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Abstract 

One of the most widely-used artificial neural networks is the multi-layer per-

ceptron, trained by error-back-propagation (the 'back-propagation algorithm'). 

Commonly, the network is implemented as a serial-computer simulation, but there 

has been considerable interest in translating it into hardware. The most difficult 

translation into analogue VLSI is the 'learning' part of the algorithm, that is the 

part which involves calculating the output errors and making appropriate modi-

fications to the analogue weights representing the connections between nodes. For 

this reason, most analogue hardware implementations train weights held off-chip 

in a digital representation; the weights are converted to an analogue representa-

tion for storage on the chip which comprises the network. 

This thesis examines the Virtual Targets algorithm, based on back-propagation, 

but with some modifications which render it more amenable to translation into 

analogue VLSI circuits which can 'learn on-chip'. I describe several circuits, 

designed to exploit our research group's pulse-stream approach to analogue VLSI, 

which provide four-quadrant multiplication, and calculate differences, signs and 

error-derivatives. Results, from simulation and from a chip fabricated with the 

circuits, are given. 

A consideration of other approaches to the problem of learning on-chip makes it 

clear that key issues are weight-storage, and a means of modifying the weights. I 

explain why calculating exact weight-changes is difficult, and give the results of 

simulation experiments leading to a further simplification of the Virtual Targets 

algorithm which makes it possible to train the network using fixed increments 

and decrements of the weights. I show the results of tests of circuits on a second 

chip, designed with implementation of the entire algorithm in mind, and assess 

the likelihood of such an implementation being successful. 

I place this analysis in the context of the search for 'intelligent' machines, and ask 

how far designs such as my own might contribute to such a machine. I also make 

some suggestions on the most fruitful directions for analogue designs of artificial 

neural networks. 
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Chapter 1 

Introduction 

This thesis is an investigation of the possibility of building a machine, in the 

form of a microchip, using analogue and digital circuits, which can itself adapt 

its outputs in light of changes to its inputs. More specifically, it investigates the 

translation of a variant of a well-known neural-network algorithm into hardware 

in such a way that the weights in the network can be adjusted by circuits on the 

chip, so that the chip can "learn" autonomously, that is without the support of 

a conventional computer. To consider this possibility, I have had to examine a 

whole range of issues associated with designing and simulating neural networks, 

and building and using chips, and these are explored in the later chapters. 

The emphasis, like much of research in electronic engineering, is on "how" 

How do we change weights in an artificial neural network (ANN) 1  so that it will 

respond correctly to a set of patterns? How do we approximate a parabola with 

an electronic circuit? How do we build a four-quadrant multiplier? How do we 

put a set of electronic components together to build a system on a chip? How do 

we drive that system so that it will perform like an ANN? 

As someone who studied psychology, not engineering, at university, I very quickly 

noticed the emphasis on "how" in engineering research. The techniques by which 

1 ANNs are computational systems which are held to mimic, to some degree, the 

computational abilities of biological systems by using large numbers of simple, in-
terconnected nodes. The network adapts to changing inputs by having its weighted 

connections modified in strength. 

1 
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one can carry out a task - rather than the "why" questions, the basic reasons 

for investigating the techniques - seem to dominate. 

In Appendix B, I have placed quotations from a selection of leading figures who 

work in the field of ANN research. Some of these quotations may seem faintly 

ridiculous; they did to me. Yet I had a sympathy for the people I have quoted, 

because they are asking "why" they are doing their research. Their implicit an-

swer is that they are trying to emulate in some way the processes, like seeing and 

hearing, which people find so easy and machines so difficult. Some of the claims 

researchers make are a little far-fetched, and so I have included quotations from 

Mead and Hinton who have an objective to understand, and perhaps emulate, 

brain function, but are nevertheless, it seems to me, level-headed about how close 

we are to success. 

Because I think the "why" questions are important, I felt unable to ignore 

some more fundamental issues about what we can reasonably expect from neural 

networks, including ones instantiated in hybrid analogue-digital hardware, and 

whether the "learning" exhibited in such networks is comparable to what we com-

monly call learning in people. Partly, this was because I am fascinated by these 

issues; partly, because some of the claims of researchers have left me incredulous; 

and, partly, because, amidst 20-hour days trying to beat some design software 

into behaving sensibly, it is difficult but important to look where you are heading, 

and why. Appendix A is therefore devoted to these topics. 

1.1 Aim of the project 

The aim of the project was to study the issues raised by the translation of the 

virtual targets algorithm  into analogue VLSI circuits. 

We already had circuits, designed earlier by some colleagues, to perform some 

parts of this task. The questions we asked ourselves initially were as follows. 

2 Strictly speaking, the algorithm embodies a feed-forward, multi-layer perceptron, 

trained by back-propagation of the derivatives of the errors. The popular version is 

commonly known as the 'back-propagation algorithm', and the virtual targets algorithm 

is a variant of it. 
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Could we invent circuits for the remainder of the task? If so, could we invent a 

scheme to put all the parts together in a system? If this was possible, could we 

make some assessment of the system's capability to learn on-chip? 

To meet this aim, I designed one chip to test some preliminary ideas, re-assessed 

the algorithm in light of what I had learned, and designed a second chip which 

would be capable, if embedded in the right system, of testing the complete al-

gorithm. 

I describe these designs in a way which explains how my ideas developed as the 

project progressed, and why I came to my final conclusions. 

1.2 Detailed goals 

Not all the detailed goals, of course, were clear at the start of the project; they 

emerged over time. The following list gives an idea of the technical goals which 

had to be achieved. 

1.2.1 Goals for the circuits 

. Establish what are the functions making up the virtual targets algorithm, 

and how these functions fit together. 

• Given that the existing Epsilon chip can perform a forward pass through an 

multi-layer network of perceptrons, decide what parts of that can be used, 

and what additional circuits are required for the virtual targets algorithm. 

• Hence design circuits to perform 

- four-quadrant multiplication 

- a difference calculation 

- a sign calculation 

- a 'sigmoid-prime' function. 

• Simplify the algorithm. In light of the simplification, establish how to 
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- make fixed increments or decrements to a stored weight 

- make scaled increments to stored targets 

- carry out an 'error pass' through the network to back-propagate error-

terms. 

• Find a way of putting all the circuits together in a system which could test 

if learning is possible on chip, and make a simple test of it. 

1.2.2 Other goals 

In view of the importance of links between areas in what is a multi-disciplinary 

field, I also set myself the goal of making links with work on machine intelligence: 

• Assess how true are claims that artificial neural networks (ANNs) are 'brain-

like', and how far they contribute towards the idea of intelligent machines. 

Make suggestions about how engineers should view these ideas. 

• Assess the value of analogue implementations of ANNs compared to digital 

ones. 

• Suggest how analogue circuits could best contribute to ANN research. 
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1.3 Structure of the thesis 

The thesis is structured as follows 

Chapter 2 reviews three algorithms from the point of view of the ease with 

which they can be implemented in hardware. 

Chapter 3 examines issues in on-chip learning, considers the published liter-

ature, and looks in detail at several examples designed by other 

research groups. 

Chapter 4 describes the circuits, designed for the first chip, to implement some 

basic functions of the virtual targets algorithm, together with their 

simulation and test results. 

Chapter 5 shows how I simplified the virtual targets algorithm in light of my 

progress. 

Chapter 6 puts in place the final pieces of the jigsaw which is a chip for on-

chip learning. It describes the circuit designed to modify weights 

and the architecture of a second chip which, in a complete system, 

might instantiate the entire algorithm. 

Chapter 7 gives results of tests of the second chip and assesses the merits of 

the circuits for on-chip learning. 

Chapter 8 presents my final conclusions. 



Chapter 2 

A Review of Relevant Algorithms and 

Hardware Implications 

2.1 Introduction 

This Chapter introduces some basic terminology necessary to understand the 

remainder of the thesis and considers the motivation for the study. It then looks at 

the mathematical background to the back-propagation algorithm, considers two 

alternatives to it, and then compares their software performance and hardware 

implications. Finally, the Chapter describes the empirical effect of one of the 

terms in the back-propagation algorithms. 

2.2 Terminology 

This section introduces some of the terms that are necessary to understand the 

algorithms discussed in this chapter. 

Artificial neural networks (ANNs) are a computational paradigm in which groups 

of simple processors, or processing nodes, are connected in parallel, generally 

in layers. (The terminology used to describe the layers varies; the following 

description establishes the terminology used throughout this study.) The first, 

or input, layer receives input signals from the outside world (see figure 2-1). 

No node in the input layer has any computational function, but serves merely 

to distribute each of the input signals to the succeeding layer. The output layer 

receives inputs from the preceding layer and provides output signals to the outside 

world. Between the input layer and the output layer may be any number of 

Il 
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intervening layers, known as hidden layers, but often the number of hidden layers 

is only one. Unlike the input-layer processors, each of the processors in the other 

layers has some computational function. The nature of that function may vary 

from layer to layer, but generally all the processing nodes in a single layer have 

the same computational function. 

For the networks considered in this thesis, the processing nodes are called per-

ceptrons, and a network with several layers of such nodes is called a multi-layer 

perceptron (MLP) network. 

Input layer 	 Hidden layer 	Output layer 
(no computation) 

Figure 2-1: A simple, fully-connected multi-layer perceptron 

Each processing node in the hidden or output layers receives several input con-

nections, and provides a single output connection with a value called its 'output 

state' (see Figure 2-2). Each of the input connections, representing the state of 

another node, is weighted, and the weighted values are then summed, to pro-

duce the node's 'activation'. The activation value is then mapped by a math-

ematical function into an output state. For reasons explained in the literature 

(Beale and Jackson, 1990, Hertz et al., 1991), this mathematical function is usu-

ally a differentiable but non-linear function, hence the common term 'non-linear 

mapping function'. If the node is in a hidden layer, the output state will be dis- 



Chapter 2. A Review of Relevant Algorithms and Hardware Implications 	8 

tributed to nodes in the next layer. If the node is in the output layer, the output 

state will represent one of the outputs of the network. 

input from 
previous layer 

weight (='synapse') 

2: 
I 	 I / output state 

non-linear 	/ (to next layer, 
(= neuron') 
mapping 

/ or network output) 

Figure 2-2: A computational node, found in the hidden and output layers 

Because work on ANNs originally drew inspiration from biological networks, two 

of the hardware components of the processing nodes have been given the biological 

names 'synapse' and 'neuron'. The degree to which the artificial components re-

semble the biological ones is very slight, but the terminology occurs so frequently 

in the literature that I have reluctantly adopted it. There is no great consistency 

in the way different groups use the terms; components are lumped into synapses 

or neurons as is expedient. However, broadly speaking, the point at which one 

processing node receives a connection from another node, is called the 'synapse', 

and it is here that the input connection is weighted. Since weighting is multi-

plication, 'synapse' is a synonym for 'multiplier'. The mechanism by which the 

weighted connections are summed can, at least in analogue chips, be accomplished 

so simply that the summation process has not been deemed worthy of a biolo-

gical name, and this mechanism is usually considered part of the synapse. The 

term 'neuron' is usually given to those components that calculate the non-linear 

mapping function to produce the final activation value. 

Processing in such a network proceeds (at least conceptually) as follows. A series 

of input vectors or patterns (which can be digital or analogue data) is presented, 

vector by vector, to the input layer, which distributes each element of the vector 

to each of the nodes in the hidden layer. Each hidden-layer node simultaneously 

processes the vector by weighting and summing the input elements and perform- 
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ing a non-linear mapping to produce, at the node's output, one element of the 

hidden-layer output-state vector. This vector is in turn presented to each node 

in the output layer, which processes it in the same way as the hidden-layer pro-

cessed the inputs. The output-layer's output vector is the output of the network. 

The whole process of transforming a series of input vectors into a series of output 

vectors is known as a 'forward pass'. A forward-pass is, then, a series of repeated 

multiplication—summing—non-linear-mapping operations. 

'Learning' consists of modifying all the weights in each of the hidden- and output-

layers after each forward pass, according to a particular learning rule. The modi-

fication is carried out, over many iterations, in such a way that either the network 

is forced to produce a specific output vector for a specific input vector, or it sta-

bilises in a state where the response to different input vectors is in some way 

interesting to the operator. 

2.3 Motivation for this study 

Our thinking on this study began with a consideration of the type of MLP applic-

ations that would require 'on-line' learning, that is learning where the weight-set 

would be changing constantly. In other words, the characteristics of the applica-

tion would be such that the weights necessary for successful operation could not 

be calculated beforehand. 

For many applications, developing the weight set during computer simulation may 

be inconvenient because of the long training times involved, but the methodo-

logy is not fatal to their success. For example, financial applications, database-

retrieval, hand-writing recognition and medical diagnosis may all, depending on 

the circumstances, be carried out 'off-line' to achieve acceptable solutions. Ad-

aptability may not even be advantageous in these cases, since the output charac-

teristics of the problem may have been well-defined. 

In other applications, however, the input data may not be well-controlled, may 

arrive in large quantities in analogue form, and may require to be dealt with in 

real time. Examples are robotics and sensor-motor control, speech recognition, 

natural-language applications, process-control, image-processing and machine vis-

ion. In these circumstances, the neural network system needs to be adaptable 

at high speed. The point about such systems is that they may require to re- 
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spond to inputs some of which are stable or very slowly-changing, and so can be 

pre-learned while other inputs may be rapidly-changing and so require 'learning' 

or 're-learning' over a period of time. On-chip learning brings closer the pro-

spect of systems with this capability, and hence the possibility of embedded or 

autonomous systems, where analogue VLSI finds its strongest justification. 

2.4 Back-propagation: gradient-descent using 

back-propagation of error 

Our preference was for an algorithm that would provide a system capable of 

dealing with real-world applications of neural networks. The most obvious choice 

is then back-propagation (Rumeihart et al., 1986), because this algorithm can 

accommodate a whole range of pattern-recognition and signal-processing tasks 

from medical diagnosis to air-combat manoeuvre selection (Maren et al., 1990). 

Back-propagation is a gradient-descent algorithm, so called because it attempts 

to minimise a measure of error the error measure is envisaged as a surface, 

like that of hills and valleys in multi-dimensional space, in which the network, 

to find a solution, must reach a minimum, preferably the minimum of the lowest 

point in the surface. To move towards a solution, that is in the direction of 

minimum error, the network requires a gradient term for each network weight. 

These gradient terms are used to reduce the network error by changing the weights 

on the connections in the direction of reduced error. 1  

2.4.1 Mathematical background to back-propagation 

Mathematical analysis results in a series of learning equations, described in 

Appendix D, which are derived from a gradient-descent minimisation of the 

'There are several variations on back-propagation as a means of training MLPs 

(Hertz et al., 1991). Cost functions other than the sum-of-squared-errors can be min-

imised, for example measures of entropy. Optimisation techniques other than gradient 

descent are also available, for example Newton's method and conjugate gradient meth-

ods. None of these variations is considered in this thesis. 
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sum squared error of the output neuron. While the mathematical derivation 

is easily accessible in various textbooks, for example (Beale and Jackson, 1990, 

Hertz et al., 1991), and so is not repeated in full here, a description of the key fea-

tures of the analysis is helpful for a comparison of the back-propagation, virtual 

targets and weight perturbation algorithms, to be given shortly. 

The key points are these 

The algorithm aims to minimise the error at the network output by changing 

weights at the interconnections between nodes. The error is defined as 

proportional to the square of the distance of each output-node's actual 

output from the desired, or target, output. 

To minimise the error, we require to know the overall change in the error 

with respect to each weight. We cannot compute such a change directly, 

but we can compute the change indirectly by successive application of the 

chain rule. 

Notation 

The notation used in the remainder of this section is as follows. E is the error 

function for pattern p, tpk represents the target output for pattern p on node k, 

Opk represents the actual output at that node, and Wkj is the weighted connection 

from node j to node k. For a three-layer network, layer i is the input layer, layer 

j the hidden-layer, and layer k the output layer. 

Definitions 

The following definitions apply 

• The error is defined as 

E = 	(tk - Ok) 2 	 (2.1) 
k 

The introduction of the 1  simplifies the consequential mathematics. 
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• The activation for each unit for each pattern p (ie the weighted sum of the 

inputs to a node) is defined as 

netk = 	WkjOpkj 	 (2.2) 

• The output of each unit is a sigmoid function of the activation for that unit, 

and is defined as 

1 
°pk = 0k(fletk) 	 (2.3) 

1 - e_(tpk) 

Finding 3E/aWk 

The algorithm aims to minimise the error at the network output by changing 

weights at the interconnections between nodes. We therefore require to know the 

overall change in the error with respect to each weight /.E/Lwk, a computation 

which cannot be made directly. However, we can derive the computation indir-

ectly by successive application of the mathematical chain rule, in the following 

way. 

aE - DE ônet k  
(2.4) 

ôWkj - Onetk 

The term aE/anetk is defined as 

= Spk 	 (2.5) 
afl6tk 

and S is known colloquially as the "delta term". The term 9netpk/19Wkj  can be 

shown to simplify to 

Hence: 

8E 
- 

8pk 0pj 	 (2.6) 
aWk3  
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and consequently, the weight-change to reduce the error is 

APWkj = 175pkOpj 	 (2.7) 

where 71 is a gain term. 

This equation applies to output and hidden layer alike, but the 6,, term is calcu-

lated differently for each layer. 

Finding 5, for the output layer 

As before, we cannot compute 8,, directly, but we can do so indirectly by using 

the chain rule 

aEp  ô°pk 
 

aEp

==  DO,,kanet,,k 	
(2.8) 

anetki 

The term —öE,,/öO,,k simplifies to (tpk - Opk). 

The term ÔO,,k/ônet,,k is a'(net,,k), ie the derivative of the output with respect 

to the activation of that node, or sigmoid prime, which can be shown to simplify 

to 

ôOpk 
= cr(net,,k)(1 - a(net,,k)) 	 (2.9) 

t9net,,k 

= Opk(1 - Opk) 	 (2.10) 

Hence, for the output layer: 

ÔE,, 
= 6pkOpj 	 (2.11) 

8Wkj 

= (tpk - Opk) [O,,k(1 - Opk)] 0pj 	 (2.12) 

and consequently the weight-change to reduce the error is 

L,,Wk 	hlk(tpk - Opk) [Opic(1 - Opi)] 0,,, 	 (2.13) 



Chapter 2. A Review of Relevant Algorithms and Hardware Implications 14 

Finding 6, for the hidden layer 

Just as for the output layer, the delta term for the hidden layer is 

8E - aE 8O33 	
(2.14) 

= - ônet - - OO anetpi  

As for the output layer, the term 8O1 /ônet 3  simplifies to o'(net), and so to 

Op3(1 - Opj). 

In expanding 6p  for the output layer, we were able to express the term —ôE/ôOk 

as a function of the output error (tk - Opk). Unfortunately, we have no expli-

cit targets for the hidden layer, and so we must express the equivalent term, 

—ôE/DO, in some other way. As it turns out, we can show that this term can 

be expressed in terms of S for the output layer, so that 

OEP 
 = 	SpkWkj 	 (2.15) 

aopj 	k 

Hence: 

aEp 
 = spiopi 	 (2.16) 

owji  

= [E
6pkWkj I  [O(l - O)] O 	 (2.17) 

and consequently the weight-change to reduce the error is 

Apwji = 	[ 6PkW/Cj] [O(i - O,)] O 	 (2.18) 

= iii [(tpk - Ok)Ok(1 - Opk)wki] [O(1 - Op,)] Opi  (2.19) 

We have circumvented the absence of explicit targets for the hidden layer by 

back-propagating the error (and the derivative of the sigmoid, the sigmoid prime) 
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through the weights which connect the hidden and output layers'. By this means 

we can establish the effect of hidden-layer weights on the output errors. 

2.4.2 Problems with back-propagation 

I make an explicit comparison of the consequences, for hardware, of the weight-

change equations 2.13 and 2.19 later, in Section 2.4.1, but we can note two im-

portant points now : that the equations for each layer are substantially different; 

and that equation 2.13 for changing weights in a node in the output layer uses 

information local to that node, whereas equation 2.19 requires information passed 

back from the layer above. It is these two problems that encouraged us to consider 

alternatives to back-propagation. 

There has been considerable progress recently in translating the back-

propagation algorithm into hardware (for example (Valle et al., 1992, 

Jabri and Flower, 1992)), but the problem is a knotty one. Doubts persist as to 

the likelihood of success in practice (Tarassenko and Tombs, 1993, Cairns, 1995). 

For one thing, error gradient terms must be calculated and back-propagated in 

some form to previous layers in the network, which is in itself difficult to do. For 

another, changes in the weighted connections are frequent, and have to be very 

small, that is a high precision is required, otherwise the network will never find 

a solution or will be unstable in its solution. 

2.4.3 Alternatives to back-propagation 

Two options for attacking the problem of translating algorithms based on back-

propagation into hardware have been explored at Oxford (weight perturbation) 

and Edinburgh (the virtual targets algorithm). 

2 Although only one hidden-layer is considered as part of this thesis, the approach 

outlined here is valid for any number of hidden layers. 
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2.5 Alternative approaches : the virtual tar-

gets algorithm and weight perturbation 

This section describes alternatives to plain back propagation, in the form of the 

virtual targets algorithm and weight perturbation. Virtual targets is a "top-

down" approach, attempting to alter the requirement to back-propagate the error, 

as a means of facilitating the algorithm in hardware. The motivation for weight 

perturbation is the same, but its approach is "bottom-up", eliminating some of 

the complex calculations of back propagation in favour of measuring changes at 

the network output. 

2.5.1 Virtual targets 

Murray developed the virtual targets algorithm as a way of adapting back-

propagation to the constraints of silicon implementation. Its rationale and details 

are described in the following sections. 

2.5.2 Overview of the algorithm 

The virtual targets algorithm is one of a family of target-based algorithms, whose 

potential for VLSI implementation was initially identified in (Murray, 1991). The 

algorithm is, like the back-propagation algorithm, one in which the learning rule 

specifies how weights can be altered in the light of the network's response to re-

peated presentation of input patterns. The degree and direction of each weight-

change is determined by, among other things, the size of the error between each 

output node's actual response to an input pattern and the target response that 

an external agency has dictated should be correct. The target-response for each 

output node is therefore determined by the nature of the classification problem 

being considered; for example, we know beforehand that, in response to a binary 

pattern representing the character 'B', one of the 26 output-nodes of the net-

work (one node for every character in the alphabet) should signal ON while the 

remainder signal OFF. Unlike back-propagation, some simplifications to the al-

gorithm are bought at the price of providing explicit targets for the hidden-layer 

nodes too. Although the algorithm specifies that these hidden-layer targets are 
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reset at various points, their values are not generally known, but evolve according 

to certain equations in much the same way that the weights do. 

2.5.3 Precursors of the algorithm 

The back-propagation algorithm changes only the weights during learning, and 

the outputs of the hidden layer are determined primarily by the input vectors and 

the weights (and some additional factors such as the learning rate or the 'tem-

perature' or gain of the sigmoid function). By contrast, (Grossman et al., 1989) 

viewed a network's 'internal representations' (effectively the outputs of the hidden 

layer) as additional variables during learning, whose values would be determined 

by factors in addition to the input vectors and the weights. On Grossman's view, 

the problem is shifted from one of minimising an output error or cost function 

to one of searching for useful internal representations which will lead to a good 

solution. Krogh and Rohwer (Krogh et al., 1990, Rohwer, 1990) have also used 

this notion, and Krogh has formalised the idea by constructing a cost function 

for his algorithm which is an explicit function of these internal representations, 

and which is systematically reduced as the algorithm runs. 

Murray synthesised these various approaches (Murray, 1992b, Murray, 1992a) by 

introducing an explicit desired or target state for each hidden node, updated 

continuously during learning. The details were developed pragmatically, not as a 

means of improving on back-propagation, nor to provide a mathematical analysis 

of target algorithms, but to facilitate on-chip learning in hardware. 

The key points of the virtual targets algorithm are that 

the weight-change equations in the hidden layer and output layer are equi-

valent. They replicate back-propagation's equation for the output-layer 

weights (Equation 2.13), which is much simpler than back-propagation's 

weight-change equation for the hidden layer (Equation 2.19). 

hidden-layer and output-layer nodes are rendered identical in function, at 

the expense of introducing hidden-layer targets for each input vector. 

the problem of back-propagation of error is effectively altered to one of 

modifying the target states during learning. 
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The algorithm is, effectively, a different way of back-propagating the error. It 

is not mathematically equivalent (since it does not guarantee gradient descent), 

but is functionally equivalent in that it performs much like back propagation in 

classification tasks. 

Murray showed (Murray, 1992b, Murray, 1992a) that the algorithm behaved as 

though two forces were at work and sometimes competing : one force being the 

movement of the hidden-layer weights to reduce the hidden-layer error; the other 

force being learning on the hidden-layer targets to reduce the network error. 

Since the algorithm does not guarantee gradient descent, one would expect that 

the network error might sometimes increase (ie the algorithm would demonstrate 

'hill climbing'), which Murray did indeed observe. 

The crucial test of the algorithm, of course, was whether it would work. It 

succeeded on two standard MLP test problems, the parity task (can the net-

work distinguish between binary vectors exhibiting odd or even parity?) and 

the encoder-decoder task (can the network encode an N-bit pattern into 1092N 
bits and then decode this representation?) although, like back-propagation, the 

algorithm sometimes became stuck in local minima. Furthermore, a comparison 

between back-propagation and virtual targets on a real-world task, recognising 

vowel sounds from a vowel database of male and female speakers, showed that 

the two algorithms had similar generalisation performance, while virtual targets 

had a learning-speed advantage (Murray, 1992b, Murray, 1992a). 

In summary, then, virtual targets and back-propagation have broadly similar 

levels of performance, and are of the same order of complexity, but virtual targets 

removes the distinction between hidden-layer and output-layer nodes, and allows 

for the weight-change equations in each layer to use local information, at the 

expense of introducing explicit hidden-layer targets. 

2.5.4 Details of the virtual targets algorithm 

The full equations for the virtual targets, and for the back-propagation, al-

gorithms can be compared in Table D-1 in Appendix D 

From the point of view of VLSI, the virtual targets algorithm has two advant- 

ages over back-propagation. Firstly, the means of updating weights in a node 



Chapter 2. A Review of Relevant Algorithms and Hardware Implications 19 

uses only information that is local to that node, simplifying the circuitry neces-

sary for a hardware implementation; in back-propagation, information for up-

dating the hidden-layer weights has to be passed back from the output layer. 

Secondly, the weight-update strategies for both hidden- and output-layer neur-

ons are identical (whereas they are different for back-propagation), which means 

that, once neuron circuits have been designed, they can be replicated for the whole 

network, whichever layer they are in. The price to be paid is that, in addition to 

the output target-states (ie teaching patterns used in training), a target-state has 

to be introduced for each hidden-layer neuron, and these hidden targets require 

information to be fed back from the layer above. 

The virtual targets algorithm simplifies the weight-update strategy sufficiently 

to make hardware implementation a more practical prospect than for back-

propagation. 

The algorithm for the training phase for an I - J - K network is outlined in 

Figure 2-3. 

2.5.5 Weight perturbation 

Colleagues at Oxford chose to investigate weight perturbation algorithms. Their 

motivation (as with the study described in this thesis) was to facilitate the build-

ing of hardware MLP networks with on-chip learning. 

Weight perturbation takes various forms (Cairns, 1995), but its simplest form 

(Jabri et al., 1993) is as follows. Instead of calculating the error / weight gradi-

ents 8E18wkj, as does back-propagation, the technique measures them directly 

using a finite-difference approximation, which is computationally simple but nev-

ertheless effective, if slow compared to back-propagation (Cairns, 1995). The 

procedure is as follows 

Apply an input vector to the network. 

Measure the network error. 

Perturb a weight by an amount pertk3  and apply the input vector again. 

Re-measure the error and calculate the change in the error. 
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Carry out a forward-pass calculation to produce hidden- and output-layer vectors: 

• Apply input pattern {O}, and read out the states {0 3 ,} and {Ok} of the hidden and output 

nodes. 

Calculate initial values for the hidden-layer targets 

• Assign targets {T3 } for the hidden nodes such that {T,} = {O,,}. 

Repeat 1 and 2 for all input patterns. 

Present patterns in random order and allow 

weights to evolve according to the following equations: 

SWkj 

	

St - 
'ilwe i ght s OjpOkp ek p 	 ( 2.20) 

	

St - 77weights°ip0pjp 	 (2.21) 

where 

• 77weights is a gain-term representing weight learning-speed; 

• {°} and {O} are the inputs from the previous layer; 

• O' and O,, represent the derivatives of the activation function (the 'sigmoid-prime' terms); 

and 

• Ckp and ej, are the error-terms where Ckp = Tk - O, and cjp = Tj - 

hidden-layer targets to evolve according to the following equation: 

K 

	

?ltargets > 
Wi j icp 	 ( 2.22) 

St - 
k=O 

where 

• ?ltargets is a gain-term representing target learning-speed; 

• Wki is a weight on the connections between the hidden- and output-layers; and 

• Fkp is the error term where ekp  = Tkp - °kp• 

Figure 2-3: The virtual targets algorithm. 
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Repeat steps 3 and 4 for each weight in the network. 

Update all the weights in the network. 

Repeat steps 1 to 6 for all input vectors. 

Repeat step 7 until the network has learned. 

Hence: 

aEP

-- 
 Edf i 	 ( 2.23) 

ôWkj 	perik3  

-  

- 

E(wk + pertk3) - E(wk3) 	
(2.24) 

 pertk3  

and so the weight-change equation becomes 

77  
AWkj= - 	[E,(w + pertk3) - 	 (2.25) 

pertk3  

The computational simplicity', then, comes from the fact that, to establish the 

amount by which a weight must be altered requires only a difference calculation, 

scaled by a factor is/pertk. 

2.6 Implications for hardware 

This Section examines explicitly the hardware implications of each of the three al- 

gorithms (back-propagation, virtual targets, and weight perturbation), considered 

earlier. The comparison is summarised in Table 2-1. The following subsections 

consider points where the comments in the table need amplification. 

3The term 'computational simplicity' can be misleading. Although the computation 

specified here is superficially very simple (for example, on a digital machine), to carry 

it out in analogue hardware proves rather difficult (Cairns, 1995). 
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Feature Back propagation Virtual targets Weight perturbation 

Speed of training Slightly slower than VT Fastest Not significantly 
(in epochs) slower than BP 

Speed of presenta- About the same Slow 
tion per epoch 

Classification About the same 
performance 

Computational 
complexity: 

Forward pass About the same 

Backward pass Conveying output- Conveying output- Conveying network 
layer error to layer error to error to hidden- 
hidden-layer weights hidden-layer targets layer weights 

Synapses Must be bi-directional Can be uni-directional 

Hidden-layer Non-local information Only local information Non-local information 
weights must be back- required must be back- 

propagated propagated 

Output-layer Only local information required 
weights 

Greatest Calculating hidden- Calculating hidden- Detecting and measuring 
complexity layer weight updates layer target updates small changes in 

network error 

Equivalence of Weight update 
hidden- and very different Nodes effectively the same 
output-layer 
nodes 

Storage required Input patterns Input patterns Input patterns 

Weights Weights Weights 

Output targets Output targets Output targets 

Hidden-layer targets Error / weight gradients 

Possible limiting Precision in Precision in Precision in 
factors forward pass forward pass forward pass 

Precision in weight Precision in weight Precision in weight 
update update update 

Precision in target Detection of very 
update small errors 

Table 2-1: Comparison of the three algorithms 
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Speed 

Since the motivation for the virtual-targets and weight-propagation algorithms 

is to facilitate hardware implementations of MLP networks, extensive compar-

isons of their simulation performance with back propagation are not available. 

However, we can say that 

virtual targets has a slight learning advantage over back-propagation on the 

speaker-identification task examined by (Murray, 1992b, Murray, 1992a), 

learning in around 500 training epochs  compared with around 1500 for 

back propagation. On a series of tasks (speaker-identification, classification 

of medical data and image-region classification), Cairns found weight per-

turbation and back propagation to have learned successfully within 2000 

epochs. 

the time taken for an epoch is inevitably slower for weight perturbation. 

For K training patterns, an epoch for back propagation and virtual targets 

will be in the order of: 

Tepoch = (Tf orwardpass  + Twe ightupdae ) X K 

while, for the same problem using weight perturbation, a network with N 

weights will require 

Tepoch = (Tf orwardpass  + Twe ightupdat e ) X K X (N + 1) 

Classification performance 

Classification performance is measured by training on a set of training vectors, 

and then measuring the network's ability to classify correctly on a second set of 

test training vectors which are chosen to represent, as far as possible, the whole 

set of vectors which the network will be required to classify. The results may 

4A learning epoch is one in which all patterns from the training set have been 

presented once. 
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be presented in various ways, for example as the percentage of input vectors 

classified correctly (generalisation performance), or as the percentage incorrectly 

classified (cross-validation classification error). Performance of an algorithm is 

highly dependent on the nature of the classification the network is required to 

make. 

Murray found the virtual-targets and back-propagation algorithms to be broadly 

comparable in their success rates in classifying unseen data (Murray, 1992b, 

Murray, 1992a) on the vowel-recognition task described earlier. Cairns found the 

classification properties of weight perturbation and back propagation to be similar 

on three classification tasks (speaker-identification, classification of medical data 

and image-region classification) (Cairns, 1995), provided the size of perturbation 

was sufficiently small'. 

Computational complexity 

Although a broad comparison is made here, a definition of 'computational com-

plexity' is not simple. Some computations which are very simple in digital sim-

ulation prove difficult in translation into analogue hardware (see footnote on 

page 21), while, as we see later in translating the virtual targets algorithm into 

hardware, the reverse is also true. A quantitative comparison could only be made 

with a detailed design of a system for each algorithm, but would consider 

. the degree of parallelism in the design; 

• the number of calculations required; 

• the complexity of the analogue circuits to carry out the calculations (eg 

number of transistors, space-consumption, power-consumption); 

• whether circuits could be designed to be replicated many times or whether 

specialised circuits would be required; 

5 1n the limit of small perturbations, as the change in weight approaches zero, the 
weight updates generated by weight perturbation are identical to those obtained by 

error back-propagation. 
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• signal-routing complexity within and between chips. 

Trade offs between hardware complexity and algorithmic 

performance 

From Table 2-1, it is clear that there is no easy alternative to back propagation 

as a means of implementing MLP networks in hardware. Nevertheless, virtual 

targets and weight perturbation have sufficient advantages to make detailed in-

vestigation of their merits worthwhile. 

It appears, from simulation results, that the virtual-targets and weight-

perturbation algorithms reduce complexity in particular areas without loss of 

classification performance, although the length of an epoch is increased using 

weight perturbation, due to the increased numFer of forward passes required. 

The price in hardware terms is that of increased storage (for both virtual tar-

gets and weight perturbation) and the detection of small output changes (for 

weight-perturbation). 

2.7 Analogue hardware and the pulse-stream 

approach 

Chapter 3 reviews, in detail, the use of analogue hardware for ANNs. This Section 

outlines the pulse-stream approach used in the project. 

The pulse-stream approach is a hybrid of digital and analogue techniques 

in which data is pulse-encoded but computation is done in analogue form 

(Murray et al., 1991). An example of the technique is given in Appendix E. The 

advantages of analogue circuitry can be retained, but communication between 

modules or chips can be by binary pulses which encode data using, for example, 

pulse frequency or pulse width. In more detail 

• analogue computation can be compact, fast, asynchronous and free of 

quantisation effects, and so is preferable to digital computation. 
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digital signals are robust and easily transmitted and regenerated, and so 

preferable to analogue signals as a means of communication. 

These advantages have been verified over a number of years by our research group. 

As explained in Chapter 3, although I considered alternatives to pulse-stream 

techniques, I adopted them myself. 

2.8 Sigmoid derivative 

In this section, I consider the derivative of the sigmoid function, also known 

as the sigmoid prime, and its effect on the performance of the virtual targets 

algorithm. The term appears in the equations for updating weights in both the 

back propagation and virtual targets algorithms. 

As part of an entirely pragmatic series of simplifications to the virtual targets 

algorithm, described in detail in Chapter 5, I removed the term, and made an 

estimate of the consequences in simulation. The criteria for success in these 

simplifications were the practical ones that the algorithm should still classify 

correctly, and that the algorithm should be easier to implement in hardware. I 

was able to meet these criteria, at the expense of longer learning speeds, ie the 

network took more epochs than previously to learn to discriminate different input 

vectors. 

2.8.1 The sigmoid function and its derivative 

The general form of the sigmoid function is 1/(1 + e_x). A threshold term, 0, 

and a temperature term, T, are added to control the zero crossing point and the 

slope or gain of the function, so it is normally expressed as 1/ (i + e__0)T). The 

shapes of sigmoid curves for different values of 0 and T are shown in Figure 2-4. 

As explained in Section 2.4.1, given an output which is a sigmoidal function of 

the activation, the derivative of the output with respect to the activation of that 

node is 

a'(netk) = Ok(1 - Opk) 	 (2.26) 
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Figure 2-4: Various sigmoidal curves 

and this function is illustrated in Figure 2-5 

0.30 

0.25 

0.20 
0 

0.15 

0.10 

0.05 

0.00 

	

0.0 	0.2 	0.4 	0.6 	0.8 	1.0 

Okp 

Figure 2-5: Graph of the sigmoid prime. 

As shown in the table of learning equations in Appendix D, the term appears 

in the weight-update equations for hidden and output layers for both the back-

propagation and virtual-targets algorithms. As errors are back-propagated to the 

hidden-layer weights, the effect of the error is scaled by multiplication with the 

sigmoid-prime term. The value of the sigmoid prime goes to zero as a unit's 

output O approaches 0.0 or 1.0 (which Fahlman called 'flat spots'), and never 

exceeds 0.25. Therefore even if the error on a unit which is almost fully ON or 

almost fully OFF is near the maximum, only a tiny fraction of the error will be 

back-propagated. The unit may then stick in its ON or OFF state, taking a 
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large number of epochs to change or, if the back-propagated error is so small as 

to be difficult to distinguish from zero, perhaps never recovering. 

Fahlman identified this difficulty with back-propagation (Fahiman, 1988) in an 

investigation of how various network parameters might be 'tuned' to improve 

the characteristics, including learning speed, of the algorithm. He tried various 

alternatives to the use of the sigmoid prime, including 

• adding a constant to the term (so that its minimum value was 0.1 and its 

maximum 0.35), dramatically improving learning times; 

• replacing the function with a constant, thus eliminating the use of the term 

altogether, which still reduced learning times, although not so dramatically; 

• replacing the function with another which combined use of a constant with 

a random value in the range 0.0 to 0.5, which caused the network to behave 

in much the same way as the use of the constant alone. 

Fahlman concluded 

The primary lesson from these experiments is that it is very useful 

to eliminate the flat spots by one means or another. ... A slight 

modification of the classic sigmoid-prime function [adding a constant 

step to the term] did the job best, but replacing this step with a constant 

reduces the learning speed by about 20%. This suggests that this 

general family of learning algorithms is very robust, and will give you 

decent result however you scale the error, as long as you don't change 

the sign or eliminate the error signal by letting the sigmoid-prime 

function go to zero. 

I concluded that this gave me empirical justification for removing the term, with 

results similar to Fahiman's, as is described in more detail in Chapter 5. 

Fahiman himself noted that the success of his approach might be problem- and 

network-dependent. I cannot find in the literature that this point has been invest-

igated, although Looney has confirmed Fahiman's original result (Looney, 1996), 

and there is evidence, for multi-hidden-layer networks, that amplifying the effect 

of the sigmoid-prime on hidden-layers more distant from the output layer can 

improve learning speed (Han and Moraga, 1995, Sarkar, 1995). 
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2.9 Conclusions 

The back-propagation algorithm and its two derivatives, virtual targets and 

weight-perturbation, have similar classification abilities, although weight-

perturbation requires a higher number of forward passes during each epoch, which 

extends its learning time in software simulation. 

All three algorithms are complex to render into hardware, but virtual targets has 

some features which ease the complexity at the expense of extra storage, while 

weight perturbation alters the complexity from that of calculating weight changes 

to that of detecting small changes at the outputs, again at the expense of extra 

storage. 

For the back-propagation algorithm, the sigmoid-prime term can be replaced by 

a constant without serious performance deficit. This empirical finding proves 

important in simplifying the virtual targets algorithm, as described in Chapter 5. 



Chapter 3 

Issues in on-chip learning 

3.1 Introduction 

I consider here the motivation for providing learning on-chip, and consider the 

respective merits of digital and analogue implementations. I look at the published 

literature, and classify the different implementations in terms of the ways in which 

they store weights and modify them, two key issues in this field. Finally, I describe 

some implementations in detail. 

3.2 What is on-chip learning? 

Designers can implement hardware neural networks, whether they are digital or 

analogue, in several ways. One way of thinking about these implementations, 

and so of classifying them, is the method they use to determine a set of weights 

(ie to 'learn') and to provide these weights on a chip. 

3.2.1 Learning off-chip 

The majority of implementations have external learning, that is learning that does 

not take place on the chip. A general-purpose, serial computer trains the network 

by generating a weight-set appropriate for the task in hand. This procedure al- 

30 
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lows the designer to train the network and test it on test-data or cross-validation 

data. Although the serial nature of general-purpose computers prevents them 

from exploiting the speed of a parallel network, computers nevertheless provide 

the designer with the flexibility and design tools to allow him to check and re-

check his work. Once the designer is satisfied that the network operates sat-

isfactorily, the final weight-set can be down-loaded to the hardware, which is 

then used for the intended application. For networks that use digital hardware, 

the down-loading means storage of the weights in digital registers. For analogue 

chips, the weights must also be stored, and this can be done in purely analogue 

circuitry, using non-volatile storage techniques such as floating-gate storage or 

the much newer technique of amorphous-silicon resistors (Holmes et al., 1995, 

Holmes et al., 1993). However, even for analogue systems, the most common 

form of storage is digital registers, using digital-to-analogue conversion to provide 

weights in analogue form on the chip itself. The weights themselves are generally 

represented as charge on capacitors. Since charge is 'volatile', ie it leaks away, 

some means has to be found of refreshing the values of the weights. 

3.2.2 Chip-in-the-loop learning 

A second method of determining an appropriate set of weights is by chip-in-the-

loop learning. This technique is applied exclusively to analogue chips as a means 

of compensating for variations in the performance of arithmetic functions of cir-

cuits located at different places on the chip. The designer carries out a training 

phase, on a serial computer, to generate a suitable weight-set, and down-loads the 

weight-set to the hardware network. Because of process variations on the chip, 

a computation, for example a multiplication of two variables, from a circuit at 

one place on the chip may give a different result from a copy of the circuit a few 

hundred microns distant. This can degrade network performance. However, if 

the supporting computer carries out a further training phase by applying inputs 

to, and reading outputs from, the hardware, while re-adjusting the weights, the 

hardware performance will rise. The re-adjustment of weights compensates for 

within-chip variations. Intel's analogue ETANN chip (Tam et al., 1990) has used 

the 'chip-in-the-loop' scheme, as has a back-propagation algorithm on a mixed 

optical and analogue-electronics network (Frye et al., 1991). Our own group has 

used this technique for the EPSILON chip as a means of implementing a van- 
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ant of the back-propagation algorithm (Churcher et al., 1993), to be described in 

Chapter 4. 

3.2.3 Learning on-chip 

A third method of implementation is by what Card and Schneider call in situ 

learning (Card and Schneider, 1992), that is the learning mechanism is located 

on the chip itself, and hence the chip carries out the training of the network to 

produce a suitable weight-set, without any need for serial-computer simulation. 

As we shall see, automatic adjustment of analogue weights on a chip is not an 

easy objective to achieve. 

3.3 The advantages of on-chip learning 

On-chip learning offers the following advantages over external and chip-in-the-

loop learning: 

• Speed. Clearly, an ANN algorithm that runs on parallel hardware will run 

faster than the same algorithm running on a serial computer; that is, after 

all, what the algorithms are designed to do. If the hardware can accomplish 

the learning phase too, so much the better. However, the issue of speed is 

not a simple one. A circuit that can adjust an on-chip weight must be 

replicated at every site to be truly parallel. This may make heavy demands 

in terms of space, and therefore there may be trade-offs between space-

saving and complexity: the more parallel the implementation, and hence 

the more space required, the more simple, and hence the less sophisticated 

and slower, the circuitry involved. Furthermore, the network can only real-

ise any speed-enhancements in practice if the system can present data to, 

and read it from, the chip in a way which does not cause bottlenecks. We 

cannot, in other words, separate questions of the speed of learning on-chip 

from the nature of the circuitry on the chip and the speed of the system as 

a whole. 

• Autonomous learning. A major advantage of neural networks is that 

they do not need programming but, provided they are carefully designed, 
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can be trained from examples to perform a task. Tithe chip can perform 

the training phase, then it is conceivable we could design autonomous sys-

tems that can learn and re-learn in real time. As with the issue of speed, 

autonomous learning is not a simple matter to achieve. Currently, we do 

not have algorithms that are applicable to a wide range of problems without 

fundamental changes to the network. For example, a network running the 

back-propagation algorithm, of which the algorithm described in this thesis 

is a variant, needs careful design to give good results. Once we train a net-

work for one task, say pattern-classification, we may have to re-train it for a 

new task and also change the number of inputs and neurons. Nevertheless, 

the ability to learn autonomously does suggest potential benefits. 

• Compensation for analogue variations. Cells at different places in an 

array of analogue circuits will display different characteristics due to process 

variations across the chip, a factor that can be accommodated by using chip-

in-the-loop learning. On-chip learning offers this same advantage, but can 

also compensate for differences in the circuitry that holds the weights and 

adjusts them. 

• Adaptation to constantly-changing environments. Just as with pro-

cess variations, on-chip learning can compensate for changes in the en-

vironment, such as the temperature of the chip or in response to use or 

changes in the surroundings. For example, when we drive a car, our per-

formance varies from day to day, and varies even in the course of a single 

journey. Weather or lighting conditions can change, as may the surface of 

the road, the density of traffic, or our own abilities and reactions as we 

become fatigued through effort or more alert after passing the scene of a 

recent accident. The whole environment - the outside world, the car and 

our own bodies - changes. A neural network that is in a perpetual state of 

learning could be capable of responding to a whole kaleidoscope of complex 

relationships. This is by no means a new idea, since learning systems have 

existed for many years in the guise of adaptive control systems, for example 

for telephone echo cancellation or linear-predictive coding of speech. Neural 

networks could support a rich range of inputs and outputs in environments 

that are changing constantly. 

• Compensation for charge-leakage. If we use charge on capacitors to 

store analogue weights, the weight circuitry can be compact and simple, but 
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the weights must be refreshed in value from time to time to neutralise the 

leakage of charge from the capacitors. As an alternative to weight-refresh 

we can re-run the learning phase at intervals, until suitable weights are 

re-learned. 

3.4 The use of analogue, rather than digital, 

hardware 

Before looking at the reasons why one might choose analogue rather than digital 

hardware, I want to suggest that digital hardware offers such advantages that, at 

least at present, it is likely to be the prime choice. Digital implementations are 

not restricted in the algorithms they can instantiate, but can be reasonably easily 

re-configured to reflect the differences between a range of algorithms. Digital 

arithmetic is not susceptible to process variations and so is highly accurate; that 

is, an arithmetic result can be produced repeatedly wherever the function is 

located on a chip, between chips of a different kind, and even with structures of 

a different kind. Precision is not infinite, but it can be high, as is dynamic range, 

both these factors being dependent on the number of bits chosen; at least with 

current algorithms, precision is not a problem (although the space occupied by 

a large number of bits is). The digital-design process is well-understood, and is 

amenable to automation or, at worst, to algorithmic approaches that can reduce 

the amount of trial-and-error steps required and the likelihood of error. Chip-

manufacturing processes are, generally speaking, designed with digital circuits in 

mind, as are the models of transistors that manufacturers produce. 

By contrast, analogue hardware has many problems 

• Usually we have to commit analogue hardware to a particular algorithm, 

since each algorithm requires different calculations that must be realised 

with different circuits, each of which must be carefully designed before man-

ufacture. 

• It is difficult to design analogue circuits that work well; each designer has to 

expend many hours of effort developing a personal methodology and a 'feel' 

for circuits, and the way they work, that is difficult to automate, or even 

to explain. We may have to design circuits to accommodate the vagaries of 
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standard chip-manufacturing processes, and we must interpret the results 

of simulations using knowledge that only experience can provide. 

• Analogue arithmetic is highly susceptible to process variations and so is 

inaccurate to a degree that is difficult to predict, both across a single chip 

and between chips. 

• It is difficult to achieve a high dynamic range because of noise due to electro-

magnetic pickup and switching. 

The analogue voltages and currents that represent the different variables 

are subject to offsets. 

• Weights represented as charge on a capacitor have to be refreshed period-

ically. 

Despite these problems, analogue approaches are held to have certain advantages 

that I now want to examine. 

• Analogue implementations are more compact than digital ones. This ad-

vantage, if genuine, is certainly a good reason for building analogue neural 

networks. The main constituent of any artificial network is the array of 

synapses, that is weight-storage and multipliers. Synapses on an analogue 

chip can take up much less space than their digital equivalents. However, 

as with most such assertions, the advantage is not overwhelming; by the 

time we take into account the requirements of off-chip refresh circuitry, we 

may have simply shifted the problem elsewhere. This is not to say that 

analogue designs cannot show an advantage over digital ones, only that a 

meaningful comparison is rarely straightforward. 

In any case, I am not convinced that compactness is yet a major issue in the 

design of neural hardware. Clearly, there is an advantage for any engineered 

system in minimising costs, and silicon-usage is one of those costs. Because 

biological systems, in particular the human brain, are held to be massively 

parallel in nature, there seems to be an assumption that artificial networks 

will benefit from a concomitant massive parallelism, even though the biggest 

software implementations currently use only a few hundred neurons. We 

can draw an analogy here between the current state of neural network re- 
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search and research into the use of parallel processors a decade ago. At that 

time, exaggerated predictions were being made about the impact of huge 

numbers of identical parallel processors that would render serial comput-

ing redundant. In practice, of course, the design of algorithms to exploit 

parallelism proved rather difficult, unpredicted bottlenecks appeared, and 

progress in the use of parallel processors in reality took a much more stately 

course. 

• Analogue circuitry is infinitely precise. It is true that limited resolution is 

not a feature of analogue hardware (although see the footnote on page 116), 

as it is with digital hardware, but the problems of noise and inaccuracy make 

this advantage difficult to exploit. 

• Analogue hardware can consume very little power. This is an undoubted 

advantage of analogue designs; it is possible to operate transistors sub-

threshold and still achieve very useful results (Mead, 1989), but there are, so 

far, few applications that make this an important virtue (Jabri et al., 1993). 

The greatest virtues of neural network hardware - namely that once designed it 

needs little or no programming and, because of redundancy, reduced testing - 

apply to digital and analogue implementations alike. My conclusions are that the 

advantages of analogue hardware are still questionable, although they may emerge 

more clearly as research into algorithms matures and as applications become more 

diverse. 

3.5 Research into hardware parallel architec-

tures 

The essence of neural networks is their parallelism, and we can only exploit this 

on a parallel architecture. Parallel software and hardware architectures both 

suffice. VLSI implementations offer a further advantage that many hundreds or 

even thousands of neurons can be created in a small space, with a consequent 

massive parallelism and resistance to error because of redundancy. Analogue 

implementations offer the prospect of bigger networks in a smaller space, although 

it seems we do not yet know the best way of exploiting this advantage. 
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From the preceding discussion, it is clear that these benefits are bought at the 

price of producing networks that are difficult to design and inflexible to use. This 

means that, for the future, we need to be clear about both the application we 

have in mind and the means of achieving it before an analogue network becomes 

the network of choice. 

There are, nevertheless, two good reasons why such research is necessary. One 

is that costs (of space, power, design-time and so on) are always important, and 

hence occasions when compact, low-power circuitry will be required are bound, 

sooner or later, to arise, for example in the case of autonomous vehicles. The other 

reason is that digital simulation can never tell us enough about the performance 

of real-world analogue circuits. This is partly because simulating a circuit and 

building one are two entirely different tasks. It is also because some issues (for 

example, the question of stability in a network with hidden-layers) is difficult or 

impossible to investigate in simulation. The only sure way is to build the circuit 

and try it. 

3.6 Strategies in research on-chip learning 

We could consider approaches to ANNs, and hence to on-chip learning, as falling 

somewhere between two extremes. 

At one extreme are the approaches that concentrate on the mathematical proper-

ties of ANNs as a means of solving real-world commercial or engineering problems, 

such as economic forecasting or face-recognition. Although claiming inspiration 

from biology, the link between ANNs and biological networks is tenuous. Within 

this approach, on-chip learning is seen as useful because it is the obvious next 

step for implementing algorithms, such as back-propagation, in their entirety 

on a chip, or because the technique would aid performance in rapidly-changing 

environments, such as a robot might encounter. Publications on on-chip learn-

ing lie overwhelmingly toward this end of the spectrum, and the technical work 

described in this thesis is firmly rooted in this tradition. 

At the other extreme are approaches that try in some way to emulate biological 

mechanisms. The justification for on-chip learning in such cases are that it is an 

integral part of the system. I include it here, albeit briefly, because the 'biological' 
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approach represents some of the best work in VLSI design, and because I am 

intellectually attracted to it, despite my own work being from the other tradition. 

Reasons advanced by researchers for choosing a particular strategy for on-chip 

learning vary. For example, the approach might 

• owe, in some degree, its inspiration to neurobiology. 

• owe little to neurobiology, but demonstrates some interesting properties. 

• use a popular algorithm. 

• use an algorithm that gives a prospect of real-world applications. 

• facilitate implementation in hardware. 

• demonstrate a hardware feature in which the research group specialises 

• allow large, parallel networks to be implemented. 

• make the best use of the materials available. 

Some of these reasons are stated explicitly in publications, or during presentations 

at conferences, while some are implicit and never overtly stated. 

The techniques also greatly vary. For example, some researchers concentrate 

on inventing circuits to perform particular functions such as modifying weights. 

Others build complete systems. Yet others concentrate on the conditions under 

which learning could best operate. 

I have chosen to illustrate the diversity of the field by choosing these examples: 

• emulating a biological function 

• implementing a model of a behavioural phenomenon, but without reference 

to the underlying biology, and with the emphasis on taking account, from 

the start, of the limitations of analogue hardware 

• implementing a complete back-propagation system with non-volatile 

weights 
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• investigating the efficacy of a variation of back-propagation that simplifies 

implementation in hardware 

3.6.1 Emulating a biological function 

This kind of approach has a good pedigree in that its leading figure is Carver 

Mead, renowned for developing VLSI solutions to neural problems. He was 

very explicit in his original aims. These were to understand biological sys-

tems (because of their power), to model them in silicon, and to apply them 

to problems that even the largest digital computers found intractable. His 'neur-

omorphic' approach identifies different structural levels in the nervous system 

(Faggin and Mead, 1990). At the lowest, it develops silicon analogues of the com-

putational primitives of the nervous system, using the physics of semiconductors 

(for example, the exponential dependence on gate-voltage of the drain current of 

a transistor operating in the sub-threshold region). At the next level, it attempts 

to organise these primitives to perform complex computational tasks, such as 

sensory pre-processing or 'learning'. At the top level, it develops an architecture 

capable of solving a practical problem, such as character recognition. In circuit 

terms, Mead has tried to make his designs adaptive, to compensate for inter-

device and inter-circuit variations and to make the architectures reconfigurable. 

His hope was that his designs would achieve the robustness and fault-tolerance 

of natural systems. 

Mead continues to apply his expertise to real-world problems through his 

commercial activities (McDonald,, 1992). Although some of the shine has 

been rubbed off his original notion, I believe it is still valid, as I ex-

plain in my conclusions to this thesis. For example, Mead and his 

group have tried to model auditory processing, (Lyon and Mead, 1989, 

Lazzaro and Mead, 1990, Lazzaro and Wawrzynek, 1993), as have others 

(Liu et al., 1992, Rosen et al., 1994). 

An interesting variant on this work is the implementation of a model of olfactory 

processing (dealing with the sense of smell) (Shoemaker et al., 1992). The motiv-

ation for the implementation was twofold: that the area of the olfactory bulb in 

question proved to have interesting clustering properties that might be replicated 

in VLSI; and that the work might elucidate the computational principles of real 

nervous systems. 
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Learning in the system was modelled on long-term potentiation (referred to on 

page 144). The scheme circumvented some of the problems of learning in ANNs 

such as back-propagation networks (to be discussed later in the thesis), in that 

weights were incremented in fixed increments of 5% to 10% of the range, over a 

range of only two or three times the value of naive weights. 

The investigators took a pragmatic approach to modelling the system, in that 

they followed biological principles closely on some VLSI modules in their system, 

but were expedient in their use of circuits in producing other functions. Theirs 

is a good example of clever circuits being used on an interesting problem, to aid 

understanding rather than offer real-world applications. 

Another investigator who has applied analogue VLSI ideas to this area is Elias 

(Elias, 1993), who uses fairly simple models of very-low-level neural structures, 

namely the dendrite (one of the structures of nerve cells to which synapses con-

nect). His work is interesting on two counts. The first is that his circuits can 

realise temporal-encoding, a well-known feature of real neurons; he stimulates 

chains of simple RC circuits that emit different responses depending on the phys-

ical distance of the stimulus from the output. The second matter of interest 

is that he seems able to build useful feature detectors that can respond to, for 

example, lines moving in particular directions. 

3.6.2 Implementing a model of a behavioural phe-

nomenon 

A colleague, Torsten Lehmann, takes an approach that combines biological inspir-

ation (the Klopf algorithm) with an understanding of the limitations of analogue 

hardware, based on his experience in trying to implement the back-propagation 

algorithm (Lehmann, 1995). 

Klopf's so-called drive-reinforcement model (Klopf, 1988) takes the high-level, 

psychological ideas of drives and reinforcements and applies them to individual 

neurons the drives become sufficiently strong signals and the reinforcements be-

come changes in the signal levels. This approach to associative learning, which is 

derived directly from animal learning, is able to simulate a wide range of classical- 
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conditioning data (Levine, 1991). It is, essentially, a differential Hebbian model.' 

There are two additional complexities : in order to account for the observation 

that in classical conditioning there is an optimal interval between stimuli, the 

change in post-synaptic activity is delayed in time; and the change in synaptic 

efficacy is proportional to present efficacy, because in animal learning there is an 

initial, S-shaped acceleration in learning. The mathematical interpretation of the 

Klopf rule is shown in Figure 3-1. 

w(t) = zO3(t - 1 )>1 77d I w,(t - d) I LO 2 (t — d — 1) 

post-synapt)   activity 	 (pre-synaptic 
activity 

efficacy 
delay 

Figure 3-1: Klopf's weight-change rule. 

Lehmann's medium of choice is analogue, pulse-stream, VLSI, neural networks, 

and he takes the inherent offsets and imprecision of analogue electronics into 

account from the beginning (Lehmann, 1995). He argues that an unsupervised 

learning algorithm such as Klopf's is not only biologically plausible but more 

likely to provide an efficient implementation in, for example, robotics. 

Whereas the pulse-stream network described in this thesis uses pulse-width mod-

ulation, Lehmann favours pulse-frequency modulation, and he has designed novel 

circuits including a synapse, current-mode and charge-mode weight-change mod-

ules, and bandpass filters, needed because the implementation is a free-running, 

asynchronous one. 

Hebbian models cross-correlate pre- and post-synaptic activities, while dif-

ferential Hebbian models cross-correlate changes in pre- and post-synaptic activities. 
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The significance of Lehmann's conclusions lies in the fact that he had already 

designed a chip set (Lehmann, 1994) that could, in principle, instantiate a range 

of algorithms, including the back-propagation algorithm, as well as learn on-chip. 

He concluded from this work (Lehmann, 1993) that learning in gradient-descent 

algorithms was severely affected by a range of problems, including offset errors 

on signals and the difficulty of calculating accurately the derivative signal, and it 

was this understanding that led him to a different approach. 

3.6.3 Implementing a complete back-propagation sys-

tern with non-volatile weights 

A Norwegian group (Berg et al., 1996, Sigvartsen, 1994, Soelberg et al., 1994) 

have attempted to implement a complete back-propagation network with on-

chip learning. Their system uses : a slightly-modified version of the algorithm; 

continuous-time, analogue circuits; and analogue, non-volatile storage in the form 

of floating-gate memories. This is an unusual combination of techniques, made 

more unusual in that the means of learning, that is modifying the floating-gate 

weights, is a UV-light source. To control the size of any increment or decrement 

of the weights, the intensity of the light is varied. 

In explaining their approach, the group make the usual token acknowledgement to 

biological systems, but emphasise the technical prowess of the hardware, namely 

that the feedback of signals during learning can compensate for offsets due to 

transistor mismatch; power-consumption is very low since they use transistors in 

their sub-threshold regions; and the network, if large, would show fault-tolerance 

(although the network they have built is so small this advantage does not apply 

in practice). The group have devoted their time, not to the design of special 

circuits (since the circuit ideas are largely borrowed), but to building and testing 

a complete system. 

The group's design is a considerable technical feat, firstly because they have 

had to translate an algorithm that is discrete-time and digital into continuous-

time, analogue circuits; and secondly because they have successfully combined the 

electronics with the UV-light sources necessary to modify the rather cumbersome 

floating-gate storage. 

Their greatest achievement is that they have a machine with which they can 
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investigate, in a complete analogue system, phenomena such as stability and 

the effects of noise, about which there is much theorising but little practical 

knowledge. 

3.6.4 Combining hardware design with simulation 

My colleagues at Oxford have made an analysis of a technique called weight-

perturbation (Cairns, 1995), that avoids the need for calculating, during the 

learning phase, the direction the weights should be adjusted. (The nature of 

the algorithm is described in Section 2.5.5.) 

The Oxford group's strategy for assessing the utility of hardware was in contrast 

to my own attempt to translate as much of the virtual targets algorithm as pos-

sible into hardware. They designed one chip to perform the forward pass of a MLP 

and used it with chip-in-the-loop training to compare error back-propagation and 

different weight-perturbation techniques. They then used the data they had accu-

mulated in software simulations of real-world tasks (speaker identification, med-

ical data analysis and region classification) to make an assessment of the precision 

with which weights must be updated for on-chip learning to be achieved. There 

is much to be said for this alternative approach in that conclusions can be drawn 

with minimum effort invested in actually building hardware. 

3.7 Implementations of on-chip learning 

When considering implementations of on-chip learning, we should be aware that 

modifiable weights are a reasonably recent innovation in analogue VLSI. Histor-

ically, hardware neural networks have progressed from architectures where the 

weights are fixed according to pre-calculated values, through systems using pro-

grammable weights (currently the most popular choice), to adaptive systems. 

The published work that I consider in detail here is only concerned with the last 

of these, namely adaptive systems 

The normal course of events in turning an algorithm simulated on a serial com- 

puter into a hardware implementation is to build modules that will perform the 

different basic functions, replicate the modules several (perhaps many) times, and 
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combine them into a parallel system. In looking at a list of hardware implement- 

ations, we can expect to see many different ways of building the basic modules. 

However, the features that are of most interest in a study of on-chip learning are: 

• choice of algorithm 

. the method by which weights are stored 

• the means by which weights are changed 

e the design of the synapse 

• the design of the neuron 

Table C—i in Appendix C, lists published work on digital and analogue imple-

mentations of on-chip learning or (in a few cases) work that is of particular 

interest in a study of on-chip learning. It is obvious from the list that there is an 

enormous variety of approaches. Some work has particular applications in mind, 

but many are concerned only with investigating particular circuits. What is not 

obvious from the list is that certain issues are of key importance and I turn now 

to these. 

3.8 Key issues : weight-storage and weight-

modification 

The questions of weight-storage and weight-modification are particularly difficult 

ones (Eberhardt et al., 1992), and it will help to put the work of this study into 

context to examine the work of other groups on these issues. 

3.8.1 Weight storage 

As indicated at the start of the chapter, weight-storage can take these forms 
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• fixed weights Weights are calculated in simulation and then their values 

fixed or 'hard-wired' in some way. Such an approach, though not very 

common now, is described in (Mead, 1989). 

• digital weights Weights are stored externally in digital form, and so are 

accurately known, with a precision dependent on the number of bits rep-

resented. As with fixed-weights, the values in store can be maintained 

indefinitely. 

• mixed digital and analogue weights The weights are stored digitally, 

but converted to analogue values in a primary store in the form of charge 

on a capacitor. The primary store may require regular refreshment from 

the digital store if the values are not to decay through charge-leakage. 

• truly analogue weights Floating-gate structures store analogue values 

in a non-volatile manner, so no external refresh is necessary. Amorphous-

silicon technology shows some promise, but is at an early stage of develop-

ment. Although both these technologies are non-volatile, reprogramming 

the weights is much slower than is reprogramming capacitive weights. 

To highlight the different approaches, Table 3-1 classifies each of the approaches 

in Table C—i in terms of the method of primary and secondary storage the re-

searchers have adopted. From the table we can easily infer the following points. 

• Some approaches to on-chip learning are entirely digital. 

• Of those which use an analogue primary store with digital secondary stor-

age, all represent weights as charge on a capacitor; sometimes that capacitor 

is explicitly provided, sometimes it is the gate-capacitance of a transistor 

that in turn controls a current. 

• A number of researchers have taken advantage of the fact that, if the 

network is learning continuously, and the speed at which learning is 

taking place is sufficiently fast, refresh is unnecessary : the weights' 

constant adjustment in time itself acts as a refresh. (One researcher 

(Montalvo et al., 1994b, Montalvo et al., 1994a) proposes capacitive stor-

age in the learning phase and floating-gate storage once the appropriate 

weights have been calculated and so is included twice in Table 3-1.) 
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Purely digital 

implementations 

Hybrid analogue- 
digital 

implementations 

Purely analogue implementations 
 Included for 

other reasons 
Capacitive Capacitive 

using capacitive 
storage with storage with floating-gate 

storage with 
refresh-by- refresh by read- storage 

digital backup 
learning store-and-write 

Dwanlon and Sitar, Choi and Salani. Arima ci al. Unnaies-Barnuna Abuslaixi and Lande. Aispnsnr ci a!, 

1990 1993 1991a, 1991b. cial. 1993 1994/ Berg cial. 1989. 1992 

1992 1996 

Eguchi cial. 1991 Cohen and Andrenu. Doienko and Canl, Kim aal. 1992 Botros and Abdul- 

1992 1993a, 1993b, Aziz, 1993 
1995 

Harunierstosm, 1990 Ghrnh ci al. 1994 Donald and Akers, Meador et al, 1991 El-Masry et al, 
1993 1992 

Myers era!, 1992 Lcbmann, 1994 Ibrahim and (Montalvo et al, Frye ci al, 1991 
Zaghioul, 1990 1992, 1994a. 1994b) 

Salarn and Wang. Macq cial, 1992 Montalvo et al, Shibata and Ohm!. Hollis and Paulo.. 

1991 1992,1994a. 1995 1994 

1994h 

Shima ci a!, 1992 Schwartz ci al. Schneider and S3ckinger ci al. 

19892.1989h Card, 1991a, 1992 
1991h 

Theeten eta!, 1990 Wang, 1993a, 1993h Walola and van Daalen eta!, 
Meador, 1992 1994 

Tomberg and Kaski, 
1991 1 

Table 3-1: Classification of published work in terms of method of primary and 

secondary storage 

• The division between refresh-by-learning and digital back-up probably re-

flects the confusion within the community over the best use to which ad-

aptive systems can be put. There is no clear candidate for an application 

that requires a fast learning phase and then fixed weights thereafter; nor 

for that matter one that requires continuous weight-adjustment, and so no 

back-up. 

3.8.2 Weight-modification 

Each of the forms of weight-storage has advantages and disadvantages when we 

consider the issue of weight- modification: 

• fixed weights The question of weight-modification does not, of course, 

arise 

• digital weights in digital and hybrid implementations Digital storage 

is well understood, easily-controllable, resistant to decay in value, and easy 

to increment or decrement. This accounts for its relative popularity in the 
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list of implementations in Tables CA and 3-1. Set against these advantages, 

digital storage takes up a lot of space on a silicon chip. Some algorithms, 

such as back-propagation, are held to require a precision of 12 bits or more, 

which makes space a serious constraint. One solution is to keep the storage 

off-chip (incremented or decremented by an on-chip learning signal) and 

refresh the charge on small capacitors on-chip. 

• truly analogue weights Refresh-by-learning is a truly adaptive method, 

although yet to be proved in an application. Some researchers 

(Castello et al., 1991) see floating-gate solutions as the best combination 

of silicon-area and storage-capability; others think small weight-increments 

on floating-gates prove too difficult (Schwartz et al., 1989b). In addition 

to the speed disadvantage noted in section 3.8.1, floating-gate storage is 

a technology that is not as easily available to researchers (including my 

group) as are other technologies capable of implementing digital storage or 

mixed digital/ analogue storage. This, and the fact that knowledge about 

its design is not as common compared to other designs, probably explains 

its infrequency in the published literature. 

3.9 Examples of weight-storage and weight-

modification 

In this section I look at an example of each of the categories of weight-storage 

listed in Table 3-1, and explain how weights are modified. 

3.9.1 Example 1 : purely digital storage 

Alspector's group designed a Boltzmann machine, a network in which the 

neurons have binary values; the network learns by optimising energy-states 

(a technique known as 'simulated annealing'), rather than by the delta-rule 

(Maren et al., 1990). The algorithm, which derives from statistical dynamics, is 

usually described as analogous to a physical solid that slowly cools, moving from a 

high-energy to a low-energy state. In network terms, as the 'temperature' (replic-

ated by a noise source) reduces, the proportion of neurons in a high-energy state 
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reduces also, but the rule for updating the weights connecting units is probabil-

istic, so that sometimes the network jumps to a higher-energy state, allowing it the 

chance to escape local minima in the energy surface (Beale and Jackson, 1990). 

The modified Boltzmann machine (Alspector, 1989, Aispector et al., 1989) uses 

a neuron that can produce both a step-function (as required by the original al-

gorithm) and a non-linear function such as tanh2  , with a noise amplifier that can 

add noise to (or 'increase the temperature of') the neuron output. The chip's 

synapse is shown as the block-diagram of Figure 3-2 g . Five flip-flops comprise 

the digital weights (4 bits and sign). The synapse achieves multiplication as fol-

lows. A zero-weight disconnects the synaptic connection. A non-zero weight is 

converted to an analogue conductance by a set of pass-transistors with graduated, 

binary-conductance ratios. As the weight changes, the logic selects the appropri-

ate combination of pass-transistors, to give a combined conductance that increases 

monotonically in steps from -15 to +15 with increasing weight. 

'Teacher'/' student' 
phase control 

Figure 3-2: Block-diagram of the synapse on Aispector's Boltzmann chip 

Learning is in two phases : in the 'teacher' phase, the inputs are 'clamped' 

with an input-pattern, the outputs with a desired-state pattern; in the 'student' 

state the output neurons are unclamped and run free. If, over these two phases, 

two interconnected neurons are correlated (ie have the same binary state), then 

2 The tanh function is equivalent to the sigmoid function, except that output values 

can vary between -1 and 1. 

'Diagram adapted from Aispector's own figures. 



Chapter 3. Issues in on-chip learning 	 49 

the correlation-logic increments the synapse-weight between them; otherwise it 

decrements the weight. 

Alspector produced a deterministic version of the Boltzmann machine that uses 

mean-field learning (Alspector et al., 1992). Conceptually, in deterministic ma-

chines a neuron produces a real number (rather than a binary output), represent-

ing the probability of a unit being in an ON state, ie the units' outputs represent 

the output-probabilities directly which, at least in simulation, means much faster 

learning. In this version of the machine, Aispector was able to vary the gain of 

the neuron with temperature, to sharpen the output from a tanh function to a 

step-function. Although weight-storage is the same as in the earlier version, the 

neuron output is a voltage, so the synapse now implements a weight x voltage 

multiplication to produce an output current. 

Alspector's solution to weight-storage exploits the ease with which digital lo-

gic can increment or decrement a weight, but his circuits are still able to offer 

analogue multiplication, and analogue outputs from neurons. 

3.9.2 Example 2: a hybrid implementation 

Ghosh's group has implemented a Hopfield network (Ghosh et al., 1994a, 

Ghosh et al., 1994b). The network is single-layered and fully connected. Each 

neuron connects to every other neuron, but not to itself, through weighted con-

nections, and the connections between any two nodes are symmetrical. One way 

to depict such a network is in a crossbar configuration, as shown in Figure 3-3(a). 

The Hopfield network is auto-associative : given a pattern as input, it will regen-

erate it, even if the pattern is noisy or incomplete. To recall a stored pattern, 

an input is applied, and the output of each neuron feeds back to all the other 

neurons until the network eventually settles into a state of equilibrium, when it 

produces the correct output. Learning a pattern does not involve repeated cycles 

of applying a pattern, reading the outputs, and adjusting the weights, as is the 

case with back-propagation. Rather, the weights are calculated in a single step, 

directly from the patterns that the network must learn. The algorithm, which is 

a form of Hebbian learning, involves multiplying the input vector by its transpose 

to produce a matrix, that is then added to the weight-matrix to store the pattern. 

Ghosh's group has built on earlier work where weights are resistors and neurons 
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(c) OTAs connected as a network 
	

(d) Schematic of the synapse and tuning circuit 

Figure 3-3: The design of Ghosh et al for elements of a Hopfield network 

are op-amps that sum weighted currents. Problems associated with early work 

include : the need to have two neurons, one for excitatory connections, and the 

other with an inverted output for inhibitory connections (since resistors cannot 

take negative values); translating a pre-calculated weight-matrix into resistor 

values, while taking account of parallel resistances and the output impedances 

of op-amps; and the large size and inconsistency of silicon resistors. This more 

recent work overcomes these problems. Moreover, it provides a means of tuning 

the synapses, which is of course impossible with fixed resistances. It does so by 

using operational transconductance amplifiers (OTAs) as synapses and neurons 

(see Figure 3-3(b) 4 ). 

The OTA at each synapse provides four-quadrant multiplication (so furnishing 

excitatory and inhibitory weights), and supplies a differential output current to 

the neuron. At the neuron, an OTA configured as an integrator sums the synapse 

currents, as shown in Figure 3-3(c). 

'Diagrams adapted from Gosh's own figures 
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As a multiplier, the OTA's output current is proportional to the product of the 

differential input voltage, derived from the neuron outputs, and the transconduct-

ance of the differential stage (see Figure 3-3(d)). This in turn is set by the bias 

current of the tail transistor, derived from the weight-capacitor. The weight is 

stored in an on-chip SRAM. When addressing circuitry isolates a particular syn-

apse, the switch closes and a current DAC drives a current proportional to the 

weight through transistor setting its gate-voltage. When the switch opens, 

the capacitor C, maintains the weight-current (although it must be refreshed 

periodically). The mirror transistors copy this current to the tail transistor, and 

enable the correct multiplication. (V1 controls the linearity of the transconduct-

ance.) 

A network constructed out of these building blocks, but only tested in simulation, 

seems capable of recalling stored bipolar patterns, even if some of the input 

patterns are corrupted. The group has not yet provided a way of calculating, 

on-chip, the correct weights for particular sets of patterns, but has found a way 

of adjusting the weights for different sets. 

3.9.3 Example 3 : capacitive storage with refresh-by-

learning 

The various learning chips produced by Arima's group (Arima et al., 1991a, 

Arima et al., 1991b, Arima et al., 1992), each bigger than the last, were among 

the first to demonstrate on-chip learning. In many ways, they were ahead of 

their time, achieving goals that other groups, including our own, are still trying 

to emulate. Like Aispector's, the chips ran a form of Boltzmann, mean-field 

algorithm, with the consequence that their neuronal outputs were bistate. The 

chips originally came in sets of two, one bearing the synapses being cascaded 

with the other bearing the neurons. Ultimately, synapses and neurons appeared 

on the same chip. 

The synapse design was essentially the same over the various designs, and is 

shown in Figure 3_45• 

'Diagrams adapted from Arima's own figures 

'7 



Chapter 3. Issues in on-chip learning 
	

52 

(a) Bidirectional connections 
	 Wt-T[ 1 

Vstate2 
	 (c) Synapse connection circuit 

Synaptic 
connection 

circuit 1 
Thibitory 
weight. 
Airicatio 

Synaptic 
Cormecutifl 

	

weight 	 circuit 2 

	

Weights state 	Weight x s2 

Output current 

xcilatory1.________ Pump 

weight- capacitor 

Digital Weight 
weight- capacitor  

modification 
controls 

Pump 
capacitor 

(b) Block diagram of synapse 	 (d) Charge-pump circuit 

Figure 3-4: Circuits on the Boltzmann chip of Arima et a! 

Each synapse is bidirectional and symmetrical, as shown in Figure 3-4(a), on the 

assumption that W23  =Wjj.A synapse comprises two 'synaptic connection 

circuits' (one for each direction) and two capacitive stores, one to represent excit-

atory or positive weights, the other inhibitory or negative weights (Figure 3-4(b)). 

Each synaptic connection circuit (Figure 3-4(c)) is, in effect, a set of switched 

current-sources, one of fixed value to represent a zero weight, and the other two 

being controlled by the voltage on the weight-capacitors. The states of the in-

terconnecting neurons control the switches; a 'firing' (ie ON) neuron causes the 

synapse to supply weighted currents to the next stage, otherwise it supplies the 

zero-current. In the neuron, a comparator reads the summed currents and flips 

if the value is over threshold. 

I considered this design a possibility for my own system. Charge-pumps, again 

controlled by switches (Figure 3-4(c)), bump the weight-capacitors up or down 

according to the learning rule. The capacitors are very small (0.5pF), even by 

VLSI standards, so only a 10% change was possible, but this seems to have been 

enough for the network to associate correctly 98% of input patterns with the 

correct outputs, provided various Hamming-distance constraints were observed. 



Chapter 3. Issues in on-chip learning 	 53 

Arima's group saw charge-leakage, and hence 'forgetting', as a problem 

(Arima et al., 1991b), even if learning was continuous; if the holding-time is short 

compared to the learning time, which might be the case if the set of input pat-

terns is large, then leakage destroys the learned associations. Their later work 

developed a weight-refresh scheme to overcome this problem (Arima et al., 1992). 

3.9.4 Example 4 : capacitive storage with read-store-

and-write refresh 

A Spanish group has implemented an algorithm not commonly found in VLSI, the 

bidirectional associative memory (BAM) (Linares- B arranco et al., 1993). The 

algorithm allows the network to learn pairs of patterns so that, after learning, 

one pattern will stimulate the network to produce the other (Levine, 1991). Kosko 

(Kosko, 1988) developed a dynamical system of differential equations for a general 

heteroassociative link (ie each pattern in a pair is different in structure and, 

perhaps, in length) between collections of nodes in networks of the type shown 

in Figure 3-5 (a). Conceptually, each interconnection has only one bidirectional 

weight. When pairs of patterns are presented to the pairs of inputs, the outputs 

of each layer are fed back to the other and a learning rule adjusts the weights. 

Kosko showed that, where activity-pattern vectors (ie the output vectors) are 

bistate (binary or bipolar), the weights will converge to a state of equilibrium. 

Although there are discrete-time versions of Kosko's analysis, it maps naturally 

onto a continuous-time system, which is what Linares- B arranco's group have 

built. 

The network can use several learning rules, the simplest, and the one used by 

Linares- B arranco et at, being the Hebbian rule : connection strengths are in-

creased with correlated activity of interconnected nodes. The activity of a node 

is a function of three terms, the nodes's own present input, the weighted sum 

of inputs from nodes in the other layer, and a non-linear mapping of the node's 

present activity. The circuit-blocks shown in Figure 3-5(b) 6  for node Yl imple-

ment the three terms. An external current-source represents the input 1.1,  the 

synapses are transconductance multipliers, and a circuit that behaves like a non-

linear resistor makes the non-linear mapping. The voltages on the output nodes 

'Diagrams adapted from Linares-Barranco's own figures 
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(a) A BAM network (b) Schematic of a neuron and weighted inputs 

(c) Two layers of neurons, arranged in a grid (d) Schematic of a single synapse, showing single 
weight, twin multipliers and weight-modification mechanism 

(e) Block digram of weight-refresh scheme 
	 (e) Weight-refresh cycle 

Figure 3-5: The design of Linares-Barranco et al for a BAM network 
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represent the activity outputs. The whole network is implemented on silicon in 

the very elegant array design shown in Figure 3-5(c) : y-nodes are arranged in 

rows, with the columns providing weighted inputs from the x-nodes, while the 

x-nodes are arranged in columns, with the rows supplying weighted inputs from 

the y-nodes. 

Each synapse comprises three transconductance multipliers (Figure 3-5(d)) and 

instantiates the Hebbian rule. M 1  and M 2  are the weighting multipliers. M 3  

(also a transconductance multiplier, but connected as a transconductance ampli-

fier with negative feedback) provides the load resistance RL.  During the learning 

phase, the input patterns produce activity voltages that drive the inputs to the 

M 3  amplifier, and so provide the weight-voltage on This is fed back, in turn, 

to provide a new set of activity voltages. After a few presentations of the pattern 

set, the weights settle into an equilibrium state (Linares- B arranco et al., 1993). 

The network has learned the patterns, and the switches isolate Ct. 

The refresh scheme, shown in Figure 3-5(d) and (e), prevent leakage-currents from 

destroying the weight-values. The buffer feeds the weight-voltage to an ADC and 

latch, the latch increments to the next level (one of eight), and the DAC writes the 

corresponding voltage back to The scheme keeps the weight-values within a 

finite interval, and moreover allows the weights to be monitored. 

The chip carries 5 neurons in each layer (and so 25 weights) and was able to learn 

its maximum theoretical capacity of two pairs of patterns. One pattern would 

stimulate the network to produce its pair, despite weight-deviations in 6 of the 

25 weights, due to circuit-mismatch. Hence, although very small, the network 

worked. 

3.9.5 Example 5: purely analogue implementations with 

floating-gate storage 

One group has combined weight-perturbation techniques with both short-term 

capacitive, and long-term floating-gate, storage, to produce a system that learns 

on chip and maintains its resultant weight-set over time (Montalvo et al., 1992, 

Montalvo et al., 1994b, Montalvo et al., 1994a). 

The weight-perturbation algorithm works, like back-propagation, by gradient- 

descent, but circumvents the difficulty of calculating the error-derivative (as back- 
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propagation requires) by measuring the gradient instead. The algorithm approx-

imates the derivative by measuring the network error, perturbing a weight, meas-

uring the error again, and then modifying the weight in the direction that will 

reduce the error. The advantages are that the algorithm needs no complex calcu-

lation, and requires no exact knowledge of the network's characteristics, since the 

gradient-measurement takes automatic account of the multiple imperfections of 

a real-world analogue implementation. The disadvantage is that the algorithm is 

only semi-parallel. For example, circuitry can perturb, in parallel, all the weights 

that connect a single hidden node to the output nodes, since each weight affects 

only one output, but the algorithm must attend to each hidden node in turn, to 

avoid multiple effects on a single output. (There are stochastic variants of the 

basic algorithm that perturb all weights in parallel.) However, the advantages 

make weight-perturbation an increasingly popular approach. 

Figure 3-6 shows the system. The synapse comprises a weight-modification 

module, a dynamic weight with a perturbation mechanism, a long-term store and 

a multiplier (Figure 3-6(a)). Cd is the dynamic store to which the increment and 

decrement signals can add or subtract charge in the form of the currents through 

transistors MI and M2 (Figure 3-6(b)). 

The synapse consists of a double-differential stage with two current sinks Fl, 

which has a fixed gate-voltage reference, supplying a zero-current I;  and F2, 

which can vary 12 around the value of I, providing a four-quadrant multiplication. 

The charge on Cdy  varies 12 directly, by varying the gate-voltage on F2, but F2 

can also store the charge more permanently using high-voltage pulses to transfer 

the charge to the floating gate. 

The system provides dynamic and long-term storage, and uses an algorithm that 

requires neither great accuracy nor complex calculation. The authors claim to 

be able to limit offsets due to charge-injection on Cdv,  and furthermore to have 

developed circuits that compensate for temperature effects, but they have so far 

presented no results of the network running the algorithm. 

'Diagrams adapted from Montalvo's own figures. 
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Figure 3-6: The design of Montalvo et al for combining short- and long-term 

storage on the same chip 



Chapter 3. Issues in on-chip learning 
	 l.J 

3.10 Conclusions 

On-chip learning is a technique that places the circuitry that adapts weights 

onto a chip, rather than have the weights calculated on a supporting computer. 

The technique, although difficult to achieve, offers several advantages over other 

methods of determining an appropriate set of weights. 

On-chip learning can be implemented in digital or analogue hardware, and it 

appears that, at least at the moment, the advantages of the digital approach make 

it the medium of choice. Nevertheless, several digital and analogue approaches 

exist that attempt to place learning circuitry on a chip. 

Notwithstanding the variety in approaches, the issues of how to store a weight, 

and how to change it, are key ones. Examples drawn from throughout the field 

demonstrate that a range of algorithms can be accommodated to on-chip learn-

ing, although the networks tend to be small, and operate with varying degrees 

of success. These approaches each use different methods of storing and changing 

weights, and each has its merits and defects; no one approach seems overwhelm-

ingly better than another, and this is partly because, as yet, there is no clear 

candidate for an application of on-chip learning. 



Chapter 4 

Hardware functions from the VT 

algorithm 

4.1 Introduction 

In this chapter, I show how I translated the virtual targets algorithm into func-

tions capable of being realised in silicon. 

4.2 Translating the Algorithm into Hardware 

4.2.1 Building on previous work 

Colleagues here recently produced a chip called EPSILON, designed to carry out 

the forward-pass of a number of different algorithms, including back-propagation 

(Hamilton et al., 1992, Hamilton et al., 1993). The chip could carry out the 

multiplication - summing -p non-linear-mapping operations referred to in sec-

tion 2.2. The general approach to the design and the performance of the chip in 

many ways rivalled that of the ETANN chip (Tam et al., 1990) referred to in sec-

tion 3.2, which was a product of the very large and successful commercial R & D 

laboratory. The EPSILON chip comprises an array of two-quadrant multipliers, 

a simple summation method involving summing currents on an electrical node, 

59 
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and a series of circuits to calculate the activation of a neuron and convert it into 

an appropriate output, ie all the operations described in Figure 2-2. 

Since the forward-pass operations are a major part of the virtual targets al-

gorithm, it seemed an obvious decision to build on this work. Our ability to 

carry out the operations of a forward pass was taken for granted and I focussed 

on the weight- and target-modification operations described in Figure 2-3. 

4.2.2 Basic hardware principles 

A number of basic guidelines have been established in our group that can be 

sensibly applied to any analogue-hardware implementation of an ANN 

A single layer of a network can be translated naturally into a grid pattern, 

as illustrated in Figure 4-1. To implement a complete network comprising 

hidden and output layers, there are several possible solutions. There can 

be enough synapses to implement all the nodes; the outputs of the first 

layer can be routed off-chip and then back on again; or, if the nature of the 

signals allows, chips can be cascaded together. 

It makes sense to represent inputs to and outputs from the chip as voltages. 

For inputs, it is easier and more accurate to distribute voltages around a 

grid of synapses. For outputs, it is easier to pass voltages than currents 

between cascaded chips. 

Outputs of synapses are generally represented as currents, because sum-

mation can be achieved simply and elegantly on a single electrical node 

according to Kirchoff's current law. 
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Figure 4-1: Translating one layer of an ANN, in this case the output layer, into 

a grid pattern for implementation on silicon. (a) The original network, with the 

output-layer nodes labelled OL1 and OLE, and the inputs labelled HL1 - HLS. (b) 

The output-layer nodes rearranged so that each input signal is directed horizontally 

to the same synapse in each node. The synapses are represented as black dots. 

(c) The way circuits implementing the various functions might actually be laid 

out on silicon. Synapses are now represented by squares. Input signals are passed 

along the rows. Each column contain all the synapses for a particular node. The 

outputs of the synapses in each column are summed down the column and, at the 

column-foot, the non-linear mapping is applied to each sum. 



Chapter 4. Hardware functions from the VT algorithm 	 62 

4.3 Implementing the forward-pass equations 

on EPSILON 

This section considers the forward-pass equations and the way in which they 

were implemented on the EPSILON chip. To understand how this was done is 

important in appreciating how I developed the original EPSILON design for the 

virtual targets algorithm and on-chip learning. 

4.3.1 Forward-pass equations 

The forward pass can be expressed in the following equations for the outputs of 

the hidden and output layers 

(j=0
oj = 

 

Ok 
=0. (k=O

2 Wk3O 
 

where the sigmoid function a(x) = 1/ (i + e_(x_9)T) 

As I have already noted, these equations can be decomposed into a series of 

multiplication -* summing —3 non-linear-mapping operations, and circuits imple-

menting the various functions laid out in a grid-pattern on silicon. EPSILON 

was designed in this way. 

4.3.2 The architecture and circuits of EPSILON 

Figure 4-2 summarises the EPSILON architecture. A detailed understanding is 

unnecessary, and I only go into further detail when this is important to understand 

the work of this investigation. 

• Multiplication The multiplication is a two-quadrant operation because 

the weights Wkj  and W3 , are bipolar while the input states Ok  and O 
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Figure 4-2: A much-simplified description of the architecture of the EPSILON 

chip 

are unipolar. On EPSILON, input states are represented as voltage pulses 

of varying width, the width encoding the value of the state. Weights are 

represented as charge stored on a capacitor at each synapse site. The out-

put signal from each synapse, the result of a weight-voltage x state-pulse 

multiplication, is a current-pulse. 

• Summation The output current-pulses from a column of synapses are 

summed simply on a single electrical node. 

• Non-linear mapping The means of converting the summed currents, rep-

resenting the activation, into a value representing the output-state of a node 

is rather complicated. Each column has a series of circuits to accomplish 

the transformation. First a buffer-circuit and operational-amplifier convert 

the summed current-pulses into a series of positive and negative voltage-

pulses. A voltage integrator re-converts the voltage-pulses into positive and 

negative currents that, in the form of charge, are dumped onto or drawn 

off from an activation capacitor. The final voltage on the capacitor is the 

weighted sum of the input signals. This voltage is converted into a pulse 
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via a comparator by use of an off-chip, programmable ramp-voltage. In this 

manner, all state signals, whether input or output, are pulse-width modu-

lated signals. It also means that the shape of the ramp-voltage determines 

the mapping between the weighted sum and the node activation, which can, 

within reason, be any linear or non-linear mapping. As explained by one 

of its inventors (Churcher, 1993), the ramp shown in Figure 4-2 is a two-

sided sigmoid 'on its side' that encodes this particular form of non-linear 

mapping. 

4.4 Implementing the weight-modification 

equations 

In the virtual targets algorithm, the learning rule is represented by modification 

of weights (as with back-propagation) and additionally by modification of targets 

which is considered in Section 4.5. As we shall see, although some of the com-

ponents of the learning rule at first sight seem difficult to implement in analogue 

electronics, a suitable choice of representation for signals can greatly ease the 

problems, and some calculations can be done in an analogue way by what are 

essentially digital signals. 

4.4.1 The equations 

The equations according to which the weights are modified can be expanded as 

shown in Figure 4-3. The form of the equation for each layer is identical, and 

comprises four terms. 

The first of these is a gain term, which can be thought of as a means of in-

creasing or reducing the size of the weight-change. The remaining three require 

to be multiplied together, and comprise the input from the previous layer, a 

'sigmoid-prime' term and an error-term. The first task was to develop means 

of implementing each of the terms electronically. The second task was to find 

a means of multiplying the three terms together, which seemed a much more 

difficult proposition. 
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Figure 4-3: The weight-modification equations for the hidden and output layers. 

Individual terms in the hidden-layer equation are identified by the names in the 

bubbles. Since the form of the equations is identical in the two cases, the terms 

for the output-layer equation are equivalent to those in the hidden layer. 

4.4.2 Input and output signals 

I considered changing the form of representation of input and output (state) 

signals from pulse-width modulation to some other form, perhaps pulse-frequency 

modulation which had also been investigated by our group, and perhaps even an 

entirely different form. However, the advantages of retaining the pulse-width 

modulation scheme were overwhelming. The group had had plenty of experience 

in the design of pulse-width modulated circuits, the operation makes inter-chip 

communication possible and the EPSILON design could be used for the forward-

pass calculations. 

4.4.3 Implementing the 'sigmoid prime' term 

The sigmoid prime term is of the form Ok(l — Ok), and the means of implementing 

it is to consider it as an analogue function with a state input Ok  and an output 

Ok(1 - Ok). The graph of the function is shown in Figure 4-4(a). Our initial 

consideration of this problem involved a switched-capacitor circuit with a rather 
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complex clocking scheme and, as an alternative, an inverter circuit in which 

transistor characteristics were used to try and replicate the features of the curve. 

It then occurred to us that an accurate representation of the curve was probably 

not important for the success of the algorithm, but only its general shape. We 

therefore considered implementing it as the approximation shown in Figure 4-

4(b). 
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Figure 4-4: The 'sigmoid-prime' term. (a) Graph of the function Ok(1 - Ok). 

(b) A more-simply implemented approximation. 

In fact, once we have chosen pulse-modulated signals as the states, to produce 

the sawtooth version of the function proves very simple using an XOR gate'. The 

basic idea is illustrated in Figure 4-5. 

'The original idea was that of my second supervisor, Martin Reekie 
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integrator based on 

{ferenÜIplifie  variable-width pulse 
Ok 

Figure 4-5: The fundamentals of the circuits to implement the 'sigmoid-prime' 

term. Appropriate input signals to the XOR gate produce a series of pulses at the 

output that can be integrated to give the correct result. 

An XOR gate receives two pulsed inputs, a fixed, control signal, and a pulse-

width signal representing the state. The gate's output is a pulse-train whose 

ON-time-minus-OFF-time rises and then falls, like the sawtooth curve illustrated 

in Figure 4-4, as the state-pulse increases from zero to some maximum width. 

The following circuit is a voltage integrator that, during the ON-time, sources 

current onto an integration capacitor, and during the OFF-time, sinks current 

from the capacitor. The final calculation is the result of the function. 

The result rests on the idea of a fixed time-frame in which pulsed signals are 

centred on a particular time in the frame. To see how this is done in practice, 

some exemplar signals are shown in Figure 4_62.  The time-frame chosen is 40iis. 

The signal applied to input A of the XOR gate is in every case a fixed 50% 

duty-cycle pulse train, centred on the 20is point in the frame. Input B receives 

the pulse representing the state Ok,  centred on the 10s point, and examples 

encoding three state-values of low-value, one half and one are shown. The gate's 

output is a series of pulses of a number and duration dependent on the width of 

the Ok  pulse. As the Ok  pulse increases in width, the ON-time-minus-OFF-time 

of the gate's output pulses rises correspondingly, and then falls. 

I chose a standard circuit for an XOR gate, laid it out using silicon design tools, 

and simulated it using Hspice. 

2 The graphs shown here are Hspice simulations of circuits extracted from VLSI 

layout. 
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Figure 4-6: Calculation of the 'sigmoid-prime' term, shown by exemplar in- 

puts to, and corresponding outputs from, the XOR gate. The output signal's 

ON-time-minus-OFF-time varies in an analogue manner, as explained in the text. 

4.44 Implementing the error term 

The error-term is of the form Tk - Ok, where Tk is a target value and Ok  is a state 

value. If both these values are represented by a pulse-width modulation signal, 

the result can again be computed using an XOR gate. This time the result does 

not depend on the two pulses being centred on a point in the time-frame, but 

is achieved if they are coincident in this way (as shown in Figure 4-7) or have 

coincident leading or trailing edges. 

The calculation of this term is so simple it needs no further explanation, other 

than to say that the result can be used in exactly the same way as a state-value 

can be used. 

The circuit used for the XOR gate for the sigmoid prime and error-term functions 

is shown in Figure 4-8. 
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Figure 4-7: Calculation of the error term, shown by exemplar inputs to, and 

corresponding outputs from, the XOR gate. 

= A xor B 

Figure 4-8: The standard circuit for the XOR gate used for the 'sigmoid-prime' 

and error-term functions 
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4.4.5 Implementing a sign circuit 

The calculation of an error-term that is the difference of two values raises the issue 

of sign, since one must determine whether a negative result will be generated. The 

idea of centring the pulses that represent targets and errors on a point in a time-

frame again makes the solution easy. This time, the function can be implemented 

using an S-R flip-flop (see Figure 4-9), the only constraint being that, whatever 

the inputs, the flip-flop should not settle in an indeterminate state. 

Obar 
If the longer of two symmetric pulses 

is applied to input S, Q is set 

If the longer of two symmetric pulses 

is applied to input R, Q is reset. 

I-' 

Pulses arranged symmetrically 

about this point 

Figure 4-9: Using an S-R flip-flop to determine the sign of the result of the 

subtraction of one pulse from another 

I chose a standard circuit for an S-R flip-flop, and simulated it using Hspice. The 

only difficulty was in ensuring the circuit never settled into an indeterminate state. 

This involve choosing non-standard transistor sizes for some of the transistors. I 

then laid out the circuit using silicon design tools, and re-simulated it to verify 

its operation under all input conditions. The circuit is shown in Figure 4-10. 

4.5 Implementing the target-modification 

equation 

We can use some of what we have learned from implementing the weight- 

modification equations in implementing the target-modification equation. This 

issue only affects the hidden-layer targets because, as the virtual targets algorithm 
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p1 

 

an 

 

ii: ip2 

Figure 4-10: The flip-flop circuit used for the sign function. Judicious choice 

of transistor sizes ensures the flip-flop never settles in an indeterminate state. 

is a supervised-learning algorithm, targets for the outer layer have to be specified 

explicitly as part of the problem that the network is trying to solve. 

4.5.1 The equation 

The equation for update of the hidden-layer targets is 

K 

AT = 77targeis :i: Wkek 

k=O 

We can immediately note three things : that the error-term that occurs in the 

weight-change equation reappears here; that two terms must be multiplied to-

gether; and that the results of several multiplications must be summed. The 

equation is, then, very like the forward-pass equations referred to in Section 4.3.1 

on page 62. The difference is that, whereas the forward-pass equations require a 

two-quadrant multiplication, both the weight and error terms are bipolar, and so 

a four-quadrant multiplication is required. 

I approached this problem, therefore, from the point of view that, if a suitable 

four-quadrant multiplier could be developed, the implementation of the target- 
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modification equation would be, to all intents and purposes, solved. However, 

the design for a suitable multiplier took considerable thought. 

4.5.2 The EPSILON synapse 

Our start-point was the two-quadrant multiplier developed for the EPSILON chip 

and shown in Figure 4-11. 
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Vstate 
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Viotef 
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Vhiref 
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Vste 

Vrow 	Vcol 	
MI 
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rTh 1M2 

- 	Vloref 

Vbias 

(c) 

Figure 4-11: The EPSILON synapse. (a) The transconductance amplifier, 

which is at the core of the circuit. (b) The amplifier's output characteristics when 

v out is varied. ('c) The complete synapse and functional blocks that make up a 

complete synapse and neuron. 

The transconductance amplifier consists of only three transistors supplied by rails 

with a voltages differing by around 1 volt, which keeps M1  and M2  in the linear 

region of operation. The voltage V is fixed, so that transistor M1  acts as a 

constant-current-source. The voltage v on M2  represents a weight that, as it 
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rises, causes M3  to sink varying currents. The resultant current through M3  

varies linearly, as shown, from positive to negative values, ie in two quadrants, 

provided the rail voltages are low compared to Vwt. If Vsjaje is a digital pulse, 

0t is a current-pulse whose amplitude reflects the weight-voltage and whose 

duration reflects the state-value. If the current-pulse is integrated, a weight x 

state multiplication is achieved. If the output currents from a set of parallel 

synapses are integrated, the result represents a sum of products, as the equations 

require. 

For the target-modification equation, another circuit producing four-quadrant 

multiplication is required. Alternatively, the performance of the EPSILON circuit 

requires to be extended to four-quadrants, but it is not immediately obvious how 

this might be done. 

4.5.3 Option 1 : the Gilbert multiplier 

The Gilbert multiplier (Kub et al., 1990, Schneider and Card, 1991b) is very 

popular , for all kinds of applications, not only for ANNs, and its basic structure 

and output characteristics are shown in Figure 4-12. 
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Figure 4-12: Basic structure of the Gilbert multiplier, and its output charac-

teristics . The circuit's operation is described in the text. 

Analysis that assumes the square-law approximation for the transistors working 

in saturation, and hence that their drain-source current is iD = I3(VGS - VT)2, 

shows that the difference of the output currents i 1  and 1 2  is 

0. 
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jo  1 - 
	

(F2 -#1) 
(viv2) 

where /3.  and )31  are the transconductance parameters of the upper two differential 

pairs and the lower differential pair, respectively. In other words, i 0  is the product 

of the two differential input voltages. 

The circuit has much to commend it. Its operation is well verified, the output 

characteristics are regular and the curves well-spaced, and a choice of output 

converter can provide a single-ended voltage or current. 

A disadvantage is that the gain of the circuit can be very large, making the 

differential voltages that can be multiplied to give a linear output correspondingly 

small. The wide-range version  also comprises around 20 transistors. However, 

the greatest disadvantage is in trying to develop a circuit of which our group 

had no experience and which was not a pulse-mode circuit. All the inputs to the 

multiplier are differential voltages, not pulses where states are encoded in time. 

4.5.4 Option2 : the Dupuie multiplier 

A beautifully simple multiplier with good output characteristics is the Dupuie 

multiplier (Dupuie and Ismail, 1990), shown along with its output characteristics 

in Figure 4-13. 

The inventors envisaged the multiplier output-nodes being connected to an oper-

ational amplifier to compute the current difference. Unlike the Gilbert multiplier, 

and like the EPSILON synapse, correct operation relies on the transistors being 

held in their linear region. In other words, the voltage over the drain and source 

terminals, VDS,  must be kept low (say between 1 and 1.5 volts), compared to the 

voltages on the transistor gates,vGs, (say 3 to 4 volts); in these circumstances, 

the transistors' drain-source currents, and hence the output currents, are a linear 

function of the gate-voltages. The multiplier is able to achieve four-quadrant op-

eration because the drain and source terminals can be reversed, and current can 

3The term 'wide-range' refers to the multiplier's ability to multiply voltages near 

VDD or ground 
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+ 

Figure 4-13: Basic structure of the Dupuie multiplier, and its output charac-

teristics . The circuit's operation is described in the text. 

flow through the transistors in either direction. There is a 2-transistor version of 

the same circuit with similar characteristics. 

This circuit, like the Gilbert multiplier, requires inputs in voltage, rather than 

pulse, mode. 

4.5.5 Option 3: twin EPSILON synapses 

Another possibility is the development of the original EPSILON synapse into a 

four-quadrant form. Two ways in which this might be done are shown in Figure 4-

14. is a positive weight, while V_, which is stored at the same time, 

is its negative 'mirror' around a zero voltage. Pulses that represent states are 

designated 'positive' or 'negative'. In the scheme shown in Figure 4-14(a), control 

logic determines which position switch S adopts, but an objection would be that 

charge-sharing between the capacitors, as the switch changes position, might 

seriously distort the weight representation. In Figure 4-14(b), this objection is 

overcome : a twin-synapse performs the four-quadrant multiplication, and this 

time the control-logic determines which half of the synapse is used. 

In circumstances where learning takes place off-chip, say on a supporting PC, the 

problem of calculating a positive weight and its negative mirror is easily solved 

in software. After each calculation, the computer down-loads new values to the 

chip. However, an objection to both the schemes outlined here is the difficulty 

of providing a weight-voltage and its mirror when the weights are changing. One 

problem is that of incrementing a positive weight and decrementing a negative one 

by the same increment. Another problem is of matching capacitances, with the 
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Figure 4-14: Schemes for implementing the EPSILON synapse as a 

four-quadrant multiplier. (a) Two capacitors, one representing a positive weight 

and the other its negative mirror, serve one synapse, and a switch selects the 
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danger that the variation between the two capacitors exacerbates the difficulty 

of matching increments and decrements. 

4.5.6 Option 4 : twin EPSILON synapses operated in 

parallel 

A solution that is not without problems, but nevertheless is a substantial improve-

ment on the schemes proposed so far, is shown in Figure 4-15. I have already 

noted, in connection with the Dupuie multiplier (Section 4.5.4), that a transistor 

operating in its linear region not only provides a current that is linearly related 

to its gate-voltage, but also can have its drain and source voltages reversed. This 

makes the original EPSILON synapse, in all essentials, symmetrical to the rail 

voltages. The left synapse in Figure 4-15 is a normal EPSILON synapse, while 

the right synapse has its connections reversed so that transistor M2  acts as a 

constant-current sink, while transistor M1  sources a current that varies linearly 

with the weight voltage. 
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Figure 4-15: A four-quadrant multiplier. A single capacitor drives twin syn-

apses, in one of which the V and V connections have been reversed. A 

'zero '-state pulse is supplied to one synapse, while the other receives a normal 

state pulse. 

The circuit is by no means perfect, as the simulation results of Figure 4-16 show. 

The curves are reasonably symmetrical in the x and y planes, but the intended 
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Figure 4-16: Output characteristics of the four-quadrant multiplier. 

zero output voltage of 2.5v is actually offset. The size of this offset is dependent 

on a number of factors concerned with the operation of the synapse circuit itself 

and other circuitry that makes up the whole neuron. An analysis of the twin 

synapse is given in Appendix E, which shows that that part of the offset due to 

the synapse is caused the asymmetry of its two halves. This imbalance can be 

corrected (in a manner explained in Appendix E) by the addition of a current 

source to the circuit. There are several practical solutions to the correction of 

the offset but, due to approaching chip deadlines, I left this matter aside. 

4.6 Summary of design work 

Although I had undertaken a wide-ranging consideration of the possibilities for 

several circuits, the final decisions condensed into the following straightforward 

conclusions 

• Retaining the pulse-mode approach has strong advantages. Unfortunately, 

the use of the elegant Gilbert or Dupuie multipliers is precluded, at 

least without substantial further development, because they operate with 

voltage-mode, not pulse-mode, inputs. Set against this disadvantage, the 

sigmoid-prime, error and sign circuits which, at first sight, seem difficult to 

design turn out to require no more than slightly modified digital gates. 
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• Building on the design work of the EPSILON chip solves a number of imme-

diate problems. The forward-pass equations can already be implemented. 

The target-modification equation can also be implemented, except that a 

four-quadrant multiplication is required. 

• A four-quadrant multiplier with the essentials of the correct functionality 

can be derived from the EPSILON synapse. This also retains the use of 

pulse-mode signals and makes it easy to interface to other EPSILON cir-

cuits. 

• The question of implementing the weight-modification equations remained to 

be solved. As things stood at this point, the equation required a three-term 

multiplication in which each term was a pulse. 

4.7 Test chip : design, testing and results 

This section explains the architecture of the test chip and describes how I built a 

test-system, which gave me valuable experience in providing the various voltage, 

current and pulse signals that drive the EPSILON circuits and those of my own 

design. 

4.7.1 Objectives 

The design of the test-chip had, in terms of results, a single objective : to assess 

the basic functionality of the four-quadrant multiplier and sigmoid-prime circuits. 

For reasons of space and time, the error- and sign-circuits, although designed and 

laid out in the design tools, were not committed to silicon, on the assumption 

that their simplicity more or less guaranteed their ability to operate as predicted. 

4.7.2 Chip architecture 

The architecture of the chip is shown in Figure 4-17. The chip comprised 4 syn-

apses, with their associated neurons (op-amp buffer, integrator and comparator), 

together with an XOR gate and associated integrators and comparators. 
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Figure 4-17: Architecture of the test chip, with 4 synapses, a sigmoid-prime 

circuit, and support circuits. 

4.7.3 Testing 

Further details of the chip's design and testing are given in Appendix F 

4.7.4 Results from the test chip 

The results of the test procedure confirmed the functionality of both the four-

quadrant multiplier and the sigmoid-prime circuits. Figure 4-18 repeats the 

simulation results shown earlier, alongside results taken from the chip. 

The results proved very difficult to obtain. The EPSILON circuits are difficult 

to set up, because accuracy in their several current and voltage supplies can be 

critical. The test board and associated state-machine proved very noisy, possibly 

because the clock-rate of 2MHz (divided down to 1MHz for clocking the ROM), 

required to give a resolution of 1is pulses, was probably near the limits of the 

state-machine's performance. Graph (b) of Figure 4-18 shows results from a 

single run of a single synapses-and-neuron column; the curves seem to show two 

distinct zero-points, circled on the graph, the cause of which was very difficult 

to identify. Graph (c) shows results of the average of a number of runs, with 
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Figure 4-18: Results of tests of the four-quadrant multiplier. (a) Simulation 

results. (b) Results from a single synapse and neuron. (c) Results from a single 

synapse, averaged over 10 runs, and corrected for double-zero point. Chip integra-

tion-capacitor voltages are inferred from pulse-outputs which had previously been 

calibrated. 
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the double-zero point corrected artificially. The characteristics of the measured 

results are asymmetrical about the zero-weight and 2.5V axes. Set against these 

points, the general characteristics are as expected, the curves are reasonably 

evenly-spaced, and the output range is clearly scalable. 
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Figure 4-19: Results of tests of the sigmoid-prime circuit. (a) Simulation res-

ults. (b) Results from 10 chips. Chip integration-capacitor voltages are inferred 

from pulse-outputs which had previously been calibrated. 

For the sigmoid-prime circuit, testing was reasonably easy, and Figure 4-19 shows 

the results. Although there is a variation between chips, I did not anticipate that 

accuracy in the calculation would be critical. As with the multiplier results, 

however, I did expect a problem with establishing a zero-point. 

4.8 Summary and conclusions 

Given an MLP algorithm with advantages over back-propagation for implement-

ation in VLSI, I was able to break some of the required functions down into a 

series of modules capable of being realised with hybrid circuits. The modules 

concerned four-quadrant multiplication, the sigmoid-prime term, the difference 

of two variables, and the sign of a calculation. Although I considered several 

possibilities from the literature for a four-quadrant multiplier, I was able instead 

to find an option that matched well with, and allowed us to use, much of the 

work that had gone into developing the EPSILON chip. The use of pulse-width 

signals also made design of circuits for the sigmoid-prime, difference, and sign 

terms much easier than had at first seemed possible. 
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I constructed a chip to test the functionality of the four-quadrant and sigmoid-

prime circuits and concluded that, while there were problems, notably with noise 

and the difficulty of setting up circuits, the basic functionality existed to make 

further development of the algorithm worthwhile. 



Chapter 5 

Simplification of the algorithm 

I still needed to solve two large problems. One concerned the complexity of the 

weight-change equation. The other problem, consequent on the first, was a means 

a making the weight-change appropriately. I discuss the second of these problems 

in Chapter 6, but here I consider the complexity of the weight-change equation 

and what might be done to simplify it. 

5.1 Software simulation and hardware compu-

tation 

In some ways, digital-computer simulations of neural networks sit uneasily in 

relationship to analogue hardware, as Table 5-1 shows'. If an algorithm does not 

work in a software simulation, then it is very unlikely to work in hardware; but 

the fact that the algorithm does work in software only suggests the possibility of 

success in analogue hardware, not how it might be achieved, nor how the hardware 

might behave in practice. The transformation from software to hardware is a 

'The Table introduces the terms 'accuracy' and 'precision'. There seem no 

universally-agreed definitions. Kirk (Kirk, 1993) defines them like this : 'accuracy' 

is how closely a measurement agrees with our expectations ("getting what you want") 

and precision is the degree of agreement of repeated measurements, and so a quantific-

ation of the useful information present ("knowing what you've got"). 
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question of subjective judgements rather than a systematic application of well-

understood rules. 

Software Simulation 

Precision depends on hardware but can be 
implemented higher degrees in software 

Perfect accuracy 

Timing of calculations and updates can be 
controlled precisely 

Processing is generally serial (and slow) 

No change in values over time or space 

Tiny changes can be made to values, and dynamic 
range is high 

Mistakes can be easily rectified 

'Tweaks' are easy to implement 

Skills for writing code are important 

Results are repeatable 

Hardware implementation 

Very high precision (but value not known precisely) 

Accuracy imperfect 

Timing can be stepped, but little control over exact 
timing of changes in individual circuits 

Processing can be parallel (and fast) 

Values of variables change due to leakage currents, 
changes in temperature, variations in process, etc 

Changes may have to be large, and dynamic range 
may be low 

Mistakes have to be circumvented or otherwise 
overcome 

'Tweaks' may be difficult to introduce 

Many different skills, including coding, are required 

Results of repeated computations may vary due to 
noise, temperature changes, etc 

Table 5-1: Comparison of features of digital-computer simulations and ana-

logue-hardware computation. 

With software simplifications in mind, I asked these questions 

• How could the algorithm be simplified? 

• Could the changes be reduced to questions of proportionality or scale? 

• Could a single measure of success be developed for tests of the simplified 

algorithm? 

• Could the changes be translated into hardware that was easy to control? 
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5.2 Changes to the target-modification al-

gorithm 

The target-modification equation decrees that hidden-layer targets will evolve 

so : AT = 17targets >2O Wkjfkp. My original simulations did not constrain 

hidden-layer target-values (ie the limits were those of the computer), and in-

crements to target-values were differently scaled to decrements. I constrained 

the values between 0 and 1, made increments and decrements the same, and en-

sured a straightforward proportionality between the target-change and the sum-

of-products, so that: AT cx E Wkck2 . In this way, the target-modification circuit 

would only have to scale the result of the sum-of-products calculation. 

This gave me a baseline for further simulations, and Figure 5-1 graphs the results 

of learning on the character-recognition problem referred to in Section 2.5.4. 

C 
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0.6 
cd 
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ci) 
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- 
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0.2 

0 
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No. of patterns correct 

Mean max error 

Mean-squared error 

500 	 1000 	1500 
	

2000 	2500 

Epochs 

Figure 5-1: Simulation results using the simplified target-modification al-

gorithm. These results were used as a baseline for comparison with future simu-

lations 
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The points to be noted from the graph are that the value for the number of 

patterns correctly recognised has been normalised, so that a value of 1 indicates 

that all patterns have been recognised; the mean-square error is included because 

it is that error that is being minimised according to the virtual targets algorithm; 

and the total error is included because of its usefulness in indicating the stability 

of learning2 . 

Further simulations showed that the algorithm would classify all patterns cor-

rectly within 750 epochs. 

5.3 Changes to the weight-modification al-

gorithm 

From the starting point described in the last section, I considered the weight-

modification equations. The equations for the hidden- and output-layer weights 

are shown in Figure 5-2 (which is simply a copy of Figure 4-3). 

Of the four terms involved, the three terms other than the gain term are repres-

ented as pulses. The first term I considered was the sigmoid-prime term. 

5.3.1 Simplifying the sigmoid-prime term 

I had already made a simplification of this term, by replacing the original char- 

acteristics, which are shaped like a parabola, with a triangular characteristic (see 

Figure 4-4 on page 66). However, Fahlman had investigated other possibilities of 

improving learning in back-propagation networks, including shifting the sigmoid- 

prime's output range from 0.0 -p 0.25 to 0.1 -p 0.35 (Fahlman, 1988). 

'The definitions of these error-terms, graphed in this and following figures, is as fol-

lows. An error is the difference between an actual output-value from any one node and 

the target-value for that node. The 'mean max error' is the mean of the maximum error 
for each pattern, that is the largest single error for any particular pattern-presentation, 
averaged over all patterns. The 'mean-squared error' is the mean square of all output 

errors .for all nodes for all patterns. 
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Figure 5-2: The weight-modification equations for the hidden and output layers. 

His reasoning was as follows. The output of the function is zero when opj is 

zero or one, and reaches a maximum of 0.25 when o pj  is 0.5. In standard back-

propagation, output units tend to get turned off hard during the early stages of 

learning, and get stuck in the zero state. The more hidden units there are, the 

more likely output units are to get stuck. As an error is back-propagated through 

the network, the error is multiplied by the sigmoid prime; even if such an out-

put represents the maximum possible error (if a unit is incorrectly close to zero 

or one), the shape of the sigmoid-prime graph ensures that only a tiny fraction 

of the error is passed back to the unit's weights and previous layers. The term 

heavily discourages learning on nodes that are very ON or OFF, and attenuates 

learning on nodes that are midway between the extremes. 

After experimentation had shown that Fahlman's recipe of raising the func-

tion's output range was as valid for the virtual targets algorithm as for back-

propagation, I decided to remove the term altogether, and to scale the gain-term. 

This change produced a corresponding improvement in the speed of learning, as 

shown by the graphs in Figure 5-3. 

For different values of the gain-term, learning was very quickly successful, in well 

under 500 epochs instead of around 500 as before. Learning is smooth, as shown 

by the curve for the total error, until the gain-term is raised to a value of 0.100. 
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Figure 5-3: Simulation results with the sigmoid-prime term removed from the 

algorithm and the gain-term rescaled and given different values. 

I could not, of course, assume with any certainty that a hardware implementa-

tion would behave in the same way as the software, but it seemed reasonable to 

conclude that removal of the sigmoid-prime term was no impediment to learning, 

and would perhaps enhance it. Far from some simplification being necessary, I 

could ignore the term completely. 

5.3.2 Simplifying 	the 	remainder 	of 	the 

weight-modification equation 

The weight-modification equation had now been reduced to this form  (for the 

output-layer weights) 

LWkj = l7wetghts 03(tk Ok) 

3This equation corresponds to the delta rule for the simplest kind of networks. 
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In other words, successful learning can take place when the change in the weight 

is proportional only to the error and the input from the previous layer. 

This led me to wonder if learning could still be achieved with a simplification that 

allowed weight-modification in what Shoemaker calls a 'trinary' manner, in other 

words three types of modification involving a fixed increment, a fixed decrement 

of equal value, or no-change (Shoemaker et al., 1991). Were learning successful 

in such circumstances, it would open up the possibility of a weight-modification 

circuit that only demanded a 'bump' in the right direction. 

I therefore experimented with a software function that carried out this simple 

recipe, with the caveat that the no-change state should apply in circumstances 

where either the error or the input was so small that it fell below some minimum 

threshold. If the error was positive, the weight was increased, and if negative it 

was reduced. My expectation was that, if the idea worked, then its success would 

depend on the correct step-size, and this did indeed prove a little tricky to define. 

The graphs in Figure 5-4 show the results. 

There are several problems with these results. As, the step-size increases from 

0.01 to 0.20, the learning becomes increasingly bumpy. When it is least bumpy, 

ie when the step-size is very small (0.01), learning is, as one might expect, very 

slow, taking around 6000 epochs to classify all patterns correctly. On the other 

hand, even with a step-size of 0.10, classification seemed reasonably stable. 
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Figure 5-4: Simulation results using an algorithm where weights are 'bumped' 

in the correct direction. Note that the range of the x-axis on the first graph is 

10.000 epochs, while that on the other three is 2,000. 

5.4 Using the forward-pass circuits efficiently 

Calculating a network-layer's output states (what I call the 'forward pass') re-

quires a sum-of-products calculation, and so does the equation for calculating 

the change to the hidden-layer targets. The equations are shown together in 

Figure 5-5. 

Each is a sum-of-products calculations; assuming, in analogue circuits, the repres-

entation of the variables is the same for the input-states and errors (say, pulses), 

then the same multipliers could be used for both calculations. 

The problem is that the equations require that the flow of data through an array 

of synapses to calculate output states is orthogonal to the direction of flow for 

hidden-layer targets. 

To be clear about this idea, the virtual targets algorithm requires that data should 
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Figure 5-5: Preferred representations of signals to realise the equations for 

computation of output states and for changes to the hidden-layer targets. 

pass through the array in two ways. The first way is for the forward pass through 

each layer, in which input states are weighted, the results are summed and the 

sigmoid function is applied, to give an output state for each neuron in that layer. 

As explained in Figure 4-1 on page 61, a forward pass is equivalent to driving 

inputs along rows in a chip array and summing the results of the weightings on a 

common node at the foot of the columns. The idea is depicted in Figure 5-6(a). 

The second way in which data passes through the array is the backward pass of 

the error terms in order to compute the hidden-layer targets. For a chip array, this 

is equivalent to driving signals representing the error-terms down the columns, 

and summing the results along the rows, as shown in Figure 5-6(b). 

If we can find a way of performing both kinds of calculation, on the same multi- 

plier array, the circuit-design can be simplified. A way of doing this is explained 

in chapter 6. 
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Figure 5-6: Conceptual representation of the flow of data through the synapse 

array on a chip for the forward (a) and backward (b) passes. 

5.5 Final alterations to the algorithm 

I made final changes to the algorithm at a later stage, when recoding it for the 

PC on which I carried out circuit tests. The changes involved the removal of a 

software procedure I called 'jamming the targets". The algorithm was recoded 

for the network shown in Figure 5-7, chosen for a very small test of the circuits. 

4 This was a means of keeping the relationship between actual hidden-layer outputs 

and hidden-layer targets fairly close. The procedure checked the level of the largest 

single error on the output layer : if the error fell close to zero, the actual outputs were 

copied to the hidden-layer targets. Previous changes, notably constraining values of 

the hidden-layer targets between 0 and 1, rendered this unnecessary. I would like to 

thank Andy Myles for many helpful discussions that aided me in making a reordering 

of events in the algorithm that made it intuitively more sensible 



Input patterns 

o•os 
o••o 
•o•o 
•oo• 

Target patterns 

•000 

o•oo 
oo•o 
000• 

Chapter 5. Simplification of the algorithm 	 94 

Simulations showed that, if the fixed steps used to increment or decrement weights 

were too coarse, then the network would not learn. However, within wide limits, 

any step size finer than the maximum increment with which learning would take 

place was acceptable; the finer the step size, the longer the network took to train. 

We will see the importance of this result in Chapter 7. 

Input layer 	 Hidden layer 	Output layer 
(no computation) 

Figure 5-7: The test network. 

5.6 Conclusions from the software simulations 

The idea of simplifying the algorithm to facilitate hardware implementation had 

been successful, although not unconditionally. We had been able to draw the 

following conclusions from the work in this chapter: 

• hidden-layer targets - it would be sufficient, for the success of the algorithm, 

to modify targets in proportion to the sum-of-products of the weights and 

errors, so that : AT cx > 

• .sigmoid-prime term - far from being important for learning, this term could 

be disregarded altogether; 
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• weight modification - although I could not be certain, I could be hopeful 

that a simple, fixed-step, increment or decrement in weight-values would be 

sufficient for learning to take place, provided the error and input from the 

previous layer were above a threshold, and in a direction dependent on the 

sign of the error. However, the step size would have to be small. 

I turned then to the question of a mechanism for modifying weights and targets. 



Chapter 6 

Elements of a system for the 

algorithm 

6.1 Introduction 

In Section 6.2, I describe my investigation of means to change weights represented 

by charge on capacitors, and the decision I made on a circuit to carry out this 

task. In Section 6.3, I explain the scheme I developed for transferring my ideas 

onto silicon and, in Section 6.4, the design of my second chip. 

6.2 A circuit for changing the weights 

I considered four possibilities for a circuit to modify weights 

• Schwartz's switched-capacitor weight-modifier 

• Transistor substrate pump 

• Arima's charge-pump 

• the EPSILON voltage-integrator 
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and finally decided on the last of these. I describe the circuits themselves, and 

my reasons for my final choice, in this Section. 

6.2.1 The Schwartz weight-modifier 

One of the ideas included in Table 3-1 in that of modifying weights by 

a switched-capacitor circuit (Schwartz et al., 1989b, Schwartz et al., 1989a, 

Schwartz and Samalam, 1990, Schwartz and Samalam, 1991). A schematic dia-

gram of the circuit is shown in Figure 6-1. 

ML  

SAl 	S I1 	 S 1 	SA2 

• 7' 
inc/dec 	::::E:::: 	 -i--- 	multiplier 
voltage 

Figure 6-1: The Schwartz weight-modifying circuit. 

The idea is to exploit charge-injection, a phenomenon normally avoided by de-

signers of switched-capacitor circuits. A pair of capacitors, representing V and 

V_, are connected by a string of MOS transistors. SA are access transistors, to 

allow the capacitors to be charges to pre-set voltages, and Si allow the capacitors 

to be isolated from ML,  a long transistor used to inject charge into the capa-

citor nodes. Since S1 are minimum size, and so cause little charge-injection into 

connecting nodes, we can think of them as ideal switches, and consider only the 

charge-injection process caused by pulsing transistor ML. 

At the start of the process, all switches are open. Using a clocking scheme, S1 1  is 

closed and ML turned ON long enough for electrostatic equilibrium to be reached. 

If S1 1  is opened, then S1 2  closed, and ML turned slowly off, mobile charge in the 

transistor channel is injected onto V_, lowering its voltage. The reverse sequence 

raises its voltage. 

The authors of this work claim that very fine adjustments are possible with this 

scheme. 
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6.2.2 Transistor substrate pump 

Another possibility exploits a phenomenon recognised almost three decades ago 

(Brugler and Jespers, 1969), and illustrated in Figure 6-2. When pulsing a tran-

sistor gate-voltage with a negative pulse, there was an apparent injection of charge 

across the source-substrate and drain-substrate junctions. If the transistor was 

unpulsed there was a negative reverse-leakage current. If it was pulsed with neg-

ative pulses, there was a positive current, broadly linearly-proportional to pulsing 

frequency. Perhaps it would be possible to exploit this phenomenon. 

—1 F, 
0 volts 

+ 

Figure 6-2: Brugler's experiment on transistor charge-pumping. The voltage 

source keeps the drain-substrate and source-substrate junctions in reverse bias, 

and the pulse takes the gate-voltage below the substrate voltage. 

6.2.3 Arima's charge-pump 

A circuit diagram of Arima's charge-pump circuit (Arima et al., 1991a), together 

with a simulation of its characteristics, is shown in Figure 6-3. 

The capacitors are realised by the gate-capacitance of transistors, and 5V pulses 

are applied to Vdown  (during LT1) or V, (during LT2) to charge or discharge 

the capacitor. The inputs to the pump were stimulated, for these simulations, by 

50% duty-cycle wave-forms with an ON-time of 1s, ie 150 pulses during LT, 

giving small increments or decrements of, at most, 20mV, and often less; this is 
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Figure 6-3: (a) Circuit diagram of a charge-pump; (b) The pump discharging 

and charging a capacitor. 

much better than the 10% change in value Arima reports (Arima et al., 1991a), 

of course on a different process. The curves are very non-linear (which is unlikely 

to be important for learning as long as the change in charge is in the correct 

direction), but approach asymptotic limits well within the synapse-capacitors' 

2.5V -* 5.OV range. Nevertheless, the idea looked a very good one. 

6.2.4 The EPSILON voltage-integrator 

I had been considering switched current-sources as a weight-change mechanism. 

In principle, these are simple (see Figure 6-4(a)), being a means of sourcing 

current onto, and sinking it from, a storage capacitor; in practice, it can be tricky 

to make small and consistent changes to the store of charge, because of switching 

noise which is coupled onto the weight-node and because, as the switches are 

turned off, charge is injected into the node. However, it occurred to me that the 

voltage-integrator, designed by Donald Baxter for EPSILON, already provided, in 

its output stage, something very like the switched current-sources (see Figure 6-

4(b)). 

This gave me the idea of using the integrator to adjust weights up or down in 

the manner illustrated in Figure 6-5. The voltage-control switches one of two 

analogue voltages onto the integrator's input, and so controls whether current 
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Figure 6-4: (a) The principle of switched current-sources. (b) The principle as 

interpreted in the output-stage of EPSILON'S voltage-integrator. 

will be sourced onto, or sunk from, the weight capacitor. The two gain controls, 

Gain+ and Gain_ determine the quantity of charge that is dumped or removed, 

and the pulse-control switch provides a further control, by making it possible 

to vary the time the weight capacitor is connected to the source or sink. Some 

addressing circuitry and a reset switch complete the picture. 

Gain 	Zero 
current 	j) voltage 

I 

	

Vup 	I 	I Vmodify I 	Voltage 
00 

	

F  I 	 Integrator I 	 I 	 I 
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'Cl)' 

II 
II lup/down_. 	 . 	I 	multiplier 

Pulse control 	I 	J_ 
I 	Cl) 	I 

I 	.tCwt 

Figure 6-5: Block-diagram of the weight-modification circuit based on a 

voltage-integrator. 

The integrator itself is illustrated in greater detail in Figure 6-6. 'gain provides 

the tail current, via a cascode current-mirror, to bias a differential stage. When 

the differential inputs are equal, transistor M4  mirrors a current of magnitude 
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Igain /2, to the output stage where transistor M6  steps it down to a current-source 

Of 'gain14. 

'zero, of the same magnitude as 	is mirrored directly, via a cascode current- 

mirror, to the output stage, where it is stepped down to Igajn 14. It acts as a 

current sink which, at stasis, exactly matches the current source, giving an output 

current of zero. A differential voltage at the inputs disturbs the equilibrium of 

the system, causing a positive or negative current at the output. 

Izerc 

rn 

Figure 6-6: 	Schematic of the weight-modification circuit based on a 

voltage-integrator. 

I anticipated that the system would be difficult to set up, since currents and 

voltages would have to be set quite precisely, and I would have to infer equilibrium 

over an array of synapses and neurons. On the other hand, there were several 

ways in which the magnitude of the output current, and hence the step-size of 

any change to the weights, could be controlled 

• by making the integrator tail-current small; 

• by supplying only a small differential voltage at the integrator inputs; 
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. by varying the on-time of the switch controlling the output current; 

• by fabricating a large weight capacitor. 

Simulation results are shown in Figure 6-7. The (off-chip) current-sources were 

set at 1A. With a Vzero  of 3.75V, the up- and down-voltage inputs were set at 

4.OV and 3.6V respectively, and the pulse-control switch was pulsed on a 50% 

duty-cycle with an ON-time of 1tS. In Figure 6-7(a), during the up-cycle, the 

weight capacitor was raised from its mid-point value of 3.75V to 4.88V, where it 

saturated as the integrator's output stage was turned off. The step-size during 

this cycle was never more than 35mV. For the down-cycle, the weight capacitor 

was reset to its mid-point value of 3.75V, and dropped in steps of around 30mV 

to its low point of 2.OV, and below. In Figure 6-7(b), the weight was set to its 

minimum of 2.5V and nudged up and then down again. 

The weight-change process is clearly different in the up-cycle and the down-cycle; 

in Figure 6-7(a), it takes around 60 steps to rise, and 80 steps to fall, from the 

mid-point value to the limits. Nevertheless, the circuit does provide small-step 

weight changes in a predictable way. 
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Figure 6-7: Simulation results of the integrator-based weight-modification cir-

cuit. 

Since the integrator was one of my group's existing designs, and since I had 

insufficient time in which to make tests of the alternatives, I chose the integrator 

as the means of making changes to the capacitive weights. 
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6.3 An architecture for a second chip 

The various computations that make up the virtual-targets algorithm are quite 

complex, and the analogue circuits required to approximate the functions even 

more so. I decided, therefore, that I would have to make some compromises that 

would enable me both to instantiate as much as possible of the algorithm on a 

chip, and at the same time test each part of the functionality in case any one, or 

more, parts did not work. 

I developed a scheme for arranging the various modules on a chip, and decided 

on an architecture that would be within the silicon budget, would test several 

of the modules, and could, conceivably, implement the whole algorithm if there 

was time. The plan for a single layer of an MLP network is shown in Figure 6-8. 

The diagram is conceptual, not a representation of the chip layout. The synapses 

are arranged in an array, into which there are, conceptually, two sets of inputs. 

The first set is that of the input patterns (or inputs from a previous layer) which 

are fed 'in the rows and down the columns' to produce, at the neuron outputs, a 

set of summed weight x state calculations. The second set of inputs is the error 

calculations for the layer, which are fed 'down the columns and out the rows' to 

produce, at the neuron outputs, a set of summed weight x error calculations. 

The neurons involved in these computations are, of course, the same physical 

neurons in each case. 

The errors, and their polarities, are computed from the target states and from 

the output states from that layer. 

The weight-modification circuit changes weights in response to the error signal 

(if the error is of sufficient magnitude) and the sign of the error (to determine 

the direction of the weight-change). 

A set of targets is, like the synapses, arranged in an array. The target-modification 

circuit changes the targets in proportion to the sum of product of the errors and 

weights. 

A two-layer network, with both hidden and output layers, could be realised as 

shown in Figure 6-9. Chip 1 realises the hidden-layer, while chip 2 realises the 

output layer. Although the hidden-layer neurons exist on chip 1, the hidden-layer 
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Figure 6-8: Architecture of a chip embodying a single layer. 

targets are stored on chip 2, because the information required to update them 

comes from the output layer. Since the two chips would be identical, this means 

the target store on chip 1 would be redundant. 

The rather complex way in which the two chip could be combined is as follows'. 

A pattern is applied to the inputs of the synapse array of chip 1, to produce 

a set of summed weight x state, hidden-layer outputs ©. These states form 

the inputs ® to the synapse array of chip 2, which performs a further summed 

weight x state computation to produce the output-layer outputs . 

'Numbers presented like so in this description : 	refer to numbers in Figure 6-9 
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Hidden layer 	 Output layer 

Figure 6-9: How two chips embodying a single layer can be combined to instan-

tiate a two-layer network. 

The errors for each layer, and their signs, are calculated like so. For the output 

layer errors, the error circuits on chip 2 use the output-layer states and the pre-

determined targets for the pattern ©, producing the output-layer errors ©. For 

the hidden-layer errors, the error circuits on chip 1 use the hidden-layer targets 

on chip2 and the hidden-layer states (43, producing the hidden-layer errors 

The error signals and their signs for the output layer 5j and the hidden layer © 

are fed back to modify the weights in each layer. The errors from the output 

layer are also fed back © to the synapse array on chip 2, where they provide the 

inputs to compute a summed weight x error computation @ from which new 

target-values can be computed. 
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6.4 Design of the second chip 

To move from the architecture described in Section 6.3 to the design of a chip, I 

decided on two initial constraints. The weight capacitors should be large, to allow 

me to make very small increments and decrements, and the number of neurons 

(and hence the target array) should be as large as possible. 

The design was configured for placement in a printed-circuit board a colleague 

had designed for a bus-based system in which several 'neural modules' could be 

interconnected'. The board carried sockets for the analogue chip and for a digital 

Xilinx FPGA chip, on which I could design the many digital modules required to 

drive the analogue circuits. 

6.4.1 Forward and backward passes through the array 

As explained in Section 5.4, it would be advantageous to use the multiplier both 

for the forward and for the backward 'error' pass. 

A solution requires a redesign of the array with switching to select rows or columns 

as appropriate. Although the switching is quite complex in practice, the principle 

is easily described, as shown in Figure 6-10. The same principle can be applied 

to switching input states into rows or columns (Figure 6-10(a)) as for switching 

output currents (Figure 6-10(b)). 

6.4.2 Architecture 

As a result, I was able to accommodate a 64 x 64 array of synapses, providing 

weighted inputs to 8 neurons with capacitors of around 7pF in value. An overview 

of the chip layout is shown in Figure 6-11. 

2 1 wish to express my gratitude to Geoff Jackson for this initial idea, for generously 

offering to share the equipment he had put so many hours into building, and for his 

help in fitting my work in with his own. 
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Figure 6-10: (a) The switching arrangement to switch input states to the layer 

(for a forward pass) or error pulses (for a backward pass). (b) Switching output 

currents between rows and columns. All connections are switched simultaneously 

onto rows or columns, necessitating only one off-chip control line. 

6.5 Summary and conclusions 

I carried out the work described in this chapter in light of the simplifications I 

had made to the virtual-targets algorithm, and focussed on the means by which 

I would be able to modify weights. I was able to use a circuit, as the basis of 

a weight-modification scheme, that appeared at least as good as the alternatives 

available to me, and with the advantage that I had already used it and knew its 

characteristics. 

As a result, I was able to develop an architecture for a chip that would realise 

a single layer of an MLP network, and yet be capable of being cascaded with 

another chip to instantiate the complete virtual-targets algorithm. 

In the next chapter, I explain how I tested the various modules of the chip, and 

present my results. 
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Figure 6-11: Overview of the layout of the chip. 



Chapter 7 

Final tests and assessment 

7.1 Introduction 

Section 7.2 describes the experimental setup to test the various parts of the chip. 

Section 7.3 presents results from testing the multiplier and weight-modification 

circuits. In light of these results, Section 7.4 examines some of the issues relating 

to achieving learning on chip. Section 7.5 presents the results of trials of a simple 

problem on the chip. Section 7.6 suggests how these experiments might continue. 

In Section 7.7, I draw conclusions on the success of my approach. 

7.2 Testing the chip 

Further details of the design and testing of the second chip are given in Ap-

pendix F. 
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7.3 Results from tests on individual modules 

I present here the results from the multiplier and weight-modification circuits. 

7.3.1 Multiplier 

Results from tests of the multiplier are shown in Figure 7-1. 
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Figure 7-1: Results from tests of the multiplier. Results represent averages of 

50 readings from one column of synapses, produced by storing the same weight 

at all synapses in the synapse array and applying the same input pulses to each 

input-row in the array. 

The graph shows the multiplication of an input state, represented as a pulse-

width signal, by a weight, represented as charge on a capacitor. The curve for 

a 'zero' weight of 3.75V is almost completely horizontal and very close to the 

'zero' output-pulse of 10is width. The curves are evenly-spaced, are reasonably 

linear, and all go through the same zero point very close to the 'zero' input-pulse 

of 10s width. The shape of the curves is also reasonably symmetrical around 

the x- and y-planes. They are, in short, among the best circuit-results our group 

has produced. 
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These results are a considerable improvement on the results from testing my 

first chip, presented in Figure 4-18 on page 81. The reason for this is, simply, 

many hours of trials and experimentation to set the system up to produce the 

most accurate results. The effort to do this is considerable, but the reward is 

that, once set up, the multipliers behave reliably, and the results are eminently 

repeatable, with the exception explained shortly. 

The variation in measurements over a series of readings is quantified in Figure 7-2. 
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Figure 7-2: Results from tests of the multiplier. Every alternate curve from 

the previous figure is repeated here, along with adjacent curves representing two 

standard deviations on either side of the mean (ie approximately 95106' of readings). 

The exception to the repeatablility of results, mentioned above, is that there is 

a serious problem with offsets at the output-pulse 'zero' point. The consequence 

is that a 'zero' set for one column of synapses will probably not be replicated 

accurately at the other columns. The problem manifests itself as a translation 

of the curves along the y-axis (ie 'up and down' the page in Figures 7-1 and 7-

2), all other characteristics of the curves being preserved. This was a known 

problem discovered by the designers of the Epsilon chip (Hamilton et al., 1993), 

from which much of the present work was derived. 

The designers of EPSILON attributed the offsets to difficulties with the integ- 

rator circuit, and my results support this conclusion. As explained in Sections 5.4 
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and 6.4.1, my chip can accommodate both a forward pass (where state inputs are 

distributed along the rows of the synapse array, with each synapse in a column 

contributing to the activation) and an 'error' pass (where error-inputs are dis-

tributed down the columns of the array, and each synapse in a row contributes 

to the activation). Hence, depending on the way the array is switched, the activ-

ation represents the contribution of either a complete column or a complete row 

of synapses. Tests of the multipliers in each configuration produced results which 

were indistinguishable, strongly suggesting that circuits other than the synapses 

caused the offsets. 

A summary of the configuration of the multiplier and associated circuits is shown 

in Table 7-1. 

Voltage sources (volts) Multiplier V2 4.36 

Vhi ref 
1.50 

Viorei 0.50 

Vbias 3.10 

Op-amp Vciamp 1.00 

Integrator 1'nregz 
3.76 

Current sources 
(1 amps)  

Integrator 
'hI 

10 

,tail 
10 

Comparator 'comparator 30 

Pulse widths 
(. seconds)  

Zero pulse 10 

input range 0-20 

Output range 0-20 

Accuracy, defined as: 	
[maxJ43sd 	mean[ Pl [i 

- 	
- 	

jj x 100 

Table 7-1: Summary of multiplier configuration 
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7.3.2 Weight-change circuit 

The results from tests of the weight-change circuit are shown in Figure 7-3. The 

circuit schematic in figure right is a reminder of Figures 6-4 and 6-6 on pages 100 

and 101. 
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Figure 7-3: Results from tests of the weight-change circuit. 

The voltage Vwt  on the gate of the transistor, held as charge on the weight ca-

pacitor, cannot be read directly. Instead, the voltage has to be inferred from the 

results of a weight x state multiplication. For these results, 8 identical state-

pulses were applied to the synapse array, each of whose weights was set to an 

identical starting-value (2.70V). All the weights in the array were then nudged 

upwards until saturation, at just under 5.00V, and then nudged back down again. 

The voltages shown against the y-axis in Figure 7-3 are inferred from an earlier 

calibration; this related a weight voltage, applied to every synapse in the array, 

to a pulse-width output from a single neuron at the foot of a column of synapses. 

Details of the way in which the weight-modification circuit was set up are shown 

in Table 7-2. 
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Voltage sources (volts) V, 3.78  

Vdo wn 

Current sources (p. amps) 
'balance 

1tail 
5 

Pulse-time (p. seconds) 5 

Realistic range (volts) 3.00 - 4.50 

No. of steps to move weight over 90% of range 100 

Maximum step size (millivolts) 80 

Mean step size (millivolts) 20 	6.2 bits 

Table 7-2: Details of how the weight-modification circuit was set up 

7.4 Issues raised by the various circuits 

This Section considers the various technical issues involved in light of the functions 

we can produce for the virtual targets algorithm, and the general characteristics 

of the circuits to execute them. 

7.4.1 Learning rates 

As a result of experience like that of using chip-in-the-loop learning described on 

page 31, it is generally agreed that the process of training a network, by modifying 

the weights, itself compensates for many of the faults of, and non-uniformities in, 

analogue circuits. In simulation, the learning rate is usually small, which may 

slow learning but prevent instability in the number of patterns recognised. The 

immediate difficulty in placing the learning on-chip is that the learning rate has to 

be high enough to overwhelm the faults. We can see why this is so by considering 

some of the factors involved in weight adaptation, weight resolution and weight 

decay, and the effect of offsets and accuracy. 
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7.4.2 Weight adaptation 

Weight adaptation can be characterised as equation (a) in Figure 7-4.' 

Doesn't matter during training 

provided learning compensates 

LW = LWideal + L\Woff sei s  + L\ Wleakage + A Wcharge_injeciion + 

 

AW = AWiyizmp  + zWoff sets  + LT'Vl eak age  + LWcharge_injection + 

 

Figure 7-4: Equations to characterise adaptation of weights. 

LWidea 1 refers to the exact calculation of the 'correct' direction and distance to 

move the weight towards a network solution. Within the constraints that the 

distance must not be too little so that learning never takes place, nor too much 

so that a solution is never found, the exact distance the weight travels does not 

matter. However, it is crucial that the components of the equation, in concert, 

push the weight in the correct direction, to increase the weight or reduce it, 

otherwise the network as a whole will never find a solution. 

To some extent, the idea of fixed increments or decrements to the weights, as is 

used in the simplified version described in this thesis, and shown in equation (b) 

in Figure 7-4, acts in the same way as varying the learning rate : Wbump simply 

has to be chosen so that the weight moves in the proper direction. Provided the 

effect of offsets, charge injection and the rest is not too great, the question of the 

correct increment then reduces to that of the resolution that can be achieved in 

adjusting the weights. This idea is simple, at least in concept, if not in execution. 

'Equation (a) is from (Annema and Wallinga, 1995) 
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7.4.3 Weight decay 

In general, the problem of weight decay on capacitive weights, due to charge leak-

ing away is ignored in learning circuits on the grounds that continuous learning 

will compensate. Even a little decay, perhaps as low as 1%, may be enough to 

prevent learning (Dolenko and Card, 1995), but it should be possible to prevent 

such decay by re-learning at a fast enough rate. At the worst, the chip could be 

cooled a few tens of degrees below room temperature to reduce decay-rates to 

acceptable levels. Bipolar decay (that is, decay from a positive or negative value 

towards zero) seems to be less of a problem than unipolar decay (that is decay 

towards the most positive or negative value)(Mundie and Massengill, 1991); in 

most networks, weight decay is unipolar, leading these authors to suspect that 

the resolution required for weights in the learning phase is higher than generally 

believed. 

7.4.4 Weight resolution within a fixed range 

The numerical values for weights generated in computer simulations have to be 

matched, in analogue implementations, between the limits of a fixed range. Ex-

pressed in terms of digital hardware, the analogue representation is 'fixed point'. 

The range determines the weights' dynamic range and the number of steps re-

quired to move from one of the limits to the other. Ideally, the weights should 

never exceed their bounds, otherwise weights will be indistinguishable, but they 

should use as much of the range as possible to exploit the dynamic range. 

What does this mean for analogue hardware? Precision is not infinite, being 

limited ultimately by the charge on a single electron'. This is not an easy issue to 

resolve, but we can make at least a rough estimate of the demands on the hardware 

by using the following translations. (The translation is commonly expressed in 

digital terms because of the digital origins of the algorithms.) For an analogue 

implementation, the equivalent number of bits n for a weight increment LW is: 

2 Arima et al used 0.5pF capacitors in their network. To raise the charge on such a 
capacitor so that the voltage rises by lmV, that is one part in 1000 for a 1V range, 

would require the removal of around 3000 electrons. 
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IW rnax - Wm in \ 
n=log2 	

1w 	) 

the corollary being that the largest permissible increment LW on a weight, given 

a desired equivalent number of bits n is 

T'Vmax  VV m in  
zW= 

2 

A reasonable rule-of-thumb is that, to represent weights in a range of 1V 

	

8 bits 	4.00mV (1 part in 250) 

	

12 bits 	0.25mV (1 part in 4000) 

The simulations I carried out generated hidden-layer weights within the range 

—10 - +10 and output-layer weights within the range —20 - +20. How such 

ranges might be matched to the hardware is illustrated in Figure 7-5. 

Example ranges of numeric weights generated 
Circuit 	 during simulation 

4.50V +10 +20 +40 - i 

3.75V 	1.5V 0 20 	0 40 	0 	80 

3.00V -10 -20 -40 

7 bits 	 8 bits 	 9 bits 
The available range 

for capacitive weights 	 Bits-equivalence of step size of 0.15 used in simulations 

Figure 7-5: Matching numerical weights generated during simulations to the 

available circuit range. 

In an extensive series of simulations, Cairns put the resolution required in the 

learning phase at 12 bits (Cairns, 1995), although other authors suggest 14 bits 

or more (Mundie and Massengill, 1991). 

Clearly, the results of the weight-bumping circuit shown in Figure 7-3 on page 113 

fall short of the necessary resolution. As I have already indicated, the design 
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allows for some improvement. To meet the resolution demands I have outlined, 

over a 1.5V range would require: 

6.2 bits 70.00mV 	1 pt in 75 (baseline) 

8 bits 5.90mV 	1 pt in 250 (x3 improvement) 

12 bits 0.37mV 	1 pt in 4000 (x53 improvement) 

16 bits 0.03mV 	1 pt in 66000 (x900 improvement) 

To achieve these improvements would be very difficult. 

The weight resolution depends, in practice, on the signal range that the synapse 

can accommodate. I designed my system according to the scheme shown in 

Table 7-3. Under this scheme, the input range for the weights is 1.5V; with a 

reconfiguration of the voltage and current supplies to the chip, the input range 

could probably be increased to 2.5V, as illustrated in Table 7-3. 

One reason this issue is not a simple one is that, in addition to questions of 

offsets and accuracy, to be discussed shortly, noise must be taken into account. 

Researchers disagree on whether noise is beneficial (Murray and Edwards, 1994) 

or detrimental (Dolenko and Card, 1993a, Dolenko and Card, 1995) to learning, 

but since all investigations involve simulation, this is a matter which will probably 

only be settled empirically. 

What solutions are there to the problem of the high weight resolution needed for 

learning? Lehmann suggests (Lehmann, 1994) that high-resolution weights be 

held digitally, with obvious consequences for silicon resources if these are on-chip, 

and for system complexity if they are off-chip; or, alternatively, that 'probabilistic 

rounding' be used so that, for a weight-change less than the minimum resolution, 

the weight change is carried out with a certain probability. 

7.4.5 Offsets 

Some published work (Annema and Wallinga, 1995, Dolenko and Card, 1993a), 

including that of a colleague (Lehmann, 1994), suggests offsets are a serious prob-

lem. The problem exists with offsets on the weights themselves, so that different 

weights have different zero points, and also on the neurons, where learning can 

take place even after the output error is zero. Either or both of these offsets 
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Scheme used in trials 
Possible alternative 

scheme 

Weight range (volts) 

Upper bound 4.50 4.75 

Zero 3.75 3.50 

Lower bound 3.00 2.25 

Bits equivalent of weight-change (millivolts) 

8 bits 5.90 9.70 

12 bits 0.36 0.61 

Table 7-3: The input range of weights on the system, and the equivalent step 

size for 8 and 12 bits equivalence 

can make learning impossible. The only solution is some means of cancelling the 

offsets. 

7.4.6 Accuracy 

Given neural networks' much-vaunted error tolerance, it is a relief to find that 

inaccuracies in computation due, for example, to process variations, or to non-

linearities or variable gains in multipliers, do not seem to be a serious im-

pediment to learning. Experiments (part-simulation, part-hardware) on an 

opto-electronic network showed that miscalculations of the error to be back-

propagated, and so of the appropriate weight changes, had negligible effects on 

learning (Frye et al., 1991). Learning also seems to be tolerant of variations in 

multiplier gains which are fixed at the start of simulation experiments (so replic-

ating fabrication variations), although it seems less tolerant to random variations, 

and so to noise (Dolenko and Card, 1995). 
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7.5 Trials 

I have run a small number of trials of the algorithm using the scheme shown in 

Appendix F and the network shown in Figure 5-7. 

The chip calculates the sum of the weight x state products for the hidden layer 

using 4 input weights and a bias weight for each of 2 neurons. 

The PC implements the remainder of the functions, namely: 

. the sigmoid function 

• learning on the hidden-layer weights and the hidden-layer targets. The PC 

calculates the step changes to the weights and downloads new values via a 

weight DAC, onto the chip. 

• the complete output layer including error calculations. 

7.5.1 Chip-in-the-loop experiment 

A first experiment involved generating hidden-layer weights using a simulation 

run entirely on the PC. The final weights, saved once the algorithm had learned to 

recognise the four input patterns, were then downloaded onto the chip, and a chip-

in-the-loop session was run as explained in the introduction to this Section. The 

chip-in-the-loop session allowed the weights to adjust themselves to compensate 

for imperfections on the chip and therefore to produce a new and valid 'solution' 

to the problem of recognising the four patterns. 

The experiment demonstrated that the network solution, as measured by the 

number of patterns recognised correctly, very quickly became, and remained, 

perfectly stable over a long number of epochs. The weights on the hidden layer 

continued to vary during this time, but always in a way that left the solution 

intact. This shows that, as predicted, the learning loop could compensate for 

imperfections in the forward-pass computation and for any charge leakage from 

the weight capacitors. 
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7.5.2 Weight-range experiment 

The second experiment was a repeat of the first, but this time with the weights on 

the chip set initially close to zero. Although the PC still carried out the learning 

in the hidden and output layers, this time it had to generate a solution from 

scratch, rather than modify weights close to a solution. 

Learning has proved difficult under these circumstances. The hidden-layer 

weights fairly quickly tended to gravitate towards the upper limit of their range, 

making further learning impossible. 

However, occasionally, the system would show evidence of learning. Figure 7-6 

shows two graphs, one the characteristic graph of a simulation and the other the 

results of a chip-in-the-loop session. The network has learned to recognise two of 

the four patterns consistently, albeit over a large number of epochs. 
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Figure 7-6: Results of learning trials : (a) simulation; (b) chip. 

7.5.3 Revisiting weight-range issues 

Finding suitable values for some of the constants used in the algorithm (for ex-

ample the threshold level and gain of the sigmoid, and the step sizes for the 

weights and hidden-layer targets) is difficult even in simulation. There is a bal-

ance to be struck between the step sizes for weights and targets that has to be 

discovered by trial-and-error methods, and that, if chosen incorrectly, can inhibit 

or prohibit learning. Perhaps it is not surprising that finding suitable values with 

a chip in the loop is equally difficult. 
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The second experiment used the PC to modify numeric weights, which were then 

mapped on to voltage values supplied to the chip using an 8-bit DAC, used over 

only a part of its full range. A step size of 0.15 in a range of —10 -p +10 for the 

hidden-layer weights has around a 7-bit equivalence, just within the DAC's own 

resolution. The fact that the system showed evidence of learning is suggestive 

that, with a weight-modification circuit capable of greater resolution, learning 

would be possible, but the only true test would be to try it. 

7.6 Further experimentation 

More experiments of the kind I have described require to be carried out to estab-

lish the conditions under which learning can take place. A plan to do this is as 

follows 

• Increase the weight range, from the values used in the experiment to the 

alternative scheme shown in Table 7-3. This would require a complete 

reconfiguration of the chip and further tests of the multiplier and weight-

modification circuits to establish zero points and signal output ranges. This 

represents a good deal of time-consuming work but would extend the resol-

ution of the system. The system also needs to be redesigned so that digital 

circuitry captures and stores output pulses from the output neurons. Cur-

rently, output pulses are captured on, and readings taken from, a storage 

oscilloscope. This is extremely convenient from the point of view of ob-

serving the signals to monitor progress, and tracking down hardware bugs, 

but is very slow. 

• Attempt to increase the number of steps the weight-modification circuit 

requires to move a weight between its upper and lower bounds; as explained 

in Section 7.4.4, a considerable improvement is possible. 

• Try to train the weights using the weight-modification circuit, instead of 

the PC. 
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7.7 Conclusions 

After careful setting-up, the multiplier worked as predicted, in both the forward-

pass and error-pass modes, and excellent results were obtained from the system 

as a whole. There is a problem of offsets on the outputs which was discovered 

and solved by my colleagues who designed the Epsilon chip, an issue which I have 

not addressed. 

The experimental set-up described here is a good test-bed for further examining 

issues which are well-understood from simulations but not from experience with 

real hardware. 

The performance of the weight-modification circuit could be improved to produce 

much smaller step sizes than those demonstrated in the test results (around 4-bits 

equivalence), probably to 9- or 10-bits equivalence and even beyond. However, 

further trials would be needed to prove that this improvement would be sufficient 

to permit learning. 

The evidence from published work is very strong that a weight resolution of 

around 12-bits equivalence is required during the training phase. 

Nevertheless, the system did show evidence of learning, even using an 8-bit DAC 

to convert numerical results from a PC to voltages delivered to the chip. 

I have been able to demonstrate that analogue circuits can be developed for 

implementing every aspect of the virtual targets algorithm, provided that the 

algorithm is used in its simplified form. Furthermore, the different modules can 

be integrated to create an entire, two-layer network. The algorithm can be im-

plemented, then, in analogue hardware, provided that hardware is operated at 

its limits on trivial problems. 



Chapter 8 

Conclusions 

8.1 Introduction 

In this last chapter, I present my final conclusions. The chapter also acts as a 

summary of the work presented in the thesis. 

124 
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8.2 Issues in on-chip learning 

8.2.1 Summary 

I have defined the term 'on-chip learning' and compared digital and analogue 

approaches. There is no single strategy for designing chips with on-chip learning, 

and consequently the variety of implementations is very large. However, the issues 

of weight-storage and weight-modification are important for all researchers. I have 

categorised different approaches in terms of weight- storage, and then looked in 

detail at five examples which show how other researchers have tackled the issues. 

8.2.2 Conclusions 

On-chip learning is a technique which offers advantages over other methods of 

determining an appropriate set of weights, but there is no major application 

ready-to-hand. 

Although analogue hardware has advantages over wholly-digital implementations, 

the balance of advantages still lies with digital hardware. 

The different approaches to on-chip learning use different methods of storing 

- and changing weights. Each has its merits and defects; no one approach seems 

overwhelmingly better than another. 

8.3 Translating the VT algorithm into ana-

logue VLSI circuits 

8.3.1 Summary 

I have explained the fundamental characteristics of a MLP, feed-forward net-

work, and the virtual targets algorithm in particular. The algorithm has been 

established as an interesting candidate for translation into analogue VLSI. 
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It proved possible to design circuits for a number of the functional components of 

the algorithm, while adapting these functions to my research group's distinctive 

pulse-stream approach. The circuits comprised, initially, a four-quadrant multi-

plier, a 'sigmoid-prime' circuit, a sign circuit and a difference circuit. 

8.3.2 Conclusions 

Test of the circuits, either in simulation on extracted layouts (the difference and 

sign circuits), or from a fabricated chip (the 'sigmoid-prime circuit' and the mul-

tiplier) demonstrate the basic functionality required. 

8.4 Simplification of the algorithm: summary 

Despite considerable progress on circuit design, the algorithm embodied features 

that resisted translation into analogue hardware. However, major simplifications 

were possible, including the abandonment of the 'sigmoid-prime' circuit, and 

the use of a weight-update algorithm that entailed a very simple computation 

(increment, decrement or leave-unchanged) and a fixed magnitude of increment 

or decrement. 

8.5 Elements of a system for the algorithm 

8.5.1 Summary 

After investigation of a number of possible circuits, a weight-change circuit, cap-

able of dumping or removing charge on a capacitor, was adapted for the purpose 

of incrementing or decrementing weights represented as charge on capacitors. The 

same design was used for the task of incrementing and decrement the hidden-layer 

targets, which were represented in the same way as the weights. 

By introducing some switching circuitry, controlled by a single control-line off- 

chip, it proved possible to reduce the rather complex computation for the hidden- 
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layer targets to an 'error-pass' through the synapse array that would require only 

scaling to properly represent the target-modification equation. 

With these matters settled, I was able to draw up a complete scheme for instan-

tiation of the algorithm, and so design, and have fabricated, a second chip. 

8.6 Final results and assessment 

8.6.1 Summary 

The effort of great care in setting up the chip's voltage and current supplies 

was rewarded with excellent results from tests of the multiplier. The switching 

scheme, to allow 'forward' and 'error' passes, worked as predicted. The weight-

modification circuit demonstrated the correct functionality, with more work re-

quired to achieve a small step-size. 

This represented significant progress. There were now circuits to implement every 

major function of the algorithm, and a scheme to put these functions together 

into a system. 

I examined a number of issues related to various practical aspects of learning on- 

chip, that showed how heavy were the demands on a weight-modification circuit. 

Trials of the chip, tested in a loop with a supporting PC, showed that a network 

with 'correct' weights would remain stable, but learning was difficult to achieve, 

even when weights were modified on the PC and down loaded onto the chip. 

8.6.2 Conclusions 

The performance of the weight-modification circuit could be improved to produce 

much smaller step-sizes than those demonstrated in the test results (around 4-bits 

equivalence), probably to 9- or 10-bits equivalence and even beyond. 

The evidence from published work is very strong that a weight-resolution of 

around 12-bits equivalence is required during the training phase. These results 

are generally from simulations, but might preclude learning on the system I have 

designed. 
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Nevertheless, the system did show evidence of learning, even using an 8-bit DAC 

to convert numerical results from a PC to voltages delivered to the chip. The 

only means of proving the success of the approach would be to use a suitably-

configured weight-modification circuit. 

The experimental set-up described here could be developed fairly easily into a 

test-bed for further examining these issues. 

It would be possible to solve some problems evident in my assessment, with more 

work on the circuits and their configuration in a system. However, it appears 

there are fundamental problems (offsets and weight-resolution) which may mean 

back-propagation-like algorithms are not demonstrated to best advantage using 

analogue VLSI. 

Analogue circuits can be developed for implementing every aspect of the virtual 

targets algorithm, provided that the algorithm is used in its simplified form. 

Furthermore, the different modules can be integrated to create an entire, two-

layer network. The algorithm can be implemented, then, in analogue hardware, 

provided that hardware is operated at its limits on trivial problems. However, it 

is clear from the work described here and from the work of other investigators 

that to consider a hardware implementation of such an algorithm for real-world 

problems, or even for more complex artificial problems, is simply unrealistic. 
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8.7 The use of the virtual targets algorithm : 

conclusions 

The algorithm in the form described in this thesis offers several advantages over 

standard back-propagation, which have been exploited in the work described 

here to produce functional analogue circuits. The results described in Chapter 7 

are encouraging, in that learning may well be possible when attempted with an 

admittedly rather trivial problem. 

There remain some questions that remain to be answered on whether the virtual 

targets algorithm represents a sufficient advance on standard back-propagation 

to make it a successful alternative for on-chip learning. 

One concerns the introduction of the hidden-layer targets as the price of simpli-

fications in other aspects of the algorithm. As the algorithm stands currently, 

a set of targets, equivalent to the number of hidden-layer nodes, is required for 

every pattern in the input set. For problems other than small ones, the necessary 

storage might prove a burden. Furthermore, the most complex component of 

back-propagation is the computation to distribute errors, measured at the out-

put, backwards through the network, a computation which is neither removed nor 

simplified by using virtual targets. The consequent benefits are the two originally 

identified (and described in Section 2.5.4) as a weight-update rule requiring only 

local information, and the rule's application equally to the hidden and output 

layers. A third advantage to emerge with the design of the scheme to implement 

the entire algorithm (and described in Section 6-8) is that the information to be 

passed backwards between the layers is reduced to an error term, represented by 

a pulse. It is of course a matter of judgement to say whether these advantages 

outweigh the disadvantages. 

Another question relates to the removal of the sigmoid-prime term from the equa-

tions. This effected a major simplification. However, this simplification would 

also apply to standard back-propagation. Furthermore, I have made no assess-

ment of the disadvantages of the term's removal on, for example, more difficult 

problems, or on the ability of the network to generalise its representation of in-

put patterns to other patterns of a similar class that have not previously been 

presented to it. 
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A third concerns the introduction of fixed-step changes to the weights. This also 

effected a twofold simplification: the calculation of weight-changes was rendered 

much-less complex; and consequently the circuit to realise the step-changes be-

came much simpler. Perhaps this simplification would apply with equal success 

to standard back-propagation. Even different step-sizes for the hidden and the 

output layers would be a small price to pay for removing the need for storage for 

the hidden-layer targets. 

8.8 Algorithms and analogue VLSI 

8.8.1 Summary 

A great deal of excellent work has been carried out on building analogue, digital 

and hybrid circuits and systems to implement ANNs. A huge strength of this 

work has been its interdisciplinary nature, spanning as it does fields as varied as 

statistical mechanics, analogue circuit-design and neurobiology. 

There is now a very good understanding of the demands that mathematical mod-

els make on analogue circuits, and of the difficulties which render many of these 

models unsuitable for analogue VLSI. 

8.8.2 Conclusions 

There has been an over-emphasis on translating mathematical models into ana-

logue VLSI. These models, many of which have very interesting properties, are 

easy to explore in conventional-computer simulation, but difficult to translate 

into analogue form. Furthermore, the motivation for the translation into hard-

ware, and into analogue hardware in particular, is rarely clear, since most digital 

implementations show considerable advantages over their analogue counterparts. 
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8.9 Artificial neural networks and analogue 

VLSI : conclusions 

Investigations into the use of analogue VLSI as a means of implementing ANNs 

is at a cross-roads. Many researchers, rather naively, expected that, while under-

standing little of function in real brains, they would be able to build machines 

with human characteristics, albeit simple ones. They rested their hopes on several 

ideas, which have turned out to be unreliable. One was that 'massive parallelism', 

in itself, using large arrays of identical, simple processors, was enough to realise 

complex functions. Another was that, for reasons of space, speed and cost, hard-

ware versions of simulated networks would have a ready application in preference 

to computer simulations. 

From an engineering perspective, I see ANNs developing in three directions. One 

is as a branch of statistics for applications such as pattern-recognition. ANN re-

searchers may find this rather a harsh environment to work in since their research 

is going to be judged against decades of intensive statistical research, instead of 

as a, supposedly entirely new, paradigm of parallel processing. 

The second direction is in hardware development. For most applications, solutions 

using only software will probably be desirable for their flexibility. For the small 

number of instances where hardware versions of networks (although no major 

one has emerged as yet), I consider digital hardware to be the likely choice, since 

digital implementations can generally match analogue speeds, and they retain the 

advantages of flexibility, and of precision and accuracy. Analogue electronics, it 

seems to me, will achieve only a slight foothold in this market where, for example, 

there are highly particular reasons for using it, such as the low-power application 

being investigated by Jabri (Jabri et al., 1993). 

A third direction is in modelling brain function, either for applications or to 

illuminate brain processes. If the hope is applications, then researchers must make 

a serious reassessment of the likely outcomes. If the hope is to illuminate brain 

function, then I see a serious role for analogue electronics as an investigative tool, 

along with other tools such as simulation and the modern, non-invasive techniques 

such as positron emission tomography and magnetic resonance imaging. The work 

of Shoemaker and Elias, which I described in Section 3.6.1, in modelling low-level 
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neural function and producing interesting results, demonstrates what might be 

achieved. Because of the emphasis on mathematical models and on real-world 

applications for these models, I believe this area is very under-exploited. 



Appendix A 

Intelligence and learning in people 

and machines 

A.1 Neural networks and the brain 

In the past, many authors of works on ANNs referred to the similarities between 

neural computation in a machine and the structures and functions of the brain. 

Some drew a quite specific analogy between the two, referring to "brainlike 

devices" (Caudill and Butler, 1990), "brain style computation" and " brainlike 

systems" (Rumeihart, 1990); or arguing that "neural modelers currently start at 

the lowest level, building networks of model neurons and synapses and expecting 

intelligent behavior to emerge from the aggregation of various neural forms and 

knowledge learning" (Aispector, 1989). Others were more circumspect : "The 

belief that there are common quantitative foundations for both brain science and 

artificial intelligence has come and gone and come again" (Levine, 1991); "The 

approach of neural computing is to capture the guiding principles that underlie the 

brain's solution to [parallel] problems" (Beale and Jackson, 1990); "It is arguable 

that 'neural' should be purged from the vocabulary of this field - perhaps Net-

work Computation would [be] more accurate ... " (Hertz et al., 1991). All agree, 

however, that ANNs are in some way inspired by the brain. As the quotations in 

Appendix B indicate, some investigators even liken neural network functions to 

the highest levels of brain function. 

133 
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These considerations led me into an exploration of ideas about learning and think-

ing in people and machines, and this chapter lays out my conclusions. One dif -

ficulty is that neural network researchers now work in so many disciplines, with 

such different motivations and viewpoints, that the common language they use 

sometimes obscures rather than illuminates the work they are doing. Of course, 

any researcher worth his salt has an interest, however casual, in all aspects of 

neural network research and its applications; this makes it all the more import-

ant to place one's work in context. 

The following sections consider the main schools of thought in the world of ma-

chine intelligence and ask why the belief that machines can act in an intelligent 

way is so persistent. I look at objections to the whole idea of machine intelli-

gence and their validity. I examine the need for engineers to consider notions 

of consciousness and, as a consequence, suggest what neurobiologists and those 

engaged in computational intelligence have to offer each other. I relate this idea 

of inter-disciplinary research to the particular field of learning. Finally, I propose 

a common-sense stance for engineers to take on how they can use their skills to 

contribute to research in machine intelligence. 

A.2 The aims of ANN research 

The early hopes for ANN research, that the paradigm would provide us with 

radical new insights into human functions, leading us in their turn into new 

algorithms with stunning applications, have not been realised. As a consequence, 

many researchers are disillusioned with the idea of parallels between ANNs and 

the brain. In recent years, neural techniques have come to be seen as little more 

than another statistical network in the toolbox. One way of looking at this is 

to say the field has matured and become more realistic. Another way to think 

of it is that the original biological inspiration has served its purpose and might 

as well be abandoned. I believe this is a mistake, and, in my final conclusions, 

I suggest that ANNs can provide their most powerful justification in modelling 

brain function, provided of course we keep a realistic perspective on what we can 

achieve. I explain the reasons for my beliefs in the following sections. 
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A.3 Viewpoints on intelligence and machines 

What are the main schools of thought on machine intelligence? Enquiries into 

the potential of computing machines have spawned a huge literature, with many 

shades of opinion represented but, at the risk of caricature, we can distinguish 

three main viewpoints. 

A.3.1 'Strong AT' 

The first is generally called 'strong Al' (artificial intelligence). The idea can be 

summarised as follows. All thinking is computational, the sort of rule-bound and 

algorithmic thinking done by computers. The feeling (perhaps the illusion) that 

we are conscious is simply the outcome of the computation, although we do not 

yet fully understand the connection between the two. This viewpoint is exempli-

fied by the work of three past giants in the history of computer science, Turing, 

Newell and Simon (McCorduck, 1979). Turing formalised the idea of computa-

tion, established the formal properties of symbol-manipulation, and showed that 

any problem, if sufficiently specified, could be solved computationally on his uni-

versal machine. He suggested that such a machine, by its formal structure, could 

perhaps emulate the mind. Even more importantly, he established the basis of 

a science of function divorced from structure; in other words, the substrate of 

thought - valves and tubes, silicon or brain - is irrelevant to the functions 

that can be carried out. Following Turing's lead, Newell and Simon argued that 

manipulation of symbols is the essence of intelligence, and hence that a symbol-

manipulating machine, including one with a Von Neumann architecture, could 

exhibit intelligence. 

This belief in the potential of computers to be intelligent led to an explosion of 

effort in so-called 'artificial intelligence', using symbol-manipulation in rule-based 

systems to emulate everything from medical diagnosis to scientific creativity. The 

ideas of these original thinkers have spread into many fields such as philosophy, 

psychology, cognitive science, computational linguistics and engineering. 
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A.3.2 'Weak Al' 

The second position, 'weak Al', holds that conscious awareness is a unique fea-

ture of the brain (perhaps only truly the brain of man), and cannot be found 

in machines. However, computing machines can simulate consciousness and, in 

practice, we cannot know whether we are dealing with a machine or a human 

mind. A modern exponent of this view is Edelman (Edelman, 1994), whom I 

mention in greater detail in Section A.7 below. On this view, machines can, con-

ceivably, perform any human function of perception, analysis or action without 

necessarily developing 'understanding' in the human sense. 

A.3.3 Computational intelligence 

The third view, exemplified by (Penrose, 1995), and to which I adhere, is that of 

computational intelligence, which proposes to avoid concepts of mind and under-

standing in the practical pursuit of 'machine intelligence'. Like the proponents 

of 'weak Al', we believe that conscious awareness is a property of the brain, 

that can one day be understood. However, consciousness and understanding are 

something entirely other than computational thinking. On this view, we will be 

able to build machines that can, with varying degrees of success, perform human 

functions, but rarely, if at all, in the way that people do. We will never be able 

to simulate human consciousness, nor understanding, and we will always be able 

to tell, ultimately, whether we are dealing with a mind or a machine. 

In the next section I explain why the tendency to associate human and machine 

intelligence is so strong, and so misleading, and justify my belief in the compu-

tational intelligence viewpoint. 

A.4 The Forces Behind Machine Intelligence 

Proponents of the strong-AT and weak-AT viewpoints make much of the parallels 

between human intelligence on the one hand, and computational approaches to 

human functions (such as speech or image recognition, or expert systems), on the 

other. They argue, justifiably, that some machines can behave in a human-like 

manner, and that our understanding of computational approaches has assisted 
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our understanding of the workings of the brain, However, I believe our tendency 

to see these parallels owes less to the success of computational approaches in 

mimicking human function than to two deep-seated cultural factors, firstly our 

belief that man is a complex machine, and secondly our drive to automate. In my 

view, these cultural forces lead us to make more of the parallels between people 

and machines than is justified by the evidence. 

A.41 Man as machine 

We can trace the modern view of man as a machine back to the work of Descartes 

(1596-1650), who viewed all material beings, including people, as being ruled by 

the same mechanical laws. To read Descartes' practical science (Descartes, 1972), 

along with the works of contemporaries such as Harvey on the circulation of the 

blood (Harvey, 1628), for all their errors of fact and flavour of vitalism, gives one 

a real sense of the powerful forces that their new scientific method had unleashed. 

For the first time, these works demonstrated, in a methodical and detailed way, 

a means of understanding the operation of the body in terms of mechanics and 

hydraulics, ideas that were well understood from their application in machines. 

Furthermore, scientists could test their ideas by measurement; for example, Har-

vey was able to show that the weight of the volume of blood pumped by the 

heart in an hour exceeded that contained in the whole body, and so must cir-

culate rather than being continuously created and destroyed. It is difficult to 

overstate the influence of this mechanical view of the body, because it has indir-

ectly stimulated so much of modern medical scientific technique such as blood 

transfusions, the fitting of artificial limbs and the replacement of complete or-

gans. We take it for granted that our bodies are like cars, able for much of our 

lives to survive on repairs or replacement parts until some terminal disintegration 

destines us for the scrap heap. No doubt, at stages during this steady advance, 

there were areas that it was believed science would never conquer, and yet now 

we believe even our genes can be engineered from one species to another. 

A.4.2 The drive for automation 

The second force at work that encourages our belief in the similarities between 

people and machines is the quest to automate. The interplay between economic 

pressures to replace people by machines and the increasing formalisation of tasks 
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at work has stimulated the automation of human abilities. Requiring people to 

work with machines encourages work practices that are algorithmic in nature, and 

this in turn makes it more likely that the work can be automated. Integrating 

computer technology into the office makes this as true of intellectual tasks as of 

manual ones. 

Descartes viewed the mind as being of a fundamentally different nature to the 

body. The idea that machines might also replicate brain functions is, therefore, 

much more recent. However, the belief that we could, at least in principle, re-

duce every aspect of man's behaviour, including his mental abilities, to a system 

of rules, certainly predates the electronic computer. Here is the management 

thinker, Frederick Taylor, explaining in 1912 his principles of so-called scientific 

management, which heavily influenced Henry Ford's production-line system: 

'[One of the duties of management] . . . is the deliberate ga't'hering 

in on the part of those on the management's side of all of the great 

mass of traditional knowledge, which in the past has been in the 

heads of the workmen, and in the physical skill and knack of the 

workman, which he has acquired though years of experience. The 

duty of gathering in of all this great mass of traditional knowledge and 

then recording it, tabulating it and, in many cases, finally reducing 

it to laws, rules and even to mathematical formulae, is voluntarily 

assumed by the scientific managers.' 

(Taylor, 1947)1 

A.5 Objections to the Idea of Truly Intelligent 

machines 

What are the objections to the idea of truly intelligent machines? Clearly, if we 

can design a machine that can manipulate and instantiate the rules and mathem-

atical formulae referred to by Taylor, then we can easily imagine a machine that 

can behave just like a person; and if the machine behaves like a person, might 

p4O 
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the two not then be indistinguishable? And might we not then be justified in 

claiming the machine as "intelligent"? 

Without pretending that the answer to this question is straightforward, I assert 

that it is "no". The most trenchant critic (and the most entertaining, in a very 

entertaining field) is Hubert Dreyfus (Dreyfus, 1992, Dreyfus and Dreyfus, 1988), 

whose objections are threefold. Firstly, promising beginnings in machine intelli-

gence are consistently exaggerated into a golden future that never materialises. 

Secondly, human behaviour cannot be replaced by rules, because people do not 

follow rules, except in very constrained circumstances, in their everyday lives. 

Thirdly, even if rules could be designed to replicate some element of human be-

haviour, some circumstance would inevitably arise requiring yet another, as yet 

unspecified, set of rules, leading to an infinite regress. The first of these objections 

is conceded by most investigators. On the second and third, Dreyfus has a great 

deal of support form fields as varied as philosophy (Polanyi, 1958), psychology 

(Suchman, 1987) and knowledge systems (Collins, 1990). 

Of the many writers in this area, Searle takes the most sensible approach. Another 

severe critic of the 'strong-AT' viewpoint, he argues (Searle, 1980, Searle, 1987) 

that the problem is that machines lack 'intentionality', because mental states 

are "directed at or about objects and states of affairs in the world". Mind and 

intentionality are properties of neural systems - neurophysiological events do 

not cause mental events, which are a feature of neurophysiological systems with 

certain properties. 

What, then, is different about ANNs? The argument that the brain functions by 

computation, that it develops and learns by minimising some kind of cost func-

tion, and that ANNs are useful models or hypothesis-generators which illuminate 

real brain processes, can be very persuasive (Churchiand and Sejnowski, 1992). 

At the very least, connectionists 2  have avoided the trap of 'strong Al' enthusi-

asts that we can circumvent the question of biological phenomena altogether by 

instantiating the brain in computers. 

My own feeling is that connectionism has fallen short so far on a number of 

counts. The first is that, as Dreyfus argues about conventional Al, the field has 

made claims that it has failed to fulfil, and claims, such as many of those in 

2 The term is often used to describe those who study ANNs 
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Appendix B, that it is most unlikely to fulfill. Secondly, Searle is surely right in 

saying that people are not passive receptors of data but are agents with purposive 

behaviour. Thirdly, many connectionists make little more than a token gesture 

towards biological networks, while expecting human-like functions to emerge from 

their efforts. Lastly, we have confused the ability to replicate basic human abilit-

ies, for example pattern-discrimination, with the transcendent ability to recognise 

an object for what it is; we learn and remember, in large part, through our abil-

ity to ascribe meaning to events, an ability which the designer supplies to ANNs 

by interpreting clustering in unsupervised networks, or telling a supervised net-

work what responses are correct and to what degree generalisation of results is 

acceptable. 

Although many proponents of ANNs take it as read that neural networks 

more nearly approximate real-brain processes than do artificial symbol sys-

tems, this may not be so (Churchiand, 1989, Feldman and Ballard, 1982, 

Fodor and Pylyshyn, 1988). The argument, to paraphrase it crudely, is as fol-

lows. On the one hand, can ANNs be models both of brain structure and of the 

way people represent the world in their minds, ie carry out cognition (Church-

land)? Or can ANNs, at best, be models only of brain structure (Fodor)? 

For my part, I agree with Fodor that, for connectionists to construe ANNs 

as models of cognition as Churchiand does (and Rumeihart, for that matter - 

(Rumeihart and McClelland, 1986)), is not sustainable. Alternatively, if ANNs 

are models of implementation, then we should pay more attention to real bio-

logical structures and abandon the idea that cognitive abilities will somehow 

manifest themselves out of ANN architectures. 

A.6 Consciousness, the nervous system, and 

computation 

Does any of this matter? As engineers, can we not dispense with the notion of 

consciousness, and concentrate on the algorithms that will put human functions 

like face or speech recognition within our grasp? Following Searle's lead, is the 

question for us not : what kind of neural organisation would have the features to 

embody the minimum necessary for, say, colour vision? The answers are yes, 

it does matter and, no, we cannot ignore consciousness, because the brain is a 
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system for acquiring knowledge about the world, and knowledge (of whose face 

we see, of what that person is saying) depends on consciousness. Some people 

with damage to a part of the visual cortex, can 'see' directional motion in an 

object without being conscious that they are doing so, a phenomenon known 

as 'blindsight' (Zeki, 1993). These patients' vision is useless, since they cannot 

acquire any knowledge about the world through it. It seems that the integrity of 

the visual cortex is essential for the conscious experience of vision. 

Nevertheless, the mutual dependence of neurobiology and computational ap-

proaches is strong. For example, computational approaches have taught us 

that some human activities that have a high intellectual content, like play-

ing chess, are highly amenable to algorithmic solutions. By contrast, know -

ledge of brain architecture and function can be a catalyst for devising plaus-

ible and powerful algorithms that may give us insights into brain function 

and provide us with the tools to build machines to carry out real-world tasks 

(Churchiand and Sejnowski, 1988). 

A.7 Recent Developments 

The preceding criticisms do not diminish the advances made in recent decades 

in our understanding of what is, and is not, possible, and has radically altered 

our notions of the nature of intelligence. A huge strength of ANN research is 

its multi-disciplinary nature, stimulating a healthy cross-fertilisation in ideas, for 

example in Brooks' work (Brooks, 1991) on building intelligent robots. 

Another promising development is the growth of interest in new ways of think-

ing about these problems, stimulated by, among other things, the ideas of phe-

nomenology. Here we think of people not as passive receivers of sense-data 

that are processed in some mysterious way to transform them into meaning, 

but rather as agents in the world, actively seeking meaning and performing 

actions in a context already charged with meaning. At this stage, the phe-

nomenological approach does not offer a clear research programme in the way 

that neural-network research has done - although, interestingly, Terry Wino-

grad, an erstwhile, and talented, champion of conventional artificial intelligence, 

now teaches and writes (Winograd and Flores, 1986) in phenomenological terms. 

However, it does suggest some very auspicious augmentations to more traditional 
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approaches, beginning in psychology (Suchman, 1987) and running through the 

design of human-computer interfaces (Winograd and Flores, 1986) to robotics en-

gineering (Brooks, 1989, Beer, 1990, Connell, 1990). 

Edelman (Edelman, 1994) takes many of these ideas a stage further. For him, 

the crucial difference between computers (and indeed any mechanistic, that is 

chemical or physical, description of the brain) and real brains is evolutionary 

morphology, in other words the dynamic arrangement of the constituents of body 

organs, including the brain, to show system properties. In Edelman's view, the 

striking properties of brains cannot be separated or abstracted from the topo-

logical arrangement of the brain itself. Intelligence cannot be 'disembodied' by 

abstracting it and installing it in software or hardware or a combination of both. 

Any truly intelligent machine, which would necessarily have its 'brain' organised 

on evolutionary principles, would have to be able to connect causally-unconnected 

outside events for its own adaptive needs - no trainer to tell it what was correct 

or incorrect, no operator to retrain it in the event of 'error', no homunculus to 

determine the 'meaning' of its own self-organisation. 

A.8 Learning in psychology, neurobiology and 

ANNs 

I consider in this section the relationship of 'learning', as it is commonly under-

stood, to 'learning' in neurobiology and ANNs. 

A.8.1 Psychological views of learning 

Since learning and memory are psychological phenomena, the opinions of psycho-

logists ought to be helpful here. Unfortunately they are not, for these reasons. 

Firstly, there is no simple definition of learning, because it is a complex phe-

nomenon (Thornton, 1992), which cannot be reduced to an equation or two. 

Secondly, and astonishingly, until recently, most textbooks treated learning and 

memory as entirely separate, discussing one and omitting the other entirely. In 

this respect, connectionism, as a discipline that unifies the two phenomena, has 
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had the advantage over the psychologists until very recently, when it was argued 

that, since learning, remembering and forgetting all occur in the same biological 

context, their adaptive functions must be intertwined (Boulton, 1994). 

Thirdly, categorisation of types of learning is a mess (because it is a complex 

phenomenon). Psychologists commonly distinguish five areas of learning: 

Developmental learning, that is learning, for example to perceive objects, 

as we grow; 

Non-associative learning including habituation (reduction in response to 

continued stimulus) and sensitisation (increase in response to repeated stim-

ulus), and also including reflexes; 

Associative or stimulus-response learning, including classical conditioning 

(eg in "Pavlov's dogs" experiments) and operant conditioning  (association 

between a stimulus and a response such as is used in shaping circus animals' 

behaviour); 

Procedural learning (learning 'how'), of which motor learning is a form. This 

is really a special form of associative learning; 

Declarative learning, of which relational learning is a form, for instance 

learning about relationships between objects in space (spatial learning), 

between events in the past (episodic learning) or between another person's 

behaviour and our own (observational learning). 

Of these categories, associative learning is a mechanism while the others are 

phenomenological observations (about which, admittedly, a great deal is known). 

Psychologists have, historically, expended a lot of effort on the study of associative 

learning but it cannot explain the other categories except in the most rudimentary 

terms. 

'The distinction between classical and operant conditioning is not a very clear one. 
Classical conditioning exploits reflexes, while operant conditioning uses spontaneous 

animal behaviour for which there is no explicit stimulus, for example rats pressing the 

lever in an experimental box. 
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A.8.2 Neurobiological views of learning 

Neurobiologists ask similar questions to ANN researchers. For example: Where 

does learning take place? How is information about a learned event acquired 

and encoded? How is the information retrieved? They also have a strong can-

didate for a mechanism of learning, called long-term potentiation (Byrne, 1988, 

Brown et al., 1988). This interesting model of learning is based on the observa-

tion that, in some parts of the brain (notably the hippocampus), a brief burst of 

high-frequency stimulation in a nervous-system pathway leads to augmentation 

of the post-synaptic cell's response to subsequent, normal, stimuli. 

A.8.3 ANN views of learning 

Machine learning is now a field of enquiry entirely separate from the psychological 

and neurobiological fields. Machine learning is considered to take place when a 

computer system automatically generates a new data structure or program out of 

an old one, and so irrevocably changes itself, with some purpose (Anzai, 1992). 

This, of course applies to ANNs. 

The discovery of long-term potentiation, referred to in Section A.8.2, has been 

seen as exciting because it is the kind of mechanism recognised by connectionists 

as Hebbian learning. Hebb (Hebb, 1949) proposed an associative mechanism  in 

the brain that has been interpreted as an algorithm in which weighted connections 

are strengthened as the result of correlations between the responses of connect-

ing nodes. Long-term potentiation has four characteristics required of learning 

(Groves and Rebec, 1992) : it is initiated by brief stimuli, so can capture tran-

sient events; only inputs carrying information are involved (as is true in ANNs); 

there is cooperativity , ie one node must 'fire' as the other one does (as is the 

case in artificial Hebbian networks); and there is associativity between nodes in 

time or strength (as is also the case in artificial Hebbian networks). 

4  "When an axon of cell A is near enough to excite a cell B and repeatedly or 

persistently takes part in firing it, some growth process or metabolic change takes place 

in one or both cells such that A's efficiency, as one of the cells firing B, is increased." 

(p62) 
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A.8.4 The relationship between 'learning' in psychology, 

neurobiology and ANNs 

Relating all these phenomena is very difficult, because our common-sense notions 

of learning encompass everything from learned reflexes, to an intricate skill, to 

the tenets of eastern philosophy. It is not at all obvious what is the link between 

neurobiological mechanisms and higher-level psychological views of learning, and 

the relationship between psychological views and ANNs is even more tenuous 

still. There are some superficial similarities between learning in ANNs and in 

people, particularly for rote learning and learning a motor action (for example a 

tennis stroke). However, it should be clear that, as the term 'learning', as com-

monly understood, symbolises such a complex phenomenon, to draw comparisons 

between the artificial and the human is, to say the least, premature. 

The large variety of angles from which different researchers approach the problem 

is one of the fields greatest strengths. Nevertheless, many ANN algorithms are 

biologically unrealistic and discovering their biological counterparts, if any, will 

be difficult (Mitchison, 1989). If engineers acknowledge this truth then each area 

of the field has much to learn from the others. 

A.9 An engineering approach to neural net-

works 

In my view, 'artificial intelligence' as envisaged by the researchers discussed in 

the previous sections, even if possible in principle, is so remote a prospect that 

it is not worth considering. The questions to be answered for an engineer are 

therefore 

• What stance would it be reasonable for an engineer to take in relation to 

work in other neural-network fields? 

• What aims should engineers working in research in neural networks have? 

Bezdek (Bezdek, 1992) has made a commendable but not wholly satisfactory 

attempt to answer these questions by defining 'computational intelligence' in re-

lation to biological (that is real-world) intelligence and artificial intelligence, that 
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is the type of machine intelligence that is often claimed to comprise 'knowledge'. 

Bezdek says artificial intelligence actually comprises 'knowledge tidbits', the nu-

merical information, rules and constraints that the investigator uses to replicate 

intelligent behaviour in a machine. Computational neural networks provide a low-

level, computational strategy for carrying out some kind of pattern-classification, 

and nothing more. As Bezdek says : "[A back-propagation network] 'learns' (its 

parameters, the weights in the network) in exactly the same sense that the EM al-

gorithm for finding maximum likelihood estimators from labelled data does". Un-

fortunately, Bezdek's strictures on avoiding being seduced by mentalistic phrases 

that, by being interpreted in an anthropomorphic way, convey something more 

profound and substantial than is justifiable, are usually ignored. 

BRAIN MODELLING 
FUNCTIONAL INTELLIGENCE 

Studies : functional aspects 
of human cognitive abilities, generally high-
level, mostly classical A! 

Assumption: brain governed by physical 
laws 

Studies and attempts to model the actual 
structure of the brain 

Assumption : the more the structure of the 
model approximates the structure of the 
brain, the better our understanding of 
brain mechanisms and their contribution 
to brain function 	 I 

Objective : to produce machines which 
mimic human cognitive function 	 Objective : to produce machines 

which mimic brain architecture 
and may therby produce 

brain function 	/ 

ENGINEERING 

Studies the means by which data may be 
processed by simple processors operating 
in parallel to produce useful results. 

Assumption: simple processors working in 
parallel have properties not evident in 
alternative approaches 

Objective: to produce artefacts that will 
perform functions for mankind 

Figure A—i: Different kinds of enquiry 
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Building on Bezdek's work, I offer the classification shown in Figure A—i to 

illustrate the relationship of neural networks in engineering to neural networks in 

two other fields. The classification is of course a gross over-simplification of the 

huge variety of uses to which neural networks are put, but the simplification has 

the benefit of clarifying what, to my mind, are serious confusions in the minds of 

researchers in all fields. 

On my interpretation, brain-modelling is a perfectly respectable pursuit with 

the aim of investigating the characteristics of real brains and representing these 

characteristics in a way that is at least as useful as any other modelling technique 

that gives us an insight into human performance. My opinion is that such models 

are as valid for our time as information-processing models of the brain were in the 

60s or telephone-exchange models were before that; they do not, by any stretch 

of the imagination, describe reality, but they are a useful way of thinking about 

problems that enables us to make testable predictions about human performance. 

However, clearly, the more the models are based on our actual understanding of 

how components of the brain and the nervous system operate, the more likely 

the models are to tell us something about real brains. Hence, there will be a 

propensity (but not an overwhelming one) for models to use components that 

we believe are like the components of the brain, of which neural networks may 

provide an example. This description would obviously cover much neural-network 

research, but also much research in conventional artificial intelligence. It will 

continue to open up many avenues of interest, to help our understanding of what 

intelligence actually is, and to highlight and clarify what is particular about 

people that makes us different from machines. 

I choose the term functional intelligence to indicate that, in this second field, 

an explicit aim is to produce models and machines that try to mimic cognitive 

functions, both low-level (eg pattern discrimination) and high-level (eg creativity, 

game-playing), in other words those aspects of human performance that we nor-

mally think of as intelligent. I say functional because this research can proceed 

without necessarily concerning itself about the mechanisms by which people carry 

out these functions, nor with the structural details of the areas of the brain that 

are involved. Thus a chess-playing machine fits into this category even though it 

is realised in software or electronic hardware and not in biological neurons, nor 

even in a crude analogue of neurons, and even though the mechanisms by which 

it operates (sophisticated algorithms searching through a complex 'game-space') 

are rather unlikely to be the ones human chess-players use. 
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I make it clear here that researchers in both functional intelligence and brain-

modelling may choose to believe that their models are 'truly' intelligent, that 

they show evidence of 'thinking', 'sleeping', 'dreaming' or whatever mentalistic 

labels they wish to ascribe to them but, for the reasons I have outlined, I disagree, 

and predict that such labels will not be justifiable in the foreseeable future, if ever. 

If these studies advance more rapidly than I predict then, in 100 years, I may be 

willing to change my, by then disembodied, mind. 

I think that engineers, represented in the third field in the diagram, have a unique 

position in this triptych, because they are wedded neither to the idea of producing 

intelligent machines, nor to the need to demonstrate that their models have any 

association with real brains, any more than aeroplanes have an association with 

birds or trains with horses. Engineers can take a magpie approach to problems, 

stealing whatever bright and shiny idea might seem attractive, with the aim of 

solving problems in whatever way seems practical. We can keep an interested, 

if sceptical, eye on developments in these fields, in the hope that they will turn 

up some profitable technique or helpful notion. Our objectives are both easier 

to define and, in some ways, more difficult to realise, in that we are trying to 

produce artefacts that are useful to mankind, using a method, neural networks, 

for which the problems of implementation are formidable'. In this enterprise, it 

is to our advantage to renounce, as far as is practical, words like 'intelligence', 

'learning' and 'recall' that lend an unjustified radiance to our work. 

The three fields in the diagram are shown as overlapping because each draws on 

the others for knowledge and inspiration. For example, the engineer may design 

a robot along lines developed in the world of functional intelligence, as Brooks 

and his students have done; or they may develop electronic models of real-world 

neural structures (Shoemaker et al., 1992). 

'The prime reasons for using ANNs are that : (1) unlike conventional computers, 

they need no explicit programming, but adapt based on examples of similar problems; 
and (2) they can be effective at solving problems where solutions are difficult or im-

possible to define (Rees, 1996). 
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A.10 Summary and conclusions 

In the myriad of views on the relationship of minds, computational machines 

and the physical world, we can distinguish three main positions, which I have 

characterised as strong AT, weak AT and computational intelligence. I have looked 

briefly at each of these positions, explaining the historical forces behind the desire 

to link human functions and machines. 

I have then examined the notion of learning in people and machines and demon- 

strated the fragility of the link between them. Finally, I have come to a conclusion 

about the approach engineers should take and the objectives they should aim for. 

There are strong cultural factors that seduce us into seeing a greater similarity 

than actually exists between machines and people, particularly where 'thinking' 

is concerned. In this respect, it is unfortunate that ANN investigators without 

a knowledge of the elements of neurophysiology have adopted so much biological 

terminology for artificial networks, as these terms lend an unjustified radiance to 

their work that confuses outside observers, and even those working in the field 

itself. 

Although the idea of 'intelligence' and 'mind' as emergent properties of compu-

tational systems has a long history, there are strong objections to it. 

Notions of 'biological inspiration' are surrounded by confusion. Engineers should 

be clear about the motivation for their appeals to biology 

• to produce functionality. Biology may give us ideas (eg 'discounting the 

luminance') but the maxim here is 'function, not form'. 

• to model biological systems (because of their power) in silicon and apply the 

models to problems which conventional computers find intractable - the 

'neuromorphic' approach. The driving force here remains functionality, but 

from a distinctly biological perspective. Since the brain is so imperfectly un-

derstood, to 'do things the way the brain does' is very difficult, and a great 

deal of effort is likely to be necessary before any function approximating 

human function, for instance 'seeing' or 'hearing', is achieved. 
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• to model brain function, with the aim of better understanding how biological 

systems work. This is an area with few investigators and, in my view, poorly 

exploited. 

The phenomenon of learning in people is a complex one, and psychologists, neuro-

biologists and ANN researchers see it from rather different perspectives. A unified 

theory of learning, memory and recall does not appear to be imminent. 

Engineers have a unique place in ANN research. Their motivation to build useful 

machines, forces them to confront real-world difficulties. Ill-defined notions can 

be subjected, by the very nature of the discipline, to rigorous testing and to 

justification by results. 

Nevertheless, engineers should be aware that human consciousness, and people's 

ability to acquire knowledge about, and act in, the world, are very special char-

acteristics, and most unlikely to be replicated in machines. Computers, whatever 

their nature, will never have 'subjective awareness', nor will they 'experience 

sensations', nor 'be conscious'. Any investigator who believes that these human 

characteristics will emerge from non-conscious, computational building-blocks has 

a number of difficult questions to answer, such as : What would a programme 

of research to discover the foundations of these characteristics comprise? If there 

is a link between physical substrates and consciousness, why would silicon be a 

good substrate to use for the building-blocks? If we did have conscious machines, 

what would they be like, and what use would they be? 



Appendix B 

Quotations from workers in the field 

of ANNs 

'We're beginning to understand the way that these connection-

weights [in biological networks], that is the ways one nerve-cell affects 

another, are changed by different environments, and it's through that 

set of rules of changes of connection-weights that we think we'll be 

able to understand the whole of this [the brain's] complexity; how it 

was, even, that Mozart and Einstein were able to have their amazing 

creativity . .. ' 

John Taylor 

Director 

Centre for Neural Networks 

King's College, London 

'Networks are a state of mind and I think that some day in the 

future your best friend may be a neural network.' f 
Terry Sejnowski 

The Howard Hughes Medical Institute At The Salk Institute 

'Now there is a state we can create [in a neural network with 

light- and dark-sensors] simply by cutting the sensors off, which is 

'Quotations marked tare from "Equinox: Teaching computers to think", broadcast 

by Channel 4 Television in March 1992. 
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a bit like sleep in human beings. At that point, the neural network 

starts running off on its own, and has flashes of the images that it's 

learned. Now that may be what dreaming's all about ...' 

Igor Aleksander 

Professor of Neural Systemslmperial College, London 

'Will it be possible one day to hold a rational intelligent conver-

sation with a computer? This question has occupied the greatest sci-

entific brains of the post-war period . . . the debate was stirred up with 

some remarkable claims from Igor Aleksander, one of our most respec-

ted computer engineers. Yes, he says, it will be possible, one day, to 

converse with computers. And, more astonishingly, Aleksander and 

his team . . . claim to have created a computer brain that is based on 

the same principles as its human counterpart: it dreams, it thinks, it 

forms mental images, suffers emotion, and even dabbles in free will.' 2  

Christopher Lloyd 

Journalist 

'...he [Humphreys] is also thinking about a silicon chip which one 

day might be programmed with names, addresses and telephone num-

bers and then be fitted into the brains of Alzheimer's disease patients, 

to provide perfect recall for faltering memories. ... "You could put an 

empty silicon chip in and the brain itself could store information. It 

sounds far-fetched but I think it is feasible. . . . One might hope that, 

if you look at the future, the process will be indistinguishable: when 

the brain cells are interacting with the silicon, they are not aware that 

they are not interacting with another brain cell.' 3  

Professor Cohn Humphreys 

Head of Metallurgy and Material Science 

Cambridge University 

2 Sunday Times, 29 May 1994. 

Guardian (Science), 24 March 1994. 
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'Scientists in the United States are working on a new genera-

tion of computers [using bioelectronics] which . . . [according to Sig-

nal magazine] ... "could lead toward an extremely fast machine that 

might match or correspond with the human operator's intellect" 

"It's almost like a circuit board of real cells . . . Once we have [used. 

the technique in] artificial limbs, we will progress towards artificial 

intelligence" .. 

Dr James Hickman 

Research Chemist 

Science Applications International Corporation 

McLean, Virginia 

'In the next few decades we will have machines and computers with 

far superior brain power and computational capacity than humans 

Even the most conservative estimates indicate that in the early 

part of the next century accessible computational power with known 

artificial means, such as electronic circuitry, will be greater than that 

of humans . . . Clearly, it will be possible in the next 50 years to achieve 

artificial intelligence systems which are not only more intelligent than 

humans, but also exhibit a significant number of advantages: they will 

be faster, more reliable, quicker to learn, more robust, and usually 

more accurate . . . I don't believe there is anything to stop robots and 

machines being creative in the same way humans are. They could 

even have emotions.' 5  

Kevin Warwick 

Professor of Cybernetics 

Reading University 

'This [noise in neural networks] is the equivalent of internal im-

agery. It's like staring at a blank screen and having internal images 

parade past . . . You can be led astray into thinking that I'm saying 

Scotsman, 2 February 1994. 

The Glasgow Herald, 12 September 1995. 
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that the stream of consciousness is nothing more than noise being 

translated into different thoughts. But that's not the case . . . You've 

got noise, which is producing neural images in no distinct order, but 

those helter-skelter thoughts can now excite whole chains of associ-

ations. That is the systematic part of intelligence.' 

'People will start to ask the question: how am I distinct from these 

machines? And I think the inevitable answer, though sidestepped for 

decades, is that we're the same, Once we looked at the birds and 

emulated what was needed to fly, and now we're flying. And now I 

think we know enough about the brain that we can make real brains 

and do the things we thought were sacrosanct, like creation.' 6  

Steven Thaler 

Inventor of the 'Creativity Machine' 

'We [our group at Caltech] build systems that are models of pieces 

of the nervous system like the retina, or the cochlea in your ear. 

What I mean by a model is a system that in some way does a similar 

function, systems which emulate, in some way, pieces of the nervous 

system . . . ' f 

'I think at the present time we have enough technology to build 

anything we could imagine. The problem is we don't know what to 

imagine, we don't understand enough about how the nervous system 

computes, to really make more complete thinking systems ...' t 

Carver Mead 

Moore Professor of Computer Science 

Caltech 

'New Scientist, 20 January, 1996 
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'We really are nowhere near having [neural networks with] the 

sophistication of something like a cat or a dog or a rat. These are much 

more sophisticated information-processing systems; we're a very long 

way away from coming anywhere close to real biological intelligence, 

and I think it'll be quite a long time before we get anywhere near 

it...'t 

Geoffrey Hinton 

Canadian Institute for Advanced Research 

University of Toronto 



Appendix C 

Implementations of, and circuits for, 

on-chip learning 

The table on the following pages lists, as a guide to published work in this area, 

digital and analogue implementations of on-chip learning, together with other 

published work which is of interest from the point of view of this thesis. 

The table lists the implementations in alphabetical order by the first-named au-

thor of the published paper or papers in which they are described. Within the 

table itself are descriptions of the application which the authors had in mind, 

and the algorithm which they have contrived, or attempted, to implement. The 

table then explains the main circuits used to implement the functions which are 

common to ANN algorithms : to provide a weight, and to change that weight; 

for multiplication at a synapse; for summation of weighted inputs and for a non-

linear mapping to a neuron output; and for any other additional function that is 

necessary. 
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01  
Authors Application Algorithm Weight Weight-change Synapse Neuron Others Remarks 

Abusland and Associative Hopfield net Twin voltages UV-light Gilbert multiplier Transconductance Same group as 
Lande, 1994 memory on analogue intensity (for amplifier Berg eta! 

floating-gate learning speed) 
mapped onto and exposure- 
UV-activated time (for weight- 

_______________ conductances change)  

Aispector eta!, XOR, Modified Digital, Digital Conductance Double differential Noise amplifiers 
1989 unsupervised Boltzmann converted to increment or increases linearly amplifier giving to simulate 

competitive machine analogue decrement with digital value tanh function temperature 
conductance  

Alspector eta!, Parity problem Boltzmann Digital Digital Voltage x weight Amplifiers with Noise-generator 
1992 and mean-field increment or produces current variable gain summing in 

generalisation of network decrement form of a current 
XOR  

Arima et a!,1991a, Pattern Boltzmann Capacitors, Charge-pump Current weighted Summed currents Weight refresh is 
1991b,1992 recognition machine one excitatory giving 10% according to into comparator by learning 

and one change -  excitatory or which flips if Vref 
inhibitory resolution inhibitory greater than 

capacitor-voltage threshold 

Berg eta!, 1996, XOR Back- Twin voltages UV-light Differential pair Differential pair Complete Continuous- 
Sigvartsen, 1994 propagation on analogue intensity (for maps weight- maps votage- circuits to time system 

floating-gate learning speed) voltages x state- difference onto implement 
mapped onto and exposure- current onto single-ended entire algorithm 
UV-activated time (for weight- current output current 
conductances change)  

Botros and Abdul- Pattern Back- Digital implementation using FPGA, with learning off-chip Simple, at 
Aziz, 1993 association propagation least as 
_______________ ______________ ______________ _______________________________________________________________________________ concept 
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Authors Application Algorithm Weight Weight-change Synapse Neuron Others Remarks 

Choi and Salam, Pattern Back- Capacitive, Continuous-time MOS transistor Operational Simulation 
1993 association and propagation with steady- circuit settles current control amplifier only 

XOR modified so state value into steady state 
derivative-of- being read and 
sigmoid terms stored off chip 
removed 

Cohen and Not stated Hebbian Capacitive 'Bump circuit Gilbert, sub- Not stated Simulation 
Andreou, 1992 learning, to alter threshold only 

Herault-Jutten multiplier's 
neuro-morphic current in small 
network  steps  

Dolenko and None: Back- Capacitive Multiplier Gilbert, super- Learning-rate is Simulation 
Card, 1993 investigation of propagation charges or threshold change-time. only 

hardware discharges Refresh is 
properties capacitor repeated 

pattern- 
presentation  

Donald and Ostensibly real- Modified Capacitive. "Statistical Current Threshold circuit Refresh 
Akers, 1993 time control, but Hebbian Refresh sampling" proportional to producing binary implicitly by 

actually a learning method not capacitor weight injected output learning 
classifier algorithm, due stated. charged or into summing 

to ca discharged, then node, then 
(unsupervised switched- integration on 
learning) capacitor shift capacitor 

onto weight - 
capacitor I 

Duranton and Image- or Various Fully digital CMOS implementation Sigmoid 
Sirat, 1990 speech- executed off- 

recognition  chip 

Eguchi et al, 1991 Inverted Modified back- Digital implementation using logic-gates and stochastic pulse-trains Conference 
pendulum, propagation paper never 
character- published in 
recognition  journal 
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Authors Application Algorithm Weight Weight-change Synapse Neuron Others Remarks 

El-Masry et al, Not applicable since weight-change OP-amp Switching of Not applicable since weight-change building-block circuit Simulation 
1992 building-block circuit output voltage voltages at op- only 

amp input  

Frye eta!, 1991 Ballistic Modified back- Length of bar Off-chip Transimpedance Differential Opto- 
trajectory as a propagation of light amplifier summing electronic, 
test of system- projected onto amplifier included here 
identification photo- for relevance 

conductive to VLSI 
array  circuits 

Ghosh eta!, 1994a, Not stated Hopfield, Capacitive, Tuning-current OTA multiplies OTA Digital storage Simulation 
1994b Boltzmann, controlling proportional to differential input envisaged only 

cellular tuning current weight varies voltage times 
networks bias-transistor transconductance, 

gate-voltage varied by bias - 
current 

Hammerstrom D, General-purpose Several Digital implementation 
1990 machine suitable 

for 'large, real 
world problems  

Hollis and Paulos, Classification Semi-parallel Digital, Increment! Differential circuit Same differential Simulation 
1994 and functional weight controlling decrement with tail-current pair as the synapse only 

mapping perturbation switched controlled bu#y 
current weighted switched 
sources current sources 

Ibrahim and Not applicable: implementation of a Capacitive Schwartz Gilbert Not applicable 
Zaghloul, 1990 weight-change cell only modifier (see 

under Schwartx 
eta!)  

Kim eta!, 1992 Not applicable: implementation of a Resistor Not applicable Input-voltage Not applicable 
synapse cell only conductance times resistor 

implemented conductance 
as floating- 
gate_transistor 
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Lehmann, 1993, Pattern Back- Differential Elegant synapse MOS resistive cell Differential pair of Digital storage 
1994, 1995 recognition propagation voltages on design permits produces parasitic bipolar 

gate- backward- differential current transistors 
capacitances propagation from differential 

calculation in voltage 
serial fashion 

Linares-Barranco Bi-directional Hebbian Capacitive Via multiplier Transconductance Transconductance Refresh by 
eta!, 1993 associative learning multiplier multiplier reading weights 

memory (BAM) and adding a 
little charge  

Lindblad et a!, Character Radial-basis Digiatal implementation of 'zero-instruction-set computer' Learning 
1995 recognition function circuitry is on- 

 chip 

Macq eta!, 1992 Not applicable, since building-block Current Analogue Refresh by ADC Concerned 
circuits. Kohonen network envisaged winner-takes-all and DAC, only with 

circuit detects reading stored analogue 
smallest distance current, writing storage of 
and adjusts a next-upper adjustable 
column of reference weights. On- 
synaptic array chip learning 

predicted but 
not 
implemented. 

Meador et a!, 1991 Not stated Not stated Floating-gate Re- Voltage-controlled Relaxation Not yet 'auto- 
storage programming of switch converts oscillators adaptive" 

floating-gate incoming pulse- producing 
trains to sequence variable pulse- 
of charge-packets frequency output 
on or off weight- 
capacitor  
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Authors Application Algorithm Weight Weight-change Synapse Neuron Others Remarks 

Montalvo eta!, Not applicable building-block During Multiplication of Operational Combines 
1992, 1994 circuits only learning, differential input- amplifier converts learning 

capacitive; voltage times summed currents capability 
after learning, differential to differential with non- 
floating-gate currents produced output voltage volatile 
storage by floating-gate storage 

transistors 

Myers eta!, 1992 Building-blocks Back- Fully-digital implementation. Trains with 8 bit weights (rather than the usual 
for real-time propagation 12 bits) by using pseudo-random noise sources. Learning on the chip. 
image and signal 
processing  

Sackinger eta!, Character Five-layer, feed- Capacitive, Off-chip Multiplying DAC Digital, via The ANNA 
1992 recognition forward refreshed by (analogue weight current-summing chip, capable 

on-chip DAC times digital state) and ADC of various 
with topologies 
resolution of 6 
bits (+ 4 
scaling)  

Salam and Wang, Pattern and Modified Voltages on Learns to store a Conceptually op- Continuous- 
1991 character Hopfield net gates of inter- pattern amp with RC feed- time digital" 

recognition connecting back, implemented implement- 
transistors, set as double inverter ation 
to high or low using RC 

parasitics  

Schneider and Not stated Mean-field Capacitive Access- Super-threshold Super-threshold Refresh by 
Card, 1991b, network with transistors to Gilbert, or Gilbert with learning 
1991c Hebbian weight "inverter" with output current 

learning capacitors used high and low converted to a 
(deterministic sub-threshold to voltages set so voltage 
version of dribble charge transistor works in 
Boltzmann on or off linear region 
machine)  

— 
CD 

0 

C 

CD 
Ca 

C 

C 

CD 

CD 

CD 

c- 

C 

CL 

I-. 

i 

I, 



- 
(D 

2 

0 

cri 

0 

p 

p 

CD 
Cl) 

0 

0 

OIQ

CD  
p 

CD 

CD 

p 

C 
Cl) 

Authors Application Algorithm Weight Weight-change Synapse Neuron Others Remarks 

Schwartz eta!, Not applicable, since building-block Capacitive Switched- Not applicable Digital 
1989a, 1989b, circuits. capacitor primary store 
1990, 1991 system, making envisaged, or 

small weight- constant 
changes possible  learning 

Shibata and Ohini, None stated or Various Threshold Vth altered by All signals in voltage mode using vMOS Cunning 
1992, 1995 demonstrated voltage of injecting charge transistors. Binary states given weight by implement- 

floating-gate through gated subtracting Vth. Charge distributed over ation 
vMOS node onto common floating gate sums outputs of 
transistor floating-gate each vMOS transistor. 

using 
programming 
pulses  

Shima eta!, 1992 Identity- Simplified back- Static RAM A-to-D Gilbert multipliers Summed currents Maximum-value Synapses and 
mapping propagation (but claim conversion, into detector for weight-change 
problem could be increment or transimpedance sigmoid- on one chip, 

analogue) decrement, then amplifier derivative neurons on 
backing up D-to-A another 
current conversion 

Theeten et a!, 1990 Back- Digital implementation Same research 
propagation group as 
with local Duranton and 
learning rule Sirat 

Tomberg and None stated Back- Digital implementation 
Kaski, 1991 propagation 

van Daalen et al, None stated Back- Not stated. Concerned only with output neuron Stochastic bit- Neuron also Can be 
1994 propagation stream calculates considered a 

implementation derivative of digital 
based on digital output as implement- 
coounter required by ation 

back- 
propagation  
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Wang, 1993a, None stated Back- Capacitive, Charge-transfer Wide-range Combination of Synapses on 
1993b propagation refreshed by between Gilbert transimpedance one chip, 

DAC buffered amplifer and neurons on 
capacitors differential another 

amplifier  

Watola and Clustering Competitive- Capacitive Switched- Current Not applicable Refresh Asynchronous 
Meador, 1992 applications pulse Hebbian current sources modulated by unnecessary pulse-mode (ie 

learning to dribble charge pulsing on gating because pulse-density) 
on or off transistor applications implement- 

have statistics ation 
which vary more 
rapidly than 
refresh 

— 
CD 

0 

CMF 

ci) 

0 

p 
CMF 

'1 
CD 
Cl) 

0 

0 

CD 
p 

CD 

CD 

p 

0 

Cl) 

a 
Irj 

CD 

I 
I. 



Appendix D 

Table of learning equations 

The table on the following page shows the learning equations for the virtual 

targets and back-propagation algorithms. 

In the implementation of the virtual targets algorithm described in this thesis, 

weight and target updates are carried out 'stochastically'; in other words, every 

epoch, each input pattern is presented and the weights and targets are updated 

after every pattern presentation. 

Both the virtual targets and the back-propagation algorithms make use of a term 

called the 'sigmoid-prime'. As explained in Chapter 5, the virtual targets al-

gorithm was simplified by removing the term; hence the table shows the equations 

with and without the 'sigmoid-prime'. 
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Virtual Targets Algorithm 

with 'sigmoid prime' term without term 

Output-layer weights: 

AWkJ 	=flw0J0kk 

_flWOJOk(l - Ok)(tk — Ok) = 1 WOJ (tk — Ok) 

Hidden-layer weights: 

LWJ, 	=11OiOE 

Hidden-layer targets: 

&, 	=TtWkjEk 

='flf>WkJ(tk 	0k) 

Back-propagation Algorithm 

Output-layer weights: 

AWkJ= Tl,Oj8k 

1 w0J0k (l—O k )(tk  — Ok) 1 W0J(tk — Ok) 

Hidden-layer weights: 

Aw 

= i 003 ( 1—  OJ)wkJk 

= 1WOOJ( 1- OJ)wkJ0k(1- Ok)(tk - Ok) =nWO>wkJ(tk - Ok) 

where 
• i, j and k are indices for the input, hidden, and output layers, respectively 

• W is a weight 

• O, Oj and °k  are the outputs of the input, hidden, and output layers, respectively 

•Tjw  and T are weight and target gain-terms, respectively 

• E is the error-term such that tk - °k represents a desired minus an actual output 

Table D-1: The virtual-targets and back-propagation equations 



Appendix E 

Analysis of the twin-synapse circuit 

Assumptions 

Vhiref= 2Vo 
1. Transistors M1 and Al2 operate in the linear region, so 

h12 

	
= [JVJ,.S. ((v(; - Vj) -

2. The widths and lengths of M1 and Al'2 are equal so that 

Vwt 	 + 	 = 	I3M

Vo 	 where ,.i,, is the surface mobility l)arneter, C,,.. is the 

- 

	

	 capacitance per unit area of the gate oxide, W i s the 

width, and L IS the length. 

Vioref = gnd 
3. The effect of transistor M3 in its ON state can be ig-

nored. 

Figure E-1: The model of a single synapse to be analysed. 

The model of a single synapse to be analysed is shown in Figure E-1. 

1 
= /3VDS [(VGS - VT) - VJJS 

/9V0 [(V_V0 _ VT) _V O] 

= 1317 	 - VT) - .V 0] 

out = i1i2 

= /3V0 [V—vt—Vol 

Since 3, Vo  and V are constants, then 

z out cx -v, 

166 



Appendix E. Analysis of the twin-synapse circuit 	 167 

The twin-synapse model shown in Figure E-2 can be analysed, rather informally, 

in the same way as the single synapse. 

Vhiref = 2Vo 

Vstatel 

°I 
Vz 

M I 	100x% ON 

Isynl, 	

M3 
Vwt 

0 	IL'  

Vhiref = 2Vo 

Vstate2 
Vwt 	

IMh1 	1 	

Itot

100y%ON 

M  13 

p 

1syn2, 

Vz 

	

 

,--d 

 M12 	 Vo 

Vioref = gnd 
	

Vioref = gnd 

Figure E-2: The model of a twin synapse to be analysed. The assumptions 

made for the single-synapse model apply. 

The analysis is as follows 

i81 = /3V0  [V - vi - Vo ] 

i82  = /3V0  [vt - Vz - V0 1 

Assume a time-frame in which statel, acting as a zero pulse, occupies half the 

frame, as shown in Figure E-3. Hence, state2, which is of variable width within 

the frame can, at the extremes, occupy none or all of the frame, Hence, .statel E 

[] and state2 E [0, 11. 

Let x = (for a 50% occupation of the frame), and let z = (y 
- ) = z E [- k ,  ]. 

Then: 

= ZSyn1 + isyn2 

= 

=  fiv. V_,  — V.t — V. + ZV.t — ZV. — ZY, + — VWt — — V~I — — V~] 

= /3V0 [z(vt-V)-V0(z+1)] 

The effect of this is that iout  x v,,t  - C where C is an offset current which has to 

be 'injected' into the synapse to achieve the correct zero point. The offset could 

be corrected using the current source shown in Figure E-4. 
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Time-frame 

50% of time-frame 

Statel (zero-pulse) 

(variable width) 

Figure E-3: How the time-frame is occupied by the zero-pulse and a vari-

able-width pulse 

Vhiref = 2Vo 	 Vhiref = 2Vo 

V Vstatel 	 state2  

vTMl 	100x% ON VWt 
	

Mil1100y%ON 

 IsynL 	 Itot 

r Li_______ 

M2 	 M12 	 y Vo  Vwt 	 VZ 

Vioref = gnd 	 Vloref = gnd 

Figure E-4: Correcting the offset 



Appendix F 

Details of the two chips 

This Appendix contains details of the design and testing of the two chips described 

in this thesis. 
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Details of design and test of chip described in 

Chapter 4 

Process 

Design tool 

Test board 

Main controller 

Analogue voltage inputs 

Analogue current inputs 

Pulsed inputs 

Output signals 

ES2 1.5gm 

Cadence Edge 

Wire-wrap board 

IBM PS2/30 

Unity-buffered from PSU 

Via resistors from PSU 

Programmable state machine. The ma-

chine, driven by its own clock, used an 

instruction-set, stored in EEPROM, to de-

termine the state of digital signals in each 

clock-cycle. By controlling these states, 

a set of control and pulsed-input signals 

could be generated. 
Read into PS2 from Philips 3365 storage 

oscilloscope via GPIB interface 
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Op-amps, 
intwgrators 

and 	 Multipliers 	XOR gate 
comnarators 

3.75mm 

Figure F—i: P10/ o nsf clip. 
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Testing the first chip 

The chip was tested using the equipment shown in Figure F-2. 

172 

Clock T,Lr 7FT 
I Control 

 

Voltage 
and 

current 
supplies 

E  00 

Scope 

Figure F-2: Design of system for testing the chip. 

An IBM PS/2 controlled the dynamic signals for the experiments, that is the pulse 

inputs; and the addressing and control signals and DAC that enabled varying 

weights to be loaded as charge on the weight-capacitors of the synapses. A state-

machine', effectively a programmable ROM with its own clock, supplied the pulse 

'Grateful thanks are due to Alister Hamilton, who had developed this state-machine 

for another purpose, and to Andy Myles who very kindly used his substantial awk skills 

to rewrite the compiler that drove the machine and provided a complete state-machine-

code testing system. 
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inputs themselves, as well as a number of other control signals (enable and reset 

signals for the activation capacitor, and the signal to start a ramp from the 

ramp DAC). The static signals, that is the several current and voltage supplies 

necessary for the op-amp, integrator and output-pulse circuits, derived from a 

main power-supply; resistor-ladders, buffered by op-amps, supplied the voltages, 

and potentiometers controlled the currents. A digital oscilloscope captured the 

output pulses and sent data back to the PC via a GPIB bus. 
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Details of design and test of chip described in 

Chapter 6 

Process : 	 ES2 1.5/.Lm 

Design tool : 	 Cadence Opus DFII 

Test board : 	 PCB, designed by Geoff Jackson, and wire- 

wrap board 
Main controller : 	 IBM PS2/30 

Analogue voltage inputs : 	 Unity-buffered from PSU 

Analogue current inputs : 	 Via resistors from PSU 

Pulsed inputs : 	 XILINX field-programmable, 	gate-array 

(FPGA) chip. Compiling software was run 

on a Sun workstation and downloaded to 

the FPGA chip by a serial interface. The 

design was done schematically, using Ca- 

dence Opus DFII; small digital schematics 

can be combined hierarchically from lib- 

rary components to produce complex cir- 

cuits. An example schematic, of the driver 

for the shift-register which addressed the 

synapse array, is shown in Figure F-3. 
Output signals Read into PS2 from Philips 3365 storage 

oscilloscope via GPIB interface 



yphM 

yphi2 

/CØ 

/Cl 

/C2 

ytc 

xphil 

xphi2 

yphien 

yce 

yrd 

Appendix F. Details of the two chips 	 175 

I (A
_ 	Library components 

phi  

yenable 

phi2 

yphil 

yphi2 

ANL)2 

Figure F-3: Schematic of the Y shift-register driver 
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8x8 array of 
multipliers and 	8x8 array of 
weight storage 	target storage 

Oo-amvs. 	 and 

 

6.40mm 

5.35mm 

 

Figure F-4: Plot of .$fcon(I chip. 
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Testing the second chip 

The chip was installed in a printed circuit board and driven by a combination of 

digital and analogue hardware, and by digital software down-loaded onto a Xilinx 

FPGA (field-programmable gate array) chip. Using the Xilinx chip meant that 

I could design and redesign small pieces of support circuitry to test individual 

parts of the chip, and then reuse these pieces in a larger and more comprehensive 

design to carry out trials of on-chip learning. Each digital module comprised 

standard building blocks such as multiplexers and flip-flops, together with a set 

of state machines to control the order and timing of events. 

The arrangement of the various components is depicted in Figure F-5. 

Xilinx FPGA chip Ax 

•1 
Pattern 
store 

- 	WeAC 

	

control: 	1DACH 

Multiplier  
I 	control 

	

1Rai;PntC1 	
DACH 

'Shift-register'____________ 
control 	I 

I - - _ 	I -------- 

Test board  

r.WWO 
Dp 

/H 

PC 

Figure F-5: Arrangement for testing the chip. 
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HIT Technical Conference, 1993 

Woodburn R, Murray A F and Reekie H M, 1993. "On-chip learning 

in neural networks". In Proceedings of the JFIT Technical Conference, Keele, 

March, 149 - 156. 



ON-CHIP LEARNING IN VLSI 
NEURAL NETWORKS USING 

HYBRID ANALOGUE/DIGITAL 
TECHNIQUES 

Robin Woodburn, Alan F Murray and H Martin Reekie * 

1 Introduction 

This paper describes a test-chip design for on-chip learning in a VLSI neural network 
which makes the network not only programmable but also truly adaptive. 

The current emphasis in neural-network implementations is on two types of pro-
grammable system. The first is fixed-function systems, where an appropriate 
weight-set is evolved during computer simulation and then down-loaded to the 
network, which is then used as a programmable, high-speed system. The second 
type is simulation accelerators, where the architecture may be highly flexible in the 
types of network which it can embody, but which is optimised for neural operations. 

The aim of the current design is to move from programmability to adaptability, by 
creating a VLSI implementation which will be able to evolve a suitable weight-set 
- that is to learn - on-chip. 

2 Applications of On-chip Learning 

For many applications, developing the weight parameters during computer simula- 
tion may be inconvenient because of the long training times involved, but the meth- 

*Robin  Woodburn is the main contact, tel 031-650-5665, email rjwee.ed.ac.uk . All authors 
are members of staff of the Department of Electrical Engineering, University of Edinburgh, King's 
Buildings, Mayfield Road, Edinburgh E119 3JL. The project's grant number is SERC 17060 
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odology is not fatal to their success. For example, financial applications, database-
retrieval, hand-writing recognition and medical diagnosis may all, depending on the 
circumstances, be carried out 'off-line' to achieve acceptable solutions. Adaptabil-
ity may not even be advantageous in these cases, since the output characteristics 
of the problem may have been well-defined. 

In other applications, however, the input data may not be well-controlled, may 
arrive in large quantities in analogue form, and may require to be dealt with in real 
time. Examples are robotic and sensor-motor control, speech recognition, natural-
language applications, process-control, image-processing and machine vision. In 
these circumstances, the neural system must be adaptable at high speed. The 
point about such systems is that they may require to respond to inputs some of 
which are stable or very slowly-changing, and so can be pre-learned while other 
inputs may be rapidly-changing and so require 'learning' or 're-learning' over a 
period of time. On-chip learning brings closer the prospect of systems with this 
capability, and hence the possibility of autonomous systems. 

3 Development of On-chip Learning 

The idea of on-chip learning is not new. In some senses it is an obvious next step 
from programmable systems : long training times on serial computer architectures 
make means of accelerating the process on truly parallel implementations very at-
tractive. Furthermore, researchers have been moving incrementally towards the idea 
with 'chip-in-the-loop' techniques for analogue devices : the weight-matrix derived 
from simulation is down-loaded, and then another, short, learning phase is carried 
out in which the network is used for the forward computation while a supporting 
computer updates the weights, until the network stabilises. The resultant weight-
matrix is thereby adjusted to compensate for the inevitable disparities in analogue 
computations due to process variance. The 'chip-in-the-loop' scheme has been used 
for Intel's analogue ETANN chip [1], for the back-propagation algorithm on a mixed 
optical and analogue-electronics network [2], and indeed for our own group's EPSI-
LON chip as a means of implementing a variant of the back-propagation algorithm 
[3], to be described shortly. 

4 Implementations of On-chip Learning 

Several other groups are investigating the issue of on-chip learning. These invest- 
igations are primarily digital [4, 5, 6, 7, 8], although some hybrid schemes are 
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beginning to make an appearance [9, 10]. 

The digital implementations tend to be flexible schemes capable of supporting a 
wide variety of neural algorithms including back-propagation, as well as algorithms 
with similar characteristics such as those for digital signal processing. The number 
of neurons tends to be small (in the lOs), but multiplexing techniques and the 
cascadability of chips permits larger networks to be created. 

The analogue systems, like the one described here, are network-specific. The num-
ber of neurons tends to be greater (high lOs and lOOs), with one example being 
cascadable to create larger networks [11]. 

Analogue learning implementations raise a number of fundamental issues. For ex-
ample, the back-propagation algorithm, which has given such an impetus to neural-
network research and applications, is notoriously difficult to render into hardware. 
One reason is that weight-updates involve non-local information, which has to be 
fed back from the output to the hidden layer (and this can be difficult to organise 
efficiently in digital hardware also). Another is that the weight-update strategy 
for output-layer neurons is different from the strategy for hidden-layer neurons. 
The virtual-targets algorithm goes a considerable way towards overcoming these 
problems. 

A whole system needs to be created in addition to the building-blocks for compu-
tation. This means that different methods for encoding states and values, and the 
means for feeding these signals to different parts of the network, must be considered 
very carefully. 

Process-variations will inevitably affect the operation of the network. Although 
out group has had some success in confronting this problem through the design of 
process-invariant circuits [12], it cannot be entirely overcome. In designing the sys-
tem, a judgement has to be made about what is or is unlikely to be successful. For 
example, in a weight-modification circuit, imprecision in computation can probably 
be tolerated provided the polarity of the result (and hence the direction in which 
the weight is adjusted) is correct. Computer and Spice simulations help develop 
a feel for what is right, but ultimately the silicon implementation is the only real 
test. 

5 The Virtual-Targets Algorithm 

The virtual-targets algorithm simplifies the weight-update strategy sufficiently 
to make hardware implementation a more practical prospect than for back- 
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propagation. 

It is not important to understand the detail of the algorithm to appreciate its 
advantages over back-propagation, although the algorithm for the training phase for 
an I - J - K network is outlined in Figure 1 and it is described in detail elsewhere 
[13, 14]. The first advantage is that weight-update uses only local information, 
simplifying the circuitry necessary for a hardware implementation. 

1. Calculate initial values for the hidden-layer targets: 

Apply input pattern {O,,}, and read out the states {O,p}  and {Okp}  of the hidden and output 
nodes. 

Assign targets {T, 9 } for the hidden nodes such that {T,} = 

2. Repeat 1 for all input patterns. 

3. Present patterns in random order and allow 

weights to evolve according to the following equations: 

bwkj 

	

- '1weight8°jp°kpkp 	 (1) 

	

St - 
??weightsOipOjpcjp 	 (2) 

where 

• flweghts is a gain-term representing weight learning-speed; 

• {O,,} and {O,,} are the inputs from the previous layer; 

• O and O represent the derivatives of the activation function (the 'sigmoid-prime' terms); 

and 

5kp and e, are the error-terms where 	= Tk - °kp and jp = 	- 

hidden-layer targets to evolve according to the following equation: 

K 
ST, 

	

= 77t arget 8 >Wkj€k p 	 ( 3) 

k=O 

where 

• 77torgeta is a gain-term representing target learning-speed; 

• Wkj is a weight on the connections between the hidden- and output-layers; and 

• 	is the error term where qcp = Tkp - °kp 

Figure 1: The virtual-targets algorithm. 

The second advantage is that the weight-update strategies for both hidden- and 
output-layer neurons are identical (whereas they are different for back-propagation), 
which means that, once neuron circuits have been designed, they can be replicated 
for the whole network. The price to be paid is that, in addition to the output target-
states (ie teaching patterns used in training), a target-state has to be introduced 
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for each hidden-layer neuron, and these hidden targets require information to be 
fed back from the layer above. 

6 Translating the Algorithm into Hardware 

The new design builds on previous work carried out by our group, [15, 3], which has 
proved circuits for an analogue, feed-forward network capable of providing multiply-
accumulate operations for a variety of neural algorithms including virtual targets; 
the virtual-targets algorithm is currently realised on our EPSILON chip using the 
'chip-in-the-loop' technique referred to earlier. 

Oi 

Ok(i-Ok) pulse multiplier 
I 
I 

	
.._.-... 

weight 
moaification 

_Jl_JL . 

rd L current 50/ 
duty-cycle  

I ----------- i. 1 .J 
.i:i..- ......... 

______ -------- 
-4 - -------- - - -  

weiSht 
(voltage) 

transconductae 
multiplier 	J 

targe 
modification 

Tk f1_ cli_f 	_J1_ 	1_ 
: 	 ----------- 

- current 

Ok 	 L "s 
_•1 

P weight (voltage) 
Tk 
(pulse) 

Figure 2: Functional block diagram of the computational elements of the chip 

The design is still incomplete. However, a functional block diagram of the compu-
tational elements of the design is shown in Figure 2, and details of work so far are 
as follows 

Hybrid chip The chip will be a hybrid one, to reflect previous work by our group, 
and to blend the merits of both digital and analogue technology. Our approach is 
to use whichever form of technology is the best or most convenient in the circum- 
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stances. In general, we prefer analogue circuitry for synaptic multiplications on 
the grounds, firstly, that such circuitry occupies a much smaller silicon area than 
the digital equivalent and, secondly, that summation can be simply and elegantly 
achieved if the results of multiplication are currents which can be summed on a 
node. We prefer digital signals for neural states because they can encode analogue 
values on a time axis and yet are robust and easily transmitted within chips or 
across chip boundaries. 

Neural states Neural states will take on analogue values whose instantaneous 
value will be represented by the width of an individual pulse. Our group has con-
sidered, and used, a number of different representations in the past [15]. However, 
pulse-width modulation seems, at least in the first instance, the most appropriate 
representation for the current scheme for on-chip learning because of the ease with 
which it may be employed. For the virtual-targets algorithm, a neural state Ok  is 
continuously-valued such that 0 < Ok < 1. 

Target states Target states will be identical in form to neural states. For virtual 
targets, target-states Tk are continuously-valued such that 0 <Tk < 1. 

Error-signals Error-signals, which represent the difference between target- and 
output-states, are bipolar and continuously-valued such that —1 < Ck < 1. Since 
both the target- and output-states are represented by pulses, simple digital circuitry 
can be used to latch a 'sign-bit' to represent the polarity of the error computation. 
The magnitude can also be easily computed by applying each pair of target and 
output pulses to an XOR gate. 

Sigmoid-prime The derivative of the activation function, also known as the 
'sigmoid-prime', is of the form Ok(1 - Ok), where  Ok  is a neural state. The most 
convenient means of representing this computation is as a function, whose input Ok 
will give an output which is an inverted parabola which cuts the x-axis at 0 and 1. 
Such an output characteristic is not very easily generated by an analogue circuit, 
but a reasonable approximation, the output characteristic of which is a triangular 
wave, can be generated by applying the input pulse Ok  to one input of an XOR 
gate whose other input is stimulated by a square-wave with a 50% duty-cycle. 

Weight-states Weights are held as charge on a capacitor. A weight can then 
be modified by adding charge to, or removing it from, the capacitor. For virtual 
targets, weights are continuously-valued and bipolar. 

Transconductance multiplier Our group has developed a transconductance mul-
tiplier [15], with highly linear characteristics, for multiplying weights by states. The 
input stage of the multiplier produces a current proportional to the weight-voltage, 

Wk 3 , which is then pulsed by a switch-transistor controlled by the neural state, 
°k For a particular neuron, the resulting output current can be summed with 
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other synaptic outputs and integrated over a period of time into a voltage. This 
voltage represents the multiplication of Wk3  by O. The multiplier operates in two 
quadrants, with weights being positive or negative while states are positive only. 
However, for the virtual-targets algorithm, a four-quadrant multiplier is required 
since the target-modification equation (equation 3 in Figure 1) requires multiplic-
ation of two bipolar values. One solution would be to arrange the multiplier in 
pairs, each with its own weight-capacitor, one of which represents a positive value 
and the other a negative one. The disadvantage of this approach is that process-
variations may cause mis-matches in the operation of the paired multipliers, leading 
to inconsistencies in the results of the computations, so other possibilities are being 
considered. 

Generating pulses to represent neural and target states As neural and target 
states are continuously-valued, the width of the pulses which represent the states 
must also be varied. Post-synaptic neural activity is represented as a voltage, while 
targets can also be represented as a voltage via charge stored on a capacitor. To 
generate pulses from these voltages requires only a two-stage comparator with an 
inverter output driver. If a ramp voltage is applied to one input of the comparator, 
it will produce a pulse output the width of which is set by the neural- or target-state 
voltage. The ramp voltage can easily be generated off-chip and globally distributed 
to all neurons and targets in parallel. 

Remaining work This leaves two significant pieces of work still to be decided, 
the double-pulse multiplier, and weight-refresh circuitry. Current preference for 
the double-pulse multiplier is for a charge-pump system to produce a voltage which 
can be fed directly into the transconductance multiplier. 
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-V. 

Pulse Stream VLSI Neural Networks 

EPSILON, a large, working, VLSI device, demonstrates pulse stream methods in the wider 
context of analog neural networks. EPSILON uses dynamic weight storage techniques, but a 
nonvolatile alternative is desirable. To that end, we have developed an amorphous silicon 
memory, which we present in experiments incorporating the device in a modest pulse stream 
neural chip. We have also developed a target-based training algorithm, which we demonstrate 
in a prototype learning device using a realistic problem. Finally, we explore system-level 
problems in experiments with a second version of EPSILON in a small, autonomous robot. 

Alan F. Murray 

Stephen Churcher 

Alister Hamilton 

Andrew J. Holmes 

Geoff B. Jackson 

H. Martin Reekie 

Robin J. Woodburn 

University of Edinburgh 

• 	ecause the pulse stream technique 
does not quantize information explic- 
itly, it preserves the high resolution 
of analog processing. In addition, it 

communicates by exchange of binary pulses with 
fixed amplitude, thus exploiting many benefits 
of digital circuitry. The pulse stream technique 
uses digital signals to carry information and to 
control analog circuitry, while storing further 
analog information on the time axis. A number 
of techniques exist for coding a neural state 0 < 
S, < 1 onto a pulsed waveform V1  with frequen-
cy u,, amplitude A,, and pulsewidth 6,. An earli-
er work' reviewed these techniques. 

We first used pulses in the neural context in 
1986.2 Now we bring the pulse stream story up 
to date. We have built large network chips using 
the pulse stream technique. We have developed 
algorithms that place the training, as well as the 
forward-pass computation, on the silicon sub-
strate. We are using novel memory devices to 
work toward nonvolatile weight storage with fast 
programming time, and we have developed 
"stripped-down," application-oriented chips for 
inclusion in small mobile robots. Here, we 
describe these concurrent, related but distinct, 
projects. 

First, however, we must clearly state our atti-
tude to pulse stream methods for neural net-
works. They are effective, efficient, and attractive 
in many applications. They have a good biolog-
ical precedent. But we do not claim that these 
methods are best in all circumstances. Rather, 
they form one of a range of possible neural-
network techniques that includes digital. 3  weight-
less,' purely analog, 56  and several hybrid 
schemes. This list is far from exhaustive. 

Pulse stream hardware: EPSILON 
The EPSILON (Edinburgh Pulse Stream Imple-

mentation of a Learning-Oriented Network) chip 
is a 3,600-synapse section of a neural network 
implemented in 1.5-9m CMOS (complementary 
metal oxide semiconductor) technology. With 
the goal of building as large a neural network as 
possible in silicon, we used the following 
circuits. 

Synapses. The synapse design is based on the 
standard transconductance multiplier circuit, pre-
viously the basis of monolithic analog transver-
sal filters in signal-processing applications. 7  Such 
multipliers use MOS transistors in their linear 
region of operation to generate output currents 
proportional to the product of two input volt- 
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ages. We adapted this concept for pulsed neural networks by 
fixing one of the input voltages and using a neural state to 
gate the output current. In this manner, the synaptic weight 
controls the output current's magnitude, which is multiplied 
by the incoming neural pulses. The resultant charge packets 
subsequently integrate to yield the total postsynaptic activi-
ty voltage. 

The linearity of the synaptic output, as a function of input 
state, is very high. 8  The variation of synapse response with 
synaptic weight voltage is fairly uniform. Therefore, the 
design contains the effects of across- and between-chip 
process mismatches tolerably well. 

Neurons. To reflect the diversity of neural network forms 
and possible applications, we included two different neuron 
designs on the EPSILON chip. We designed the first, a 
synchronous pulsewidth modulation neuron, with vision 
applications in mind. This circuit can guarantee network 
computation times, thereby eliminating the data dependen-
cy inherent in pulse frequency systems. The second neuron 
design uses asynchronous pulse frequency modulation. 
Although hampered by data-dependent calculation times, its 
wholly asynchronous nature makes it ideal for neural net- 

work architectures that embody tem-
poral characteristics—feedback net-
works and recurrent networks. Like the 
synapse, both circuits minimize tran-
sient noise injection and tolerate 
process variations. 

Pulsewidtl, modulation. The main 
disadvantage with this technique ap-
pears to be its synchrony; neurons all 
switch together, causing larger power 

VOD supply transients than in an asynchro-
nous system. We circumvented this 
problem, however, with a double-sided 
pulse modulation scheme. 

Figure la illustrates the operation of 
the pulsewidth modulation neuron. 
The neuron itself is a two-stage corn- 

V parator with an inverter output driver. 
The inputs are the integrated postsy -
naptic activity voltage V,, and the ref-
erence voltage V,,, generated off chip 
and distributed to all neurons. As 
Figure la shows, the output changes 
state whenever the reference signal 

Vss crosses the activity voltage. The shape 
of the reference signal determines the 
transfer function; when the signal is 
generated by a RAM lookup table, the 
function is user programmable. Figure 
la shows the signal that should be 
applied for a sigmoidal transfer char- 

acteristic. The sigmoid signals are "on their sides" because the 
input (or independent variable) is on the vertical axis. The 
use of a double-sided ramp voltage generates a symmetrical 
pulse at about the midpoint of the ramp, reducing the occur- 
rence of coincident edges and relieving the problem of 
switching transients on the power supplies. Furthermore. 
because the analog element (that is, the ramp voltage) is 
effectively removed from the chip, and the circuit itself mere- 
ly functions as a digital block, the system is immune to 
process variations. 

Pulse frequency modulation. Figure lb illustrates the sec-
ond neuron design, basically a voltage-controlled oscillator 
(VCO) with a variable-gain sigmoidal transfer characteristic. 
The circuit achieves oscillation via the hysteretic charge and 
discharge of capacitor C by currents I. and 'L 'H sets the 
constant output pulsewidth, while 'L  controls interpulse spac-
ing (and hence output frequency). 'L  itself is determined by 
the activity voltage V via the differential stage of transistors 
M3 to M6. This differential stage gives the VCO its sigmoidal 
characteristic, and additional current injected and removed 
at appropriate points in this stage produces gain variations 
(Figure lb omits this circuitry for the sake of clarity). 

Vout 

0 

Figure 1. Pulsewidth modulation neuron (a); pulse frequency modulation 
neuron (b). 
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EPSILON specifications. The synapse and neuron cir-
cuits underpin the EPSILON chip, fabricated by European 
Silicon Structures using its ECPD15 (1.5-gm, double-metal, 
single poly-CMOS) process. Each chip uses a single layer of 
synaptic connections and accepts inputs as either analog 
voltages (for direct interface to sensors) or pulses (for com-
munication with other chips and with digital systems). Table 
2 on page 36 gives the full EPSILON specifications. 

Demonstration. EPSILON's first real-world problem was 
the implementation of a 54:27:11 multilayer perceptron (Nap) 
to classify 11 different vowel sounds spoken by each of 33 
speakers. Analog outputs of 54 band-pass filters formed the 
input vectors. 

We initially trained the MLP on a Sun Sparcstation, using 
a subset of 22 patterns. Learning used the virtual-targets algo-
rithm, with 0 percent noise. 9  Next we downloaded the weight 
set to EPSILON. Then we restarted the training, but this time 
we used EPSILON to evaluate the forward-pass phases of 
the network. At the end of training, EPSILON identified all 
22 training patterns. 

Subsequently, we presented 176 unseen test patterns to 
the MLP, which correctly classified 65.34 percent of these 
vectors. This compared very favorably with similar general-
ization experiments carried out on a Sparc, in which the best 
result was 67.61 percent. 

EPSILON's second major application consisted of investi-
gations into image region labeling with an MLP. The prob-
lem: Given a set of features derived from an image region, 
use those features, combined with similar features from 
neighboring regions, to classify the region. 

In particular, we trained an MLP to discriminate between 
regions that were roads and those that were not roads. The 
experiments were relatively straightforward, consisting of 
comparisons between forward-pass (also called recall mode) 
generalization abilities of networks implemented on 
EPSILON and as computer simulations. We developed six 
different synaptic weight sets for a 45:12:2 MLP from six dif-
ferent training data sets on a Sparc workstation. We mea-
sured the generalization capabilities of the weight sets against 
six different test vector sets (one for each weight set). Table 
1 shows the results. 

EPSILON's performance compares well with equivalent 
Sparc simulations. Indeed, its mean generalization ability was 
only 4 percent below that of the simulated networks—cer-
tainly within one standard deviation. It achieved this per-
formance without the need for chip-in-loop training. 

Choice of an on-chip learning algorithm 
On-chip learning is an essential feature if network chips are 

to become autonomous neural systems addressing real-time, 
real-cost applications. Furthermore, in embedded systems, 
where analog VLSI technology finds its strongest justification, 
the chip's ability to adapt in situ is almost essential. 

Table 1. Comparison of EPSILON's generalization 
performance and equivalent simulations. 

Network 	 Regions correct 
implementation 	(Mean %) 	(Std. dev. %) 

EPSILON 	 63.57 	 4.86 
Simulation 	 67.56 	 8.33 

Several groups are investigating on-chip learning, primar-
ily in the digital domain, although some schemes, like our 
own system, use hybrid digital-analog technologies. Digital 
systems are flexible and support a variety of neural algo-
rithms including back propagation. Network size (in other 
words, the number of neurons) is restricted, however. Digital 
circuitry is area hungry. 

Analog neural systems take advantage of the technology's 
greater compactness to implement larger numbers of neu-
rons (up to several hundred) and can be cascaded to create 
larger networks. However, they support a restricted range 
of algorithms. Although the EPSILON chip can implement 
several algorithms, it performs only the forward pass, and 
an associated computer performs the learning phase prop-
er. This chip-in-loop training 5  is a successful, although time-
consuming and clumsy, process. 

If an analog chip can support only one algorithm, that 
algorithm must be selected with care. 

Researchers have made considerable progress recently in 
translating the back-propagation algorithm into hardware.'° 
We have used an algorithm called virtual targets, one of a fam-
ily of target-based algorithms related to back-propagation)' 
This algorithm, although far from a panacea for all the prob-
lems of VLSI learning, has two great advantages. First, the 
means of updating weights uses only local information, sim-
plifying the circuitry necessary for a hardware implementa-
tion. Second, the weight-updating strategies for both hidden-
and output-layer neurons are identical (they are markedly dif-
ferent with respect to back propagation). Identical neuron cir-
cuits can be replicated for the whole network, and the 
virtual-targets chip is inherently more flexible in supporting dif-
ferent MLP architectures. 

In developing a virtual-targets test chip, we concentrated 
on three issues: 

• compact, four-quadrant. pulse stream multiplication; 
• implementing the derivative of the sigmoidal activation 

function s(x), ?(x) = asW1ax with respect to neural 
activity x; and 

• the minimum value by which a weight can be adjusted. 

Four-quadrant multiplication. Transistors Ml, M2. and 
M3 in Figure 2 form the transconductance multiplier referred 
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Figure 3. Four-quadrant characteristics of transconduc-
tance multiplier (simulation results). 

to earlier with highly linear characteristics for multiplying 
weights by states. VOD, V d, and V are chosen such that Ml 
and M2 operate in their linear regions. The gate voltage of 
Ml is fixed to provide a zero point. When the gate voltage 
of M3 is held at V,, so that M3 conducts, and the weight, 
represented by charge on capacitor C,,,, is at a low point on 
the range, the current through M2 is smaller than that through 
Ml. The Vm,d  node serves to sink the excess, positive cur-
rent. If the weight is at a high point on the range, V,,,,, sources 
a corresponding current through M2. Hence, the current 
through the V,,,,,, node varies linearly and inversely with the 
charge on the capacitor. 

Pulses on M3s gate voltage, which represent neural states 
(pulse duration represents the neuron's activation level), can 
control the current sourced or sunk by V,,. in time. 
Integrating the resulting current pulse (whose amplitude 
reflects the weight and whose duration represents the state) 
over time computes the multiplication of weight by state. 
The summation of a number of these computations can be 
achieved simply and elegantly on a single circuit node. 

Although this circuit, which can be laid out on silicon very 
compactly, has given excellent performance, it is two-quadrant 
in nature because neural states are unipolar and weights are 
bipolar. For the virtual-targets algorithm, a four-quadrant mul-
tiplier is essential because in addition to a weight-by-state mul-
tiplication, a weight-by-error multiplication is necessary, and 
weight and error values are both bipolar. 

Transistors Mu, M12, and M13 (Figure 2) are the solution 
providing four-quadrant multiplication. These additional tran-
sistors form a second multiplier in parallel with the first, but 
this time the V. and V., connections are reversed. To 
provide a zero-state point, analogous to the zero-current 
point set by the pulse applied to M13 is fixed in dura-
tion at 10 jis—midway between the shortest pulsewidth (0  

l,Is) representing a negative error and the longest pulsewidth 
(20 ts) representing a positive error. At the same time, a 
pulse that can vary in duration from 0 jis to 20 p s is applied 
to M3. Just as before, integrating the resultant current puls-
es in time computes a four-quadrant, error-by-weight multi-
plication, as shown in Figure 3. 

The s'(x) function. Weight changes evolve in the virtu-
al-targets algorithm according to equations given in an ear-
lier article." One of the terms in a weight change equation 
is the derivative of a sigmoidal activation function 1(x). This 
function takes the form 0' = (Xl - 0). Circuits that will give 
both a sigmoid and its derivative already exist.' 2  In our imple-
mentation, input and output states are represented by digi-
tal pulses whose duration reflects the activation level. 

Again, the circuit is gratifyingly simple, since .1(x) does 
not have to be exact for learning to be successful. An XOR 
gate performs computation. One gate input receives a pulse 
of fixed duration (10 ts in our scheme), while the other 
receives a pulse that varies symmetrically around the first—
in other words, from 0 jis to 20 ps. The gate's output is inte-
grated by a differential circuit, whereby an on pulse sources 
a charge onto a capacitor, while an off pulse removes the 
charge, as illustrated in Figure 4. When the integration is 
complete, the output is a triangular function of the duration 
of the variable pulse. 

Figure 5a shows the ideal form of 1(x), constrained on the 
x axis to values between 0 and 1 by the sigmoid activation 
function. Figure 5b shows a triangular approximation to 
obtained by the XOR circuit. The integrator-capacitor voltage 
can be converted back to a pulsewidth signal; Figure 5c 
shows this final approximation to 1(x). 

Weight adaptation. Since weights are held as charge on 
a capacitor, weight adaptation requires that this charge be 
incremented or decremented by very small amounts. 
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Weight adaptation involves several 	Fixed-width pulse 

	

1 important issues. The first is accuracy 	...j- Integrator 
of the computation, defined as how based on 

	

closely the result matches expecta- 	 differential 

	

tions. Clearly, if a weight is to be 	 amplifier  

	

changed, the computation on which 	Variable-width pulse 	 L_...............i 
the change depends should be accu-
rate. A second, more important issue 
is the direction of change. Although Figure 4. Integration of pulses from XOR gate. 
some inaccuracy in computation is tol-
erable, it is vital that a computation 
aiming to increase a weight does in fact increase it. The third 0.30 
issue is precision, defined as the degree of agreement of 
repeated measurements of a quantity. 

We plan to resolve these issues by careful analysis of the 0.20 . 
properties of the circuits fabricated and equally careful sim- . 

. 

ulation and analysis of their idiosyncrasies as part of a learn- 
ing network. The chips developed using the virtual-targets 0 	0.10 
algorithm will be amenable to integration into truly 

.. 

autonomous (for example, robotic) systems, where the abil- 

. 

ity to learn in situ will be essential. o 
0 0.2 	0.4 	0.6 	0.8 	1.0 

Memory devices for pulse stream synapses 
In dynamic-storage design such as EPSILON weights are 4.0 

stored as voltage on storage capacitors. The fact that this a 
voltage will decay with time necessitates some form of exter- - 	 3.6 . 
nal refresh circuitry, with a consequent increase in system 
complexity. Thus, a technique that allows nonvolatile, on- 

3.0 :, 

. 

chip storage of synaptic weights is highly desirable. For this 
- 

reason, a number of neural network designs use EEPROM 2.6 
(electronically erasable programmable read-only memory) - 

. 

. 

technology .5 
- 

. 

. 

In most of these schemes a synaptic weight is stored as 2.0 - 

. 

I 

the difference in threshold voltage between two floating gate 0 5
Input pimewidth 	

15 	0 

transistors. This technique allows both inhibitory and exci- 
tatory weights to be implemented. But programming 

. . 

EEPROMs is a slow process. We have developed an alter- 
. 	 30 . 

native approach using amorphous-silicon (aSi:H) analog 
memory devices for fast, nonvolatile weight storage 

- . 

aSiH analog memory devices. Researchers at Dundee 
- 

. 

and Edinburgh Universities developed the cLSi:H analog 
memory during a long-standing program of research into the 

CL 

20- 
switching properties of thin aSi:H fllms. 1 3. 1 4 The device we 

- 

. 

are currently working with consists of a 0.1-gm-thick layer 
of aSi:l-1 sandwiched between vanadium and chromium elec- 

16  

trodes, as shown in Figure 6, next page.- 	- 

0 
 

5 	110 	15 	20 
Input pulsewidth 

Alter an initial rorming process consisting of a series of 
relatively high voltage pulses, the device can be programmed 
into a resistance state between 1 kohm and 1 Mohm. The 
programming pulses are typically 120 ns in duration with a 
magnitude of between 2V and 6V. The physical changes that 
take place during forming and programming are not yet com-
pletely clear. What is certain is the following: 

Figure 5. Ideal form of s'(x) function (a); output after 
pulses from XOR gate are integrated for input pulses of 
different duration (b); output after integrated compu-
tations are converted from a voltage to a pulsewidth sig-
nal (simulation results) (c). 
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Figure 6. aSi:H memory fabricated on surface of conven-
tional CMOS chip. 

Figure 7. aSi:H memory in various resistance states. 

The forming process creates a submicron vertical fila-
ment through the aSi:H layer. This filament contains 
vanadium, through which conduction proceeds. 
The active volume for conductivity changes is extreme-
ly small—perhaps only a few atomic spacings in depth. 
The programmed memory is nonvolatile (for months) 
and shows no signs of fatigue with repeated 
reprogramming. 

(ySi:H and neural networks. British Telecom Research 
Labs first demonstrated the aSi:H analog memory device in 
the neural context. Researchers used a chip containing an 
array of cLSi:H devices to provide the synaptic coupling to a 
bank of external operation-amplifier neurons. They built a 
test board with a lOxlO array of ctSi:H devices to solve the 
benchmark XOR problem. While the system demonstrated 
that ctSi:H could provide synaptic weight storage, this sim-
plistic approach has some disadavantages. For example, it 
requires external neuron circuitry and allows only positive 
weights. 

To overcome these problems, we used the aSi:H device 
to replace the storage capacitors in the EPSILON design while 
retaining the pulse stream synapse and neuron circuits. As a 
first step, we had to verify that the aSi:H and CMOS circuits  

could be integrated on one substrate. We designed and fab-
ricated a test chip with the ctSi:H devices on top of the CMOS 
layers (including passivation), as shown in Figure 6. This 
chip included various CMOS test circuits, along with some 
straightforward two-terminal memory devices. Figure 7 
shows a set of current-to-voltage characteristics from one of 
these memory devices in various resistance states. 

The test chip's function was simply to probe the problems 
associated with fabricating aSi:H devices on a CMOS sub-
strate and subsequently programming them via CMOS cir-
cuitry. Our many areas of concern included potential damage 
to the CMOS circuitry by the C.Si:H fabrication and forming 
processes, and difficulties in providing an appropriate pro-
gramming waveform through MOSFETs (metal-oxide semi-
conductor field-effect transistors). After investigating these 
problems and developing solutions, we designed and fabri-
cated a synapse circuit that actually uses aSi:H for weight 
storage. 

The aSi:H synapse. Our latest chip includes five differ-
ent synapse designs, each represented by a test block on the 
chip. Each test block contains four cs.Si:H synapses and one 
neuron. Although each design is slightly different, Figure 8 
summarizes the basic operation of a synapse. The ctSi:l-I 

device stores what is effectively a weight current. The weight 
current is subtracted from a zero current and is then gated 
by the input pulsewidth-modulated signal. The resultant 
charge packet is then summed on the integration capacitor. 
To convert the accumulated integration voltage into a 
pulsewidth signal, we use a neuron that is effectively a 
comparator. Applying a ramp voltage to the noninverting 
terminal causes the output to change state when the value 
on the integration capacitor is exceeded. This produces a 
pulsewidth-encoded output. 

Testing of this new chip is incomplete, but we have veri-
fied the operation of the CMOS synapse and neuron circuits 
by using external carbon resistors in place of the ctSi:H mem-
ory devices. 

Real-world applications 
Although we can test a VLSI device simply by verifying 

that the output currents and voltages are as they should be, 
the true test is its performance in practical use—its ability to 
carry out applications. We are working to make EPSILON 
the core of a neural network system suitable for application-
based implementations. We are using this system-level 
approach combined with the advances in analog memory 
and on-chip learning described earlier to provide a frame-
work for 'evaluating these emerging techniques in an appli-
cation-based environment. 

System requirements. We do not envisage that neural 
networks will ever replace conventional digital computing 
but rather that neural processing will serve as an interface 
between the real world and digital computing. To achieve 
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this, we must package analog neural processing  
power so as to interface to a conventional host 	Input pulse  
processor while demanding as little computational 
overhead as possible when embedded in an appli- 
cation. For EPSILON and its derivatives, computa- 
tional overhead comes in the following forms: 	 'a 4'  'a 4' aSiH I 

weight memory management, 
Synapse learning algorithm implementation, 	 Synapse 

pulse modulation conversion, 	 IL p  
chip timing and control, and 	 Input pulse 
data communication. 

Technological developments such as the aSi:H 	 I I 
memory and the on-chip learning algorithms may 	 'a 4' 	aSi:H la 4' 	I aSi:H 
help solve the first two overhead problems. How- 
ever, the other three require some form of process- 

Synapse ing and control external to the chip. Therefore, we 	 Synapse 
have devised a system-level framework with the fol- 

V mp  lowing functions: 

• control of one or more pulse stream neural 
processors; 

• communication between pulse stream neural 
processors; 

• communication between pulse stream neural 
processors and the host processor; 

• possible addition of specialized training and/or 
learning processors; and 

• possible addition of specialized signal-conditioning 
cards—for example, image-processing cards. 

The pulse stream neural processor will 

• perform autonomous weight refresh, 
• perform all data conversions to and from pulse code 

modulation for data communication with the host, and 
• require minimum external control signals and process- 

ing overhead. 

EPSILON II. To aid the development of a pulse stream 
neural network system, we have designed a new chip, 
EPSILON II. A smaller, more efficient device, EPSILON II 
embodies an optimal approach to an application in which 
analog VLSI circuitry is likely to be preeminent: integrating 
relatively small networks as compact, analog-input devices. 

EPSILON II consists of a single-layer network with up to 
32 input and 32 output neurons. Neural state inputs to the 
device may be either analog, for direct sensor interfacing, or 
pulses modulated in width (PWM) or frequency (PFM), for 
cascading chips in multilayer networks. State outputs are 
therefore either PWM or PFM signals. 

Architecture improvements. The circuits performing 

EPSILON II's synapse and neuron functions are almost iden-
tical to those on EPSILON. We made minor circuit and lay-
out modifications, principally to the self-biasing circuits, to 
improve detailed performance. Significant changes of the 
chip's architecture make EPSILON II much more flexible than 
its predecessor. Table 2, next page, compares the features 
of the two chips. 

We changed the EPSILON architecture to increase the ease 
of implementing diverse neural algorithms. The 32-input, 32-
output architecture allows simple interfacing to digital sys-
tems. We added digital recovery of analog input data by 
converting each of the 32 analog input channels into PWIvI 
form and feeding this digital data via the 32 output pins to 
external hardware. This improvement facilitates efficient 
implementation of learning procedures that require know!-
edge of input data, such as the back-propagation learning 
algorithm. 

Each neural state input is individually programmable as 
either an analog or a digital signal so that raw analog sensor 
data can be fused with preprocessed digital data from other 
EPSILON II devices or separate digital data sources. 

The temporal coding of PFM signals makes possible the 
implementation of neural feedback structures. To this end, 
we made the activity of each neuron individually program- 

Neuron -1 
	

Neuron-2 

Output pulse .JL 
	

Output pulse I 

Figure 8. Pulse stream synapses incorporating ctSi:H memory 
devices. 
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I 	 Table 2. Comparison of EPSILON and EPSILON II specifications. 

I 	Characteristics 	 EPSILON 	 EPSILON II 

No. of state input pins 30 32 
No. of actual state inputs 120, multiplexed in banks of 30 32 
Input modes Analog, PWM or PFM Analog, PWM or PFM 
Input mode programmability All analog/all digital Bit-programmable 

No. of state outputs 30, directly pinned out 32, directly pinned out 

Output modes PWM or PFM PWM or PFM 

Digital recovery of analog inputs No Yes, PWM-modulated 

No. of synapses 3,600 1,024 

Additional autobias synapses None 4 per output neuron 
No. of weight load channels 2 1 
Weight load time (ms) 3.6 2.3 
Weight storage Dynamic Dynamic 

Programmable activity voltage No Yes 

Maximum speed (cps) 360 million 102.4 million 

Technology 1.5 gm CMOS 1.5 gm CMOS 

Die size 9.5x 10.1 mm 6.9x7mm 
Packaging 144-pin PGA 120-pin PGA 
Maximum power dissipation (mW) 350 320 

cps: connections per second 

mable to allow initialization of the network for use in these 
structures. 

Analog performance improvements. Circuit techniques that 
minimize performance variation of the original EPSILON 
chip's individual analog components have proved success-
ful. We have, however, measured variation across large 
arrays of synapses. In part, we attribute them to power sup-
ply variations across the chip, but the whole issue of process 
sensitivity in large analog-synapse arrays remains a fertile 
research area. 

EPSILON II incorporates measures for reducing power 
supply variations across the chip and improvements of the 
circuits that automatically set up chip bias voltages. It also 
incorporates the autobias technique developed on the orig-
inal EPSILON. The autobias technique dedicates a number of 
synapses associated with each output neuron to set the zero 
point of that neuron, thus removing any residual mismatch-
es. By defining a suitable zero point, the autobias technique 
ensures that multiplying a zero state vector by a zero weight 
vector produces a zero output. EPSILON II specifically ded-
icates an additional four synapses per output neuron to the 
autobias task. While this technique sets the zero point of all 
output neurons, it has no effect on the gain of the synapse-
neuron combination, which is also prone to variation. At pre-
sent, we rely on the learning algorithm to adjust for such 
variations. 

Pulse stream system framework. To allow flexibility in 

the development of applications of EPSILON-like devices, 
we are developing a generic system framework for pulse 
stream neural processing (Figure 9). The framework uses 
low-cost, industry-standard, bus-based processing cards in 
a rack system into which an EPSILON card can be plugged. 
The standard digital bus controls the EPSILON devices, and 
the conventional digital processor provides the raw com-
puting power necessary for the learning process. Although 
the digital processor currently performs learning, the frame-
work will eventually include the developments in on-chip 
learning and nonvolatile weight storage technology 
described earlier. The addition of a dedicated analog bus 
allows communication and pipelining between EPSILON 
cards and direct access to the real world. 

The framework provides an environment that we can 
reconfigure rapidly to assess neural network hardware solu-
tions to a multitude of problems. The systems modularity 
and a wide range of commercially available analog and dig-
ital cards largely eliminate the need for extensive circuit 
board design. 

Instinct-rule robot application. Edinburgh University's 
Department of Artificial Intelligence has developed a small. 
autonomous, instinct-rule robot based on a software exem-
plar. 15  It is a powerful demonstration of the EPSILON II chips 
use in the generic system framework. Figure 10 illustrates 
the robot schematically, including the EPSILON II device that 
serves as the essential programmable neural link between 
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Figure 9. Generic framework for pulse stream neural computation. 

the analog sensors and the instinct-rule base that underpins 
the robot's adaptive behavior. 

The instinct-rule robot registers forward motion by means 
of two front-mounted feelers and a simple detector on the 
free-rotating front caster. The feelers are simple binary 
switches that give the robot an indication of obstacles in its 
path. A pattern associator neural network links the sensor 
data to the instinct-rule controller. Instinct rules such as 
"Keep crash sensors inactive" and "Get bored—change direc-
tion" allow the robot to learn simple behavior such as fol-
lowing a corridor. In real applications, such a system could 
provide fail-safe behavior for a more complex robot whose 
full guidance system failed. The additional use of historical 
information allows the robot to perform maze-following 
tasks. 

We are extending the sensitivity and range of sensors inter-
faced to the neural network to increase the scope of the 
instinct rules. For example, the use of force-sensitive resis-
tors as bend sensors will allow the implementation of an ana-
log feeler. A directional photodiode and the instinct rule 
"Keep light sensor active" will allow the robot to learn to fol-
low a light source. 

EPSILON II operates at the boundary between the analog 
real world and the digital world of conventional computing. 
The main advantages of an analog VLSI solution to neural 
network applications are evident in our robotic application. 
They include the following: 

Direct interfacing to analog signals without analog-to-
digital converters and analog signal multiplexing, result-
ing in economies of system size, speed, and power 
consumption. 
The ability to Fuse direct analog sensor data with digi-
tal sensor data processed elsewhere in the system. In 
the robot application, this digital data may be historical 

Sensor inputs 

12k 
/J1 	

Example instinct rules: 
"Keep crash sensors inactive" I 

Neural network 	
"Keep light sensor active" 	I 

I /\ I / 	
bored—change direction"J 

Rule violations 

k /k\ /J[ 	Light sensor 

Neurai network 

Feelers 

Drive actuators 	 Primitive prototype robot 

Figure 10. A simple instinct-rule robot. 

sensor data or data conventionally processed from the 
camera. 
Hardwired neural algorithm. There is no need to pro-
gram the neural algorithm in software because it is hard-
wired in VLSI circuitry. A host processor currently 
performs learning off chip. 
Distributed processing. Several EPSILON II devices can 
be embedded in a system to allow multiple and/or mul- 
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tilayer networks. The real-time applications environ-

ment described makes this an attractive possibility. 

Speed. Table 2 lists guaranteed calculation times in con-

nections per second. The speed of software solutions is 

not so readily defined. This has implications for real-

time applications, where a guaranteed speed perfor-

mance is essential. 

ADVANCES IN CIRCUIT TECHNIQUES, learning algo-

rithms, memory technology, and neural applications have 

sprung from our pulse stream work. Many interesting prob-

lems remain to be solved—memory yield, process variations, 

and system packaging come to mind as obvious issues. 

However, we believe we have developed an optimal 

approach for embedded analog neural systems in a wide 

variety of contexts. We also consider it essential that the pro-

ponents of analog (or equivalent pulsed) methods are real-

istic about exactly where such chips will be useful. As simple 

simulation accelerators, they are entirely inappropriate. As 

components in a cost-effective, real-time, compact embed-

ded system, they are likely to be invaluable. kl 
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ABSTRACT 

We explain the advantages of the Virtual-Targets 
algorithm for learning in a VLSI Multilayer Perceptron, 
outline the design issues, and describe fabricated cir-
cuits that implement the main algorithmic functions. 
The test-chip described is a precursor to a larger device 
incorporating full on-chip learning. 

algorithms, the chip only performs the forward-pass, and 
the learning phase proper is carried out on an associated 
computer. This has been referred to as the "chip-in-the-
loop" process. 

Clearly, then, the design of an analogue chip in which 
only one algorithm can be supported requires that the 
algorithm be selected with care. 
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INTRODUCTION 

Long training times on serial computer architectures 
make on-chip learning in truly parallel implementations 
an essential step in developing autonomous neural sys-
tems for real-time, real-cost applications. Furthermore, 
in embedded systems, where analogue VLSI finds its 
strongest justification, the ability to adapt in situ, in 
the absence of a host computer, is almost essential. 

Several groups are investigating on-chip learning. These 
investigations are primarily digital, although there 
are schemes which are, like our own system, hybrid 
digital/analogue technologies. The digital systems are 
flexible, and support a variety of neural algorithms 
including back-propagation, but network size is restric-
ted. 

Analogue neural systems take advantage of the techno-
logy's greater compactness to implement larger numbers 
of neurons (up to several 100), and can be made cascad-
able to create larger networks, but are inflexible in the 
range of algorithms supported. Although the EPSILON 
chip ([1]) produced by our group can implement several 

CHOICE OF ALGORITHM 

Our preference was for an algorithm which would 
provide a system capable of dealing with real-world 
applications of neural networks. The most obvious 
choice is then back-propagation, because this algorithm 
can accommodate a whole range of pattern-recognition 
and signal-processing tasks from medical diagnosis to 
air-combat manoeuvre selection. We also have a joint 
interest, with the University's Department of Artificial 
Intelligence, in robotics applications, because robots can 
be made to carry out learning behaviour which appears 
intelligent, even though the underlying processes are 
very simple [2]. The constraints of a small, autonomous 
robot are precisely those which demand the compactness 
of analogue VLSI, low power, and direct analogue-sensor 
interfaces. 

There has been considerable progress recently in trans-
lating the back-propagation algorithm into hardware (for 
example [3, 4]), but the problem is a knotty one. Doubts 
persist as to the likelihood of success in practice [5]. 
We have preferred to approach this problem using an 
algorithm known as "Virtual Targets" - one of a family 
of target-based algorithms - whose potential was initially 
identified by Murray [6]. This algorithm has two great 
advantages: firstly, the means of updating weights uses 
only local information, simplifying the circuitry neces-
sary for a hardware implementation; and secondly, the 
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weight-update strategies for both hidden- and output-
layer neurons are identical (whereas they are different 
for back-propagation), which means that, once neuron 
circuits have been designed, they can be replicated for 
the whole network. 

ISSUES IN ON-CHIP LEARNING 

Several issues have to be addressed in on-chip learning, 
among them : precision; accuracy; means of refreshing 
weights; the minimum value by which weights can be 
adjusted; providing four-quadrant multiplication; imple-
menting the derivative of the activation function, at the 
output, also known as the "sigmoid-prime"; and passing 
error-signals, representing differences between expected 
and actual output states, between layers in the network. 

The test-chip, and consequently this paper, concentrates 
on three of these issues, namely: 

compact, four-quadrant pulse-stream multiplica-
tion; 

the minimum value by which a weight can be adjus-
ted; and 

implementing the "sigmoid-prime". 

FOUR-QUADRANT MULTIPLICATION 

Our group has developed a transconductance multiplier 
[1] (see Figure 1) with highly linear characteristics, for 
multiplying weights by states. 

V hirf 

Vkf 	 Vw 

Figure 1: Trans conductance multiplier 

Vhire/, Vmidrej and VloreJ  are chosen such that the two 
transistors Mi and M2 operate in their linear regions; 
typically, the difference between VhireJ  and Vmjdref  , and 
that between Vmjdrej and VOreJ is 0.5V. The gate-
voltage of M  is fixed, to provide a zero-point. When the 
gate-voltage of M3 is held at Vdd,  so that M3 conducts, 
and the weight, represented by charge on capacitor C,, 
is at a low point on the range, M2 conducts a small 

current relative to that through Mi. The Vm idref node 
serves to sink the excess, positive, current; if the weight 
is at a high point on the range, Vmjdrej sources a cor-
responding current through M2. The graph of Figure 1 
indicates the relationship. 

The current being sourced or sunk by Vmidref can be 
controlled in time by pulsing the gate-voltage of M3, 
which represents neural states. Pulse duration repres-
ents the neuron's level of activation. If the resulting 
current-pulse (whose amplitude reflects the weight and 
whose duration represents the state), is integrated over 
time, then the multiplication of weight x state is com-
puted. Summation of a number of these computations 
can be achieved simply and elegantly on a single circuit 
node. 

While this circuit, which can be laid out in VLSI 
in a very compact form, has given excellent perform-
ance, it is two-quadrant in nature, because neural states 
are unipolar and weights bipolar. For the virtual-
targets algorithm, a four-quadrant multiplier is required 
because, in addition to a weight x state multiplication, 
a weight x error multiplication is necessary, and weight 
and error values are both bipolar. 

The solution is remarkably simple (see Figure 2). 

V mfre( 

Figure 2: Four-quadrant transconduciance multiplier 

Transistors Mi, M2 and M3 are identical to those in 
the two-quadrant multiplier. Transistors Mu, M12 and 
M 1 are a second multiplier in parallel with the first, but 
this time with the Vgbjas  and V. t  connections reversed. 
To give a "zero-state" point, analogous to the zero-
current point set by Vybja,,  the pulse applied to M13 
is fixed in duration at a mid-point between the shortest 
pulse-width (Ops) representing a negative error and the 
longest pulse width (201ts) representing a positive error. 
At the same time a pulse which can vary in duration 
from Ops to 20s is applied to M3. If the resultant cur-
rent pulses are integrated in time, just as before, a four- 

Cw 

104 



Vwt - vzero 

quadrant, error x weight multiplication is computed, as 
shown in Figure 3. 
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Figure 3: Four-quadrant characteristics of the transcon-
ductance multiplier (simulation results). 

THE SIGMOID-PRIME FUNCTION 

Weight-changes evolve, in the virtual-targets algorithm, 
according to the equations described in [7]. One of the 
terms in a weight-change equation is the derivative of the 
sigmoid activation function, also referred to here as the 
"sigmoid-prime" function, which takes the form °'k = 

Ok(l - Ok). 

Circuits already exist which will give both a sigmoid and 
its derivative[8]. We have been working on an imple-
mentation more compatible with our group's approach, 
where input and output states in the neural network are 
represented by digital pulses whose duration reflects the 
level of activation. 

The circuit is very again simple. It relies on the fact that 
the sigmoid-prime does not have to be exact for learning 
to proceed. Computation is performed by an XOR gate, 
one input of which receives a pulse of fixed duration 
(lOps in our scheme) while the other receives a pulse 
which varies symmetrically around the first, in other 
words from Ops to 20ps. The gate's output is integrated 
by a differential circuit, whereby an ON pulse sources 
charge onto a capacitor, while an OFF pulse removes 
charge, as illustrated in Figure 4. 

The ideal sigmoid-prime is shown in Figure 5(a), con-
strained on the x-axis to values between 0 and 1 by 
the sigmoid activation function. A triangular approx-
imation to the sigmoid-prime (Figure 5(b)) is obtained 
by the XOR circuit described above. The integrator-
capacitor voltage can be converted back to a pulse-width 
signal, and this final approximation to the sigmoid-prime 
is shown in Figure 5(c). 

Figure 4: Pulses from the XOR gate are integrated. 
When the integration is complete, the output is a tri-
angular function of the duration of the variable pulse. 
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Figure 5: (a) Ideal form of the sigmoid-prime; (b) Out-
put once the pulses from the XOR gate have been integ-
rated, for input-pulses of different duration; (c) Output 
once the integrated computations have been converted 
from a voltage to a pulse-width signal. (Simulation res-
ults). 

WEIGHT ADAPTATION 

Consider the circuit block-diagram shown in Figure 6, 
and let us assume that the first integrator has just car-
ried out the sigmoid-prime computation described in 
Section . The result of the computation is held as a 
voltage on a capacitor, which can vary in value from 
V1 to Vh9h,  with a mid-point of Vmjd.  We can set the 
voltage range to be such that voltages between Vm jd and 
Vh1gh are considered to be positive results, while voltages 
between V, and Vm jd are considered to be negative res-
ults; in other words, Vms d is the zero point. 

The second integrator in Figure 6 also controls a capa-
citor on which we may imagine a weight is stored as 
charge. While the second integrator's input switch is 
connected to Vmid,  the charge being accumulated on the 
weight-capacitor is equal to that being removed, and so 
the weight remains unchanged. However, if the input 
to the second integrator is switched to connect to the 
voltage held on the computation capacitor, then the 
weight-capacitor's voltage will rise or fall; charge will 
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Figure 6: A circuit for incrementing or decrementing 
weights. 

accumulate on the weight-capacitor if the computation 
voltage is above Vmjd,  and charge will be removed from 
the weight-capacitor if the computation voltage is below 
Vmid. 

The size of the weight change depends upon the length 
of time during which the input switch is connected to the 
computation capacitor. This has two great advantages: 
the connection-time can be controlled by pulses, which is 
highly compatible with our pulse-stream approach; and 
the connection-time subsequently dictates the "learning 
rate". 

There are several important issues here. The first is 
accuracy of the computation (defined as how closely 
the result matches our expectations [9]). Clearly, if a 
weight is to be changed, then it is desirable that the 
computation on which the change depends is accurate. 
If the computation produces a weight change that is too 
large, the weight-change may "overshoot", and instabil-
ity may result. Conversely, if the hardware-computed 
change is too small, then the network may take an inor-
dinate time to learn. 

The second, more important, issue is one of the dir-
ection of change. While some level of inaccuracy in 
computation is tolerable, it is vital that a computation 
which requires a weight-increase does in fact increase 
it; should the weight be incorrectly decreased, then the 
network will almost certainly never train successfully. 

The third issue is one of precision (defined as the degree 
of agreement of repeated measurements of a quantity 
[9]). One way of looking at this problem is to determine 
the smallest amount by which a weight can be incre-
mented or decremented and the difference be measured. 
Noise in analogue circuits will also affect precision, and 
might be quantified as the ratio of the size of the noise-
floor to the weight-range. 

To date, our studies indicate that the analogue imper- 
fections brought about in a pulse-stream learning system 
are at least tolerable, in the context of neural training; 

in fact, analogue noise can be positively beneficial ([10]). 
These issues can only be resolved by careful analysis of 
the properties of the circuits fabricated, coupled with 
equally careful simulation and analysis of their idiosyn-
crasies as part of a learning network. 
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Pulse-Stream Techniques Techniques and Circuits 

Robin Woodburn and Alan F. Murray 

Te pulse-stream technique for ana-
logue computation combines many of the 
advantages of the analogue and digital do-
mains. It was originally developed for arti-
ficial neural networks (ANNs), where it still 
finds most of its applications. 

Pulse-Stream Encoding 
Pulse-stream signals encode analogue infor-
mation in the time domain by modulating the 
width of a single pulse or the frequency of a 
stream of pulses, as shown in Fig I. For a 
pulse-width modulated (PWM) signal, the 
width of the pulse represents an analogue 
value with a maximum value determined by 
the largest pulse-width, and a minimum 
value determined by the narrowest pulse-
width that is detectable. A PWM signal can 
carry out a computation within the time of 
the widest pulse (although there are likely to 
be computational overheads which add to 
this time). The maximum frequency of the 
signal therefore depends on the widest pulse. 

A pulse-frequency modulated (PFM) 
signal uses fixed-width pulses that vary in 
frequency. The largest analogue value is rep-
resented by the maximum frequency, and the 
smallest by the minimum frequency. A PFM 
signal can take longer to carry out a compu-
tation than its PWM counterpart, because the 
PFM pulses have to be aggregated to estab-
lish the frequency of operation. There is, 
however, no restriction (in principle) on the 
minimum PFM signal. 

For neural applications, PFM signals 
have the appeal that they are closest in form 
to the asynchronous spiking of real neurons. 
Most neural algorithms bear only a superfi-
cial resemblance to biological neural net-
works, so the decision to use PWM or PFM 
will depend purely upon practical considera-
tions. (Phase-encoding of information, 
which is common in biological systems, is 
also possible.) 

Computing with an Analogue 
Two-quadrant Multiplier 
At its simplest, the pulsing circuit for a PWM  

signal can be reduced to a switch, a current 
source, and a current sink. An example of the 
use of such a switch for two-quadrant mul-
tipliers is shown in Fig. 2. The constant-cur-
rent source, 'balance, is connected in series 
with the voltage-controlled current-sink, 's-

ink, which can draw currents ranging from 
zero to a value greater than ibalance. Current - 
source and sink are connected through a 
switch, S. to a voltage source, Vciamp. 

Consider what happens when switch S is 
closed. If /sink is smaller than 'balance, a posi-
tive current flows. If 'sink exactly matches 

'balance, no current flows. If 'sink  is larger 
than 'balance, a negative current flows. 
Hence, the amplitude and polarity of the 
current through the switch is determined by 
the voltage-control circuitry in the current 
sink, and the duration of the current is de-
pendent on the time the switch is closed. In 
short, the circuit produces an output current 
of a magnitude and sign determined by 'bal-

ance and 'sink, in bursts or pulses of width 
and frequency determined by the charac-
teristics of the switch. 

This basic idea was developed for ANN 
applications to compute the summed prod-
uct of connection-weights and neural states. 
The actual circuit, designed on a chip by a 
former member of our group, Donald Bax- 

ter, is shown in Fig 3, along with its transfer 
characteristics. 

Transistors Ml and M2 are connected to 
power rails having a voltage difference that 

is low (Vhl - V10  is in the order of l.OV), 
forcing the transistors to operate in the linear 
region. Mi acts as the constant-current 
source, and M2 as the current sink. The Vhs, 

V10, and clamp voltages are all supplied by 
voltage sources off-chip, preventing them 
from varying with load; for this reason, we 
can consider the transistors as current 
sources, rather than as conductances. The 
current sink is controlled by V, an analogue 
value representing a connection-weight. The 

geometries of MI and M2, along with the 

voltages V:ero and Vcla,np, are selected to 
cancel out nonlinear terms in the transistor 
characteristics, rendering the multiplier ad-
mirably linear. 

Transistor M3 acts as a switch whose 
input is pulsed between OV and 5V to repre-
sent a neural state. The current through M3 
is thus a pulse whose amplitude and polarity 
depend on V, and whose width depends on 

Vsgate. In this way, we can multiply an input, 
the neural state V5tate , by a stored synaptic 

weight, V. I. 
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3. Multiplier circuit, designed by Don Baxter, and the multiplier's transfer characteristics. 

2. A two-quadrant, pulse-stream multiplier 

Additional Circuits to Calculate 
Sum of Products 
The multiplier is, in itself, not sufficient to 
meet our application. Neural networks re-
quire the computation of several weight-
times-state products, and then the 
summation of these products, as shown in 
Fig. 4. In our system, obtaining this product 
requires two operations. The first is to sum 
the currents, which is simple, because cur -
rents can be summed on a single node, ac-
cording to Kirchoff's laws. 

Because the states are encoded in time. 
the summed currents must then be integrated 
in time to give the correct result. To do this 
is a little more complicated. The current 
pulses must first be converted into voltage 
pulses that are, in turn, integrated by a con-
ventional voltage integrator. This aggre-
gated sum-of-products is called the neural 
activation. 

The circuits to perform the integration 
are shown in Fig. 5. Transistors M4 and M5 
act as a matched active load onto which the 
synapse current is delivered. The op-amp 
maintains the voltage difference between 
the two op-amp inputs at zero; in other 
words, it modulates the gate-voltage on M4 
to ensure that the central node is held at 
Vciamp. In this way, the op-amp converts the 
synapse current pulses into voltage pulses at 
the op-amp output. 

The voltage-pulses are re-converted by 
the voltage integrator into currents that are 
aggregated onto the activation capacitor, to 
give a voltage, representing the sum-
of-products computation. The integrator de-
sign is based on a differential stage, which 
controls an output stage that dumps charge 
onto an activation capacitor (when the volt-
age pulses are positive), or removes them 
(when voltage pulses are negative). For sim- 

plicity, details of the integrator are not given 
here. 

Converting Analogue Inputs 
and Outputs into Pulses 
Since analogue values are encoded as binary 
pulses, many of the advantages of analogue 
and digital signals can be realised in pulse-
stream designs. For example, we can 'read' 
the voltage on the activation capacitor using 
a simple comparator, and an inverted, dou-
ble-sided, analogue ramp provided by a 
DAC, as shown in Fig 6. As the ramp falls 
and rises again, the output of the comparator 
produces a pulse. 
The shape of the ramp can also be chosen 

to implement nonlinear functions. For ex-
ample, multilayer perceptrons (MLPs) re-
quire the sigmoid function shown in Fig. 6. 
This function can be determined off-chip by 
generating an appropriate double-sided, 
nonlinear ramp. so  that the comparator out-
put produces a pulse which is a function of 
the sigmoidal ramp.' The same principle 
can be applied to other functions such as the 
Gaussian function required by radial-basis-
function (RBF) networks. 

The multiplier. op-amp, integrator. and 

comparator circuits are on a single chip. and 
the inputs to the chip are analogue voltages 
(which can be stored digitally. off-chip). and 
pulses. If comparators are placed on chip at 
the inputs, we can interface directly to ana-
logue voltages. The outputs from the chip 
will be pulses. which can be transmitted 
directly to other similar analogue chips or to 
digital circuits. 

Centered Pulses 
We have chosen to modulate pulse widths 
symmetrically about a center line by using 
double-sided ramps. This centering of 
pulses has several benefits. It reduces noise 
introduced by circuit switching and power 
surges on the chip. because the rising and 
falling edges of pulses of different widths 
occur at different times. Also, some compu. 
tational functions are rendered very simple. 

Figure 7 illustrates, as an example, how 
the value of one pulse might be subtracted 
from another using an XOR gate. The output 
is a series of short pulses which, provided 
the time frame in which they occur is con-
trolled, can be used in another computation. 
The sign of the subtraction can also be de-
termined easily, using an analogue' SR flip- 
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The typical sum-of-products operations of a neural network. 

Two-quadrant multiplier and buffer. which concerts current pulses at the output into voltage 
pulses. 

flop (i.e., one which cannot settle in an inde-
terminate state). If the longer of the two 
pulses is applied to input S. Q is set; if the 
longer pulse is applied to R, Q is reset. 
Naturally, if the asynchronous nature of the 
PFM approach is important to a particular 
application, pulse-centering is not an option. 

Quantisation 
To what extent are time-encoded signals 
quantised in the systems we have described? 
With PWM, this depends on our means of 
providing pulses. For example, the applica-
tion might require that we represent the state 
signals in an analogue fashion, and centered 
precisely, to allow accurate calculation of. 
say, the difference of two pulses or the sign 
of a pulse. If state pulses are provided using 
the comparator and an analogue, double-
sided ramp, either for inputs to the chip or 
outputs from it, then the pulsed signals are 
truly analogue, and precisely centered. 

PFM signals are also truly analogue. 
However, to aggregate the pulses to carry 
out the computation will probably take con-
siderably longer than the 'per-pulse' compu-
tation of PWM. 

Where high accuracy is not important, 
and some level of quantisation is tolerable, 
then, for simplicity, we might provide the 
ramp to the comparator using a DAC. The 
DAC, of course, produces a stepped ramp. 
not an analogue ramp, and introduces quan-
tisation effects. Also, we can usefully 'store' 
pulses in RAM, as shown in Fig 8. 

To 'fire' the pulses, we use a rapidly-
clocked counter to address successive loca-
tions, starting with address 0 and ending 
with the highest address in the RAM. Again. 
this technique introduces quantisation ef-
fects, and there is the disadvantage that 
pulses made up of an odd number of ad-
dresses cannot be exactly centered on a mid-
point. The level of quantisation depends on 
the clock speed; to reduce the quantisation, 
the clock speed can be increased. There are 
practical limits to the clock speed, since 
increasing the clock speed means more 
RAM is required for a pulse of a given width. 

Process Dependence of Signals 
versus Scaled VLSI Technologies 
All the designs presented here were fabri-
cated on VLSI processes that used OV and 
5V supply rails. For example. the current-
pulses described previously, which repre-
sent a weight times state multiplication, are 
partly encoded in time (the state variable) 

and partly amplitude modulated (the weight 
variable). 

As VLSI device-dimensions are reduced. 
the operating voltage is often decreased (a 
3.3V operating voltage is now quite com- 

mon). This means the range over which the 
amplitude of any signal may be modulated 
also decreases. Sometimes it may be possi-
ble to redesign the circuit to allow for the 
scaling. Also, signal-to-noise ratios and dy- 
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Using a comparator to convert voltages into pulses. 

Using a XOR gate and SR flip-flop for difference and sign operations. 
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Vactiv r< LfhTJ pfesent many challenges to the analogue 
designer, and pulse-stream techniques can 
help in meeting these challenges. 

namic ranges worsen as the process is scaled 
down. In short, signals which are amplitude-
modulated scale poorly. 

This raises a further question: do signals 
that are time encoded suffer this disadvan-
tage? In principle, the answer is no. In prac-
tice, as with everything in the real world, the 
answer is not so simple. Establishing the 
exact timing of events (for example, the rise 
or fall point of a pulse edge) is difficult 
because of small variations in rise and fall 
times, and so pulses are susceptible to jitter. 
In addition, the circuits used to produce the 
pulses can themselves be dependent on the 
scaling factor. However, it would be fair to  

say that encoding signals in time gives addi-
tional freedom in the design of analogue 
circuits. At one extreme, if the designer is 
creative enough to encode all signals sto-
chastically (using PFM), the circuits can 
achieve a measure of scaling independence. 
At the other extreme, if all signals are am-
plitude modulated, then the circuits are 
heavily scaling dependent, as device dimen-
sions and operating voltages are reduced. 
Many of our research-group's circuits com-
bine signals that are amplitude modulated 
with signals using time encoding, and so 
these circuits lie somewhere between the 
extremes. Changes in technologies certainly 

ANN and Other Applications 
Thus far our research group has adapted the 
design principles described here for MLPs, 
RBF networks, robotics, and analogue fil-
ters. The basic pulse-stream technique can 
be applied widely, where its combination of 
pseudo-analogue behaviour, robustness, 
and simplicity are valuable. The only funda-
mental constraint is the level of difficulty of 
the analogue function to be implemented. 

The primary disadvantage of the tech-
nique is that effort has to be expended in 
developing additional analogue and digital 
circuitry to produce and to store the data 
encoded in the pulses, and to generate some 
rather unusual ramps. Even then, we have 
found that the solutions often reduce to 
tried-and-tested digital techniques. 

We hope the circuits we have described 
here encourage you to try some designs of 
your own. Several other pulse-stream efforts 
have been reported at ISCAS and elsewhere. 
As an 'exercise for the student,' try selecting 
the transistor dimensions and voltages Vhf, 

Vi0, and V: ero  in Fig. 3 to render the pulsed 
current through M3 a purely linear function 
of the weight voltage V1. Once you've done 
that, explore the range over which V., can 
vary before the circuit "falls apart." 

Further Reading 
The majority of applications to date are neu-
ral ones, but these techniques have been 
applied outside the field. Meador and Hylan-
der [1], for example. have designed a pulse-
coded, winner-take-all network. The 
network measures the distance between an 
input vector, representing some pattern that 
exists in the outside world, and stored 'pro-
totype' vectors, to determine which proto-
type most nearly approximates the input. 
This kind of network, common in neural 
applications such as self-organising feature 
maps, can also be useful for vector quanti-
sation and coding, and for statistical data 
clustering. 

Some approaches are explicitly biologi-
cal. Dc Yong and Fields 21 have used their 
knowledge of biological signals as inspira-
tion for applications in signal processing and 
control systems. Biological neurons com-
municate using trains of pulse-like action 
potentials, fired continuously or in bursts. 
The pulse-trains encode timing, frequency, 

46 	 Circuits & Devices 



&.'Firing pulses by clocking through a RAM 

and phase relationships that the authors ex-
ploit in their artificial networks, with the aim 
of storing complex patterns for signal proc-
essing problems. 

Elias [3] uses fairly simple models of 
very low level neural structures, namely the 
dendrite (one of the structures of nerve cells 
to which synapses connect). His work is 
interesting on two counts. The first is that his 
circuits can realise temporal-encoding, a 
well-known feature of real neurons; he 
stimulates chains of simple RC circuits that 
emit different responses depending on the 
physical distance of the stimulus from the 
output. The second matter of interest is that, 
by using the spatial characteristics of several 
dendrites working in parallel, he is able to 
build useful feature detectors that can re-
spond to, for example, lines moving in par-
ticular directions. 

The three approaches described so far in 
this section can all be found in an interesting  

collection of .trticles in [4], where you can 
also find several other ideas ranging from 
the realisation of Boolean functions [5],  to 
simple interfacing of networks to the ana-
logue world using pulse-density modulation 

[6]. 
Finally, w: mention an application from 

our own group. Papathanasiou and Hamilton 
[7] have moved away altogether from neural 
structures, usng pulse coding for a filter 
building-block they call the Palnio filter. 
Fundamental to filter structures is the inte-
grator, which they realise using pulse-
stream techniques. Somewhat like the 
synapse described in Fig. 2, their design uses 
PWM to represent the magnitude of signals. 
The pulses control the ON time of transistors 
to gate positive and negative currents, which 
are accumulated on a capacitor. The re-
searchers have found ways of reducing the 
effects of variations in process, and intend to 
design a 'programmable' filter chip with an 
array of filter taps that can implement a 
range of different filters. 

Various other aspects of our research 
group's activities, including some of those 
described here, are illustrated in [1-10]. 
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