260 research outputs found

    Biosensor system with an integrated CMOS microelectrode array for high spatio-temporal electrochemical imaging, A

    Get PDF
    2019 Fall.Includes bibliographical references.The ability to view biological events in real time has contributed significantly to research in life sciences. While optical microscopy is important to observe anatomical and morphological changes, it is equally important to capture real-time two-dimensional (2D) chemical activities that drive the bio-sample behaviors. The existing chemical sensing methods (i.e. optical photoluminescence, magnetic resonance, and scanning electrochemical), are well-established and optimized for existing ex vivo or in vitro analyses. However, such methods also present various limitations in resolution, real-time performance, and costs. Electrochemical method has been advantageous to life sciences by supporting studies and discoveries in neurotransmitter signaling and metabolic activities in biological samples. In the meantime, the integration of Microelectrode Array (MEA) and Complementary-Metal-Oxide-Semiconductor (CMOS) technology to the electrochemical method provides biosensing capabilities with high spatial and temporal resolutions. This work discusses three related subtopics in this specific order: improvements to an electrochemical imaging system with 8,192 sensing points for neurotransmitter sensing; comprehensive design processes of an electrochemical imaging system with 16,064 sensing points based on the previous system; and the application of the system for imaging oxygen concentration gradients in metabolizing bovine oocytes. The first attempt of high spatial electrochemical imaging was based on an integrated CMOS microchip with 8,192 configurable Pt surface electrodes, on-chip potentiostat, on-chip control logic, and a microfluidic device designed to support ex vivo tissue experimentation. Using norepinephrine as a target analyte for proof of concept, the system is capable of differentiating concentrations of norepinephrine as low as 8µM and up to 1,024 µM with a linear response and a spatial resolution of 25.5×30.4μm. Electrochemical imaging was performed using murine adrenal tissue as a biological model and successfully showed caffeine-stimulated release of catecholamines from live slices of adrenal tissue with desired spatial and temporal resolutions. This system demonstrates the capability of an electrochemical imaging system capable of capturing changes in chemical gradients in live tissue slices. An enhanced system was designed and implemented in a CMOS microchip based on the previous generation. The enhanced CMOS microchip has an expanded sensing area of 3.6×3.6mm containing 16,064 Pt electrodes and the associated 16,064 integrated read channels. The novel three-electrode electrochemical sensor system designed at 27.5×27.5µm pitch enables spatially dense cellular level chemical gradient imaging. The noise level of the on-chip read channels allow amperometric linear detection of neurotransmitter (norepinephrine) concentrations from 4µM to 512µM with 4.7pA/µM sensitivity (R=0.98). Electrochemical response to dissolved oxygen concentration or oxygen partial pressure (pO2) was also characterized with deoxygenated deionized water containing 10µM to 165 µM pO2 with 8.21pA/µM sensitivity (R=0.89). The enhanced biosensor system also demonstrates selectivity to different target analytes using cyclic voltammetry to simultaneously detect NE and uric acid. In addition, a custom-designed indium tin oxide and Au glass electrode is integrated into the microfluidic support system to enable pH measurement, ensuring viability of bio-samples in ex vivo experiments. Electrochemical images confirm the spatiotemporal performance at four frames per second while maintaining the sensitivity to target analytes. The overall system is controlled and continuously monitored by a custom-designed user interface, which is optimized for real-time high spatiotemporal resolution chemical bioimaging. It is well known that physiological events related to oxygen concentration gradients provide valuable information to determine the state of metabolizing biological cells. Utilizing the CMOS microchip with 16,064 Pt MEA and an improved three-electrode system configuration, the system is capable of imaging low oxygen concentration with limit of detection of 18.3µM, 0.58mg/L, or 13.8mmHg. A modified microfluidic support system allows convenient bio-sample handling and delivery to the MEA surface for sensing. In vitro oxygen imaging experiments were performed using bovine cumulus-oocytes-complexes cells with custom software algorithms to analyze its flux density and oxygen consumption rate. The imaging results are processed and presented as 2D heatmaps, representing the dissolved oxygen concentration in the immediate proximity of the cell. The 2D images and analysis of oxygen consumption provide a unique insight into the spatial and temporal dynamics of cell metabolism

    Pixel design and characterization of high-performance tandem OLED microdisplays

    Get PDF
    Organic Light-Emitting Diode (OLED) microdisplays - miniature Electronic Displays comprising a sandwich of organic light emitting diode over a substrate containing CMOS circuits designed to function as an active matrix backplane – were first reported in the 1990s and, since then, have advanced to the mainstream. The smaller dimensions and higher performance of CMOS circuit elements compared to that of equivalent thin film transistors implemented in technologies for large OLED display panels offer a distinct advantage for ultra-miniature display screens. Conventional OLED has suffered from lifetime degradation at high brightness and high current density. Recently, tandem-structure OLED devices have been developed using charge generation layers to implement two or more OLED units in a single stack. They can achieve higher brightness at a given current density. The combination of emissive-nature, fast response, medium to high luminance, low power consumption and appropriate lifetime makes OLED a favoured candidate for near-to-eye systems. However, it is also challenging to evaluate the pixel level optical response of OLED microdisplays as the pixel pitch is extremely small and relative low light output per pixel. Advanced CMOS Single Photon Avalanche Diode (SPAD) technology is progressing rapidly and is being deployed in a wide range of applications. It is also suggested as a replacement for photomultiplier tube (PMT) for photonic experiments that require high sensitivity. CMOS SPAD is a potential tool for better and cheaper display optical characterizations. In order to incorporate the novel tandem structure OLED within the computer aided design (CAD) flow of microdisplays, we have developed an equivalent circuit model that accurately describes the tandem OLED electrical characteristics. Specifically, new analogue pulse width modulation (PWM) pixel circuit designs have been implemented and fabricated in small arrays for test and characterization purposes. We report on the design and characterization of these novel pixel drive circuits for OLED microdisplays. Our drive circuits are designed to allow a state-of-the-art sub-pixel pitch of around 5 μm and implemented in 130 nm CMOS. A performance comparison with a previous published analogue PWM pixel is reported. Moreover, we have employed CMOS SPAD sensors to perform detailed optical measurements on the OLED microdisplay pixels at very high sampling rate (50 kHz, 10 μs exposure), very low light level (2×10-4 cd/m2) and over a very wide dynamic range (83 dB) of luminance. This offers a clear demonstration of the potential of the CMOS SPAD technology to reveal hitherto obscure details of the optical characteristics of individual and groups of OLED pixels and thereby in display metrology in general. In summary, there are three key contributions to knowledge reported in this thesis. The first is a new equivalent circuit model specifically for tandem structure OLED. The model is verified to provide accurately illustrate the electrical response of the tandem OLED with different materials. The second is the novel analogue PWM pixel achieve a 5μm sub-pixel pitch with 2.4 % pixel-to-pixel variation. The third is the new application and successful characterization experiment of OLED microdisplay pixels with SPAD sensors. It revealed the OLED pixel overshoot behaviour with a QIS SPAD sensor

    Digital CMOS ISFET architectures and algorithmic methods for point-of-care diagnostics

    Get PDF
    Over the past decade, the surge of infectious diseases outbreaks across the globe is redefining how healthcare is provided and delivered to patients, with a clear trend towards distributed diagnosis at the Point-of-Care (PoC). In this context, Ion-Sensitive Field Effect Transistors (ISFETs) fabricated on standard CMOS technology have emerged as a promising solution to achieve a precise, deliverable and inexpensive platform that could be deployed worldwide to provide a rapid diagnosis of infectious diseases. This thesis presents advancements for the future of ISFET-based PoC diagnostic platforms, proposing and implementing a set of hardware and software methodologies to overcome its main challenges and enhance its sensing capabilities. The first part of this thesis focuses on novel hardware architectures that enable direct integration with computational capabilities while providing pixel programmability and adaptability required to overcome pressing challenges on ISFET-based PoC platforms. This section explores oscillator-based ISFET architectures, a set of sensing front-ends that encodes the chemical information on the duty cycle of a PWM signal. Two initial architectures are proposed and fabricated in AMS 0.35um, confirming multiple degrees of programmability and potential for multi-sensing. One of these architectures is optimised to create a dual-sensing pixel capable of sensing both temperature and chemical information on the same spatial point while modulating this information simultaneously on a single waveform. This dual-sensing capability, verified in silico using TSMC 0.18um process, is vital for DNA-based diagnosis where protocols such as LAMP or PCR require precise thermal control. The COVID-19 pandemic highlighted the need for a deliverable diagnosis that perform nucleic acid amplification tests at the PoC, requiring minimal footprint by integrating sensing and computational capabilities. In response to this challenge, a paradigm shift is proposed, advocating for integrating all elements of the portable diagnostic platform under a single piece of silicon, realising a ``Diagnosis-on-a-Chip". This approach is enabled by a novel Digital ISFET Pixel that integrates both ADC and memory with sensing elements on each pixel, enhancing its parallelism. Furthermore, this architecture removes the need for external instrumentation or memories and facilitates its integration with computational capabilities on-chip, such as the proposed ARM Cortex M3 system. These computational capabilities need to be complemented with software methods that enable sensing enhancement and new applications using ISFET arrays. The second part of this thesis is devoted to these methods. Leveraging the programmability capabilities available on oscillator-based architectures, various digital signal processing algorithms are implemented to overcome the most urgent ISFET non-idealities, such as trapped charge, drift and chemical noise. These methods enable fast trapped charge cancellation and enhanced dynamic range through real-time drift compensation, achieving over 36 hours of continuous monitoring without pixel saturation. Furthermore, the recent development of data-driven models and software methods open a wide range of opportunities for ISFET sensing and beyond. In the last section of this thesis, two examples of these opportunities are explored: the optimisation of image compression algorithms on chemical images generated by an ultra-high frame-rate ISFET array; and a proposed paradigm shift on surface Electromyography (sEMG) signals, moving from data-harvesting to information-focused sensing. These examples represent an initial step forward on a journey towards a new generation of miniaturised, precise and efficient sensors for PoC diagnostics.Open Acces

    Electronics for Sensors

    Get PDF
    The aim of this Special Issue is to explore new advanced solutions in electronic systems and interfaces to be employed in sensors, describing best practices, implementations, and applications. The selected papers in particular concern photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) interfaces and applications, techniques for monitoring radiation levels, electronics for biomedical applications, design and applications of time-to-digital converters, interfaces for image sensors, and general-purpose theory and topologies for electronic interfaces

    Control analysis and design of medium voltage converter with multirate techniques

    Get PDF
    This work aims to unify the current knowledge about multirate controllers with design techniques for grid-tied converters, in this occasion, connected to Medium Voltage AC grid. Therefore, the multirate contributions, that have been given so far, are studied, as well as everything related to modulation techniques for power converters. The temporal implications of the DSPWM actuator will be correlated to multirate analysis, in addition to possible alternatives for applications with a lower sampling frequency than modulation one. Finalizing with explanations and result demonstrations of controllers working between two frequencies or rates, by means of the available power converter in laboratory.Este trabajo pretende unir el conocimiento actual sobre controladores multitasa o multifrecuencia (multirate) con técnicas de diseño para convertidores conectados a la red, en este caso concreto, a la red alterna (AC) de Media Tensión. Por tanto, se estudian las contribuciones multirate realizadas hasta la fecha, así como todo lo relacionado con la modulación de la señal de control para los convertidores. Las implicaciones temporales del actuador DSPWM se relacionarán con el análisis multitasa, así como se explicarán posibles alternativas para aplicaciones con una frecuencia de muestreo menor que la de modulación. Finalizando con la explicación y presentación de resultados de controladores trabajando entre dos frecuencias o tasas, mediante simulaciones del convertidor disponible en laboratorio.Máster Universitario en Ingeniería Industrial (M141

    Propuesta de arquitectura y circuitos para la mejora del rango dinámico de sistemas de visión en un chip diseñados en tecnologías CMOS profundamente submicrométrica

    Get PDF
    El trabajo presentado en esta tesis trata de proponer nuevas técnicas para la expansión del rango dinámico en sensores electrónicos de imagen. En este caso, hemos dirigido nuestros estudios hacia la posibilidad de proveer dicha funcionalidad en un solo chip. Esto es, sin necesitar ningún soporte externo de hardware o software, formando un tipo de sistema denominado Sistema de Visión en un Chip (VSoC). El rango dinámico de los sensores electrónicos de imagen se define como el cociente entre la máxima y la mínima iluminación medible. Para mejorar este factor surgen dos opciones. La primera, reducir la mínima luz medible mediante la disminución del ruido en el sensor de imagen. La segunda, incrementar la máxima luz medible mediante la extensión del límite de saturación del sensor. Cronológicamente, nuestra primera opción para mejorar el rango dinámico se basó en reducir el ruido. Varias opciones se pueden tomar para mejorar la figura de mérito de ruido del sistema: reducir el ruido usando una tecnología CIS o usar circuitos dedicados, tales como calibración o auto cero. Sin embargo, el uso de técnicas de circuitos implica limitaciones, las cuales sólo pueden ser resueltas mediante el uso de tecnologías no estándar que están especialmente diseñadas para este propósito. La tecnología CIS utilizada está dirigida a la mejora de la calidad y las posibilidades del proceso de fotosensado, tales como sensibilidad, ruido, permitir imagen a color, etcétera. Para estudiar las características de la tecnología en más detalle, se diseñó un chip de test, lo cual permite extraer las mejores opciones para futuros píxeles. No obstante, a pesar de un satisfactorio comportamiento general, las medidas referentes al rango dinámico indicaron que la mejora de este mediante sólo tecnología CIS es muy limitada. Es decir, la mejora de la corriente oscura del sensor no es suficiente para nuestro propósito. Para una mayor mejora del rango dinámico se deben incluir circuitos dentro del píxel. No obstante, las tecnologías CIS usualmente no permiten nada más que transistores NMOS al lado del fotosensor, lo cual implica una seria restricción en el circuito a usar. Como resultado, el diseño de un sensor de imagen con mejora del rango dinámico en tecnologías CIS fue desestimado en favor del uso de una tecnología estándar, la cual da más flexibilidad al diseño del píxel. En tecnologías estándar, es posible introducir una alta funcionalidad usando circuitos dentro del píxel, lo cual permite técnicas avanzadas para extender el límite de saturación de los sensores de imagen. Para este objetivo surgen dos opciones: adquisición lineal o compresiva. Si se realiza una adquisición lineal, se generarán una gran cantidad de datos por cada píxel. Como ejemplo, si el rango dinámico de la escena es de 120dB al menos se necesitarían 20-bits/píxel, log2(10120/20)=19.93, para la representación binaria de este rango dinámico. Esto necesitaría de amplios recursos para procesar esta gran cantidad de datos, y un gran ancho de banda para moverlos al circuito de procesamiento. Para evitar estos problemas, los sensores de imagen de alto rango dinámico usualmente optan por utilizar una adquisición compresiva de la luz. Por lo tanto, esto implica dos tareas a realizar: la captura y la compresión de la imagen. La captura de la imagen se realiza a nivel de píxel, en el dispositivo fotosensor, mientras que la compresión de la imagen puede ser realizada a nivel de píxel, de sistema, o mediante postprocesado externo. Usando el postprocesado, existe un campo de investigación que estudia la compresión de escenas de alto rango dinámico mientras se mantienen los detalles, produciendo un resultado apropiado para la percepción humana en monitores convencionales de bajo rango dinámico. Esto se denomina Mapeo de Tonos (Tone Mapping) y usualmente emplea solo 8-bits/píxel para las representaciones de imágenes, ya que éste es el estándar para las imágenes de bajo rango dinámico. Los píxeles de adquisición compresiva, por su parte, realizan una compresión que no es dependiente de la escena de alto rango dinámico a capturar, lo cual implica una baja compresión o pérdida de detalles y contraste. Para evitar estas desventajas, en este trabajo, se presenta un píxel de adquisición compresiva que aplica una técnica de mapeo de tonos que permite la captura de imágenes ya comprimidas de una forma optimizada para mantener los detalles y el contraste, produciendo una cantidad muy reducida de datos. Las técnicas de mapeo de tonos ejecutan normalmente postprocesamiento mediante software en un ordenador sobre imágenes capturadas sin compresión, las cuales contienen una gran cantidad de datos. Estas técnicas han pertenecido tradicionalmente al campo de los gráficos por ordenador debido a la gran cantidad de esfuerzo computacional que requieren. Sin embargo, hemos desarrollado un nuevo algoritmo de mapeo de tonos especialmente adaptado para aprovechar los circuitos dentro del píxel y que requiere un reducido esfuerzo de computación fuera de la matriz de píxeles, lo cual permite el desarrollo de un sistema de visión en un solo chip. El nuevo algoritmo de mapeo de tonos, el cual es un concepto matemático que puede ser simulado mediante software, se ha implementado también en un chip. Sin embargo, para esta implementación hardware en un chip son necesarias algunas adaptaciones y técnicas avanzadas de diseño, que constituyen en sí mismas otra de las contribuciones de este trabajo. Más aún, debido a la nueva funcionalidad, se han desarrollado modificaciones de los típicos métodos a usar para la caracterización y captura de imágenes

    Energy-Efficient Circuit Designs for Miniaturized Internet of Things and Wireless Neural Recording

    Full text link
    Internet of Things (IoT) have become omnipresent over various territories including healthcare, smart building, agriculture, and environmental and industrial monitoring. Today, IoT are getting miniaturized, but at the same time, they are becoming more intelligent along with the explosive growth of machine learning. Not only do IoT sense and collect data and communicate, but they also edge-compute and extract useful information within the small form factor. A main challenge of such miniaturized and intelligent IoT is to operate continuously for long lifetime within its low battery capacity. Energy efficiency of circuits and systems is key to addressing this challenge. This dissertation presents two different energy-efficient circuit designs: a 224pW 260ppm/°C gate-leakage-based timer for wireless sensor nodes (WSNs) for the IoT and an energy-efficient all analog machine learning accelerator with 1.2 µJ/inference of energy consumption for the CIFAR-10 and SVHN datasets. Wireless neural interface is another area that demands miniaturized and energy-efficient circuits and systems for safe long-term monitoring of brain activity. Historically, implantable systems have used wires for data communication and power, increasing risks of tissue damage. Therefore, it has been a long-standing goal to distribute sub-mm-scale true floating and wireless implants throughout the brain and to record single-neuron-level activities. This dissertation presents a 0.19×0.17mm2 0.74µW wireless neural recording IC with near-infrared (NIR) power and data telemetry and a 0.19×0.28mm2 0.57µW light tolerant wireless neural recording IC.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169712/1/jongyup_1.pd

    DESIGN OF SMART SENSORS FOR DETECTION OF PHYSICAL QUANTITIES

    Get PDF
    Microsystems and integrated smart sensors represent a flourishing business thanks to the manifold benefits of these devices with respect to their respective macroscopic counterparts. Miniaturization to micrometric scale is a turning point to obtain high sensitive and reliable devices with enhanced spatial and temporal resolution. Power consumption compatible with battery operated systems, and reduced cost per device are also pivotal for their success. All these characteristics make investigation on this filed very active nowadays. This thesis work is focused on two main themes: (i) design and development of a single chip smart flow-meter; (ii) design and development of readout interfaces for capacitive micro-electro-mechanical-systems (MEMS) based on capacitance to pulse width modulation conversion. High sensitivity integrated smart sensors for detecting very small flow rates of both gases and liquids aiming to fulfil emerging demands for this kind of devices in the industrial to environmental and medical applications. On the other hand, the prototyping of such sensor is a multidisciplinary activity involving the study of thermal and fluid dynamic phenomenon that have to be considered to obtain a correct design. Design, assisted by finite elements CAD tools, and fabrication of the sensing structures using features of a standard CMOS process is discussed in the first chapter. The packaging of fluidic sensors issue is also illustrated as it has a great importance on the overall sensor performances. The package is charged to allow optimal interaction between fluids and the sensors and protecting the latter from the external environment. As miniaturized structures allows a great spatial resolution, it is extremely challenging to fabricate low cost packages for multiple flow rate measurements on the same chip. As a final point, a compact anemometer prototype, usable for wireless sensor network nodes, is described. The design of the full custom circuitry for signal extraction and conditioning is coped in the second chapter, where insights into the design methods are given for analog basic building blocks such as amplifiers, transconductors, filters, multipliers, current drivers. A big effort has been put to find reusable design guidelines and trade-offs applicable to different design cases. This kind of rational design enabled the implementation of complex and flexible functionalities making the interface circuits able to interact both with on chip sensors and external sensors. In the third chapter, the chip floor-plan designed in the STMicroelectronics BCD6s process of the entire smart flow sensor formed by the sensing structures and the readout electronics is presented. Some preliminary tests are also covered here. Finally design and implementation of very low power interfaces for typical MEMS capacitive sensors (accelerometers, gyroscopes, pressure sensors, angular displacement and chemical species sensors) is discussed. Very original circuital topologies, based on chopper modulation technique, will be illustrated. A prototype, designed within a joint research activity is presented. Measured performances spurred the investigation of new techniques to enhance precision and accuracy capabilities of the interface. A brief introduction to the design of active pixel sensors interface for hybrid CMOS imagers is sketched in the appendix as a preliminary study done during an internship in the CNM-IMB institute of Barcelona

    Design Tools for Submersible Converter

    Get PDF
    corecore