 fuzzy sets to represent

the uncertainty. In the work of Tan et al [205], once the upper MF is determined, the

footprints of uncertainty associated with the interval type-2 membership functions are

formed by varying the parameters of the lower MF. They suggested two strategies to

select the FOU associated to the MFs which are illustrated in Fig. 3.11 and Fig. 3.12.

The former strategy adjusts the FOU by varying the height of the lower MFs. The latter

strategy adjusts the height as well as the left and right end points of the lower MFs.
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Figure 3.11: FOU design by varying the height of the lower MF.

Figure 3.12: FOU design by adjusting the height, left and right-points of the lower
MF.
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3.2.4 Optimisation of Fuzzy Logic Systems

The lack of learning capability of fuzzy systems generated a research interest on learning

approaches to determine optimum values of the parameters of fuzzy logic systems in-

cluding membership functions. As previously discussed in Section 3.2.3 the construction

of a rule-based fuzzy system and its membership functions can be automatized. The

research showed that, particularly in the last two decades, fuzzy systems can be en-

hanced with learning and adaptation capabilities [8]. Neural and genetic fuzzy systems

are the two such approaches that augment fuzzy systems with learning and adaptation

methods. Neuro-fuzzy systems, the combination of neural networks and fuzzy logic, use

a machine learning algorithm to determine the parameters of a fuzzy rule-based system

by processing data samples [206], [207], [208]. The Adaptive Neuro Fuzzy Inference Sys-

tem (ANFIS), introduced in [209], is one of the most successful examples of neuro-fuzzy

systems and presents the architecture and learning principle of the adaptive networks.

Genetic-fuzzy systems, which combine the genetic algorithms [210] and fuzzy logic, em-

ploy an evolutionary learning process to automate the design of the rule-based fuzzy

system based on the search capability of the genetic algorithms [211], [212], [213], [214],

[215]. A different approach to hybridisation is the use of simulated annealing [216],

[217]. This is basically a fuzzy system augmented by an optimization process based on

a simulated annealing algorithm.

3.3 Support Vector Regression (SVR)

The support vector approach is based on the statistical learning theory (also known as

VC theory) which was introduced in the sixties [218]. The statistical learning theory,

aiming at estimation of a function from the given data set, remained theoretical until

the nineties. In the mid nineties, Support Vector Machine (SVM) learning algorithm

was proposed based on this theory, leading the theory becoming in practice [219], [220].

SVMs search for an optimal separating hyperplane from a given collection of data. Data

samples are mapped to a high-dimensional feature space so that they can be separable

with a linear hyperplane. As the mapping is non-linear, an adequate kernel function has

to be chosen. Therefore, two classes that are separated with a maximized margin from

each other, are revealed.
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SVMs not only can be used for classification but also for real-value estimation tasks as

well. The regression form of SVM is SVR [221] and has been shown to have superior

performance in many applications [222], [223], [224]. SVR uses the ε-insensitive loss

function as depicted graphically in Fig. 3.13 (figure adapted from [225]). One advantage

of using this function is that it can tolerate against noise. SVR approximates a linear

function f(x) in the following form:

f(x) = wTx+ b (3.29)

where the coefficients w and b are the weight vector and bias term, respectively. This

linear function can be constrained to the following optimisation problem:

min
1

2
‖w‖2 + C

∑
(ξ+ + ξ−) (3.30)

where ξ+, ξ− are the two nonzero slack variables in both directions. The bounded area

aims at fitting the data with an admissible parameter ε. The constant parameter C > 0

is the trade-off that it optimizes (3.30) between the complexity (flatness) of the function

and toleration up to the distance value of data samples outside the bounded region

(slack variables) which deviate greater than ε. The data samples that are outside of

the bounded zone within the distance of slack variables are the support vectors. The

minimisation function (3.30) is subject to:

y − (wTx+ b) ≤ ε+ ξ+

(wTx+ b)− y ≤ ε+ ξ−

(ξ+, ξ−) ≥ 0

(3.31)

The constrained optimisation problem (3.30) and (3.31) can be solved with the method

of standard dualization. Dual formulation reformulates the optimisation function using

the Lagrange multipliers with the help of a dual set of parameters. After a set of steps

(for details see [226]), dual optimisation problem yields to the following solution:

f(x) =
n∑
i=1

(α− α∗)K(xi, x) + b (3.32)
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Figure 3.13: ε-insensitive loss function for a linear SVM.

where α and α∗ are Lagrange multipliers; and the kernel function is represented by

K(xi, x).

The kernel function can map the non-linear input space to the high-dimensional feature

space so that a linear solution may be possible. One common problem in the support

vector based approach is that it is not easy to determine which kernel function can be

used [227]. The choice of a kernel function may depend on several factors, particularly

depends on the data set that is being used. Once the kernel function is determined, the

parameters C, ε and the kernel parameter (depending on the chosen kernel function)

are required to be set properly. Hence, a proper set of parameters can lead a suitable

SVR solution that can best model the data set in use. Once the parameters are selected

properly, one can expect a better generalization performance from the constructed SVR

model.

Another common limitation of the support vector approach is its efficiency for very large

data sets. It can be very hard to train such data sets as of the availability of the millions

of support vectors. The training for very large data sets as well as the fixing of kernel

function, still remain open research issues.

3.4 Revealing Clusters in Feature Space

The clustering is an exploratory data analysis method that groups objects into sets hav-

ing similar characteristics. Cluster analysis helps pre-process the data for an additional

analysis, arrange and determine the characteristic prototypes of the data, identify closely
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connected regions of data, and visualize the data [228]. As clustering is unsupervised

method, it is different than the classification. Given a data set D = x1, x2, x3, . . ., xn

in X, the objective is to learn a function f : X → c1, . . ., ck that each cluster c in c1, . . .,

ck is formed through placing each object xi to its closest group. The function f maps

X to a feature space H as in the form of f : X → H. Therefore objects within the same

group have a higher cluster similarity than the objects in different groups.

Although the clustering concept has been studied for many years, there does not seem

to be a definite taxonomy of the clustering methods. Several taxonomies, most of which

are common, have been given in the literature [229], [230], [231]. In general, clustering

methods can be classified into two main types. They are hierarchical clustering and

partitional clustering [232]. Hierarchical clustering methods organise data into a nested

sequence of partitions and provide a graphical representation called dendrogram. As op-

posed to the nested sequence, partitioning clustering methods provide separate clusters

for each group of objects in the data [233].

3.4.1 K-means Clustering

K-means (also known as Hard c-Means [234]) clustering is one of the basic methods

in clustering [235]. It begins with arbitrarily set initial cluster centres. Then in each

iteration the nearest cluster for each object is computed and the object is assigned to

the nearest cluster. After all objects are assigned to the clusters, new cluster centres are

computed. This process continues until a stopping criteria (e.g., mean squared distance)

is satisfied.

There is no simple and generally good method for determining the number of clusters

and the initial placement of centers [232], [236]. The cluster centres converge sensitive

to different initial points [237]. A general strategy for the method of initialization is

to run the algorithm with random initial centres [232]. The initial centers may also be

chosen by taking a random sample of data points [238]. There are number of variants of

k-means algorithm, due to its simplicity and flexibity, Lloyd’s algorithm is widely used

[239].
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3.4.2 Fuzzy c-Means Clustering

Fuzzy c-Means clustering is an expanded version of the k-means clustering and useful

in analysing data sets in which the boundaries among the clusters are uncertain. In the

nature of fuzzy logic, each point has a degree of membership to clusters rather than

belonging to only one cluster. The concept of fuzzy c-partitions was first introduced

by Ruspini [240] and then followed by Bezdek who developed fuzzy c-Means clustering

[241], [242]. FCM partitions the data set into various clusters by assigning a degree of

membership for each data object to all the clusters. The FCM algorithm, introduced

by Bezdek [241], is one of the widely used methods in fuzzy clustering. Rather than

assigning each data object into only one cluster as in the k-means, fuzzy c-Means relaxes

this crisp approach by giving more degrees of freedom to the data object in the data

set by ensuring that the data object belongs to all the clusters with varying degrees of

membership. The clustering process iteratively calculates cluster centres and degrees

of memberships of each data point until an objective function is satisfied. The FCM

algorithm can be summarized as follows.

The fuzzy c-means clustering model attempts to obtain partitions (V) for the unlabeled

object data in Rp. The data X = x1, x2, ... , xn represents the data objects where each

data object is a vector in Rp. The fuzzy c-partition of the data set U = [uij ] is a c× n

membership matrix where uij is the degree of membership of the jth sample for the ith

cluster; n is the number of samples and c is the number of clusters. Then, the sum of

membership values of an object should be equal to one.

c∑
i=1

uij = 1,where ∀j = 1, 2, ..., n (3.33)

A distance measure dij can defined by

dij = ‖xj − ci‖ (3.34)

Measuring the distances between data objects and cluster centers in any inner product

norm, and a membership of data objects with a weight exponent minimizes the objective
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function, Jm,

Jm(U, V ) =
c∑
i=1

n∑
j=1

uτijdij
2, τ ∈ [1,∞) (3.35)

where τ is regarded as fuzzification factor. The cluster centers can be updated by using

the membership degrees as given in (3.36)

ci =

n∑
j=1

uτijxj

n∑
j=1

uτij

(3.36)

The membership values of each data object can then be found by using the following

mathematical expression

uij =
1

c∑
k=1

(
dij
dik

) 2
τ−1

(3.37)

The process continues until the objective function is minimized or the number of itera-

tions reaches a preset value.

FCM has been further analysed, improved, and applied and many variations of the algo-

rithm have been developed. Nascimento et al proposed a model, named fuzzy clustering

multiple prototype, that defines the underlying fuzzy c-partition in such a way that

the membership of an object to a cluster expresses a part of the cluster’s prototype

reflected in the object [243]. FCM is extended to include data sets whose feature values

are continuous random variables [244]. Furthermore, FCM with the added possibilistic

approach may suggest more accurate results [245], [246], [247], [248], and dynamic FCM

addresses and analyses the dynamic data environments [249].

In relational data clustering, object-data is not available and the clustering process is

performed based on a similarity/dissimilarity relational data. One of the first examples
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of fuzzy relational clustering is proposed by Roubens [250] as in the form of fuzzy non-

metric model (FNM). This model assumes a dissimilarity relation R satisfying three

constraints: rij > 0 , rii = 0 and rij = rji. Hathaway and Bezdek reformulated the

optimisation function Jm [251]. The reformulation of the optimisation function Km

eliminates the use of protoype means. Km takes a form which is dual of Jm when the

pairwise distances of object-data define the relation matrix R.

Km =
∑

(
∑∑

(uτiju
τ
ik‖xj − xk‖

2)/(2
∑

uτit)) (3.38)

The optimisation function can be redefined as

Km =
∑

(
∑∑

(uτiju
τ
ikrkj)/(2

∑
uτit)) (3.39)

where rkj = ‖xj − xk‖2.

The relational fuzzy c-means (RFCM) clustering model attempts to obtain partitions for

the relational data D=[Dij ] where D consists of distances some data set X. The number

of clusters is fixed to c, where 2 ≤ c ≤ n. The fuzzification factor should be τ>1 and

partition matrix U0 ∈Mfcn is initialised.

The c-mean vectors vi = vi
t can be updated by using the membership degrees U = U t,

for 1 ≤ i ≤ c:

vi =
(U τi1, ... , U

τ
in)

(U τi1 + ...+ U τin)
(3.40)

and then calculate dik in (3.41) for 1 ≤ i ≤ c and 1 ≤ k ≤ n,

dik = (Rvi)k − (vTi Rvi)/2 (3.41)

The partition matrix U t is updated to U = U t+1 ∈Mfcn that satisfies (3.42) and (3.43),

for each k=1, ..., n. If dik>0 for all i, then (3.42) otherwise (3.43) that means at least
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one dik = 0.

Uik =
1

( dikd1k
+ dik

d2k
+ ...+ dik

dck
)1/τ−1

(3.42)

Uik > 0 if dik = 0, Uik ∈ [0, 1],

and (Uik + ...+ Uck) = 1. (3.43)

The process continues until the objective function Km is minimized (3.38 or 3.39) or the

number of iterations reaches a preset value.

3.4.3 Hierarchical Clustering

Hierarchical clustering algorithms organise data into a cluster tree or dendrogram [252],

[253]. The cluster tree is a multi-level hierarchy and set of clusters are obtained by

cutting this cluster tree at a predefined level of the hierarchy. Generally, hierarchi-

cal clustering algorithms can be divided in two main types. They are agglomerative

clustering methods and divisive clustering methods [232].

Agglomerative clustering algorithms are bottom-up type of hierarchical clustering algo-

rithms [254], [255]. It begins by finding proximity of each object relative to each other

object in the data set. The objects that are closer to each other are linked to binary

clusters. Then newly formed clusters are linked into larger binary clusters. This pro-

cess continues until all the data objects are grouped under the root node in the form

of a hierarchical cluster tree. Ultimately, the set of clusters are obtained by cutting

the dendrogram at the predefined level and all objects in the data set are assigned to

clusters determined at this level of the hierarchical tree. This process is depicted in

Fig. 3.14 where an example dendrogram groups 9 data objects into clusters at different

levels [256]. The lines show the levels and the data objects in the same branch of the

dendrogram below the line are grouped into clusters at that level.
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Figure 3.14: An example dendrogram.

Divisive clustering is a top-down type of hierarchical clustering and it moves in the

opposite way. It begins with a root cluster that the entire data set belongs to, and it

progresses by dividing clusters into two in each level. This process continues until leaf

clusters, each of which contains one data point, are obtained. Clustering n data points

in a data set requires 2(n−1)−1 possible binary divisions [229]. In divisive clustering,

the computational cost is high, thus in practice it has no wide use as compared with

agglomerative clustering. A further discussion on divisive clustering algorithms and their

applications can be found in [229], [257].

It should be noted that hierarchical clustering can be sensitive to dimensionality as the

number of dimensions increase [258]. A fixed number of data samples might become

sparse in the high-dimensional feature space. The difference in distance or similarity

between the nearest and farthest data samples becomes relatively uniform or approaches

zero as the dimensionality increases [259].

3.4.4 Determining the Number of Clusters

Another concern in clustering is the quality of the partitions. Consequently, cluster

validity and ensemble methods should be considered in order to improve clustering

results. Determining optimum number of clusters is also an important part of the

cluster validity. Cluster validity is affected by the parameters in order to find out correct

number of clusters and the validation of the clusters that the data is partitioned into
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[260]. Additionally, a new model is proposed in [261] that employs validity indexing part

to determine the number of clusters for several clustering methods.

The approaches for revealing the number of clusters [262], [263], [237] are based on the

use of cluster validity indices in line with optimization methods such as particular swarm

optimization [264] and genetic algorithms [210]. Dunn’s index [265] is a common validity

index that is employed in interpretation and validation of the number of clusters for the

provided data set.

Visual assessment of cluster tendency (VAT) is a method to visually assess the cluster

tendency of a given data set [266]. The data set can be represented either as object

vectors or by numerical pairwise dissimilarity values. The objects in the data set are

reordered in the form of a matrix. The pairwise similarities/dissimilarities of data objects

are displayed as an intensity image. By observing visually darker blocks of the reordered

matrix laying on the diagonal, the number of clusters that would be in the analysed data

set is revealed. The improved VAT (iVAT) algorithm has been shown to overcome the

problems (e.g., lack of showing the cluster tendency) of VAT for some tough cases [267].

Clustering ordered dissimilarity data algorithm (CLODD) can cluster either object or

relational data and suggests clusters in the reordered relational data by recognizing the

blocky structure in the reordered data [237].

A cluster silhouette is another kind of method that helps determining the natural number

of clusters of data. This method represented as a graph and the interpretation of this

plot provides an insight information about how tightly the samples in a data set are

grouped into their respective partitions. The equation is given as follows:

si =
b(i)− a(i)

max(b(i), a(i))
(3.44)

where a(i) is the average dissimilarity of i to each of other samples in the same partition

and b(i) is the lowest average dissimilarity of i to a partition other than the which it is

assigned.

The distance measure to be used in order to find the value of the dissimilarity can be any

measure. The value of s(i) always is in the interval between -1 and 1. If the value of s(i)

is closer to 1, it means the data sample is appropriately clustered. On the other hand,
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if the value of s(i) is closer to -1, this means that the data sample is poorly clustered.

In this case, the neighbour partition may be a better option that if the sample was

assigned to it. The smaller values of a(i) indicates that a better grouping for the sample

i is decided. The value of b(i) often indicated a neighbour partition as it is the most

likely partition the sample can be assigned to other than its existing cluster.

3.5 Feature Selection Method

The bioinformatics data sets become challenging nowadays due to the rapid growth in

their number of samples and features. Thus, a significant increase in processing time as

well as space requirements is unavoidable. However, computational methods are mostly

designed to work out low dimensional spaces. As a consequence, such data sets are

increasingly computationally unmanageable and intractable in high-dimensional spaces

where thousands or even ten-thousands features are available. Therefore, feature selec-

tion or feature reduction are commonly used to address the computational complexity

of such data sets aiming at improving the performance of the computational models.

Feature selection is the process of selecting a set of features that improves the efficiency

of the model [158], [268], [269], [270], [271]. Four key steps are involved in a typical

feature selection process as shown in Fig. 3.15 (figure adapted from [269]). These are

subset generation, subset evaluation, stopping criterion, and the validation of result.

Feature selection methods appear in many applications as a preliminary stage during

the model building process. They can cope with large size features and help to eliminate

those of the features which are irrelevant. They also aid in simplification of the model

and address the curse of dimensionality problem. There are three main characteristics

of feature selection methods [158] as shown in Fig. 3.16. They are: a) to improve the

performance of the model, b) to provide a computationally efficient model, c) to present

a new representation for the data set to be simpler to understand. As a consequence,

a more generalized and interpreted model from the data can be obtained. It should be

noted that, as the accuracy of results takes the centre stage in bioinformatics, compu-

tational efficiency is less important in bioinformatics research studies.

Zhao et al [268], proposed a repository for various feature selection methods and in this

repository these methods are organized into three main categories of which are filter,
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Figure 3.15: Key steps of feature selection.

wrapper and embedded models. Furthermore, they also categorized feature selection

methods differently based on their characteristics. Some of these categories can be: 1)

supervised or unsupervised, 2) univariate or multivariate, 3) variable ranking or subset

selection. Somol et al [270] added the hybrid approach to the three main categories

which aims for combining advantages of at least two of these aforementioned categories.

In this research study, three predictive models are used (SVR, Type-1 Fuzzy System,

Figure 3.16: Characteristics of feature selection.
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Type-2 Fuzzy System) on different kinds of peptide binding affinity data sets. Therefore,

the feature selection method needs to be independent of any predictive model as they

are required to be tested on unseen data to evaluate their performance. There are

feature selection methods that do not require the output in their selection process. They

are regarded as unsupervised feature selection methods such as Unsupervised Feature

Selection Using Feature Similarity [272], Multi Cluster Feature Selection (MCFS) [273],

Laplacian Score (LS) [274], Q-alpha [275].

Among all these methods MCFS has shown to present better results than other meth-

ods such as LS [276]. Therefore, MCFS is chosen to be used as a feature selection

method in the preprocessing stage of the proposed predictive models. MCFS is an un-

supervised feature selection method and uses information contained in eigenvectors by

solving the generalised eigen-problem to preserve the multi-cluster structure of the data.

This feature selection method finds a subset of features that can cope with any clustering

structure within the data. The correlation of features between each other are assessed

using spectral analysis without the need of any output or target label.

3.6 Performance Measurements of the Prediction Models

The quantitative measure for a peptide binding affinity is given as pIC50 (-log IC50)

value for the peptide binding affinity data sets used in this research study. IC50 scale is

the half maximal (%50) inhibitory concentration indicating the quantity of a substance

required to inhibit a biological activity by half. In pharmaceutical biology, the IC50

scale is used for measuring the antagonist drug potency [277], [278]. It is often practice

to convert IC50 scale to a pIC50 scale in molecular modelling studies [279], [280]. The

high pIC50 scales indicate high potency whereas low pIC50 scales indicate low potency

[281], [282].

There are different measurements used to assess capability of the predictive models.

However, in order to maintain consistency over the published results and perform consis-

tent comparison, the following measures; coefficient of determination (q2) and spearman

rank correlation coefficient (ρ) are used for the CoEPrA peptide binding affinity data

sets. For the mouse class I MHC alleles, coefficient of determination (q2) and average

residual (AR) are used.
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The measure q2 is a statistical model based upon the proportion of variability in a

data set [283]. When q2 is close to 1 it suggests a model that has been successfully

constructed. Negative q2 values indicate that model poorly approximates the expected

values. q2 can be expressed as:

q2 = 1−

n∑
i=1

(yexp − yprd)2

n∑
i=1

(yexp − yexp)2
(3.45)

where yexp and yprd are the expected and predicted values of the peptide binding affinity,

respectively, n is the number of peptides and yexp is the mean of all expected values in

the prediction data set.

The spearman rank correlation coefficient (ρ) [284] is used to measure the statistical

dependence between two variables. The value of ρ ranges between +1 and -1 showing

perfect correlation at each end.

ρ = 1−
6
∑

(yexp − yprd)2

n(n2 − 1)
(3.46)

where yexp and yprd are the expected and predicted values of the peptide binding affinity,

respectively, n is the number of peptides in the prediction data set.

The average residual measure is another metric that is used particularly in experimenting

models for the mouse class I MHC alleles. AR can be expressed as:

AR =

n∑
i=1

|yexp − yprd|

n
(3.47)

where n is the number of peptides in the allele. A successful prediction can be achieved

with lower values of AR whereas its higher values show poorer predictions.
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Improvement gain or loss of one method (Modelnew) over another (Modelold) is used to

show the performance of the proposed models.

%Igain/loss =
Modelnew −Modelold

|Modelold|
× 100% (3.48)

In addition, overall improvement gain or loss of a group of models is computed as follows:

%Overallgain/loss =

n∑
i=1

%Iigain/loss

n
(3.49)

where n is the number of models in the group.



Chapter 4

Description and Selection of

Amino Acids based Features for

Peptide Binding Affinity

Prediction

4.1 Introduction

Understanding of the peptide data sets is important as they are used to find a solution

for the peptide binding affinity problem that is dealt with using the predictive modelling.

Therefore, peptide data sets and how they are encoded into their features are clarified

in this chapter before presenting SVR-based fuzzy systems to quantitatively predict

binding affinities between MHC proteins and peptides in Chapters 5 and 6. In Section

4.2, materials and methods are explained. Characteristics of two groups of data sets

are presented as they are used to demonstrate the ability of the proposed predictive

models to generalise for the unseen peptides. The amino acid based features which are

used to encode the feature space, are presented. Section 4.3 is the results and discussion

section which presents the selection of amino acids based features from this feature space.

Finally, chapter is concluded in Section 4.4.

71
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4.2 Materials and Methods

In this section the characteristics of two groups of data sets are presented. First group

of data sets are the CoEPrA peptide binding affinity data sets that are formed of four

tasks which is detailed in Section 4.2.1. Each task has separate train and test data sets.

Each data set consists of peptide samples along with their attributes; peptide no, peptide

residue, and expected real-value binding affinity of peptide. These data sets are made

available in Appendix C. Second group of data sets are the mouse class I MHC peptide

binding affinity data sets (H2-Db, H2-Kb and H2-Kk) and explained in Section 4.2.2.

Entire data set is provided for each of the mouse class I MHC peptide allele. Each data

set consists of epitope samples along with their attributes; epitope no, epitope residue,

and expected real-value binding affinity of epitope. These data sets are made available

in Appendix D.

4.2.1 CoEPrA Peptide Binding Affinity Data Sets

The publicly available high-dimensional peptide data sets provided at the Comparative

Evaluation of Prediction Algorithms (CoEPrA) modeling competition [285] are used in

this research study. The summary of these data sets are provided in Table 4.1 and

Table 4.2.

Amino acid occurrences in training and testing peptide data sets for each experiment are

given in Table 4.3 - Table 4.6. In these data sets physico-chemical descriptors have been

provided for each peptide (for both calibration and prediction data sets). Each amino

acid in a peptide is described by 643 descriptors. Task 2 consists of octa-peptides that

have a total of 5144 (643x8 = 5144) descriptors. All other tasks have nona-peptides that

have a total of 5787 (643x9 = 5787) descriptors. The task (for all tasks except Task 4)

is to predict actual affinity values (pIC50) for peptides from the amino acid descriptors.

For Task 4 it is clear that the expected values are not given as pIC50 values. But it

cannot be determined which measure it is, as it is not provided on the aforementioned

website. For this reason the performance of the model for Task 4 is more likely based on

the prediction of correlation rather than the actual values. The statistics (range, mean

and standard deviation) of the binding affinities of the peptides of each task are given

in Table 4.2.
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Table 4.3 - Table 4.6 show the distribution of amino acids placed on the peptide locations

for each of the calibration and prediction data sets of related tasks. Data set analysis

of Task 1 shows some strong preferences on various peptide locations. Proline (P) at

position 4 and 6 and Valine (V) at position 9 contributes strongly on the Task 1 data

sets. Although Leucine (L) at position 2 contributes weakly on the Task 1 model,

prediction data set contains Leucine (L) at position 2 strongly, which in turn makes

the prediction of Task 1 is rather difficult. For the Task 2, 76 octomer peptides were

used to train the model using the calibration data set. Every anchor location for the

octomer data sets (Task 2) have one particular binding position. The amino acids with

high occupancy rate are Phenylalanine (F), Glutomic Acid (E), Serine (S), Threonine

(T), Glycine (G), Asparaigne (N), Leucine (L), Isoleucine (I) with approximately 60

occurancies at separate respective positions. Tasks 3 and 4 use the same calibration

data set with different prediction data sets. Leucine (L) at position 2 and Valine (V) at

position 9 strongly contributes on the Task 3 model. However Task 4 prediction data

set differs from Task 3 prediction data set with rather low occupancy rate for Leucine

(L) and Valine (V).

Table 4.1: General characteristics of the peptide data sets used for the prediction of
peptide binding affinity.

Data Sets
Number of Peptide Sequences Nature of Number of

Training Testing Peptide Descriptors

Task 1 89 88 nona-peptide 5787

Task 2 76 76 octa-peptide 5144

Task 3 133 133 nona-peptide 5787

Task 4 133 47 nona-peptide 5787

Table 4.2: The statistics of the binding affinity of peptides for each peptide data set.

Data Sets
Training Testing

Min Max Mean Std Min Max Mean Std

Task 1 2.94 8.65 5.41 1.01 3.13 8.17 5.41 0.95

Task 2 5.01 8.34 7.55 0.77 5.01 8.40 7.58 0.74

Task 3 4.30 8.77 7.08 0.82 5.08 8.96 7.10 0.80

Task 4 4.30 8.77 7.08 0.82 13.0 121.0 61.0 34.0
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Table 4.3: Amino acid occurrences in training and testing nona-peptide data sets for
CoEPrA Peptide Binding Affinity Task 1.

Training

Amino Location

Acid 1 2 3 4 5 6 7 8 9

Alanine 1 2 2 0 0 0 1 2 14

Arginine 5 0 0 0 0 0 0 0 0

Asparagine 1 0 6 1 0 1 1 11 0

Aspartic acid 0 0 29 4 0 2 1 2 1

Cysteine 1 1 2 1 0 1 1 2 0

Glutamine 0 0 1 10 4 2 2 3 0

Glutamic acid 0 0 0 0 0 0 2 3 0

Glycine 3 0 1 6 16 1 1 1 2

Histidine 1 1 3 1 1 0 8 1 1

Isoleucine 3 2 3 0 4 1 2 1 5

Leucine 3 6 5 2 10 1 1 4 6

Lysine 2 0 1 2 0 0 0 0 1

Methionine 1 4 4 0 1 1 0 0 0

Phenylalanine 9 1 13 1 33 2 11 0 1

Proline 1 1 0 52 1 50 14 4 1

Serine 2 0 3 4 1 3 4 12 1

Threonine 0 7 1 3 5 6 1 39 3

Tryptophan 0 0 12 0 1 0 1 2 1

Tyrosine 2 1 3 0 3 14 1 1 1

Valine 3 1 0 2 9 4 37 1 51

Testing

Amino Location

Acid 1 2 3 4 5 6 7 8 9

Alanine 3 0 4 1 1 1 5 2 13

Arginine 4 0 0 3 3 1 0 1 0

Asparagine 2 1 3 1 0 3 0 5 1

Aspartic acid 0 1 25 8 2 0 1 5 0

Cysteine 0 1 1 0 1 2 1 2 2

Glutamine 0 2 0 11 0 1 0 2 1

Glutamic acid 0 0 2 3 2 0 1 5 1

Glycine 3 1 3 1 16 2 1 4 0

Histidine 2 0 1 1 6 1 11 2 0

Isoleucine 29 4 2 1 6 4 3 4 6

Leucine 3 65 6 0 8 2 6 4 16

Lysine 2 0 3 0 0 0 0 0 0

Methionine 1 3 1 0 0 1 3 1 1

Phenylalanine 8 0 17 1 24 5 8 2 0

Proline 0 0 2 45 2 46 10 1 0

Serine 4 1 2 4 1 2 3 8 0

Threonine 3 5 2 4 0 3 2 39 1

Tryptophan 2 1 10 2 2 0 0 1 0

Tyrosine 19 0 3 1 5 10 1 0 0

Valine 3 3 1 1 9 4 32 0 46
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Table 4.4: Amino acid occurrences in training and testing octa-peptide data sets for
CoEPrA Peptide Binding Affinity Task 2.

Training

Amino Location

Acid 1 2 3 4 5 6 7 8

Alanine 1 0 1 1 1 0 0 1

Arginine 0 0 1 1 0 1 0 1

Asparagine 2 0 1 0 2 66 1 9

Aspartic acid 1 1 1 1 0 1 2 1

Cysteine 0 0 0 0 0 0 1 0

Glutamine 2 1 1 0 0 0 1 1

Glutamic acid 0 67 0 1 0 1 2 0

Glycine 1 2 1 1 65 2 0 1

Histidine 1 0 1 0 0 0 1 1

Isoleucine 1 1 1 1 1 0 1 57

Leucine 1 1 2 1 1 0 64 0

Lysine 1 1 1 1 0 3 1 0

Methionine 1 0 0 0 0 0 0 1

Phenylalanine 60 1 2 1 1 0 1 0

Proline 1 0 0 1 1 0 1 0

Serine 1 0 63 1 1 0 0 1

Threonine 0 1 0 61 0 0 0 0

Tryptophan 1 0 0 1 1 1 0 1

Tyrosine 0 0 0 1 0 0 0 0

Valine 1 0 0 2 2 1 0 1

Testing

Amino Location

Acid 1 2 3 4 5 6 7 8

Alanine 1 4 0 0 1 1 1 0

Arginine 1 0 0 0 1 0 1 0

Asparagine 0 1 0 1 0 59 0 10

Aspartic acid 1 0 0 0 1 0 0 0

Cysteine 0 0 0 0 0 0 0 0

Glutamine 0 0 0 1 1 1 0 0

Glutamic acid 1 62 1 0 1 1 0 0

Glycine 0 0 0 1 63 1 1 0

Histidine 1 1 1 2 1 1 0 0

Isoleucine 0 0 2 0 0 1 1 55

Leucine 1 1 0 1 0 2 64 2

Lysine 0 0 1 1 1 0 0 1

Methionine 0 1 1 1 1 2 1 0

Phenylalanine 68 0 2 0 1 2 0 1

Proline 0 1 1 2 0 1 1 1

Serine 0 1 63 1 2 1 1 0

Threonine 1 1 1 64 1 1 1 1

Tryptophan 0 1 1 1 0 0 1 0

Tyrosine 1 1 1 0 1 1 1 1

Valine 0 1 1 0 0 1 2 4
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Table 4.5: Amino acid occurrences in training and testing nona-peptide data sets for
CoEPrA Peptide Binding Affinity Task 3.

Training

Amino Location

Acid 1 2 3 4 5 6 7 8 9

Alanine 10 3 15 6 16 14 17 12 22

Arginine 5 0 1 8 3 4 3 1 0

Asparagine 2 0 4 6 3 4 3 0 0

Aspartic acid 1 0 10 9 5 3 0 5 0

Cysteine 2 1 2 1 1 2 2 4 1

Glutamine 1 0 1 13 2 4 4 1 0

Glutamic acid 0 0 2 4 4 3 3 6 0

Glycine 10 0 10 15 19 9 1 9 0

Histidine 1 0 2 2 5 1 2 4 0

Isoleucine 14 13 6 4 5 6 11 5 15

Leucine 17 88 22 10 15 16 16 29 33

Lysine 2 0 0 6 1 1 0 1 0

Methionine 5 10 7 1 2 6 2 3 0

Phenylalanine 16 0 7 4 10 6 19 11 0

Proline 1 0 4 20 5 26 8 5 0

Serine 13 0 9 9 1 5 7 16 0

Threonine 5 9 5 8 6 8 6 12 2

Tryptophan 4 0 8 3 4 2 1 2 0

Tyrosine 19 0 12 1 5 1 7 4 0

Valine 5 9 6 3 21 12 21 3 60

Testing

Amino Location

Acid 1 2 3 4 5 6 7 8 9

Alanine 17 6 17 8 17 6 16 19 27

Arginine 7 0 0 3 3 0 1 1 1

Asparagine 2 0 1 1 2 5 4 2 0

Aspartic acid 2 0 8 7 11 2 3 0 0

Cysteine 0 0 2 5 1 4 3 4 0

Glutamine 3 1 2 17 3 7 4 3 0

Glutamic acid 0 0 4 4 2 1 0 3 0

Glycine 10 0 4 23 21 8 3 9 0

Histidine 5 0 3 3 6 2 1 5 0

Isoleucine 16 4 6 1 4 5 4 6 14

Leucine 15 87 21 9 15 26 17 22 34

Lysine 4 0 2 5 1 1 3 1 0

Methionine 3 15 8 1 1 3 3 1 2

Phenylalanine 13 0 9 3 8 5 18 3 0

Proline 0 1 3 9 1 24 11 6 0

Serine 4 0 7 12 6 4 8 20 0

Threonine 1 7 4 6 4 11 8 13 2

Tryptophan 3 0 6 0 3 1 4 5 0

Tyrosine 16 0 18 3 4 5 3 2 0

Valine 12 12 8 13 20 13 19 8 53
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Table 4.6: Amino acid occurrences in training and testing nona-peptide data sets for
CoEPrA Peptide Binding Affinity Task 4.

Training

Amino Location
Acid 1 2 3 4 5 6 7 8 9

Alanine 10 3 15 6 16 14 17 12 22
Arginine 5 0 1 8 3 4 3 1 0
Asparagine 2 0 4 6 3 4 3 0 0
Aspartic acid 1 0 10 9 5 3 0 5 0
Cysteine 2 1 2 1 1 2 2 4 1
Glutamine 1 0 1 13 2 4 4 1 0
Glutamic acid 0 0 2 4 4 3 3 6 0
Glycine 10 0 10 15 19 9 1 9 0
Histidine 1 0 2 2 5 1 2 4 0
Isoleucine 14 13 6 4 5 6 11 5 15
Leucine 17 88 22 10 15 16 16 29 33
Lysine 2 0 0 6 1 1 0 1 0
Methionine 5 10 7 1 2 6 2 3 0
Phenylalanine 16 0 7 4 10 6 19 11 0
Proline 1 0 4 20 5 26 8 5 0
Serine 13 0 9 9 1 5 7 16 0
Threonine 5 9 5 8 6 8 6 12 2
Tryptophan 4 0 8 3 4 2 1 2 0
Tyrosine 19 0 12 1 5 1 7 4 0
Valine 5 9 6 3 21 12 21 3 60

Testing

Amino Location
Acid 1 2 3 4 5 6 7 8 9

Alanine 3 0 0 5 2 2 0 4 0
Arginine 1 1 1 2 3 0 1 0 0
Asparagine 1 0 9 1 4 4 0 2 0
Aspartic acid 1 0 0 4 0 0 4 2 0
Cysteine 1 2 0 0 0 0 5 0 3
Glutamine 1 1 0 1 2 12 2 0 0
Glutamic acid 1 0 0 8 4 1 1 0 1
Glycine 2 0 15 7 17 0 0 9 2
Histidine 0 0 0 0 0 0 0 2 0
Isoleucine 3 3 3 0 0 2 4 0 0
Leucine 0 31 5 2 3 6 0 4 9
Lysine 11 0 1 0 3 0 2 3 2
Methionine 0 5 0 0 0 3 2 0 0
Phenylalanine 4 0 3 2 3 0 2 4 0
Proline 0 0 0 8 0 1 8 1 0
Serine 1 0 0 0 4 0 2 8 1
Threonine 0 0 3 0 2 2 3 0 0
Tryptophan 0 0 2 2 0 0 3 0 0
Tyrosine 11 0 5 5 0 4 7 7 0
Valine 6 4 0 0 0 10 1 1 29
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4.2.2 Mouse Class I MHC Peptide Binding Affinity Data Sets

Publicly available mouse class I MHC alleles (H2-Db, H2-Kb and H2-Kk) are used

in this research study in order to find their real-value MHC-peptide binding affinities

[286]. The allergenic regions of protein recognized by the binding site of any antibody

are called epitopes (antigen derived peptides) [287], [288]. The epitopes in each allele

contain experimentally measured binding affinities, numerically as pIC50. Each epitope

in the data sets was represented by assigning values of physico-chemical or bio-chemical

descriptors to each amino acid. The same set of descriptors (real values) for each amino

acid aformentioned previously are used. As shown in Table 4.7, H2-Db consists of nona-

peptides that have a total of 5787 (643x9 = 5787) descriptors, H2-Kb and H2-Kk have

octa-peptides that have a total of 5144 (643x8 = 5144) descriptors. The statistics (range,

mean and standard deviation) of the binding affinities of the mouse class I MHC alleles

are given in Table 4.8.

Table 4.7: General characteristics of the data sets used for the prediction of peptide
binding affinity for mouse class I MHC alleles.

Number of Nature of Number of

Data Sets Peptide Sequences Peptide Peptide Sequence Descriptors

H2−Db 65 nona-peptide 5787

H2−Kb 62 octa-peptide 5144

H2−Kk 154 octa-peptide 5144

Table 4.8: The statistics of the binding affinity of mouse class I alleles.

Data Sets Min Max Mean Std

H2-Db 3.3570 8.6990 6.5428 1.2656

H2-Kb 3.8100 9.2220 6.8489 1.3441

H2-Kk 4.1920 8.4030 7.5231 0.8257

Table 4.9 - Table 4.11 shows the distribution of amino acids placed on the peptide

locations for each of the mouse class I alleles. Data set analysis of these allele shows

some strong preferences on various peptide locations. For the mouse class I H2-Db allele,

Asparagine (N) at position 5 contributes very strongly on this allele with occupancy rate

of 61. Serine (S) at position 1, Isoleucine (I) at positions 3 and 9, Glutamic acid (E)

at positions 4 and 7, Leucine (L) at position 6 and 9, Methionine (M) at position 9 are
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also strongly contribute to their positions with occupancy rate of more than 15. For

the mouse class I H2-Kb allele, Leucine (L) at position 8 contributes very strongly on

this allele with occupancy rate of 45. Phenylalanine (F) and Tyrosine (Y) are strongly

contributing to position 5, with occupancy rates of 30 and 21, respectively. Serine (S) at

position 1, Tyrosine (Y) and Isoleucine (I) at position 3 are also strongly contribute to

their positions with occupancy rate of more than 10. At positions 1, 4, 6 and 7, amino

acids are almost equally contributes to their positions with occupancy rate of less than

10. For the mouse class I H2-Kk allele, different amino acids very strongly dominate their

positions with very high occupancy rates. Phenylalanine (P) at position 1, Glutomic acid

(E) at position 2, Threonine (T) at position 3, Tryptophan (W) at position 4, Glycine

(G) at position 5, Asparagine (N) at position 6, Leucine (L) at position 7, Isoleucine (I)

at position 8 are contributing to their positions with occupancy rates of 130, 130, 128,

127, 130, 127, 130, 113, respectively.

Table 4.9: Amino acid occurrences for the H2-Db allele.

Amino Location
Acid 1 2 3 4 5 6 7 8 9

Alanine 7 11 3 3 1 6 4 8 2
Arginine 3 1 0 1 0 1 2 1 0
Asparagine 1 0 6 3 61 0 3 3 0
Aspartic acid 0 1 2 1 0 3 7 6 0
Cysteine 2 1 1 2 0 0 1 2 1
Glutamine 3 2 1 3 0 2 2 0 0
Glutamic acid 0 4 0 17 0 0 16 2 0
Glycine 1 6 4 4 3 5 4 2 0
Histidine 0 0 0 1 0 0 0 0 0
Isoleucine 6 3 15 3 0 3 3 5 15
Leucine 4 8 5 1 0 16 3 5 27
Lysine 2 3 2 2 0 2 1 1 0
Methionine 0 9 0 0 0 3 1 1 16
Phenylalanine 5 2 3 2 0 4 0 1 0
Proline 0 0 5 4 0 3 2 0 0
Serine 17 11 4 4 0 8 5 1 0
Threonine 4 3 0 6 0 1 2 10 0
Tryptophan 1 0 0 1 0 0 4 2 0
Tyrosine 5 0 3 3 0 2 2 14 1
Valine 4 0 11 4 0 6 3 1 3
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Table 4.10: Amino acid occurrences for the H2-Kb allele.

Amino Location
Acid 1 2 3 4 5 6 7 8

Alanine 5 0 1 1 1 3 8 0
Arginine 6 0 1 4 0 4 7 0
Asparagine 3 3 0 9 0 1 6 0
Aspartic acid 1 3 0 1 0 4 0 0
Cysteine 1 0 0 1 0 4 0 0
Glutamine 2 2 4 5 0 7 3 0
Glutamic acid 0 1 2 3 0 3 0 0
Glycine 2 5 1 2 1 2 9 0
Histidine 3 1 2 2 1 0 2 0
Isoleucine 6 8 13 4 1 3 5 5
Leucine 8 4 4 7 2 8 6 45
Lysine 2 1 0 3 0 3 4 0
Methionine 6 2 0 1 0 0 0 5
Phenylalanine 3 1 4 4 30 1 1 0
Proline 0 4 1 2 0 7 3 0
Serine 7 14 6 5 1 6 4 0
Threonine 1 4 4 0 2 4 0 0
Tryptophan 0 1 0 3 1 0 1 0
Tyrosine 2 2 15 1 21 0 1 0
Valine 4 6 4 4 1 2 2 7

Table 4.11: Amino acid occurrences for the H2-Kk allele.

Amino Location
Acid 1 2 3 4 5 6 7 8

Alanine 2 4 1 1 2 1 1 1
Arginine 1 1 1 1 1 1 1 1
Asparagine 2 1 1 1 2 127 1 19
Aspartic acid 2 1 1 1 1 1 2 1
Cysteine 0 0 0 0 0 0 1 0
Glutamine 2 1 1 1 1 1 1 1
Glutamic acid 1 130 1 1 1 2 2 1
Glycine 1 2 1 2 130 3 1 1
Histidine 2 1 2 2 1 1 1 1
Isoleucine 1 1 3 1 1 1 2 113
Leucine 2 2 2 2 1 2 130 2
Lysine 1 1 2 2 1 3 1 1
Methionine 1 1 1 1 1 2 1 1
Phenylalanine 130 1 4 1 2 2 1 1
Proline 1 1 1 3 1 1 2 1
Serine 1 1 128 2 3 1 1 1
Threonine 1 2 1 127 1 1 1 1
Tryptophan 1 1 1 2 1 1 1 1
Tyrosine 1 1 1 1 1 1 1 1
Valine 1 1 1 2 2 2 2 5
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4.2.3 Encoding Feature Space with Amino Acids based Features

An amino acid index is formed of twenty real-values that discriminates each amino acid

in terms of their specificity and characteristics of a particular physio-chemical or bio-

chemical property of a protein. The amino acid indices are derived from laboratory and

computational experiments. AAindex Database is the well known database, with the

latest update in 2008, that consists of 544 amino acid indices [289]. The collection of

544 amino acid indices are located on GenomeNet website and given with their reference

information.

AA scales in this research study, however, are formed of 643 scales as these scales are

obtained from the publicly available high-dimensional peptide datasets provided at the

Comparative Evaluation of Prediction Algorithms modeling competition. So, the octa-

peptides are encoded as 5144 (643x8) descriptors and the nona-peptides are encoded as

(643x9) descriptors. The feature encoding process for octa-peptides and nona-peptides

are illustrated in Fig. 4.1 and Fig. 4.2. Nevertheless, the data sets provided are lack of

the definitions of these scales. The notes given with the data sets only tell that most of

the indices are from AAindex Database and the remaining ones are from the literature.

In order to reveal the definitions of these scales, the numeric values of each AA scale

and its corresponding definition are searched from the AAindex Database and from the

literature. It is discovered that most of them but not all of them are from the AAindex

database. A total of 507 out of 643 amino acid indices are obtained from this database.

However, many of the indices remain still unknown. The name and scales that are

discovered after the searching process is broadly provided in Appendix A (Amino Acid

Indices) and Appendix B (Amino Acid Scales).

Figure 4.1: Feature encoding process for a octa-peptide.
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Figure 4.2: Feature encoding process for a nona-peptide.

The feature space for the peptide binding affinity data sets is encoded with 643 scales

corresponding to each amino acid location on the peptide. At this step, 643 scales are

transformed into their normalized values as shown in (4.1). The normalization helps to

protect descriptors which have smaller variance value from those descriptors which have

larger variance value as they may have more influence in the model building process.

Additionally, all index values become standardized and proportional respect to each

other. Unity-based normalization is used as the normalization method and the scales

are normalized using a linear transformation. In the end, each scale normalized to a

value in the interval [0, 1]. The unity-based normalization is computed as follows:

x′ =
x−min(x)

max(x)−min(x)
(4.1)

where x, max(x), min(x) denote the index value, max value and min value for a typical

amino acid index, respectively.
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4.3 Results and Discussion

The feature selection is carried out by using the multi-cluster feature selection method

to be able to derive the most significant feature subsets of the entire feature space

containing around 5000 attributes. MCFS is an unsupervised feature selection method

that does not require output or target label in the selection process [273]. Instead of

a target label, it uses multiple eigenvectors of graph Laplacian. The number of used

eigenvectors is set to the the number of features to be selected in this research study.

MCFS requires the number of nearest neighbours parameter (k) for constructing the

k-nearest-neighbours graph. The parameter value for the k is set to 5 (default). MCFS

was able to deal with large number of attributes for the data sets efficiently. The reduced

feature subset was used as input variables of the proposed rule-based fuzzy systems. The

low dimensional structure is then expected to help eliminate noise in the data sets and

provide more robust predictive models. However, the data sets can be exposed to the

risk of information loss during the feature selection process.

In order to assess the importance of the features, the feature selection method was run

separately to select the number of features between 1 and 250. More representative

descriptors found in the 250 separate subsets seem to be repeatedly selected in each

of the model’s reduced features. The histograms for the selected features of each pep-

tide binding affinity data set are shown in Fig. 4.3 - 4.8 presenting which molecular

descriptors are strongly or weakly correlated with the binding affinity. Feature index

represents the index of any descriptor that is encoded with 643 scales corresponding to

each amino acid location on the peptide. Depending on the type of peptide, it is the

position of an AA scale located between the first and last descriptor of the designated

data set. The last descriptors are the 5144th and 5787th indexes for the octa-peptide

and nona-peptide data sets, respectively. Number of occurrence shows that how many

times a descriptor is selected among the 250 separate feature selection processes. For

the CoEPrA peptide binding affinity data sets, feature selection is implemented on the

training data sets. Task 3 and 4 use the same training data sets but they have separate

data sets for the evaluation of their predictive models. The number of features that

are appeared distinctly among the 250 feature selection steps are 398, 294, and 643 for

Task1, Task 2 and Task 3-4, respectively. Corresponding to the indices of the descriptors

that were selected highest were 2229 (AAindexID = 300) and 5524 (AAindexID = 380)
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for the first task, 4294 (AAindexID = 436) for the second task, 4939 (AAindexID =

438) for the third and fourth tasks, respectively. Frequency of top ten selected amino

acid indices are given in Table 4.12 - Table 4.14. For the mouse class I MHC alleles,

feature selection is implemented on the entire data sets. The number of distinctly se-

lected features among the 250 feature selection steps are 356, 370, and 424 for H2-Db,

H2-Kb and H2-Kk, respectively. Corresponding to the indices of the descriptors that

were selected highest were 1313 (AAindexID = 27) for the H2-Db, 1974 (AAindexID =

45) for the H2-Kb, 2365 (AAindexID = 436) for the H2-Kk, respectively. Frequency of

top ten selected amino acid indices are given in Table 4.15 - Table 4.17. The descriptions

of amino acids based features are provided in Appendix A.

Results show that the features selected for each data set are very different from each

other. There is no common feature for the top ten most frequent features among data

sets. One reason for this is that encoded features are mainly dependent on the peptides

found in the data sets.

4.4 Conclusion

In this chapter, two groups of peptide binding affinity are studied. First group of data

sets are the CoEPrA peptide binding affinity data sets that are formed of four tasks.

Second group of data sets are the mouse class I MHC peptide binding affinity data sets

(H2-Db, H2-Kb and H2-Kk). Amino acid occurrences of peptide data sets are provided in

order to present the amino acid composition of each data set. To propose the predictive

models, the feature space of the peptide data sets is encoded using the numerical values

of bio-chemical descriptors corresponding to each amino acid location on the peptide. As

each amino can be represented with a high number of descriptors, the encoded peptide

data sets become high-dimensional data sets. In order to derive significant descriptors of

these data sets, feature selection is applied. The low-dimensional representation of the

proposed models allowed the elimination of noise and removal of redundant features. The

selected features showed which molecular descriptors are strongly or weakly correlated

with the binding affinity for the particular data set. Finally, it should also be noted that

the features used to propose the predictive models in this thesis may not be the best

representative feature sets. However, there might be better methods but current results

seem to be very promising.
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Figure 4.3: Number of occurrences of the selected features for Task 1.

Figure 4.4: Number of occurrences of the selected features for Task 2.

Figure 4.5: Number of occurrences of the selected features for Task 3 and 4.
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Figure 4.6: Number of occurrences of the selected peptide descriptors for H2-Db.

Figure 4.7: Number of occurrences of the selected peptide descriptors for H2-Kb.

Figure 4.8: Number of occurrences of the selected peptide descriptors for H2-Kk.
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Table 4.12: Top ten most frequent amino acid indices selected for Task 1.

No
Feature Amino Acid Index

Number of Occurrences
Index Index ID Location

1 2229 300 4 228

2 5524 380 9 228

3 2917 345 5 209

4 5379 235 9 207

5 1030 387 2 204

6 1515 229 3 204

7 2599 27 5 203

8 4339 481 7 202

9 5446 302 9 201

10 2125 196 4 197

Table 4.13: Top ten most frequent amino acid indices selected for Task 2.

No
Feature Amino Acid Index

Number of Occurrences
Index Index ID Location

1 4294 436 7 250

2 4697 196 8 245

3 2306 377 9 244

4 3539 324 6 244

5 4509 8 8 240

6 3826 611 6 235

7 3181 609 5 234

8 400 400 1 233

9 2807 235 5 233

10 2952 300 5 233

Table 4.14: Top ten most frequent amino acid indices selected for Task 3 - 4.

No
Feature Amino Acid Index

Number of Occurrences
Index Index ID Location

1 4939 438 8 225

2 1957 28 4 180

3 2267 338 4 180

4 2215 286 4 179

5 1374 88 3 173

6 2921 349 5 169

7 4689 188 8 168

8 3553 338 6 167

9 89 89 1 166

10 3550 335 6 166
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Table 4.15: Frequency of amino acid indices that were selected highest for H2-Db.

No
Feature Amino Acid Index

Number of Occurances
Index Index ID Location

1 1313 27 3 240

2 4689 188 8 236

3 1406 120 3 231

4 3876 18 7 228

5 2224 295 4 220

6 731 88 2 219

7 5625 481 9 218

8 3420 205 6 217

9 924 281 2 215

10 2017 88 4 215

Table 4.16: Frequency of amino acid indices that were selected highest for H2-Kb.

No
Feature Amino Acid Index

Number of Occurances
Index Index ID Location

1 1974 45 4 238

2 661 18 2 229

3 628 628 1 211

4 2538 609 4 210

5 1686 400 3 208

6 4066 208 7 207

7 1947 18 4 205

8 2952 380 5 205

9 2939 367 5 203

10 2936 364 5 201

Table 4.17: Frequency of amino acid indices that were selected highest for H2-Kk.

No
Feature Amino Acid Index

Number of Occurances
Index Index ID Location

1 2365 436 4 239

2 1105 462 2 238

3 4258 400 7 232

4 3801 586 6 229

5 2515 586 4 227

6 1872 586 3 220

7 1019 376 2 219

8 3158 586 5 217

9 3579 364 6 217

10 1650 364 3 213



Chapter 5

Quantitative Prediction of

Peptide Binding Affinity with

SVR-based Type-1 Fuzzy System

5.1 Introduction

Peptide binding plays vital roles in many biological processes such as activating the

cytotoxic T-cells in the immune system. The T-cell receptor is a molecule, present at

the T-cell surface, and signicantly required to activate the T-cell by recognising antigenic

peptides bound to MHC molecules translocated on the surface of the infected cells. The

peptide epitopes that are bound to MHC class I molecules can be recognised by the

T-cells and can induce the cellular immune response.

Support vector regression is one of the earliest quantitative approaches that is proposed

to model MHC-peptide complex for finding precise binding affinities [25]. This approach

as a non-linear method has achieved a better performance compared to linear models

such as the additive method [290]. The non-linear modeling approach has been taken

by a number of later methods such as regularization methods [81], partial least squares

[291] and random forests [292] to reveal the real-value of the binding affinity. SVM is

one of the computational methods that has been shown to effectively deal with large

number of dimensions [157]. When the quantitative modelling is the case, SVMs can be

extended to SVR with the aid of e-sensitive loss function [221]. SVR has been proven to

89
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lead better generalization ability and performance in a wide range of applications [25],

[293]. Fuzzy systems is another non-linear method that is good at modelling uncertainty

and yielding a set of interpretable if-then rules [168]. On the contrary, fuzzy systems

can suffer from the curse of dimensionality in high-dimensional systems.

Roughly speaking, general frameworks that incorporates fuzzy systems with the support-

vector based methods fall into two approaches. The first approach is to extract support

vectors from the training data set to generate fuzzy rule-base [294], [295], [296]. The

second approach is to employ support vector mechanism to learn consequent parameters

of the fuzzy system [297]. Recent efforts for the second approach focused for the design

of a general framework similar to the layered structure of neuro fuzzy systems [298],

[299], [300]. In this chapter a hybrid computational model support-vector based TSK

fuzzy system (TSK-SVR I) that follows the second approach, is presented and applied

to effectively model quantitative prediction of binding affinities between major histo-

compatibility complex proteins and peptides which is an important problem in biology

and medicine with applications for drug design.

In the next section, a proposed type-1 fuzzy system is described in detail. In Section 5.3

the results of the binding affinity problem are presented and discussed. Finally, Section

5.4 draws the conclusions of this chapter.

5.2 Materials and Methods

In this section, a proposed type-1 fuzzy system is described over the following subsec-

tions: TSK Type-1 Fuzzy System (5.2.1), Generating Fuzzy System with Fuzzy Clus-

tering (5.2.2), SVR-based Type-1 TSK Fuzzy System (5.2.3).

5.2.1 Type-1 TSK Fuzzy System

Each rule in the structure of the TSK fuzzy system can be expressed in the following

form [6]:

Ri : IF x1 is A1i AND x2 is A2i ... AND xn is Ani

THEN yi = a0i + a1ix1 + ...+ anixn
(5.1)



Quantitative Prediction of Peptide Binding Affinity with Regression-based T1FS 91

where i = 1..r is the number of fuzzy rules; and (x1, x2, ..., xn) are the n input variables;

and a fuzzy set for the variable n and rule i is denoted by Ani; and yi is the rule output

of the consequent part; and ani represents the coefficient of its linear equation.

The fuzzy set Aij is described with any form of membership functions, commonly with

the following Gaussian membership function:

µ(xj) = e
−

(xj−cij)2

2(σij)2 (5.2)

where µ(xj) is the degree of membership for input variable xj ; and cij and σij are the

centre and standard deviation that characterises a fuzzy set, respectively. The t-norm

operation can be defined as:

fi =

n∏
j=1

µ(xj) (5.3)

where fi is the firing strength determined by using a t-norm operation defined by the

product (*) operator. A normalised firing strength can be defined in the following form:

fi = fi/
r∑

k=1

fk (5.4)

where fi denotes normalised firing strength. A defuzzification operation is processed by

finding the overall output obtained by the weighted sum:

y =
r∑
i=1

fiyi (5.5)

5.2.2 Generating Fuzzy System with Fuzzy Clustering

Fuzzy clusters are more flexible than the crisp clusters. In fuzzy clustering, each data

sample in the data set is assigned a degree of membership for each of the partitions.

Therefore, the memberships along with the mean values of each cluster obtained at

the end of fuzzy clustering process can be used to derive the premise part of the fuzzy

system. Thus, the outputs of the fuzzy clustering process can be used to approximate

the membership functions that characterize each fuzzy set found in the rule-base and to

identify structure of the fuzzy model [9], [10].
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Fuzzy c-Means method partitions data set into a number of clusters in a way that each

data object is assigned a degree of membership for each cluster [242]. The FCM model

aims to minimise the optimisation function:

Jm(U, V ) =
c∑
i=1

n∑
j=1

uτij‖xj − ci‖
2

(5.6)

where τ ∈ (1,∞) is the degree of fuzzification; n is the number of samples; c is the

number of clusters, 2 ≤ c ≤ n; V = {c1, ..., cn} is the set of cluster prototypes; ci ∈ Rp

is the ith point prototype; uij is the degree of membership of the jth sample for the ith

point prototype; U = [uij ] is a c× n membership matrix.

The sum of membership values of an object is constrained to one. The clustering process

iteratively calculates cluster centres and degrees of memberships of each data point until

the Jm is satisfied or the number of iterations reaches a preset value:

ci =

n∑
j=1

uτijxj

n∑
j=1

uτij

(5.7)

uij =
1

c∑
k=1

(
||xj−ci||
||xj−ck||

) 2
τ−1

(5.8)

5.2.3 SVR-based Type-1 TSK Fuzzy System

Fuzzy systems are able to model uncertain and imprecise knowledge and forms a struc-

ture for representing human reasoning. Usually, fuzzy systems can be constructed by

obtaining knowledge from human experts. Nonetheless human experts may not be avail-

able all the time, and building a model using a classical non-linear system with a limited

prior knowledge is often difficult [5]. Among the various fuzzy systems, TSK is com-

monly used for modelling complex systems [6], [7]. TSK is a fuzzy modelling method,
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proposed by Takagi, Sugeno and Kang, that can exhibit high-dimensions, non-linearity,

and complexity. TSK-FS can be combined with other methods, particularly learning

methods, and enhanced with learning and adaptation capabilities [8].

In TSK models, rule antecedent is in the form of membership functions and the rule

consequent is a linear function of inputs. Although there are many methods proposed

to model TSK-FS, general approach is to keep the premise parameters constant whereas

values of the consequent parameters are computed by the least square estimation which

is a statistical modeling that assumes a linear relationship that exists between input

and output variables. The performance of these models are often determined by how

accurately the actual output value can be predicted from the input variables. This

learning approach is based on minimising the empirical risk and constitutes an essential

part of the fuzzy systems [301], [209]. One drawback of least squares learning algorithm

is that even though the training error is minimised, the model can badly suffer from

the overfitting. There are methods that have been explored for addressing the problems

in the least square estimation. One of the methods is support vector regression [220],

[221] that has been shown to be an efficient and robust method and provides high

generalizability and performance. Applications of SVR have demonstrated considerably

better modeling in various non-linear systems and minimising the structural risk than

least squares approach. This concept can be incorporated with TSK-FS to better train

the consequent part of the TSK-FS.

Let the input and real-valued output training data set D is {( ~x1, y1), ( ~x2, y2), ...,

( ~xn, yn)}. In order to obtain the coefficients w (weight vector) and b (bias term) of

the SVR linear expression, each data item ~xi in the training data set along with its

actual output yi is transformed to represent a training data pair (~xi
′, yi) which is fed

into SVR as in the following form:

([fi, fixi1, fixi2, ..., fixin], yi) (5.9)

Once the w and b are obtained, a defuzzification operation for the support vector-based

Takagi-Sugeno-Kang fuzzy system is formulated as:

y′i = w0r +

n∑
i=1

(wirxi) (5.10)
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y′ =
r∑
i=1

(fiy
′
i +

b

r
) (5.11)

where the new defuzzified output formulation of the SVR based type-1 TSK fuzzy model

is denoted by y′. SVR part of the hybrid method is implemented through the use of

LIBSVM package [302].

5.2.4 Predictive Modelling of Peptide Binding Affinity

This section presents the construction of SVR based type-1 TSK fuzzy models and

identification of their parameters in the following steps. The SVR based type-1 TSK

fuzzy model (TSK-SVR I) proposed for the prediction of peptide binding affinity is

presented in Fig. 5.1.

5.2.4.1 Preprocessing

The model definition for the peptide binding affinity data sets started with turning amino

acids of the peptides into numerical descriptors using amino acid indices. Then these

numerical descriptors that form the data set is normalized in order for every feature to

fall within the same range of values.

5.2.4.2 Feature Selection

To ease the processing of high-dimensionality of the input space of the fuzzy system,

the number of features to be selected should be determined. The feature selection is

carried out by using the Multi-Cluster Feature Selection method [273] to be able to

derive the most significant feature subsets of the entire feature space containing around

5000 attributes. It should be noted that MCFS method itself suffers from the curse of

dimensionality. Therefore, the number of features to be selected should be set as low as

possible. In order to assess importance of the features, the feature selection method was

run by using the predictive models separately between 1 and 250 features.
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Figure 5.1: Stages of the SVR based type-1 TSK fuzzy model for the prediction of
peptide binding affinity.
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5.2.4.3 Identifying Antecedent Parameters

Fuzzy clustering is used as a pre-processing step to determine the antecedent parameters

in fuzzy models. The parameter indicating the number of clusters should be preset before

the fuzzy clustering is performed. The degree of fuzzification in fuzzy clustering is mostly

chosen to be a value between 1.5 and 3 and set to two (τ = 2) in this research study [242].

The number of clusters parameter is also used for determining the number of rules for

the fuzzy system. The membership values and cluster prototypes obtained from fuzzy

clustering is used to approximate the membership functions. The fuzzy sets involved

in the rules are fully characterised by their membership functions. The parameters

of membership functions obtained from these fuzzy clusters form the fuzzy sets of the

premise part of TSK-FS.

5.2.4.4 Identifying Consequent Parameters

The rule consequent of TSK-FS is formed of linear function of inputs. Mainly, least

squares method is used for finding the coefficients of linear functions. The least squares

method is considered to be replaced by the support vector regression in this research

study as it is more efficient and provides high generalizability and performance. For

the consequent part of the fuzzy system, two parameters C and ε are required to be

optimised for the SVR linear kernel.

5.2.4.5 Searching for Optimal Parameters

The number of clusters (parameter for the fuzzy clustering), ranging from two to seven

is preset separately for each of the fuzzy clustering processes. The number of clusters

determines the number of rules for the fuzzy model. The number of features to be

selected is another parameter required to be set before processing the fuzzy model. For

the consequent part of the fuzzy model as SVR is being used, two parameters (C and

ε) are required to be set. In order to avoid the problem of overfitting, the parameters

need to be selected properly. Due to the fact no generally accepted methods exist

to determine these parameters optimally, the grid-search method has been decided to

be employed as a parameter selection method in order to find the optimal parameter

set. The grid-search method is simple and reliable and allows to implement parallel
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computations. The parameters (C and ε) are searched within the given range with a

step size of 0.05 to find out the optimal linear coefficients of the proposed model. For the

features, the search range was decided to be between 1 and 250. It is hoped that these

ranges broadly cover all the possibilities that may contain optimal measure. Therefore,

these parameters as well as different combinations of the features are assessed and their

results were presented. Fig. 5.2 depicts how the grid-search conducted on SVR kernel

parameters (C and ε) for Tasks 1 - 4 for their given ranges and determined clusters and

descriptors. Tables 5.1 - 5.3 show the optimal TSK-SVR I model parameter values of

the proposed models for the peptide binding affinity data sets.

Figure 5.2: An example for the grid-search carried out to obtain the optimum values
of linear SVR kernel parameters (C and ε) for peptide binding affinity Tasks 1-4.
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Table 5.1: The optimal TSK-SVR I model parameter values for each peptide binding
affinity data sets.

Task 1

number of number of

clusters selected features C ε

2 161 0.65 0.05

3 161 1.00 0.05

4 161 1.30 0.05

5 161 1.65 0.05

6 161 2.00 0.05

7 161 2.40 0.05

Task 2

number of number of

clusters selected features C ε

2 246 1.4 0.1

3 247 1.9 0.1

4 247 2.5 0.1

5 247 3.2 0.1

6 247 3.0 0.1

7 247 3.0 0.1

Task 3

number of number of

clusters selected features C ε

2 165 0.75 0.85

3 172 1.45 0.90

4 165 1.45 0.85

5 165 1.80 0.85

6 165 2.50 0.85

7 165 2.50 0.85

Task 4

number of number of

clusters selected features C ε

2 141 2.30 0.45

3 141 3.00 0.45

4 141 4.60 0.45

5 141 4.65 0.45

6 141 4.75 0.45

7 121 0.05 0.05
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Table 5.2: The optimal TSK-SVR I model parameter values for each mouse class I
allele entire data set prediction.

q2

Allele number of selected features C ε

H2-Db 30 75.0 0.20

H2-Kb 25 25.0 0.50

H2-Kk 62 18.5 0.20

AR

Allele number of selected features C ε

H2-Db 39 9.75 0.05

H2-Kb 24 9.65 0.05

H2-Kk 22 7.50 0.05

Table 5.3: The optimal (q2) TSK-SVR I model parameter values for each mouse class
I allele leave-one-out cross validated prediction.

q2

Allele number of selected features C ε

H2-Db 34 0.45 0.05

H2-Kb 32 0.25 0.15

H2-Kk 21 3.10 0.05
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5.3 Results and Discussion

A non-linear system is proposed with the aid of support vector-based regression to

improve the fuzzy system and applied to the real value prediction of degree of peptide

binding. The experimental results and findings of the proposed method are validated

using peptide binding affinity data sets that are different and independent from each

other. Two groups of data sets are used for the performance evaluation and verification

of the proposed approach that models the relationship between the peptides and their

binding affinities. The first group of data sets consists of CoEPrA data sets. These data

sets are used for the evaluation of the performance of the proposed method through blind-

validation. The second group of data sets consists of mouse class I MHC alleles. These

data sets are used for the evaluation of the performance of our method through cross-

validation. The proposed model applied for each group separately. Compared to the

previously published results in the literature, the proposed models yield an improvement

in the prediction accuracy.

5.3.1 Blind-Validated Peptide Binding Affinity Prediction

There are some important parameters required to be set in antecedent and consequent

parts that are likely to effect the performance of the fuzzy models. The parameters C

and ε are used to optimise the SVR linear kernel for the consequent part. As previously

mentioned, the proposed model (TSK-SVR I) was applied to four tasks and their optimal

values of TSK-SVR I parameters (C and ε) were found using grid-search. The grid-search

is repeated for each of the feature selection process (between 1 and 250 features). After,

the each feature selection step, the best model for that step is selected. This process

is repeated for different number rules (Fig. 5.3 - Fig. 5.8). The graphs show their

corresponding prediction performances in terms of q2 for the first three tasks and ρ

for the last task. Solid line on graphs shows the separation of positive from negative

q2 values. Dashed line on graphs shows the highest q2 value reached during the feature

selection process. It should be noted that the cluster centers and the membership matrix

is randomly initialized in the fuzzy clustering stage. Thereby, random initialization in

FCM may have some effect on the performance. For Task 1, graph shows fluctuations and

reaches three local maximums particularly in the first 100 features. It rose gradually then

and reaches the global maximum at 161 features. After reaching the global maximum



Quantitative Prediction of Peptide Binding Affinity with Regression-based T1FS 101

it becomes steady. For Task 2, graph increases gradually as the number of features

selected grew. It reaches two local maximums in the first 75 features and reaches the

global maximum at around 247 features. For Task 3, slight fluctuations are observed

through out the graph, reaching four local maximums in the first 150 features and

then reaching global maximum at 172 features. For Task 4, substantial fluctuations are

observed through out the graph, reaching three local maximums after 50 features until

reaching global maximum at 141 features.

For each rule-base (rules that range between two and seven), feature selection (between

1 and 250 features) was carried out to reduce the number of features. It should be

noted that selected features are highly dependent on their data sets. Approximately 5%

of the features were sufficient for finding the optimal results. The amino acid features

that contributed most to the efficiency of the proposed models are given in Table 5.4 -

Table 5.7. For Task 1, eight amino acid features contributed to the output in more than

four separate locations. The amino acid feature numbered with 481 (Hydrophobicity co-

efficient in reversed phase high performance liquid chromatography) contributed highest

as it is represented in seven separate locations on each of the nona-peptide within the

data set. This finding suggests that hydrophobic effect is important in mediating the

binding process between the peptide and MHC molecule in this data set. Therefore,

peptides can be shielded from the surrounding solvent and can be buried inner side

of the protein [303]. For Task 2, eleven amino acid features contributed to the out-

put in more than five separate locations. The amino acid feature numbered with 364

(Zimm-Bragg parameter sigma x 1.0E4) contributed highest as it is represented in seven

separate locations on each of the octa-peptide within the data set. This finding suggests

that helix formation in peptides is important in mediating the binding process between

the peptide and MHC molecule in this data set. One main reason for the peptides that

can nucleate a helix formation is that the ability of their side chains to participate in

hydrophobic bonding [304]. For Task 3, nineteen amino acid features contributed to the

output in more than three separate locations. The amino acid features numbered with

110 (Composition), 338 (Relative preference value at C”), 376 (Relative population of

conformational state A), 405 (Normalized positional residue frequency at helix termini

N”) contributed highest as they are represented in four separate locations on each of

the nona-peptide within the data set. For Task 4, ten amino acid features contributed

to the output in more than three separate locations. The amino acid features numbered
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with 306 (Average relative fractional occurrence in A0(i-1)), 338 (Relative preference

value at C”), 110 (Composition), 125 (Normalized relative frequency of double bend)

contributed highest as they are represented in seven separate locations on each of the

nona-peptide within the data set. The amino acid feature numbered with 400 (Polarity)

appeared in Task 1, Task 2 and Task 3 as a common feature with location occurrences of

4, 6 and 3, respectively. Therefore, the polarity of an amino acid is considered as one of

the highly discriminating feature in these data sets. This finding suggests that polarity

is important in mediating the binding process between the peptide and MHC molecule

in this data set. It is reported that polarity of amino acids can play important role for

the protein ubiquitination process. [305]. The full descriptions of amino acid features

can be found in Appendix A.

Table 5.8 depicts prediction results based on the size of rule-base. Better results can also

be achieved even with the reduced number of descriptors. The former value indicates

the best prediction results obtained under the possible decreased feature set and the

latter value shows the best performance at designated feature set. As the number of

rules increased the results are improved for Task 1. For the remaining tasks there is no

direct correlation is observed between the rule size and performance improvement. The

experiments were also conducted with SVR alone. The optimal parameters depicted

in Table 5.1 are also set for the SVR models. The SVR with a reduced feature subset

yielded poorer results as compared the proposed method however outperformed the other

SVR based methods in the literature as shown in Table 5.9. The predictive performance

for Tasks 2, 3 and 4 have been improved by 15.9%, 28.8%, and 1.7%, respectively. For

Task 1, no improvement gain is obtained.

For each rule-base the proposed method is able to build a robust and interpretable fuzzy

system for a high-dimensional data set with a relatively small number of data samples.

Table 5.10 depicts best prediction results as compared to the literature. For each task

the results obtained are comparatively better than the recent studies presented in [81],

[285], [291] and [292]. The predictive performance for Tasks 1, 2, 3 and 4 have been

improved by 0.7%, 11.2%, 33.6% and 9.7% to the best model (depicted with boldface)

presented in the literature, respectively. The overall improvement gain for all tasks is

found to be 13.6%. The results also outperform the competition results in which each

participant competed with their best model. In this competition Task 1 and 2 contained

more than ten participants. Task 3 and 4 contained more than five participants.
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The outcomes of the experiments clearly highlighted the strengths of TSK-SVR I. TSK-

FS is more capable of managing uncertainty that exists in the data sets [5]. SVR

based TSK-FS dealt with the curse of dimensionality effectively and yielded a better

generalization performance [296], [300]. The results clearly suggest that the fuzziness

has positively contributed towards the modeling of the tasks. The results also appear to

suggest that different sets of variables effect the result, and that exploration of the feature

selection methods may further help accelerate the predictive power of the proposed

hybrid method.
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Table 5.4: Top most frequent amino acid features selected for the optimal model of
Task 1 and their appearances on peptide locations.

No
Amino Acid Number of Location

Index Occurrences 1 2 3 4 5 6 7 8 9

1 481 7 1 1 1 0 1 0 1 1 1

2 302 6 0 1 1 0 1 1 1 0 1

3 367 6 1 1 0 0 1 1 0 1 1

4 31 5 0 0 1 1 0 1 1 1 0

5 613 5 1 1 0 0 0 1 1 0 1

6 259 4 0 1 0 1 0 1 0 1 0

7 359 4 0 0 1 1 0 0 1 1 0

8 400 4 0 1 0 1 0 0 0 1 1

Table 5.5: Top most frequent amino acid features selected for the optimal model of
Task 2 and their appearances on peptide locations.

No
Amino Acid Number of Location

Index Occurrences 1 2 3 4 5 6 7 8

1 364 7 1 1 0 1 1 1 1 1

2 31 6 1 1 1 1 1 0 0 1

3 379 6 1 0 0 1 1 1 1 1

4 400 6 1 1 0 1 0 1 1 1

5 476 6 1 0 0 1 1 1 1 1

6 30 5 1 0 1 1 0 0 1 1

7 235 5 0 1 1 1 1 0 1 0

8 302 5 0 1 1 1 0 0 1 1

9 380 5 1 0 0 0 1 1 1 1

10 386 5 0 1 1 1 1 0 1 0

11 609 5 1 1 0 1 1 1 0 0
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Table 5.6: Top most frequent amino acid features selected for the optimal model of
Task 3 and their appearances on peptide locations.

No
Amino Acid Number of Location

Index Occurrences 1 2 3 4 5 6 7 8 9

1 110 4 0 1 0 1 0 1 0 0 1

2 338 4 0 0 0 1 0 1 1 1 0

3 376 4 0 0 0 1 0 1 1 1 0

4 405 4 1 1 1 0 0 0 1 0 0

5 25 3 0 0 1 1 0 0 0 1 0

6 88 3 0 0 1 1 0 1 0 0 0

7 220 3 0 0 0 1 0 0 1 1 0

8 221 3 1 0 0 0 0 1 0 1 0

9 232 3 0 1 0 1 0 0 0 1 0

10 296 3 1 0 0 1 0 0 0 1 0

11 299 3 0 0 0 0 1 1 0 1 0

12 345 3 0 0 0 0 0 1 1 1 0

13 349 3 0 0 1 0 1 0 0 1 0

14 367 3 1 0 0 0 0 0 1 1 0

15 373 3 1 0 0 0 0 1 0 1 0

16 400 3 1 0 0 0 0 0 1 1 0

17 452 3 1 0 0 1 1 0 0 0 0

18 455 3 0 0 1 1 0 0 0 1 0

19 481 3 0 0 0 0 1 0 1 1 0
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Table 5.7: Top most frequent amino acid features selected for the optimal model of
Task 4 and their appearances on peptide locations.

No
Amino Acid Number of Location

Index Occurrences 1 2 3 4 5 6 7 8 9

1 306 4 0 0 0 1 0 1 1 1 0

2 338 4 0 0 0 1 0 1 1 1 0

3 110 3 0 1 0 0 0 1 0 0 1

4 125 3 0 0 0 0 1 1 0 1 0

5 221 3 1 0 0 0 0 1 0 1 0

6 232 3 0 1 0 1 0 0 0 1 0

7 251 3 0 0 0 1 0 0 1 0 1

8 373 3 1 0 0 0 0 1 0 1 0

9 405 3 1 1 1 0 0 0 0 0 0

10 420 3 1 0 0 0 0 1 1 0 0
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Table 5.8: Prediction results of the proposed model for each rule-base.

Number of Task 1 Task 2 Task 3 Task 4

Rules q2 (features) q2 (features) q2 (features) ρ (features)

(Clusters)

0.692 (161) 0.671 (172) 0.236 (31) 0.598 (101)

2 0.692 (161) 0.739 (246) 0.299 (165) 0.643 (141)

0.693 (161) 0.669 (176) 0.236 (31) 0.594 (101)

3 0.693 (161) 0.743 (247) 0.310 (172) 0.638 (141)

0.693 (161) 0.671 (172) 0.236 (31) 0.587 (101)

4 0.693 (161) 0.743 (247) 0.299 (165) 0.643 (141)

0.694 (161) 0.670 (172) 0.236 (31) 0.573 (67)

5 0.694 (161) 0.743 (247) 0.299 (165) 0.639 (141)

0.695 (161) 0.668 (172) 0.236 (31) 0.582 (67)

6 0.695 (161) 0.740 (247) 0.299 (165) 0.628 (141)

0.696 (161) 0.664 (172) 0.236 (31) 0.577 (67)

7 0.696 (161) 0.736 (247) 0.299 (165) 0.626 (121)
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Table 5.9: SVR prediction results compared to the results of other SVR-based meth-
ods presented in the literature.

Group Task 1 Task 2 Task 3 Task 4

Performance Measures q2 q2 q2 ρ

Gavin Cawley [285] 0.677 0.305 -0.001 N/A

Liao Quan [285] 0.601 N/A N/A N/A

Scott Oloff [285] 0.586 0.363 N/A N/A

Reiji Teramoto [285] 0.374 0.401 0.154 0.565

Joao Aires-de-Sousa [285] -0.298 N/A N/A N/A

WTD-BBO-SVM [292] 0.682 0.639 0.232 N/A

SVR 0.625 0.741 0.299 0.575

Improvement - 15.9% 28.8% 1.7%

Table 5.10: Prediction results of the proposed model compared to the results found
in literature.

Methods Task 1 Task 2 Task 3 Task 4

Performance Measures q2 q2 q2 ρ

Number of Participants 14 10 7 6

First [285] 0.677 0.735 0.236 0.593

Second [285] 0.626 0.612 0.201 0.565

Third [285] 0.615 0.455 0.154 0.472

L1 Regularization [81] 0.667 0.642 0.205 0.548

L1, L2 Regularization [81] 0.691 0.668 0.131 0.586

KPLS exponential [291] 0.691 0.590 0.219 N/A

WTD-BBO-SVM [292] 0.682 0.639 0.232 N/A

WT-BBO-RF [292] 0.661 0.607 0.208 N/A

TSK-SVR I 0.696 0.743 0.310 0.643

Improvement 0.7% 11.2% 33.6% 9.7%
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5.3.2 Cross-Validated Peptide Binding Affinity Prediction

The proposed model applied to two different prediction cases similar to cases studied in

the literature for comparison purposes: entire data set prediction and leave-one-out cross

validated correlation coefficient prediction. For each rule-base (rules that range between

two and five), feature selection was carried out to reduce the number of features.

For the entire data set prediction as shown in Table 5.14, it can be seen that two

different measures were used to observe their influence on the prediction error. The

prediction results are comparatively better than those of the studies presented in [286],

[25] and [306] for MHC alleles H2-Db and H2-Kb. The predictive performances have

been improved by 7.9% (q2) and 17.6% (AR) for the H2-Db allele; and 14.6% (q2) and

10.9% (AR) for the H2-Kb allele. There is no improvement gain obtained for the H2-Kk

allele. The optimal parameters for the MHC alleles using the q2 measure are found to

be: C = 75.0, ε = 0.20 for H2-Db allele; C = 25.0, ε = 0.50 for H2-Kb allele; C = 18.5,

ε = 0.20 for H2-Kk allele. The models contained 30, 25 and 62 features for each MHC

allele, respectively. The average residual (AR) measure values of the proposed model

are: C = 9.75, ε = 0.05 for allele H2-Db; C = 9.65, ε = 0.05 for allele H2-Kb; and

C = 7.5, ε = 0.05 for allele H2-Kk. The final and refined models contained 39, 24 and

22 features, respectively. In order to further explain the results for the entire data set

prediction, the construction of correlation diagram (Fig. 5.9) for each allele data set is

used to illustrate the relationship between the experimentally measured and predicted

pIC50 values. When the performance is perfect, the correlation diagram shows a straight

line along the 45◦ diagonal. A good quality of prediction performance can be obtained

when the data samples are mainly distributed along the 45◦ diagonal. The divergence

in the line is caused by the prediction error between the measured and the predicted

pIC50 values.

In addition, each model was evaluated by using leave-one-out cross validation (LOO-

CV) using the cross-validated correlation coefficient. This will allow an independent

predictive assessment as compared to the assessment carried out using the entire data

set. As the compared methods presented in the literature did not report average residual

measure for the LOO-CV experiments, this assessment was excluded from the calcula-

tions. The additive method recognized 6 outliers for H2-Db, 7 outliers for H2-Kb and 2

outliers for H2-Kk. Nevertheless, SVRMHC method did not recognize any outliers for
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the H2-Kk and obtained a result much better than the additive method. These outliers

are removed prior to LOO-CV calculations for the additive and SVRMHC methods for

the H2-Db and H2-Kb. For the H2-Kk, however, additive method excludes two outliers

whereas SVRMHC method does not exclude any outliers. The same outliers are also

excluded (except for H2-Kk similar to SVRMHC method) from the proposed models

during the LOO-CV calculations in order to perform a consistent comparison. The op-

timal parameters for the MHC alleles using the q2 measure are found to be: C = 0.45,

ε = 0.05 for H2-Db allele; C = 0.25, ε = 0.15 for H2-Kb allele; C = 3.10, ε = 0.05 for

H2-Kk allele. The models contained 34, 32 and 21 features for each MHC allele, respec-

tively. It should be noted that selected features are highly dependent on their data sets.

Approximately 0.5% of the features are adequate for finding the optimal models. As

shown in Table 5.15 the proposed models yielded LOO-CV q2 values of 0.462, 0.490, and

0.729 which are higher predictive accuracy than the additive and SVRMHC methods

for each MHC allele, respectively. The predictive performance for Tasks H2-Db, H2-Kb,

and H2-Kk have been improved by 1.32%, 0.82%, and 1.11% to the best model presented

in the literature, respectively. The overall improvement gain for all tasks is found to be

1.08%.

The amino acid features that contributed most to the efficiency of the proposed models

are given in Table 5.11 - Table 5.13. Only the proposed models found using leave-one-

out cross validation (LOO-CV) take into consideration as they allow an independent

predictive assessment as compared to the assessment carried out using the entire data

set. For H2-Db, five amino acid features contributed to the output in two separate

locations. The amino acid feature numbered with 18 (Spin-spin coupling constants),

27 (The number of atoms in the side chain), 88 (Positive charge), 481 (Hydrophobicity

coefficient in reversed phase high performance liquid chromatography), 520 (Unknown)

contributed highest as they are represented in two separate locations on each of the

nona-peptide within the data set. For H2-Kb, one amino acid feature contributed to the

output in two separate locations. The amino acid feature numbered with 71 (Direction of

hydrophobic moment) contributed highest as it is represented in two separate locations

on each of the octa-peptide within the data set. For H2-Kk, three amino acid features

contributed to the output in two separate locations. The amino acid feature numbered

with 29 (The number of bonds in the longest chain), 88 (Positive charge), 565 (Unknown)
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contributed highest as they are represented in two separate locations on each of the octa-

peptide within the data set. The amino acid feature numbered with 88 (Positive charge)

appeared in H2-Db and H2-Kk as a common feature with location occurrences of 2 and

2, respectively. Therefore, the positive charge of an amino acid is considered as one of

the highly discriminating feature in these data sets. This finding suggests that positive

charge is important in mediating the binding process between the peptide and MHC

molecule in this data set. It is reported that positively charged amino acids can play

important role for the transmembrane domains of reduced folate carrier [307]. The full

descriptions of amino acid features can be found in Appendix A.

It should be noted that our literature search appears to indicate that these data sets

have been understudied due to their complexity, therefore not many papers other than

the cited ones seem to have appeared in the literature [25], [286], [306]. The cross-

validated results suggest that a better descriptive power has been achieved over the

unseen data indicating better generalisation ability of the proposed hybrid method. In

addition, the incorporation of fuzzy system with SVR has enabled to improve SVR and

consequently resulting in a better modelling of uncertainty even the model can only use

small sample size being the nature of peptide data. As stated above, the fuzzy if-then

rule set proposed suggests promising results.
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Table 5.11: Top most frequent amino acid features selected for the optimal model of
H2-Db and their appearances on peptide locations.

No
Amino Acid Number of Location

Index Occurrences 1 2 3 4 5 6 7 8 9

1 18 2 0 0 0 1 0 0 1 0 0

2 27 2 0 0 1 0 0 0 0 0 1

3 88 2 0 1 0 1 0 0 0 0 0

4 481 2 0 0 0 0 0 0 1 0 1

5 520 2 0 0 0 1 0 0 1 0 0

Table 5.12: Top most frequent amino acid features selected for the optimal model of
H2-Kb and their appearances on peptide locations.

No
Amino Acid Number of Location

Index Occurrences 1 2 3 4 5 6 7 8

1 71 2 0 1 0 0 1 0 0 0

Table 5.13: Top most frequent amino acid features selected for the optimal model of
H2-Kk and their appearances on peptide locations.

No
Amino Acid Number of Location

Index Occurrences 1 2 3 4 5 6 7 8

1 29 2 0 1 0 0 0 0 0 1

2 88 2 1 0 0 0 0 0 0 1

3 565 2 0 0 0 0 1 0 1 0
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Table 5.14: Entire data set prediction results of the mouse class I MHC alleles.

Allele Allele

H2−Db H2−Kb H2−Kk H2−Db H2−Kb H2−Kk

Methods q2 q2 q2 AR AR AR

Additive [286] 0.602 0.370 0.849 0.403 0.443 0.178

SVRMHC [25] 0.749 0.568 0.973 0.170 0.382 0.039

RVMMHC-1 [306] 0.840 0.664 0.980 0.297 0.527 0.125

RVMMHC-2 [306] 0.845 0.691 0.962 0.316 0.489 0.173

TSK-SVR I 0.912 0.792 0.912 0.140 0.340 0.193

Improvement 7.93% 14.62% - 17.65% 10.99% -

Figure 5.9: Correlation diagrams of the prediction performance for mouse class I
MHC alleles. a) H2-Db b) H2-Kb c) H2-Kk
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Table 5.15: Leave-one-out cross validated correlation coefficient (q2) prediction re-
sults of the mouse class I MHC alleles.

Allele

H2−Db H2−Kb H2−Kk

Methods q2 q2 q2

Additive [286] 0.401 0.454 0.456

SVRMHC [25] 0.456 0.486 0.721

TSK-SVR I 0.462 0.490 0.729

Improvement 1.32% 0.82% 1.11%
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5.4 Conclusions

In this chapter, a hybrid system that has helped to improve the predictive ability of

fuzzy system significantly with the aid of support-based vector method was developed.

The proposed method demonstrated with the successful applications in the prediction

of peptide target value being regarded as one of the difficult modelling problems in

bioinformatics. Two major points were identified. First, SVR is enhanced by adding the

fuzziness concept. Second, TSK-FS is benefited from SVR-based training. The SVR-

based experiments were carried out for four different peptide affinity data sets and three

mouse class I MHC alleles. The experimental results evidently highlight the strength

of the proposed hybrid method which yielded comparatively better results among the

recently published results. Predictive performances have been improved as much as

33.6% for the first group of data sets and 1.32% for the second group of data sets. Apart

from improving the prediction accuracy, this research study has also identified amino

acid features “Polarity”, “Positive charge”, “Hydrophobicity coefficient”, and “Zimm-

Bragg parameter” being the highly discriminating features in the peptide binding affinity

data sets.



Chapter 6

Quantitative Prediction of

Peptide Binding Affinity with

SVR-based Interval Type-2 Fuzzy

System

6.1 Introduction

Peptide binding plays important roles in the immune system and helps us to understand

the mechanisms of protein-peptide interactions. One of the most important aspects

of the binding of peptides is the prediction of protein-peptide binding affinity with

applications to design of drugs. Empirical evaluation of the binding affinity is unfeasible

as there are huge number of potential binding peptides even for a particular major

histocompatibility complex molecule. Furthermore, it requires laboratory experiments

that are costly and time consuming. The use of computational methods are inevitable

to support empirical methods in order to determine the binding and its affinity in a

quicker manner. Predictive models help approximate computation of the tendency and

strength of the bindings and serve as essential time saving tools.

Fuzzy systems can be used in modelling of uncertain systems and imprecise knowledge

very similar to human reasoning [168]. Expert knowledge traditionally is the main source

when designing a fuzzy system. Nevertheless it is difficult to find the human experts

122
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when they are needed. Moreover, it is infeasible to ask them repeatedly when modifica-

tions are required. On the contrary, the necessities of real-life applications often require

to adapt the modifications that may occur in the environment. One of the generally

used fuzzy systems is the Takagi-Sugeno-Kang fuzzy system [6], [7]. It can model com-

plex systems and can be enhanced with the cooperation of learning methods. In this

regard, consequent parameters of a TSK fuzzy system can be obtained using the least

square estimation. As the training error is minimised during the least squares estimation

the model can lead to overfitting. Support Vector Regression is an acceptable alterna-

tive regression estimation method to the least squares and can ensure generalisation of

underlying model.

In order to improve the accuracy of the fuzzy models and minimize the affects of un-

certainties, type-2 fuzzy systems are used [179]. Type-2 fuzzy sets assist in knowledge

representation by the use of linguistic grades of membership and improve the inference

of type-1 fuzzy sets [308]. The computations of type-2 fuzzy sets are complex. In or-

der to ease these computations interval type-2 sets can be used [190]. IT2 fuzzy sets

are often much more practical to manage than the general type-2 fuzzy sets. One of

the advantages of using IT2 fuzzy sets is that the computations can be implemented

using type-1 fuzzy sets [187]. Similar to the defuzzification process in type-1 fuzzy sys-

tems, type-2 fuzzy systems use type-reduction process in order to find a type-1 set [309].

Karnik-Mendel algorithms are the widely used type-reduction algorithms and compute

the centroid of IT2 fuzzy sets in order to find a type-reduced set [310]. The iterative

nature of the KM algorithms often leads a computational cost which in turn results

inefficiency when they are used in fuzzy logic control systems [311].

A hybrid learning system that incorporates the Type-2 TSK fuzzy system with SVR

and clustering methods are proposed in this chapter in order to built a robust fuzzy

predictive model. The consequent parameters are obtained by SVR whereas antecedent

parameters of the fuzzy system are obtained using clustering methods. Recently, a

general framework that integrates type-2 fuzzy system with the SVR-based method has

been presented [312]. In order to address the computational cost of a type-reduction

process, our approach used a different inference engine in which type-reduction is not

necessary. To initialize the parameters of IT2 fuzzy sets, a novel clustering concept is

developed. This clustering approach is based on the overlapping concept.
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In the next section, the proposed type-2 fuzzy system is described in detail. In Section

6.3 the results of the binding affinity problem are presented and discussed. Finally,

Section 6.4 draws the conclusions of this chapter.

6.2 Materials and Methods

In this section, the proposed type-2 fuzzy system is described in the following sub-

sections: IT2-TSK A2-C0 Fuzzy System (6.2.1), Type Reduction and Defuzzification

(6.2.2), Generating Fuzzy System with Overlapping Clustering Concept (6.2.3), SVR-

based IT2-TSK Fuzzy System (6.2.4).

6.2.1 IT2-TSK A2-C0 Fuzzy System

Takagi-Sugeno-Kang model is one of the widely used fuzzy systems. This model struc-

ture presents the design of consequent parameters using a least squares method. More-

over, model structure is extended in such a way that it can identify both premise and

consequent part of the fuzzy system.

The rule-base of the IT2-TSK A2-C0 model with r rules can be expressed as:

Ri : IF x1 is Ã1i AND x2 is Ã2i ... AND xn is Ãni

THEN yi = a0i + a1ix1 + ...+ anixn
(6.1)

where n are the input variables (x1, x2, ..., xn); and Ãni is an interval type-2 fuzzy set

for the variable n and rule r, generally represented by a membership function; and yi

is a linear function in the consequent part; and a0, a1, a2, ..., an are the coefficients of

input parameters. As the model structure is A2-C0, the coefficients of the consequent

are crisp numbers.

The antecedent part involves IT2 fuzzy sets where the uncertainty is modeled. The

firing strengths of IT2-TSK are determined by using the t-norm operator and can be
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calculated as:

fi =

n∏
j=1

µ(xj) (6.2)

fi =
n∏
j=1

µ(xj) (6.3)

where fi and fi are the lower and upper firing strengths; µ(xj) and µ(xj) are the upper

and lower degree of memberships for input variable xj ; respectively, and
∏

denotes the

product t-norm operation.

6.2.2 Type Reduction and Defuzzification

Interval type-2 fuzzy systems are often used to model and minimise the effects of uncer-

tainties in fuzzy systems [186]. Type-reduction process is an important step in IT2-FS.

This process enables to reduce a type-2 fuzzy set into a type-1 fuzzy set. Karnik-Mendel

algorithm is a widely used type-reduction method that can compute the left and right

end points required for IT2 fuzzy set [191]. Then these end points are used to calculate

the final output. Due to the high-computational cost of iterative KM algorithms, alter-

native type-reduction algorithms that are faster in computation and have closed form

expressions have been proposed recently in the literature. Some of the computationally

effective alternative type-reduction algorithms, many of them are for the defuzzification

of Mamdani IT2 fuzzy logic systems, are Liang-Mendel Unnormalised Method [313],

Wu-Mendel Uncertainty Bounds Method [314], Coupland-John Geometric Method [315],

Greenfield-Chiclana-Coupland-John Collapsing Method [316], Nie-Tan Method [317].

Wu-Mendel’s uncertain boundary method (WM) is an alternative for finding the overall

output Y . This type-reduction method benefits from uncertainty bounds for IT2-FS in

order to decrease the computational load. WM method uses four centroids (y
l
, y

r
, yl,

yr) which are the left and right end points of the centroid of the consequent IT2-FS.
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One important note about the WM method is that the overall output can be calculated

without having to perform type-reduction.

YWM = 1/2 [
y
l
+ yl

2
+
y
r

+ yr

2
] (6.4)

One main drawback of WM method is that there is no systematically designed for IT2

fuzzy control systems and stability analysis of the output equations reported unsuccess-

ful. Biglarbegian-Melek-Mendel (BMM) proposed a new inference engine that designs

the parameters of IT2-TSK [318]. This method has a closed mathematical form and

conditions required for the stability of IT2-TSK. However, BMM method gets more of

its theoretical background based on WM’s method and suggested their new inference

method as described in the following. BMM introduced a new inference engine as:

YBMM = q

r∑
i=1

fi yi

r∑
i=1

fi

+ p

r∑
i=1

fi yi

r∑
i=1

fi

(6.5)

where q and p are the design parameters to weight the lower (fi) and upper (fi) firing

strengths for each rule, respectively (if r = 1, then q + p = 1). These parameters

are required to be optimised for the robustness of the fuzzy system. The rule outputs

denoted by yi are not required to be sorted in BMM type reduction.

6.2.3 Generating Fuzzy System with Overlapping Clustering Concept

In the proposed work of Sugeno and Yasukawa [319], fuzzy clustering is used to identify

the structure and parameters of a fuzzy model. This work also classifies the identification

process into two kinds and describes each of them thoroughly. These are structure iden-

tification and parameter identification in fuzzy modelling. Finding the input variables

from the possible input space and determining the number of rules are the main con-

cerns in structure identification. Parameter identification, however is mostly concerned

with finding parameter values of the fuzzy model. These parameter values, in the case

of premise parameter identification, can be of a non-linear nature, are used to form
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the membership functions which characterise fuzzy sets. Later, to ease structure iden-

tification process, sample probability distributions were suggested in order to identify

parameters of membership functions of input variables using the centres of cluster-like

regions [202].

Although structure identification and parameter identification help to better deal with

a complex system like type-1 fuzzy systems. In the case of type-2 fuzzy systems, the

matter becomes even more complex. To our best knowledge, there is no accepted method

in the literature for the parameter initialization of a type-2 fuzzy system. In the case

of type-1 fuzzy system, the knowledge obtained from a domain expert can be used in

this fashion. However, in the absence of a domain expert, a common practice is to use

uniform fuzzy partitioning based on a number of labels for each feature [320], [321].

It is obvious that in the case of a high-dimensional feature space this approach will

not do. Because the feature size is large, the rule-base is formed of huge number of

rules. Consequently, this leads to the curse of dimensionality problem, which one would

like to particularly avoid. So the grid-partitioning is omitted from the efforts of type-2

fuzzy system premise parameter initialization. In the literature, one effort found in this

fashion so far is to derive the lower MF from the given upper MF [205]. Above all,

it is considered that for IT2 fuzzy systems, arbitrary initialization of MF parameters

is the common practice. After the arbitrary initialization, a learning method is used

for finding the optimum parameters. As a result, the model structure of T2-TSK is

often a difficult task. A novel method is therefore developed based on the overlapping

concept in order to ease this tedious task. IT2 premise parameters consist lower and

upper membership functions. In this method upper membership functions are identified

using the clustering approach similar to strategy discussed to identify the membership

functions of the type-1 fuzzy system. The lower membership functions on the other

hand are identified from the overlapping regions among the clusters.

The clustering method introduced in this section aims for overcoming the difficulties

of parameter identification process in a type-2 fuzzy system. This method assumes the

overlapping regions between the clusters may contain uncertain parts that could be useful

to take into consideration in the design process of an interval type-2 fuzzy set. Upper

membership function parameters of an IT2-FS is obtained using the chosen clustering

method. This chosen clustering method can be any clustering method as long as the

clusters provide the statistical information defining their characteristic. This work used
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common clustering methods like k-means, fuzzy c-Means and hierarchical clustering in

the experiments and made a performance comparison among them.

The overlapping clustering process is similar to the approach taken in the previous

chapter when determining the membership function parameters of a type-1 fuzzy set.

But it differs in that an IT2-FS requires its lower membership function to be defined.

The projection of these overlapping regions defines new end points for each cluster. A

cluster which is located on the left wing of the designated cluster may define its left end

point and the other cluster on its right wing may define its right end point. The use

of these new points obtained through the projecting of clusters into 1D representations

and with the addition of cluster center, the parameters of lower membership function

would be obtained. The overlapping clustering concept is illustrated in Fig. 6.1.

The overlapping clustering concept is comprised of the following main steps:

Step 1: Decide the number of clusters for the partitioning clustering methods or cut-off

point for the hierarchical clustering methods.

Step 2: Do the cluster analysis for the chosen clustering method (e.g. HCM, FCM,

Hierarchical Clustering). Data samples are assigned to each cluster at the end of the

clustering process. Get the statistical values of each generated partition. These statis-

tical values (e.g. min, max, mean, standard deviation, variance) of each partition can

be used to determine values of the parameters of a membership function in fuzzy mod-

elling. Note that in the case of the standard deviation equals to zero for the generated

partitions, set the standard deviation to a small but non-zero value. The purpose is to

avoid clusters having zero standard deviation and ensuring the membership functions

(e.g. Gaussian membership function) work properly during the fuzzification stage.

Step 3: Overlapping clustering concept can be applied to any type of membership func-

tions however in this explanation for the sake of simplicity and clarification of example

it is explained for two different kind/type of membership functions mainly triangular

membership functions and Gaussian membership functions. Gaussian membership func-

tion depends on two parameters. They are standard deviation and mean. Triangular

membership function depends on three parameters. These are the left, right points

and mean. After the cluster analysis, get these aforementioned statistical values of all

partitions.
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Step 4: Continue the same process in steps 5-11 for each single-feature in the feature-set.

Get the pair (statistical value, designated partition) for each single-feature.

Step 5: Set the upper left point at the value obtained from the pair (min, partition).

Set the upper center by the value obtained from the pair (mean, partition). Set the

upper right point by the value obtained from the pair (max, partition). These values

characterize the upper membership function.

Step 6: Initialize the parameters of the lower membership function by using values

that characterize the upper membership function. Set the lower left point to upper right

point. Set the lower centre to upper centre. Set the lower right point to upper right

point.

Step 7: Setting the lower left point: Get the min, mean, max values of all the partitions.

Find the lower left point by searching all these statistical values of the partitions and

obtain the value in that the value shall be in the interval [leftpoint, mean] of upper

statistical values in the other partitions. If there is more than one value found in the

search process. Get the closest value to the upper left point.

Step 8: Setting the upper left point: Get the min, mean, max values of all the partitions.

Find the upper left point by searching the all the statistical values and obtain the value

in that the value shall be in the interval [rightpoint, mean] of upper statistical values in

the other partitions. If there is more than one value found in the search process. Get

the closest value to the upper right point.

Step 9: Setting the lower centre: As this is a membership function with fixed mean

and uncertain standard deviations, the upper and lower centres remain the same.

Step 10: Generate upper triangular/Gaussian membership function using the upper

left, right end points and centre.

Step 11: As absolute lengths of lower left point and lower right point from the centre

are not the same. Generate two lower triangular/Gaussian membership functions rep-

resenting each end points. Form a non-uniform lower triangular/Gaussian membership

function taking left wing from one triangular/Gaussian membership function and take

the right wing from the other. Ensure the lower membership function generated has a

non-zero standard deviation. In the case of it equals to zero, set the standard deviation

of lower membership function to a small but non-zero value.
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Step 12: Either use triangular/Gaussian membership functions or convert them to other

membership functions (e.g. trapezoidal membership function) to use in fuzzy modelling.
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6.2.4 SVR-based IT2-TSK Fuzzy System

SVM is a powerful method based on the statistical learning theory, or VC theory and this

theory uses the characteristics of learning machines that can lead a good generalisation

for the unseen data [157]. In the case of regression estimations SVM can be referred as

SVR. Given the training data as in the form of data pairs (x,y), SVM learning algorithm

finds the function h that tolerates errors up to ε from the expected values of the targets

y while ensuring the function as flat as possible. This means that, the errors less than

ε can be tolerated as long as the deviations are not greater than the ε value.

h(x) = wTx+ b. (6.6)

where w and b denote the coefficients of the linear function. The flatness of the function

can be ensured on the search of small w with ε precision. Nevertheless, to cope with the

infeasible constraints of the optimisation problem, slack variables ξ+, ξ− can be used.

minimize 1
2‖w‖

2 + C
∑

(ξ+ + ξ−)

subject to

{ y − (wTx+ b) ≤ ε+ ξ+

(wTx+ b)− y ≤ ε+ ξ−

(ξ+, ξ−) ≥ 0

(6.7)

The parameter C is the trade-off between deviations from the ε could be tolerated and

the flatness of linear function h that up to which value of w could be minimised most.

This is ensured by the ε-insensitive loss function where deviations of the data samples

outside the tolerated value of ε are penalised and contribute to the cost function. As

corresponded to the SVM, the training instances that have the non-vanishing coefficients

are chosen as the support vectors. Accordingly then, the weighted sum of the support

vectors characterises the separating hyperplane which acceptably models the training

data set.

Least-squares estimation is a simple and standard method used to find the values of the

consequent parameters of TSK [6]. A potential substitution of this common method
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can be the SVR concept with a linear kernel. Training data set along with their target

outputs are given to SVR benefiting from the BMM inference engine accordingly after

inputs are transformed as:

(qfi + pfi, qfixi1 + pfixi1, ..., qfixin + pfixin) (6.8)

where q and p are the design parameters that denote weight of the lower and upper firing

strengths for each rule. These weight parameters are optimised using a grid search to

provide the robustness of the fuzzy system. Accordingly then, the coefficients w and

b which represent the weight vector of the SVR linear function are computed. Thus a

support vector based Type-2 Takagi-Sugeno-Kang fuzzy system (TSK-SVR II) can be

formulated as:

y′′i = w0r +
n∑
i=1

(wirxi) (6.9)

y′′ = q

r∑
i=1

fi yi

r∑
i=1

fi

+ p

r∑
i=1

fi yi

r∑
i=1

fi

+ b (6.10)

where y′′ denotes the new output formulation representing TSK-SVR II. SV-based re-

gression that is used to compute the values of the consequent parameters of the hybrid

method, is implemented using LIBSVM software.

6.2.5 Predictive Modelling of Peptide Binding Affinity

This section presents the construction of SVR based interval type-2 TSK fuzzy models

and identification of their parameters in the following steps. The SVR based interval

type-2 fuzzy model (TSK-SVR II) shown in Fig. 6.2 is used for the prediction of peptide

binding affinity data sets. The figure illustrates the stages of this fuzzy model aiming at

predicting degree of peptide binding.
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Figure 6.2: Stages of the SVR based interval type-2 TSK fuzzy model for the predic-
tion of peptide binding affinity.
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6.2.5.1 Preprocessing

The process starts with encoding a feature space from the available peptides using the

amino acid descriptors. Each descriptor defines physico-chemical attribute values of 20

amino acids. For each amino acid location in the peptide, corresponding descriptor value

for that amino acid is captured from the AA-scales. As described previously (Section

4.3), 643 descriptors have been used to define an amino acid for each location within

the peptide. The constructed feature space varies according to the size of peptides. As

peptides used in this research vary in size, mostly it would be 8 or 9, the number of fea-

tures encoded becomes over five thousand features. This means that a high-dimensional

feature set is used in order to carry out the process. After the completion of setting up

the feature space, next step is the normalisation stage. Each feature converted to a real

number between zero and one.

6.2.5.2 Feature Selection

This stage enables to ignore similar features leading to better descriptive features to

be recognized. As a feature selection method, namely MCFS method [273], is used to

filter the peptide data sets resulting in a reduced number of physico-chemical attributes.

The subset of features found at the end of the feature reduction process is crucial to

deal with what so called curse of dimensionality effect in prediction models. This effect

drives the prediction models to become inefficient by demanding longer processing times

and bigger memory sizes. However, MCFS method itself might suffer from the curse of

dimensionality in the case of selection of high number of features. Hence, the number

of features should be kept as low as possible.

6.2.5.3 Identifying Antecedent Parameters

Different than the type-1 fuzzy systems that require only one fuzzy set defined for each

variable in the rule, interval type-2 fuzzy systems however require two fuzzy sets to

describe an interval type-2 fuzzy set for each variable in the rule. An interval type-2

fuzzy set consists of lower and upper membership functions which are the boundaries

of this type of fuzzy set. Each fuzzy set resides within these boundaries assumes a full

membership value. To initialize the parameters of IT2 fuzzy sets, a novel clustering



Quantitative Prediction of Peptide Binding Affinity with Regression-based IT2FS 136

concept is developed. This clustering approach is based on the overlapping concept.

It takes into consideration that each single-variable is individually processed from the

partitions generated in the hyperspace. This single input - single output scheme has

partitions that overlaps each other. These regions are used as FOU. Overlapping concept

can be used for any clustering method as long as the indices of which partition the data

sample belongs to is provided. During the fuzzification stage, IT2 fuzzy sets for each

variable in each rule are formed through the use of this novel strategy.

6.2.5.4 Identifying Consequent Parameters

For the fuzzy inference, a t-norm operation is used to find the firing strengths of each

rule (both lower and upper firing strengths). In the type-reduction and defuzzification

stage, a closed type-reduction strategy, namely BMM method, is followed. The firing

strengths are combined with the design parameters of this method to weight the output

of each rule, as described broadly in the relevant section.

The parameters of the consequent part for the TSK fuzzy systems are commonly initial-

ized through the use of least squares. As our fuzzy model concerns IT2 fuzzy sets in its

antecedent part, the consequent part is still type zero. So the similar approach as we

used for finding parameters of a type-1 TSK fuzzy systems can be adopted here. Differ-

ent from the least squares, our model uses support vector based regression in order to

reveal the consequent parameters, contributing to better generalisation in the prediction

process.

6.2.5.5 Searching for Optimal Parameters

As previously mentioned, the parameter to indicate number of clusters should be preset

before the cluster analysis is performed. Therefore, silhouette graphs are obtained for

two to seven clusters (Fig. 6.3 - Fig. 6.6) and for two to five clusters (Fig. 6.7 - Fig. 6.9)

in order to reveal which groupings better represent the underlying data sets. Silhouette

graphs suggest IT2-TSK fuzzy system can be constructed using only two rules with the

reduced features. These rules are suffice for the proposed model to build a robust and

interpretable fuzzy system for the high-dimensional data set by using relatively small

number of data samples.
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The structure of the IT2-TSK fuzzy system is constituted by automating the parameters

of the antecedent and consequent parts. The optimal set of parameter values found at

the end of grid-search are used. The values of the parameters of Gaussian membership

functions that characterise each fuzzy set of the premise part were obtained by using

clustering analysis such as k-means, fuzzy C-means, hierarchical clustering methods. The

coefficients of linear functions of each rule for the consequent part were then identified

using SVR. However, two more additional paremeters (q and p) needed to be optimised

for the BMM method in the defuzzification stage of the model. These parameters are

optimised using the grid-search while the SVR parameters remained constant as they

are found at the end of intensive seeking process. The optimal parameters of linear

kernel SVR (C and ε) and number of selected features along with the optimal design

parameters of BMM method that weights the lower and upper firing strengths that

resulted in best performance are given in Table 6.1 and Table 6.2.
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Figure 6.3: Silhouette values for different clusters for Task 1.

Figure 6.4: Silhouette values for different clusters for Task 2.
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Figure 6.5: Silhouette values for different clusters for Task 3.

Figure 6.6: Silhouette values for different clusters for Task 4.
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Figure 6.7: Silhouette values for different clusters for mouse class I MHC H2-Db
allele.

Figure 6.8: Silhouette values for different clusters for mouse class I MHC H2-Kb
allele.

Figure 6.9: Silhouette values for different clusters for mouse class I MHC H2-Kk
allele.
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Table 6.1: The optimal TSK-SVR II model parameter values for each peptide binding
affinity data set (Tasks 1-4) with different clustering methods.

Task 1

clustering number of number of

method clusters selected features C ε q p

k-means 2 161 0.65 0.05 1.03 -0.01

fuzzy c-means 2 161 0.65 0.05 1.03 -0.01

hierarchical 2 161 0.65 0.05 1.03 -0.01

Task 2

clustering number of number of

method clusters selected features C ε q p

k-means 2 247 1.90 0.10 1.45 0.03

fuzzy c-means 2 247 1.90 0.10 1.45 0.03

hierarchical 2 250 1.55 0.10 1.00 -0.03

Task 3

clustering number of number of

method clusters selected features C ε q p

k-means 2 172 1.45 0.90 0.83 0.07

fuzzy c-means 2 172 1.45 0.90 0.83 0.06

hierarchical 2 172 1.45 0.90 0.83 0.06

Task 4

clustering number of number of

method clusters selected features C ε q p

k-means 2 141 2.30 0.45 1.00 0.10

fuzzy c-means 2 141 2.30 0.45 1.00 0.10

hierarchical 2 141 2.30 0.45 1.00 0.10
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Table 6.2: The optimal (q2) TSK-SVR II model parameter values for each mouse
class I allele leave-one-out cross validated prediction with different clustering methods.

H2Db

clustering number of number of

method clusters selected features C ε q p

k-means 2 37 0.45 0.05 0.99 -0.04

fuzzy c-means 2 36 0.75 0.10 0.99 -0.02

hierarchical 2 36 0.75 0.10 0.98 0.01

H2Kb

clustering number of number of

method clusters selected features C ε q p

k-means 2 32 1.40 0.45 1.01 0.00

fuzzy c-means 2 34 1.00 0.05 0.96 0.08

hierarchical 2 25 1.75 0.45 1.00 -0.06

H2Kk

clustering number of number of

method clusters selected features C ε q p

k-means 2 22 6.95 0.35 1.00 0.01

fuzzy c-means 2 20 4.75 0.20 1.00 0.01

hierarchical 2 18 1.50 0.05 0.96 0.01
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6.3 Results and Discussion

A hybrid learning system that incorporates the Type-2 TSK fuzzy system with SVR

and clustering methods is proposed and applied to the real value prediction of peptide

binding affinity. The consequent parameters of the fuzzy system obtained by SVR

whereas antecedent parameters obtained using clustering methods. In order to address

computational cost of a type-reduction process, our approach used a different inference

engine in which type-reduction is not necessary. To initialize the parameters of IT2

fuzzy sets, a novel clustering concept is developed. This clustering approach is based on

the overlapping concept. The experimental results and findings of the proposed method

are validated using peptide binding affinity data sets that are different and independent

from each other. Two groups of peptide binding affinity data sets in this research study

are used for the performance evaluation and verification of the proposed method. The

first group of data sets consists of CoEPrA data sets. A blind validation performed to

evaluate the performance of the proposed method by using these data sets. The second

group of data sets consists of mouse class I MHC alleles. These data sets are used for

the evaluation of the performance of our method using cross-validation.

6.3.1 Blind-Validated Peptide Binding Affinity Prediction

The analysis of the peptides that have numeric degree of peptide binding is essential

for the design of a model that can predict the quantitative binding affinities of unseen

peptides. The performance indicates how good the model finds an accurate binding

affinity relationship between peptide and a protein.

The optimal set of parameter values found at the end of grid-search for the peptide

binding affinity data sets are used. These parameter values are obtained at the end of

the intensive seeking process for each of the experimental data set. Suprisingly, they are

similar to the parameters of the respective TSK-SVR I models found in the previous

chapter. Nevertheless, TSK-SVR II model requires two more additional parameters

(q and p) to be optimised. These parameters come from the defuzzification stage of

the model. The optimal parameter values of SVR remained same in seeking for the

design parameter values of the defuzzification stage of TSK-SVR II. The use of similar

parameter values not only aid for getting the benefit from the findings of TSK-SVR I but
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also yield a comparative assessment of these parameter values on the results between

TSK-SVR I and TSK-SVR II models. The optimal parameters of linear kernel SVR

(C and ε) and number of selected features along with the optimal design parameters of

BMM method that weights the lower and upper firing strengths that resulted in best

performance are given in Table 6.1.

For some tasks, selected features are very similar with the features found in the previous

chapter. Therefore, the analysis provided in the previous chapter for the feature selection

is almost repeated for the SVR based interval type-2 fuzzy models. Only the set of

features from the best model selected for each task is taken into consideration. The

amino acid features that contributed most to the efficiency of the proposed models are

given in Table 6.3 - Table 6.6. For Task 1, eight amino acid features contributed to the

output in more than four separate locations. The amino acid feature numbered with 481

(Hydrophobicity coefficient in reversed phase high performance liquid chromatography)

contributed highest as it is represented in seven separate locations on each of the nona-

peptide within the data set. This finding suggests that hydrophobic effect is important

in mediating the binding process between the peptide and MHC molecule in this data

set. Therefore, peptides can be shielded from the surrounding solvent and can be buried

inner side of the protein [303]. For Task 2, eleven amino acid features contributed to the

output in more than five separate locations. The amino acid feature numbered with 364

(Zimm-Bragg parameter sigma x 1.0E4) contributed highest as it is represented in seven

separate locations on each of the octa-peptide within the data set. This finding suggests

that helix formation in peptides is important in mediating the binding process between

the peptide and MHC molecule in this data set. One main reason for the peptides that

can nucleate a helix formation is that the ability of their side chains to participate in

hydrophobic bonding [304]. For Task 3, nineteen amino acid features contributed to the

output in more than three separate locations. The amino acid features numbered with

110 (Composition), 338 (Relative preference value at C”), 376 (Relative population of

conformational state A), 405 (Normalized positional residue frequency at helix termini

N”) contributed highest as they are represented in four separate locations on each of

the nona-peptide within the data set. For Task 4, ten amino acid features contributed

to the output in more than three separate locations. The amino acid features numbered

with 306 (Average relative fractional occurrence in A0(i-1)), 338 (Relative preference

value at C”), 110 (Composition), 125 (Normalized relative frequency of double bend)
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contributed highest as they are represented in seven separate locations on each of the

nona-peptide within the data set. The amino acid feature numbered with 400 (Polarity)

appeared in Task 1, Task 2 and Task 3 as a common feature with location occurrences of

4, 6 and 3, respectively. Therefore, the polarity of an amino acid is considered as one of

the highly discriminating feature in these data sets. This finding suggests that polarity

is important in mediating the binding process between the peptide and MHC molecule

in this data set. It is reported that polarity of amino acids can play important role for

the protein ubiquitination process. [305]. The full descriptions of amino acid features

can be found in Appendix A.

Table 6.7 depicts prediction results of the peptide binding affinity tasks. As the model

parameters are similar to the TSK-SVR I fuzzy system, the comparison between the

models is more consistent. IT2 fuzzy system has close but better results than its type-

1 counterpart for all tasks except Task 1. For Task 2, IT2 fuzzy system initialized

with hierarchical clustering method outperformed the IT2 fuzzy systems initialized with

partitional clustering methods. For Tasks 3 and 4, IT2 fuzzy system initialized with any

clustering method yielded the same result exactly. The outcomes of the experiments with

different clustering methods clearly highlights the initialization strength of overlapping

clustering concept for interval type-2 fuzzy systems. The results also suggest that SVR

concept has positively contributed the learning of the consequent parameters of IT2

fuzzy system. For any clustering method used for the initialization of IT2 fuzzy system,

the results seems identical or very close to each other. Table 6.8 - Table 6.11 depict

the improvement gain or loss of peptide binding affinity tasks achieved by the proposed

models with respect to each other. It is believed that as the improvement gain or loss

of different clustering methods are very close to each other and the optimal parameter

values are obtained at the end of intensive searching process, IT2 fuzzy system models

become saturated. Even then, for Tasks 2, 3 and 4, SVR based IT2-TSK fuzzy system

slightly outperformed the type-1 TSK fuzzy model. For Task 1, no improvement gain

for SVR based IT2-TSK fuzzy system is obtained over the type-1 TSK fuzzy model.

Overall improvement gain or loss value of TSK-SVR II that uses for k-means, fuzzy c-

means and hierarchical clustering methods with respect to TSK-SVR I is 0.56, 0.56 and

1.07, respectively. Interestingly, these values are very close to each other. We believe

that this is due to the fact that the partitions obtained for all the clustering methods

become saturated.
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The proposed method consists of only two rules which allows a simple but a robust FS

rule-base [5]. Moreover, the model suggested better results than what has been presented

in recently published papers [81], [285], [291], [292]. The results also appear to suggest

that different clustering methods other than mentioned in this thesis can also be used

for the overlapping concept. Further exploration of clustering methods in overlapping

concept may improve the initialization performance of antecedent parameters of IT2

fuzzy systems.
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Table 6.3: Top most frequent amino acid features selected for the optimal model of
Task 1 and their appearances on peptide locations.

No
Amino Acid Number of Location

Index Occurrences 1 2 3 4 5 6 7 8 9

1 481 7 1 1 1 0 1 0 1 1 1

2 302 6 0 1 1 0 1 1 1 0 1

3 367 6 1 1 0 0 1 1 0 1 1

4 31 5 0 0 1 1 0 1 1 1 0

5 613 5 1 1 0 0 0 1 1 0 1

6 259 4 0 1 0 1 0 1 0 1 0

7 359 4 0 0 1 1 0 0 1 1 0

8 400 4 0 1 0 1 0 0 0 1 1

Table 6.4: Top most frequent amino acid features selected for the optimal model of
Task 2 and their appearances on peptide locations.

No
Amino Acid Number of Location

Index Occurrences 1 2 3 4 5 6 7 8

1 364 7 1 1 0 1 1 1 1 1

2 31 6 1 1 1 1 1 0 0 1

3 379 6 1 0 0 1 1 1 1 1

4 400 6 1 1 0 1 0 1 1 1

5 476 6 1 0 0 1 1 1 1 1

6 30 5 1 0 1 1 0 0 1 1

7 235 5 0 1 1 1 1 0 1 0

8 302 5 0 1 1 1 0 0 1 1

9 380 5 1 0 0 0 1 1 1 1

10 386 5 0 1 1 1 1 0 1 0

11 609 5 1 1 0 1 1 1 0 0
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Table 6.5: Top most frequent amino acid features selected for the optimal model of
Task 3 and their appearances on peptide locations.

No
Amino Acid Number of Location

Index Occurrences 1 2 3 4 5 6 7 8 9

1 110 4 0 1 0 1 0 1 0 0 1

2 338 4 0 0 0 1 0 1 1 1 0

3 376 4 0 0 0 1 0 1 1 1 0

4 405 4 1 1 1 0 0 0 1 0 0

5 25 3 0 0 1 1 0 0 0 1 0

6 88 3 0 0 1 1 0 1 0 0 0

7 220 3 0 0 0 1 0 0 1 1 0

8 221 3 1 0 0 0 0 1 0 1 0

9 232 3 0 1 0 1 0 0 0 1 0

10 296 3 1 0 0 1 0 0 0 1 0

11 299 3 0 0 0 0 1 1 0 1 0

12 345 3 0 0 0 0 0 1 1 1 0

13 349 3 0 0 1 0 1 0 0 1 0

14 367 3 1 0 0 0 0 0 1 1 0

15 373 3 1 0 0 0 0 1 0 1 0

16 400 3 1 0 0 0 0 0 1 1 0

17 452 3 1 0 0 1 1 0 0 0 0

18 455 3 0 0 1 1 0 0 0 1 0

19 481 3 0 0 0 0 1 0 1 1 0
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Table 6.6: Top most frequent amino acid features selected for the optimal model of
Task 4 and their appearances on peptide locations.

No
Amino Acid Number of Location

Index Occurrences 1 2 3 4 5 6 7 8 9

1 306 4 0 0 0 1 0 1 1 1 0

2 338 4 0 0 0 1 0 1 1 1 0

3 110 3 0 1 0 0 0 1 0 0 1

4 125 3 0 0 0 0 1 1 0 1 0

5 221 3 1 0 0 0 0 1 0 1 0

6 232 3 0 1 0 1 0 0 0 1 0

7 251 3 0 0 0 1 0 0 1 0 1

8 373 3 1 0 0 0 0 1 0 1 0

9 405 3 1 1 1 0 0 0 0 0 0

10 420 3 1 0 0 0 0 1 1 0 0
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6.3.2 Cross-Validated Peptide Binding Affinity Prediction

For comparison purposes, similar to cases studied in the literature for the prediction of

mouse class I MHC alleles, each data set is implemented using the leave-one-out cross

validation and evaluated with the cross-validated correlation coefficient. The aim of

this comparison is to assess the ability of the proposed approach in predicting binding

affinities of unseen peptides. Different than the studies presented in the literature, the

entire data set prediction is omitted as it does not provide an independent predictive

assessment as compared to the evaluation implementing the LOO-CV. Note that, the

purpose is to select a model that can efficiently find the affinity of peptide to a protein.

The correct configuration of the parameters of the predictive models is crucial for their

performance. Accordingly, the grid-search method is conducted for each mouse class

I MHC allele in a sufficient range. As a result, the models are selected based on the

optimal set of parameter values found after an intensive seeking process. These optimal

parameter sets resemble the ones found for the TSK-SVR I models. Hence, a more

consistent comparative analysis can be made on the results between TSK-SVR I and

TSK-SVR II models. BMM method is used at the defuzzification stage of TSK-SVR II.

This method has two design parameters (q and p) required to be set. They are searched

within a sufficient range while the parameters of SVR remained constant. The optimal

values of SVR linear kernel parameters and design parameters of BMM method along

with the number of selected features yielded best models are given in Table 6.2.

For some alleles, selected features are very similar to the ones that are found in the

previous chapter. For this reason, the analysis provided for the feature selection is

almost repeated for the SVR based interval type-2 fuzzy models. The amino acid features

that contributed most to the efficiency of the proposed models are given in Table 6.12 -

Table 6.14. For H2-Db, five amino acid features contributed to the output in two separate

locations. The amino acid feature numbered with 18 (Spin-spin coupling constants), 27

(The number of atoms in the side chain), 88 (Positive charge), 481 (Hydrophobicity

coefficient in reversed phase high performance liquid chromatography), 520 (Unknown)

contributed highest as they are represented in two separate locations on each of the

nona-peptide within the data set. For H2-Kb, one amino acid feature contributed to the

output in two separate locations. The amino acid feature numbered with 71 (Direction of

hydrophobic moment) contributed highest as it is represented in two separate locations
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on each of the octa-peptide within the data set. For H2-Kk, three amino acid features

contributed to the output in two separate locations. The amino acid feature numbered

with 29 (The number of bonds in the longest chain), 88 (Positive charge), 565 (Unknown)

contributed highest as they are represented in two separate locations on each of the octa-

peptide within the data set. The amino acid feature numbered with 88 (Positive charge)

appeared in H2-Db and H2-Kk as a common feature with location occurrences of 2 and

2, respectively. Therefore, the positive charge of an amino acid is considered as one of

the highly discriminating feature in these data sets. This finding suggests that positive

charge is important in mediating the binding process between the peptide and MHC

molecule in this data set. It is reported that positively charged amino acids can play

important role for the transmembrane domains of reduced folate carrier [307]. The full

descriptions of amino acid features can be found in Appendix A.

Results have been presented in Table 6.15 to ascertain how the proposed models predict

the degree of the bindings for the mouse class I MHC alleles. In addition, the results

of the TSK-SVR fuzzy system is also provided in order to have consistent comparison

among the models. From the table one can see that IT2 fuzzy system models that use

the overlapping clustering concept, slightly outperformed the type-1 fuzzy system for

the H2-Db, H2-Kb and H2-Kk. On the contrary, for H2-Kk, type-1 fuzzy system yielded

better results than IT2 fuzzy system models except for IT2 fuzzy system that uses FCM.

Nevertheless, the outcomes of the experiments with different clustering methods clearly

highlights the initialization strength of overlapping clustering concept for the interval

type-2 fuzzy systems. Interestingly, IT2 fuzzy systems that use FCM achieved slightly

better results than those using HCM and hierarchical clustering. The improvement gain

or loss of IT2 fuzzy models as well as type-1 fuzzy model in terms of percentages with

respect to each other are presented in Table 6.16 - Table 6.18. Overall improvement

gain or loss values of TSK-SVR II that uses k-means, fuzzy c-means and hierarchical

clustering methods with respect to TSK-SVR I are 1.21, 3.07 and -1.40, respectively. It

can be observed that the improvement gain of partitional clustering methods are slightly

better than the hierarchical clustering method. A possible reason for this is that the final

prototype values of partitional clustering are sensitive to randomly initialized prototype

values.

To summarize, the results suggest that SVR concept and overlapping concept have pos-

itively contributed the learning of the premise and consequent parameters of IT2 fuzzy
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system. For any clustering method used for the initialization of the IT2 fuzzy system, the

results seemed identical or very close to each other. Moreover, the proposed models are

formed of only two rules which yielded simple and interpretable fuzzy system rule-base

[5]. It should also be noted that the models suggested better results than those presented

in recently published papers [25], [286], [306]. It can be considered from the results that

clustering methods other than those mentioned in this thesis can be incorporated with

the overlapping concept. Further exploration of clustering methods in overlapping con-

cept may improve the initialization performance of antecedent parameters of IT2 fuzzy

systems.
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Table 6.12: Top most frequent amino acid features selected for the optimal model of
H2-Db and their appearances on peptide locations.

No
Amino Acid Number of Location

Index Occurrences 1 2 3 4 5 6 7 8 9

1 18 2 0 0 0 1 0 0 1 0 0

2 27 2 0 0 1 0 0 0 0 0 1

3 88 2 0 1 0 1 0 0 0 0 0

4 481 2 0 0 0 0 0 0 1 0 1

Table 6.13: Top most frequent amino acid features selected for the optimal model of
H2-Kb and their appearances on peptide locations.

No
Amino Acid Number of Location

Index Occurrences 1 2 3 4 5 6 7 8

1 71 2 0 1 0 0 1 0 0 0

Table 6.14: Top most frequent amino acid features selected for the optimal model of
H2-Kk and their appearances on peptide locations.

No
Amino Acid Number of Location

Index Occurrences 1 2 3 4 5 6 7 8

1 29 2 0 1 0 0 0 0 0 1

2 88 2 1 0 0 0 0 0 0 1

3 565 2 0 0 0 0 1 0 1 0
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Table 6.15: Leave-one-out cross validated correlation coefficient (q2) prediction re-
sults of the mouse class I MHC alleles.

Allele

H2−Db H2−Kb H2−Kk

Methods q2 q2 q2

TSK-SVR I 0.4624 0.4904 0.7287

TSK-SVR II (k-means) 0.4643 0.5091 0.7245

TSK-SVR II (fuzzy c-means) 0.4644 0.5179 0.7519

TSK-SVR II (hierarchical) 0.4642 0.4920 0.6928
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6.4 Conclusions

This chapter has presented a hybrid system and yielded a substantial improvement in

the predictive capability of FS with the aid of SVR. During the fuzzification stage,

IT2 fuzzy sets are initialized using a novel approach based on overlapping clustering

concept. The proposed method was applied to prediction of peptide binding affinity

which is regarded as one of the challenging modelling problems in bioinformatics area.

Four different peptide binding affinity data sets and three mouse class I MHC alleles

were used in order to carry out the experiments. The proposed hybrid system yielded

improvements in results than recently published papers that used the same data sets.

The prediction results for the proposed method also showed that Type-2 FS has helped

to minimise the affects of uncertainties that may exist in the peptide binding affinity

data sets and improved the results as compared to its Type-1 counterpart. Apart from

improving the prediction accuracy, this research study has also identified amino acid

features “Polarity”, “Positive charge”, “Hydrophobicity coefficient”, and “Zimm-Bragg

parameter” being the highly discriminating features in the peptide binding affinity data

sets.



Chapter 7

Discussion and Conclusions

This thesis has been concentrated to cover research on modelling non-linear systems in

the post-genome era. Regression and clustering methods are used to propose a rule-based

fuzzy system for the quantitative prediction and analysis of the problems in application

domains of bioinformatics. Therefore, combined areas in relation to research, namely

fuzzy logic, clustering, regression and feature selection were reviewed in this research

study to effectively address modelling non-linear systems for post-genome data sets. This

research study introduced two novel methods. First, support-vector based regression is

used to identify the structure and parameter values of the consequent part in fuzzy

modelling using a closed mathematical form. Second, overlapping clustering concept

is used to derive the interval type-2 parameters of the premise part in type-2 fuzzy

modelling. Apart from improving the prediction accuracy, this research study has also

identified specific features which play a key role(s) in making reliable peptide binding

affinity predictions.

This chapter draws conclusions to end the thesis. Summary of the research study is

presented in Section 7.1. Strengths and weaknesses of this research study are provided in

Section 7.2. Research contributions to literature are provided in Section 7.3. Discussions

for further and future work are given in Section 7.4.

164
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7.1 Summary of the Research Study

Fuzzy systems are one of the computational methods which are commonly used to min-

imise and model uncertainties in the form of rule-based fuzzy logic systems. One ad-

vantage of fuzzy systems is that their rule set consists of interpretable IF-THEN rules.

There are also some disadvantages when using the fuzzy logic systems. One of the

disadvantages of fuzzy systems are coming from their lack of learning capabilities. To

increase the learning capabilities of fuzzy systems, a common approach is to combine

them with neural networks (e.g. neuro fuzzy systems) or genetic algorithms (e.g. genetic

fuzzy systems). Nevertheless, with the increase in size of parameters, the neuro fuzzy

systems may become inefficient and a problem what so called curse of dimensionality

can be occurred. One aim of this thesis is to develop a novel method and investigate

possible solutions to overcome this drawback in fuzzy systems. One possible solution to

this problem is to use support vector machines which is a computational method that

has a wide use in bioinformatics. Support vector based methods are widely used for

non-linear systems and provide mechanisms to handle large number of dimensions with

a better generalisation ability.

One main issue in construction of fuzzy systems, is forming the rule-base. Fuzzy clus-

tering is one of the well-identified rule generation methods. This thesis aims primarily

constructing a complete initial fuzzy model by discovering the number of clusters and

partitioning the post-genome data to obtain appropriate parameters of the rule-based

fuzzy system. For the structure and parameter identification in type-2 fuzzy modelling,

clustering analysis has been performed using clustering methods such as k-means, fuzzy

c-Means, and hierarchical clustering.

Chapter 1 is the introduction chapter where the motivation and structure of the thesis is

provided. Basic background information related to amino acids, peptides and proteins

are also briefly discussed. Peptide binding affinity problem which is the experimental

focus of this thesis is also introduced in this chapter.

Chapter 2 reviews the use of quantitative methods in bioinformatics. Qualitative predic-

tive models often lack of providing certain and precise knowledge due to the ill-defined

classes. Therefore, quantitative predictive models are becoming important in the stud-

ies of bioinformatics. This review highlights common real-value prediction problems in



Discussion and Conclusion 166

various application domains of bioinformatics and possible solutions proposed for them

by means of quantitative methods being most of them regression methods. As there

is no such review proposed to our best knowledge, this review will fill a gap for those

conducting a research study in bioinformatics or systems biology and need to model

their research problems in order to predict the real-values of such problems. In this

chapter, a set of applications in various application domains of bioinformatics and sys-

tems biology that use feature selection are reviewed. The applications are particularly

limited to regression-based models in this research study. These applications often dealt

with high-dimensionality and small sample size which are the two main issues in the

post-genome era. As presented broadly, a common approach to overcome these issues is

the use of feature selection methods.

Chapter 3 presents the background theory of this thesis. Combined areas in relation to

this research study, namely fuzzy logic, clustering, regression and feature selection, were

extensively studied in this chapter to effectively address modelling non-linear systems

for post-genome data sets. The performance measurement metrics for the predictive

modelling are provided.

In Chapter 4, before presenting our approach for the quantitative prediction of peptide

binding affinity. Peptide data sets and how they encoded into a proper feature space from

the provided amino acid indices are broadly discussed. The description of AA indices

are given as they contain valuable important insight information on the composition of

peptides.

In Chapter 5 the usefulness of SVR-based fuzzy system has been showed with real value

prediction of degree of peptide binding which is an important problem of bioinformatics.

The improvement in the accuracy of predicting real values clearly demonstrates the

performance of the proposed approach. Additionally, specific features are also identified

which play a key role(s) in making reliable peptide binding affinity predictions.

Chapter 6 presented an SVR-based interval type-2 fuzzy system that is based on over-

lapping clustering concept for determining the structure of premise part. A closed form

defuzzification method, namely BMM method, is used as a defuzzification process of

the fuzzy model. The proposed model dealt with the quantitative prediction of pep-

tide binding affinity. The level of uncertainties in the high-dimensional peptide binding

affinity data sets are substantially minimised.
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7.2 Strength and Weaknesses

This section presents the strengths and weaknesses of the studies carried out here. In

terms of the former, the combination of support vector regression with fuzzy logic im-

proved the generalisation ability of the fuzzy system model. Type-1 fuzzy system and

interval type-2 fuzzy system both presented the ability of the proposed model to handle

associated uncertainties within the biological data sets. For example, the level of un-

certainties in the high-dimensional peptide binding affinity data sets are substantially

minimised. The feature selection is conducted as a pre-processing stage for all of the ex-

perimental peptide binding affinity case studies. It is observed that the selected features

are highly dependent on their data sets. Highly discriminating amino acid descriptors

were identified (i.e. Polarity, Positive charge, Hydrophobicity coefficient, and Zimm-

Bragg parameter) in the feature selection process. For the CoEPrA peptide binding

affinity data sets, using approximately 5% of the features was sufficient for finding the

optimal results. The polarity of an amino acid was observed as a common feature in

most of the peptide data sets. For the mouse class I MHC peptide binding affinity data

sets, the features are reduced even more; and approximately 0.5% of the features are

adequate for finding the optimal models. The positive charge of an amino acid was

observed as a common feature in most of the mouse class I alleles. The results obtained

here is promising and presents the feasibility and accuracy of the proposed methods.

Compared to the previously published results in the literature, the support vector-based

type-1 and support vector-based interval type-2 fuzzy models yield an improvement in

the prediction accuracy of the peptide binding affinities.

However it must be noted that, although a higher performance accuracy is achieved,

identifying optimal parameters of the proposed model(s) can take longer times in relation

to other methods mentioned before. Another issue is the limited availability of peptides

and their binding affinities. Even the peptide data set is small in size, its dimensionality

is high. This is will cause problems in terms of reliability of the predictions made. Fuzzy

systems can also suffer from the ‘curse of dimensionality’ in high-dimensional systems.

Feature selection methods are widely used to address this problem and decrease the

dimensionality of the feature space. On the contrary, the feature selection method

itself may suffer from the problems of dimensionality when high number of features

are selected. This will adversely effect the performance of the predictive model. In
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addition, the clustering methods (e.g. hierarchical clustering) themselves that are used

in the pre-processing stage for forming the rule-base of the fuzzy system, can be sensitive

to dimensionality as the number of dimensions increase. This will effect the reliability

of clustering process made.

It can not be claimed that our method is the best solution for every problem in bioinfor-

matics as each individual problem may have different dynamics of its own and alternative

methods has been also reported in the literature for quantitative prediction as broadly

reviewed in Chapter 2. Moreover, the aim of this thesis is to demonstrate how regres-

sion based fuzzy systems do for the given problems in bioinformatics and limited to the

binding affinity prediction which is the experimental focus in this thesis. Due to the

non-linear, complex and high-dimensional nature of bioinformatics problems, it is no

doubt that seeking for better solutions still remains an open research problem.

7.3 Contribution to the Literature

The main results and contributions of this thesis are briefly summarised as follows:

◦ The overlapping method was developed to determine the initial values of an-

tecedent part of the type-2 fuzzy sets. As far as the literature is concerned, to

our best knowledge, the proposed overlapping clustering method seems the first

formal clustering based approach that helps determine the values of the parame-

ters of type-2 fuzzy membership functions and set a type-2 fuzzy rule base. This is

not only simple but also generalise the clustering-based design of the fuzzy system.

(journal article is in preparation [29])

◦ Prediction of peptide binding affinities are regarded as one of the difficult modelling

problems in computational biology. The predicted peptide target values using

the proposed fuzzy models with the aid of support vector-based method suggest

that the predictive ability and performance are increased. The results evidently

highlights the strength of the proposed fuzzy models as they yielded comparatively

better results than the presented results in the literature. Moreover, the predictive

models can speed up work and cut costs for the identification and evaluation of a

novel peptide binding at the wet labs. (conference papers are published [26], [27]

and journal article is in preparation [28])
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◦ SVR can be used to obtain the parameters of the consequent part of the IT2-

TSK fuzzy system and exhibited a good learning candidate as compared to other

combinations including least squares learning. (conference paper is published [30]

and journal article is in preparation [29])

◦ The abilities of IT2-FS to model information and handle uncertainties are better as

compared to its counterpart T1-FS. On the contrary, IT2-FS has a computational

cost and its processing lasts longer. To address this problem a novel method which

integrates the inference engine, namely BMM, with the SVR in the consequent

part of the IT2-TSK is developed. The inference engine BMM method has a

closed mathematical form and conditions required for the stability of IT2-TSK.

(conference paper is published [30] and journal article is in preparation [29])

◦ A review which highlights common real-value prediction problems in various ap-

plication domains of bioinformatics and systems biology is proposed and possible

solutions in the literature to these bio-problems is presented. Regression based

methods and feature selection methods that are used in the proposed models in

the literature are thoroughly explored. As there is no such review proposed in

the literature to our best knowledge, this review will fill a gap and aid for those

conducting a research study in the fields of bioinformatics and systems biology.

(journal article is in preparation [31])

◦ To our best knowledge, for the first time, fuzzy systems are used to reveal the

discriminating features that can effect the degree of peptide binding to MHC

molecules. The features that is most used in the peptide representation would

be very useful and provide insights for drug design and inhibitors. The amino acid

features Polarity, Positive charge, Hydrophobicity coefficient in reversed phase high

performance liquid chromatography, and Zimm-Bragg parameter are considered as

highly discriminating features in the peptide binding affinity data sets. This novel

finding suggests that one can design peptides having features like these which

might involve more biological information when designing drugs and vaccines.
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7.4 Future Work

The developments made in this thesis suggests new horizons for a future work. The

suggestions for a further and future work are discussed and given below:

◦ Among different fuzzy systems, there are two models widely used in the literature,

namely Mamdani fuzzy system and TSK fuzzy system. This thesis concerned with

the TSK fuzzy system. The overlapping clustering concept can also be applied to

Mamdani fuzzy systems.

◦ Fuzzy clustering is one of the main methods used in the structure and parameter

identification in fuzzy modelling as discussed in this thesis. There exists different

alternatives to the fuzzy modelling using fuzzy clustering suggesting simplicity

and efficiency. FCM combined with the Gustafson-Kessel algorithm is one such

alternative to identify a collection of fuzzy rules efficiently [27]. The possibilistic

c-Means [162] is also a kind of fuzzy clustering method that can be treated in

generation of membership functions.

◦ As seen in the chapter that covers literature review, there are many application

domains in bioinformatics and systems biology where the quantitative prediction

is used. The models suggested in this thesis are also applicable to other bioinfor-

matics problems. They can be used to improve the performance of bioinformatics

problems (e.g. prediction of MHC class II binding peptides) in various application

domains.

◦ BMM method used in this thesis simplifies the defuzzification process of the in-

terval type-2 fuzzy system. There exists more defuzzification methods proposed

in the literature. These methods also, if applicable, can be incorporated with

the support vector regression in the consequent part of the interval type-2 fuzzy

system.

◦ There are different kinds of feature selection methods. Although Multi-Cluster

Feature Selection used in this research study. There are many promising feature

selection (e.g. Lasso) can be used as a pre-processing step in the model building

process.
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◦ In this thesis, SV-based regression is proposed to be used in the consequent part

of the interval type-2 fuzzy system. However, there are many regression methods

proposed in the literature (e.g. Ridge Regression, Least Angle Regression etc.).

They can also be considered to be used to design the consequent part of an interval

type-2 fuzzy system.



Appendix A

Amino Acid Indices

The 643 amino acid indices obtained from CoEPrA modeling competition are used in

our experimental studies [285]. In Table A.1, the descriptions of 507 amino acids are

provided. These descriptions are discovered from AAindex ver.9.1 [289]. The descrip-

tions of remaining 136 amino acids are unknown. Similar to the columns in AAindex

database, columns of Table A.1 contains, if exists AAindex accession number and the

description of each index. The supplementary information of this thesis is accessible

online at: https://github.com/vuslan/pepbnd.
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Appendix B

Amino Acid Scales

The scales of 643 amino acid indices obtained from CoEPrA modeling competition that

used in our experimental studies, are given in Table B.1 and Table B.2 [285]. The scales of

first 507 AA indices given in Table B.1, are discovered that they are from AAindex ver.9.1

[289]. However, the references of remaining 136 AA indices are unknown. Although,

their descriptions are not found in the literature, real-values of remaining 136 scales of

AA indices are provided in Table B.2. The supplementary information of this thesis is

accessible online at: https://github.com/vuslan/pepbnd.

187

https://github.com/vuslan/pepbnd


Amino Acid Scales 188

T
a
b
l
e
B
.1
:

R
ea

l-
va

lu
es

o
f

a
m

in
o

a
ci

d
in

d
ic

es
w

it
h

k
n

ow
n

d
es

cr
ip

ti
o
n

s.

I
D

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

1
4
.3

5
4
.3

8
4
.7

5
4
.7

6
4
.6

5
4
.3

7
4
.2

9
3
.9

7
4
.6

3
3
.9

5
4
.1

7
4
.3

6
4
.5

2
4
.6

6
4
.4

4
4
.5

4
.3

5
4
.7

4
.6

3
.9

5

2
0
.6

1
0
.6

0
.0

6
0
.4

6
1
.0

7
0

0
.4

7
0
.0

7
0
.6

1
2
.2

2
1
.5

3
1
.1

5
1
.1

8
2
.0

2
1
.9

5
0
.0

5
0
.0

5
2
.6

5
1
.8

8
1
.3

2

3
1
.1

8
0
.2

0
.2

3
0
.0

5
1
.8

9
0
.7

2
0
.1

1
0
.4

9
0
.3

1
1
.4

5
3
.2

3
0
.0

6
2
.6

7
1
.9

6
0
.7

6
0
.9

7
0
.8

4
0
.7

7
0
.3

9
1
.0

8

4
1
.5

6
0
.4

5
0
.2

7
0
.1

4
1
.2

3
0
.5

1
0
.2

3
0
.6

2
0
.2

9
1
.6

7
2
.9

3
0
.1

5
2
.9

6
2
.0

3
0
.7

6
0
.8

1
0
.9

1
1
.0

8
0
.6

8
1
.1

4

5
1

0
.5

2
0
.3

5
0
.4

4
0
.0

6
0
.4

4
0
.7

3
0
.3

5
0
.6

0
.7

3
1

0
.6

1
0
.6

0
.0

6
0
.3

5
0
.4

4
0
.7

3
0
.4

4
0
.8

2

6
0
.7

7
0
.7

2
0
.5

5
0
.6

5
0
.6

5
0
.7

2
0
.5

5
0
.6

5
0
.8

3
0
.9

8
0
.8

3
0
.5

5
0
.9

8
0
.9

8
0
.5

5
0
.5

5
0
.8

3
0
.7

7
0
.8

3
0
.9

8

7
0
.3

7
0
.8

4
0
.9

7
0
.9

7
0
.8

4
0
.6

4
0
.5

3
0
.9

7
0
.7

5
0
.3

7
0
.5

3
0
.7

5
0
.6

4
0
.5

3
0
.9

7
0
.8

4
0
.7

5
0
.9

7
0
.8

4
0
.3

7

8
0
.3

5
7

0
.5

2
9

0
.4

6
3

0
.5

1
1

0
.3

4
6

0
.4

9
3

0
.4

9
7

0
.5

4
4

0
.3

2
3

0
.4

6
2

0
.3

6
5

0
.4

6
6

0
.2

9
5

0
.3

1
4

0
.5

0
9

0
.5

0
7

0
.4

4
4

0
.3

0
5

0
.4

2
0
.3

8
6

9
5
2
.6

1
0
9
.1

7
5
.7

6
8
.4

6
8
.3

8
9
.7

8
4
.7

3
6
.3

9
1
.9

1
0
2

1
0
2

1
0
5
.1

9
7
.7

1
1
3
.9

7
3
.6

5
4
.9

7
1
.2

1
3
5
.4

1
1
6
.2

8
5
.1

1
0

1
6

-7
0

-7
4

-7
8

1
6
8

-7
3

-1
0
6

-1
3

5
0

1
5
1

1
4
5

-1
4
1

1
2
4

1
8
9

-2
0

-7
0

-3
8

1
4
5

5
3

1
2
3

1
1

4
4

-6
8

-7
2

-9
1

9
0

-1
1
7

-1
3
9

-8
4
7

1
0
0

1
0
8

-1
8
8

1
2
1

1
4
8

-3
6

-6
0

-5
4

1
6
3

2
2

1
1
7

1
2

7
.3

-3
.6

-5
.7

-2
.9

-9
.2

-0
.3

-7
.1

-1
.2

-2
.1

6
.6

2
0

-3
.7

5
.6

1
9
.2

5
.1

-4
.1

0
.8

1
6
.3

5
.9

3
.5

1
3

3
.9

3
.2

-2
.8

-2
.8

-1
4
.3

1
.8

-7
.5

-2
.3

2
1
1

1
5

-2
.5

4
.1

1
4
.7

5
.6

-3
.5

1
.1

1
7
.8

3
.8

2
.1

1
4

-0
.2

-0
.1

2
0
.0

8
-0

.2
-0

.4
5

0
.1

6
-0

.3
0

-0
.1

2
-2

.2
6

-2
.4

6
-0

.3
5

-1
.4

7
-2

.3
3

-0
.9

8
-0

.3
9

-0
.5

2
-2

.0
1

-2
.2

4
-1

.5
6

1
5

0
.6

9
1

0
.7

2
8

0
.5

9
6

0
.5

5
8

0
.6

2
4

0
.6

4
9

0
.6

3
2

0
.5

9
2

0
.6

4
6

0
.8

0
9

0
.8

4
2

0
.7

6
7

0
.7

0
9

0
.7

5
6

0
.7

3
0
.5

9
4

0
.6

5
5

0
.7

4
3

0
.7

4
3

0
.7

7
7

1
6

8
.2

4
9

8
.2

7
4

8
.7

4
7

8
.4

1
8
.3

1
2

8
.4

1
1

8
.3

6
8

8
.3

9
1

8
.4

1
5

8
.1

9
5

8
.4

2
3

8
.4

0
8

8
.4

1
8

8
.2

2
8

0
8
.3

8
8
.2

3
6

8
.0

9
4

8
.1

8
3

8
.4

3
6

1
7

4
.3

4
9

4
.3

9
6

4
.7

5
5

4
.7

6
5

4
.6

8
6

4
.3

7
3

4
.2

9
5

3
.9

7
2

4
.6

3
4
.2

2
4

4
.3

8
5

4
.3

5
8

4
.5

1
3

4
.6

6
3

4
.4

7
1

4
.4

9
8

4
.3

4
6

4
.7

0
2

4
.6

0
4

4
.1

8
4

1
8

6
.5

6
.9

7
.5

7
7
.7

6
7

5
.6

8
7

6
.5

6
.5

0
9
.4

0
6
.5

6
.9

0
6
.8

7

1
9

0
.4

8
6

0
.2

6
2

0
.1

9
3

0
.2

8
8

0
.2

0
.4

1
8

0
.5

3
8

0
.1

2
0
.4

0
.3

7
0
.4

2
0
.4

0
2

0
.4

1
7

0
.3

1
8

0
.2

0
8

0
.2

0
.2

7
2

0
.4

6
2

0
.1

6
1

0
.3

7
9

2
0

0
.2

8
8

0
.3

6
2

0
.2

2
9

0
.2

7
1

0
.5

3
3

0
.3

2
7

0
.2

6
2

0
.3

1
2

0
.2

0
.4

1
1

0
.4

0
.2

6
5

0
.3

7
5

0
.3

1
8

0
.3

4
0
.3

5
4

0
.3

8
8

0
.2

3
1

0
.4

2
9

0
.4

9
5

2
1

0
.5

2
0
.6

8
0
.7

6
0
.7

6
0
.6

2
0
.6

8
0
.6

8
0

0
.7

1
.0

2
0
.9

8
0
.6

8
0
.7

8
0
.7

0
.3

6
0
.5

3
0
.5

0
.7

0
.7

0
.7

6

2
2

0
.0

4
6

0
.2

9
1

0
.1

3
4

0
.1

0
5

0
.1

2
8

0
.1

8
0
.1

5
1

0
0
.2

3
0
.1

8
6

0
.1

8
6

0
.2

1
9

0
.2

2
1

0
.2

9
0
.1

3
1

0
.0

6
2

0
.1

0
8

0
.4

0
9

0
.2

9
8

0
.1

4

2
3

-0
.3

6
8

-1
.0

3
0

2
.0

6
4
.5

3
0
.7

3
1

1
.7

7
-0

.5
2
5

0
0
.7

9
1

1
.0

7
0

0
.6

5
6

1
.0

6
-2

.2
4

-0
.5

2
4

0
1
.6

4
.9

1
0
.4

0
1

2
4

0
.7

1
1
.0

6
1
.3

7
1
.2

1
1
.1

9
0
.8

7
0
.8

4
1
.5

2
1
.0

7
0
.6

6
0
.6

9
0
.9

9
0
.5

9
0
.7

1
1
.6

1
1
.3

4
1
.0

8
0
.7

6
1
.0

7
0
.6

3

2
5

-0
.1

1
8

0
.1

2
4

0
.2

8
9

0
.0

4
8

0
.0

8
3

-0
.1

0
5

-0
.2

4
5

0
.1

0
4

0
.1

3
8

0
.2

3
-0

.0
5
2

0
.0

3
2

-0
.2

5
8

0
.0

1
5

0
0
.2

2
5

0
.1

6
6

0
.1

5
8

0
.0

9
4

0
.5

1
3

2
6

0
1

1
1

1
1

1
0

1
2

1
1

1
1

0
1

2
1

1
2

2
7

0
1

1
1

0
1

1
0

1
1

2
1

1
1

0
0

0
1

1
0

2
8

0
1

0
0

0
1

1
0

1
0

0
1

1
1

0
0

0
1
.5

1
0

2
9

0
5

2
2

1
3

3
0

3
2

2
4

3
4

0
1

1
5

5
1

3
0

0
0

1
1

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

3
1

0
1

1
0

1
1

0
0

1
0

0
1

1
1

0
0

0
1

1
0

3
2

9
1
.5

2
0
2

1
3
5
.2

1
2
4
.5

1
1
7
.7

1
6
1
.1

1
5
5
.1

6
6
.4

1
6
7
.3

1
6
8
.8

1
6
7
.9

1
7
1
.3

1
7
0
.8

2
0
3
.4

1
2
9
.3

9
9
.1

1
2
2
.1

2
3
7
.6

2
0
3
.6

1
4
1
.7

3
3

1
1
5

2
2
5

1
6
0

1
5
0

1
3
5

1
8
0

1
9
0

7
5

1
9
5

1
7
5

1
7
0

2
0
0

1
8
5

2
1
0

1
4
5

1
1
5

1
4
0

2
5
5

2
3
0

1
5
5

3
4

2
5

9
0

6
3

5
0

1
9

7
1

4
9

2
3

4
3

1
8

2
3

9
7

3
1

2
4

5
0

4
4

4
7

3
2

6
0

1
8

3
5

0
.3

8
0
.0

1
0
.1

2
0
.1

5
0
.4

5
0
.0

7
0
.1

8
0
.3

6
0
.1

7
0
.6

0
.4

5
0
.0

3
0
.4

0
.5

0
.1

8
0
.2

2
0
.2

3
0
.2

7
0
.1

5
0
.5

4

3
6

0
.2

0
0
.0

3
0
.0

4
0
.2

2
0
.0

1
0
.0

3
0
.1

8
0
.0

2
0
.1

9
0
.1

6
0

0
.1

1
0
.1

4
0
.0

4
0
.0

8
0
.0

8
0
.0

4
0
.0

3
0
.1

8

C
o
n
ti
n
u
ed

o
n

n
e
x
t
p
a
g
e



Amino Acid Scales 189

T
a
b
le

B
.1

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
v
io
u
s
p
a
g
e

I
D

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

3
7

0
.6

6
0
.9

5
1
.5

6
1
.4

6
1
.1

9
0
.9

8
0
.7

4
1
.5

6
0
.9

5
0
.4

7
0
.5

9
1
.0

1
0
.6

0
.6

1
.5

2
1
.4

3
0
.9

6
0
.9

6
1
.1

4
0
.5

3
8

1
.4

2
0
.9

8
0
.6

7
1
.0

1
0
.7

1
.1

1
1
.5

1
0
.5

7
1

1
.0

8
1
.2

1
1
.1

6
1
.4

5
1
.1

3
0
.5

7
0
.7

7
0
.8

3
1
.0

8
0
.6

9
1
.0

6

3
9

0
.8

3
0
.9

3
0
.8

9
0
.5

4
1
.1

9
1
.1

0
.3

7
0
.7

5
0
.8

7
1
.6

1
.3

0
.7

4
1
.0

5
1
.3

8
0
.5

5
0
.7

5
1
.1

9
1
.3

7
1
.4

7
1
.7

4
0

0
.7

4
1
.0

1
1
.4

6
1
.5

2
0
.9

6
0
.9

6
0
.9

5
1
.5

6
0
.9

5
0
.4

7
0
.5

1
.1

9
0
.6

0
.6

6
1
.5

6
1
.4

3
0
.9

8
0
.6

1
.1

4
0
.5

9

4
1

1
.2

9
0
.4

4
0
.8

1
2
.0

2
0
.6

6
1
.2

2
2
.4

4
0
.7

6
0
.7

3
0
.6

7
0
.5

8
0
.6

6
0
.7

1
0
.6

1
2
.0

1
0
.7

4
1
.0

8
1
.4

7
0
.6

8
0
.6

1

4
2

1
.2

1
.2

5
0
.5

9
0
.6

1
1
.1

1
1
.2

2
1
.2

4
0
.4

2
1
.7

7
0
.9

8
1
.1

3
1
.8

3
1
.5

7
1
.1

0
0
.9

6
0
.7

5
0
.4

0
.7

3
1
.2

5

4
3

0
.7

0
.3

4
1
.4

2
0
.9

8
0
.6

5
0
.7

5
1
.0

4
1
.4

1
1
.2

2
0
.7

8
0
.8

5
1
.0

1
0
.8

3
0
.9

3
1
.1

1
.5

5
1
.0

9
0
.6

2
0
.9

9
0
.7

5

4
4

0
.5

2
1
.2

4
1
.6

4
1
.0

6
0
.9

4
0
.7

0
.5

9
1
.6

4
1
.8

6
0
.8

7
0
.8

4
1
.4

9
0
.5

2
1
.0

4
1
.5

8
0
.9

3
0
.8

6
0
.1

6
0
.9

6
0
.3

2

4
5

0
.8

6
0
.9

0
.6

6
0
.3

8
0
.8

7
1
.6

5
0
.3

5
0
.6

3
0
.5

4
1
.9

4
1
.3

1
1
.4

3
1
.5

0
.6

6
0
.6

3
1
.1

7
1
.4

9
1
.0

7
1
.6

9

4
6

0
.7

5
0
.9

1
.2

1
0
.8

5
1
.1

1
0
.6

5
0
.5

5
0
.7

4
0
.9

1
.3

5
1
.2

7
0
.7

4
0
.9

5
1
.5

0
.4

0
.7

9
0
.7

5
1
.1

9
1
.9

6
1
.7

9

4
7

0
.6

7
0
.8

9
1
.8

6
1
.3

9
1
.3

4
1
.0

9
0
.9

2
1
.4

6
0
.7

8
0
.5

9
0
.4

6
1
.0

9
0
.5

2
0
.3

1
.5

8
1
.4

1
1
.0

9
0
.4

8
1
.2

3
0
.4

2

4
8

0
.7

4
1
.0

5
1
.1

3
1
.3

2
0
.5

3
0
.7

7
0
.8

5
1
.6

8
0
.9

6
0
.5

3
0
.5

9
0
.8

2
0
.8

5
0
.4

4
1
.6

9
1
.4

9
1
.1

6
1
.5

9
1
.0

1
0
.5

9

4
9

0
.0

6
0
.0

7
0
.1

6
1

0
.1

4
7

0
.1

4
9

0
.0

7
4

0
.0

5
6

0
.1

0
2

0
.1

4
0
.0

4
3

0
.0

6
1

0
.0

5
5

0
.0

6
8

0
.0

5
9

0
.1

0
2

0
.1

2
0
.0

8
6

0
.0

7
7

0
.0

8
2

0
.0

6
2

5
0

0
.0

7
6

0
.1

0
6

0
.0

8
3

0
.1

1
0
.0

5
3

0
.0

9
8

0
.0

6
0
.0

8
5

0
.0

4
7

0
.0

3
4

0
.0

2
5

0
.1

1
5

0
.0

8
2

0
.0

4
1

0
.3

0
1

0
.1

3
9

0
.1

0
8

0
.0

1
3

0
.0

6
5

0
.0

4
8

5
1

0
.0

3
5

0
.0

9
9

0
.1

9
1

0
.1

7
9

0
.1

1
7

0
.0

3
7

0
.0

7
7

0
.1

9
0
.0

9
3

0
.0

1
3

0
.0

3
6

0
.0

7
2

0
.0

1
4

0
.0

6
5

0
.0

3
4

0
.1

2
5

0
.0

6
5

0
.0

6
4

0
.1

1
4

0
.0

2
8

5
2

0
.0

5
8

0
.0

8
5

0
.0

9
1

0
.0

8
1

0
.1

2
8

0
.0

9
8

0
.0

6
4

0
.1

5
2

0
.0

5
4

0
.0

5
6

0
.0

7
0
.0

9
5

0
.0

5
5

0
.0

6
5

0
.0

6
8

0
.1

0
6

0
.0

7
9

0
.1

6
7

0
.1

2
5

0
.0

5
3

5
3

0
.6

4
1
.0

5
1
.5

6
1
.6

1
0
.9

2
0
.8

4
0
.8

1
.6

3
0
.7

7
0
.2

9
0
.3

6
1
.1

3
0
.5

1
0
.6

2
2
.0

4
1
.5

2
0
.9

8
0
.4

8
1
.0

8
0
.4

3

5
4

-0
.4

5
-0

.2
4

-0
.2

-1
.5

2
0
.7

9
-0

.9
9

-0
.8

-1
1
.0

7
0
.7

6
1
.2

9
-0

.3
6

1
.3

7
1
.4

8
-0

.1
2

-0
.9

8
-0

.7
1
.3

8
1
.4

9
1
.2

6

5
5

-0
.0

8
-0

.0
9

-0
.7

-0
.7

1
0
.7

6
-0

.4
-1

.3
1

-0
.8

4
0
.4

3
1
.3

9
1
.2

4
-0

.0
9

1
.2

7
1
.5

3
-0

.0
1

-0
.9

3
-0

.5
9

2
.2

5
1
.5

3
1
.0

9

5
6

0
.3

6
-0

.5
2

-0
.9

-1
.0

9
0
.7

-1
.0

5
-0

.8
3

-0
.8

2
0
.1

6
2
.1

7
1
.1

8
-0

.5
6

1
.2

1
1
.0

1
-0

.0
6

-0
.6

-1
.2

1
.3

1
1
.0

5
1
.2

1

5
7

0
.1

7
-0

.7
-0

.9
-1

.0
5

1
.2

4
-1

.2
-1

.1
9

-0
.5

7
-0

.2
5

2
.0

6
0
.9

6
-0

.6
2

0
.6

1
.2

9
-0

.2
1

-0
.8

3
-0

.6
2

1
.5

1
0
.6

6
1
.2

1

5
8

0
.0

2
-0

.4
2

-0
.7

7
-1

.0
4

0
.7

7
-1

.1
-1

.1
4

-0
.8

0
.2

6
1
.8

1
1
.1

4
-0

.4
1

1
1
.3

5
-0

.0
9

-0
.9

7
-0

.7
7

1
.7

1
1
.1

1
1
.1

3

5
9

0
.7

5
0
.7

0
.6

1
0
.6

0
.6

1
0
.6

7
0
.6

6
0
.6

4
0
.6

7
0
.9

0
.9

0
.8

2
0
.7

5
0
.7

7
0
.7

6
0
.6

8
0
.7

0
.7

4
0
.7

1
0
.8

6

6
0

1
.3

3
0
.7

9
0
.7

2
0
.9

7
0
.9

3
1
.4

2
1
.6

6
0
.5

8
1
.4

9
0
.9

9
1
.2

9
1
.0

3
1
.4

1
.1

5
0
.4

9
0
.8

3
0
.9

4
1
.3

3
0
.4

9
0
.9

6

6
1

1
0
.7

4
0
.7

5
0
.8

9
0
.9

9
0
.8

7
0
.3

7
0
.5

6
0
.3

6
1
.7

5
1
.5

3
1
.1

8
1
.4

1
.2

6
0
.3

6
0
.6

5
1
.1

5
0
.8

4
1
.4

1
1
.6

1

6
2

0
.6

0
.7

9
1
.4

2
1
.2

4
1
.2

9
0
.9

2
0
.6

4
1
.3

8
0
.9

5
0
.6

7
0
.7

1
.1

0
.6

7
1
.0

5
1
.4

7
1
.2

6
1
.0

5
1
.2

3
1
.3

5
0
.4

8

6
3

2
.5

7
.5

5
2
.5

3
6

5
0
.5

6
5
.5

5
.5

7
6

6
.5

5
.5

3
5

7
7

5

6
4

8
.6

4
.9

4
.3

5
.5

2
.9

3
.9

6
8
.4

2
4
.5

7
.4

6
.6

1
.7

3
.6

5
.2

7
6
.1

1
.3

3
.4

6
.6

6
5

1
0
0

6
5

1
3
4

1
0
6

2
0

9
3

1
0
2

4
9

6
6

9
6

4
0

5
6

9
4

4
1

5
6

1
2
0

9
7

1
8

4
1

7
4

6
6

1
.5

6
0
.5

9
0
.5

1
0
.2

3
1
.8

0
.3

9
0
.1

9
1
.0

3
1

1
.2

7
1
.3

8
0
.1

5
1
.9

3
1
.4

2
0
.2

7
0
.9

6
1
.1

1
0
.9

1
1
.1

1
.5

8

6
7

1
.2

6
0
.3

8
0
.5

9
0
.2

7
1
.6

0
.3

9
0
.2

3
1
.0

8
1

1
.4

4
1
.3

6
0
.3

3
1
.5

2
1
.4

6
0
.5

4
0
.9

8
1
.0

1
1
.0

6
0
.8

9
1
.3

3

6
8

0
.2

5
-1

.7
6

-0
.6

4
-0

.7
2

0
.0

4
-0

.6
9

-0
.6

2
0
.1

6
-0

.4
0
.7

3
0
.5

3
-1

.1
0
.2

6
0
.6

1
-0

.0
7

-0
.2

6
-0

.1
8

0
.3

7
0
.0

2
0
.5

4

6
9

0
.6

7
-2

.1
-0

.6
-1

.2
0
.3

8
-0

.2
2

-0
.7

6
0

0
.6

4
1
.9

1
.9

-0
.5

7
2
.4

2
.3

1
.2

0
.0

1
0
.5

2
2
.6

1
.6

1
.5

7
0

0
1
0

1
.3

1
.9

0
.1

7
1
.9

3
0

0
.9

9
1
.2

1
5
.7

1
.9

1
.1

0
.1

8
0
.7

3
1
.5

1
.6

1
.8

0
.4

8

7
1

0
-0

.9
6

-0
.8

6
-0

.9
8

0
.7

6
-1

-0
.8

9
0

-0
.7

5
0
.9

9
0
.8

9
-0

.9
9

0
.9

4
0
.9

2
0
.2

2
-0

.6
7

0
.0

9
0
.6

7
-0

.9
3

0
.8

4

7
2

8
9
.0

9
1
7
4
.2

1
3
2
.1

2
1
3
3
.1

1
2
1
.1

5
1
4
6
.1

5
1
4
7
.1

3
7
5
.0

7
1
5
5
.1

6
1
3
1
.1

7
1
3
1
.1

7
1
4
6
.1

9
1
4
9
.2

1
1
6
5
.1

9
1
1
5
.1

3
1
0
5
.0

9
1
1
9
.1

2
2
0
4
.2

4
1
8
1
.1

9
1
1
7
.1

5

7
3

2
9
7

2
3
8

2
3
6

2
7
0

1
7
8

1
8
5

2
4
9

2
9
0

2
7
7

2
8
4

3
3
7

2
2
4

2
8
3

2
8
4

2
2
2

2
2
8

2
5
3

2
8
2

3
4
4

2
9
3

C
o
n
ti
n
u
ed

o
n

n
e
x
t
p
a
g
e



Amino Acid Scales 190

T
a
b
le

B
.1

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
v
io
u
s
p
a
g
e

I
D

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

7
4

1
.8

1
2
.5

-5
.6

5
.0

5
-1

6
.5

6
.3

1
2

0
-3

8
.5

1
2
.4

-1
1

1
4
.6

-1
0

-3
4
.5

-8
6
.2

-7
.5

-2
8

-3
3
.7

-1
0

5
.6

3

7
5

9
.6

9
8
.9

9
8
.8

9
.6

8
.3

5
9
.1

3
9
.6

7
9
.7

8
9
.1

7
9
.6

8
9
.6

9
.1

8
9
.2

1
9
.1

8
1
0
.6

4
9
.2

1
9
.1

9
.4

4
9
.1

1
9
.6

2

7
6

2
.3

4
1
.8

2
2
.0

2
1
.8

8
1
.9

2
2
.1

7
2
.1

2
.3

5
1
.8

2
2
.3

6
2
.3

6
2
.1

6
2
.2

8
2
.1

6
1
.9

5
2
.1

9
2
.0

9
2
.4

3
2
.2

2
.3

2

7
7

0
.3

1
-1

.0
1

-0
.6

-0
.7

7
1
.5

4
-0

.2
2

-0
.6

4
0

0
.1

3
1
.8

1
.7

-0
.9

9
1
.2

3
1
.7

9
0
.7

2
-0

.0
4

0
.2

6
2
.2

5
0
.9

6
1
.2

2

7
8

1
.2

8
2
.3

4
1
.6

1
.6

1
.7

7
1
.5

6
1
.5

6
0

2
.9

9
4
.1

9
2
.5

9
1
.8

9
2
.3

5
2
.9

4
2
.6

7
1
.3

1
3
.0

3
3
.2

1
2
.9

4
3
.6

7

7
9

0
.5

3
0
.6

9
0
.5

8
0
.5

9
0
.6

6
0
.7

1
0
.7

2
0

0
.6

4
0
.9

6
0
.9

2
0
.7

8
0
.7

7
0
.7

1
0

0
.5

5
0
.6

3
0
.8

4
0
.7

1
0
.8

9

8
0

1
6
.1

3
2
.9

5
2
.7

8
2
.4

3
3
.9

5
3
.7

8
0

4
.6

6
4

4
4
.7

7
4
.4

3
5
.8

9
2
.7

2
1
.6

2
.6

8
.0

8
6
.4

7
3

8
1

2
.8

7
7
.8

2
4
.5

8
4
.7

4
4
.4

7
6
.1

1
5
.9

7
2
.0

6
5
.2

3
4
.9

2
4
.9

2
6
.8

9
6
.3

6
4
.6

2
4
.1

1
3
.9

7
4
.1

1
7
.6

8
4
.7

3
4
.1

1

8
2

1
.5

2
1
.5

2
1
.5

2
1
.5

2
1
.5

2
1
.5

2
1
.5

2
1

1
.5

2
1
.9

1
.5

2
1
.5

2
1
.5

2
1
.5

2
1
.5

2
1
.5

2
1
.7

3
1
.5

2
1
.5

2
1
.9

8
3

2
.0

4
6
.2

4
4
.3

7
3
.7

8
3
.4

1
3
.5

3
3
.3

1
1

5
.6

6
3
.4

9
4
.4

5
4
.8

7
4
.8

6
.0

2
4
.3

1
2
.7

3
.1

7
5
.9

6
.7

2
3
.1

7

8
4

7
.3

1
1
.1

8
9
.2

1
4
.4

1
0
.6

1
1
.4

0
1
0
.2

1
6
.1

1
0
.1

1
0
.9

1
0
.4

1
3
.9

1
7
.8

1
3
.1

1
6
.7

1
3
.2

1
3
.9

1
7
.2

8
5

-0
.0

1
0
.0

4
0
.0

6
0
.1

5
0
.1

2
0
.0

5
0
.0

7
0

0
.0

8
-0

.0
1

-0
.0

1
0

0
.0

4
0
.0

3
0

0
.1

1
0
.0

4
0

0
.0

3
0
.0

1

8
6

0
4

2
1

0
2

1
0

1
0

0
2

0
0

0
1

1
1

1
0

8
7

0
3

3
4

0
3

4
0

1
0

0
1

0
0

0
2

2
0

2
0

8
8

0
1

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
0

8
9

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

9
0

4
.7

6
4
.3

3
.6

4
5
.6

9
3
.6

7
4
.5

4
5
.4

8
3
.7

7
2
.8

4
4
.8

1
4
.7

9
4
.2

7
4
.2

5
4
.3

1
0

3
.8

3
3
.8

7
4
.7

5
4
.3

4
.8

6

9
1

1
.0

8
1
.0

5
0
.8

5
0
.8

5
0
.9

5
0
.9

5
1
.1

5
0
.5

5
1

1
.0

5
1
.2

5
1
.1

5
1
.1

5
1
.1

0
.7

1
0
.7

5
0
.7

5
1
.1

1
.1

0
.9

5

9
2

1
0
.7

1
.7

3
.2

1
1

1
.7

1
1

0
.6

1
0
.7

1
1

1
1
.7

1
.7

1
1

0
.6

9
3

1
0
.7

1
1
.7

1
1

1
.7

1
.3

1
1

1
0
.7

1
1

1
3

1
1

1
1

1

9
4

1
.2

1
.7

1
.2

0
.7

1
1

0
.7

0
.8

1
.2

0
.8

1
1
.7

1
1

1
1
.5

1
1

1
0
.8

9
5

1
1
.7

1
0
.7

1
1

0
.7

1
.5

1
1

1
1
.7

1
1

0
.1

1
1

1
1

1

9
6

0
.2

8
0
.1

0
.2

5
0
.2

1
0
.2

8
0
.3

5
0
.3

3
0
.1

7
0
.2

1
0
.8

2
1

0
.0

9
0
.7

4
2
.1

8
0
.3

9
0
.1

2
0
.2

1
5
.7

1
.2

6
0
.6

9
7

1
.2

9
1

0
.8

1
1
.1

0
.7

9
1
.0

7
1
.4

9
0
.6

3
1
.3

3
1
.0

5
1
.3

1
1
.3

3
1
.5

4
1
.1

3
0
.6

3
0
.7

8
0
.7

7
1
.1

8
0
.7

1
0
.8

1

9
8

1
.1

3
1
.0

9
1
.0

6
0
.9

4
1
.3

2
0
.9

3
1
.2

0
.8

3
1
.0

9
1
.0

5
1
.1

3
1
.0

8
1
.2

3
1
.0

1
0
.8

2
1
.0

1
1
.1

7
1
.3

2
0
.8

8
1
.1

3

9
9

1
.5

5
0
.2

1
.2

1
.5

5
1
.4

4
1
.1

3
1
.6

7
0
.5

9
1
.2

1
1
.2

7
1
.2

5
1
.2

1
.3

7
0
.4

0
.2

1
1
.0

1
0
.5

5
1
.8

6
1
.0

8
0
.6

4

1
0
0

1
.1

9
1

0
.9

4
1
.0

7
0
.9

5
1
.3

2
1
.6

4
0
.6

1
.0

3
1
.1

2
1
.1

8
1
.2

7
1
.4

9
1
.0

2
0
.6

8
0
.8

1
0
.8

5
1
.1

8
0
.7

7
0
.7

4

1
0
1

0
.8

4
1
.0

4
0
.6

6
0
.5

9
1
.2

7
1
.0

2
0
.5

7
0
.9

4
0
.8

1
1
.2

9
1
.1

0
.8

6
0
.8

8
1
.1

5
0
.8

1
.0

5
1
.2

1
.1

5
1
.3

9
1
.5

6

1
0
2

0
.8

6
1
.1

5
0
.6

0
.6

6
0
.9

1
1
.1

1
0
.3

7
0
.8

6
1
.0

7
1
.1

7
1
.2

8
1
.0

1
1
.1

5
1
.3

4
0
.6

1
0
.9

1
1
.1

4
1
.1

3
1
.3

7
1
.3

1

1
0
3

0
.9

1
0
.9

9
0
.7

2
0
.7

4
1
.1

2
0
.9

0
.4

1
0
.9

1
1
.0

1
1
.2

9
1
.2

3
0
.8

6
0
.9

6
1
.2

6
0
.6

5
0
.9

3
1
.0

5
1
.1

5
1
.2

1
1
.5

8

1
0
4

0
.9

1
1

1
.6

4
1
.4

0
.9

3
0
.9

4
0
.9

7
1
.5

1
0
.9

0
.6

5
0
.5

9
0
.8

2
0
.5

8
0
.7

2
1
.6

6
1
.2

3
1
.0

4
0
.6

7
0
.9

2
0
.6

1
0
5

0
.8

0
.9

6
1
.1

1
.6

0
1
.6

0
.4

2
0
.9

6
0
.8

5
0
.8

0
.9

4
0
.3

9
1
.2

2
.1

1
.3

0
.6

0
1
.8

0
.8

1
0
6

1
.1

0
.9

3
1
.5

7
1
.4

1
1
.0

5
0
.8

1
1
.4

1
.3

0
.8

5
0
.6

7
0
.5

2
0
.9

4
0
.6

9
0
.6

1
.7

7
1
.1

3
0
.8

8
0
.6

2
0
.4

1
0
.5

8

1
0
7

0
.9

3
1
.0

1
1
.3

6
1
.2

2
0
.9

2
0
.8

3
1
.0

5
1
.4

5
0
.9

6
0
.5

8
0
.5

9
0
.9

1
0
.6

0
.7

1
1
.6

7
1
.2

5
1
.0

8
0
.6

8
0
.9

8
0
.6

2

1
0
8

0
.7

5
0
.7

5
0
.6

9
0

1
0
.5

9
0

0
0

2
.9

5
2
.4

1
.5

1
.3

2
.6

5
2
.6

0
0
.4

5
3

2
.8

5
1
.7

1
0
9

8
8
.3

1
8
1
.2

1
2
5
.1

1
1
0
.8

1
1
2
.4

1
4
8
.7

1
4
0
.5

6
0

1
5
2
.6

1
6
8
.5

1
6
8
.5

1
7
5
.6

1
6
2
.2

1
8
9

1
2
2
.2

8
8
.7

1
1
8
.2

2
2
7

1
9
3

1
4
1
.4

1
1
0

0
0
.6

5
1
.3

3
1
.3

8
2
.7

5
0
.8

9
0
.9

2
0
.7

4
0
.5

8
0

0
0
.3

3
0

0
0
.3

9
1
.4

2
0
.7

1
0
.1

3
0
.2

0

C
o
n
ti
n
u
ed

o
n

n
e
x
t
p
a
g
e



Amino Acid Scales 191

T
a
b
le

B
.1

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
v
io
u
s
p
a
g
e

I
D

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

1
1
1

8
.1

1
0
.5

1
1
.6

1
3

5
.5

1
0
.5

1
2
.3

9
1
0
.4

5
.2

4
.9

1
1
.3

5
.7

5
.2

8
9
.2

8
.6

5
.4

6
.2

5
.9

1
1
2

3
1

1
2
4

5
6

5
4

5
5

8
5

8
3

3
9
6

1
1
1

1
1
1

1
1
9

1
0
5

1
3
2

3
2
.5

3
2

6
1

1
7
0

1
3
6

8
4

1
1
3

0
.1

1
.9

1
0
.4

8
0
.7

8
-1

.4
2

0
.9

5
0
.8

3
0
.3

3
-0

.5
-1

.1
3

-1
.1

8
1
.4

-1
.5

9
-2

.1
2

0
.7

3
0
.5

2
0
.0

7
-0

.5
1

-0
.2

1
-1

.2
7

1
1
4

1
2
.3

2
.2

6
.5

0
.1

2
.1

6
.2

1
.1

2
.8

0
.8

0
.8

5
.3

0
.7

1
.4

0
.9

1
.7

1
.5

1
.9

2
.1

0
.9

1
1
5

-0
.5

3
0
.2

3
-1

0
.2

3
0

-0
.5

-1
.8

-1
.8

3
-1

.3
-2

.5
0

0
.3

-0
.4

-3
.4

-2
.3

-1
.5

1
1
6

2
9
.2

2
2
6
.3

7
3
8
.3

3
7
.0

9
5
0
.7

4
4
.0

2
4
1
.8

4
2
3
.7

1
5
9
.6

4
4
5

4
8
.0

3
5
7
.1

6
9
.3

2
4
8
.5

2
3
6
.1

3
3
2
.4

3
5
.2

5
6
.9

2
5
1
.7

3
4
0
.3

5

1
1
7

3
0
.8

8
6
8
.4

3
4
1
.7

4
0
.6

6
5
3
.8

3
4
6
.6

2
4
4
.9

8
2
4
.7

4
6
5
.9

9
4
9
.7

1
5
0
.6

2
6
3
.2

1
5
5
.3

2
5
1
.0

6
3
9
.2

1
3
5
.6

5
3
6
.5

6
0

5
1
.1

5
4
2
.7

5

1
1
8

1
5
4
.3

3
3
4
1
.0

1
2
0
7
.9

1
9
4
.9

1
2
1
9
.7

9
2
3
5
.5

1
2
2
3
.1

6
1
2
7
.9

2
4
2
.5

4
2
3
3
.2

1
2
3
2
.3

3
0
0
.4

6
2
0
2
.6

5
2
0
4
.7

4
1
7
9
.9

3
1
7
4
.0

6
2
0
5
.8

2
3
7
.0

1
2
2
9
.1

5
2
0
7
.6

1
1
9

1
.5

3
1
.1

7
0
.6

1
0
.8

9
1
.2

7
1
.6

3
0
.4

4
1
.0

3
1
.0

7
1
.3

2
1
.2

6
1
.6

6
1
.2

2
0
.2

5
0
.6

5
0
.8

6
1
.0

5
0
.7

0
.9

3

1
2
0

0
.8

6
0
.9

8
0
.7

4
0
.6

9
1
.3

9
0
.8

9
0
.6

6
0
.7

1
.0

6
1
.3

1
1
.0

1
0
.7

7
1
.0

6
1
.1

6
1
.1

6
1
.0

9
1
.2

4
1
.1

7
1
.2

8
1
.4

1
2
1

0
.7

8
1
.0

6
1
.5

6
1
.5

0
.6

0
.7

8
0
.9

7
1
.7

3
0
.8

3
0
.4

0
.5

7
1
.0

1
0
.3

0
.6

7
1
.5

5
1
.1

9
1
.0

9
0
.7

4
1
.1

4
0
.4

4

1
2
2

1
.0

9
0
.9

7
1
.1

4
0
.7

7
0
.5

0
.8

3
0
.9

2
1
.2

5
0
.6

7
0
.6

6
0
.4

4
1
.2

5
0
.4

5
0
.5

2
.9

6
1
.2

1
1
.3

3
0
.6

2
0
.9

4
0
.5

6

1
2
3

0
.3

5
0
.7

5
2
.1

2
2
.1

6
0
.5

0
.7

3
0
.6

5
2
.4

1
.1

9
0
.1

2
0
.5

8
0
.8

3
0
.2

2
0
.8

9
0
.4

3
1
.2

4
0
.8

5
0
.6

2
1
.4

4
0
.4

3

1
2
4

1
.0

9
1
.0

7
0
.8

8
1
.2

4
1
.0

4
1
.0

9
1
.1

4
0
.2

7
1
.0

7
0
.9

7
1
.3

1
.2

0
.5

5
0
.8

1
.7

8
1
.2

0
.9

9
1
.0

3
0
.6

9
0
.7

7

1
2
5

1
.3

4
2
.7

8
0
.9

2
1
.7

7
1
.4

4
0
.7

9
2
.5

4
0
.9

5
0

0
.5

2
1
.0

5
0
.7

9
0

0
.4

3
0
.3

7
0
.8

7
1
.1

4
1
.7

9
0
.7

3
0

1
2
6

0
.4

7
0
.5

2
2
.1

6
1
.1

5
0
.4

1
0
.9

5
0
.6

4
3
.0

3
0
.8

9
0
.6

2
0
.5

3
0
.9

8
0
.6

8
0
.6

1
0
.6

3
1
.0

3
0
.3

9
0
.6

3
0
.8

3
0
.7

6

1
2
7

2
7
.8

9
4
.7

6
0
.1

6
0
.6

1
5
.5

6
8
.7

6
8
.2

2
4
.5

5
0
.7

2
2
.8

2
7
.6

1
0
3

3
3
.5

2
5
.5

5
1
.5

4
2

4
5

3
4
.7

5
5
.2

2
3
.7

1
2
8

5
1

5
2
2

1
9

7
4

1
6

1
6

5
2

3
4

6
6

6
0

3
5
2

5
8

2
5

3
5

3
0

4
9

2
4

6
4

1
2
9

1
5

6
7

4
9

5
0

5
5
6

5
5

1
0

3
4

1
3

1
6

8
5

2
0

1
0

4
5

3
2

3
2

1
7

4
1

1
4

1
3
0

1
.7

0
.1

0
.4

0
.4

4
.6

0
.3

0
.3

1
.8

0
.8

3
.1

2
.4

0
.0

5
1
.9

2
.2

0
.6

0
.8

0
.7

1
.6

0
.5

2
.9

1
3
1

0
.3

-1
.4

-0
.5

-0
.6

0
.9

-0
.7

-0
.7

0
.3

-0
.1

0
.7

0
.5

-1
.8

0
.4

0
.5

-0
.3

-0
.1

-0
.2

0
.3

-0
.4

0
.6

1
3
2

0
.8

7
0
.8

5
0
.0

9
0
.6

6
1
.5

2
0

0
.6

7
0
.1

0
.8

7
3
.1

5
2
.1

7
1
.6

4
1
.6

7
2
.8

7
2
.7

7
0
.0

7
0
.0

7
3
.7

7
2
.6

7
1
.8

7

1
3
3

2
.3

4
1
.1

8
2
.0

2
2
.0

1
1
.6

5
2
.1

7
2
.1

9
2
.3

4
1
.8

2
2
.3

6
2
.3

6
2
.1

8
2
.2

8
1
.8

3
1
.9

9
2
.2

1
2
.1

2
.3

8
2
.2

2
.3

2

1
3
4

0
.0

7
7

0
.0

5
1

0
.0

4
3

0
.0

5
2

0
.0

2
0
.0

4
1

0
.0

6
2

0
.0

7
4

0
.0

2
3

0
.0

5
3

0
.0

9
1

0
.0

5
9

0
.0

2
4

0
.0

4
0
.0

5
1

0
.0

6
9

0
.0

5
9

0
.0

1
4

0
.0

3
2

0
.0

6
6

1
3
5

1
0
0

8
3

1
0
4

8
6

4
4

8
4

7
7

5
0

9
1

1
0
3

5
4

7
2

9
3

5
1

5
8

1
1
7

1
0
7

2
5

5
0

9
8

1
3
6

5
.3

2
.6

3
3
.6

1
.3

2
.4

3
.3

4
.8

1
.4

3
.1

4
.7

4
.1

1
.1

2
.3

2
.5

4
.5

3
.7

0
.8

2
.3

4
.2

1
3
7

6
8
5

3
8
2

3
9
7

4
0
0

2
4
1

3
1
3

4
2
7

7
0
7

1
5
5

3
9
4

5
8
1

5
7
5

1
3
2

3
0
3

3
6
6

5
9
3

4
9
0

9
9

2
9
2

5
5
3

1
3
8

1
.3

6
1

0
.8

9
1
.0

4
0
.8

2
1
.1

4
1
.4

8
0
.6

3
1
.1

1
1
.0

8
1
.2

1
1
.2

2
1
.4

5
1
.0

5
0
.5

2
0
.7

4
0
.8

1
0
.9

7
0
.7

9
0
.9

4

1
3
9

0
.8

1
0
.8

5
0
.6

2
0
.7

1
1
.1

7
0
.9

8
0
.5

3
0
.8

8
0
.9

2
1
.4

8
1
.2

4
0
.7

7
1
.0

5
1
.2

0
.6

1
0
.9

2
1
.1

8
1
.1

8
1
.2

3
1
.6

6

1
4
0

1
.4

5
1
.1

5
0
.6

4
0
.9

1
0
.7

1
.1

4
1
.2

9
0
.5

3
1
.1

3
1
.2

3
1
.5

6
1
.2

7
1
.8

3
1
.2

0
.2

1
0
.4

8
0
.7

7
1
.1

7
0
.7

4
1
.1

1
4
1

0
.7

5
0
.7

9
0
.3

3
0
.3

1
1
.4

6
0
.7

5
0
.4

6
0
.8

3
0
.8

3
1
.8

7
1
.5

6
0
.6

6
0
.8

6
1
.3

7
0
.5

2
0
.8

2
1
.3

6
0
.7

9
1
.0

8
2

1
4
2

1
.0

4
1

1
.0

3
8

1
.1

1
7

1
.0

3
3

0
.9

6
1
.1

6
5

1
.0

9
4

1
.1

4
2

0
.9

8
2

1
.0

0
2

0
.9

6
7

1
.0

9
3

0
.9

4
7

0
.9

3
1
.0

5
5

1
.1

6
9

1
.0

7
3

0
.9

2
5

0
.9

6
1

0
.9

8
2

1
4
3

0
.9

4
6

1
.0

2
8

1
.0

0
6

1
.0

8
9

0
.8

7
8

1
.0

2
5

1
.0

3
6

1
.0

4
2

0
.9

5
2

0
.8

9
2

0
.9

6
1

1
.0

8
2

0
.8

6
2

0
.9

1
2

1
.0

8
5

1
.0

4
8

1
.0

5
1

0
.9

1
7

0
.9

3
0
.9

2
7

1
4
4

0
.8

9
2

0
.9

0
1

0
.9

3
0
.9

3
2

0
.9

2
5

0
.8

8
5

0
.9

3
3

0
.9

2
3

0
.8

9
4

0
.8

7
2

0
.9

2
1

1
.0

5
7

0
.8

0
4

0
.9

1
4

0
.9

3
2

0
.9

2
3

0
.9

3
4

0
.8

0
3

0
.8

3
7

0
.9

1
3

1
4
5

4
9
.1

1
3
3

-3
.6

0
0

2
0

0
6
4
.6

7
5
.7

1
8
.9

1
5
.6

0
6
.8

5
4
.7

4
3
.8

4
4
.4

3
1

7
0
.5

0
2
9
.5

1
4
6

0
1

0
-1

0
0

-1
0

0
0

0
1

0
0

0
0

0
0

0
0

1
4
7

4
.6

6
.5

5
.9

5
.7

-1
6
.1

5
.6

7
.6

4
.5

2
.6

3
.2

5
7
.9

1
.4

3
.2

7
5
.2

5
4
.8

4
4
.3

5
3
.4

C
o
n
ti
n
u
ed

o
n

n
e
x
t
p
a
g
e



Amino Acid Scales 192

T
a
b
le

B
.1

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
v
io
u
s
p
a
g
e

I
D

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

1
4
8

4
.3

2
6
.5

5
6
.2

4
6
.0

4
1
.7

3
6
.1

3
6
.1

7
6
.0

9
5
.6

6
2
.3

1
3
.9

3
7
.9

2
2
.4

4
2
.5

9
7
.1

9
5
.3

7
5
.1

6
2
.7

8
3
.5

8
3
.3

1

1
4
9

0
.2

8
0
.3

4
0
.3

1
0
.3

3
0
.1

1
0
.3

9
0
.3

7
0
.2

8
0
.2

3
0
.1

2
0
.1

6
0
.5

9
0
.0

8
0
.1

0
.4

6
0
.2

7
0
.2

6
0
.1

5
0
.2

5
0
.2

2

1
5
0

2
7
.5

1
0
5

5
8
.7

4
0

4
4
.6

8
0
.7

6
2

0
7
9

9
3
.5

9
3
.5

1
0
0

9
4
.1

1
1
5
.5

4
1
.9

2
9
.3

5
1
.3

1
4
5
.5

1
1
7
.3

7
1
.5

1
5
1

1
.8

-4
.5

-3
.5

-3
.5

2
.5

-3
.5

-3
.5

-0
.4

-3
.2

4
.5

3
.8

-3
.9

1
.9

2
.8

-1
.6

-0
.8

-0
.7

-0
.9

-1
.3

4
.2

1
5
2

-0
.4

8
-0

.0
6

-0
.8

7
-0

.7
5

-0
.3

2
-0

.3
2

-0
.7

1
0

-0
.5

1
0
.8

1
1
.0

2
-0

.0
9

0
.8

1
1
.0

3
2
.0

3
0
.0

5
-0

.3
5

0
.6

6
1
.2

4
0
.5

6

1
5
3

-0
.5

3
0
.2

2
.5

-1
0
.2

2
.5

0
-0

.5
-1

.8
-1

.8
3

-1
.3

-2
.5

-1
.4

0
.3

-0
.4

-3
.4

-2
.3

-1
.5

1
5
4

0
.7

7
3
.7

2
1
.9

8
1
.9

9
1
.3

8
2
.5

8
2
.6

3
0

2
.7

6
1
.8

3
2
.0

8
2
.9

4
2
.3

4
2
.9

7
1
.4

2
1
.2

8
1
.4

3
3
.5

8
3
.3

6
1
.4

9

1
5
5

1
2
1
.9

1
2
1
.4

1
1
7
.5

1
2
1
.2

1
1
3
.7

1
1
8

1
1
8
.2

0
1
1
8
.2

1
1
8
.9

1
1
8
.1

1
2
2

1
1
3
.1

1
1
8
.2

8
1
.9

1
1
7
.9

1
1
7
.1

1
1
8
.4

1
1
0

1
2
1
.7

1
5
6

2
4
3
.2

2
0
6
.6

2
0
7
.1

2
1
5

2
0
9
.4

2
0
5
.4

2
1
3
.6

3
0
0

2
1
9
.9

2
1
7
.9

2
0
5
.6

2
1
0
.9

2
0
4

2
0
3
.7

2
3
7
.4

2
3
2

2
2
6
.7

2
0
3
.7

1
9
5
.6

2
2
0
.3

1
5
7

0
.7

7
2
.3

8
1
.4

5
1
.4

3
1
.2

2
1
.7

5
1
.7

7
0
.5

8
1
.7

8
1
.5

6
1
.5

4
2
.0

8
1
.8

1
.9

1
.2

5
1
.0

8
1
.2

4
2
.2

1
2
.1

3
1
.2

9

1
5
8

5
.2

6
5

5
6
.1

6
6

4
.2

6
7

7
6

6
.8

7
.1

6
.2

4
.9

5
7
.6

7
.1

6
.4

1
5
9

0
.0

2
5

0
.2

0
.1

0
.1

0
.1

0
.1

0
.1

0
.0

2
5

0
.1

0
.1

9
0
.1

9
0
.2

0
.1

9
0
.3

9
0
.1

7
0
.0

2
5

0
.1

0
.5

6
0
.3

9
0
.1

5

1
6
0

1
.2

9
0
.9

6
0
.9

1
.0

4
1
.1

1
1
.2

7
1
.4

4
0
.5

6
1
.2

2
0
.9

7
1
.3

1
.2

3
1
.4

7
1
.0

7
0
.5

2
0
.8

2
0
.8

2
0
.9

9
0
.7

2
0
.9

1

1
6
1

0
.9

0
.9

9
0
.7

6
0
.7

2
0
.7

4
0
.8

0
.7

5
0
.9

2
1
.0

8
1
.4

5
1
.0

2
0
.7

7
0
.9

7
1
.3

2
0
.6

4
0
.9

5
1
.2

1
1
.1

4
1
.2

5
1
.4

9

1
6
2

0
.7

7
0
.8

8
1
.2

8
1
.4

1
0
.8

1
0
.9

8
0
.9

9
1
.6

4
0
.6

8
0
.5

1
0
.5

8
0
.9

6
0
.4

1
0
.5

9
1
.9

1
1
.3

2
1
.0

4
0
.7

6
1
.0

5
0
.4

7

1
6
3

1
.3

2
0
.9

8
0
.9

5
1
.0

3
0
.9

2
1
.1

1
.4

4
0
.6

1
1
.3

1
0
.9

3
1
.3

1
1
.2

5
1
.3

9
1
.0

2
0
.5

8
0
.7

6
0
.7

9
0
.9

7
0
.7

3
0
.9

3

1
6
4

0
.8

6
0
.9

7
0
.7

3
0
.6

9
1
.0

4
1

0
.6

6
0
.8

9
0
.8

5
1
.4

7
1
.0

4
0
.7

7
0
.9

3
1
.2

1
0
.6

8
1
.0

2
1
.2

7
1
.2

6
1
.3

1
1
.4

3

1
6
5

0
.7

9
0
.9

1
.2

5
1
.4

7
0
.7

9
0
.9

2
1
.0

2
1
.6

7
0
.8

1
0
.5

0
.5

7
0
.9

9
0
.5

1
0
.7

7
1
.7

8
1
.3

0
.9

7
0
.7

9
0
.9

3
0
.4

6

1
6
6

0
.2

2
0
.2

8
0
.4

2
0
.7

3
0
.2

0
.2

6
0
.0

8
0
.5

8
0
.1

4
0
.2

2
0
.1

9
0
.2

7
0
.3

8
0
.0

8
0
.4

6
0
.5

5
0
.4

9
0
.4

3
0
.4

6
0
.0

8

1
6
7

0
.9

2
0
.9

3
0
.6

0
.4

8
1
.1

6
0
.9

5
0
.6

1
0
.6

1
0
.9

3
1
.8

1
1
.3

0
.7

1
.1

9
1
.2

5
0
.4

0
.8

2
1
.1

2
1
.5

4
1
.5

3
1
.8

1

1
6
8

1
0
.6

8
0
.5

4
0
.5

0
.9

1
0
.2

8
0
.5

9
0
.7

9
0
.3

8
2
.6

1
.4

2
0
.5

9
1
.4

9
1
.3

0
.3

5
0
.7

0
.5

9
0
.8

9
1
.0

8
2
.6

3

1
6
9

0
.9

1
.0

2
0
.6

2
0
.4

7
1
.2

4
1
.1

8
0
.6

2
0
.5

6
1
.1

2
1
.5

4
1
.2

6
0
.7

4
1
.0

9
1
.2

3
0
.4

2
0
.8

7
1
.3

1
.7

5
1
.6

8
1
.5

3

1
7
0

1
2
.9

7
1
1
.7

2
1
1
.4

2
1
0
.8

5
1
4
.6

3
1
1
.7

6
1
1
.8

9
1
2
.4

3
1
2
.1

6
1
5
.6

7
1
4
.9

1
1
.3

6
1
4
.3

9
1
4

1
1
.3

7
1
1
.2

3
1
1
.6

9
1
3
.9

3
1
3
.4

2
1
5
.7

1

1
7
1

1
.4

3
1
.1

8
0
.6

4
0
.9

2
0
.9

4
1
.2

2
1
.6

7
0
.4

6
0
.9

8
1
.0

4
1
.3

6
1
.2

7
1
.5

3
1
.1

9
0
.4

9
0
.7

0
.7

8
1
.0

1
0
.6

9
0
.9

8

1
7
2

0
.8

6
0
.9

4
0
.7

4
0
.7

2
1
.1

7
0
.8

9
0
.6

2
0
.9

7
1
.0

6
1
.2

4
0
.9

8
0
.7

9
1
.0

8
1
.1

6
1
.2

2
1
.0

4
1
.1

8
1
.0

7
1
.2

5
1
.3

3

1
7
3

0
.6

4
0
.6

2
3
.1

4
1
.9

2
0
.3

2
0
.8

1
.0

1
0
.6

3
2
.0

5
0
.9

2
0
.3

7
0
.8

9
1
.0

7
0
.8

6
0
.5

1
.0

1
0
.9

2
1

1
.3

1
0
.8

7

1
7
4

0
.1

7
0
.7

6
2
.6

2
1
.0

8
0
.9

5
0
.9

1
0
.2

8
5
.0

2
0
.5

7
0
.2

6
0
.2

1
1
.1

7
0

0
.2

8
0
.1

2
0
.5

7
0
.2

3
0

0
.9

7
0
.2

4

1
7
5

1
.1

3
0
.4

8
1
.1

1
1
.1

8
0
.3

8
0
.4

1
1
.0

2
3
.8

4
0
.3

0
.4

0
.6

5
1
.1

3
0

0
.4

5
0

0
.8

1
0
.7

1
0
.9

3
0
.3

8
0
.4

8

1
7
6

1
1
.1

8
0
.8

7
1
.3

9
1
.0

9
1
.1

3
1
.0

4
0
.4

6
0
.7

1
0
.6

8
1
.0

1
1
.0

5
0
.3

6
0
.6

5
1
.9

5
1
.5

6
1
.2

3
1
.1

0
.8

7
0
.5

8

1
7
7

4
.3

4
2
6
.6

6
1
3
.2

8
1
2

3
5
.7

7
1
7
.5

6
1
7
.2

6
0

2
1
.8

1
1
9
.0

6
1
8
.7

8
2
1
.2

9
2
1
.6

4
2
9
.4

1
0
.9

3
6
.3

5
1
1
.0

1
4
2
.5

3
3
1
.5

3
1
3
.9

2

1
7
8

0
.5

0
.8

0
.8

-8
.2

-6
.8

-4
.8

-1
6
.9

0
-3

.5
1
3
.9

8
.8

0
.1

4
.8

1
3
.2

6
.1

1
.2

2
.7

1
4
.9

6
.1

2
.7

1
7
9

-0
.1

-4
.5

-1
.6

-2
.8

-2
.2

-2
.5

-7
.5

-0
.5

0
.8

1
1
.8

1
0

-3
.2

7
.1

1
3
.9

8
-3

.7
1
.5

1
8
.1

8
.2

3
.3

1
8
0

1
.1

-0
.4

-4
.2

-1
.6

7
.1

-2
.9

0
.7

-0
.2

-0
.7

8
.5

1
1

-1
.9

5
.4

1
3
.4

4
.4

-3
.2

-1
.7

1
7
.1

7
.4

5
.9

1
8
1

1
-2

-3
-0

.5
4
.6

-2
1
.1

0
.2

-2
.2

7
9
.6

-3
4

1
2
.6

3
.1

-2
.9

-0
.6

1
5
.1

6
.7

4
.6

1
8
2

0
.9

3
0
.9

8
0
.9

8
1
.0

1
0
.8

8
1
.0

2
1
.0

2
1
.0

1
0
.8

9
0
.7

9
0
.8

5
1
.0

5
0
.8

4
0
.7

8
1

1
.0

2
0
.9

9
0
.8

3
0
.9

3
0
.8

1

1
8
3

0
.9

4
1
.0

9
1
.0

4
1
.0

8
0
.8

4
1
.1

1
1
.1

2
1
.0

1
0
.9

2
0
.7

6
0
.8

2
1
.2

3
0
.8

3
0
.7

3
1
.0

4
1
.0

4
1
.0

2
0
.8

7
1
.0

3
0
.8

1

1
8
4

8
7

8
1

7
0

7
1

1
0
4

6
6

7
2

9
0

9
0

1
0
5

1
0
4

6
5

1
0
0

1
0
8

7
8

8
3

8
3

9
4

8
3

9
4

C
o
n
ti
n
u
ed

o
n

n
e
x
t
p
a
g
e



Amino Acid Scales 193

T
a
b
le

B
.1

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
v
io
u
s
p
a
g
e

I
D

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

1
8
5

2
.3

6
1
.9

2
1
.7

1
.6

7
3
.3

6
1
.7

5
1
.7

4
2
.0

6
2
.4

1
4
.1

7
3
.9

3
1
.2

3
4
.2

2
4
.3

7
1
.8

9
1
.8

1
2
.0

4
3
.8

2
2
.9

1
3
.4

9

1
8
6

1
.2

9
0
.8

3
0
.7

7
1

0
.9

4
1
.1

1
.5

4
0
.7

2
1
.2

9
0
.9

4
1
.2

3
1
.2

3
1
.2

3
1
.2

3
0
.7

0
.7

8
0
.8

7
1
.0

6
0
.6

3
0
.9

7

1
8
7

0
.9

6
0
.6

7
0
.7

2
0
.9

1
.1

3
1
.1

8
0
.3

3
0
.9

0
.8

7
1
.5

4
1
.2

6
0
.8

1
1
.2

9
1
.3

7
0
.7

5
0
.7

7
1
.2

3
1
.1

3
1
.0

7
1
.4

1

1
8
8

0
.7

2
1
.3

3
1
.3

8
1
.0

4
1
.0

1
0
.8

1
0
.7

5
1
.3

5
0
.7

6
0
.8

0
.6

3
0
.8

4
0
.6

2
0
.5

8
1
.4

3
1
.3

4
1
.0

3
0
.8

7
1
.3

5
0
.8

3

1
8
9

7
.9

9
5
.8

6
4
.3

3
5
.1

4
1
.8

1
3
.9

8
6
.1

6
.9

1
2
.1

7
5
.4

8
9
.1

6
6
.0

1
2
.5

3
.8

3
4
.9

5
6
.8

4
5
.7

7
1
.3

4
3
.1

5
6
.6

5

1
9
0

3
.7

3
3
.3

4
2
.3

3
2
.2

3
2
.3

2
.3

6
3

3
.3

6
1
.5

5
2
.5

2
3
.4

3
.3

6
1
.3

7
1
.9

4
3
.1

8
2
.8

3
2
.6

3
1
.1

5
1
.7

6
2
.5

3

1
9
1

5
.7

4
1
.9

2
5
.2

5
2
.1

1
1
.0

3
2
.3

2
.6

3
5
.6

6
2
.3

9
.1

2
1
5
.3

6
3
.2

5
.3

6
.5

1
4
.7

9
7
.5

5
7
.5

1
2
.5

1
4
.0

8
5
.1

2

1
9
2

-0
.6

-1
.1

8
0
.3

9
-1

.3
6

-0
.3

4
-0

.7
1

-1
.1

6
-0

.3
7

0
.0

8
1
.4

4
1
.8

2
-0

.8
4

2
.0

4
1
.3

8
-0

.0
5

0
.2

5
0
.6

6
1
.0

2
0
.5

3
-0

.6

1
9
3

5
.8

8
1
.5

4
4
.3

8
1
.7

1
.1

1
2
.3

2
.6

5
.2

9
2
.3

3
8
.7

8
1
6
.5

2
2
.5

8
6

6
.5

8
5
.2

9
7
.6

8
8
.3

8
2
.8

9
3
.5

1
4
.6

6

1
9
4

-0
.5

7
-1

.2
9

0
.0

2
-1

.5
4

-0
.3

-0
.7

1
-1

.1
7

-0
.4

8
0
.1

1
.3

1
2
.1

6
-1

.0
2

2
.5

5
1
.4

2
0
.1

1
0
.3

0
.9

9
1
.3

5
0
.2

-0
.7

9

1
9
5

5
.3

9
2
.8

1
7
.3

1
3
.0

7
0
.8

6
2
.3

1
2
.7

6
.5

2
2
.2

3
9
.9

4
1
2
.6

4
4
.6

7
3
.6

8
6
.3

4
3
.6

2
7
.2

4
5
.4

4
1
.6

4
5
.4

2
6
.1

8

1
9
6

-0
.7

-0
.9

1
1
.2

8
-0

.9
3

-0
.4

1
-0

.7
1

-1
.1

3
-0

.1
2

0
.0

4
1
.7

7
1
.0

2
-0

.4
0
.8

6
1
.2

9
-0

.4
2

0
.1

4
-0

.1
3

0
.2

6
1
.2

9
-0

.1
9

1
9
7

9
.2

5
3
.9

6
3
.7

1
3
.8

9
1
.0

7
3
.1

7
4
.8

8
.5

1
1
.8

8
6
.4

7
1
0
.9

4
3
.5

3
.1

4
6
.3

6
4
.3

6
6
.2

6
5
.6

6
2
.2

2
3
.2

8
7
.5

5

1
9
8

0
.3

4
-0

.5
7

-0
.2

7
-0

.5
6

-0
.3

2
-0

.3
4

-0
.4

3
0
.4

8
-0

.1
9

0
.3

9
0
.5

2
-0

.7
5

0
.4

7
1
.3

-0
.1

9
-0

.2
-0

.0
4

0
.7

7
0
.0

7
0
.3

6

1
9
9

1
0
.1

7
1
.2

1
1
.3

6
1
.1

8
1
.4

8
1
.5

7
1
.1

5
8
.8

7
1
.0

7
1
0
.9

1
1
6
.2

2
1
.0

4
4
.1

2
9
.6

2
.2

4
5
.3

8
5
.6

1
2
.6

7
2
.6

8
1
1
.4

4

2
0
0

6
.6

1
0
.4

1
1
.8

4
0
.5

9
0
.8

3
1
.2

1
.6

3
4
.8

8
1
.1

4
1
2
.9

1
2
1
.6

6
1
.1

5
7
.1

7
7
.7

6
3
.5

1
6
.8

4
8
.8

9
2
.1

1
2
.5

7
6
.3

2
0
1

1
.6

1
0
.4

0
.7

3
0
.7

5
0
.3

7
0
.6

1
1
.5

3
.1

2
0
.4

6
1
.6

1
1
.3

7
0
.6

2
1
.5

9
1
.2

4
0
.6

7
0
.6

8
0
.9

2
1
.6

3
0
.6

7
1
.3

2
0
2

8
.6

3
6
.7

5
4
.1

8
6
.2

4
1
.0

3
4
.7

6
7
.8

2
6
.8

2
.7

3
.4

8
8
.4

4
6
.2

5
2
.1

4
2
.7

3
6
.2

8
8
.5

3
4
.4

3
0
.8

2
.5

4
5
.4

4

2
0
3

1
0
.8

8
6
.0

1
5
.7

5
6
.1

3
0
.6

9
4
.6

8
9
.3

4
7
.7

2
2
.1

5
1
.8

8
.0

3
6
.1

1
3
.7

9
2
.9

3
7
.2

1
7
.2

5
3
.5

1
0
.4

7
1
.0

1
4
.5

7

2
0
4

5
.1

5
4
.3

8
4
.8

1
5
.7

5
3
.2

4
4
.4

5
7
.0

5
6
.3

8
2
.6

9
4
.4

8
.1

1
5
.2

5
1
.6

3
.5

2
5
.6

5
8
.0

4
7
.4

1
1
.6

8
3
.4

2
7

2
0
5

5
.0

4
3
.7

3
5
.9

4
5
.2

6
2
.2

4
.5

6
.0

7
7
.0

9
2
.9

9
4
.3

2
9
.8

8
6
.3

1
1
.8

5
3
.7

2
6
.2

2
8
.0

5
5
.2

2
.1

3
.3

2
6
.1

9

2
0
6

9
.9

0
.0

9
0
.9

4
0
.3

5
2
.5

5
0
.8

7
0
.0

8
8
.1

4
0
.2

1
5
.2

5
2
2
.2

8
0
.1

6
1
.8

5
6
.4

7
2
.3

8
4
.1

7
4
.3

3
2
.2

1
3
.4

2
1
4
.3

4

2
0
7

6
.6

9
6
.6

5
4
.4

9
4
.9

7
1
.7

5
.3

9
7
.7

6
6
.3

2
2
.1

1
4
.5

1
8
.2

3
8
.3

6
2
.4

6
3
.5

9
5
.2

7
.4

5
.1

8
1
.0

6
2
.7

5
5
.2

7

2
0
8

5
.0

8
4
.7

5
5
.7

5
5
.9

6
2
.9

5
4
.2

4
6
.0

4
8
.2

2
.1

4
.9

5
8
.0

3
4
.9

3
2
.6

1
4
.3

6
4
.8

4
6
.4

1
5
.8

7
2
.3

1
4
.5

5
6
.0

7

2
0
9

9
.3

6
0
.2

7
2
.3

1
0
.9

4
2
.5

6
1
.1

4
0
.9

4
6
.1

7
0
.4

7
1
3
.7

3
1
6
.6

4
0
.5

8
3
.9

3
1
0
.9

9
1
.9

6
5
.5

8
4
.6

8
2
.2

3
.1

3
1
2
.4

3

2
1
0

0
.2

3
-0

.2
6

-0
.9

4
-1

.1
3

1
.7

8
-0

.5
7

-0
.7

5
-0

.0
7

0
.1

1
1
.1

9
1
.0

3
-1

.0
5

0
.6

6
0
.4

8
-0

.7
6

-0
.6

7
-0

.3
6

0
.9

0
.5

9
1
.2

4

2
1
1

-0
.2

2
-0

.9
3

-2
.6

5
-4

.1
2

4
.6

6
-2

.7
6

-3
.6

4
-1

.6
2

1
.2

8
5
.5

8
5
.0

1
-4

.1
8

3
.5

1
5
.2

7
-3

.0
3

-2
.8

4
-1

.2
5
.2

2
.1

5
4
.4

5

2
1
2

0
.5

0
0

0
0

0
0

0
0
.5

1
.8

1
.8

0
1
.3

2
.5

0
0

0
.4

3
.4

2
.3

1
.5

2
1
3

-1
.8

9
5

-1
.4

7
5

-1
.5

6
-1

.5
1
8

-2
.0

3
5

-1
.5

2
1

-1
.5

3
5

-1
.8

9
8

-1
.7

5
5

-1
.9

5
1

-1
.9

6
6

-1
.3

7
4

-1
.9

6
3

-1
.8

6
4

-1
.6

9
9

-1
.7

5
3

-1
.7

6
7

-1
.8

6
9

-1
.6

8
6

-1
.9

8
1

2
1
4

-1
.4

0
4

-0
.9

2
1

-1
.1

7
8

-1
.1

6
2

-1
.3

6
5

-1
.1

1
6

-1
.1

6
3

-1
.3

6
4

-1
.2

1
5

-1
.1

8
9

-1
.3

1
5

-1
.0

7
4

-1
.3

0
3

-1
.1

3
5

-1
.2

3
6

-1
.2

9
7

-1
.2

5
2

-1
.0

3
-1

.0
3

-1
.2

5
4

2
1
5

-0
.4

9
1

-0
.5

5
4

-0
.3

8
2

-0
.3

5
6

-0
.6

7
-0

.4
0
5

-0
.3

7
1

-0
.5

3
4

-0
.5

4
-0

.7
6
2

-0
.6

5
-0

.3
-0

.6
5
9

-0
.7

2
9

-0
.4

6
3

-0
.4

5
5

-0
.5

1
5

-0
.8

3
9

-0
.6

5
6

-0
.7

2
8

2
1
6

-9
.4

8
-1

6
.2

3
-1

2
.4

8
-1

2
.1

4
-1

2
.2

1
-1

3
.6

9
-1

3
.8

2
-7

.5
9

-1
7
.5

5
-1

5
.6

1
1
5
.7

3
-1

2
.3

7
-1

5
.7

0
-2

0
.5

0
-1

1
.8

9
-1

0
.5

2
-1

2
.3

7
-2

6
.1

7
-2

0
.2

3
-1

3
.8

7

2
1
7

-7
.0

2
-1

0
.1

3
1

-9
.4

2
4

-9
.2

9
6

-8
.1

9
-1

0
.0

4
4

-1
0
.4

6
7

-5
.4

5
6

-1
2
.1

5
-9

.5
1
2

1
0
.5

2
-9

.6
6
6

-1
0
.4

2
4

-1
2
.4

8
5

-8
.6

5
2

-7
.7

8
2

-8
.7

6
4

-1
4
.4

2
-1

2
.3

6
-8

.7
7
8

2
1
8

2
.0

1
0
.8

4
0
.0

3
-2

.0
5

1
.9

8
1
.0

2
0
.9

3
0
.1

2
-0

.1
4

3
.7

2
.7

3
2
.5

5
1
.7

5
2
.6

8
0
.4

1
1
.4

7
2
.3

9
2
.4

9
2
.2

3
3
.5

2
1
9

1
.3

4
0
.9

5
2
.4

9
3
.3

2
1
.0

7
1
.4

9
2
.2

2
.0

7
1
.2

7
0
.6

6
0
.5

4
0
.6

1
0
.7

0
.8

2
.1

2
0
.9

4
1
.0

9
-4

.6
5

-0
.1

7
1
.3

2

2
2
0

0
.4

6
-1

.5
4

1
.3

1
-0

.3
3

0
.2

-1
.1

2
0
.4

8
0
.6

4
-1

.3
1

3
.2

8
0
.4

3
-1

.7
1

0
.1

5
0
.5

2
-0

.5
8

-0
.8

3
-1

.5
2

1
.2

5
-2

.2
1

0
.5

4

2
2
1

-2
.4

9
2
.5

5
2
.2

7
8
.8

6
-3

.1
3

1
.7

9
4
.0

4
-0

.5
6

4
.2

2
-1

0
.8

7
-7

.1
6

-9
.9

7
-4

.9
6

-6
.6

4
5
.1

9
-1

.6
-4

.7
5

-1
7
.8

4
9
.2

5
-3

.9
7

C
o
n
ti
n
u
ed

o
n

n
e
x
t
p
a
g
e



Amino Acid Scales 194

T
a
b
le

B
.1

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
v
io
u
s
p
a
g
e

I
D

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

2
2
2

4
.5

5
5
.9

7
5
.5

6
2
.8

5
-0

.7
8

4
.1

5
5
.1

6
9
.1

4
4
.4

8
2
.1

3
.2

4
1
0
.6

8
2
.1

8
4
.3

7
5
.1

4
6
.7

8
8
.6

1
.9

7
2
.4

3
.8

1

2
2
3

1
.3

0
.9

3
0
.9

1
.0

2
0
.9

2
1
.0

4
1
.4

3
0
.6

3
1
.3

3
0
.8

7
1
.3

1
.2

3
1
.3

2
1
.0

9
0
.6

3
0
.7

8
0
.8

1
.0

3
0
.7

1
0
.9

5

2
2
4

1
.3

2
1
.0

4
0
.7

4
0
.9

7
0
.7

1
.2

5
1
.4

8
0
.5

9
1
.0

6
1
.0

1
1
.2

2
1
.1

3
1
.4

7
1
.1

0
.5

7
0
.7

7
0
.8

6
1
.0

2
0
.7

2
1
.0

5

2
2
5

0
.8

1
1
.0

3
0
.8

1
0
.7

1
1
.1

2
1
.0

3
0
.5

9
0
.9

4
0
.8

5
1
.4

7
1
.0

3
0
.7

7
0
.9

6
1
.1

3
0
.7

5
1
.0

2
1
.1

9
1
.2

4
1
.3

5
1
.4

4

2
2
6

0
.9

0
.7

5
0
.8

2
0
.7

5
1
.1

2
0
.9

5
0
.4

4
0
.8

3
0
.8

6
1
.5

9
1
.2

4
0
.7

5
0
.9

4
1
.4

1
0
.4

6
0
.7

1
.2

1
.2

8
1
.4

5
1
.7

3

2
2
7

0
.8

4
0
.9

1
1
.4

8
1
.2

8
0
.6

9
1

0
.7

8
1
.7

6
0
.5

3
0
.5

5
0
.4

9
0
.9

5
0
.5

2
0
.8

8
1
.4

7
1
.2

9
1
.0

5
0
.8

8
1
.2

8
0
.5

1

2
2
8

0
.6

5
0
.9

3
1
.4

5
1
.4

7
1
.4

3
0
.9

4
0
.7

5
1
.5

3
0
.9

6
0
.5

7
0
.5

6
0
.9

5
0
.7

1
0
.7

2
1
.5

1
1
.4

6
0
.9

6
0
.9

1
.1

2
0
.5

5

2
2
9

1
.0

8
0
.9

3
1
.0

5
0
.8

6
1
.2

2
0
.9

5
1
.0

9
0
.8

5
1
.0

2
0
.9

8
1
.0

4
1
.0

1
1
.1

1
0
.9

6
0
.9

1
0
.9

5
1
.1

5
1
.1

7
0
.8

1
.0

3

2
3
0

1
.3

4
0
.9

1
0
.8

3
1
.0

6
1
.2

7
1
.1

3
1
.6

9
0
.4

7
1
.1

1
0
.8

4
1
.3

9
1
.0

8
0
.9

1
.0

2
0
.4

8
1
.0

5
0
.7

4
0
.6

4
0
.7

3
1
.1

8

2
3
1

1
.1

5
1
.0

6
0
.8

7
1

1
.0

3
1
.4

3
1
.3

7
0
.6

4
0
.9

5
0
.9

9
1
.2

2
1
.2

1
.4

5
0
.9

2
0
.7

2
0
.8

4
0
.9

7
1
.1

1
0
.7

2
0
.8

2

2
3
2

0
.8

9
1
.0

6
0
.6

7
0
.7

1
1
.0

4
1
.0

6
0
.7

2
0
.8

7
1
.0

4
1
.1

4
1
.0

2
1

1
.4

1
1
.3

2
0
.6

9
0
.8

6
1
.1

5
1
.0

6
1
.3

5
1
.6

6

2
3
3

0
.8

2
0
.9

9
1
.2

7
0
.9

8
0
.7

1
1
.0

1
0
.5

4
0
.9

4
1
.2

6
1
.6

7
0
.9

4
0
.7

3
1
.3

1
.5

6
0
.6

9
0
.6

5
0
.9

8
1
.2

5
1
.2

6
1
.2

2

2
3
4

0
.9

8
1
.0

3
0
.6

6
0
.7

4
1
.0

1
0
.6

3
0
.5

9
0
.9

1
.1

7
1
.3

8
1
.0

5
0
.8

3
0
.8

2
1
.2

3
0
.7

3
0
.9

8
1
.2

1
.2

6
1
.2

3
1
.6

2

2
3
5

0
.6

9
0

1
.5

2
2
.4

2
0

1
.4

4
0
.6

3
2
.6

4
0
.2

2
0
.4

3
0

1
.1

8
0
.8

8
2
.2

1
.3

4
1
.4

3
0
.2

8
0

1
.5

3
0
.1

4

2
3
6

0
.8

7
1
.3

1
.3

6
1
.2

4
0
.8

3
1
.0

6
0
.9

1
1
.6

9
0
.9

1
0
.2

7
0
.6

7
0
.6

6
0

0
.4

7
1
.5

4
1
.0

8
1
.1

2
1
.2

4
0
.5

4
0
.6

9

2
3
7

0
.9

1
0
.7

7
1
.3

2
0
.9

0
.5

1
.0

6
0
.5

3
1
.6

1
1
.0

8
0
.3

6
0
.7

7
1
.2

7
0
.7

6
0
.3

7
1
.6

2
1
.3

4
0
.8

7
1
.1

1
.2

4
0
.5

2

2
3
8

0
.9

2
0
.9

1
.5

7
1
.2

2
0
.6

2
0
.6

6
0
.9

2
1
.6

1
0
.3

9
0
.7

9
0
.5

0
.8

6
0
.5

0
.9

6
1
.3

1
.4

1
.1

1
0
.5

7
1
.7

8
0
.5

2
3
9

2
.1

4
.2

7
1
0

1
.4

6
7
.8

5
.7

2
.1

-8
-9

.2
5
.7

-4
.2

-9
.2

2
.1

6
.5

5
.2

-1
0

-1
.9

-3
.7

2
4
0

-2
.8

9
-3

.3
-3

.4
1

-3
.3

8
-2

.4
9

-3
.1

5
-2

.9
4

-3
.2

5
-2

.8
4

-1
.7

2
-1

.6
1

-3
.3

1
-1

.8
4

-1
.6

3
-2

.5
-3

.3
-2

.9
1

-1
.7

5
-2

.4
2

-2
.0

8

2
4
1

1
2
.2

8
1
1
.4

9
1
1

1
0
.9

7
1
4
.9

3
1
1
.2

8
1
1
.1

9
1
2
.0

1
1
2
.8

4
1
4
.7

7
1
4
.1

1
0
.8

1
4
.3

3
1
3
.4

3
1
1
.1

9
1
1
.2

6
1
1
.6

5
1
2
.9

5
1
3
.2

9
1
5
.0

7

2
4
2

7
.6

2
6
.8

1
6
.1

7
6
.1

8
1
0
.9

3
6
.6

7
6
.3

8
7
.3

1
7
.8

5
9
.9

9
9
.3

7
5
.7

2
9
.8

3
8
.9

9
6
.6

4
6
.9

3
7
.0

8
8
.4

1
8
.5

3
1
0
.3

8

2
4
3

2
.6

3
2
.4

5
2
.2

7
2
.2

9
3
.3

6
2
.4

5
2
.3

1
2
.5

5
2
.5

7
3
.0

8
2
.9

8
2
.1

2
3
.1

8
3
.0

2
2
.4

6
2
.6

2
.5

5
2
.8

5
2
.7

9
3
.2

1

2
4
4

1
3
.6

5
1
1
.2

8
1
2
.2

4
1
0
.9

8
1
4
.4

9
1
1
.3

1
2
.5

5
1
5
.3

6
1
1
.5

9
1
4
.6

3
1
4
.0

1
1
1
.9

6
1
3
.4

1
4
.0

8
1
1
.5

1
1
1
.2

6
1
3

1
2
.0

6
1
2
.6

4
1
2
.8

8

2
4
5

1
4
.6

1
3
.2

4
1
1
.7

9
1
3
.7

8
1
5
.9

1
2
.0

2
1
3
.5

9
1
4
.1

8
1
5
.3

5
1
4
.1

1
6
.4

9
1
3
.2

8
1
6
.2

3
1
4
.1

8
1
4
.1

1
3
.3

6
1
4
.5

1
3
.9

1
4
.7

6
1
6
.3

2
4
6

1
0
.6

7
1
1
.0

5
1
0
.8

5
1
0
.2

1
1
4
.1

5
1
1
.7

1
1
1
.7

1
1
0
.9

5
1
2
.0

7
1
2
.9

5
1
3
.0

7
9
.9

3
1
5

1
3
.2

7
1
0
.6

2
1
1
.1

8
1
0
.5

3
1
1
.4

1
1
1
.5

2
1
3
.8

6

2
4
7

3
.7

2
.5

3
2
.1

2
2
.6

3
.0

3
2
.7

3
.3

3
.1

3
3
.5

7
7
.6

9
5
.8

8
1
.7

9
5
.2

1
6
.6

2
.1

2
2
.4

3
2
.6

6
.2

5
3
.0

3
7
.1

4

2
4
8

6
.0

5
5
.7

5
.0

4
4
.9

5
7
.8

6
5
.4

5
5
.1

6
.1

6
5
.8

7
.5

1
7
.3

7
4
.8

8
6
.3

9
6
.6

2
5
.6

5
5
.5

3
5
.8

1
6
.9

8
6
.7

3
7
.6

2

2
4
9

0
.3

0
5

0
.2

2
7

0
.3

2
2

0
.3

3
5

0
.3

3
9

0
.3

0
6

0
.2

8
2

0
.3

5
2

0
.2

1
5

0
.2

7
8

0
.2

6
2

0
.3

9
1

0
.2

8
0
.1

9
5

0
.3

4
6

0
.3

2
6

0
.2

5
1

0
.2

9
1

0
.2

9
3

0
.2

9
1

2
5
0

0
.1

7
5

0
.0

8
3

0
.0

9
0
.1

4
0
.0

7
4

0
.0

9
3

0
.1

3
5

0
.2

0
1

0
.1

2
5

0
.1

0
.1

0
4

0
.0

5
8

0
.0

5
4

0
.1

0
4

0
.1

3
6

0
.1

5
5

0
.1

5
2

0
.0

9
2

0
.0

8
1

0
.0

9
6

2
5
1

0
.6

8
7

0
.5

9
0
.4

8
9

0
.6

3
2

0
.2

6
3

0
.5

2
7

0
.6

6
9

0
.6

7
0
.5

9
4

0
.5

6
4

0
.5

4
1

0
.4

0
7

0
.3

2
8

0
.5

7
7

0
.6

0
.6

9
2

0
.7

1
3

0
.6

3
2

0
.4

9
5

0
.5

2
9

2
5
2

-6
.7

5
1
.5

2
0
.1

3
8
.5

-8
.4

1
7
.2

3
4
.3

-4
.2

1
2
.6

-1
3

-1
1
.7

3
6
.8

-1
4
.2

-1
5
.5

0
.8

-2
.5

-5
-7

.9
2
.9

-1
0
.9

2
5
3

1
.2

9
0
.9

6
0
.9

1
.0

4
1
.1

1
1
.2

7
1
.4

4
0
.5

6
1
.2

2
0
.9

7
1
.3

1
.2

3
1
.4

7
1
.0

7
0
.5

2
0
.8

2
0
.8

2
0
.9

9
0
.7

2
0
.9

1

2
5
4

0
.9

0
.9

9
0
.7

6
0
.7

2
0
.7

4
0
.8

0
.7

5
0
.9

2
1
.0

8
1
.4

5
1
.0

2
0
.7

7
0
.9

7
1
.3

2
0
.6

4
0
.9

5
1
.2

1
1
.1

4
1
.2

5
1
.4

9

2
5
5

0
.7

8
0
.8

8
1
.2

8
1
.4

1
0
.8

0
.9

7
1

1
.6

4
0
.6

9
0
.5

1
0
.5

9
0
.9

6
0
.3

9
0
.5

8
1
.9

1
1
.3

3
1
.0

3
0
.7

5
1
.0

5
0
.4

7

2
5
6

1
.1

0
.9

5
0
.8

0
.6

5
0
.9

5
1

1
0
.6

0
.8

5
1
.1

1
.2

5
1

1
.1

5
1
.1

0
.1

0
.7

5
0
.7

5
1
.1

1
.1

0
.9

5

2
5
7

1
0
.7

0
.6

0
.5

1
.9

1
0
.7

0
.3

0
.8

4
2

0
.7

1
.9

3
.1

0
.2

0
.9

1
.7

2
.2

2
.8

4

2
5
8

0
.1

2
0
.0

4
-0

.1
0
.0

1
-0

.2
5

-0
.0

3
-0

.0
2

-0
.0

2
-0

.0
6

-0
.0

7
0
.0

5
0
.2

6
0

0
.0

5
-0

.1
9

-0
.1

9
-0

.0
4

-0
.0

6
-0

.1
4

-0
.0

3

C
o
n
ti
n
u
ed

o
n

n
e
x
t
p
a
g
e



Amino Acid Scales 195

T
a
b
le

B
.1

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
v
io
u
s
p
a
g
e

I
D

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

2
5
9

0
.2

6
-0

.1
4

-0
.0

3
0
.1

5
-0

.1
5

-0
.1

3
0
.2

1
-0

.3
7

0
.1

-0
.0

3
-0

.0
2

0
.1

2
0

0
.1

2
-0

.0
8

0
.0

1
-0

.3
4

-0
.0

1
-0

.2
9

0
.0

2

2
6
0

0
.6

4
-0

.1
0
.0

9
0
.3

3
0
.0

3
-0

.2
3

0
.5

1
-0

.0
9

-0
.2

3
-0

.2
2

0
.4

1
-0

.1
7

0
.1

3
-0

.0
3

-0
.4

3
-0

.1
-0

.0
7

-0
.0

2
-0

.3
8

-0
.0

1

2
6
1

0
.2

9
-0

.0
3

-0
.0

4
0
.1

1
-0

.0
5

0
.2

6
0
.2

8
-0

.6
7

-0
.2

6
0

0
.4

7
-0

.1
9

0
.2

7
0
.2

4
-0

.3
4

-0
.1

7
-0

.2
0
.2

5
-0

.3
-0

.0
1

2
6
2

0
.6

8
-0

.2
2

-0
.0

9
-0

.0
2

-0
.1

5
-0

.1
5

0
.4

4
-0

.7
3

-0
.1

4
-0

.0
8

0
.6

1
0
.0

3
0
.3

9
0
.0

6
-0

.7
6

-0
.2

6
-0

.1
0
.2

-0
.0

4
0
.1

2

2
6
3

0
.3

4
0
.2

2
-0

.3
3

0
.0

6
-0

.1
8

0
.0

1
0
.2

-0
.8

8
-0

.0
9

-0
.0

3
0
.2

-0
.1

1
0
.4

3
0
.1

5
-0

.8
1

-0
.3

5
-0

.3
7

0
.0

7
-0

.3
1

0
.1

3

2
6
4

0
.5

7
0
.2

3
-0

.3
6

-0
.4

6
-0

.1
5

0
.1

5
0
.2

6
-0

.7
1

-0
.0

5
0

0
.4

8
0
.1

6
0
.4

1
0
.0

3
-1

.1
2

-0
.4

7
-0

.5
4

-0
.1

-0
.3

5
0
.3

1

2
6
5

0
.3

3
0
.1

-0
.1

9
-0

.4
4

-0
.0

3
0
.1

9
0
.2

1
-0

.4
6

0
.2

7
-0

.3
3

0
.5

7
0
.2

3
0
.7

9
0
.4

8
-1

.8
6

-0
.2

3
-0

.3
3

0
.1

5
-0

.1
9

0
.2

4

2
6
6

0
.1

3
0
.0

8
-0

.0
7

-0
.7

1
-0

.0
9

0
.1

2
0
.1

3
-0

.3
9

0
.3

2
0

0
.5

0
.3

7
0
.6

3
0
.1

5
-1

.4
-0

.2
8

-0
.2

1
0
.0

2
-0

.1
0
.1

7

2
6
7

0
.3

1
0
.1

8
-0

.1
-0

.8
1

-0
.2

6
0
.4

1
-0

.0
6

-0
.4

2
0
.5

1
-0

.1
5

0
.5

6
0
.4

7
0
.5

8
0
.1

-1
.3

3
-0

.4
9

-0
.4

4
0
.1

4
-0

.0
8

-0
.0

1

2
6
8

0
.2

1
0
.0

7
-0

.0
4

-0
.5

8
-0

.1
2

0
.1

3
-0

.2
3

-0
.1

5
0
.3

7
0
.3

1
0
.7

0
.2

8
0
.6

1
-0

.0
6

-1
.0

3
-0

.2
8

-0
.2

5
0
.2

1
0
.1

6
0

2
6
9

0
.1

8
0
.2

1
-0

.0
3

-0
.3

2
-0

.2
9

-0
.2

7
-0

.2
5

-0
.4

0
.2

8
-0

.0
3

0
.6

2
0
.4

1
0
.2

1
0
.0

5
-0

.8
4

-0
.0

5
-0

.1
6

0
.3

2
0
.1

1
0
.0

6

2
7
0

-0
.0

8
0
.0

5
-0

.0
8

-0
.2

4
-0

.2
5

-0
.2

8
-0

.1
9

-0
.1

0
.2

9
-0

.0
1

0
.2

8
0
.4

5
0
.1

1
0

-0
.4

2
0
.0

7
-0

.3
3

0
.3

6
0

-0
.1

3

2
7
1

-0
.1

8
-0

.1
3

0
.2

8
0
.0

5
-0

.2
6

0
.2

1
-0

.0
6

0
.2

3
0
.2

4
-0

.4
2

-0
.2

3
0
.0

3
-0

.4
2

-0
.1

8
-0

.1
3

0
.4

1
0
.3

3
-0

.1
-0

.1
-0

.0
7

2
7
2

-0
.0

1
0
.0

2
0
.4

1
-0

.0
9

-0
.2

7
0
.0

1
0
.0

9
0
.1

3
0
.2

2
-0

.2
7

-0
.2

5
0
.0

8
-0

.5
7

-0
.1

2
0
.2

6
0
.4

4
0
.3

5
-0

.1
5

0
.1

5
-0

.0
9

2
7
3

-0
.1

9
0
.0

3
0
.0

2
-0

.0
6

-0
.2

9
0
.0

2
-0

.1
0
.1

9
-0

.1
6

-0
.0

8
-0

.4
2

-0
.0

9
-0

.3
8

-0
.3

2
0
.0

5
0
.2

5
0
.2

2
-0

.1
9

0
.0

5
-0

.1
5

2
7
4

-0
.1

4
0
.1

4
-0

.2
7

-0
.1

-0
.6

4
-0

.1
1

-0
.3

9
0
.4

6
-0

.0
4

0
.1

6
-0

.5
7

0
.0

4
0
.2

4
0
.0

8
0
.0

2
-0

.1
2

0
-0

.1
0
.1

8
0
.2

9

2
7
5

-0
.3

1
0
.2

5
-0

.5
3

-0
.5

4
-0

.0
6

0
.0

7
-0

.5
2

0
.3

7
-0

.3
2

0
.5

7
0
.0

9
-0

.2
9

0
.2

9
0
.2

4
-0

.3
1

0
.1

1
0
.0

3
0
.1

5
0
.2

9
0
.4

8

2
7
6

-0
.1

0
.1

9
-0

.8
9

-0
.8

9
0
.1

3
-0

.0
4

-0
.3

4
-0

.4
5

-0
.3

4
0
.9

5
0
.3

2
-0

.4
6

0
.4

3
0
.3

6
-0

.9
1

-0
.1

2
0
.4

9
0
.3

4
0
.4

2
0
.7

6

2
7
7

-0
.2

5
-0

.0
2

-0
.7

7
-1

.0
1

0
.1

3
-0

.1
2

-0
.6

2
-0

.7
2

-0
.1

6
1
.1

0
.2

3
-0

.5
9

0
.3

2
0
.4

8
-1

.2
4

-0
.3

1
0
.1

7
0
.4

5
0
.7

7
0
.6

9

2
7
8

-0
.2

6
-0

.0
9

-0
.3

4
-0

.5
5

0
.4

7
-0

.3
3

-0
.7

5
-0

.5
6

-0
.0

4
0
.9

4
0
.2

5
-0

.5
5

-0
.0

5
0
.2

-1
.2

8
-0

.2
8

0
.0

8
0
.2

2
0
.5

3
0
.6

7

2
7
9

0
.0

5
-0

.1
1

-0
.4

-0
.1

1
0
.3

6
-0

.6
7

-0
.3

5
0
.1

4
0
.0

2
0
.4

7
0
.3

2
-0

.5
1

-0
.1

0
.2

-0
.7

9
0
.0

3
-0

.1
5

0
.0

9
0
.3

4
0
.5

8

2
8
0

-0
.4

4
-0

.1
3

0
.0

5
-0

.2
0
.1

3
-0

.5
8

-0
.2

8
0
.0

8
0
.0

9
-0

.0
4

-0
.1

2
-0

.3
3

-0
.2

1
-0

.1
3

-0
.4

8
0
.2

7
0
.4

7
-0

.2
2

-0
.1

1
0
.0

6

2
8
1

-0
.3

1
-0

.1
0
.0

6
0
.1

3
-0

.1
1

-0
.4

7
-0

.0
5

0
.4

5
-0

.0
6

-0
.2

5
-0

.4
4

-0
.4

4
-0

.2
8

-0
.0

4
-0

.2
9

0
.3

4
0
.2

7
-0

.0
8

0
.0

6
0
.1

1

2
8
2

-0
.0

2
0
.0

4
0
.0

3
0
.1

1
-0

.0
2

-0
.1

7
0
.1

0
.3

8
-0

.0
9

-0
.4

8
-0

.2
6

-0
.3

9
-0

.1
4

-0
.0

3
-0

.0
4

0
.4

1
0
.3

6
-0

.0
1

-0
.0

8
-0

.1
8

2
8
3

-0
.0

6
0
.0

2
0
.1

0
.2

4
-0

.1
9

-0
.0

4
-0

.0
4

0
.1

7
0
.1

9
-0

.2
-0

.4
6

-0
.4

3
-0

.5
2

-0
.3

3
0
.3

7
0
.4

3
0
.5

-0
.3

2
0
.3

5
0

2
8
4

-0
.0

5
0
.0

6
0

0
.1

5
0
.3

-0
.0

8
-0

.0
2

-0
.1

4
-0

.0
7

0
.2

6
0
.0

4
-0

.4
2

0
.2

5
0
.0

9
0
.3

1
-0

.1
1

-0
.0

6
0
.1

9
0
.3

3
0
.0

4

2
8
5

-0
.1

9
0
.1

7
-0

.3
8

0
.0

9
0
.4

1
0
.0

4
-0

.2
0
.2

8
-0

.1
9

-0
.0

6
0
.3

4
-0

.2
0
.4

5
0
.0

7
0
.0

4
-0

.2
3

-0
.0

2
0
.1

6
0
.2

2
0
.0

5

2
8
6

-0
.4

3
0
.0

6
0

-0
.3

1
0
.1

9
0
.1

4
-0

.4
1

-0
.2

1
0
.2

1
0
.2

9
-0

.1
0
.3

3
-0

.0
1

0
.2

5
0
.2

8
-0

.2
3

-0
.2

6
0
.1

5
0
.0

9
-0

.1

2
8
7

-0
.1

9
-0

.0
7

0
.1

7
-0

.2
7

0
.4

2
-0

.2
9

-0
.2

2
0
.1

7
0
.1

7
-0

.3
4

-0
.2

2
0

-0
.5

3
-0

.3
1

0
.1

4
0
.2

2
0
.1

-0
.1

5
-0

.0
2

-0
.3

3

2
8
8

-0
.2

5
0
.1

2
0
.6

1
0
.6

0
.1

8
0
.0

9
-0

.1
2

0
.0

9
0
.4

2
-0

.5
4

-0
.5

5
0
.1

4
-0

.4
7

-0
.2

9
0
.8

9
0
.2

4
0
.1

6
-0

.4
4

-0
.1

9
-0

.4
5

2
8
9

-0
.2

7
-0

.4
0
.7

1
0
.5

4
0

-0
.0

8
-0

.1
2

1
.1

4
0
.1

8
-0

.7
4

-0
.5

4
0
.4

5
-0

.7
6

-0
.4

7
1
.4

0
.4

-0
.1

-0
.4

6
-0

.0
5

-0
.8

6

2
9
0

-0
.4

2
-0

.2
3

0
.8

1
0
.9

5
-0

.1
8

-0
.0

1
-0

.0
9

1
.2

4
0
.0

5
-1

.1
7

-0
.6

9
0
.0

9
-0

.8
6

-0
.3

9
1
.7

7
0
.6

3
0
.2

9
-0

.3
7

-0
.4

1
-1

.3
2

2
9
1

-0
.2

4
-0

.0
4

0
.4

5
0
.6

5
-0

.3
8

0
.0

1
0
.0

7
0
.8

5
-0

.2
1

-0
.6

5
-0

.8
0
.1

7
-0

.7
1

-0
.6

1
2
.2

7
0
.3

3
0
.1

3
-0

.4
4

-0
.4

9
-0

.9
9

2
9
2

-0
.1

4
0
.2

1
0
.3

5
0
.6

6
-0

.0
9

0
.1

1
0
.0

6
0
.3

6
-0

.3
1

-0
.5

1
-0

.8
-0

.1
4

-0
.5

6
-0

.2
5

1
.5

9
0
.3

2
0
.2

1
-0

.1
7

-0
.3

5
-0

.7

2
9
3

0
.0

1
-0

.1
3

-0
.1

1
0
.7

8
-0

.3
1

-0
.1

3
0
.0

9
0
.1

4
-0

.5
6

-0
.0

9
-0

.8
1

-0
.4

3
-0

.4
9

-0
.2

1
.1

4
0
.1

3
-0

.0
2

-0
.2

0
.1

-0
.1

1

2
9
4

-0
.3

-0
.0

9
-0

.1
2

0
.4

4
0
.0

3
0
.2

4
0
.1

8
-0

.1
2

-0
.2

-0
.0

7
-0

.1
8

0
.0

6
-0

.4
4

0
.1

1
0
.7

7
-0

.0
9

-0
.2

7
-0

.0
9

-0
.2

5
-0

.0
6

2
9
5

-0
.2

3
-0

.2
0
.0

6
0
.3

4
0
.1

9
0
.4

7
0
.2

8
0
.1

4
-0

.2
2

0
.4

2
-0

.3
6

-0
.1

5
-0

.1
9

-0
.0

2
0
.7

8
-0

.2
9

-0
.3

-0
.1

8
0
.0

7
0
.2

9

C
o
n
ti
n
u
ed

o
n

n
e
x
t
p
a
g
e



Amino Acid Scales 196

T
a
b
le

B
.1

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
v
io
u
s
p
a
g
e

I
D

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

2
9
6

0
.0

8
-0

.0
1

-0
.0

6
0
.0

4
0
.3

7
0
.4

8
0
.3

6
-0

.0
2

-0
.4

5
0
.0

9
0
.2

4
-0

.2
7

0
.1

6
0
.3

4
0
.1

6
-0

.3
5

-0
.0

4
-0

.0
6

-0
.2

0
.1

8

2
9
7

0
.9

3
4

0
.9

6
2

0
.9

8
6

0
.9

9
4

0
.9

1
.0

4
7

0
.9

8
6

1
.0

1
5

0
.8

8
2

0
.7

6
6

0
.8

2
5

1
.0

4
0
.8

0
4

0
.7

7
3

1
.0

4
7

1
.0

5
6

1
.0

0
8

0
.8

4
8

0
.9

3
1

0
.8

2
5

2
9
8

0
.9

4
1

1
.1

1
2

1
.0

3
8

1
.0

7
1

0
.8

6
6

1
.1

5
1
.1

1
.0

5
5

0
.9

1
1

0
.7

4
2

0
.7

9
8

1
.2

3
2

0
.7

8
1

0
.7

2
3

1
.0

9
3

1
.0

8
2

1
.0

4
3

0
.8

6
7

1
.0

5
0
.8

1
7

2
9
9

1
.1

6
1
.7

2
1
.9

7
2
.6

6
0
.5

3
.8

7
2
.4

1
.6

3
0
.8

6
0
.5

7
0
.5

1
3
.9

0
.4

0
.4

3
2
.0

4
1
.6

1
1
.4

8
0
.7

5
1
.7

2
0
.5

9

3
0
0

0
.8

5
2
.0

2
0
.8

8
1
.5

0
.9

1
.7

1
1
.7

9
1
.5

4
1
.5

9
0
.6

7
1
.0

3
0
.8

8
1
.1

7
0
.8

5
1
.4

7
1
.5

1
.9

6
0
.8

3
1
.3

4
0
.8

9

3
0
1

1
.5

8
1
.1

4
0
.7

7
0
.9

8
1
.0

4
1
.2

4
1
.4

9
0
.6

6
0
.9

9
1
.0

9
1
.2

1
1
.2

7
1
.4

1
1

1
.4

6
1
.0

5
0
.8

7
1
.2

3
0
.6

8
0
.8

8

3
0
2

0
.8

2
2
.6

2
.0

7
2
.6

4
0

0
2
.6

2
1
.6

3
0

2
.3

2
0

2
.8

6
0

0
0

1
.2

3
2
.4

8
0

1
.9

1
.6

2

3
0
3

0
.7

8
1
.7

5
1
.3

2
1
.2

5
3
.1

4
0
.9

3
0
.9

4
1
.1

3
1
.0

3
1
.2

6
0
.9

1
0
.8

5
0
.4

1
1
.0

7
1
.7

3
1
.3

1
1
.5

7
0
.9

8
1
.3

1
1
.1

1

3
0
4

0
.8

8
0
.9

9
1
.0

2
1
.1

6
1
.1

4
0
.9

3
1
.0

1
0
.7

1
.8

7
1
.6

1
1
.0

9
0
.8

3
1
.7

1
1
.5

2
0
.8

7
1
.1

4
0
.9

6
1
.9

6
1
.6

8
1
.5

6

3
0
5

0
.3

0
.9

2
.7

3
1
.2

6
0
.7

2
0
.9

7
1
.3

3
3
.0

9
1
.3

3
0
.4

5
0
.9

6
0
.7

1
1
.8

9
1
.2

0
.8

3
1
.1

6
0
.9

7
1
.5

8
0
.8

6
0
.6

4

3
0
6

0
.4

1
.2

1
.2

4
1
.5

9
2
.9

8
0
.5

1
.2

6
1
.8

9
2
.7

1
1
.3

1
0
.5

7
0
.8

7
0

1
.2

7
0
.3

8
0
.9

2
1
.3

8
1
.5

3
1
.7

9
0
.9

5

3
0
7

1
.4

8
1
.0

2
0
.9

9
1
.1

9
0
.8

6
1
.4

2
1
.4

3
0
.4

6
1
.2

7
1
.1

2
1
.3

3
1
.3

6
1
.4

1
1
.3

0
.2

5
0
.8

9
0
.8

1
1
.2

7
0
.9

1
0
.9

3

3
0
8

0
0

4
.1

4
2
.1

5
0

0
0

6
.4

9
0

0
0

0
0

2
.1

1
1
.9

9
0

1
.2

4
0

1
.9

0

3
0
9

1
.0

2
1

1
.3

1
1
.7

6
1
.0

5
1
.0

5
0
.8

3
2
.3

9
0
.4

0
.8

3
1
.0

6
0
.9

4
1
.3

3
0
.4

1
2
.7

3
1
.1

8
0
.7

7
1
.2

2
1
.0

9
0
.8

8

3
1
0

0
.9

3
1
.5

2
0
.9

2
0
.6

1
.0

8
0
.9

4
0
.7

3
0
.7

8
1
.0

8
1
.7

4
1
.0

3
1

1
.3

1
1
.5

1
1
.3

7
0
.9

7
1
.3

8
1
.1

2
1
.6

5
1
.7

3
1
1

0
.9

9
1
.1

9
1
.1

5
1
.1

8
2
.3

2
1
.5

2
1
.3

6
1
.4

1
.0

6
0
.8

1
1
.2

6
0
.9

1
1

1
.2

5
0

1
.5

1
.1

8
1
.3

3
1
.0

9
1
.0

1

3
1
2

1
7
.0

5
2
1
.2

5
3
4
.8

1
1
9
.2

7
2
8
.8

4
1
5
.4

2
2
0
.1

2
3
8
.1

4
2
3
.0

7
1
6
.6

6
1
0
.8

9
1
6
.4

6
2
0
.6

1
1
6
.2

6
2
3
.9

4
1
9
.9

5
1
8
.9

2
2
3
.3

6
2
6
.4

9
1
7
.0

6

3
1
3

1
4
.5

3
1
7
.8

2
1
3
.5

9
1
9
.7

8
3
0
.5

7
2
2
.1

8
1
8
.1

9
3
7
.1

6
2
2
.6

3
2
0
.2

8
1
4
.3

1
4
.0

7
2
0
.6

1
1
9
.6

1
5
2
.6

3
1
8
.5

6
2
1
.0

9
1
9
.7

8
2
6
.3

6
2
1
.8

7

3
1
4

1
.8

1
-1

4
.9

2
-6

.6
4

-8
.7

2
1
.2

8
-5

.5
4

-6
.8

1
0
.9

4
-4

.6
6

4
.9

2
4
.9

2
-5

.5
5

2
.3

5
2
.9

8
0

-3
.4

-2
.5

7
2
.3

3
-0

.1
4

4
.0

4

3
1
5

0
.5

2
-1

.3
2

-0
.0

1
0

0
-0

.0
7

-0
.7

9
0

0
.9

5
2
.0

4
1
.7

6
0
.0

8
1
.3

2
2
.0

9
0

0
.0

4
0
.2

7
2
.5

1
1
.6

3
1
.1

8

3
1
6

0
.1

3
-5

-3
.0

4
-2

.2
3

-2
.5

2
-3

.8
4

-3
.4

3
1
.4

5
-5

.6
1

-2
.7

7
-2

.6
4

-3
.9

7
-3

.8
3

-3
.7

4
0

-1
.6

6
-2

.3
1

-8
.2

1
-5

.9
7

-2
.0

5

3
1
7

1
.2

9
-1

3
.6

-6
.6

3
0

0
-5

.4
7

-6
.0

2
0
.9

4
-5

.6
1

2
.8

8
3
.1

6
-5

.6
3

1
.0

3
0
.8

9
0

-3
.4

4
-2

.8
4

-0
.1

8
-1

.7
7

2
.8

6

3
1
8

1
.4

2
-1

8
.6

-9
.6

7
0

0
-9

.3
1

-9
.4

5
2
.3

9
-1

1
.2

2
0
.1

1
0
.5

2
-9

.6
-2

.8
-2

.8
5

0
-5

.1
-5

.1
5

-8
.3

9
-7

.7
4

0
.8

1

3
1
9

9
3
.7

2
5
0
.4

1
4
6
.3

1
4
2
.6

1
3
5
.2

1
7
7
.7

1
8
2
.9

5
2
.6

1
8
8
.1

1
8
2
.2

1
7
3
.7

2
1
5
.2

1
9
7
.6

2
2
8
.6

0
1
0
9
.5

1
4
2
.1

2
7
1
.6

2
3
9
.9

1
5
7
.2

3
2
0

-0
.2

9
-2

.7
1

-1
.1

8
-1

.0
2

0
-1

.5
3

-0
.9

-0
.3

4
-0

.9
4

0
.2

4
-0

.1
2

-2
.0

5
-0

.2
4

0
0

-0
.7

5
-0

.7
1

-0
.5

9
-1

.0
2

0
.0

9

3
2
1

-0
.0

6
-0

.8
4

-0
.4

8
-0

.8
1
.3

6
-0

.7
3

-0
.7

7
-0

.4
1

0
.4

9
1
.3

1
1
.2

1
-1

.1
8

1
.2

7
1
.2

7
0

-0
.5

-0
.2

7
0
.8

8
0
.3

3
1
.0

9

3
2
2

0
.7

0
.4

1
.2

1
.4

0
.6

1
1

1
.6

1
.2

0
.9

0
.9

1
0
.3

1
.2

0
.7

1
.6

0
.3

1
.1

1
.9

0
.7

3
2
3

0
.7

0
.4

1
.2

1
.4

0
.6

1
1

1
.6

1
.2

0
.9

0
.9

1
0
.3

1
.2

0
.7

1
.6

0
.3

1
.1

1
.9

0
.7

3
2
4

0
.5

0
.4

3
.5

2
.1

0
.6

0
.4

0
.4

1
.8

1
.1

0
.2

0
.2

0
.7

0
.8

0
.2

0
.8

2
.3

1
.6

0
.3

0
.8

0
.1

3
2
5

1
.2

0
.7

0
.7

0
.8

0
.8

0
.7

2
.2

0
.3

0
.7

0
.9

0
.9

0
.6

0
.3

0
.5

2
.6

0
.7

0
.8

2
.1

1
.8

1
.1

3
2
6

1
.6

0
.9

0
.7

2
.6

1
.2

0
.8

2
0
.9

0
.7

0
.7

0
.3

1
1

0
.9

0
.5

0
.8

0
.7

1
.7

0
.4

0
.6

3
2
7

1
0
.4

0
.7

2
.2

0
.6

1
.5

3
.3

0
.6

0
.7

0
.4

0
.6

0
.8

1
0
.6

0
.4

0
.4

1
1
.4

1
.2

1
.1

3
2
8

1
.1

1
.5

0
0
.3

1
.1

1
.3

0
.5

0
.4

1
.5

1
.1

2
.6

0
.8

1
.7

1
.9

0
.1

0
.4

0
.5

3
.1

0
.6

1
.5

3
2
9

1
.4

1
.2

1
.2

0
.6

1
.6

1
.4

0
.9

0
.6

0
.9

0
.9

1
.1

1
.9

1
.7

1
0
.3

1
.1

0
.6

1
.4

0
.2

0
.8

3
3
0

1
.8

1
.3

0
.9

1
0
.7

1
.3

0
.8

0
.5

1
1
.2

1
.2

1
.1

1
.5

1
.3

0
.3

0
.6

1
1
.5

0
.8

1
.2

3
3
1

1
.8

1
0
.6

0
.7

0
1

1
.1

0
.5

2
.4

1
.3

1
.2

1
.4

2
.7

1
.9

0
.3

0
.5

0
.5

1
.1

1
.3

0
.4

3
3
2

1
.3

0
.8

0
.6

0
.5

0
.7

0
.2

0
.7

0
.5

1
.9

1
.6

1
.4

1
2
.8

2
.9

0
0
.5

0
.6

2
.1

0
.8

1
.4

C
o
n
ti
n
u
ed

o
n

n
e
x
t
p
a
g
e



Amino Acid Scales 197

T
a
b
le

B
.1

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
v
io
u
s
p
a
g
e

I
D

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

3
3
3

0
.7

0
.8

0
.8

0
.6

0
.2

1
.3

1
.6

0
.1

1
.1

1
.4

1
.9

2
.2

1
1
.8

0
0
.6

0
.7

0
.4

1
.1

1
.3

3
3
4

1
.4

2
.1

0
.9

0
.7

1
.2

1
.6

1
.7

0
.2

1
.8

0
.4

0
.8

1
.9

1
.3

0
.3

0
.2

1
.6

0
.9

0
.4

0
.3

0
.7

3
3
5

1
.1

1
1
.2

0
.4

1
.6

2
.1

0
.8

0
.2

3
.4

0
.7

0
.7

2
1

0
.7

0
1
.7

1
0

1
.2

0
.7

3
3
6

0
.8

0
.9

1
.6

0
.7

0
.4

0
.9

0
.3

3
.9

1
.3

0
.7

0
.7

1
.3

0
.8

0
.5

0
.7

0
.8

0
.3

0
0
.8

0
.2

3
3
7

1
1
.4

0
.9

1
.4

0
.8

1
.4

0
.8

1
.2

1
.2

1
.1

0
.9

1
.2

0
.8

0
.1

1
.9

0
.7

0
.8

0
.4

0
.9

0
.6

3
3
8

0
.7

1
.1

1
.5

1
.4

0
.4

1
.1

0
.7

0
.6

1
0
.7

0
.5

1
.3

0
1
.2

1
.5

0
.9

2
.1

2
.7

0
.5

1

3
3
9

6
.5

-0
.9

-5
.1

0
.5

-1
.3

1
7
.8

-8
.6

1
.2

0
.6

3
.2

2
.3

5
.3

1
.6

-7
.7

-3
.9

-2
.6

1
.2

-4
.5

1
.4

3
4
0

2
.3

-5
.2

0
.3

7
.4

0
.8

-0
.7

1
0
.3

-5
.2

-2
.8

-4
-2

.1
-4

.1
-3

.5
-1

.1
8
.1

-3
.5

2
.3

-0
.9

-3
.7

-4
.4

3
4
1

6
.7

0
.3

-6
.1

-3
.1

-4
.9

0
.6

2
.2

-6
.8

-1
3
.2

5
.5

0
.5

7
.2

2
.8

-2
2
.8

-3
-4

4
-4

.6
2
.5

3
4
2

2
.3

1
.4

-3
.3

-4
.4

6
.1

2
.7

2
.5

-8
.3

5
.9

-0
.5

0
.1

7
.3

3
.5

1
.6

-2
4
.4

-1
.9

-3
.7

-0
.9

-0
.6

2
.3

3
4
3

-2
.3

0
.4

-4
.1

-4
.4

4
.4

1
.2

-5
-4

.2
-2

.5
6
.7

2
.3

-3
.3

2
.3

2
.6

-1
.8

-1
.7

1
.3

-1
4

6
.8

3
4
4

-2
.7

0
.4

-4
.2

-4
.4

3
.7

0
.8

-8
.1

-3
.9

-3
7
.7

3
.7

-2
.9

3
.7

3
-6

.6
-2

.4
1
.7

0
.3

3
.3

7
.1

3
4
5

0
1
.1

-2
-2

.6
5
.4

2
.4

3
.1

-3
.4

0
.8

-0
.1

-3
.7

-3
.1

-2
.1

0
.7

7
.4

1
.3

0
-3

.4
4
.8

2
.7

3
4
6

-5
2
.1

4
.2

3
.1

4
.4

0
.4

-4
.7

5
.7

-0
.3

-4
.6

-5
.6

1
-4

.8
-1

.8
2
.6

2
.6

0
.3

3
.4

2
.9

-6

3
4
7

-3
.3

0
5
.4

3
.9

-0
.3

-0
.4

-1
.8

-1
.2

3
-0

.5
-2

.3
-1

.2
-4

.3
0
.8

6
.5

1
.8

-0
.7

-0
.8

3
.1

-3
.5

3
4
8

-4
.7

2
3
.9

1
.9

6
.2

-2
-4

.2
5
.7

-2
.6

-7
-6

.2
2
.8

-4
.8

-3
.7

3
.6

2
.1

0
.6

3
.3

3
.8

-6
.2

3
4
9

-3
.7

1
-0

.6
-0

.6
4

3
.4

-4
.3

5
.9

-0
.8

-0
.5

-2
.8

1
.3

-1
.6

1
.6

-6
1
.5

1
.2

6
.5

1
.3

-4
.6

3
5
0

-2
.5

-1
.2

4
.6

0
-4

.7
-0

.5
-4

.4
4
.9

1
.6

-3
.3

-2
-0

.8
-4

.1
-4

.1
5
.8

2
.5

1
.7

1
.2

-0
.6

-3
.5

3
5
1

-5
.1

2
.6

4
.7

3
.1

3
.8

0
.2

-5
.2

5
.6

-0
.9

-4
.5

-5
.4

1
-5

.3
-2

.4
3
.5

3
.2

0
2
.9

3
.2

-6
.3

3
5
2

-1
0
.3

-0
.7

-1
.2

2
.1

-0
.1

-0
.7

0
.3

1
.1

4
2

-0
.9

1
.8

2
.8

0
.4

-1
.2

-0
.5

3
2
.1

1
.4

3
5
3

8
6
.6

1
6
2
.2

1
0
3
.3

9
7
.8

1
3
2
.3

1
1
9
.2

1
1
3
.9

6
2
.9

1
5
5
.8

1
5
8

1
6
4
.1

1
1
5
.5

1
7
2
.9

1
9
4
.1

9
2
.9

8
5
.6

1
0
6
.5

2
2
4
.6

1
7
7
.7

1
4
1

3
5
4

0
.7

4
0
.6

4
0
.6

3
0
.6

2
0
.9

1
0
.6

2
0
.6

2
0
.7

2
0
.7

8
0
.8

8
0
.8

5
0
.5

2
0
.8

5
0
.8

8
0
.6

4
0
.6

6
0
.7

0
.8

5
0
.7

6
0
.8

6

3
5
5

-0
.6

7
1
2
.1

7
.2

3
8
.7

2
-0

.3
4

6
.3

9
7
.3

5
0

3
.8

2
-3

.0
2

-3
.0

2
6
.1

3
-1

.3
-3

.2
4

-1
.7

5
4
.3

5
3
.8

6
-2

.8
6

0
.9

8
-2

.1
8

3
5
6

-0
.6

7
3
.8

9
2
.2

7
1
.5

7
-2

2
.1

2
1
.7

8
0

1
.0

9
-3

.0
2

-3
.0

2
2
.4

6
-1

.6
7

-3
.2

4
-1

.7
5

0
.1

-0
.4

2
-2

.8
6

0
.9

8
-2

.1
8

3
5
7

0
.4

0
.3

0
.9

0
.8

0
.5

0
.7

1
.3

0
1

0
.4

0
.6

0
.4

0
.3

0
.7

0
.9

0
.4

0
.4

0
.6

1
.2

0
.4

3
5
8

0
.7

3
0
.7

3
-0

.0
1

0
.5

4
0
.7

-0
.1

0
.5

5
0

1
.1

2
.9

7
2
.4

9
1
.5

1
.3

2
.6

5
2
.6

0
.0

4
0
.4

4
3

2
.9

7
1
.6

9

3
5
9

0
.2

3
9

0
.2

1
1

0
.2

4
9

0
.1

7
1

0
.2

2
0
.2

6
0
.1

8
7

0
.1

6
0
.2

0
5

0
.2

7
3

0
.2

8
1

0
.2

2
8

0
.2

5
3

0
.2

3
4

0
.1

6
5

0
.2

3
6

0
.2

1
3

0
.1

8
3

0
.1

9
3

0
.2

5
5

3
6
0

0
.3

3
-0

.1
7
6

-0
.2

3
3

-0
.3

7
1

0
.0

7
4

-0
.2

5
4

-0
.4

0
9

0
.3

7
-0

.0
7
8

0
.1

4
9

0
.1

2
9

-0
.0

7
5

-0
.0

9
2

-0
.0

1
1

0
.3

7
0
.0

2
2

0
.1

3
6

-0
.0

1
1

-0
.1

3
8

0
.2

4
5

3
6
1

-0
.1

1
0
.0

7
9

-0
.1

3
6

-0
.2

8
5

-0
.1

8
4

-0
.0

6
7

-0
.2

4
6

-0
.0

7
3

0
.3

2
0
.0

0
1

-0
.0

0
8

0
.0

4
9

-0
.0

4
1

0
.4

3
8

-0
.0

1
6

-0
.1

5
3

-0
.2

0
8

0
.4

9
3

0
.3

8
1

-0
.1

5
5

3
6
2

-0
.0

6
2

-0
.1

6
7

0
.1

6
6

-0
.0

7
9

0
.3

8
-0

.0
2
5

-0
.1

8
4

-0
.0

1
7

0
.0

5
6

-0
.3

0
9

-0
.2

6
4

-0
.3

7
1

0
.0

7
7

0
.0

7
4

-0
.0

3
6

0
.4

7
0
.3

4
8

0
.0

5
0
.2

2
-0

.2
1
2

3
6
3

1
.0

7
1

1
.0

3
3

0
.7

8
4

0
.6

8
0
.9

2
2

0
.9

7
7

0
.9

7
0
.5

9
1

0
.8

5
1
.1

4
1
.1

4
0
.9

3
9

1
.2

1
.0

8
6

0
.6

5
9

0
.7

6
0
.8

1
7

1
.1

0
7

1
.0

2
0
.9

5

3
6
4

8
0
.1

0
.1

7
0

2
6

3
3

6
0
.1

0
.1

5
5

3
3

1
5
4

1
8

4
2

0
.1

0
.1

7
7

6
6

0
.1

3
6
5

-0
.4

-0
.5

9
-0

.9
2

-1
.3

1
0
.1

7
-0

.9
1

-1
.2

2
-0

.6
7

-0
.6

4
1
.2

5
1
.2

2
-0

.6
7

1
.0

2
1
.9

2
-0

.4
9

-0
.5

5
-0

.2
8

0
.5

1
.6

7
0
.9

1

3
6
6

1
.4

2
1
.0

6
0
.7

1
1
.0

1
0
.7

3
1
.0

2
1
.6

3
0
.5

1
.2

1
.1

2
1
.2

9
1
.2

4
1
.2

1
1
.1

6
0
.6

5
0
.7

1
0
.7

8
1
.0

5
0
.6

7
0
.9

9

3
6
7

0
.9

4
6

1
.1

2
8

0
.4

3
2

1
.3

1
1

0
.4

8
1

1
.6

1
5

0
.6

9
8

0
.3

6
2
.1

6
8

1
.2

8
3

1
.1

9
2

1
.2

0
3

0
0
.9

6
3

2
.0

9
3

0
.5

2
3

1
.9

6
1

1
.9

2
5

0
.8

0
2

0
.4

0
9

3
6
8

0
.7

9
1
.0

8
7

0
.8

3
2

0
.5

3
1
.2

6
8

1
.0

3
8

0
.6

4
3

0
.7

2
5

0
.8

6
4

1
.3

6
1

1
.1

1
1

0
.7

3
5

1
.0

9
2

1
.0

5
2

1
.2

4
9

1
.0

9
3

1
.2

1
4

1
.1

1
4

1
.3

4
1
.4

2
8

3
6
9

1
.1

9
4

0
.7

9
5

0
.6

5
9

1
.0

5
6

0
.6

7
8

1
.2

9
0
.9

2
8

1
.0

1
5

0
.6

1
1

0
.6

0
3

0
.5

9
5

1
.0

6
0
.8

3
1

0
.3

7
7

3
.1

5
9

1
.4

4
4

1
.1

7
2

0
.4

5
2

0
.8

1
6

0
.6

4

C
o
n
ti
n
u
ed

o
n

n
e
x
t
p
a
g
e



Amino Acid Scales 198

T
a
b
le

B
.1

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
v
io
u
s
p
a
g
e

I
D

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

3
7
0

0
.4

9
7

0
.6

7
7

2
.0

7
2

1
.4

9
8

1
.3

4
8

0
.7

1
1

0
.6

5
1

1
.8

4
8

1
.4

7
4

0
.4

7
1

0
.6

5
6

0
.9

3
2

0
.4

2
5

1
.3

4
8

0
.1

7
9

1
.1

5
1

0
.7

4
9

1
.2

8
3

1
.2

8
3

0
.6

5
4

3
7
1

0
.9

3
7

1
.7

2
5

1
.0

8
1
.6

4
1
.0

0
4

1
.0

7
8

0
.6

7
9

0
.9

0
1

1
.0

8
5

0
.1

7
8

0
.8

0
8

1
.2

5
4

0
.8

8
6

0
.8

0
3

0
.7

4
8

1
.1

4
5

1
.4

8
7

0
.8

0
3

1
.2

2
7

0
.6

2
5

3
7
2

0
.2

8
9

1
.3

8
3
.1

6
9

0
.9

1
7

1
.7

6
7

2
.3

7
2

0
.2

8
5

4
.2

5
9

1
.0

6
1

0
.2

6
2

0
1
.2

8
8

0
0
.3

9
3

0
0
.1

6
0
.2

1
8

0
0
.6

5
4

0
.1

6
7

3
7
3

0
.3

2
8

2
.0

8
8

1
.4

9
8

3
.3

7
9

0
0

0
0
.5

1
.2

0
4

2
.0

7
8

0
.4

1
4

0
.8

3
5

0
.9

8
2

1
.3

3
6

0
.4

1
5

1
.0

8
9

1
.7

3
2

1
.7

8
1

0
0
.9

4
6

3
7
4

0
.9

4
5

0
.3

6
4

1
.2

0
2

1
.3

1
5

0
.9

3
2

0
.7

0
4

1
.0

1
4

2
.3

5
5

0
.5

2
5

0
.6

7
3

0
.7

5
8

0
.9

4
7

1
.0

2
8

0
.6

2
2

0
.5

7
9

1
.1

4
0
.8

6
3

0
.7

7
7

0
.9

0
7

0
.5

6
1

3
7
5

0
.8

4
2

0
.9

3
6

1
.3

5
2

1
.3

6
6

1
.0

3
2

0
.9

9
8

0
.7

5
8

1
.3

4
9

1
.0

7
9

0
.4

5
9

0
.6

6
5

1
.0

4
5

0
.6

6
8

0
.8

8
1

1
.3

8
5

1
.2

5
7

1
.0

5
5

0
.8

8
1

1
.1

0
1

0
.6

4
3

3
7
6

0
.1

3
5

0
.2

9
6

0
.1

9
6

0
.2

8
9

0
.1

5
9

0
.2

3
6

0
.1

8
4

0
.0

5
1

0
.2

2
3

0
.1

7
3

0
.2

1
5

0
.1

7
0
.2

3
9

0
.0

8
7

0
.1

5
1

0
.0

1
0
.1

0
.1

6
6

0
.0

6
6

0
.2

8
5

3
7
7

0
.5

0
7

0
.4

5
9

0
.2

8
7

0
.2

2
3

0
.5

9
2

0
.3

8
3

0
.4

4
5

0
.3

9
0
.3

1
0
.1

1
1

0
.6

1
9

0
.5

5
9

0
.4

3
1

0
.0

7
7

0
.7

3
9

0
.6

8
9

0
.7

8
5

0
.1

6
0
.0

6
0
.3

5
6

3
7
8

0
.1

5
9

0
.1

9
4

0
.3

8
5

0
.2

8
3

0
.1

8
7

0
.2

3
6

0
.2

0
6

0
.0

4
9

0
.2

3
3

0
.5

8
1

0
.0

8
3

0
.1

5
9

0
.1

9
8

0
.6

8
2

0
.3

6
6

0
.1

5
0
.0

7
4

0
.4

6
3

0
.7

3
7

0
.3

0
1

3
7
9

0
.0

3
7
3

0
.0

9
5
9

0
.0

0
3
6

0
.1

2
6
3

0
.0

8
2
9

0
.0

7
6
1

0
.0

0
5
8

0
.0

0
5
0

0
.0

2
4
2

0
0

0
.0

3
7
1

0
.0

8
2
3

0
.0

9
4
6

0
.0

1
9
8

0
.0

8
2
9

0
.0

9
4
1

0
.0

5
4
8

0
.0

5
1
6

0
.0

0
5
7

3
8
0

0
0

0
0

0
0

0
0

0
1

1
0

0
1

0
0

0
1

1
1

3
8
1

-1
2
.0

4
3
9
.2

3
4
.2

5
2
3
.2

2
3
.9

5
2
.1

6
1
6
.8

1
-7

.8
5

6
.2

8
-1

8
.3

2
-1

7
.7

9
9
.7

1
-8

.8
6

-2
1
.9

8
5
.8

2
-1

.5
4

-4
.1

5
-1

6
.1

9
-1

.5
1

-1
6
.2

2

3
8
2

1
0
.0

4
6
.1

8
5
.6

3
5
.7

6
8
.8

9
5
.4

1
5
.3

7
7
.9

9
7
.4

9
8
.7

2
8
.7

9
4
.4

9
.1

5
7
.9

8
7
.7

9
7
.0

8
7

8
.0

7
6
.9

8
.8

8

3
8
3

0
.8

9
0
.8

8
0
.8

9
0
.8

7
0
.8

5
0
.8

2
0
.8

4
0
.9

2
0
.8

3
0
.7

6
0
.7

3
0
.9

7
0
.7

4
0
.5

2
0
.8

2
0
.9

6
0
.9

2
0
.2

0
.4

9
0
.8

5

3
8
4

0
.5

2
0
.4

9
0
.4

2
0
.3

7
0
.8

3
0
.3

5
0
.3

8
0
.4

1
0
.7

0
.7

9
0
.7

7
0
.3

1
0
.7

6
0
.8

7
0
.3

5
0
.4

9
0
.3

8
0
.8

6
0
.6

4
0
.7

2

3
8
5

0
.1

6
-0

.2
1
.0

3
-0

.2
4

-0
.1

2
-0

.5
5

-0
.4

5
-0

.1
6

-0
.1

8
-0

.1
9

-0
.4

4
-0

.1
2

-0
.7

9
-0

.2
5

-0
.5

9
-0

.0
1

0
.0

5
-0

.3
3

-0
.4

2
-0

.4
6

3
8
6

0
.1

5
-0

.3
7

0
.6

9
-0

.2
2

-0
.1

9
-0

.0
6

0
.1

4
0
.3

6
-0

.2
5

0
.0

2
0
.0

6
-0

.1
6

0
.1

1
1
.1

8
0
.1

1
0
.1

3
0
.2

8
-0

.1
2

0
.1

9
-0

.0
8

3
8
7

-0
.0

7
-0

.4
-0

.5
7

-0
.8

0
.1

7
-0

.2
6

-0
.6

3
0
.2

7
-0

.4
9

0
.0

6
-0

.1
7

-0
.4

5
0
.0

3
0
.4

-0
.4

7
-0

.1
1

0
.0

9
-0

.6
1

-0
.6

1
-0

.1
1

3
8
8

7
9
.1

1
0

1
3

5
.5

8
.6

1
2
.5

7
.9

8
.4

4
.9

4
.9

1
0
.1

5
.3

5
6
.6

7
.5

6
.6

5
.3

5
.7

5
.6

3
8
9

1
.9

4
-1

9
.9

2
-9

.6
8

-1
0
.9

5
-1

.2
4

-9
.3

8
-1

0
.2

2
.3

9
-1

0
.2

7
2
.1

5
2
.2

8
-9

.5
2

-1
.4

8
-0

.7
6

-3
.6

8
-5

.0
6

-4
.8

8
-5

.8
8

-6
.1

1
1
.9

9

3
9
0

0
.0

7
2
.8

8
3
.2

2
3
.6

4
0
.7

1
2
.1

8
3
.0

8
2
.2

3
2
.4

1
-4

.4
4

-4
.1

9
2
.8

4
-2

.4
9

-4
.9

2
-1

.2
2

1
.9

6
0
.9

2
-4

.7
5

-1
.3

9
-2

.6
9

3
9
1

-1
.7

3
2
.5

2
1
.4

5
1
.1

3
-0

.9
7

0
.5

3
0
.3

9
-5

.3
6

1
.7

4
-1

.6
8

-1
.0

3
1
.4

1
-0

.2
7

1
.3

0
.8

8
-1

.6
3

-2
.0

9
3
.6

5
2
.3

2
-2

.5
3

3
9
2

0
.0

9
-3

.4
4

0
.8

4
2
.3

6
4
.1

3
-1

.1
4

-0
.0

7
0
.3

1
.1

1
-1

.0
3

-0
.9

8
-3

.1
4

-0
.4

1
0
.4

5
2
.2

3
0
.5

7
-1

.4
0
.8

5
0
.0

1
-1

.2
9

3
9
3

8
.5

0
8
.2

8
.5

1
1

6
.3

8
.8

7
.1

1
0
.1

1
6
.8

1
5

7
.9

1
3
.3

1
1
.2

8
.2

7
.4

8
.8

9
.9

8
.8

1
2

3
9
4

6
.8

0
6
.2

7
8
.3

8
.5

4
.9

6
.4

9
.2

1
0

1
2
.2

7
.5

8
.4

8
.3

6
.9

8
7

5
.7

6
.8

9
.4

3
9
5

1
8
.0

8
0

1
7
.4

7
1
7
.3

6
1
8
.1

7
1
7
.9

3
1
8
.1

6
1
8
.2

4
1
8
.4

9
1
8
.6

2
1
8
.6

1
7
.9

6
1
8
.1

1
1
7
.3

1
8
.1

6
1
7
.5

7
1
7
.5

4
1
7
.1

9
1
7
.9

9
1
8
.3

3
9
6

1
8
.5

6
0

1
8
.2

4
1
7
.9

4
1
7
.8

4
1
8
.5

1
1
7
.9

7
1
8
.5

7
1
8
.6

4
1
9
.2

1
1
9
.0

1
1
8
.3

6
1
8
.4

9
1
7
.9

5
1
8
.7

7
1
8
.0

6
1
7
.7

1
1
6
.8

7
1
8
.2

3
1
8
.9

8

3
9
7

-0
.1

5
2

-0
.0

8
9

-0
.2

0
3

-0
.3

5
5

0
-0

.1
8
1

-0
.4

1
1

-0
.1

9
0

-0
.0

8
6

-0
.1

0
2

-0
.0

6
2

-0
.1

0
7

0
.0

0
1

-0
.1

8
1

-0
.2

0
3

-0
.1

7
0
.2

7
5

0
-0

.1
2
5

3
9
8

0
.8

3
0
.8

3
0
.0

9
0
.6

4
1
.4

8
0

0
.6

5
0
.1

1
.1

3
.0

7
2
.5

2
1
.6

1
.4

2
.7

5
2
.7

0
.1

4
0
.5

4
0
.3

1
2
.9

7
1
.7

9

3
9
9

1
1
.5

1
4
.2

8
1
2
.8

2
1
1
.6

8
1
3
.4

6
1
4
.4

5
1
3
.5

7
3
.4

1
3
.6

9
2
1
.4

2
1
.4

1
5
.7

1
1
6
.2

5
1
9
.8

1
7
.4

3
9
.4

7
1
5
.7

7
2
1
.6

7
1
8
.0

3
2
1
.5

7

4
0
0

0
5
2

3
.3

8
4
9
.7

1
.4

8
3
.5

3
4
9
.9

0
5
1
.6

0
.1

3
0
.1

3
4
9
.5

1
.4

3
0
.3

5
1
.5

8
1
.6

7
1
.6

6
2
.1

1
.6

1
0
.1

3

4
0
1

6
1
0
.7

6
5
.4

1
2
.7

7
5
.0

5
5
.6

5
3
.2

2
5
.9

7
7
.5

9
6
.0

2
5
.9

8
9
.7

4
5
.7

4
5
.4

8
6
.3

5
.6

8
5
.6

6
5
.8

9
5
.6

6
5
.9

6

4
0
2

9
.9

4
.6

5
.4

2
.8

2
.8

9
3
.2

5
.6

8
.2

1
7
.1

1
7
.6

3
.5

1
4
.9

1
8
.8

1
4
.8

6
.9

9
.5

1
7
.1

1
5

1
4
.3

4
0
3

0
.9

4
1
.1

5
0
.7

9
1
.1

9
0
.6

0
.9

4
1
.4

1
1
.1

8
1
.1

5
1
.0

7
0
.9

5
1
.0

3
0
.8

8
1
.0

6
1
.1

8
0
.6

9
0
.8

7
0
.9

1
1
.0

4
0
.9

4
0
4

0
.9

8
1
.1

4
1
.0

5
1
.0

5
0
.4

1
0
.9

1
.0

4
1
.2

5
1
.0

1
0
.8

8
0
.8

1
.0

6
1
.1

2
1
.1

2
1
.3

1
1
.0

2
0
.8

0
.9

1
.1

2
0
.8

7

4
0
5

1
.0

5
0
.8

1
0
.9

1
1
.3

9
0
.6

0
.8

7
1
.1

1
1
.2

6
1
.4

3
0
.9

5
0
.9

6
0
.9

7
0
.9

9
0
.9

5
1
.0

5
0
.9

6
1
.0

3
1
.0

6
0
.9

4
0
.6

2

4
0
6

0
.7

5
0
.9

1
.2

4
1
.7

2
0
.6

6
1
.0

8
1
.1

1
.1

4
0
.9

6
0
.8

1
.0

1
0
.6

6
1
.0

2
0
.8

8
1
.3

3
1
.2

1
.1

3
0
.6

8
0
.8

0
.5

8

C
o
n
ti
n
u
ed

o
n

n
e
x
t
p
a
g
e



Amino Acid Scales 199

T
a
b
le

B
.1

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
v
io
u
s
p
a
g
e

I
D

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

4
0
7

0
.6

7
0
.7

6
1
.2

8
1
.5

8
0
.3

7
1
.0

5
0
.9

4
0
.9

8
0
.8

3
0
.7

8
0
.7

9
0
.8

4
0
.9

8
0
.9

6
1
.1

2
1
.2

5
1
.4

1
0
.9

4
0
.8

2
0
.6

7

4
0
8

1
.1

1
.0

5
0
.7

2
1
.1

4
0
.2

6
1
.3

1
2
.3

0
.5

5
0
.8

3
1
.0

6
0
.8

4
1
.0

8
0
.9

0
.9

1
.6

7
0
.8

1
0
.7

7
1
.2

6
0
.9

9
0
.7

6

4
0
9

1
.3

9
0
.9

5
0
.6

7
1
.6

4
0
.5

2
1
.6

2
.0

7
0
.6

5
1
.3

6
0
.6

4
0
.9

1
0
.8

1
.1

1
0
.9

4
0
.6

9
0
.9

2
1
.1

0
.7

3
0
.7

4
1
0

1
.4

3
1
.3

3
0
.5

5
0
.9

0
.5

2
1
.4

3
1
.7

0
.5

6
0
.6

6
1
.1

8
1
.5

2
0
.8

2
1
.6

8
1
.1

0
.1

5
0
.6

1
0
.7

5
1
.6

8
0
.6

5
1
.1

4

4
1
1

1
.5

5
1
.3

9
0
.6

0
.6

1
0
.5

9
1
.4

3
1
.3

4
0
.3

7
0
.8

9
1
.4

7
1
.3

6
1
.2

7
2
.1

3
1
.3

9
0
.0

3
0
.4

4
0
.6

5
1
.1

0
.9

3
1
.1

8

4
1
2

1
.8

1
.7

3
0
.7

3
0
.9

0
.5

5
0
.9

7
1
.7

3
0
.3

2
0
.4

6
1
.0

9
1
.4

7
1
.2

4
1
.6

4
0
.9

6
0
.1

5
0
.6

7
0
.7

0
.6

8
0
.9

1
0
.8

1

4
1
3

1
.5

2
1
.4

9
0
.5

8
1
.0

4
0
.2

6
1
.4

1
1
.7

6
0
.3

0
.8

3
1
.2

5
1
.2

6
1
.1

1
.1

4
1
.1

4
0
.4

4
0
.6

6
0
.7

3
0
.6

8
1
.0

4
1
.0

3

4
1
4

1
.4

9
1
.4

1
0
.6

7
0
.9

4
0
.3

7
1
.5

2
1
.5

5
0
.2

9
0
.9

6
1
.0

4
1
.4

1
.1

7
1
.8

4
0
.8

6
0
.2

0
.6

8
0
.7

9
1
.5

2
1
.0

6
0
.9

4

4
1
5

1
.7

3
1
.2

4
0
.7

0
.6

8
0
.6

3
0
.8

8
1
.1

6
0
.3

2
0
.7

6
1
.1

5
1
.8

1
.2

2
2
.2

1
1
.3

5
0
.0

7
0
.6

5
0
.4

6
1
.5

7
1
.1

0
.9

4

4
1
6

1
.3

3
1
.3

9
0
.6

4
0
.6

0
.4

4
1
.3

7
1
.4

3
0
.2

1
.0

2
1
.5

8
1
.6

3
1
.7

1
1
.7

6
1
.2

2
0
.0

7
0
.4

2
0
.5

7
1

1
.0

2
1
.0

8

4
1
7

1
.8

7
1
.6

6
0
.7

0
.9

1
0
.3

3
1
.2

4
1
.8

8
0
.3

3
0
.8

9
0
.9

1
.6

5
1
.6

3
1
.3

5
0
.6

7
0
.0

3
0
.7

1
0
.5

1
0
.7

3
0
.5

1

4
1
8

1
.1

9
1
.4

5
1
.3

3
0
.7

2
0
.4

4
1
.4

3
1
.2

7
0
.7

4
1
.5

5
0
.6

1
1
.3

6
1
.4

5
1
.3

5
1
.2

0
.1

1
.0

2
0
.8

2
0
.5

8
1
.0

6
0
.4

6

4
1
9

0
.7

7
1
.1

1
1
.3

9
0
.7

9
0
.4

4
0
.9

5
0
.9

2
2
.7

4
1
.6

5
0
.6

4
0
.6

6
1
.1

9
0
.7

4
1
.0

4
0
.6

6
0
.6

4
0
.8

2
0
.5

8
0
.9

3
0
.5

3

4
2
0

0
.9

3
0
.9

6
0
.8

2
1
.1

5
0
.6

7
1
.0

2
1
.0

7
1
.0

8
1
.4

1
.1

4
1
.1

6
1
.2

7
1
.1

1
1
.0

5
1
.0

1
0
.7

1
0
.8

4
1
.0

6
1
.1

5
0
.7

4

4
2
1

1
.0

9
1
.2

9
1
.0

3
1
.1

7
0
.2

6
1
.0

8
1
.3

1
0
.9

7
0
.8

8
0
.9

7
0
.8

7
1
.1

3
0
.9

6
0
.8

4
2
.0

1
0
.7

6
0
.7

9
0
.9

1
0
.6

4
0
.7

7

4
2
2

0
.7

1
1
.0

9
0
.9

5
1
.4

3
0
.6

5
0
.8

7
1
.1

9
1
.0

7
1
.1

3
1
.0

5
0
.8

4
1
.1

0
.8

0
.9

5
1
.7

0
.6

5
0
.0

8
6

1
.2

5
0
.8

5
1
.1

2

4
2
3

1
3
.4

1
3
.3

1
2

1
1
.7

1
1
.6

1
2
.8

1
2
.2

1
1
.3

1
1
.6

1
2

1
3

1
3

1
2
.8

1
2
.1

6
.5

1
2
.2

1
1
.7

1
2
.4

1
2
.1

1
1
.9

4
2
4

-0
.7

7
-0

.6
8

-0
.0

7
-0

.1
5

-0
.2

3
-0

.3
3

-0
.2

7
0

-0
.0

6
-0

.2
3

-0
.6

2
-0

.6
5

-0
.5

-0
.4

1
3

-0
.3

5
-0

.1
1

-0
.4

5
-0

.1
7

-0
.1

4

4
2
5

0
.9

8
4

1
.0

0
8

1
.0

4
8

1
.0

6
8

0
.9

0
6

1
.0

3
7

1
.0

9
4

1
.0

3
1

0
.9

5
0
.9

2
7

0
.9

3
5

1
.1

0
2

0
.9

5
2

0
.9

1
5

1
.0

4
9

1
.0

4
6

0
.9

9
7

0
.9

0
4

0
.9

2
9

0
.9

3
1

4
2
6

1
.3

1
5

1
.3

1
1
.3

8
1
.3

7
2

1
.1

9
6

1
.3

4
2

1
.3

7
6

1
.3

8
2

1
.2

7
9

1
.2

4
1

1
.2

3
4

1
.3

6
7

1
.2

6
9

1
.2

4
7

1
.3

4
2

1
.3

8
1

1
.3

2
4

1
.1

8
6

1
.1

9
9

1
.2

3
5

4
2
7

0
.9

9
4

1
.0

2
6

1
.0

2
2

1
.0

2
2

0
.9

3
9

1
.0

4
1

1
.0

5
2

1
.0

1
8

0
.9

6
7

0
.9

7
7

0
.9

8
2

1
.0

2
9

0
.9

6
3

0
.9

3
4

1
.0

5
1
.0

2
5

0
.9

9
8

0
.9

3
8

0
.9

8
1

0
.9

6
8

4
2
8

0
.7

8
3

0
.8

0
7

0
.7

9
9

0
.8

2
2

0
.7

8
5

0
.8

1
7

0
.8

2
6

0
.7

8
4

0
.7

7
7

0
.7

7
6

0
.7

8
3

0
.8

3
4

0
.8

0
6

0
.7

7
4

0
.8

0
9

0
.8

1
1

0
.7

9
5

0
.7

9
6

0
.7

8
8

0
.7

8
1

4
2
9

0
.4

2
3

0
.5

0
3

0
.9

0
6

0
.8

7
0
.8

7
7

0
.5

9
4

0
.1

6
7

1
.1

6
2

0
.8

0
2

0
.5

6
6

0
.4

9
4

0
.6

1
5

0
.4

4
4

0
.7

0
6

1
.9

4
5

0
.9

2
8

0
.8

8
4

0
.6

9
0
.7

7
8

0
.7

0
6

4
3
0

0
.6

1
9

0
.7

5
3

1
.0

8
9

0
.9

3
2

1
.1

0
7

0
.7

7
0
.6

7
5

1
.3

6
1

1
.0

3
4

0
.8

7
6

0
.7

4
0
.7

8
4

0
.7

3
6

0
.9

6
8

1
.7

8
0
.9

6
9

1
.0

5
3

0
.9

1
1
.0

0
9

0
.9

3
9

4
3
1

1
.0

8
0
.9

7
6

1
.1

9
7

1
.2

6
6

0
.7

3
3

1
.0

5
1
.0

8
5

1
.1

0
4

0
.9

0
6

0
.5

8
3

0
.7

8
9

1
.0

2
6

0
.8

1
2

0
.6

8
5

1
.4

1
2

0
.9

8
7

0
.7

8
4

0
.7

5
5

0
.6

6
5

0
.5

4
6

4
3
2

0
.9

7
8

0
.7

8
4

0
.9

1
5

1
.0

3
8

0
.5

7
3

0
.8

6
3

0
.9

6
2

1
.4

0
5

0
.7

2
4

0
.5

0
2

0
.7

6
6

0
.8

4
1

0
.7

2
9

0
.5

8
5

2
.6

1
3

0
.7

8
4

0
.5

6
9

0
.6

7
1

0
.5

6
0
.4

4
4

4
3
3

1
.4

1
.2

3
1
.6

1
1
.8

9
1
.1

4
1
.3

3
1
.4

2
2
.0

6
1
.2

5
1
.0

2
1
.3

3
1
.3

4
1
.1

2
1
.0

7
3
.9

1
.2

0
.9

9
1
.1

0
.9

8
0
.8

7

4
3
4

4
.0

8
3
.9

1
3
.8

3
3
.0

2
4
.4

9
3
.6

7
2
.2

3
4
.2

4
4
.0

8
4
.5

2
4
.8

1
3
.7

7
4
.4

8
5
.3

8
3
.8

4
.1

2
4
.1

1
6
.1

5
.1

9
4
.1

8

4
3
5

-0
.3

5
-0

.4
4

-0
.3

8
-0

.4
1

-0
.4

7
-0

.4
-0

.4
1

0
-0

.4
6

-0
.5

6
-0

.4
8

-0
.4

1
-0

.4
6

-0
.5

5
-0

.2
3

-0
.3

9
-0

.4
8

-0
.4

8
-0

.5
-0

.5
3

4
3
6

0
.5

1
.7

1
.7

1
.6

0
.6

1
.6

1
.6

1
.3

1
.6

0
.6

0
.4

1
.6

0
.5

0
.4

1
.7

0
.7

0
.4

0
.7

0
.6

0
.5

4
3
7

0
.9

6
0
.7

7
0
.3

9
0
.4

2
0
.4

2
0
.8

0
.5

3
0

0
.5

7
0
.8

4
0
.9

2
0
.7

3
0
.8

6
0
.5

9
-2

.5
0
.5

3
0
.5

4
0
.5

8
0
.7

2
0
.6

3

4
3
8

0
.3

4
3

0
.3

5
3

0
.4

0
9

0
.4

2
9

0
.3

1
9

0
.3

9
5

0
.4

0
5

0
.3

8
9

0
.3

0
7

0
.2

9
6

0
.2

8
7

0
.4

2
9

0
.2

9
3

0
.2

9
2

0
.4

3
2

0
.4

1
6

0
.3

6
2

0
.2

6
8

0
.2

2
0
.3

0
7

4
3
9

0
.3

2
0
.3

2
7

0
.3

8
4

0
.4

2
4

0
.1

9
8

0
.4

3
6

0
.5

1
4

0
.3

7
4

0
.2

9
9

0
.3

0
6

0
.3

4
0
.4

4
6

0
.3

1
3

0
.3

1
4

0
.3

5
4

0
.3

7
6

0
.3

3
9

0
.2

9
1

0
.2

8
7

0
.2

9
4

4
4
0

8
.9

4
.6

4
.4

6
.3

0
.6

2
.8

6
.9

9
.4

2
.2

7
7
.4

6
.1

2
.3

3
.3

4
.2

4
5
.7

1
.3

4
.5

8
.2

4
4
1

9
.2

3
.6

5
.1

6
1

2
.9

6
9
.4

2
.1

6
7
.7

6
.5

2
.4

3
.4

4
.2

5
.5

5
.7

1
.2

3
.7

8
.2

4
4
2

1
4
.1

5
.5

3
.2

5
.7

0
.1

3
.7

8
.8

4
.1

2
7
.1

9
.1

7
.7

3
.3

5
0
.7

3
.9

4
.4

1
.2

4
.5

5
.9

4
4
3

1
3
.4

3
.9

3
.7

4
.6

0
.8

4
.8

7
.8

4
.6

3
.3

6
.5

1
0
.6

7
.5

3
4
.5

1
.3

3
.8

4
.6

1
3
.3

7
.1

C
o
n
ti
n
u
ed

o
n

n
e
x
t
p
a
g
e



Amino Acid Scales 200

T
a
b
le

B
.1

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
v
io
u
s
p
a
g
e

I
D

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

4
4
4

9
.8

7
.3

3
.6

4
.9

3
2
.4

4
.4

0
1
1
.9

1
7
.2

1
7

1
0
.5

1
1
.9

2
3

1
5

2
.6

6
.9

2
4
.2

1
7
.2

1
5
.3

4
4
5

0
.7

0
.9

5
1
.4

7
0
.8

7
1
.1

7
0
.7

3
0
.9

6
0
.6

4
1
.3

9
1
.2

9
1
.4

4
0
.9

1
0
.9

1
1
.3

4
0
.1

2
0
.8

4
0
.7

4
1
.8

1
.6

8
1
.2

4
4
6

5
8

-1
8
4

-9
3

-9
7

1
1
6

-1
3
9

-1
3
1

-1
1

-7
3

1
0
7

9
5

-2
4

7
8

9
2

-7
9

-3
4

-7
5
9

-1
1

1
0
0

4
4
7

5
1

-1
4
4

-8
4

-7
8

1
3
7

-1
2
8

-1
1
5

-1
3

-5
5

1
0
6

1
0
3

-2
0
5

7
3

1
0
8

-7
9

-2
6

-3
6
9

1
1

1
0
8

4
4
8

4
1

-1
0
9

-7
4

-4
7

1
6
9

-1
0
4

-9
0

-1
8

-3
5

1
0
4

1
0
3

-1
4
8

7
7

1
2
8

-8
1

-3
1

1
0

1
0
2

3
6

1
1
6

4
4
9

3
2

-9
5

-7
3

-2
9

1
8
2

-9
5

-7
4

-2
2

-2
5

1
0
6

1
0
4

-1
2
4

8
2

1
3
2

-8
2

-3
4

2
0

1
1
8

4
4

1
1
3

4
5
0

2
4

-7
9

-7
6

0
1
9
4

-8
7

-5
7

-2
8

-3
1

1
0
2

1
0
3

-9
9
0

1
3
1

-8
5

-3
6

3
4

1
1
6

4
3

1
1
1

4
5
1

5
-5

7
-7

7
4
5

2
2
4

-6
7

-8
-4

7
-5

0
8
3

8
2

-3
8

8
3

1
1
7

-1
0
3

-4
1

7
9

1
3
0

2
7

1
1
7

4
5
2

-2
-4

1
-9

7
2
4
8

3
2
9

-3
7

1
1
7

-6
6

-7
0

2
8

3
6

1
1
5

6
2

1
2
0

-1
3
2

-5
2

1
7
4

1
7
9

-7
1
1
4

4
5
3

0
.4

1
.5

1
.6

1
5

0
.7

1
.4

1
.3

1
.1

1
.4

0
.5

0
.3

1
.4

0
.5

0
.3

1
.6

0
.9

0
.7

0
.9

0
.9

0
.4

4
5
4

-0
.0

4
-0

.3
0
.2

5
0
.2

7
0
.5

7
-0

.0
2

-0
.3

3
1
.2

4
-0

.1
1

-0
.2

6
-0

.3
8

-0
.1

8
-0

.0
9

-0
.0

1
0

0
.1

5
0
.3

9
0
.2

1
0
.0

5
-0

.0
6

4
5
5

-0
.1

2
0
.3

4
1
.0

5
1
.1

2
-0

.6
3

1
.6

7
0
.9

1
0
.7

6
1
.3

4
-0

.7
7

0
.1

5
0
.2

9
-0

.7
1

-0
.6

7
0

1
.4

5
-0

.7
-0

.1
4

-0
.4

9
-0

.7

4
5
6

8
.6

4
.2

4
.6

4
.9

2
.9

4
5
.1

7
.8

2
.1

4
.6

8
.8

6
.3

2
.5

3
.7

4
.9

7
.3

6
1
.4

3
.6

6
.7

4
5
7

7
.6

5
4
.4

5
.2

2
.2

4
.1

6
.2

6
.9

2
.1

5
.1

9
.4

5
.8

2
.1

4
5
.4

7
.2

6
.1

1
.4

3
.2

6
.7

4
5
8

8
.1

4
.6

3
.7

3
.8

2
3
.1

4
.6

7
2

6
.7

1
1

4
.4

2
.8

5
.6

4
.7

7
.3

5
.6

1
.8

3
.3

7
.7

4
5
9

7
.9

4
.9

4
5
.5

1
.9

4
.4

7
.1

7
.1

2
.1

5
.2

8
.6

6
.7

2
.4

3
.9

5
.3

6
.6

5
.3

1
.2

3
.1

6
.8

4
6
0

8
.3

8
.7

3
.7

4
.7

1
.6

4
.7

6
.5

6
.3

2
.1

3
.7

7
.4

7
.9

2
.3

2
.7

6
.9

8
.8

5
.1

0
.7

2
.4

5
.3

4
6
1

4
.4

7
8
.4

8
3
.8

9
7
.0

5
0
.2

9
2
.8

7
1
6
.5

6
8
.2

9
1
.7

4
3
.3

5
.0

6
1
2
.9

8
1
.7

1
2
.3

2
5
.4

1
4
.2

7
3
.8

3
0
.6

7
2
.7

5
4
.0

5

4
6
2

6
.7

7
6
.8

7
5
.5

8
.5

7
0
.3

1
5
.2

4
1
2
.9

3
7
.9

5
2
.8

2
.7

2
4
.4

3
1
0
.2

1
.8

7
1
.9

2
4
.7

9
5
.4

1
5
.3

6
0
.5

4
2
.2

6
3
.5

7

4
6
3

7
.4

3
4
.5

1
9
.1

2
8
.7

1
0
.4

2
5
.4

2
5
.8

6
9
.4

1
.4

9
1
.7

6
2
.7

4
9
.6

7
0
.6

1
.1

8
5
.6

9
.6

8
.9

5
1
.1

8
3
.2

6
3
.1

4
6
4

5
.2

2
7
.3

6
.0

6
7
.9

1
1
.0

1
6

1
0
.6

6
5
.8

1
2
.2

7
2
.3

6
4
.5

2
1
2
.6

8
1
.8

5
1
.6

8
5
.7

6
.9

9
5
.1

6
0
.5

6
2
.1

6
4
.1

4
6
5

9
.8

8
3
.7

1
2
.3

5
3
.5

1
.1

2
1
.6

6
4
.0

2
6
.8

8
1
.8

8
1
0
.0

8
1
3
.2

1
3
.3

9
2
.4

4
5
.2

7
3
.8

4
.1

4
.9

8
1
.1

1
4
.0

7
1
2
.5

3

4
6
6

1
0
.9

8
3
.2

6
2
.8

5
3
.3

7
1
.4

7
2
.3

3
.5

1
7
.4

8
2
.2

9
.7

4
1
2
.7

9
2
.5

4
3
.1

4
.9

7
3
.4

2
4
.9

3
5
.5

5
1
.2

8
3
.5

5
1
0
.6

9

4
6
7

9
.9

5
3
.0

5
4
.8

4
4
.4

6
1
.3

2
.6

4
2
.5

8
8
.8

7
1
.9

9
7
.7

3
9
.6

6
2

2
.4

5
5
.4

1
3
.2

6
.0

3
5
.6

2
2
.6

6
.1

5
9
.4

6

4
6
8

8
.2

6
2
.8

2
.5

4
2
.8

2
.6

7
2
.8

6
2
.6

7
5
.6

2
1
.9

8
8
.9

5
1
6
.4

6
1
.8

9
2
.6

7
7
.3

2
3
.3

6
5

2
.0

1
3
.9

6
1
0
.2

4

4
6
9

7
.3

9
5
.9

1
3
.0

6
5
.1

4
0
.7

4
2
.2

2
9
.8

7
.5

3
1
.8

2
6
.9

6
9
.4

5
7
.8

1
2
.1

3
.9

1
4
.5

4
4
.1

8
4
.4

5
0
.9

3
.4

6
8
.6

2

4
7
0

9
.0

7
4
.9

4
.0

5
5
.7

3
0
.9

5
3
.6

3
7
.7

7
7
.6

9
2
.4

7
6
.5

6
9

6
.0

1
2
.5

4
3
.5

9
4
.0

4
5
.1

5
5
.4

6
0
.9

5
2
.9

6
7
.4

7

4
7
1

8
.8

2
3
.7

1
6
.7

7
6
.3

8
0
.9

3
.8

9
4
.0

5
9
.1

1
1
.7

7
5
.0

5
6
.5

4
5
.4

5
1
.6

2
3
.5

1
4
.2

8
7
.6

4
7
.1

2
1
.9

6
4
.8

5
6
.6

4
7
2

6
.6

5
5
.1

7
4
.4

5
.5

1
.7

9
4
.5

2
6
.8

9
5
.7

2
2
.1

3
5
.4

7
1
0
.1

5
7
.5

9
2
.2

4
4
.3

4
4
.5

6
6
.5

2
5
.0

8
1
.2

4
3
.0

1
7

4
7
3

0
2
.4

5
0

0
0

1
.2

5
1
.2

7
0

1
.4

5
0

0
3
.6

7
0

0
0

0
0

6
.9

3
5
.0

6
0

4
7
4

8
9
.3

1
9
0
.3

1
2
2
.4

1
1
4
.4

1
0
2
.5

1
4
6
.9

1
3
8
.8

6
3
.8

1
5
7
.5

1
6
3

1
6
3
.1

1
6
5
.1

1
6
5
.8

1
9
0
.8

1
2
1
.6

9
4
.2

1
1
9
.6

2
2
6
.4

1
9
4
.6

1
3
8
.2

4
7
5

9
0

1
9
4

1
2
4
.7

1
1
7
.3

1
0
3
.3

1
4
9
.4

1
4
2
.2

6
4
.9

1
6
0

1
6
3
.9

1
6
4

1
6
7
.3

1
6
7

1
9
1
.9

1
2
2
.9

9
5
.4

1
2
1
.5

2
2
8
.2

1
9
7

1
3
9

4
7
6

0
.0

3
7
3

0
.0

9
5
9

0
.0

0
3
6

0
.1

2
6
3

0
.0

8
2
9

0
.0

7
6
1

0
.0

0
5
8

0
.0

0
5

0
.0

2
4
2

0
0

0
.0

3
7
1

0
.0

8
2
3

0
.0

9
4
6

0
.0

1
9
8

0
.0

8
2
9

0
.0

9
4
1

0
.0

5
4
8

0
.0

5
1
6

0
.0

0
5
7

4
7
7

0
.8

5
0
.2

-0
.4

8
-1

.1
2
.1

-0
.4

2
-0

.7
9

0
0
.2

2
3
.1

4
1
.9

9
-1

.1
9

1
.4

2
1
.6

9
-1

.1
4

-0
.5

2
-0

.0
8

1
.7

6
1
.3

7
2
.5

3

4
7
8

0
.0

6
-0

.8
5

0
.2

5
-0

.2
0
.4

9
0
.3

1
-0

.1
0
.2

1
-2

.2
4

3
.4

8
3
.5

-1
.6

2
0
.2

1
4
.8

0
.7

1
-0

.6
2

0
.6

5
2
.2

9
1
.8

9
1
.5

9

4
7
9

2
.6

2
1
.2

6
-1

.2
7

-2
.8

4
0
.7

3
-1

.6
9

-0
.4

5
-1

.1
5

-0
.7

4
4
.3

8
6
.5

7
-2

.7
8

-3
.1

2
9
.1

4
-0

.1
2

-1
.3

9
1
.8

1
5
.9

1
1
.3

9
2
.3

4
8
0

-1
.6

4
-3

.2
8

0
.8

3
0
.7

9
.3

-0
.0

4
1
.1

8
-1

.8
5

7
.1

7
3
.0

2
0
.8

3
-2

.3
6

4
.2

6
-1

.3
6

3
.1

2
1
.5

9
2
.3

1
2
.6

1
2
.3

7
0
.5

2

C
o
n
ti
n
u
ed

o
n

n
e
x
t
p
a
g
e



Amino Acid Scales 201

T
a
b
le

B
.1

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
v
io
u
s
p
a
g
e

I
D

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

4
8
1

-2
.3

4
1
.6

2
.8

1
-0

.4
8

5
.0

3
0
.1

6
1
.3

-1
.0

6
-3

7
.2

6
1
.0

9
1
.5

6
0
.6

2
2
.5

7
-0

.1
5

1
.9

3
0
.1

9
3
.5

9
-2

.5
8

2
.0

6

4
8
2

0
.7

8
1
.5

8
1
.2

1
.3

5
0
.5

5
1
.1

9
1
.4

5
0
.6

8
0
.9

9
0
.4

7
0
.5

6
1
.1

0
.6

6
0
.4

7
0
.6

9
1

1
.0

5
0
.7

1
0
.5

1

4
8
3

2
5

-7
-7

2
3
2

0
1
4

-2
-2

6
9
1

1
0
0

-2
6

6
8

1
0
0

2
5

-2
7

1
0
9

5
6

6
2

4
8
4

1
.1

-5
.1

-3
.5

-3
.6

2
.5

-3
.6

8
-3

.2
-0

.6
4

-3
.2

4
.5

3
.8

-4
.1

1
1
.9

2
.8

-1
.9

-0
.5

-0
.7

-0
.4

6
-1

.3
4
.2

4
8
5

0
.1

3
7

0
.0

3
6

-0
.0

3
5

-0
.1

2
3

0
.2

7
5

0
.0

3
3

-0
.0

4
8

-0
.0

4
7

0
.0

5
5

0
.4

1
7

0
.4

2
5

-0
.0

1
0

0
.1

7
8

0
.4

0
8

0
.0

0
2

-0
.0

4
3

0
.0

5
9

0
.2

3
6

0
.3

1
7

0
.4

0
8

4
8
6

0
.0

7
3

0
.0

3
9

-0
.0

3
9

-0
.0

5
5

0
.3

5
6

0
.0

1
3

-0
.0

3
0

-0
.0

5
9

0
.0

8
7

0
.3

8
1

0
.3

8
2

-0
.0

0
5

0
.1

6
1

0
.4

2
0

-0
.0

4
9

-0
.0

2
8

0
.0

2
4

0
.4

1
1

0
.3

1
1

0
.2

9
5

4
8
7

0
.1

5
1

-0
.0

1
0

0
.0

3
8

0
.0

0
5

0
.3

2
2

0
.0

2
5

-0
.0

6
4

0
.0

2
5

0
.1

3
4

0
.4

2
4

0
.3

9
3

-0
.0

1
6

0
.2

1
6

0
.3

4
6

0
.0

8
4

0
.0

0
4

0
.1

4
6

0
.2

6
6

0
.2

3
0

0
.4

0
0

4
8
8

-0
.0

5
8

0
0
.0

2
7

0
.0

1
6

0
.4

4
7

-0
.0

7
3

-0
.1

2
8

0
.3

3
1

0
.1

9
5

0
.0

6
0
.1

3
8

-0
.1

1
2

0
.2

7
5

0
.2

4
-0

.4
7
8

-0
.1

7
7

-0
.1

6
3

0
.5

6
4

0
.3

2
2

-0
.0

5
2

4
8
9

-0
.1

7
0
.3

7
0
.1

8
0
.3

7
-0

.0
6

0
.2

6
0
.1

5
0
.0

1
-0

.0
2

-0
.2

8
-0

.2
8

0
.3

2
-0

.2
6

-0
.4

1
0
.1

3
0
.0

5
0
.0

2
-0

.1
5

-0
.0

9
-0

.1
7

4
9
0

-0
.1

5
0
.3

2
0
.2

2
0
.4

1
-0

.1
5

0
.0

3
0
.3

0
.0

8
0
.0

6
-0

.2
9

-0
.3

6
0
.2

4
-0

.1
9

-0
.2

2
0
.1

5
0
.1

6
-0

.0
8

-0
.2

8
-0

.0
3

-0
.2

4

4
9
1

0
.9

6
4

1
.1

4
3

0
.9

4
4

0
.9

1
6

0
.7

7
8

1
.0

4
7

1
.0

5
1

0
.8

3
5

1
.0

1
4

0
.9

2
2

1
.0

8
5

0
.9

4
4

1
.0

3
2

1
.1

1
9

1
.2

9
9

0
.9

4
7

1
.0

1
7

0
.8

9
5

1
0
.9

5
5

4
9
2

0
.9

7
4

1
.1

2
9

0
.9

8
8

0
.8

9
2

0
.9

7
2

1
.0

9
2

1
.0

5
4

0
.8

4
5

0
.9

4
9

0
.9

2
8

1
.1

1
0
.9

4
6

0
.9

2
3

1
.1

2
2

1
.3

6
2

0
.9

3
2

1
.0

2
3

0
.8

7
9

0
.9

0
2

0
.9

2
3

4
9
3

0
.9

3
8

1
.1

3
7

0
.9

0
2

0
.8

5
7

0
.6

8
5
6

0
.9

1
6

1
.1

3
9

0
.8

9
2

1
.1

0
9

0
.9

8
6

1
0
.9

5
2

1
.0

7
7

1
.1

1
1
.2

6
6

0
.9

5
6

1
.0

1
8

0
.9

7
1

1
.1

5
7

0
.9

5
9

4
9
4

1
.0

4
2

1
.0

6
9

0
.8

2
8

0
.9

7
0
.5

1
.1

1
1

0
.9

9
2

0
.7

4
3

1
.0

3
4

0
.8

5
2

1
.1

9
3

0
.9

7
9

0
.9

9
8

0
.9

8
1

1
.3

3
2

0
.9

8
4

0
.9

9
2

0
.9

6
1
.1

2
1
.0

0
1

4
9
5

1
.0

6
5

1
.1

3
1

0
.7

6
2

0
.8

3
6

1
.0

1
5

0
.8

6
1

0
.7

3
6

1
.0

2
2

0
.9

7
3

1
.1

8
9

1
.1

9
2

0
.4

7
8

1
.3

6
9

1
.3

6
8

1
.2

4
1

1
.0

9
7

0
.8

2
2

1
.0

1
7

0
.8

3
6

1
.1

4

4
9
6

0
.9

9
1
.1

3
2

0
.8

7
3

0
.9

1
5

0
.6

4
4

0
.9

9
9

1
.0

5
3

0
.7

8
5

1
.0

5
4

0
.9

5
1
.1

0
6

1
.0

0
3

1
.0

9
3

1
.1

2
1

1
.3

1
4

0
.9

1
1

0
.9

8
8

0
.9

3
9

1
.0

9
0
.9

5
7

4
9
7

0
.8

9
2

1
.1

5
4

1
.1

4
4

0
.9

2
5

1
.0

3
5

1
.2

1
.1

1
5

0
.9

1
7

0
.9

9
2

0
.8

1
7

0
.9

9
4

0
.9

4
4

0
.7

8
2

1
.0

5
8

1
.3

0
9

0
.9

8
6

1
.1

1
0
.8

4
1

0
.8

6
6

0
.9

4
9
8

1
.0

9
2

1
.2

3
9

0
.9

2
7

0
.9

1
9

0
.6

6
2

1
.1

2
4

1
.1

9
9

0
.6

9
8

1
.0

1
2

0
.9

1
2

1
.2

7
6

1
.0

0
8

1
.1

7
1

1
.0

9
0
.8

0
.8

8
6

0
.8

3
2

0
.9

8
1

1
.0

7
5

0
.9

0
8

4
9
9

0
.8

4
3

1
.0

3
8

0
.9

5
6

0
.9

0
6

0
.8

9
6

0
.9

6
8

0
.9

0
.9

7
8

1
.0

5
0
.9

4
6

0
.8

8
5

0
.8

9
3

0
.8

7
8

1
.1

5
1

1
.8

1
6

1
.0

0
3

1
.1

8
9

0
.8

5
2

0
.9

4
5

0
.9

9
9

5
0
0

2
.1

8
2
.7

1
1
.8

5
1
.7

5
3
.8

9
2
.1

6
1
.8

9
1
.1

7
2
.5

1
4
.5

4
.7

1
2
.1

2
3
.6

3
5
.8

8
2
.0

9
1
.6

6
2
.1

8
6
.4

6
5
.0

1
3
.7

7

5
0
1

1
.7

9
3
.2

2
.8

3
2
.3

3
2
.2

2
2
.3

7
2
.5

2
0
.7

3
.0

6
4
.5

9
4
.7

2
2
.5

3
.9

1
4
.8

4
2
.4

5
1
.8

2
2
.4

5
5
.6

4
4
.4

6
3
.6

7

5
0
2

1
3
.4

8
.5

7
.6

8
.2

2
2
.6

8
.5

7
.3

7
1
1
.3

2
0
.3

2
0
.8

6
.1

1
5
.7

2
3
.9

9
.9

8
.2

1
0
.3

2
4
.5

1
9
.5

1
9
.5

5
0
3

0
.0

1
7

-0
.0

7
6

-0
.0

7
9

-0
.1

2
8

0
.5

7
2

-0
.1

0
5

-0
.1

8
0

-0
.0

4
4

0
.1

6
4

0
.2

7
6

0
.2

5
2

-0
.2

1
3

0
.0

2
0

0
.3

5
6

-0
.4

1
9

-0
.1

6
3

-0
.0

7
0

0
.3

8
4

0
.2

5
0
.1

7
8

5
0
4

9
0
.1

1
9
2
.8

1
2
7
.5

1
1
7
.1

1
1
3
.2

1
4
9
.4

1
4
0
.8

6
3
.8

1
5
9
.3

1
6
4
.9

1
6
4
.6

1
7
0

1
6
7
.7

1
9
3
.5

1
2
3
.1

9
4
.2

1
2
0

1
9
7
.1

2
3
1
.7

1
3
9
.1

5
0
5

9
1
.5

1
9
6
.1

1
3
8
.3

1
3
5
.2

1
1
4
.4

1
5
6
.4

1
5
4
.6

6
7
.5

1
6
3
.2

1
6
2
.6

1
6
3
.4

1
6
2
.5

1
6
5
.9

1
9
8
.8

1
2
3
.4

1
0
2

1
2
6

2
0
9
.8

2
3
7
.2

1
3
8
.4

5
0
6

1
.0

7
6

1
.3

6
1

1
.0

5
6

1
.2

9
0
.7

5
3

0
.7

2
9

1
.1

1
8

1
.3

4
6

0
.9

8
5

0
.9

2
6

1
.0

5
4

1
.1

0
5

0
.9

7
4

0
.8

6
9

0
.8

2
1
.3

4
2

0
.8

7
1

0
.6

6
6

0
.5

3
1

1
.1

3
1

5
0
7

0
.6

1
6

0
0
.2

3
6

0
.0

2
8

0
.6

8
0
.2

5
1

0
.0

4
3

0
.5

0
1

0
.1

6
5

0
.9

4
3

0
.9

4
3

0
.2

8
3

0
.7

3
8

1
0
.7

1
1

0
.3

5
9

0
.4

5
0
.8

7
8

0
.8

8
0
.8

2
5



Amino Acid Scales 202

T
a
b
l
e
B
.2
:

R
ea

l-
va

lu
es

o
f

a
m

in
o

a
ci

d
in

d
ic

es
w

it
h

u
n

k
n

ow
n

d
es

cr
ip

ti
o
n

s.

I
D

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

5
0
8

0
.2

4
3
.5

2
3
.0

5
3
.9

8
0
.8

4
1
.7

5
3
.1

1
2
.0

5
2
.4

7
-3

.8
9

-4
.2

8
2
.2

9
-2

.8
5

-4
.2

2
-1

.6
6

2
.3

9
0
.7

5
-4

.3
6

-2
.5

4
-2

.5
9

5
0
9

-2
.3

2
2
.5

1
.6

2
0
.9

3
-1

.6
7

0
.5

0
.2

6
-4

.0
6

1
.9

5
-1

.7
3

-1
.3

0
.8

9
-0

.2
2

1
.9

4
0
.2

7
-1

.0
7

-2
.1

8
3
.9

4
2
.4

4
-2

.6
4

5
1
0

0
.6

-3
.5

1
.0

4
1
.9

3
3
.7

1
-1

.4
4

-0
.1

1
0
.3

6
0
.2

6
-1

.7
1

-1
.4

9
-2

.4
9

0
.4

7
1
.0

6
1
.8

4
1
.1

5
-1

.1
2

0
.5

9
0
.4

3
-1

.5
4

5
1
1

-0
.1

4
1
.9

9
-1

.1
5

-2
.4

6
0
.1

8
-1

.3
4

-3
.0

4
-0

.8
2

3
.9

-0
.8

4
-0

.7
2

1
.4

9
1
.9

4
0
.5

4
0
.7

-1
.3

9
-1

.4
6

3
.4

4
0
.0

4
-0

.8
5

5
1
2

1
.3

-0
.1

7
1
.6

1
0
.7

5
-2

.6
5

0
.6

6
-0

.2
5

-0
.3

8
0
.0

9
0
.2

6
0
.8

4
0
.3

1
-0

.9
8

-0
.6

2
2

0
.6

7
-0

.4
-1

.5
9

-1
.4

7
-0

.0
2

5
1
3

6
0

1
3
9

6
6

3
5

5
3

7
4

4
4

9
8
0

8
2

1
7
7

8
2

5
2

4
4

5
8

8
6

8
1

7
4

5
1
4

2
4

9
1
4

1
6

2
3

1
6

2
4

1
9

6
5
0

5
2

7
4
5

5
0

2
0

1
9

2
5

5
4

5
0

4
2

5
1
5

2
9

6
2
5

9
2
7

3
7

1
5

2
2

1
6

4
9

5
0

2
5
0

5
2

5
0

1
5

2
7

5
4

4
7

4
3

5
1
6

9
1

5
2

4
0

7
4

6
1

2
8

3
3

1
2
9

3
5

1
1

6
1
1

4
0

3
2

2
2

5
1
7

5
2

1
9

2
1

3
8

4
6

3
2

4
2

3
2

1
6

7
2

7
3

1
9

6
3

6
6

5
7

3
6

4
6

4
9

6
8

6
8

5
1
8

2
3

7
1
2

2
0

6
3

2
0

1
9

2
2

2
0

5
3

5
3

7
4
9

5
2

3
1

2
3

3
9

5
1

5
1

4
3

5
1
9

3
7

1
1
2

1
9

8
1

2
3

2
8

1
7

2
8
3

8
3

1
7
9

8
7

6
8

1
3

3
0

8
8

8
0

7
2

5
2
0

4
.1

3
4
.0

6
4
.3

3
4
.3

4
4
.3

4
.1

4
.1

2
3
.8

8
4
.2

9
4
.0

2
4
.0

5
4
.0

5
4
.2

4
.3

1
4
.3

7
4
.1

8
3
.9

7
4
.3

6
4
.3

3
.9

4

5
2
1

3
.7

7
3
.7

6
4

3
.8

9
3
.9

7
3
.7

6
3
.7

4
3
.5

4
4

3
.6

6
3
.7

1
3
.7

4
3
.8

4
3
.9

8
4
.1

1
3
.8

7
3
.5

7
4
.0

5
3
.9

3
.6

5
2
2

3
.3

3
.2

3
.5

6
3
.5

1
3

3
.2

4
3
.2

1
3
.1

5
3
.4

7
3
.0

8
3
.2

3
3
.2

7
3
.3

3
.4

8
3
.5

1
3
.3

1
3
.0

8
3
.5

6
3
.4

3
.0

3

5
2
3

0
.0

0
8

0
.1

7
1

0
.2

5
5

0
.3

0
3

-0
.1

3
2

0
.1

4
9

0
.2

2
1

0
.2

1
8

0
.0

2
3

-0
.3

5
3

-0
.2

6
7

0
.2

4
3

-0
.2

3
9

-0
.3

2
9

0
.1

7
3

0
.1

9
9

0
.0

6
8

-0
.2

9
6

-0
.1

4
1

-0
.2

7
4

5
2
4

0
.1

3
4

-0
.3

6
1

0
.0

3
8

-0
.0

5
7

0
.1

7
4

-0
.1

8
4

-0
.2

8
0
.5

6
2

-0
.1

7
7

0
.0

7
1

0
.0

1
8

-0
.3

3
9

-0
.1

4
1

-0
.0

2
3

0
.2

8
6

0
.2

3
8

0
.1

4
7

-0
.1

8
6

-0
.0

5
7

0
.1

3
6

5
2
5

-0
.4

7
5

0
.1

0
7

0
.1

1
7

-0
.0

1
4

0
.0

7
-0

.0
3

-0
.3

1
5

-0
.0

2
4

0
.0

4
1

-0
.0

8
8

-0
.2

6
5

-0
.0

4
4

-0
.1

5
5

0
.0

7
2

0
.4

0
7

-0
.0

1
5

-0
.0

1
5

0
.3

8
9

0
.4

2
5

-0
.1

8
7

5
2
6

-0
.0

3
9

-0
.2

5
8

0
.1

1
8

0
.2

2
5

0
.5

6
5

0
.0

3
5

0
.1

5
7

0
.0

1
8

0
.2

8
-0

.1
9
5

-0
.2

7
4

-0
.3

2
5

0
.3

2
1

-0
.0

0
2

-0
.2

1
5

-0
.0

6
8

-0
.1

3
2

0
.0

8
3

-0
.0

9
6

-0
.1

9
6

5
2
7

0
.1

8
1

-0
.3

6
4

-0
.0

5
5

0
.1

5
6

-0
.3

7
4

-0
.1

1
2

0
.3

0
3

0
.1

0
6

-0
.0

2
1

-0
.1

0
7

0
.2

0
6

-0
.0

2
7

0
.0

7
7

0
.2

0
8

0
.3

8
4

-0
.1

9
6

-0
.2

7
4

0
.2

9
7

-0
.0

9
1

-0
.2

9
9

5
2
8

0
.3

5
4

7
.5

7
3

1
1
.2

9
4

1
3
.4

2
-5

.8
4
6

6
.5

9
9

9
.7

8
8

9
.6

5
5

1
.0

1
9

-1
5
.6

3
4

-1
1
.8

2
5

1
0
.7

6
2

-1
0
.5

8
5

-1
4
.5

7
1

7
.6

6
2

8
.8

1
3

3
.0

1
2

-1
3
.1

1
-6

.2
4
5

-1
2
.1

3
5

5
2
9

3
.7

6
2

-1
0
.1

3
5

1
.0

6
7

-1
.6

4
.8

8
5

-5
.1

6
6

-7
.8

6
1

1
5
.7

7
8

-4
.9

6
9

1
.9

9
3

0
.5

0
5

-9
.5

1
7

-3
.9

5
9

-0
.6

4
6

8
.0

2
9

6
.6

8
2

4
.1

2
7

-5
.2

2
2

-1
.6

3
.8

1
8

5
3
0

-1
1
.0

3
6

2
.4

8
6

2
.7

1
8

-0
.3

2
5

1
.6

2
6

-0
.6

9
7

-7
.3

1
8

-0
.5

5
8

0
.9

5
3

-2
.0

4
5

-6
.1

5
7

-1
.0

2
2

-3
.6

0
1

1
.6

7
3

9
.4

5
6

-0
.3

4
8

-0
.3

4
8

9
.0

3
8

9
.8

7
4

-4
.3

4
5

5
3
1

-0
.6

4
9

-4
.2

9
1

1
.9

6
3

3
.7

4
2

9
.3

9
7

0
.5

8
2

2
.6

1
1

0
.2

9
9

4
.6

5
7

-3
.2

4
3

-4
.5

5
7

-5
.4

0
5

5
.3

3
9

-0
.0

3
3

-3
.5

7
6

-1
.1

3
1

-2
.1

9
5

1
.3

8
-1

.5
9
7

-3
.2

6

5
3
2

2
.8

2
8

-5
.6

8
7

-0
.8

5
9

2
.4

3
7

-5
.8

4
3

-1
.7

5
4
.7

3
4

1
.6

5
6

-0
.3

2
8

-1
.6

7
2

3
.2

1
9

-0
.4

2
2

1
.2

0
3

3
.2

5
6

-3
.0

6
2

-4
.2

8
1

4
.6

4
-1

.4
2
2

-4
.6

7
2

5
3
3

0
.5

0
.7

4
0
.7

8
1
.3

3
0
.5

3
0
.8

2
1
.2

6
0
.7

5
0
.6

9
0
.4

7
0
.4

5
0
.5

5
0
.4

8
0
.4

7
0
.6

5
0
.7

0
.6

8
0
.5

8
0
.7

9
0
.4

5

5
3
4

0
.4

3
1
.2

1
0
.8

3
0
.7

1
0
.3

9
0
.7

2
0
.6

9
0
.6

2
0
.8

9
0
.3

8
0
.3

3
1
.2

7
0
.4

1
0
.4

0
.5

8
0
.8

1
0
.7

0
.5

5
0
.6

5
0
.3

7

5
3
5

0
.4

6
0
.9

9
0
.8

0
.9

9
0
.4

6
0
.7

7
0
.9

5
0
.6

8
0
.7

9
0
.4

2
0
.3

8
0
.9

4
0
.4

4
0
.4

3
0
.6

1
0
.7

6
0
.6

9
0
.5

7
0
.7

2
0
.4

1

5
3
6

0
.7

9
1
.0

9
1
.1

2
1
.1

8
0
.7

7
1
.0

4
1
.2

1
.0

3
1
.1

0
.6

8
0
.6

7
1
.1

5
0
.7

4
0
.7

1
1

1
.0

4
0
.9

4
0
.8

0
.8

3
0
.6

9

5
3
7

1
.7

9
1
.0

4
1
.1

0
.9

5
1
.5

3
1
.2

4
1
.0

6
1
.3

9
1
.2

1
1
.9

6
2
.0

2
1
.0

9
1
.8

4
1
.8

8
1
.4

3
1
.2

1
1
.4

2
1
.6

7
1
.5

2
1
.9

4

5
3
8

1
.8

3
1
.5

6
1
.5

7
1
.4

7
1
.7

1
1
.6

6
1
.6

1
1
.8

4
1
.7

3
1
.8

2
1
.9

3
1
.5

8
2

1
.8

8
1
.9

7
1
.5

7
1
.5

8
1
.7

4
1
.5

8
1
.7

8

5
3
9

0
.8

1
0
.7

4
1
.0

8
1
.8

7
0
.6

8
1
.1

2
1
.9

5
1
.2

9
0
.9

4
0
.9

4
0
.9

5
0
.6

4
0
.9

4
0
.9

3
0
.9

8
1
.1

3
1
.1

1
.0

3
1
.1

2
0
.9

7

5
4
0

0
.7

5
1
.6

2
1
.1

0
.7

3
0
.6

3
0
.9

6
0
.6

5
0
.9

6
1
.0

8
0
.7

7
0
.7

1
.6

5
0
.7

2
0
.7

7
0
.9

1
.1

1
.0

6
0
.8

3
0
.9

4
0
.7

6

5
4
1

0
.7

8
1
.2

1
1
.0

9
1
.2

6
0
.6

6
1
.0

3
1
.2

5
1
.1

1
1
.0

1
0
.8

5
0
.8

2
1
.1

8
0
.8

2
0
.8

4
0
.9

4
1
.1

1
1
.0

8
0
.9

2
1
.0

2
0
.8

6

5
4
2

0
.9

9
1

1
.1

3
1
.1

5
0
.9

4
1
.0

7
1
.0

9
1
.1

6
1
.0

3
0
.8

7
0
.8

6
1

0
.8

9
0
.9

3
1
.0

6
1
.0

7
1
.0

5
0
.9

4
0
.9

0
.8

9

5
4
3

1
.2

5
1
.0

2
0
.9

0
.8

1
0
.9

9
1
.0

5
0
.9

3
1
.0

2
1
.0

5
1
.3

3
1
.4

1
1
.0

3
1
.3

3
1
.3

2
1
.1

2
0
.9

1
1
.0

1
1
.2

5
1
.1

9
1
.3

3

C
o
n
ti
n
u
ed

o
n

n
e
x
t
p
a
g
e



Amino Acid Scales 203

T
a
b
le

B
.2

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
v
io
u
s
p
a
g
e

I
D

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

5
4
4

1
.6

1
1
.4

4
1
.2

8
1
.2

4
1
.3

4
1
.4

4
1
.3

8
1
.5

9
1
.5

8
1
.4

5
1
.4

8
1
.4

8
1
.6

8
1
.5

3
1
.6

6
1
.2

6
1
.1

8
1
.4

8
1
.3

3
1
.3

6

5
4
5

1
.0

5
0
.7

8
1
.3

5
2
.0

2
0
.9

1
1
.2

1
2
.0

8
1
.5

7
1
.0

7
1
.1

3
1

0
.7

1
0
.9

7
1
.0

4
1
.1

1
1
.1

3
1
.1

9
1

1
.1

1
.1

5

5
4
6

1
.3

3
1
.9

5
1
.4

0
.9

3
0
.9

1
1
.2

1
0
.8

7
1
.2

4
1
.5

1
.1

5
0
.9

2
1
.9

6
0
.8

8
0
.8

5
1
.1

7
1
.6

2
1
.4

8
1
.1

1
1
.1

1
1
.0

5

5
4
7

1
.2

1
.3

9
1
.3

8
1
.4

3
0
.9

1
1
.2

1
1
.4

2
1
.3

9
1
.3

1
.1

4
0
.9

6
1
.3

6
0
.9

3
0
.9

4
1
.1

4
1
.3

9
1
.3

5
1
.0

6
1
.1

1
1
.1

5
4
8

1
.2

1
1
.0

2
1
.1

3
1
.2

1
1
.0

9
1
.1

3
1
.1

5
1
.3

1
.0

9
1
.1

3
1
.0

8
1
.1

1
1
.0

4
1
.1

1
.2

1
.1

9
1
.1

6
1
.0

5
1
.0

4
1
.1

8

5
4
9

0
.6

6
0
.8

1
0
.6

4
0
.6

0
.6

4
0
.8

3
0
.6

9
0
.7

4
0
.7

0
.8

6
1
.0

5
0
.7

3
0
.9

9
0
.9

5
0
.8

3
0
.5

6
0
.6

1
0
.9

4
0
.9

2
0
.8

1

5
5
0

0
.8

4
1
.1

4
0
.9

0
.9

0
.8

1
1
.0

8
0
.9

9
1
.1

5
1
.2

7
0
.9

9
1
.2

1
1
.0

8
1
.1

7
1
.3

3
1
.2

4
0
.7

7
0
.7

2
1
.2

6
1
.2

4
0
.9

1

5
5
1

0
.6

3
0
.7

5
1
.0

9
1
.7

9
0
.5

7
1
.0

8
1
.8

7
1
.0

3
0
.8

5
0
.5

9
0
.5

8
0
.6

7
0
.6

2
0
.6

1
0
.8

9
0
.9

3
0
.9

2
0
.7

5
0
.9

4
0
.6

5
5
2

0
.6

1
1
.6

2
1
.1

2
0
.8

1
0
.4

4
0
.9

9
0
.7

6
0
.8

1
1
.0

7
0
.4

9
0
.4

3
1
.7

8
0
.5

1
0
.5

0
.8

5
1
.1

1
0
.9

9
0
.6

7
0
.8

0
.4

9

5
5
3

0
.6

2
1
.2

1
1
.1

1
1
.2

6
0
.5

1
.0

3
1
.2

7
0
.9

1
0
.9

7
0
.5

4
0
.5

1
.2

5
0
.5

6
0
.5

5
0
.8

7
1
.0

3
0
.9

5
0
.7

1
0
.8

6
0
.5

4

5
5
4

0
.8

8
1
.0

3
1
.1

3
1
.1

8
0
.8

1
1
.0

8
1
.1

4
1
.1

1
1
.0

8
0
.7

4
0
.7

3
1
.0

8
0
.8

0
.7

8
1
.0

8
1
.0

9
1
.0

2
0
.8

6
0
.8

7
0
.7

6

5
5
5

1
.5

3
0
.9

6
0
.8

6
0
.7

6
1
.4

3
1
.0

1
0
.8

4
1
.1

8
1
.0

5
1
.7

8
1
.8

4
0
.8

8
1
.6

7
1
.7

1
1
.1

6
0
.9

5
1
.1

1
1
.5

1
.3

4
1
.7

5

5
5
6

1
.6

5
1
.3

8
1
.2

3
1
.1

6
1
.6

2
1
.3

7
1
.2

5
1
.6

4
1
.5

9
1
.7

1
1
.8

1
.2

8
1
.8

7
1
.7

7
1
.6

7
1
.2

6
1
.2

6
1
.6

3
1
.4

6
1
.6

3

5
5
7

0
.7

1
1
.0

9
0
.9

5
1
.4

3
0
.6

5
0
.8

7
1
.1

9
1
.0

7
1
.1

3
1
.0

5
0
.8

4
1
.1

0
.8

0
.9

5
1
.7

0
.6

5
0
.8

6
1
.2

5
0
.8

5
1
.1

2

5
5
8

1
.0

7
1
.3

2
0
.9

4
0
.7

5
0
.6

2
0
.9

0
.7

1
.0

4
0
.9

9
1

1
.0

1
1

1
.4

2
1
.2

1
0
.9

3
0
.9

9
1

1
.6

6
1
.1

5
0
.9

3

5
5
9

0
.9

9
1
.2

9
0
.9

9
0
.6

6
0
.6

6
0
.9

0
.6

4
1
.0

3
1

1
.0

6
1
.0

7
0
.9

7
1
.0

8
1
.3

5
0
.9

0
.9

9
1
.1

1
.8

5
1
.1

8
0
.9

3

5
6
0

1
.0

4
1
.3

1
0
.6

3
0
.7

0
.8

8
0
.6

1
0
.9

8
0
.9

9
1
.0

5
1
.1

0
.9

4
1
.0

9
1
.2

4
0
.9

1
0
.9

7
1
.0

8
1
.7

7
1
.4

7
0
.9

6

5
6
1

0
.9

2
1
.7

1
.1

2
0
.8

0
.7

9
0
.8

9
0
.6

4
1
.0

5
1
.1

0
.8

3
0
.8

9
1
.1

1
1
.1

3
0
.9

9
0
.9

1
1
.0

1
1
.1

5
1
.8

3
1
.3

4
0
.7

9

5
6
2

0
.7

9
2
.3

8
1
.4

4
1
.1

5
0
.7

4
1
.2

1
0
.9

3
0
.8

7
1
.4

3
0
.3

0
.5

3
1
.6

0
.7

3
0
.4

0
.9

4
1
.2

1
.2

3
1
.0

4
1
.1

4
0
.4

2

5
6
3

1
.3

1
0
.1

5
0
.2

8
0
.1

0
.6

4
0
.1

8
0
.1

0
.9

4
0
.3

2
.7

2
2
.0

2
0
.0

9
1
.6

4
2
.5

9
0
.5

1
0
.4

1
0
.6

5
2
.8

7
1
.3

7
1
.9

9

5
6
4

1
.4

3
0
.1

3
0
.3

7
0
.1

4
0
.7

9
0
.2

6
0
.1

5
1
.1

1
0
.3

8
2
.1

9
1
.9

0
.1

2
1
.5

9
2
.3

3
0
.5

1
0
.7

0
.8

2
.5

1
1
.4

2
1
.7

6

5
6
5

1
.3

6
0
.1

7
0
.4

3
0
.2

2
0
.8

1
0
.3

6
0
.1

9
1
.1

4
0
.6

3
2
.1

1
1
.7

7
0
.1

7
1
.8

1
2
.1

7
0
.6

0
.7

2
0
.8

6
2
.1

1
.3

8
1
.6

6

5
6
6

1
.4

9
0
.1

6
0
.3

5
0
.1

7
0
.8

7
0
.2

7
0
.1

3
1
.2

2
0
.5

6
2
.1

1
1
.6

7
0
.1

2
1
.5

4
2
.2

1
0
.6

0
.7

8
0
.9

4
2
.0

9
1
.4

6
1
.7

5

5
6
7

1
.5

2
0
.1

6
0
.4

2
0
.1

5
1
.0

5
0
.3

2
0
.1

4
1
.1

4
0
.4

4
2
.1

9
1
.9

1
0
.1

2
1
.4

9
2
.0

6
0
.5

6
0
.7

2
1
.0

1
1
.4

5
1
.0

3
1
.7

8

5
6
8

1
.3

8
3

0
.1

2
4

0
.3

8
9

0
.1

5
3

1
.2

0
2

0
.2

7
3

0
.1

3
1

1
.1

5
8

0
.3

9
5

2
.0

8
3

1
.8

4
5

0
.1

0
8

1
.5

0
2

2
.2

3
5

0
.5

9
7

0
.8

0
6

0
.8

7
9

1
.7

9
1
.0

7
5

1
.7

5
6

5
6
9

0
.3

2
4

-2
.0

8
5

-0
.9

4
4

-1
.8

7
7

0
.1

8
4

-1
.3

-2
.0

3
3

0
.1

4
7

-0
.9

3
0
.7

3
4

0
.6

1
2

-2
.2

3
0
.4

0
7

0
.8

0
4

-0
.5

1
6

-0
.2

1
6

-0
.1

2
9

0
.5

8
2

0
.0

7
3

0
.5

6
3

5
7
0

9
7

1
5
0

1
0
3

9
5

7
8

1
1
9

1
1
0

6
4

1
4
4

1
7
0

1
7
1

1
0
9

1
8
2

1
9
3

9
5

8
7

1
0
7

2
2
6

1
9
2

1
4
6

5
7
1

-0
.0

4
-0

.0
2

0
0
.0

1
0

-0
.0

2
-0

.0
3

0
.0

3
0

0
.0

1
-0

.0
1

-0
.0

1
0
.0

1
0
.0

1
0
.0

8
0
.0

1
0
.0

2
0

0
.0

1
0
.0

1

5
7
2

-0
.0

6
-0

.0
3

0
.1

2
0
.2

2
0

-0
.0

3
-0

.0
3

0
.0

6
0

-0
.0

3
-0

.0
6

-0
.0

3
-0

.0
1

-0
.0

2
0
.0

6
0
.2

5
0
.1

5
-0

.0
1

-0
.0

1
-0

.0
3

5
7
3

-0
.0

1
-0

.0
1

-0
.0

2
-0

.0
1

0
-0

.0
1

0
.0

2
-0

.0
1

-0
.0

1
-0

.0
1

-0
.0

2
0

-0
.0

1
0

0
.2

6
-0

.0
2

-0
.0

1
0

0
0
.0

1

5
7
4

0
.0

1
-0

.0
1

-0
.0

1
0
.0

8
0

0
.0

1
0
.1

4
-0

.0
1

0
-0

.0
3

-0
.0

6
0
.0

1
-0

.0
1

-0
.0

1
0
.0

5
0
.0

2
-0

.0
1

0
.0

1
-0

.0
1

-0
.0

2

5
7
5

-0
.0

2
-0

.0
2

-0
.0

2
0
.0

5
0

0
.0

4
0
.0

9
-0

.0
2

0
.0

1
-0

.0
2

-0
.0

3
-0

.0
2

-0
.0

1
0
.0

1
0

0
0
.0

1
0

-0
.0

1
0

5
7
6

0
.0

2
0
.0

2
-0

.0
2

-0
.0

3
0

0
-0

.0
4

-0
.0

3
-0

.0
1

0
.0

7
0
.0

6
-0

.0
2

0
.0

1
0
.0

4
0

-0
.0

3
-0

.0
1

0
.0

1
0
.0

2
0
.1

5
7
7

0
.0

4
0
.0

1
-0

.0
2

-0
.0

3
0
.0

1
0

-0
.0

1
-0

.0
3

-0
.0

1
0
.0

3
0
.0

7
-0

.0
1

0
.0

1
0
.0

2
-0

.0
1

-0
.0

2
-0

.0
1

0
.0

2
0
.0

2
0
.0

1

5
7
8

0
.0

5
0
.0

1
0

-0
.0

2
0

0
0

-0
.0

3
0

0
0
.0

7
0
.0

2
0
.0

3
0

-0
.0

1
-0

.0
1

-0
.0

2
0

0
-0

.0
1

5
7
9

0
.0

1
0
.0

3
-0

.0
1

-0
.0

2
0

0
.0

1
0
.0

4
-0

.0
3

0
0
.0

1
0
.0

2
0
.0

7
0

-0
.0

1
-0

.0
1

-0
.0

1
0

0
-0

.0
1

0

5
8
0

0
.0

3
0
.0

1
0
.0

1
-0

.0
2

0
0

0
.0

1
-0

.0
3

0
.0

1
-0

.0
1

0
.0

3
0
.0

2
0

0
.0

1
0

0
.0

1
0
.0

2
0

0
.0

1
-0

.0
2

C
o
n
ti
n
u
ed

o
n

n
e
x
t
p
a
g
e



Amino Acid Scales 204

T
a
b
le

B
.2

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
v
io
u
s
p
a
g
e

I
D

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

5
8
1

-0
.0

1
-0

.0
1

0
.0

5
-0

.0
1

0
0

-0
.0

3
0
.3

1
0
.0

2
-0

.0
3

-0
.0

2
0

-0
.0

1
0

0
0
.0

1
-0

.0
1

-0
.0

1
0

-0
.0

3

5
8
2

-0
.0

5
0

0
.0

2
-0

.0
1

0
-0

.0
1

-0
.0

2
0
.3

1
0

-0
.0

2
-0

.0
5

0
.0

1
-0

.0
1

-0
.0

1
0
.1

8
-0

.0
1

-0
.0

1
-0

.0
1

-0
.0

1
-0

.0
2

5
8
3

-1
.2

9
-0

.1
3

-5
.2

3
-6

.5
5

-1
.0

1
-5

.3
-6

.3
4

-1
.3

6
-4

.1
7

-1
.0

3
-1

.0
6

-0
.1

3
-0

.6
5

-0
.8

-0
.6

6
-4

.3
6

-4
.6

-0
.7

4
-4

.1
7

-0
.8

4

5
8
4

-0
.3

6
-5

.4
6

-6
.3

-6
.7

7
-1

.1
8

-5
.9

8
-6

.3
2

-1
.1

3
-5

.4
9

-0
.8

6
-0

.7
6

-5
.5

-0
.8

9
-0

.9
9

-0
.8

5
-5

.4
9

-5
.4

6
-5

.0
4

-5
.4

3
-0

.7
6

5
8
5

-0
.7

9
-5

.2
1

-3
.7

3
-1

.5
2

-0
.6

2
-3

.4
-0

.7
4

-0
.2

-4
.1

6
-0

.5
8

-0
.6

6
-5

.2
9

-0
.5

9
-1

.0
9

-0
.6

6
-4

.2
7

-4
.5

8
-4

.6
1

-4
.4

2
-0

.6
6

5
8
6

-0
.9

9
-7

.9
8

-4
.6

9
-1

.4
9

-1
.9

9
-4

.9
5

-1
.9

-2
.3

6
-8

.7
-1

.6
4

-1
.6

3
-6

.3
4

-1
.5

2
-2

.3
4

-2
.3

8
-2

.7
5

-3
.6

4
-6

-6
.1

-1
.2

5
8
7

-1
.1

8
-2

.9
9

-9
.3

5
-9

.3
9

-1
.9

3
-9

.3
-7

.1
6

-2
.8

5
-6

.4
1

-2
.0

4
-2

.8
7

-2
.3

8
-1

.8
9

-1
.4

2
-1

.9
-2

.6
4

-4
.2

4
-4

.6
7

-3
.2

1
-2

.0
9

5
8
8

-1
.4

1
-0

.3
3

-7
.2

4
-1

3
.8

4
-1

.5
5

-1
0
.0

2
-1

3
.3

9
-0

.4
6

-9
.0

3
-0

.7
6

-0
.7

4
-0

.3
4

-0
.7

7
-1

.2
-0

.9
-4

.1
4

-4
.8

7
-3

.8
5

-1
.4

9
-1

.3

5
8
9

4
4
5

6
0
6

4
9
2

4
8
3

4
7
4

5
3
2

5
2
9

4
1
3

5
4
4

5
2
9

5
4
0

5
5
9

5
4
5

5
9
0

4
8
3

4
5
4

4
7
2

6
4
9

6
0
0

4
9
0

5
9
0

2
4
2

2
7
8

2
9
5

3
1
4

2
3
3

3
0
7

3
4
0

2
5
0

2
5
6

2
2
7

2
2
4

3
0
2

2
1
9

2
1
8

2
3
6

3
0
0

2
8
7

2
7
3

2
5
0

2
2
6

5
9
1

2
4
5

3
2
2

2
6
3

2
6
1

2
5
0

2
9
0

2
8
9

2
2
5

2
8
3

2
7
3

2
9
1

2
9
9

2
7
7

2
9
8

2
7
8

2
5
4

2
5
6

3
1
3

3
0
3

2
5
3

5
9
2

4
3
5

4
8
5

4
9
4

5
3
2

4
1
7

5
2
9

5
8
2

4
4
9

4
4
5

4
0
1

3
9
8

5
3
9

3
9
1

3
8
8

4
2
1

5
1
5

4
9
1

4
1
6

4
6
3

4
0
4

5
9
3

9
2

1
8
2

1
4
5

1
6
9

1
2
0

1
5
8

1
6
8

9
1

1
5
3

1
2
8

1
2
7

1
4
7

1
2
9

1
6
1

9
8

9
7

1
1
0

2
1
4

1
6
9

1
1
4

5
9
4

1
4
6

2
7
3

2
3
0

2
6
9

1
8
2

2
5
1

2
7
3

1
3
5

2
3
0

1
9
1

1
9
0

2
2
8

1
8
3

2
3
7

2
2
1

1
6
2

1
7
9

2
6
1

2
5
2

1
6
5

5
9
5

-0
.9

6
0
.8

0
.8

2
1

-0
.5

5
0
.7

8
0
.9

4
-0

.8
8

0
.6

7
-0

.9
4

-0
.9

0
.6

-0
.8

2
-0

.8
5

-0
.8

1
0
.4

1
0
.4

0
.0

6
0
.3

1
-1

5
9
6

-0
.7

6
0
.6

3
-0

.5
7

-0
.8

9
-0

.4
7

-0
.3

-0
.5

4
-1

-0
.1

1
-0

.0
5

0
.0

3
0
.1

0
.0

3
0
.4

8
-0

.4
-0

.8
2

-0
.6

4
1

0
.4

2
-0

.4
3

5
9
7

0
.3

1
0
.9

9
0
.0

2
-1

0
.1

9
-0

.3
8

-0
.9

9
0
.4

9
0
.3

7
-0

.1
8

-0
.2

4
1

-0
.0

8
-0

.5
8

-0
.0

7
0
.5

7
0
.3

7
-0

.4
7

-0
.2

-0
.1

4

5
9
8

0
.6

6
9

1
.0

4
2
.3

5
2
.0

6
0
.9

4
5

1
.0

7
0
.7

8
7

0
.6

2
1

1
.5

5
0
.5

1
1

0
.8

8
5

0
.9

7
7

0
.9

6
5

1
.2

0
.4

7
4

1
.0

1
1
.3

2
1
.0

2
1
.2

4
0
.4

2
1

5
9
9

1
.1

1
1
.0

3
1
.0

9
1
.1

6
0
.8

7
8

1
.1

5
1
.2

5
0
.4

8
2

1
.0

5
0
.5

6
1

1
.0

7
1
.1

3
1
.0

6
0
.7

7
2

1
.3

8
1
.4

3
1
.0

9
1
.0

4
0
.7

8
1

0
.5

7
2

6
0
0

1
.4

4
1
.2

0
.6

5
5

0
.8

8
1

0
.7

0
4

1
.2

6
1
.3

7
0
.4

3
2

0
.8

3
2

1
.0

9
1
.2

9
1
.1

7
1
.2

3
0
.9

5
2

0
.6

2
1

0
.7

4
5

0
.7

6
1

1
.0

8
0
.9

1
5

0
.9

5
5

6
0
1

0
.9

3
1

0
.8

8
1
.0

7
0
.8

2
2

1
.7

9
0
.6

4
0
.5

1
7

1
.7

5
1
.2

8
0
.4

8
7

0
.2

9
9

0
.6

2
0
.9

3
1

1
.6

5
0
.0

1
3

2
.0

5
1
.8

4
1
.4

4
1
.7

5
0
.7

4

6
0
2

1
.0

8
1
.2

4
0
.6

5
0
.4

6
9

1
.2

8
1
.0

6
0
.8

5
2

0
.3

8
8

1
.3

4
1
.2

1
0
.6

7
3

0
.9

8
4

1
.3

1
1
.4

2
0
.0

0
7

1
.4

4
1
.4

2
1
.0

5
1
.5

3
1
.5

7

6
0
3

0
.8

2
8

0
.9

6
8

2
.6

8
2
.0

7
1
.8

9
1
.1

2
0
.8

2
8

0
.2

8
4

2
.0

6
0
.7

4
7

0
.6

1
9

0
.9

4
9

1
.2

3
1
.1

4
0
.0

0
6

1
.1

3
0
.7

5
1

1
.1

6
1
.1

2
0
.7

8
9

6
0
4

0
.5

1
8

0
.8

5
1
.0

1
0
.9

2
6

1
.5

2
0
.8

7
6

0
.5

9
8

1
.5

2
0
.8

6
2

0
.7

4
7

0
.7

8
1

0
.8

9
8

0
.6

9
4

1
.0

6
0
.2

7
8

1
.4

7
2
.5

1
0
.9

4
1

1
.2

3
0
.8

9
5

6
0
5

0
.5

3
8

0
.8

8
2

0
.6

6
7

0
.5

3
7

1
.2

3
0
.8

4
0
.7

2
7

0
.2

0
6

0
.9

2
6

2
.1

9
1
.2

9
0
.8

5
6

0
.9

8
2

1
.4

4
0
.0

7
1

0
.7

3
1

1
.3

2
1
.2

1
1
.4

1
2
.2

8

6
0
6

0
.5

2
9

0
.9

2
1

2
2
.0

1
1
.4

6
0
.8

4
7

0
.6

9
7

0
.1

8
4

1
.6

4
1
.5

9
1
.0

3
0
.8

5
7

0
.9

6
1
.5

0
.0

9
9
7

0
.6

3
5

0
.7

4
6

1
.0

9
1
.2

4
1
.3

7

6
0
7

0
.7

6
2

0
.5

7
8

0
.8

9
9

1
.2

5
1
.1

3
0
.6

0
9

0
.4

8
4

1
.7

3
0
.6

2
9

0
.2

3
7

0
.5

2
1

0
.6

1
0
.5

2
4

0
.4

6
5

4
.3

8
2

1
.4

8
0
.5

4
2

0
.5

2
1

0
.2

7
5

6
0
8

0
.9

9
6

0
.8

4
6

0
.7

9
1

1
.0

5
1
.2

1
0
.7

8
3

0
.8

6
6

0
.2

9
7

0
.8

4
9

0
.8

7
3

0
.9

4
5

0
.9

4
9

0
.8

4
2

0
.8

2
9

3
.8

2
1
.0

2
0
.7

9
2

1
.0

2
0
.8

4
8

0
.8

8
7

6
0
9

0
.7

4
4

0
.8

1
2

2
.1

3
2
.5

1
1
.3

8
0
.7

7
8

0
.8

8
1

0
.3

9
5

1
.0

5
0
.7

9
5

0
.8

7
9

0
.9

0
4

0
.8

1
5

0
.8

4
1

2
.4

0
.7

2
5

0
.4

4
2

0
.8

2
8

0
.6

6
9

0
.7

3

6
1
0

0
.3

0
7

0
.5

8
2

2
.5

3
1
.1

7
0
.5

0
.6

5
5

0
.4

7
3

7
.0

7
1
.0

4
0
.0

4
9

0
.1

9
8

0
.7

8
5

0
.3

3
0
.4

6
5

0
.0

0
6

0
.4

7
5

0
.1

5
2

0
.2

7
7

0
.4

0
2

0
.0

6
5

6
1
1

0
.2

8
8

0
.2

5
6

0
.2

6
6

0
.3

2
1

0
.2

2
6

0
.1

7
6

0
.2

0
4

1
0
.9

0
.3

1
2

0
.0

8
2
5

0
.1

2
4

0
.2

6
9

0
.2

3
4

0
.1

4
3

0
.0

2
0
5

0
.4

3
6

0
.1

9
2

0
.1

5
0
.1

4
7

0
.0

9
3
5

6
1
2

0
.7

4
6

0
.9

9
6

1
.4

8
1
.1

9
1
.1

2
0
.9

0
.9

7
7

1
.9

1
1
.3

2
0
.6

5
9

0
.7

1
2

1
.0

7
0
.6

6
8

0
.8

4
1

0
.6

9
7

1
.1

1
1
.1

1
0
.6

3
9

0
.9

7
6

0
.6

8
9

6
1
3

-0
.9

9
0
.2

8
0
.7

7
0
.7

4
0
.3

4
0
.1

2
0
.5

9
-0

.7
9

0
.0

8
-0

.7
7

-0
.9

2
-0

.6
3

-0
.8

0
.8

7
-0

.9
9

0
.9

9
0
.4

2
-0

.1
3

0
.5

9
-0

.9
9

6
1
4

-0
.6

1
-0

.9
9

-0
.2

4
-0

.7
2

0
.8

8
-0

.9
9

-0
.5

5
-0

.9
9

-0
.7

1
0
.6

7
0
.3

1
0
.2

5
0
.4

4
0
.6

5
-0

.9
9

0
.4

0
.2

1
0
.7

7
0
.3

3
0
.2

7

6
1
5

0
-0

.2
2

0
.5

9
-0

.3
5

0
.3

5
-0

.9
9

-0
.9

9
0
.1

0
.6

8
-0

.3
7

-0
.9

9
0
.5

-0
.7

1
-0

.5
3

-0
.9

9
0
.3

7
0
.9

7
-0

.9
-0

.9
9

-0
.5

2

6
1
6

0
.1

5
-1

.4
7

-0
.9

9
-1

.1
5

0
.1

8
-0

.9
6

-1
.1

8
-0

.2
-0

.4
3

1
.2

7
1
.3

6
-1

.1
7

1
.0

1
1
.5

2
0
.2

2
-0

.6
7

-0
.3

4
1
.5

0
.6

1
0
.7

6

6
1
7

-1
.1

1
1
.4

5
0

0
.6

7
-1

.6
7

0
.1

2
0
.4

-1
.5

3
-0

.2
5

-0
.1

4
0
.0

7
0
.7

-0
.5

3
0
.6

1
-0

.1
7

-0
.8

6
-0

.5
1

2
.0

6
1
.6

-0
.9

2

C
o
n
ti
n
u
ed

o
n

n
e
x
t
p
a
g
e



Amino Acid Scales 205

T
a
b
le

B
.2

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
v
io
u
s
p
a
g
e

I
D

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

6
1
8

-1
.3

5
1
.2

4
-0

.3
7

-0
.4

1
-0

.4
6

0
.1

8
0
.1

-2
.6

3
0
.3

7
0
.3

0
.2

6
0
.7

0
.4

3
0
.9

6
-0

.5
-1

.0
7

-0
.5

5
1
.7

9
1
.1

7
-0

.1
7

6
1
9

-0
.9

2
1
.2

7
0
.6

9
-0

.0
1

-0
.2

1
0
.1

6
0
.3

6
2
.2

8
0
.1

9
-1

.8
-0

.8
0
.8

0
-0

.1
6

0
.0

5
-0

.4
1

-1
.0

6
0
.7

5
0
.7

3
-1

.9
1

6
2
0

0
.0

2
1
.5

5
-0

.5
5

-2
.6

8
0

0
.0

9
-2

.1
6

-0
.5

3
0
.5

1
0
.3

0
.2

2
1
.6

4
0
.2

3
0
.2

5
-0

.0
1

-0
.3

2
-0

.0
6

0
.7

5
0
.5

3
0
.2

2

6
2
1

-0
.9

1
1
.4

7
0
.8

5
1
.3

1
1
.2

0
.4

2
-0

.1
7

-1
.1

8
1
.2

8
-1

.6
1

-1
.3

7
0
.6

7
0
.1

0
.2

8
-1

.3
4

0
.2

7
-0

.0
1

-0
.1

3
0
.2

5
-1

.4

6
2
2

0
.3

6
1
.3

0
.7

3
0
.0

3
-1

.6
1

-0
.2

0
.9

1
2
.0

1
0
.9

3
-0

.1
6

0
.0

8
1
.6

3
-0

.8
6

-1
.3

3
-0

.1
9

-0
.6

4
-0

.7
9

-1
.0

1
-0

.9
6

-0
.2

4

6
2
3

-0
.4

8
0
.8

3
-0

.8
0
.5

6
-0

.1
9

-0
.4

1
0
.0

2
-1

.3
4

0
.6

5
-0

.1
3

-0
.6

2
0
.1

3
-0

.6
8

-0
.2

3
.5

6
0
.1

1
0
.3

9
-0

.8
5

-0
.5

2
-0

.0
3

6
2
4

0
.3

4
-0

.0
8

-0
.1

6
0
.0

4
-0

.5
1

-0
.1

6
0
.0

3
0
.1

9
-0

.2
1

-0
.4

5
-0

.4
5

-0
.2

-0
.4

7
-0

.4
7

0
.1

7
0
.1

6
0
.1

8
-0

.5
1

-0
.3

4
-0

.0
6

6
2
5

-0
.0

8
0
.6

5
0
.0

1
-0

.0
6

-0
.3

5
0
.1

5
-0

.0
2

0
.2

0
.1

1
-0

.8
2

-0
.7

4
0
.0

4
-0

.8
3

-0
.7

9
0
.1

4
0
.0

5
0

-0
.2

6
-0

.3
1

-0
.5

4

6
2
6

-0
.1

6
0
.0

1
0
.3

8
0
.2

-0
.4

6
0
.2

0
.1

9
-0

.1
1

0
.2

1
-0

.8
3

-0
.9

0
.3

8
-0

.9
7

-0
.7

1
-0

.1
2

-0
.0

2
0
.1

1
-0

.7
9

0
.1

2
-0

.6
9

6
2
7

0
.0

4
-0

.0
6

0
.2

0
.3

6
-0

.4
1

0
.1

6
0
.3

2
0
.1

5
0
.1

8
-0

.7
8

-0
.7

5
0
.1

6
-0

.9
-0

.6
2

-0
.1

5
-0

.1
4

-0
.1

-0
.6

4
0
.0

9
-0

.3
9

6
2
8

-0
.5

1
-0

.3
5

-0
.4

6
-0

.4
1

1
.0

2
-0

.7
4

-0
.6

4
-0

.1
8

-0
.2

9
-0

.1
3

-0
.0

2
-0

.8
1

-0
.2

9
0
.3

9
-0

.6
5

-0
.2

-0
.6

2
0
.8

2
0
.4

-0
.1

9

6
2
9

-0
.1

6
0
.1

5
0
.2

0
.1

6
-0

.7
4

0
.4

8
0
.2

5
-0

.1
4

0
.3

7
-0

.9
5

-0
.7

4
0
.3

-0
.9

7
-0

.8
5

0
.1

5
-0

.2
-0

.0
7

-0
.8

3
-0

.0
2

-0
.6

8

6
3
0

0
.0

3
-0

.0
2

0
.1

9
0
.3

2
-0

.6
4

0
.2

5
0
.3

6
0
.1

3
0
.1

3
-0

.8
6

-0
.8

0
.2

5
-0

.8
7

-0
.8

1
-0

.1
3

-0
.1

9
-0

.0
9

-0
.6

6
-0

.1
1

-0
.4

2

6
3
1

0
.1

9
0
.2

-0
.1

1
0
.1

5
-0

.1
8

-0
.1

4
0
.1

3
0
.4

3
-0

.1
9

-0
.5

8
-0

.5
6

-0
.1

6
-0

.6
1

-0
.5

2
-0

.1
4

0
-0

.0
9

-0
.1

5
-0

.3
5

-0
.1

5

6
3
2

-0
.2

1
0
.1

1
0
.2

1
0
.1

8
-0

.2
9

0
.3

7
0
.1

3
-0

.1
9

0
.5

4
-0

.6
9

-0
.5

0
.1

4
-0

.8
6

-0
.4

3
0
.1

4
-0

.1
5

-0
.1

3
-0

.7
0
.3

5
-0

.5
9

6
3
3

-0
.4

5
-0

.8
2

-0
.8

3
-0

.7
8

-0
.1

3
-0

.9
5

-0
.8

6
-0

.5
8

-0
.6

9
0
.7

5
0
.4

8
-1

.0
1

0
.6

7
0
.4

5
-0

.7
8

-0
.6

8
-0

.5
9

-0
.2

3
-0

.3
5

0
.4

1

6
3
4

-0
.4

5
-0

.7
4

-0
.9

-0
.7

5
-0

.0
2

-0
.7

4
-0

.8
-0

.5
6

-0
.5

0
.4

8
0
.6

1
-1

.0
6

0
.5

0
.4

8
-0

.6
7

-0
.7

-0
.7

7
0
.1

3
-0

.2
7

0
.4

1

6
3
5

-0
.2

0
.0

4
0
.3

8
0
.1

6
-0

.8
1

0
.3

0
.2

5
-0

.1
6

0
.1

4
-1

.0
1

-1
.0

6
0
.4

9
-1

.0
3

-1
.0

3
-0

.1
4

-0
.1

4
0
.0

9
-0

.9
2

-0
.1

2
-0

.7
9

6
3
6

-0
.4

7
-0

.8
3

-0
.9

7
-0

.9
-0

.2
9

-0
.9

7
-0

.8
7

-0
.6

1
-0

.8
6

0
.6

7
0
.5

-1
.0

3
0
.9

7
0
.3

5
-0

.8
2

-0
.7

5
-0

.6
1

0
.0

4
-0

.5
6

0
.4

1

6
3
7

-0
.4

7
-0

.7
9

-0
.7

1
-0

.6
2

0
.3

9
-0

.8
5

-0
.8

1
-0

.5
2

-0
.4

3
0
.4

5
0
.4

8
-1

.0
3

0
.3

5
0
.6

1
-0

.7
6

-0
.5

3
-0

.7
5

0
.2

5
0
.1

4
0
.3

6

6
3
8

0
.1

7
0
.1

4
-0

.1
2

-0
.1

5
-0

.6
5

0
.1

5
-0

.1
3

-0
.1

4
0
.1

4
-0

.7
8

-0
.6

7
-0

.1
4

-0
.8

2
-0

.7
6

0
.5

6
0
.2

4
0
.2

5
-0

.7
1

-0
.2

-0
.4

7

6
3
9

0
.1

6
0
.0

5
-0

.0
2

-0
.1

4
-0

.2
-0

.2
-0

.1
9

0
-0

.1
5

-0
.6

8
-0

.7
-0

.1
4

-0
.7

5
-0

.5
3

0
.2

4
0
.4

8
0
.2

8
-0

.2
9

-0
.0

4
-0

.4
4

6
4
0

0
.1

8
0

0
.1

1
-0

.1
-0

.6
2

-0
.0

7
-0

.0
9

-0
.0

9
-0

.1
3

-0
.5

9
-0

.7
7

0
.0

9
-0

.6
1

-0
.7

5
0
.2

5
0
.2

8
0
.4

5
-0

.7
-0

.2
7

-0
.4

4

6
4
1

-0
.5

1
-0

.2
6

-0
.7

9
-0

.6
4

0
.8

2
-0

.8
3

-0
.6

6
-0

.1
5

-0
.7

-0
.2

3
0
.1

3
-0

.9
2

0
.0

4
0
.2

5
-0

.7
1

-0
.2

9
-0

.7
1
.4

2
0

-0
.1

7

6
4
2

-0
.3

4
-0

.3
1

0
.1

2
0
.0

9
0
.4

-0
.0

2
-0

.1
1

-0
.3

5
0
.3

5
-0

.3
5

-0
.2

7
-0

.1
2

-0
.5

6
0
.1

4
-0

.2
-0

.0
4

-0
.2

7
0

0
.8

4
-0

.3
9

6
4
3

-0
.0

6
-0

.5
4

-0
.6

9
-0

.3
9

-0
.1

9
-0

.6
8

-0
.4

2
-0

.1
5

-0
.5

9
0
.4

1
0
.4

1
-0

.7
9

0
.4

1
0
.3

6
-0

.4
7

-0
.4

4
-0

.4
4

-0
.1

7
-0

.3
9

0
.5

4



Appendix C

CoEPrA Peptide Binding Affinity

Data Sets

Publicly available peptide binding affinity data sets obtained from the literature are used

in the experimental studies of this thesis. The peptide binding affinity data sets are

obtained from a modeling competition [285]. Each task has a separate train (Table C.1)

and test data set (Table C.2). A blind-validated experimental study conducted on these

data sets. The columns correspond to peptide no, peptide residue, and expected real-

value of binding affinity. The supplementary information of this thesis is accessible

online at: https://github.com/vuslan/pepbnd.
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Table C.1: List of peptides used to train the models of peptide binding affinity tasks.

Train Set of Task 1

No. Peptide Expected No. Peptide Expected

1 ILDPFPVTD 2.94 46 IYDPFPVTV 5.41

2 ILDPFPVTY 3.19 47 YLSPGPVTA 5.44

3 ILDPFPVTH 3.60 48 LLFGYPVYV 5.45

4 SLHVGTQCA 3.79 49 YLFDGPVTA 5.50

5 HLLVGSSGL 3.91 50 ILDPFPVTT 5.54

6 NLQSLTNLL 3.96 51 RLWPLYPNV 5.57

7 SLNFMGYVI 4.00 52 YLFPGPVWA 5.59

8 ITSQVPFSV 4.06 53 YAIDLPVSV 5.63

9 VCMTVDSLV 4.20 54 YLFNGPVTV 5.65

10 LLMGTLGIV 4.21 55 ILDPFPVTF 5.67

11 ALIHHNTHL 4.30 56 YLWPGPVTV 5.70

12 MLDLQPETT 4.36 57 RLWPFYHNV 5.72

13 YVITTQHWL 4.39 58 YLAPGPVTA 5.74

14 ITFQVPFSV 4.42 59 IADPFPVTV 5.76

15 KTWGQYWQV 4.43 60 YLYPGPVTA 5.77

16 ITDQVPFSV 4.48 61 YLFPGPETA 5.81

17 LLAQFTSAI 4.51 62 ILDPFPVTP 5.82

18 VLHSFTDAI 4.54 63 FLWPFYPNV 5.89

19 ILDPFPVTK 4.59 64 FLDQVPFSV 5.98

20 YMNGTMSQV 4.67 65 FLWPFYHNV 5.99

21 ILDPFPVTW 4.71 66 ILWPLFHEV 6.03

22 FTDQVPFSV 4.76 67 ILWPLYPNV 6.06

23 KLHLYSHPI 4.77 68 ILDQVPFSV 6.09

24 ILDPFPVTS 4.78 69 ILNPFYPDV 6.11

25 YTDQVPFSV 4.80 70 FLWPLYPNV 6.14

26 IFDPFPVTV 4.89 71 FLNPFYPNV 6.16

27 CLTSTVQLV 4.93 72 FLNPIYHDV 6.16

28 YLWQYIFSV 4.94 73 YLFPGTVTA 6.16

29 IHDPFPVTV 4.96 74 YLCPGPVTA 6.18

Continued on next page
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Table C.1 – Continued from previous page

No. Peptide Expected No. Peptide Expected

30 RLMKQDFSV 4.97 75 YLFPPPVTV 6.19

31 VMGTLVALV 5.03 76 ILFPGPVTA 6.23

32 ILYQVPFSV 5.06 77 IIDPFPVTV 6.31

33 IPDPFPVTV 5.10 78 ILDPFPVTA 6.32

34 GLLGWSPQA 5.13 79 FLWPIYHNV 6.37

35 GLYSSTVPV 5.15 80 ILFPFVHSV 6.58

36 IISCTCPTV 5.17 81 ILDPFPVTG 6.66

37 FLCKQYLNL 5.21 82 YLFPFPITV 6.68

38 YLFPGPVTG 5.22 83 ILFPFPVEV 6.80

39 GTLGIVCPI 5.23 84 ILDDFPPTV 7.08

40 RLWPFYPNV 5.24 85 ILDPLPPTV 7.15

41 YLKPGPVTA 5.26 86 IMDPFPVTV 7.21

42 YLMPGPVTA 5.27 87 ILDPFPPPV 7.44

43 YMLDLQPET 5.28 88 ILDPFPITV 8.14

44 PLLPIFFCL 5.32 89 ILDPFPVTV 8.65

45 RLNPLYPNV 5.37

Train Set of Task 2

No. Peptide Expected No. Peptide Expected

1 FESTGNLD 5.010 39 FESTNNLI 7.748

2 FKSTGNLI 5.026 40 FDSTGNLI 7.814

3 FESTGNLR 5.232 41 FESTSNLI 7.821

4 FFSTGNLI 5.421 42 FESTWNLI 7.832

5 FESTGNLQ 5.687 43 FGSTGNLI 7.846

6 FESTGNLH 6.000 44 FESTGWLI 7.872

7 FESTGNLG 6.051 45 FESTINLI 7.887

8 FISTGNLI 6.329 46 FESDGNLI 7.890

9 QTFVVGCI 6.796 47 FESTLNLI 7.898

10 NEKSFKDI 6.910 48 FESTVNLI 7.912

11 FQSTGNLI 7.013 49 LEILNGEI 7.921

12 FLSTGNLI 7.088 50 FESTGKLI 7.927

13 FESTGNKI 7.159 51 DGLGGKLV 7.959

Continued on next page
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Table C.1 – Continued from previous page

No. Peptide Expected No. Peptide Expected

14 FESTGNLM 7.212 52 FESEGNLI 7.972

15 FESTGNDI 7.290 53 FESKGNLI 7.978

16 FESTGNLW 7.293 54 FEHTGNLN 7.982

17 KESTGNLI 7.308 55 FESWGNLI 7.989

18 FESTGNPI 7.410 56 FESTANLI 7.994

19 PESTGNLI 7.426 57 FEFTGNLN 8.000

20 FESTGNLA 7.455 58 FESTGVLI 8.023

21 FESTGNNI 7.521 59 FESAGNLI 8.031

22 FESTGNLS 7.525 60 FESPGNLI 8.042

23 FESTGNEI 7.541 61 FESTGNFI 8.044

24 VESTGNLI 7.545 62 FESTGNLI 8.046

25 FESTGNII 7.551 63 FESFGNLI 8.085

26 FESTGELI 7.593 64 FESRGNLI 8.095

27 HESTGNLI 7.607 65 FESYGNLI 8.099

28 FESTGNQI 7.612 66 FESTPNLI 8.141

29 AESTGNLI 7.624 67 FEATGNLN 8.178

30 SESTGNLI 7.641 68 FEDTGNLN 8.199

31 GESTGNLI 7.665 69 FEQTGNLN 8.217

32 FESTGDLI 7.683 70 FESTGRLI 8.222

33 IESTGNLI 7.715 71 FENTGNLN 8.224

34 MESTGNLI 7.716 72 FESVGNLI 8.230

35 QESTGNLI 7.727 73 FESIGNLI 8.239

36 NESTGNLI 7.736 74 FEGTGNLN 8.265

37 WESTGNLI 7.740 75 FERTGNLN 8.300

38 FESTGNHI 7.742 76 FELTGNLN 8.343

Train Set of Task 3

No. Peptide Expected No. Peptide Expected

1 VVHFFKNIV 4.301 68 VLLDYQGML 7.095

2 VCMTVDSLV 5.146 69 LMIGTAAAV 7.102

3 LLGCAANWI 5.301 70 TVLRFVPPL 7.114

4 SAANDPIFV 5.342 71 NLGNLNVSI 7.119

Continued on next page
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Table C.1 – Continued from previous page

No. Peptide Expected No. Peptide Expected

5 TTAEEAAGI 5.380 72 ILHNGAYSL 7.127

6 LTVILGVLL 5.580 73 SIISAVVGI 7.159

7 LVSLLTFMI 5.716 74 VLAKDGTEV 7.174

8 QMTFHLFIA 5.778 75 YLEPGPVTI 7.187

9 ALPYWNFAT 5.820 76 FLYNRPLSV 7.212

10 FVTWHRYHL 5.869 77 FLWGPRALV 7.215

11 SLNFMGYVI 5.881 78 ILDQVPFSV 7.284

12 GIGILTVIL 6.000 79 ILSSLGLPV 7.301

13 IVMGNGTLV 6.001 80 LLFLGVVFL 7.301

14 SLSRFSWGA 6.041 81 YLVAYQATV 7.304

15 TVILGVLLL 6.072 82 YLEPGPVTV 7.342

16 WTDQVPFSV 6.145 83 ILSPFMPLL 7.347

17 AIAKAAAAV 6.176 84 YLSPGPVTA 7.383

18 ITSQVPFSV 6.196 85 IIDQVPFSV 7.398

19 ALAKAAAAI 6.211 86 YMNGTMSQV 7.398

20 GLGQVPLIV 6.301 87 FLCWGPFFL 7.415

21 LLSSNLSWL 6.342 88 LLFRFMRPL 7.447

22 SIIDPLIYA 6.342 89 ITWQVPFSV 7.457

23 YLVTRHADV 6.342 90 LLAVLYCLL 7.478

24 LIGNESFAL 6.380 91 GIRPYEILA 7.481

25 FLLPDAQSI 6.415 92 GLFLTTEAV 7.509

26 CLALSDLLV 6.447 93 YTYKWETFL 7.538

27 LLGRNSFEV 6.447 94 ALVGLFVLL 7.553

28 LLAVGATKV 6.477 95 SLDDYNHLV 7.583

29 MLLAVLYCL 6.478 96 FLLRWEQEI 7.592

30 AIYHPQQFV 6.504 97 SLLPAIVEL 7.620

31 ALAKAAAAL 6.511 98 YLSPGPVTV 7.642

32 FVNHRFTVV 6.523 99 GLIMVLSFL 7.658

33 WILRGTSFV 6.556 100 SLYADSPSV 7.658

34 TLDSQVMSL 6.580 101 RLLQETELV 7.682

35 GLYGAQYDV 6.602 102 IMDQVPFSV 7.719

Continued on next page
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Table C.1 – Continued from previous page

No. Peptide Expected No. Peptide Expected

36 MLASTLTDA 6.602 103 YLLPAIVHI 7.745

37 AIIDPLIYA 6.623 104 FLLLADARV 7.747

38 FLGGTPVCL 6.623 105 ALMDKSLHV 7.767

39 LMLPGMNGI 6.623 106 YLYPGPVTA 7.772

40 RLMIGTAAA 6.644 107 HMWNFISGI 7.818

41 LLFLLLADA 6.663 108 YLAPGPVTV 7.818

42 GTLGIVCPI 6.666 109 MLGTHTMEV 7.845

43 KLFPEVIDL 6.693 110 MTYAAPLFV 7.860

44 IAGGVMAVV 6.708 111 YLSQIAVLL 7.917

45 GLYRQWALA 6.733 112 YLMPGPVTV 7.932

46 MLQDMAILT 6.777 113 WLDQVPFSV 7.939

47 VILGVLLLI 6.785 114 SLYFGGICV 7.975

48 CLTSTVQLV 6.832 115 YLLALRYLA 8.000

49 ILLLCLIFL 6.845 116 SLLTFMIAA 8.027

50 DMWEHAFYL 6.879 117 GLMTAVYLV 8.051

51 ALTVVWLLV 6.893 118 FLLSLGIHL 8.053

52 LLPSLFLLL 6.903 119 FVVALIPLV 8.119

53 WMNRLIAFA 6.914 120 YLWPGPVTV 8.125

54 PLLPIFFCL 6.926 121 FLYGALRLA 8.149

55 ALAKAAAAA 6.947 122 LLLEAGALV 8.174

56 FLPWHRLFL 6.950 123 YLFPGPVTV 8.237

57 SLAGFVRML 6.954 124 ILFTFLHLA 8.268

58 TLGIVCPIC 6.964 125 RLPLVLPAV 8.292

59 KLTPLCVTL 6.991 126 YMDDVVLGV 8.301

60 LLCLIFLLV 6.996 127 GILTVILGV 8.342

61 RIWSWLLGA 7.000 128 NMVPFFPPV 8.403

62 SLLEIGEGV 7.009 129 FLYGAALLA 8.469

63 RLLDDTPEV 7.017 130 YLWPGPVTA 8.495

64 LLAGLVSLL 7.021 131 FLYGALALA 8.620

65 IAATYNFAV 7.032 132 FLDQVPFSV 8.658

66 YTDQVPFSV 7.066 133 ILWQVPFSV 8.770

Continued on next page
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No. Peptide Expected No. Peptide Expected

67 SVMDPLIYA 7.079

Train Set of Task 4

No. Peptide Expected No. Peptide Expected

1 VVHFFKNIV 4.301 68 VLLDYQGML 7.095

2 VCMTVDSLV 5.146 69 LMIGTAAAV 7.102

3 LLGCAANWI 5.301 70 TVLRFVPPL 7.114

4 SAANDPIFV 5.342 71 NLGNLNVSI 7.119

5 TTAEEAAGI 5.380 72 ILHNGAYSL 7.127

6 LTVILGVLL 5.580 73 SIISAVVGI 7.159

7 LVSLLTFMI 5.716 74 VLAKDGTEV 7.174

8 QMTFHLFIA 5.778 75 YLEPGPVTI 7.187

9 ALPYWNFAT 5.820 76 FLYNRPLSV 7.212

10 FVTWHRYHL 5.869 77 FLWGPRALV 7.215

11 SLNFMGYVI 5.881 78 ILDQVPFSV 7.284

12 GIGILTVIL 6.000 79 ILSSLGLPV 7.301

13 IVMGNGTLV 6.001 80 LLFLGVVFL 7.301

14 SLSRFSWGA 6.041 81 YLVAYQATV 7.304

15 TVILGVLLL 6.072 82 YLEPGPVTV 7.342

16 WTDQVPFSV 6.145 83 ILSPFMPLL 7.347

17 AIAKAAAAV 6.176 84 YLSPGPVTA 7.383

18 ITSQVPFSV 6.196 85 IIDQVPFSV 7.398

19 ALAKAAAAI 6.211 86 YMNGTMSQV 7.398

20 GLGQVPLIV 6.301 87 FLCWGPFFL 7.415

21 LLSSNLSWL 6.342 88 LLFRFMRPL 7.447

22 SIIDPLIYA 6.342 89 ITWQVPFSV 7.457

23 YLVTRHADV 6.342 90 LLAVLYCLL 7.478

24 LIGNESFAL 6.380 91 GIRPYEILA 7.481

25 FLLPDAQSI 6.415 92 GLFLTTEAV 7.509

26 CLALSDLLV 6.447 93 YTYKWETFL 7.538

27 LLGRNSFEV 6.447 94 ALVGLFVLL 7.553

28 LLAVGATKV 6.477 95 SLDDYNHLV 7.583

Continued on next page
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No. Peptide Expected No. Peptide Expected

29 MLLAVLYCL 6.478 96 FLLRWEQEI 7.592

30 AIYHPQQFV 6.504 97 SLLPAIVEL 7.620

31 ALAKAAAAL 6.511 98 YLSPGPVTV 7.642

32 FVNHRFTVV 6.523 99 GLIMVLSFL 7.658

33 WILRGTSFV 6.556 100 SLYADSPSV 7.658

34 TLDSQVMSL 6.580 101 RLLQETELV 7.682

35 GLYGAQYDV 6.602 102 IMDQVPFSV 7.719

36 MLASTLTDA 6.602 103 YLLPAIVHI 7.745

37 AIIDPLIYA 6.623 104 FLLLADARV 7.747

38 FLGGTPVCL 6.623 105 ALMDKSLHV 7.767

39 LMLPGMNGI 6.623 106 YLYPGPVTA 7.772

40 RLMIGTAAA 6.644 107 HMWNFISGI 7.818

41 LLFLLLADA 6.663 108 YLAPGPVTV 7.818

42 GTLGIVCPI 6.666 109 MLGTHTMEV 7.845

43 KLFPEVIDL 6.693 110 MTYAAPLFV 7.860

44 IAGGVMAVV 6.708 111 YLSQIAVLL 7.917

45 GLYRQWALA 6.733 112 YLMPGPVTV 7.932

46 MLQDMAILT 6.777 113 WLDQVPFSV 7.939

47 VILGVLLLI 6.785 114 SLYFGGICV 7.975

48 CLTSTVQLV 6.832 115 YLLALRYLA 8.000

49 ILLLCLIFL 6.845 116 SLLTFMIAA 8.027

50 DMWEHAFYL 6.879 117 GLMTAVYLV 8.051

51 ALTVVWLLV 6.893 118 FLLSLGIHL 8.053

52 LLPSLFLLL 6.903 119 FVVALIPLV 8.119

53 WMNRLIAFA 6.914 120 YLWPGPVTV 8.125

54 PLLPIFFCL 6.926 121 FLYGALRLA 8.149

55 ALAKAAAAA 6.947 122 LLLEAGALV 8.174

56 FLPWHRLFL 6.950 123 YLFPGPVTV 8.237

57 SLAGFVRML 6.954 124 ILFTFLHLA 8.268

58 TLGIVCPIC 6.964 125 RLPLVLPAV 8.292

59 KLTPLCVTL 6.991 126 YMDDVVLGV 8.301

Continued on next page
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No. Peptide Expected No. Peptide Expected

60 LLCLIFLLV 6.996 127 GILTVILGV 8.342

61 RIWSWLLGA 7.000 128 NMVPFFPPV 8.403

62 SLLEIGEGV 7.009 129 FLYGAALLA 8.469

63 RLLDDTPEV 7.017 130 YLWPGPVTA 8.495

64 LLAGLVSLL 7.021 131 FLYGALALA 8.620

65 IAATYNFAV 7.032 132 FLDQVPFSV 8.658

66 YTDQVPFSV 7.066 133 ILWQVPFSV 8.770

67 SVMDPLIYA 7.079
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Table C.2: List of peptides used to test the models of peptide binding affinity tasks.

Test Set of Task 1

No. Peptide Expected No. Peptide Expected

1 YLFNGPVTA 5.80 45 IWDPFPVTV 5.13

2 IMDQVPFSV 5.71 46 YLFPGPSTA 5.69

3 RLLQETELV 4.83 47 KIFGSLAFL 4.40

4 HLESLFTAV 3.79 48 YLFPDPVTA 6.09

5 ILDPFPPTV 8.17 49 TLHEYMLDL 4.94

6 ILDPFPVTL 7.03 50 GILTVILGV 4.57

7 FLLSLGIHL 5.17 51 YLFPPPVTA 5.75

8 LQTTIHDII 3.90 52 RLWPIYHDV 5.55

9 IQDPFPVTV 6.05 53 SLDDYNHLV 5.27

10 VLLDYQGML 4.52 54 LLWFHISCL 4.13

11 FLWPIYHDV 6.16 55 VLIQRNPQL 5.06

12 TLGIVCPIC 4.68 56 YLFPGPMTA 5.98

13 YLFPGPVQA 6.14 57 HLYSHPIIL 5.41

14 FVTWHRYHL 4.21 58 WILRGTSFV 4.06

15 FLFPLPPEV 6.53 59 ILDPIPPTV 7.30

16 YLFPGPVTA 6.31 60 VTWHRYHLL 4.38

17 NLSWLSLDV 4.75 61 YLFPCPVTA 6.63

18 YLAPGPVTV 6.00 62 FLLTRILTI 4.95

19 ALPYWNFAT 4.66 63 IGDPFPVTV 3.92

20 ILDPFPVTE 3.13 64 MLGTHTMEV 5.37

21 ILDPFPVTQ 5.28 65 YLFPGVVTA 6.17

22 IDDPFPVTV 4.36 66 ILDPFPVTI 6.69

23 GLGQVPLIV 4.76 67 ILWPIYHNV 6.24

24 ALMPLYACI 5.08 68 YLEPGPVTL 5.41

25 GLSRYVARL 4.78 69 YLFPGPFTA 5.65

26 ILDDLPPTV 7.14 70 KLPQLCTEL 4.50

27 ILNPFYHNV 6.16 71 ILDPFPVTN 5.29

28 YLFDGPVTV 4.96 72 YLWDHFIEV 6.36

29 YLFQGPVTA 5.21 73 YLWQYIPSV 5.17

Continued on next page
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No. Peptide Expected No. Peptide Expected

30 SLYADSPSV 5.24 74 ILKEPVHGV 5.59

31 YLNPGPVTA 5.53 75 ILKPLYHNV 5.25

32 RLWPIYHNV 5.77 76 ITAQVPFSV 4.43

33 RLNPFYHDV 4.24 77 YLFPGPFTV 5.81

34 FLKPFYHNV 5.73 78 YLFPGPMTV 5.85

35 ILDPFPVTM 6.13 79 TTAEEAAGI 3.39

36 IVDPFPVTV 6.21 80 FLFPGPVTA 6.18

37 LMAVVLASL 3.99 81 WLDQVPFSV 5.23

38 ITDPFPVTV 6.08 82 FLDDHFCTV 6.68

39 ILWQVPFSV 5.91 83 SVYDFFVWL 5.12

40 ITWQVPFSV 5.01 84 ILDPFPVTC 5.65

41 ICDPFPVTV 5.45 85 ILDPFPPEV 7.68

42 ALCRWGLLL 4.91 86 NMVPFFPPV 5.60

43 ILDDFPVTV 7.16 87 ISDPFPVTV 5.50

44 SIISAVVGI 4.47 88 INDPFPVTV 4.78

Test Set of Task 2

1 YESTGNLI 7.740 39 FESTGHLI 7.997

2 FESTRNLI 7.679 40 FYSTGNLI 5.592

3 FESTGFLI 8.267 41 FPSTGNLI 8.113

4 FESTGTLI 7.922 42 DESTGNLI 7.712

5 FESTQNLI 7.819 43 FESQGNLI 8.094

6 FEKTGNLN 7.904 44 FESTKNLI 7.304

7 FEWTGNLN 8.225 45 FESTGNLL 7.737

8 FESTGQLI 7.920 46 FEVTGNLN 8.223

9 FASTGNLI 7.429 47 FLHPSMPV 7.149

10 FMSTGNLI 6.863 48 FESTMNLI 7.888

11 FESLGNLI 8.403 49 FEITGNLN 8.197

12 FNSTGNLI 6.244 50 FWSTGNLI 5.325

13 FESTGNSI 7.612 51 FEPTGNLN 8.043

14 RESTGNLI 7.544 52 FESTGNLN 7.000

15 FESTGPLI 8.302 53 FHSTGNLI 5.122

Continued on next page
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No. Peptide Expected No. Peptide Expected

16 FESTDNLI 7.743 54 FEETGNLN 8.028

17 FESTGGLI 7.946 55 TESTGNLI 7.535

18 FTSTGNLI 7.547 56 FESTGNLK 5.010

19 FESTGNLT 7.293 57 FESTGSLI 7.992

20 FESTGNWI 7.974 58 FAFWAFVV 7.523

21 FESTGNLF 7.848 59 FESTGNRI 8.004

22 EESTGNLI 7.732 60 FESTGALI 7.964

23 FESTYNLI 7.460 61 LESTGNLI 7.716

24 FESTGNLP 5.919 62 FEYTGNLN 8.176

25 FESTGNGI 7.209 63 FEMTGNLN 8.222

26 FESTGILI 8.098 64 FESTGYLI 8.215

27 FESTGNVI 7.421 65 HAIHGLLV 7.319

28 FESTGMLI 7.979 66 FESTTNLI 7.821

29 FETTGNLN 8.232 67 FESTENLI 7.583

30 FESSGNLI 8.046 68 FAFPGELL 7.022

31 FESTGNLY 6.010 69 FESTGNLV 7.626

32 FESTHNLI 7.836 70 FESTGNYI 7.793

33 FESTGNTI 7.652 71 FESMGNLI 8.040

34 FESTGNAI 7.602 72 FESTGNMI 7.612

35 FVSTGNLI 7.216 73 FESHGNLI 8.248

36 FESTFNLI 7.895 74 FESTGLLI 8.079

37 FESNGNLI 7.880 75 FESGGNLI 7.985

38 AESKSVII 6.648 76 FSSTGNLI 7.718

Test Set of Task 3

1 GLYSSTVPV 7.577 68 AMVGAVLTA 7.122

2 FTDQVPFSV 7.212 69 ITAQVPFSV 7.020

3 VLIQRNPQL 7.644 70 ILLSIARVV 6.342

4 LLWFHISCL 6.682 71 FLYGALLAA 8.201

5 FMGAGSKAV 6.200 72 ALMPLYACI 8.000

6 FVWLHYYSV 7.821 73 GLYYLTTEV 7.682

7 ALAKAAAAM 7.398 74 GLLGWSPQA 8.027

Continued on next page
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No. Peptide Expected No. Peptide Expected

8 LLLCLIFLL 7.585 75 LLWQDPVPA 7.343

9 YAIDLPVSV 7.801 76 MLGNAPSVV 6.644

10 GLSRYVARL 7.174 77 SLADTNSLA 6.342

11 QVMSLHNLV 6.025 78 HLYSHPIIL 7.131

12 MMWYWGPSL 7.921 79 ALVLLMLPV 7.506

13 YLFPGPVTA 8.495 80 RMPAVTDLV 6.903

14 VLLPSLFLL 7.444 81 LLWSFQTSA 7.818

15 KIFGSLAFL 7.478 82 YLEPGPVTL 7.058

16 AVIGALLAV 7.747 83 ALAKAAAAV 6.597

17 ALLAGLVSL 7.117 84 YMLDLQPET 7.373

18 ALSTGLIHL 6.505 85 HLAVIGALL 6.986

19 YALTVVWLL 6.924 86 AMKADIQHV 6.777

20 YLDQVPFSV 8.638 87 RMFAANLGV 7.447

21 YVITTQHWL 6.877 88 IVGAETFYV 8.456

22 FLLTRILTI 8.073 89 LQTTIHDII 5.501

23 YMIMVKCWM 6.663 90 KLAGGVAVI 6.447

24 RLMKQDFSV 7.338 91 LLPLGYPFV 6.477

25 FLAGALLLA 6.223 92 ITFQVPFSV 7.179

26 FLEPGPVTA 6.898 93 GLYLSQIAV 7.017

27 LLAQFTSAI 7.301 94 LLVFACSAV 6.342

28 AVAKAAAAV 6.495 95 AMLQDMAIL 7.009

29 GLCFFGVAL 5.380 96 ILAGYGAGV 6.937

30 VIHAFQYVI 5.914 97 YLAPGPVTA 8.032

31 ILYQVPFSV 8.310 98 SLHVGTQCA 5.842

32 DLMGYIPLV 7.097 99 ILAQVPFSV 7.939

33 NLQSLTNLL 6.000 100 YLVSFGVWI 8.721

34 SVYVDAKLV 6.991 101 ALYGALLLA 8.143

35 RLLGSLNST 6.778 102 GLQDCTMLV 7.638

36 WLLIDTSNA 6.447 103 VLTALLAGL 7.086

37 KTWGQYWQV 7.957 104 FLYGALVLA 7.409

38 FLYGGLLLA 8.959 105 VLHSFTDAI 6.170

Continued on next page
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No. Peptide Expected No. Peptide Expected

39 ITDQVPFSV 6.947 106 ILTVILGVL 6.419

40 FAFRDLCIV 6.963 107 ITMQVPFSV 7.398

41 YLYPGPVTV 8.051 108 LLFGYPVYV 7.886

42 WLSLLVPFV 8.164 109 HLESLFTAV 5.301

43 TLLVVMGTL 5.580 110 RLTEELNTI 6.060

44 LLDVPTAAV 7.770 111 VMGTLVALV 7.547

45 YLYVHSPAL 8.268 112 SVYDFFVWL 7.289

46 AMFQDPQER 5.740 113 YLMPGPVTA 8.367

47 VVLGVVFGI 7.845 114 ITYQVPFSV 7.480

48 MALLRLPLV 7.279 115 ILSQVPFSV 7.699

49 HLYQGCQVV 6.832 116 RLVSGLVGA 6.818

50 IISCTCPTV 6.580 117 LLLLGLWGL 7.658

51 DPKVKQWPL 6.176 118 NLYVSLLLL 7.114

52 QLFEDNYAL 7.764 119 RMYGVLPWI 7.538

53 LMAVVLASL 6.954 120 FVNHDFTVV 6.523

54 LLSCLGCKI 5.342 121 ALIHHNTHL 6.623

55 VVMGTLVAL 7.069 122 ALCRWGLLL 7.000

56 VALVGLFVL 5.079 123 GLVDFVKHI 6.663

57 LLACAVIHA 6.602 124 ILDEAYVMA 6.623

58 VLAGLLGNV 7.721 125 GLLGNVSTV 7.620

59 YLSEGDMAA 6.532 126 HLLVGSSGL 5.792

60 KILSVFFLA 8.301 127 ILMQVPFSV 8.125

61 IMPGQEAGL 7.188 128 VLVGGVLAA 6.732

62 FLYGALLLA 8.585 129 AAAKAAAAV 6.398

63 ALLSDWLPA 7.025 130 VLLLDVTPL 7.301

64 GLACHQLCA 6.380 131 YLDLALMSV 8.260

65 YMDDVVLGA 6.699 132 WLEPGPVTA 6.082

66 QLFHLCLII 6.886 133 LLVVMGTLV 5.869

67 FVDYNFTIV 6.620

Test Set of Task 4

1 RMFPNAPYL 91 25 IITEFMTYG 18

Continued on next page
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2 YMFPNAPYL 110 26 IIIEFMTYG 46

3 SLGEQQYSV 104 27 IIIEFMTYV 80

4 YLGEQQYSV 89 28 KLGGGQYGE 17

5 ALLPAVPSL 116 29 KLGGGQYGV 42

6 YLLPAVPSL 100 30 YLGGGQFGV 111

7 NLGATLKGV 37 31 KLGGGQFGV 59

8 YLGATLKGV 64 32 YLINKEEAL 114

9 DLNALLPAV 15 33 KLLQRPVAV 58

10 YLNALLPAV 78 34 YLKALQRPV 63

11 GVFRGIQDV 24 35 VLNYGVCVC 18

12 GLRRGIQDV 22 36 VLNYGVCFC 18

13 KRYFKLSHL 27 37 VLWYGVCFC 63

14 KLYFKLSHL 93 38 VLNYGVCFV 90

15 ALLLRTPYS 25 39 VLWYGVCFV 121

16 ALLLRTPYV 94 40 VCGDENILV 46

17 CMTWNQMNL 85 41 FCGDENILV 41

18 YMTWNQMNL 67 42 FMGDENILV 74

19 EVYEGVWKK 16 43 FLGDENILV 87

20 KVYEGVWKK 18 44 QQNPSYDSV 17

21 KVYEGVWKV 70 45 FLNPSYDSV 89

22 KLGGGQYGV 42 46 KLNPSYDSV 58

23 KLGGGQYGV 42 47 YLNPSYDSV 83

24 YLGGGQYGV 78



Appendix D

Mouse Class I MHC Alleles

Publicly available peptide binding affinity data sets obtained from the literature are

used in the experimental studies of this thesis. Three mouse class I MHC peptide

binding affinity data sets are obtained from a data set paper [286]. Mouse class I

MHC peptide alleles, H2-Db, H2-Kb and H2-Kk are given in Table D.1, Table D.2 and

Table D.3, respectively. A cross-validated experimental study conducted on these data

sets. The columns correspond to peptide no, peptide residue, and expected real-value

of binding affinity. The supplementary information of this thesis is accessible online at:

https://github.com/vuslan/pepbnd.

221

https://github.com/vuslan/pepbnd


Mouse Class I MHC Alleles 222

Table D.1: List of epitopes used in cross-validated real-value binding affinity predic-
tion of the H2-Db mouse class I MHC allele.

No. Peptide Expected No. Peptide Expected

1 AAAENAEAA 7.357 34 RSVINIVII 5.854

2 AEDTNVSLI 3.357 35 SAIENLEYM 7.721

3 AENENMRTM 5.712 36 SEVSNVQRI 5.797

4 AMIENLEYM 7.620 37 SFYRNLLWL 6.542

5 ASNENIDTM 8.699 38 SGVENPGGY 4.881

6 ASNENMETM 7.750 39 SLLGNATAL 6.796

7 ASNENMRTM 8.155 40 SLLYNLDLM 8.097

8 CDFNNGITI 5.344 41 SMAENLEYM 7.222

9 CKGVNKEYL 7.409 42 SMIANLEYM 6.848

10 FAPGNYPAL 8.091 43 SMIEALEYM 6.796

11 FCGVNSDTV 6.799 44 SMIENAEYM 7.523

12 FQLCNSYDL 7.886 45 SMIENLAYM 6.780

13 FQPQNGQFI 8.067 46 SMIENLEAM 7.699

14 FRGPNVVTL 5.925 47 SMIENLEYA 7.538

15 GFKSNFNKI 3.357 48 SMIENLEYM 7.871

16 IISHNFCNL 6.027 49 SSVIGVWYL 5.854

17 IKPSNSEDL 5.538 50 SSVVGVWYL 6.268

18 ISANNDSEI 6.056 51 SSVVNVWYL 7.244

19 ISNGNSDCL 6.503 52 TAGANPMDL 4.658

20 ISVSNPGDL 6.658 53 TALANTIEV 8.444

21 ITYKNSTWV 6.570 54 TGICNQNII 7.699

22 KAVYNFATC 6.484 55 TGKLNLENL 4.754

23 KICQNFILL 5.606 56 VENPGGYCL 4.475

24 LIDYNKAAL 5.714 57 VKYPNLNDL 5.878

25 LLVFNYPGI 5.287 58 VLSFNLGDM 4.202

26 LTFTNDSII 5.835 59 VLSTNGDTL 6.370

27 LTFTNDSSI 5.824 60 WLVTNGSYL 6.911

28 NGLWNLDVI 8.000 61 YAIENAEAL 7.658

29 QAPTNRWML 8.252 62 YAIENAKAL 6.959

Continued on next page
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No. Peptide Expected No. Peptide Expected

30 QGINNLDNL 7.824 63 YAIKNAEAL 7.678

31 QLPPNSLLI 3.533 64 YASDNQAIL 6.319

32 RGVINIVII 5.692 65 YSQGNSGLM 6.051

33 RLIQNSLTI 6.967
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Table D.2: List of epitopes used in cross-validated real-value binding affinity predic-
tion of the H2-Kb mouse class I MHC allele.

No. Peptide Expected No. Peptide Expected

1 RGYVYQGL 8.137 32 MWYWGPSL 5.125

2 SIINFEKL 8.138 33 VLLDYQGM 5.477

3 APGNYPAL 6.558 34 YSILSPFL 5.954

4 FSVIFDRL 6.971 35 ANEGYDAL 4.924

5 IGRFYIQM 7.770 36 DDEEYVIL 3.907

6 KSSFYRNL 7.066 37 GTYHFTKL 7.745

7 KVVRFDKL 7.310 38 HDQLFSLL 5.639

8 LSYSAGAL 7.523 39 HPTLFKVL 6.208

9 MGLIYNRM 8.337 40 HPYLYRLL 6.712

10 MITQFESL 7.398 41 ISFAFCQL 8.886

11 MMIWHSNL 6.564 42 LIFNYPGV 7.398

12 MNIQFTAV 7.602 43 LIYNYPGV 8.387

13 MNYYWTLL 7.284 44 LMSGFRQM 5.162

14 RFYRTCKL 7.377 45 LQQRYSRL 9.222

15 RGYVFQGL 8.509 46 LVYNYPGV 7.638

16 RSYLIRAL 7.174 47 NHPVFSPL 7.252

17 RTFSFQNI 8.013 48 NTVVFDAL 3.810

18 SSIEFARL 8.770 49 QESCYGRL 6.463

19 SSISFCGV 8.678 50 QPQNYLRL 4.287

20 SSLPFQNI 8.056 51 SIILFLPL 9.000

21 VYIEVLHL 7.699 52 SKLQYKII 3.810

22 VYINTALL 7.886 53 VDYNFTIV 7.444

23 AIIKFAAL 8.046 54 ALISFLLL 6.030

24 RGYKYQGL 7.854 55 GVYQFKSV 8.000

25 ASARFSWL 6.523 56 ISHNFCNL 6.431

26 CLIFLLVL 5.222 57 IVTMFEAL 7.174

27 FIIFLFIL 5.301 58 LVSIFLHL 5.553

28 FVQWFVGL 6.824 59 NSHHYISM 5.507

29 IIFLFILL 5.125 60 SQTSYQYL 5.729

Continued on next page
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No. Peptide Expected No. Peptide Expected

30 ILSPFLPL 6.329 61 TSYQYLII 7.469

31 LSSIFSRI 5.477 62 YTVKYPNL 6.770
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Table D.3: List of epitopes used in cross-validated real-value binding affinity predic-
tion of the H2-Kk mouse class I MHC allele.

No. Peptide Expected No. Peptide Expected

1 AESKSVII 6.648 78 FESTGNLY 6.010

2 NEKSFKDI 6.910 79 FESTGNMI 7.612

3 QTFVVGCI 6.796 80 FESTGNNI 7.521

4 AESTGNLI 7.624 81 FESTGNPI 7.410

5 DESTGNLI 7.712 82 FESTGNQI 7.612

6 EESTGNLI 7.732 83 FESTGNRI 8.004

7 FASTGNLI 7.429 84 FESTGNSI 7.612

8 FDSTGNLI 7.814 85 FESTGNTI 7.652

9 FEATGNLN 8.178 86 FESTGNVI 7.421

10 FEDTGNLN 8.199 87 FESTGNWI 7.974

11 FEETGNLN 8.028 88 FESTGNYI 7.793

12 FEFTGNLN 8.000 89 FESTGPLI 8.302

13 FEGTGNLN 8.265 90 FESTGQLI 7.920

14 FEHTGNLN 7.982 91 FESTGRLI 8.222

15 FEITGNLN 8.197 92 FESTGSLI 7.992

16 FEKTGNLN 7.904 93 FESTGTLI 7.922

17 FELTGNLN 8.343 94 FESTGVLI 8.023

18 FEMTGNLN 8.222 95 FESTGWLI 7.872

19 FENTGNLN 8.224 96 FESTGYLI 8.215

20 FEPTGNLN 8.043 97 FESTHNLI 7.836

21 FEQTGNLN 8.217 98 FESTINLI 7.887

22 FERTGNLN 8.300 99 FESTKNLI 7.304

23 FESAGNLI 8.031 100 FESTLNLI 7.898

24 FESDGNLI 7.890 101 FESTMNLI 7.888

25 FESEGNLI 7.972 102 FESTNNLI 7.748

26 FESFGNLI 8.085 103 FESTPNLI 8.141

27 FESGGNLI 7.985 104 FESTQNLI 7.819

28 FESHGNLI 8.248 105 FESTRNLI 7.679

29 FESIGNLI 8.239 106 FESTSNLI 7.821

Continued on next page
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No. Peptide Expected No. Peptide Expected

30 FESKGNLI 7.978 107 FESTTNLI 7.821

31 FESLGNLI 8.403 108 FESTVNLI 7.912

32 FESMGNLI 8.040 109 FESTWNLI 7.832

33 FESNGNLI 7.880 110 FESTYNLI 7.460

34 FESPGNLI 8.042 111 FESVGNLI 8.230

35 FESQGNLI 8.094 112 FESWGNLI 7.989

36 FESRGNLI 8.095 113 FESYGNLI 8.099

37 FESSGNLI 8.046 114 FETTGNLN 8.232

38 FESTANLI 7.994 115 FEVTGNLN 8.223

39 FESTDNLI 7.743 116 FEWTGNLN 8.225

40 FESTENLI 7.583 117 FEYTGNLN 8.176

41 FESTFNLI 7.895 118 FFSTGNLI 5.421

42 FESTGALI 7.964 119 FGSTGNLI 7.846

43 FESTGDLI 7.683 120 FHSTGNLI 5.122

44 FESTGELI 7.593 121 FISTGNLI 6.329

45 FESTGFLI 8.267 122 FKSTGNLI 5.026

46 FESTGGLI 7.946 123 FLSTGNLI 7.088

47 FESTGHLI 7.997 124 FMSTGNLI 6.863

48 FESTGILI 8.098 125 FNSTGNLI 6.244

49 FESTGKLI 7.927 126 FPSTGNLI 8.113

50 FESTGLLI 8.079 127 FQSTGNLI 7.013

51 FESTGMLI 7.979 128 FRSTGNLI 4.192

52 FESTGNAI 7.602 129 FSSTGNLI 7.718

53 FESTGNDI 7.290 130 FTSTGNLI 7.547

54 FESTGNEI 7.541 131 FVSTGNLI 7.216

55 FESTGNFI 8.044 132 FWSTGNLI 5.325

56 FESTGNGI 7.209 133 FYSTGNLI 5.592

57 FESTGNHI 7.742 134 GESTGNLI 7.665

58 FESTGNII 7.551 135 HESTGNLI 7.607

59 FESTGNKI 7.159 136 IESTGNLI 7.715

60 FESTGNLA 7.455 137 KESTGNLI 7.308

Continued on next page
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Table D.3 – Continued from previous page

No. Peptide Expected No. Peptide Expected

61 FESTGNLD 5.010 138 LESTGNLI 7.716

62 FESTGNLE 4.707 139 MESTGNLI 7.716

63 FESTGNLF 7.848 140 NESTGNLI 7.736

64 FESTGNLG 6.051 141 PESTGNLI 7.426

65 FESTGNLH 6.000 142 QESTGNLI 7.727

66 FESTGNLI 8.046 143 RESTGNLI 7.544

67 FESTGNLK 5.010 144 SESTGNLI 7.641

68 FESTGNLL 7.737 145 TESTGNLI 7.535

69 FESTGNLM 7.212 146 VESTGNLI 7.545

70 FESTGNLN 7.000 147 WESTGNLI 7.740

71 FESTGNLP 5.919 148 YESTGNLI 7.740

72 FESTGNLQ 5.687 149 DGLGGKLV 7.959

73 FESTGNLR 5.232 150 FAFPGELL 7.022

74 FESTGNLS 7.525 151 FAFWAFVV 7.523

75 FESTGNLT 7.293 152 FLHPSMPV 7.149

76 FESTGNLV 7.626 153 HAIHGLLV 7.319

77 FESTGNLW 7.293 154 LEILNGEI 7.921



Appendix E

Graphs of the Keyword Sets

This appendix provides graphs related to the prediction studies in bioinformatics and

systems biology. The keyword sets; “systems biology and regression”, “bioinformatics

and regression”, “computational biology and prediction and regression”, “systems bi-

ology and prediction and regression”, “bioinformatics and prediction and regression”

were used to reveal the papers from the well-known academic research databases such

as Scopus, Web of Science, and PubMed. According to highly respected academic re-

search databases, the number of publications per year in the fields of classification and

regression are shown in Fig. E.1 - Fig. E.5.

229
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(a) Web of Science

(b) Scopus

(c) PubMed

Figure E.1: Number of publications per year in respected databases related to the
keywords: 1) bioinformatics and classification 2) bioinformatics and regression.
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(a) Web of Science

(b) Scopus

(c) PubMed

Figure E.2: Number of publications per year in respected databases related to the
keywords: 1) systems biology and classification 2) systems biology and regression.
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(a) Web of Science

(b) Scopus

(c) PubMed

Figure E.3: Number of publications per year in respected databases related to the
keywords: 1) computational biology and prediction and classification 2) computational

biology and prediction and regression.
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(a) Web of Science

(b) Scopus

(c) PubMed

Figure E.4: Number of publications per year in respected databases related to the
keywords: 1) systems biology and prediction and classification 2) systems biology and

prediction and regression.
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(a) Web of Science

(b) Scopus

(c) PubMed

Figure E.5: Number of publications per year in respected databases related to the
keywords: 1) bioinformatics and prediction and classification 2) bioinformatics and

prediction and regression.
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