
C

An investigation of practical issues in

translating algorithms based on

back-propagation into analogue, VLSI

circuits

Robin Woodburn

A thesis submitted for the degree

of Doctor of Philosophy to the

Faculty of Science

University of Edinburgh

1996

Abstract

One of the most widely-used artificial neural networks is the multi-layer per-

ceptron, trained by error-back-propagation (the 'back-propagation algorithm').

Commonly, the network is implemented as a serial-computer simulation, but there

has been considerable interest in translating it into hardware. The most difficult

translation into analogue VLSI is the 'learning' part of the algorithm, that is the

part which involves calculating the output errors and making appropriate modi-

fications to the analogue weights representing the connections between nodes. For

this reason, most analogue hardware implementations train weights held off-chip

in a digital representation; the weights are converted to an analogue representa-

tion for storage on the chip which comprises the network.

This thesis examines the Virtual Targets algorithm, based on back-propagation,

but with some modifications which render it more amenable to translation into

analogue VLSI circuits which can 'learn on-chip'. I describe several circuits,

designed to exploit our research group's pulse-stream approach to analogue VLSI,

which provide four-quadrant multiplication, and calculate differences, signs and

error-derivatives. Results, from simulation and from a chip fabricated with the

circuits, are given.

A consideration of other approaches to the problem of learning on-chip makes it

clear that key issues are weight-storage, and a means of modifying the weights. I

explain why calculating exact weight-changes is difficult, and give the results of

simulation experiments leading to a further simplification of the Virtual Targets

algorithm which makes it possible to train the network using fixed increments

and decrements of the weights. I show the results of tests of circuits on a second

chip, designed with implementation of the entire algorithm in mind, and assess

the likelihood of such an implementation being successful.

I place this analysis in the context of the search for 'intelligent' machines, and ask

how far designs such as my own might contribute to such a machine. I also make

some suggestions on the most fruitful directions for analogue designs of artificial

neural networks.

Declaration

This thesis is entirely my own work. The work I describe in it is also my own,

unless otherwise indicated.

Acknowledgements

Ah! The invidious chance to thank all those immediate colleagues who've helped

me during the course of my project. Alan, my supervisor, for giving me the

opportunity to work in what has been the most demanding and most interesting

work I've ever done, and for giving me so much freedom to tackle things the way

I wanted. Martin, my second supervisor, who, as he explained something for the

fourth time, must have wondered if I would ever get it, but who valiantly resisted

the burning temptation to call me 'turnip head'. Alister, Donald and Steve, who

steered me through a difficult first year, and Alister again for all the help in

the details of circuit-design and testing. Drew, Andy and Geoff, three terrific

engineers, for being great to work with and for making what seemed impossible

just a question of approaching it the right way; they'll surely be successful in

their new careers. Andy and Drew, again, and Dwayne for all the constructive

criticism of the thesis. Torsten for the talks on on-chip learning. Mike, Emma,

John and Richard for the beer and blether. Catherine, for thinking like me. To

all of these and Peter, Andy M, David, Bill, Kostis, Cohn, Ken (never won an

argument yet), Kevin, Anne, Lynne, Andy C, Mark and Neil, the colleagues I've

worked with, for their friendship which made my time at Edinburgh such a good

one

Finally, it is traditional to thank your nearest and dearest, not that they had much

choice in the matter. Ruth had to put up with an awful lot but, on the bright

side, she can now talk with confidence about the characteristics of four-quadrant

multipliers and the virtual targets algorithm.

Dedication

To my mother and father, who would have been very pleased.

Table of Contents

Introduction
	 1

	

1.1 	Aim of the project 2

	

1.2 	Detailed goals3

1.2.1 	Goals for the circuits3

1.2.2 	Other goals 4

	

1.3 	Structure of the thesis 5

A Review of Relevant Algorithms and Hardware Implications 	6

	

2.1 	Introduction6

	

2.2 	Terminology6

	

2.3 	Motivation for this study9

2.4 Back-propagation : gradient-descent using back-propagation of error 10

2.4.1 Mathematical background to back-propagation10

2.4.2 Problems with back-propagation15

2.4.3 Alternatives to back-propagation15

2.5 Alternative approaches : the virtual targets algorithm and weight

perturbation16

2.5.1 	Virtual targets 16

2.5.2 	Overview of the algorithm16

vi

Table of Contents 	 vii

2.5.3 	Precursors of the algorithm17

2.5.4 Details of the virtual targets algorithm18

2.5.5 	Weight perturbation19

	

2.6 	Implications for hardware21

2.7 Analogue hardware and the pulse-stream approach25

	

2.8 	Sigmoid derivative 26

2.8.1 The sigmoid function and its derivative26

	

2.9 	Conclusions29

3. Issues in on-chip learning
	 30

	

3.1 	Introduction30

	

3.2 	What is on-chip learning?30

3.2.1 	Learning off-chip30

3.2.2 	Chip-in-the-loop learning31

3.2.3 	Learning on-chip32

3.3 The advantages of on-chip learning32

3.4 The use of analogue, rather than digital, hardware34

3.5 Research into hardware parallel architectures36

3.6 Strategies in research on-chip learning37

3.6.1 	Emulating a biological function39

3.6.2 Implementing a model of a behavioural phenomenon . . . 40

3.6.3 Implementing a complete back-propagation system with

non-volatile weights42

3.6.4 Combining hardware design with simulation43

3.7 Implementations of on-chip learning43

Table of Contents 	 vi"

3.8 	Key issues : weight-storage and weight-modification 44

3.8.1 	Weight storage 44

3.8.2 	Weight-modification 46

3.9 	Examples of weight-storage and weight-modification 47

3.9.1 	Example 1: purely digital storage 47

3.9.2 	Example 2 	a hybrid implementation 49

3.9.3 	Example 3 	capacitive storage with refresh-by-learning 51

3.9.4 	Example 4 : capacitive storage with read-store-and-write

refresh 53

3.9.5 	Example 5 	: 	 purely analogue 	implementations with

floating-gate storage 55

3.10 	Conclusions 58

4. Hardware functions from the VT algorithm 59

4.1 	Introduction 59

4.2 	Translating the Algorithm into Hardware 59

4.2.1 	Building on previous work 59

4.2.2 	Basic hardware principles 60

4.3 	Implementing the forward-pass equations on EPSILON 62

4.3.1 	Forward-pass equations 62

4.3.2 	The architecture and circuits of EPSILON 62

4.4 	Implementing the weight-modification equations 64

4.4.1 	The equations 64

4.4.2 	Input and output signals 65

4.4.3 	Implementing the 'sigmoid prime' term 65

Table of Contents
	

ix

4.4.4 Implementing the error term 68

4.4.5 Implementing a sign circuit 70

4.5 	Implementing the target-modification equation 70

4.5.1 The equation 71

4.5.2 The EPSILON synapse 72

4.5.3 Option 1: the Gilbert multiplier 73

4.5.4 Option2 : the Dupuie multiplier 74

4.5.5 Option 3: twin EPSILON synapses 75

4.5.6 Option 4: twin EPSILON synapses operated in parallel 77

4.6 	Summary of design work 78

4.7 	Test chip : design, testing and results 79

4.7.1 Objectives 79

4.7.2 Chip architecture 79

4.7.3 Testing 80

4.7.4 Results from the test chip 80

4.8 	Summary and conclusions 82

5. Simplification of the algorithm 84

5.1 	Software simulation and hardware computation 84

5.2 	Changes to the target-modification algorithm 86

5.3 	Changes to the weight-modification algorithm 87

5.3.1 	Simplifying the sigmoid-prime term 87

5.3.2 	Simplifying the remainder of the weight-modification equa-

tion.............................. 89

5.4 	Using the forward-pass circuits efficiently 91

Table of Contents 	 x

5.5 Final alterations to the algorithm93

5.6 Conclusions from the software simulations94

Elements of a system for the algorithm
	

M.

	

6.1 	Introduction96

6.2 A circuit for changing the weights96

6.2.1 	The Schwartz weight-modifier97

6.2.2 	Transistor substrate pump98

6.2.3 	Arima's charge-pump98

6.2.4 The EPSILON voltage-integrator99

6.3 An architecture for a second chip103

6.4 Design of the second chip106

6.4.1 Forward and backward passes through the array106

6.4.2 	Architecture106

6.5 Summary and conclusions107

Final tests and assessment
	

109

	

7.1 	Introduction109

	

7.2 	Testing the chip109

7.3 Results from tests on individual modules110

7.3.1 	Multiplier110

7.3.2 	Weight-change circuit113

7.4 Issues raised by the various circuits114

7.4.1 	Learning rates114

7.4.2 	Weight adaptation115

Table of Contents 	 xi

	

7.4.3 	Weight decay116

7.4.4 Weight resolution within a fixed range116

	

7.4.5 	Offsets118

	

7.4.6 	Accuracy 119

7.5 	Trials120

7.5.1 	Chip-in-the-loop experiment 120

7.5.2 	Weight-range experiment 121

7.5.3 	Revisiting weight-range issues 121

7.6 	Further experimentation 122

	

7.7 	Conclusions123

8. Conclusions
	 124

	

8.1 	Introduction124

	

8.2 	Issues in on-chip learning125

	

8.2.1 	Summary 125

	

8.2.2 	Conclusions125

8.3 Translating the VT algorithm into analogue VLSI circuits 125

	

8.3.1 	Summary 125

8.3.2 Conclusions126

8.4 Simplification of the algorithm: summary126

8.5 Elements of a system for the algorithm126

	

8.5.1 	Summary 126

	

8.6 	Final results and assessment127

8.6.1 	Summary 127

Table of Contents 	 xii

8.6.2 	Conclusions127

8.7 The use of the virtual targets algorithm: conclusions129

8.8 Algorithms and analogue VLSI130

8.8.1 	Summary 130

8.8.2 	Conclusions130

8.9 Artificial neural networks and analogue VLSI: conclusions 131

A. Intelligence and learning in people and machines 	 133

A.1 Neural networks and the brain133

A.2 The aims of ANN research134

A.3 Viewpoints on intelligence and machines135

A.3.1 	'Strong Al' 135

A.3.2 	'Weak Al'136

A.3.3 Computational intelligence 136

A.4 The Forces Behind Machine Intelligence 136

A.4.1 Man as machine137

A.4.2 The drive for automation137

A.5 Objections to the Idea of Truly Intelligent machines138

A.6 Consciousness, the nervous system, and computation140

A.7 Recent Developments141

A.8 Learning in psychology, neurobiology and ANNs142

A.8.1 Psychological views of learning142

A.8.2 Neurobiological views of learning144

A.8.3 ANN views of learning144

Table of Contents 	 xl"

A.8.4 The relationship between 'learning' in psychology, neurobi-

ology and ANNs 145

A.9 An engineering approach to neural networks145

A.10 Summary and conclusions149

Quotations from workers in the field of ANNs 	 151

Implementations of, and circuits for, on-chip learning 	156

Table of learning equations 	 164

Analysis of the twin-synapse circuit 	 166

Details of the two chips 	 169

Related papers 	 178

Bibliography 	 211

Chapter 1

Introduction

This thesis is an investigation of the possibility of building a machine, in the

form of a microchip, using analogue and digital circuits, which can itself adapt

its outputs in light of changes to its inputs. More specifically, it investigates the

translation of a variant of a well-known neural-network algorithm into hardware

in such a way that the weights in the network can be adjusted by circuits on the

chip, so that the chip can "learn" autonomously, that is without the support of

a conventional computer. To consider this possibility, I have had to examine a

whole range of issues associated with designing and simulating neural networks,

and building and using chips, and these are explored in the later chapters.

The emphasis, like much of research in electronic engineering, is on "how"

How do we change weights in an artificial neural network (ANN) 1 so that it will

respond correctly to a set of patterns? How do we approximate a parabola with

an electronic circuit? How do we build a four-quadrant multiplier? How do we

put a set of electronic components together to build a system on a chip? How do

we drive that system so that it will perform like an ANN?

As someone who studied psychology, not engineering, at university, I very quickly

noticed the emphasis on "how" in engineering research. The techniques by which

1 ANNs are computational systems which are held to mimic, to some degree, the

computational abilities of biological systems by using large numbers of simple, in-
terconnected nodes. The network adapts to changing inputs by having its weighted

connections modified in strength.

1

Chapter 1. Introduction
	

2

one can carry out a task - rather than the "why" questions, the basic reasons

for investigating the techniques - seem to dominate.

In Appendix B, I have placed quotations from a selection of leading figures who

work in the field of ANN research. Some of these quotations may seem faintly

ridiculous; they did to me. Yet I had a sympathy for the people I have quoted,

because they are asking "why" they are doing their research. Their implicit an-

swer is that they are trying to emulate in some way the processes, like seeing and

hearing, which people find so easy and machines so difficult. Some of the claims

researchers make are a little far-fetched, and so I have included quotations from

Mead and Hinton who have an objective to understand, and perhaps emulate,

brain function, but are nevertheless, it seems to me, level-headed about how close

we are to success.

Because I think the "why" questions are important, I felt unable to ignore

some more fundamental issues about what we can reasonably expect from neural

networks, including ones instantiated in hybrid analogue-digital hardware, and

whether the "learning" exhibited in such networks is comparable to what we com-

monly call learning in people. Partly, this was because I am fascinated by these

issues; partly, because some of the claims of researchers have left me incredulous;

and, partly, because, amidst 20-hour days trying to beat some design software

into behaving sensibly, it is difficult but important to look where you are heading,

and why. Appendix A is therefore devoted to these topics.

1.1 Aim of the project

The aim of the project was to study the issues raised by the translation of the

virtual targets algorithm into analogue VLSI circuits.

We already had circuits, designed earlier by some colleagues, to perform some

parts of this task. The questions we asked ourselves initially were as follows.

2 Strictly speaking, the algorithm embodies a feed-forward, multi-layer perceptron,

trained by back-propagation of the derivatives of the errors. The popular version is

commonly known as the 'back-propagation algorithm', and the virtual targets algorithm

is a variant of it.

Chapter 1. Introduction
	 3

Could we invent circuits for the remainder of the task? If so, could we invent a

scheme to put all the parts together in a system? If this was possible, could we

make some assessment of the system's capability to learn on-chip?

To meet this aim, I designed one chip to test some preliminary ideas, re-assessed

the algorithm in light of what I had learned, and designed a second chip which

would be capable, if embedded in the right system, of testing the complete al-

gorithm.

I describe these designs in a way which explains how my ideas developed as the

project progressed, and why I came to my final conclusions.

1.2 Detailed goals

Not all the detailed goals, of course, were clear at the start of the project; they

emerged over time. The following list gives an idea of the technical goals which

had to be achieved.

1.2.1 Goals for the circuits

. Establish what are the functions making up the virtual targets algorithm,

and how these functions fit together.

• Given that the existing Epsilon chip can perform a forward pass through an

multi-layer network of perceptrons, decide what parts of that can be used,

and what additional circuits are required for the virtual targets algorithm.

• Hence design circuits to perform

- four-quadrant multiplication

- a difference calculation

- a sign calculation

- a 'sigmoid-prime' function.

• Simplify the algorithm. In light of the simplification, establish how to

Chapter 1. Introduction 	 4

- make fixed increments or decrements to a stored weight

- make scaled increments to stored targets

- carry out an 'error pass' through the network to back-propagate error-

terms.

• Find a way of putting all the circuits together in a system which could test

if learning is possible on chip, and make a simple test of it.

1.2.2 Other goals

In view of the importance of links between areas in what is a multi-disciplinary

field, I also set myself the goal of making links with work on machine intelligence:

• Assess how true are claims that artificial neural networks (ANNs) are 'brain-

like', and how far they contribute towards the idea of intelligent machines.

Make suggestions about how engineers should view these ideas.

• Assess the value of analogue implementations of ANNs compared to digital

ones.

• Suggest how analogue circuits could best contribute to ANN research.

Chapter 1. Introduction 	 5

1.3 Structure of the thesis

The thesis is structured as follows

Chapter 2 reviews three algorithms from the point of view of the ease with

which they can be implemented in hardware.

Chapter 3 examines issues in on-chip learning, considers the published liter-

ature, and looks in detail at several examples designed by other

research groups.

Chapter 4 describes the circuits, designed for the first chip, to implement some

basic functions of the virtual targets algorithm, together with their

simulation and test results.

Chapter 5 shows how I simplified the virtual targets algorithm in light of my

progress.

Chapter 6 puts in place the final pieces of the jigsaw which is a chip for on-

chip learning. It describes the circuit designed to modify weights

and the architecture of a second chip which, in a complete system,

might instantiate the entire algorithm.

Chapter 7 gives results of tests of the second chip and assesses the merits of

the circuits for on-chip learning.

Chapter 8 presents my final conclusions.

Chapter 2

A Review of Relevant Algorithms and

Hardware Implications

2.1 Introduction

This Chapter introduces some basic terminology necessary to understand the

remainder of the thesis and considers the motivation for the study. It then looks at

the mathematical background to the back-propagation algorithm, considers two

alternatives to it, and then compares their software performance and hardware

implications. Finally, the Chapter describes the empirical effect of one of the

terms in the back-propagation algorithms.

2.2 Terminology

This section introduces some of the terms that are necessary to understand the

algorithms discussed in this chapter.

Artificial neural networks (ANNs) are a computational paradigm in which groups

of simple processors, or processing nodes, are connected in parallel, generally

in layers. (The terminology used to describe the layers varies; the following

description establishes the terminology used throughout this study.) The first,

or input, layer receives input signals from the outside world (see figure 2-1).

No node in the input layer has any computational function, but serves merely

to distribute each of the input signals to the succeeding layer. The output layer

receives inputs from the preceding layer and provides output signals to the outside

world. Between the input layer and the output layer may be any number of

Il

0

0)

0
0

Cl)

C

0

0

E

I

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 	7

intervening layers, known as hidden layers, but often the number of hidden layers

is only one. Unlike the input-layer processors, each of the processors in the other

layers has some computational function. The nature of that function may vary

from layer to layer, but generally all the processing nodes in a single layer have

the same computational function.

For the networks considered in this thesis, the processing nodes are called per-

ceptrons, and a network with several layers of such nodes is called a multi-layer

perceptron (MLP) network.

Input layer 	 Hidden layer 	Output layer
(no computation)

Figure 2-1: A simple, fully-connected multi-layer perceptron

Each processing node in the hidden or output layers receives several input con-

nections, and provides a single output connection with a value called its 'output

state' (see Figure 2-2). Each of the input connections, representing the state of

another node, is weighted, and the weighted values are then summed, to pro-

duce the node's 'activation'. The activation value is then mapped by a math-

ematical function into an output state. For reasons explained in the literature

(Beale and Jackson, 1990, Hertz et al., 1991), this mathematical function is usu-

ally a differentiable but non-linear function, hence the common term 'non-linear

mapping function'. If the node is in a hidden layer, the output state will be dis-

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 	8

tributed to nodes in the next layer. If the node is in the output layer, the output

state will represent one of the outputs of the network.

input from
previous layer

weight (='synapse')

2:
I 	 I / output state

non-linear 	/ (to next layer,
(= neuron')
mapping

/ or network output)

Figure 2-2: A computational node, found in the hidden and output layers

Because work on ANNs originally drew inspiration from biological networks, two

of the hardware components of the processing nodes have been given the biological

names 'synapse' and 'neuron'. The degree to which the artificial components re-

semble the biological ones is very slight, but the terminology occurs so frequently

in the literature that I have reluctantly adopted it. There is no great consistency

in the way different groups use the terms; components are lumped into synapses

or neurons as is expedient. However, broadly speaking, the point at which one

processing node receives a connection from another node, is called the 'synapse',

and it is here that the input connection is weighted. Since weighting is multi-

plication, 'synapse' is a synonym for 'multiplier'. The mechanism by which the

weighted connections are summed can, at least in analogue chips, be accomplished

so simply that the summation process has not been deemed worthy of a biolo-

gical name, and this mechanism is usually considered part of the synapse. The

term 'neuron' is usually given to those components that calculate the non-linear

mapping function to produce the final activation value.

Processing in such a network proceeds (at least conceptually) as follows. A series

of input vectors or patterns (which can be digital or analogue data) is presented,

vector by vector, to the input layer, which distributes each element of the vector

to each of the nodes in the hidden layer. Each hidden-layer node simultaneously

processes the vector by weighting and summing the input elements and perform-

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 	9

ing a non-linear mapping to produce, at the node's output, one element of the

hidden-layer output-state vector. This vector is in turn presented to each node

in the output layer, which processes it in the same way as the hidden-layer pro-

cessed the inputs. The output-layer's output vector is the output of the network.

The whole process of transforming a series of input vectors into a series of output

vectors is known as a 'forward pass'. A forward-pass is, then, a series of repeated

multiplication—summing—non-linear-mapping operations.

'Learning' consists of modifying all the weights in each of the hidden- and output-

layers after each forward pass, according to a particular learning rule. The modi-

fication is carried out, over many iterations, in such a way that either the network

is forced to produce a specific output vector for a specific input vector, or it sta-

bilises in a state where the response to different input vectors is in some way

interesting to the operator.

2.3 Motivation for this study

Our thinking on this study began with a consideration of the type of MLP applic-

ations that would require 'on-line' learning, that is learning where the weight-set

would be changing constantly. In other words, the characteristics of the applica-

tion would be such that the weights necessary for successful operation could not

be calculated beforehand.

For many applications, developing the weight set during computer simulation may

be inconvenient because of the long training times involved, but the methodo-

logy is not fatal to their success. For example, financial applications, database-

retrieval, hand-writing recognition and medical diagnosis may all, depending on

the circumstances, be carried out 'off-line' to achieve acceptable solutions. Ad-

aptability may not even be advantageous in these cases, since the output charac-

teristics of the problem may have been well-defined.

In other applications, however, the input data may not be well-controlled, may

arrive in large quantities in analogue form, and may require to be dealt with in

real time. Examples are robotics and sensor-motor control, speech recognition,

natural-language applications, process-control, image-processing and machine vis-

ion. In these circumstances, the neural network system needs to be adaptable

at high speed. The point about such systems is that they may require to re-

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 10

spond to inputs some of which are stable or very slowly-changing, and so can be

pre-learned while other inputs may be rapidly-changing and so require 'learning'

or 're-learning' over a period of time. On-chip learning brings closer the pro-

spect of systems with this capability, and hence the possibility of embedded or

autonomous systems, where analogue VLSI finds its strongest justification.

2.4 Back-propagation: gradient-descent using

back-propagation of error

Our preference was for an algorithm that would provide a system capable of

dealing with real-world applications of neural networks. The most obvious choice

is then back-propagation (Rumeihart et al., 1986), because this algorithm can

accommodate a whole range of pattern-recognition and signal-processing tasks

from medical diagnosis to air-combat manoeuvre selection (Maren et al., 1990).

Back-propagation is a gradient-descent algorithm, so called because it attempts

to minimise a measure of error the error measure is envisaged as a surface,

like that of hills and valleys in multi-dimensional space, in which the network,

to find a solution, must reach a minimum, preferably the minimum of the lowest

point in the surface. To move towards a solution, that is in the direction of

minimum error, the network requires a gradient term for each network weight.

These gradient terms are used to reduce the network error by changing the weights

on the connections in the direction of reduced error. 1

2.4.1 Mathematical background to back-propagation

Mathematical analysis results in a series of learning equations, described in

Appendix D, which are derived from a gradient-descent minimisation of the

'There are several variations on back-propagation as a means of training MLPs

(Hertz et al., 1991). Cost functions other than the sum-of-squared-errors can be min-

imised, for example measures of entropy. Optimisation techniques other than gradient

descent are also available, for example Newton's method and conjugate gradient meth-

ods. None of these variations is considered in this thesis.

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 11

sum squared error of the output neuron. While the mathematical derivation

is easily accessible in various textbooks, for example (Beale and Jackson, 1990,

Hertz et al., 1991), and so is not repeated in full here, a description of the key fea-

tures of the analysis is helpful for a comparison of the back-propagation, virtual

targets and weight perturbation algorithms, to be given shortly.

The key points are these

The algorithm aims to minimise the error at the network output by changing

weights at the interconnections between nodes. The error is defined as

proportional to the square of the distance of each output-node's actual

output from the desired, or target, output.

To minimise the error, we require to know the overall change in the error

with respect to each weight. We cannot compute such a change directly,

but we can compute the change indirectly by successive application of the

chain rule.

Notation

The notation used in the remainder of this section is as follows. E is the error

function for pattern p, tpk represents the target output for pattern p on node k,

Opk represents the actual output at that node, and Wkj is the weighted connection

from node j to node k. For a three-layer network, layer i is the input layer, layer

j the hidden-layer, and layer k the output layer.

Definitions

The following definitions apply

• The error is defined as

E = 	(tk - Ok) 2 	 (2.1)
k

The introduction of the 1 simplifies the consequential mathematics.

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 12

• The activation for each unit for each pattern p (ie the weighted sum of the

inputs to a node) is defined as

netk = 	WkjOpkj 	 (2.2)

• The output of each unit is a sigmoid function of the activation for that unit,

and is defined as

1
°pk = 0k(fletk) 	 (2.3)

1 - e_(tpk)

Finding 3E/aWk

The algorithm aims to minimise the error at the network output by changing

weights at the interconnections between nodes. We therefore require to know the

overall change in the error with respect to each weight /.E/Lwk, a computation

which cannot be made directly. However, we can derive the computation indir-

ectly by successive application of the mathematical chain rule, in the following

way.

aE - DE ônet k
(2.4)

ôWkj - Onetk

The term aE/anetk is defined as

= Spk 	 (2.5)
afl6tk

and S is known colloquially as the "delta term". The term 9netpk/19Wkj can be

shown to simplify to

Hence:

8E
-

8pk 0pj 	 (2.6)
aWk3

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 13

and consequently, the weight-change to reduce the error is

APWkj = 175pkOpj 	 (2.7)

where 71 is a gain term.

This equation applies to output and hidden layer alike, but the 6,, term is calcu-

lated differently for each layer.

Finding 5, for the output layer

As before, we cannot compute 8,, directly, but we can do so indirectly by using

the chain rule

aEp ô°pk

aEp

== DO,,kanet,,k 	
(2.8)

anetki

The term —öE,,/öO,,k simplifies to (tpk - Opk).

The term ÔO,,k/ônet,,k is a'(net,,k), ie the derivative of the output with respect

to the activation of that node, or sigmoid prime, which can be shown to simplify

to

ôOpk
= cr(net,,k)(1 - a(net,,k)) 	 (2.9)

t9net,,k

= Opk(1 - Opk) 	 (2.10)

Hence, for the output layer:

ÔE,,
= 6pkOpj 	 (2.11)

8Wkj

= (tpk - Opk) [O,,k(1 - Opk)] 0pj 	 (2.12)

and consequently the weight-change to reduce the error is

L,,Wk 	hlk(tpk - Opk) [Opic(1 - Opi)] 0,,, 	 (2.13)

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 14

Finding 6, for the hidden layer

Just as for the output layer, the delta term for the hidden layer is

8E - aE 8O33 	
(2.14)

= - ônet - - OO anetpi

As for the output layer, the term 8O1 /ônet 3 simplifies to o'(net), and so to

Op3(1 - Opj).

In expanding 6p for the output layer, we were able to express the term —ôE/ôOk

as a function of the output error (tk - Opk). Unfortunately, we have no expli-

cit targets for the hidden layer, and so we must express the equivalent term,

—ôE/DO, in some other way. As it turns out, we can show that this term can

be expressed in terms of S for the output layer, so that

OEP
 = 	SpkWkj 	 (2.15)

aopj 	k

Hence:

aEp
 = spiopi 	 (2.16)

owji

= [E
6pkWkj I [O(l - O)] O 	 (2.17)

and consequently the weight-change to reduce the error is

Apwji = 	[6PkW/Cj] [O(i - O,)] O 	 (2.18)

= iii [(tpk - Ok)Ok(1 - Opk)wki] [O(1 - Op,)] Opi (2.19)

We have circumvented the absence of explicit targets for the hidden layer by

back-propagating the error (and the derivative of the sigmoid, the sigmoid prime)

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 15

through the weights which connect the hidden and output layers'. By this means

we can establish the effect of hidden-layer weights on the output errors.

2.4.2 Problems with back-propagation

I make an explicit comparison of the consequences, for hardware, of the weight-

change equations 2.13 and 2.19 later, in Section 2.4.1, but we can note two im-

portant points now : that the equations for each layer are substantially different;

and that equation 2.13 for changing weights in a node in the output layer uses

information local to that node, whereas equation 2.19 requires information passed

back from the layer above. It is these two problems that encouraged us to consider

alternatives to back-propagation.

There has been considerable progress recently in translating the back-

propagation algorithm into hardware (for example (Valle et al., 1992,

Jabri and Flower, 1992)), but the problem is a knotty one. Doubts persist as to

the likelihood of success in practice (Tarassenko and Tombs, 1993, Cairns, 1995).

For one thing, error gradient terms must be calculated and back-propagated in

some form to previous layers in the network, which is in itself difficult to do. For

another, changes in the weighted connections are frequent, and have to be very

small, that is a high precision is required, otherwise the network will never find

a solution or will be unstable in its solution.

2.4.3 Alternatives to back-propagation

Two options for attacking the problem of translating algorithms based on back-

propagation into hardware have been explored at Oxford (weight perturbation)

and Edinburgh (the virtual targets algorithm).

2 Although only one hidden-layer is considered as part of this thesis, the approach

outlined here is valid for any number of hidden layers.

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 16

2.5 Alternative approaches : the virtual tar-

gets algorithm and weight perturbation

This section describes alternatives to plain back propagation, in the form of the

virtual targets algorithm and weight perturbation. Virtual targets is a "top-

down" approach, attempting to alter the requirement to back-propagate the error,

as a means of facilitating the algorithm in hardware. The motivation for weight

perturbation is the same, but its approach is "bottom-up", eliminating some of

the complex calculations of back propagation in favour of measuring changes at

the network output.

2.5.1 Virtual targets

Murray developed the virtual targets algorithm as a way of adapting back-

propagation to the constraints of silicon implementation. Its rationale and details

are described in the following sections.

2.5.2 Overview of the algorithm

The virtual targets algorithm is one of a family of target-based algorithms, whose

potential for VLSI implementation was initially identified in (Murray, 1991). The

algorithm is, like the back-propagation algorithm, one in which the learning rule

specifies how weights can be altered in the light of the network's response to re-

peated presentation of input patterns. The degree and direction of each weight-

change is determined by, among other things, the size of the error between each

output node's actual response to an input pattern and the target response that

an external agency has dictated should be correct. The target-response for each

output node is therefore determined by the nature of the classification problem

being considered; for example, we know beforehand that, in response to a binary

pattern representing the character 'B', one of the 26 output-nodes of the net-

work (one node for every character in the alphabet) should signal ON while the

remainder signal OFF. Unlike back-propagation, some simplifications to the al-

gorithm are bought at the price of providing explicit targets for the hidden-layer

nodes too. Although the algorithm specifies that these hidden-layer targets are

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 17

reset at various points, their values are not generally known, but evolve according

to certain equations in much the same way that the weights do.

2.5.3 Precursors of the algorithm

The back-propagation algorithm changes only the weights during learning, and

the outputs of the hidden layer are determined primarily by the input vectors and

the weights (and some additional factors such as the learning rate or the 'tem-

perature' or gain of the sigmoid function). By contrast, (Grossman et al., 1989)

viewed a network's 'internal representations' (effectively the outputs of the hidden

layer) as additional variables during learning, whose values would be determined

by factors in addition to the input vectors and the weights. On Grossman's view,

the problem is shifted from one of minimising an output error or cost function

to one of searching for useful internal representations which will lead to a good

solution. Krogh and Rohwer (Krogh et al., 1990, Rohwer, 1990) have also used

this notion, and Krogh has formalised the idea by constructing a cost function

for his algorithm which is an explicit function of these internal representations,

and which is systematically reduced as the algorithm runs.

Murray synthesised these various approaches (Murray, 1992b, Murray, 1992a) by

introducing an explicit desired or target state for each hidden node, updated

continuously during learning. The details were developed pragmatically, not as a

means of improving on back-propagation, nor to provide a mathematical analysis

of target algorithms, but to facilitate on-chip learning in hardware.

The key points of the virtual targets algorithm are that

the weight-change equations in the hidden layer and output layer are equi-

valent. They replicate back-propagation's equation for the output-layer

weights (Equation 2.13), which is much simpler than back-propagation's

weight-change equation for the hidden layer (Equation 2.19).

hidden-layer and output-layer nodes are rendered identical in function, at

the expense of introducing hidden-layer targets for each input vector.

the problem of back-propagation of error is effectively altered to one of

modifying the target states during learning.

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 18

The algorithm is, effectively, a different way of back-propagating the error. It

is not mathematically equivalent (since it does not guarantee gradient descent),

but is functionally equivalent in that it performs much like back propagation in

classification tasks.

Murray showed (Murray, 1992b, Murray, 1992a) that the algorithm behaved as

though two forces were at work and sometimes competing : one force being the

movement of the hidden-layer weights to reduce the hidden-layer error; the other

force being learning on the hidden-layer targets to reduce the network error.

Since the algorithm does not guarantee gradient descent, one would expect that

the network error might sometimes increase (ie the algorithm would demonstrate

'hill climbing'), which Murray did indeed observe.

The crucial test of the algorithm, of course, was whether it would work. It

succeeded on two standard MLP test problems, the parity task (can the net-

work distinguish between binary vectors exhibiting odd or even parity?) and

the encoder-decoder task (can the network encode an N-bit pattern into 1092N
bits and then decode this representation?) although, like back-propagation, the

algorithm sometimes became stuck in local minima. Furthermore, a comparison

between back-propagation and virtual targets on a real-world task, recognising

vowel sounds from a vowel database of male and female speakers, showed that

the two algorithms had similar generalisation performance, while virtual targets

had a learning-speed advantage (Murray, 1992b, Murray, 1992a).

In summary, then, virtual targets and back-propagation have broadly similar

levels of performance, and are of the same order of complexity, but virtual targets

removes the distinction between hidden-layer and output-layer nodes, and allows

for the weight-change equations in each layer to use local information, at the

expense of introducing explicit hidden-layer targets.

2.5.4 Details of the virtual targets algorithm

The full equations for the virtual targets, and for the back-propagation, al-

gorithms can be compared in Table D-1 in Appendix D

From the point of view of VLSI, the virtual targets algorithm has two advant-

ages over back-propagation. Firstly, the means of updating weights in a node

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 19

uses only information that is local to that node, simplifying the circuitry neces-

sary for a hardware implementation; in back-propagation, information for up-

dating the hidden-layer weights has to be passed back from the output layer.

Secondly, the weight-update strategies for both hidden- and output-layer neur-

ons are identical (whereas they are different for back-propagation), which means

that, once neuron circuits have been designed, they can be replicated for the whole

network, whichever layer they are in. The price to be paid is that, in addition to

the output target-states (ie teaching patterns used in training), a target-state has

to be introduced for each hidden-layer neuron, and these hidden targets require

information to be fed back from the layer above.

The virtual targets algorithm simplifies the weight-update strategy sufficiently

to make hardware implementation a more practical prospect than for back-

propagation.

The algorithm for the training phase for an I - J - K network is outlined in

Figure 2-3.

2.5.5 Weight perturbation

Colleagues at Oxford chose to investigate weight perturbation algorithms. Their

motivation (as with the study described in this thesis) was to facilitate the build-

ing of hardware MLP networks with on-chip learning.

Weight perturbation takes various forms (Cairns, 1995), but its simplest form

(Jabri et al., 1993) is as follows. Instead of calculating the error / weight gradi-

ents 8E18wkj, as does back-propagation, the technique measures them directly

using a finite-difference approximation, which is computationally simple but nev-

ertheless effective, if slow compared to back-propagation (Cairns, 1995). The

procedure is as follows

Apply an input vector to the network.

Measure the network error.

Perturb a weight by an amount pertk3 and apply the input vector again.

Re-measure the error and calculate the change in the error.

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 20

Carry out a forward-pass calculation to produce hidden- and output-layer vectors:

• Apply input pattern {O}, and read out the states {0 3 ,} and {Ok} of the hidden and output

nodes.

Calculate initial values for the hidden-layer targets

• Assign targets {T3 } for the hidden nodes such that {T,} = {O,,}.

Repeat 1 and 2 for all input patterns.

Present patterns in random order and allow

weights to evolve according to the following equations:

SWkj

	

St -
'ilwe i ght s OjpOkp ek p 	 (2.20)

	

St - 77weights°ip0pjp 	 (2.21)

where

• 77weights is a gain-term representing weight learning-speed;

• {°} and {O} are the inputs from the previous layer;

• O' and O,, represent the derivatives of the activation function (the 'sigmoid-prime' terms);

and

• Ckp and ej, are the error-terms where Ckp = Tk - O, and cjp = Tj -

hidden-layer targets to evolve according to the following equation:

K

	

?ltargets >
Wi j icp 	 (2.22)

St -
k=O

where

• ?ltargets is a gain-term representing target learning-speed;

• Wki is a weight on the connections between the hidden- and output-layers; and

• Fkp is the error term where ekp = Tkp - °kp•

Figure 2-3: The virtual targets algorithm.

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 21

Repeat steps 3 and 4 for each weight in the network.

Update all the weights in the network.

Repeat steps 1 to 6 for all input vectors.

Repeat step 7 until the network has learned.

Hence:

aEP

--
 Edf i 	 (2.23)

ôWkj 	perik3

-

-

E(wk + pertk3) - E(wk3) 	
(2.24)

 pertk3

and so the weight-change equation becomes

77
AWkj= - 	[E,(w + pertk3) - 	 (2.25)

pertk3

The computational simplicity', then, comes from the fact that, to establish the

amount by which a weight must be altered requires only a difference calculation,

scaled by a factor is/pertk.

2.6 Implications for hardware

This Section examines explicitly the hardware implications of each of the three al-

gorithms (back-propagation, virtual targets, and weight perturbation), considered

earlier. The comparison is summarised in Table 2-1. The following subsections

consider points where the comments in the table need amplification.

3The term 'computational simplicity' can be misleading. Although the computation

specified here is superficially very simple (for example, on a digital machine), to carry

it out in analogue hardware proves rather difficult (Cairns, 1995).

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 22

Feature Back propagation Virtual targets Weight perturbation

Speed of training Slightly slower than VT Fastest Not significantly
(in epochs) slower than BP

Speed of presenta- About the same Slow
tion per epoch

Classification About the same
performance

Computational
complexity:

Forward pass About the same

Backward pass Conveying output- Conveying output- Conveying network
layer error to layer error to error to hidden-
hidden-layer weights hidden-layer targets layer weights

Synapses Must be bi-directional Can be uni-directional

Hidden-layer Non-local information Only local information Non-local information
weights must be back- required must be back-

propagated propagated

Output-layer Only local information required
weights

Greatest Calculating hidden- Calculating hidden- Detecting and measuring
complexity layer weight updates layer target updates small changes in

network error

Equivalence of Weight update
hidden- and very different Nodes effectively the same
output-layer
nodes

Storage required Input patterns Input patterns Input patterns

Weights Weights Weights

Output targets Output targets Output targets

Hidden-layer targets Error / weight gradients

Possible limiting Precision in Precision in Precision in
factors forward pass forward pass forward pass

Precision in weight Precision in weight Precision in weight
update update update

Precision in target Detection of very
update small errors

Table 2-1: Comparison of the three algorithms

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 23

Speed

Since the motivation for the virtual-targets and weight-propagation algorithms

is to facilitate hardware implementations of MLP networks, extensive compar-

isons of their simulation performance with back propagation are not available.

However, we can say that

virtual targets has a slight learning advantage over back-propagation on the

speaker-identification task examined by (Murray, 1992b, Murray, 1992a),

learning in around 500 training epochs compared with around 1500 for

back propagation. On a series of tasks (speaker-identification, classification

of medical data and image-region classification), Cairns found weight per-

turbation and back propagation to have learned successfully within 2000

epochs.

the time taken for an epoch is inevitably slower for weight perturbation.

For K training patterns, an epoch for back propagation and virtual targets

will be in the order of:

Tepoch = (Tf orwardpass + Twe ightupdae) X K

while, for the same problem using weight perturbation, a network with N

weights will require

Tepoch = (Tf orwardpass + Twe ightupdat e) X K X (N + 1)

Classification performance

Classification performance is measured by training on a set of training vectors,

and then measuring the network's ability to classify correctly on a second set of

test training vectors which are chosen to represent, as far as possible, the whole

set of vectors which the network will be required to classify. The results may

4A learning epoch is one in which all patterns from the training set have been

presented once.

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 24

be presented in various ways, for example as the percentage of input vectors

classified correctly (generalisation performance), or as the percentage incorrectly

classified (cross-validation classification error). Performance of an algorithm is

highly dependent on the nature of the classification the network is required to

make.

Murray found the virtual-targets and back-propagation algorithms to be broadly

comparable in their success rates in classifying unseen data (Murray, 1992b,

Murray, 1992a) on the vowel-recognition task described earlier. Cairns found the

classification properties of weight perturbation and back propagation to be similar

on three classification tasks (speaker-identification, classification of medical data

and image-region classification) (Cairns, 1995), provided the size of perturbation

was sufficiently small'.

Computational complexity

Although a broad comparison is made here, a definition of 'computational com-

plexity' is not simple. Some computations which are very simple in digital sim-

ulation prove difficult in translation into analogue hardware (see footnote on

page 21), while, as we see later in translating the virtual targets algorithm into

hardware, the reverse is also true. A quantitative comparison could only be made

with a detailed design of a system for each algorithm, but would consider

. the degree of parallelism in the design;

• the number of calculations required;

• the complexity of the analogue circuits to carry out the calculations (eg

number of transistors, space-consumption, power-consumption);

• whether circuits could be designed to be replicated many times or whether

specialised circuits would be required;

5 1n the limit of small perturbations, as the change in weight approaches zero, the
weight updates generated by weight perturbation are identical to those obtained by

error back-propagation.

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 25

• signal-routing complexity within and between chips.

Trade offs between hardware complexity and algorithmic

performance

From Table 2-1, it is clear that there is no easy alternative to back propagation

as a means of implementing MLP networks in hardware. Nevertheless, virtual

targets and weight perturbation have sufficient advantages to make detailed in-

vestigation of their merits worthwhile.

It appears, from simulation results, that the virtual-targets and weight-

perturbation algorithms reduce complexity in particular areas without loss of

classification performance, although the length of an epoch is increased using

weight perturbation, due to the increased numFer of forward passes required.

The price in hardware terms is that of increased storage (for both virtual tar-

gets and weight perturbation) and the detection of small output changes (for

weight-perturbation).

2.7 Analogue hardware and the pulse-stream

approach

Chapter 3 reviews, in detail, the use of analogue hardware for ANNs. This Section

outlines the pulse-stream approach used in the project.

The pulse-stream approach is a hybrid of digital and analogue techniques

in which data is pulse-encoded but computation is done in analogue form

(Murray et al., 1991). An example of the technique is given in Appendix E. The

advantages of analogue circuitry can be retained, but communication between

modules or chips can be by binary pulses which encode data using, for example,

pulse frequency or pulse width. In more detail

• analogue computation can be compact, fast, asynchronous and free of

quantisation effects, and so is preferable to digital computation.

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 26

digital signals are robust and easily transmitted and regenerated, and so

preferable to analogue signals as a means of communication.

These advantages have been verified over a number of years by our research group.

As explained in Chapter 3, although I considered alternatives to pulse-stream

techniques, I adopted them myself.

2.8 Sigmoid derivative

In this section, I consider the derivative of the sigmoid function, also known

as the sigmoid prime, and its effect on the performance of the virtual targets

algorithm. The term appears in the equations for updating weights in both the

back propagation and virtual targets algorithms.

As part of an entirely pragmatic series of simplifications to the virtual targets

algorithm, described in detail in Chapter 5, I removed the term, and made an

estimate of the consequences in simulation. The criteria for success in these

simplifications were the practical ones that the algorithm should still classify

correctly, and that the algorithm should be easier to implement in hardware. I

was able to meet these criteria, at the expense of longer learning speeds, ie the

network took more epochs than previously to learn to discriminate different input

vectors.

2.8.1 The sigmoid function and its derivative

The general form of the sigmoid function is 1/(1 + e_x). A threshold term, 0,

and a temperature term, T, are added to control the zero crossing point and the

slope or gain of the function, so it is normally expressed as 1/ (i + e__0)T). The

shapes of sigmoid curves for different values of 0 and T are shown in Figure 2-4.

As explained in Section 2.4.1, given an output which is a sigmoidal function of

the activation, the derivative of the output with respect to the activation of that

node is

a'(netk) = Ok(1 - Opk) 	 (2.26)

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 27

1.2

0.8

0.6

0.4

0.2

0

-0.2 	
-4 	 -2 	 0 	 2 	 4

Figure 2-4: Various sigmoidal curves

and this function is illustrated in Figure 2-5

0.30

0.25

0.20
0

0.15

0.10

0.05

0.00

	

0.0 	0.2 	0.4 	0.6 	0.8 	1.0

Okp

Figure 2-5: Graph of the sigmoid prime.

As shown in the table of learning equations in Appendix D, the term appears

in the weight-update equations for hidden and output layers for both the back-

propagation and virtual-targets algorithms. As errors are back-propagated to the

hidden-layer weights, the effect of the error is scaled by multiplication with the

sigmoid-prime term. The value of the sigmoid prime goes to zero as a unit's

output O approaches 0.0 or 1.0 (which Fahlman called 'flat spots'), and never

exceeds 0.25. Therefore even if the error on a unit which is almost fully ON or

almost fully OFF is near the maximum, only a tiny fraction of the error will be

back-propagated. The unit may then stick in its ON or OFF state, taking a

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 28

large number of epochs to change or, if the back-propagated error is so small as

to be difficult to distinguish from zero, perhaps never recovering.

Fahlman identified this difficulty with back-propagation (Fahiman, 1988) in an

investigation of how various network parameters might be 'tuned' to improve

the characteristics, including learning speed, of the algorithm. He tried various

alternatives to the use of the sigmoid prime, including

• adding a constant to the term (so that its minimum value was 0.1 and its

maximum 0.35), dramatically improving learning times;

• replacing the function with a constant, thus eliminating the use of the term

altogether, which still reduced learning times, although not so dramatically;

• replacing the function with another which combined use of a constant with

a random value in the range 0.0 to 0.5, which caused the network to behave

in much the same way as the use of the constant alone.

Fahlman concluded

The primary lesson from these experiments is that it is very useful

to eliminate the flat spots by one means or another. ... A slight

modification of the classic sigmoid-prime function [adding a constant

step to the term] did the job best, but replacing this step with a constant

reduces the learning speed by about 20%. This suggests that this

general family of learning algorithms is very robust, and will give you

decent result however you scale the error, as long as you don't change

the sign or eliminate the error signal by letting the sigmoid-prime

function go to zero.

I concluded that this gave me empirical justification for removing the term, with

results similar to Fahiman's, as is described in more detail in Chapter 5.

Fahiman himself noted that the success of his approach might be problem- and

network-dependent. I cannot find in the literature that this point has been invest-

igated, although Looney has confirmed Fahiman's original result (Looney, 1996),

and there is evidence, for multi-hidden-layer networks, that amplifying the effect

of the sigmoid-prime on hidden-layers more distant from the output layer can

improve learning speed (Han and Moraga, 1995, Sarkar, 1995).

Chapter 2. A Review of Relevant Algorithms and Hardware Implications 29

2.9 Conclusions

The back-propagation algorithm and its two derivatives, virtual targets and

weight-perturbation, have similar classification abilities, although weight-

perturbation requires a higher number of forward passes during each epoch, which

extends its learning time in software simulation.

All three algorithms are complex to render into hardware, but virtual targets has

some features which ease the complexity at the expense of extra storage, while

weight perturbation alters the complexity from that of calculating weight changes

to that of detecting small changes at the outputs, again at the expense of extra

storage.

For the back-propagation algorithm, the sigmoid-prime term can be replaced by

a constant without serious performance deficit. This empirical finding proves

important in simplifying the virtual targets algorithm, as described in Chapter 5.

Chapter 3

Issues in on-chip learning

3.1 Introduction

I consider here the motivation for providing learning on-chip, and consider the

respective merits of digital and analogue implementations. I look at the published

literature, and classify the different implementations in terms of the ways in which

they store weights and modify them, two key issues in this field. Finally, I describe

some implementations in detail.

3.2 What is on-chip learning?

Designers can implement hardware neural networks, whether they are digital or

analogue, in several ways. One way of thinking about these implementations,

and so of classifying them, is the method they use to determine a set of weights

(ie to 'learn') and to provide these weights on a chip.

3.2.1 Learning off-chip

The majority of implementations have external learning, that is learning that does

not take place on the chip. A general-purpose, serial computer trains the network

by generating a weight-set appropriate for the task in hand. This procedure al-

30

Chapter 3. Issues in on-chip learning 	 31

lows the designer to train the network and test it on test-data or cross-validation

data. Although the serial nature of general-purpose computers prevents them

from exploiting the speed of a parallel network, computers nevertheless provide

the designer with the flexibility and design tools to allow him to check and re-

check his work. Once the designer is satisfied that the network operates sat-

isfactorily, the final weight-set can be down-loaded to the hardware, which is

then used for the intended application. For networks that use digital hardware,

the down-loading means storage of the weights in digital registers. For analogue

chips, the weights must also be stored, and this can be done in purely analogue

circuitry, using non-volatile storage techniques such as floating-gate storage or

the much newer technique of amorphous-silicon resistors (Holmes et al., 1995,

Holmes et al., 1993). However, even for analogue systems, the most common

form of storage is digital registers, using digital-to-analogue conversion to provide

weights in analogue form on the chip itself. The weights themselves are generally

represented as charge on capacitors. Since charge is 'volatile', ie it leaks away,

some means has to be found of refreshing the values of the weights.

3.2.2 Chip-in-the-loop learning

A second method of determining an appropriate set of weights is by chip-in-the-

loop learning. This technique is applied exclusively to analogue chips as a means

of compensating for variations in the performance of arithmetic functions of cir-

cuits located at different places on the chip. The designer carries out a training

phase, on a serial computer, to generate a suitable weight-set, and down-loads the

weight-set to the hardware network. Because of process variations on the chip,

a computation, for example a multiplication of two variables, from a circuit at

one place on the chip may give a different result from a copy of the circuit a few

hundred microns distant. This can degrade network performance. However, if

the supporting computer carries out a further training phase by applying inputs

to, and reading outputs from, the hardware, while re-adjusting the weights, the

hardware performance will rise. The re-adjustment of weights compensates for

within-chip variations. Intel's analogue ETANN chip (Tam et al., 1990) has used

the 'chip-in-the-loop' scheme, as has a back-propagation algorithm on a mixed

optical and analogue-electronics network (Frye et al., 1991). Our own group has

used this technique for the EPSILON chip as a means of implementing a van-

Chapter 3. Issues in on-chip learning
	

32

ant of the back-propagation algorithm (Churcher et al., 1993), to be described in

Chapter 4.

3.2.3 Learning on-chip

A third method of implementation is by what Card and Schneider call in situ

learning (Card and Schneider, 1992), that is the learning mechanism is located

on the chip itself, and hence the chip carries out the training of the network to

produce a suitable weight-set, without any need for serial-computer simulation.

As we shall see, automatic adjustment of analogue weights on a chip is not an

easy objective to achieve.

3.3 The advantages of on-chip learning

On-chip learning offers the following advantages over external and chip-in-the-

loop learning:

• Speed. Clearly, an ANN algorithm that runs on parallel hardware will run

faster than the same algorithm running on a serial computer; that is, after

all, what the algorithms are designed to do. If the hardware can accomplish

the learning phase too, so much the better. However, the issue of speed is

not a simple one. A circuit that can adjust an on-chip weight must be

replicated at every site to be truly parallel. This may make heavy demands

in terms of space, and therefore there may be trade-offs between space-

saving and complexity: the more parallel the implementation, and hence

the more space required, the more simple, and hence the less sophisticated

and slower, the circuitry involved. Furthermore, the network can only real-

ise any speed-enhancements in practice if the system can present data to,

and read it from, the chip in a way which does not cause bottlenecks. We

cannot, in other words, separate questions of the speed of learning on-chip

from the nature of the circuitry on the chip and the speed of the system as

a whole.

• Autonomous learning. A major advantage of neural networks is that

they do not need programming but, provided they are carefully designed,

Chapter 3. Issues in on-chip learning
	

33

can be trained from examples to perform a task. Tithe chip can perform

the training phase, then it is conceivable we could design autonomous sys-

tems that can learn and re-learn in real time. As with the issue of speed,

autonomous learning is not a simple matter to achieve. Currently, we do

not have algorithms that are applicable to a wide range of problems without

fundamental changes to the network. For example, a network running the

back-propagation algorithm, of which the algorithm described in this thesis

is a variant, needs careful design to give good results. Once we train a net-

work for one task, say pattern-classification, we may have to re-train it for a

new task and also change the number of inputs and neurons. Nevertheless,

the ability to learn autonomously does suggest potential benefits.

• Compensation for analogue variations. Cells at different places in an

array of analogue circuits will display different characteristics due to process

variations across the chip, a factor that can be accommodated by using chip-

in-the-loop learning. On-chip learning offers this same advantage, but can

also compensate for differences in the circuitry that holds the weights and

adjusts them.

• Adaptation to constantly-changing environments. Just as with pro-

cess variations, on-chip learning can compensate for changes in the en-

vironment, such as the temperature of the chip or in response to use or

changes in the surroundings. For example, when we drive a car, our per-

formance varies from day to day, and varies even in the course of a single

journey. Weather or lighting conditions can change, as may the surface of

the road, the density of traffic, or our own abilities and reactions as we

become fatigued through effort or more alert after passing the scene of a

recent accident. The whole environment - the outside world, the car and

our own bodies - changes. A neural network that is in a perpetual state of

learning could be capable of responding to a whole kaleidoscope of complex

relationships. This is by no means a new idea, since learning systems have

existed for many years in the guise of adaptive control systems, for example

for telephone echo cancellation or linear-predictive coding of speech. Neural

networks could support a rich range of inputs and outputs in environments

that are changing constantly.

• Compensation for charge-leakage. If we use charge on capacitors to

store analogue weights, the weight circuitry can be compact and simple, but

Chapter 3. Issues in on-chip learning
	

34

the weights must be refreshed in value from time to time to neutralise the

leakage of charge from the capacitors. As an alternative to weight-refresh

we can re-run the learning phase at intervals, until suitable weights are

re-learned.

3.4 The use of analogue, rather than digital,

hardware

Before looking at the reasons why one might choose analogue rather than digital

hardware, I want to suggest that digital hardware offers such advantages that, at

least at present, it is likely to be the prime choice. Digital implementations are

not restricted in the algorithms they can instantiate, but can be reasonably easily

re-configured to reflect the differences between a range of algorithms. Digital

arithmetic is not susceptible to process variations and so is highly accurate; that

is, an arithmetic result can be produced repeatedly wherever the function is

located on a chip, between chips of a different kind, and even with structures of

a different kind. Precision is not infinite, but it can be high, as is dynamic range,

both these factors being dependent on the number of bits chosen; at least with

current algorithms, precision is not a problem (although the space occupied by

a large number of bits is). The digital-design process is well-understood, and is

amenable to automation or, at worst, to algorithmic approaches that can reduce

the amount of trial-and-error steps required and the likelihood of error. Chip-

manufacturing processes are, generally speaking, designed with digital circuits in

mind, as are the models of transistors that manufacturers produce.

By contrast, analogue hardware has many problems

• Usually we have to commit analogue hardware to a particular algorithm,

since each algorithm requires different calculations that must be realised

with different circuits, each of which must be carefully designed before man-

ufacture.

• It is difficult to design analogue circuits that work well; each designer has to

expend many hours of effort developing a personal methodology and a 'feel'

for circuits, and the way they work, that is difficult to automate, or even

to explain. We may have to design circuits to accommodate the vagaries of

Chapter 3. Issues in on-chip learning
	

35

standard chip-manufacturing processes, and we must interpret the results

of simulations using knowledge that only experience can provide.

• Analogue arithmetic is highly susceptible to process variations and so is

inaccurate to a degree that is difficult to predict, both across a single chip

and between chips.

• It is difficult to achieve a high dynamic range because of noise due to electro-

magnetic pickup and switching.

The analogue voltages and currents that represent the different variables

are subject to offsets.

• Weights represented as charge on a capacitor have to be refreshed period-

ically.

Despite these problems, analogue approaches are held to have certain advantages

that I now want to examine.

• Analogue implementations are more compact than digital ones. This ad-

vantage, if genuine, is certainly a good reason for building analogue neural

networks. The main constituent of any artificial network is the array of

synapses, that is weight-storage and multipliers. Synapses on an analogue

chip can take up much less space than their digital equivalents. However,

as with most such assertions, the advantage is not overwhelming; by the

time we take into account the requirements of off-chip refresh circuitry, we

may have simply shifted the problem elsewhere. This is not to say that

analogue designs cannot show an advantage over digital ones, only that a

meaningful comparison is rarely straightforward.

In any case, I am not convinced that compactness is yet a major issue in the

design of neural hardware. Clearly, there is an advantage for any engineered

system in minimising costs, and silicon-usage is one of those costs. Because

biological systems, in particular the human brain, are held to be massively

parallel in nature, there seems to be an assumption that artificial networks

will benefit from a concomitant massive parallelism, even though the biggest

software implementations currently use only a few hundred neurons. We

can draw an analogy here between the current state of neural network re-

Chapter 3. Issues in on-chip learning
	

36

search and research into the use of parallel processors a decade ago. At that

time, exaggerated predictions were being made about the impact of huge

numbers of identical parallel processors that would render serial comput-

ing redundant. In practice, of course, the design of algorithms to exploit

parallelism proved rather difficult, unpredicted bottlenecks appeared, and

progress in the use of parallel processors in reality took a much more stately

course.

• Analogue circuitry is infinitely precise. It is true that limited resolution is

not a feature of analogue hardware (although see the footnote on page 116),

as it is with digital hardware, but the problems of noise and inaccuracy make

this advantage difficult to exploit.

• Analogue hardware can consume very little power. This is an undoubted

advantage of analogue designs; it is possible to operate transistors sub-

threshold and still achieve very useful results (Mead, 1989), but there are, so

far, few applications that make this an important virtue (Jabri et al., 1993).

The greatest virtues of neural network hardware - namely that once designed it

needs little or no programming and, because of redundancy, reduced testing -

apply to digital and analogue implementations alike. My conclusions are that the

advantages of analogue hardware are still questionable, although they may emerge

more clearly as research into algorithms matures and as applications become more

diverse.

3.5 Research into hardware parallel architec-

tures

The essence of neural networks is their parallelism, and we can only exploit this

on a parallel architecture. Parallel software and hardware architectures both

suffice. VLSI implementations offer a further advantage that many hundreds or

even thousands of neurons can be created in a small space, with a consequent

massive parallelism and resistance to error because of redundancy. Analogue

implementations offer the prospect of bigger networks in a smaller space, although

it seems we do not yet know the best way of exploiting this advantage.

Chapter 3. Issues in on-chip learning 	 37

From the preceding discussion, it is clear that these benefits are bought at the

price of producing networks that are difficult to design and inflexible to use. This

means that, for the future, we need to be clear about both the application we

have in mind and the means of achieving it before an analogue network becomes

the network of choice.

There are, nevertheless, two good reasons why such research is necessary. One

is that costs (of space, power, design-time and so on) are always important, and

hence occasions when compact, low-power circuitry will be required are bound,

sooner or later, to arise, for example in the case of autonomous vehicles. The other

reason is that digital simulation can never tell us enough about the performance

of real-world analogue circuits. This is partly because simulating a circuit and

building one are two entirely different tasks. It is also because some issues (for

example, the question of stability in a network with hidden-layers) is difficult or

impossible to investigate in simulation. The only sure way is to build the circuit

and try it.

3.6 Strategies in research on-chip learning

We could consider approaches to ANNs, and hence to on-chip learning, as falling

somewhere between two extremes.

At one extreme are the approaches that concentrate on the mathematical proper-

ties of ANNs as a means of solving real-world commercial or engineering problems,

such as economic forecasting or face-recognition. Although claiming inspiration

from biology, the link between ANNs and biological networks is tenuous. Within

this approach, on-chip learning is seen as useful because it is the obvious next

step for implementing algorithms, such as back-propagation, in their entirety

on a chip, or because the technique would aid performance in rapidly-changing

environments, such as a robot might encounter. Publications on on-chip learn-

ing lie overwhelmingly toward this end of the spectrum, and the technical work

described in this thesis is firmly rooted in this tradition.

At the other extreme are approaches that try in some way to emulate biological

mechanisms. The justification for on-chip learning in such cases are that it is an

integral part of the system. I include it here, albeit briefly, because the 'biological'

Chapter 3. Issues in on-chip learning

approach represents some of the best work in VLSI design, and because I am

intellectually attracted to it, despite my own work being from the other tradition.

Reasons advanced by researchers for choosing a particular strategy for on-chip

learning vary. For example, the approach might

• owe, in some degree, its inspiration to neurobiology.

• owe little to neurobiology, but demonstrates some interesting properties.

• use a popular algorithm.

• use an algorithm that gives a prospect of real-world applications.

• facilitate implementation in hardware.

• demonstrate a hardware feature in which the research group specialises

• allow large, parallel networks to be implemented.

• make the best use of the materials available.

Some of these reasons are stated explicitly in publications, or during presentations

at conferences, while some are implicit and never overtly stated.

The techniques also greatly vary. For example, some researchers concentrate

on inventing circuits to perform particular functions such as modifying weights.

Others build complete systems. Yet others concentrate on the conditions under

which learning could best operate.

I have chosen to illustrate the diversity of the field by choosing these examples:

• emulating a biological function

• implementing a model of a behavioural phenomenon, but without reference

to the underlying biology, and with the emphasis on taking account, from

the start, of the limitations of analogue hardware

• implementing a complete back-propagation system with non-volatile

weights

Chapter 3. Issues in on-chip learning
	

39

• investigating the efficacy of a variation of back-propagation that simplifies

implementation in hardware

3.6.1 Emulating a biological function

This kind of approach has a good pedigree in that its leading figure is Carver

Mead, renowned for developing VLSI solutions to neural problems. He was

very explicit in his original aims. These were to understand biological sys-

tems (because of their power), to model them in silicon, and to apply them

to problems that even the largest digital computers found intractable. His 'neur-

omorphic' approach identifies different structural levels in the nervous system

(Faggin and Mead, 1990). At the lowest, it develops silicon analogues of the com-

putational primitives of the nervous system, using the physics of semiconductors

(for example, the exponential dependence on gate-voltage of the drain current of

a transistor operating in the sub-threshold region). At the next level, it attempts

to organise these primitives to perform complex computational tasks, such as

sensory pre-processing or 'learning'. At the top level, it develops an architecture

capable of solving a practical problem, such as character recognition. In circuit

terms, Mead has tried to make his designs adaptive, to compensate for inter-

device and inter-circuit variations and to make the architectures reconfigurable.

His hope was that his designs would achieve the robustness and fault-tolerance

of natural systems.

Mead continues to apply his expertise to real-world problems through his

commercial activities (McDonald,, 1992). Although some of the shine has

been rubbed off his original notion, I believe it is still valid, as I ex-

plain in my conclusions to this thesis. For example, Mead and his

group have tried to model auditory processing, (Lyon and Mead, 1989,

Lazzaro and Mead, 1990, Lazzaro and Wawrzynek, 1993), as have others

(Liu et al., 1992, Rosen et al., 1994).

An interesting variant on this work is the implementation of a model of olfactory

processing (dealing with the sense of smell) (Shoemaker et al., 1992). The motiv-

ation for the implementation was twofold: that the area of the olfactory bulb in

question proved to have interesting clustering properties that might be replicated

in VLSI; and that the work might elucidate the computational principles of real

nervous systems.

Chapter 3. Issues in on-chip learning 	 40

Learning in the system was modelled on long-term potentiation (referred to on

page 144). The scheme circumvented some of the problems of learning in ANNs

such as back-propagation networks (to be discussed later in the thesis), in that

weights were incremented in fixed increments of 5% to 10% of the range, over a

range of only two or three times the value of naive weights.

The investigators took a pragmatic approach to modelling the system, in that

they followed biological principles closely on some VLSI modules in their system,

but were expedient in their use of circuits in producing other functions. Theirs

is a good example of clever circuits being used on an interesting problem, to aid

understanding rather than offer real-world applications.

Another investigator who has applied analogue VLSI ideas to this area is Elias

(Elias, 1993), who uses fairly simple models of very-low-level neural structures,

namely the dendrite (one of the structures of nerve cells to which synapses con-

nect). His work is interesting on two counts. The first is that his circuits can

realise temporal-encoding, a well-known feature of real neurons; he stimulates

chains of simple RC circuits that emit different responses depending on the phys-

ical distance of the stimulus from the output. The second matter of interest

is that he seems able to build useful feature detectors that can respond to, for

example, lines moving in particular directions.

3.6.2 Implementing a model of a behavioural phe-

nomenon

A colleague, Torsten Lehmann, takes an approach that combines biological inspir-

ation (the Klopf algorithm) with an understanding of the limitations of analogue

hardware, based on his experience in trying to implement the back-propagation

algorithm (Lehmann, 1995).

Klopf's so-called drive-reinforcement model (Klopf, 1988) takes the high-level,

psychological ideas of drives and reinforcements and applies them to individual

neurons the drives become sufficiently strong signals and the reinforcements be-

come changes in the signal levels. This approach to associative learning, which is

derived directly from animal learning, is able to simulate a wide range of classical-

Chapter 3. Issues in on-chip learning 	 41

conditioning data (Levine, 1991). It is, essentially, a differential Hebbian model.'

There are two additional complexities : in order to account for the observation

that in classical conditioning there is an optimal interval between stimuli, the

change in post-synaptic activity is delayed in time; and the change in synaptic

efficacy is proportional to present efficacy, because in animal learning there is an

initial, S-shaped acceleration in learning. The mathematical interpretation of the

Klopf rule is shown in Figure 3-1.

w(t) = zO3(t - 1)>1 77d I w,(t - d) I LO 2 (t — d — 1)

post-synapt) activity 	 (pre-synaptic
activity

efficacy
delay

Figure 3-1: Klopf's weight-change rule.

Lehmann's medium of choice is analogue, pulse-stream, VLSI, neural networks,

and he takes the inherent offsets and imprecision of analogue electronics into

account from the beginning (Lehmann, 1995). He argues that an unsupervised

learning algorithm such as Klopf's is not only biologically plausible but more

likely to provide an efficient implementation in, for example, robotics.

Whereas the pulse-stream network described in this thesis uses pulse-width mod-

ulation, Lehmann favours pulse-frequency modulation, and he has designed novel

circuits including a synapse, current-mode and charge-mode weight-change mod-

ules, and bandpass filters, needed because the implementation is a free-running,

asynchronous one.

Hebbian models cross-correlate pre- and post-synaptic activities, while dif-

ferential Hebbian models cross-correlate changes in pre- and post-synaptic activities.

Chapter 3. Issues in on-chip learning 	 42

The significance of Lehmann's conclusions lies in the fact that he had already

designed a chip set (Lehmann, 1994) that could, in principle, instantiate a range

of algorithms, including the back-propagation algorithm, as well as learn on-chip.

He concluded from this work (Lehmann, 1993) that learning in gradient-descent

algorithms was severely affected by a range of problems, including offset errors

on signals and the difficulty of calculating accurately the derivative signal, and it

was this understanding that led him to a different approach.

3.6.3 Implementing a complete back-propagation sys-

tern with non-volatile weights

A Norwegian group (Berg et al., 1996, Sigvartsen, 1994, Soelberg et al., 1994)

have attempted to implement a complete back-propagation network with on-

chip learning. Their system uses : a slightly-modified version of the algorithm;

continuous-time, analogue circuits; and analogue, non-volatile storage in the form

of floating-gate memories. This is an unusual combination of techniques, made

more unusual in that the means of learning, that is modifying the floating-gate

weights, is a UV-light source. To control the size of any increment or decrement

of the weights, the intensity of the light is varied.

In explaining their approach, the group make the usual token acknowledgement to

biological systems, but emphasise the technical prowess of the hardware, namely

that the feedback of signals during learning can compensate for offsets due to

transistor mismatch; power-consumption is very low since they use transistors in

their sub-threshold regions; and the network, if large, would show fault-tolerance

(although the network they have built is so small this advantage does not apply

in practice). The group have devoted their time, not to the design of special

circuits (since the circuit ideas are largely borrowed), but to building and testing

a complete system.

The group's design is a considerable technical feat, firstly because they have

had to translate an algorithm that is discrete-time and digital into continuous-

time, analogue circuits; and secondly because they have successfully combined the

electronics with the UV-light sources necessary to modify the rather cumbersome

floating-gate storage.

Their greatest achievement is that they have a machine with which they can

Chapter 3. Issues in on-chip learning 	 43

investigate, in a complete analogue system, phenomena such as stability and

the effects of noise, about which there is much theorising but little practical

knowledge.

3.6.4 Combining hardware design with simulation

My colleagues at Oxford have made an analysis of a technique called weight-

perturbation (Cairns, 1995), that avoids the need for calculating, during the

learning phase, the direction the weights should be adjusted. (The nature of

the algorithm is described in Section 2.5.5.)

The Oxford group's strategy for assessing the utility of hardware was in contrast

to my own attempt to translate as much of the virtual targets algorithm as pos-

sible into hardware. They designed one chip to perform the forward pass of a MLP

and used it with chip-in-the-loop training to compare error back-propagation and

different weight-perturbation techniques. They then used the data they had accu-

mulated in software simulations of real-world tasks (speaker identification, med-

ical data analysis and region classification) to make an assessment of the precision

with which weights must be updated for on-chip learning to be achieved. There

is much to be said for this alternative approach in that conclusions can be drawn

with minimum effort invested in actually building hardware.

3.7 Implementations of on-chip learning

When considering implementations of on-chip learning, we should be aware that

modifiable weights are a reasonably recent innovation in analogue VLSI. Histor-

ically, hardware neural networks have progressed from architectures where the

weights are fixed according to pre-calculated values, through systems using pro-

grammable weights (currently the most popular choice), to adaptive systems.

The published work that I consider in detail here is only concerned with the last

of these, namely adaptive systems

The normal course of events in turning an algorithm simulated on a serial com-

puter into a hardware implementation is to build modules that will perform the

different basic functions, replicate the modules several (perhaps many) times, and

Chapter 3. Issues in on-chip learning 	 44

combine them into a parallel system. In looking at a list of hardware implement-

ations, we can expect to see many different ways of building the basic modules.

However, the features that are of most interest in a study of on-chip learning are:

• choice of algorithm

. the method by which weights are stored

• the means by which weights are changed

e the design of the synapse

• the design of the neuron

Table C—i in Appendix C, lists published work on digital and analogue imple-

mentations of on-chip learning or (in a few cases) work that is of particular

interest in a study of on-chip learning. It is obvious from the list that there is an

enormous variety of approaches. Some work has particular applications in mind,

but many are concerned only with investigating particular circuits. What is not

obvious from the list is that certain issues are of key importance and I turn now

to these.

3.8 Key issues : weight-storage and weight-

modification

The questions of weight-storage and weight-modification are particularly difficult

ones (Eberhardt et al., 1992), and it will help to put the work of this study into

context to examine the work of other groups on these issues.

3.8.1 Weight storage

As indicated at the start of the chapter, weight-storage can take these forms

Chapter 3. Issues in on-chip learning 	 45

• fixed weights Weights are calculated in simulation and then their values

fixed or 'hard-wired' in some way. Such an approach, though not very

common now, is described in (Mead, 1989).

• digital weights Weights are stored externally in digital form, and so are

accurately known, with a precision dependent on the number of bits rep-

resented. As with fixed-weights, the values in store can be maintained

indefinitely.

• mixed digital and analogue weights The weights are stored digitally,

but converted to analogue values in a primary store in the form of charge

on a capacitor. The primary store may require regular refreshment from

the digital store if the values are not to decay through charge-leakage.

• truly analogue weights Floating-gate structures store analogue values

in a non-volatile manner, so no external refresh is necessary. Amorphous-

silicon technology shows some promise, but is at an early stage of develop-

ment. Although both these technologies are non-volatile, reprogramming

the weights is much slower than is reprogramming capacitive weights.

To highlight the different approaches, Table 3-1 classifies each of the approaches

in Table C—i in terms of the method of primary and secondary storage the re-

searchers have adopted. From the table we can easily infer the following points.

• Some approaches to on-chip learning are entirely digital.

• Of those which use an analogue primary store with digital secondary stor-

age, all represent weights as charge on a capacitor; sometimes that capacitor

is explicitly provided, sometimes it is the gate-capacitance of a transistor

that in turn controls a current.

• A number of researchers have taken advantage of the fact that, if the

network is learning continuously, and the speed at which learning is

taking place is sufficiently fast, refresh is unnecessary : the weights'

constant adjustment in time itself acts as a refresh. (One researcher

(Montalvo et al., 1994b, Montalvo et al., 1994a) proposes capacitive stor-

age in the learning phase and floating-gate storage once the appropriate

weights have been calculated and so is included twice in Table 3-1.)

Chapter 3. Issues in on-chip learning
	

46

Purely digital

implementations

Hybrid analogue-
digital

implementations

Purely analogue implementations
 Included for

other reasons
Capacitive Capacitive

using capacitive
storage with storage with floating-gate

storage with
refresh-by- refresh by read- storage

digital backup
learning store-and-write

Dwanlon and Sitar, Choi and Salani. Arima ci al. Unnaies-Barnuna Abuslaixi and Lande. Aispnsnr ci a!,

1990 1993 1991a, 1991b. cial. 1993 1994/ Berg cial. 1989. 1992

1992 1996

Eguchi cial. 1991 Cohen and Andrenu. Doienko and Canl, Kim aal. 1992 Botros and Abdul-

1992 1993a, 1993b, Aziz, 1993
1995

Harunierstosm, 1990 Ghrnh ci al. 1994 Donald and Akers, Meador et al, 1991 El-Masry et al,
1993 1992

Myers era!, 1992 Lcbmann, 1994 Ibrahim and (Montalvo et al, Frye ci al, 1991
Zaghioul, 1990 1992, 1994a. 1994b)

Salarn and Wang. Macq cial, 1992 Montalvo et al, Shibata and Ohm!. Hollis and Paulo..

1991 1992,1994a. 1995 1994

1994h

Shima ci a!, 1992 Schwartz ci al. Schneider and S3ckinger ci al.

19892.1989h Card, 1991a, 1992
1991h

Theeten eta!, 1990 Wang, 1993a, 1993h Walola and van Daalen eta!,
Meador, 1992 1994

Tomberg and Kaski,
1991 1

Table 3-1: Classification of published work in terms of method of primary and

secondary storage

• The division between refresh-by-learning and digital back-up probably re-

flects the confusion within the community over the best use to which ad-

aptive systems can be put. There is no clear candidate for an application

that requires a fast learning phase and then fixed weights thereafter; nor

for that matter one that requires continuous weight-adjustment, and so no

back-up.

3.8.2 Weight-modification

Each of the forms of weight-storage has advantages and disadvantages when we

consider the issue of weight- modification:

• fixed weights The question of weight-modification does not, of course,

arise

• digital weights in digital and hybrid implementations Digital storage

is well understood, easily-controllable, resistant to decay in value, and easy

to increment or decrement. This accounts for its relative popularity in the

Chapter 3. Issues in on-chip learning
	

47

list of implementations in Tables CA and 3-1. Set against these advantages,

digital storage takes up a lot of space on a silicon chip. Some algorithms,

such as back-propagation, are held to require a precision of 12 bits or more,

which makes space a serious constraint. One solution is to keep the storage

off-chip (incremented or decremented by an on-chip learning signal) and

refresh the charge on small capacitors on-chip.

• truly analogue weights Refresh-by-learning is a truly adaptive method,

although yet to be proved in an application. Some researchers

(Castello et al., 1991) see floating-gate solutions as the best combination

of silicon-area and storage-capability; others think small weight-increments

on floating-gates prove too difficult (Schwartz et al., 1989b). In addition

to the speed disadvantage noted in section 3.8.1, floating-gate storage is

a technology that is not as easily available to researchers (including my

group) as are other technologies capable of implementing digital storage or

mixed digital/ analogue storage. This, and the fact that knowledge about

its design is not as common compared to other designs, probably explains

its infrequency in the published literature.

3.9 Examples of weight-storage and weight-

modification

In this section I look at an example of each of the categories of weight-storage

listed in Table 3-1, and explain how weights are modified.

3.9.1 Example 1 : purely digital storage

Alspector's group designed a Boltzmann machine, a network in which the

neurons have binary values; the network learns by optimising energy-states

(a technique known as 'simulated annealing'), rather than by the delta-rule

(Maren et al., 1990). The algorithm, which derives from statistical dynamics, is

usually described as analogous to a physical solid that slowly cools, moving from a

high-energy to a low-energy state. In network terms, as the 'temperature' (replic-

ated by a noise source) reduces, the proportion of neurons in a high-energy state

Chapter 3. Issues in on-chip learning 	 48

reduces also, but the rule for updating the weights connecting units is probabil-

istic, so that sometimes the network jumps to a higher-energy state, allowing it the

chance to escape local minima in the energy surface (Beale and Jackson, 1990).

The modified Boltzmann machine (Alspector, 1989, Aispector et al., 1989) uses

a neuron that can produce both a step-function (as required by the original al-

gorithm) and a non-linear function such as tanh2 , with a noise amplifier that can

add noise to (or 'increase the temperature of') the neuron output. The chip's

synapse is shown as the block-diagram of Figure 3-2 g . Five flip-flops comprise

the digital weights (4 bits and sign). The synapse achieves multiplication as fol-

lows. A zero-weight disconnects the synaptic connection. A non-zero weight is

converted to an analogue conductance by a set of pass-transistors with graduated,

binary-conductance ratios. As the weight changes, the logic selects the appropri-

ate combination of pass-transistors, to give a combined conductance that increases

monotonically in steps from -15 to +15 with increasing weight.

'Teacher'/' student'
phase control

Figure 3-2: Block-diagram of the synapse on Aispector's Boltzmann chip

Learning is in two phases : in the 'teacher' phase, the inputs are 'clamped'

with an input-pattern, the outputs with a desired-state pattern; in the 'student'

state the output neurons are unclamped and run free. If, over these two phases,

two interconnected neurons are correlated (ie have the same binary state), then

2 The tanh function is equivalent to the sigmoid function, except that output values

can vary between -1 and 1.

'Diagram adapted from Aispector's own figures.

Chapter 3. Issues in on-chip learning 	 49

the correlation-logic increments the synapse-weight between them; otherwise it

decrements the weight.

Alspector produced a deterministic version of the Boltzmann machine that uses

mean-field learning (Alspector et al., 1992). Conceptually, in deterministic ma-

chines a neuron produces a real number (rather than a binary output), represent-

ing the probability of a unit being in an ON state, ie the units' outputs represent

the output-probabilities directly which, at least in simulation, means much faster

learning. In this version of the machine, Aispector was able to vary the gain of

the neuron with temperature, to sharpen the output from a tanh function to a

step-function. Although weight-storage is the same as in the earlier version, the

neuron output is a voltage, so the synapse now implements a weight x voltage

multiplication to produce an output current.

Alspector's solution to weight-storage exploits the ease with which digital lo-

gic can increment or decrement a weight, but his circuits are still able to offer

analogue multiplication, and analogue outputs from neurons.

3.9.2 Example 2: a hybrid implementation

Ghosh's group has implemented a Hopfield network (Ghosh et al., 1994a,

Ghosh et al., 1994b). The network is single-layered and fully connected. Each

neuron connects to every other neuron, but not to itself, through weighted con-

nections, and the connections between any two nodes are symmetrical. One way

to depict such a network is in a crossbar configuration, as shown in Figure 3-3(a).

The Hopfield network is auto-associative : given a pattern as input, it will regen-

erate it, even if the pattern is noisy or incomplete. To recall a stored pattern,

an input is applied, and the output of each neuron feeds back to all the other

neurons until the network eventually settles into a state of equilibrium, when it

produces the correct output. Learning a pattern does not involve repeated cycles

of applying a pattern, reading the outputs, and adjusting the weights, as is the

case with back-propagation. Rather, the weights are calculated in a single step,

directly from the patterns that the network must learn. The algorithm, which is

a form of Hebbian learning, involves multiplying the input vector by its transpose

to produce a matrix, that is then added to the weight-matrix to store the pattern.

Ghosh's group has built on earlier work where weights are resistors and neurons

Chapter 3. Issues in on-chip learning

INPUTS

(a) Crossbar configuration for a Hopfield network

Inputs from other neurons

Synapses

III 	III

Neuron

50

Vo+
Iwt 	 Vlin

(c) Ghosh's symbol for his OTA synapse and neuron

Circuit for 	1 	Multiplier 	
Vdd

tuning weights

lw
v 	v.H

Vim

_LVss
	

Vss

(c) OTAs connected as a network
	

(d) Schematic of the synapse and tuning circuit

Figure 3-3: The design of Ghosh et al for elements of a Hopfield network

are op-amps that sum weighted currents. Problems associated with early work

include : the need to have two neurons, one for excitatory connections, and the

other with an inverted output for inhibitory connections (since resistors cannot

take negative values); translating a pre-calculated weight-matrix into resistor

values, while taking account of parallel resistances and the output impedances

of op-amps; and the large size and inconsistency of silicon resistors. This more

recent work overcomes these problems. Moreover, it provides a means of tuning

the synapses, which is of course impossible with fixed resistances. It does so by

using operational transconductance amplifiers (OTAs) as synapses and neurons

(see Figure 3-3(b) 4).

The OTA at each synapse provides four-quadrant multiplication (so furnishing

excitatory and inhibitory weights), and supplies a differential output current to

the neuron. At the neuron, an OTA configured as an integrator sums the synapse

currents, as shown in Figure 3-3(c).

'Diagrams adapted from Gosh's own figures

Chapter 3. Issues in on-chip learning 	 51

As a multiplier, the OTA's output current is proportional to the product of the

differential input voltage, derived from the neuron outputs, and the transconduct-

ance of the differential stage (see Figure 3-3(d)). This in turn is set by the bias

current of the tail transistor, derived from the weight-capacitor. The weight is

stored in an on-chip SRAM. When addressing circuitry isolates a particular syn-

apse, the switch closes and a current DAC drives a current proportional to the

weight through transistor setting its gate-voltage. When the switch opens,

the capacitor C, maintains the weight-current (although it must be refreshed

periodically). The mirror transistors copy this current to the tail transistor, and

enable the correct multiplication. (V1 controls the linearity of the transconduct-

ance.)

A network constructed out of these building blocks, but only tested in simulation,

seems capable of recalling stored bipolar patterns, even if some of the input

patterns are corrupted. The group has not yet provided a way of calculating,

on-chip, the correct weights for particular sets of patterns, but has found a way

of adjusting the weights for different sets.

3.9.3 Example 3 : capacitive storage with refresh-by-

learning

The various learning chips produced by Arima's group (Arima et al., 1991a,

Arima et al., 1991b, Arima et al., 1992), each bigger than the last, were among

the first to demonstrate on-chip learning. In many ways, they were ahead of

their time, achieving goals that other groups, including our own, are still trying

to emulate. Like Aispector's, the chips ran a form of Boltzmann, mean-field

algorithm, with the consequence that their neuronal outputs were bistate. The

chips originally came in sets of two, one bearing the synapses being cascaded

with the other bearing the neurons. Ultimately, synapses and neurons appeared

on the same chip.

The synapse design was essentially the same over the various designs, and is

shown in Figure 3_45•

'Diagrams adapted from Arima's own figures

'7

Chapter 3. Issues in on-chip learning
	

52

(a) Bidirectional connections
	 Wt-T[1

Vstate2
	 (c) Synapse connection circuit

Synaptic
connection

circuit 1
Thibitory
weight.
Airicatio

Synaptic
Cormecutifl

	

weight 	 circuit 2

	

Weights state 	Weight x s2

Output current

xcilatory1.________ Pump

weight- capacitor

Digital Weight
weight- capacitor

modification
controls

Pump
capacitor

(b) Block diagram of synapse 	 (d) Charge-pump circuit

Figure 3-4: Circuits on the Boltzmann chip of Arima et a!

Each synapse is bidirectional and symmetrical, as shown in Figure 3-4(a), on the

assumption that W23 =Wjj.A synapse comprises two 'synaptic connection

circuits' (one for each direction) and two capacitive stores, one to represent excit-

atory or positive weights, the other inhibitory or negative weights (Figure 3-4(b)).

Each synaptic connection circuit (Figure 3-4(c)) is, in effect, a set of switched

current-sources, one of fixed value to represent a zero weight, and the other two

being controlled by the voltage on the weight-capacitors. The states of the in-

terconnecting neurons control the switches; a 'firing' (ie ON) neuron causes the

synapse to supply weighted currents to the next stage, otherwise it supplies the

zero-current. In the neuron, a comparator reads the summed currents and flips

if the value is over threshold.

I considered this design a possibility for my own system. Charge-pumps, again

controlled by switches (Figure 3-4(c)), bump the weight-capacitors up or down

according to the learning rule. The capacitors are very small (0.5pF), even by

VLSI standards, so only a 10% change was possible, but this seems to have been

enough for the network to associate correctly 98% of input patterns with the

correct outputs, provided various Hamming-distance constraints were observed.

Chapter 3. Issues in on-chip learning 	 53

Arima's group saw charge-leakage, and hence 'forgetting', as a problem

(Arima et al., 1991b), even if learning was continuous; if the holding-time is short

compared to the learning time, which might be the case if the set of input pat-

terns is large, then leakage destroys the learned associations. Their later work

developed a weight-refresh scheme to overcome this problem (Arima et al., 1992).

3.9.4 Example 4 : capacitive storage with read-store-

and-write refresh

A Spanish group has implemented an algorithm not commonly found in VLSI, the

bidirectional associative memory (BAM) (Linares- B arranco et al., 1993). The

algorithm allows the network to learn pairs of patterns so that, after learning,

one pattern will stimulate the network to produce the other (Levine, 1991). Kosko

(Kosko, 1988) developed a dynamical system of differential equations for a general

heteroassociative link (ie each pattern in a pair is different in structure and,

perhaps, in length) between collections of nodes in networks of the type shown

in Figure 3-5 (a). Conceptually, each interconnection has only one bidirectional

weight. When pairs of patterns are presented to the pairs of inputs, the outputs

of each layer are fed back to the other and a learning rule adjusts the weights.

Kosko showed that, where activity-pattern vectors (ie the output vectors) are

bistate (binary or bipolar), the weights will converge to a state of equilibrium.

Although there are discrete-time versions of Kosko's analysis, it maps naturally

onto a continuous-time system, which is what Linares- B arranco's group have

built.

The network can use several learning rules, the simplest, and the one used by

Linares- B arranco et at, being the Hebbian rule : connection strengths are in-

creased with correlated activity of interconnected nodes. The activity of a node

is a function of three terms, the nodes's own present input, the weighted sum

of inputs from nodes in the other layer, and a non-linear mapping of the node's

present activity. The circuit-blocks shown in Figure 3-5(b) 6 for node Yl imple-

ment the three terms. An external current-source represents the input 1.1, the

synapses are transconductance multipliers, and a circuit that behaves like a non-

linear resistor makes the non-linear mapping. The voltages on the output nodes

'Diagrams adapted from Linares-Barranco's own figures

. I

L.

T TT T9

Chapter 3. Issues in on-chip learning
	

54

YI Xl .Y2 .yjJ '

(a) A BAM network (b) Schematic of a neuron and weighted inputs

(c) Two layers of neurons, arranged in a grid (d) Schematic of a single synapse, showing single
weight, twin multipliers and weight-modification mechanism

(e) Block digram of weight-refresh scheme
	 (e) Weight-refresh cycle

Figure 3-5: The design of Linares-Barranco et al for a BAM network

Chapter 3. Issues in on-chip learning 	 55

represent the activity outputs. The whole network is implemented on silicon in

the very elegant array design shown in Figure 3-5(c) : y-nodes are arranged in

rows, with the columns providing weighted inputs from the x-nodes, while the

x-nodes are arranged in columns, with the rows supplying weighted inputs from

the y-nodes.

Each synapse comprises three transconductance multipliers (Figure 3-5(d)) and

instantiates the Hebbian rule. M 1 and M 2 are the weighting multipliers. M 3

(also a transconductance multiplier, but connected as a transconductance ampli-

fier with negative feedback) provides the load resistance RL. During the learning

phase, the input patterns produce activity voltages that drive the inputs to the

M 3 amplifier, and so provide the weight-voltage on This is fed back, in turn,

to provide a new set of activity voltages. After a few presentations of the pattern

set, the weights settle into an equilibrium state (Linares- B arranco et al., 1993).

The network has learned the patterns, and the switches isolate Ct.

The refresh scheme, shown in Figure 3-5(d) and (e), prevent leakage-currents from

destroying the weight-values. The buffer feeds the weight-voltage to an ADC and

latch, the latch increments to the next level (one of eight), and the DAC writes the

corresponding voltage back to The scheme keeps the weight-values within a

finite interval, and moreover allows the weights to be monitored.

The chip carries 5 neurons in each layer (and so 25 weights) and was able to learn

its maximum theoretical capacity of two pairs of patterns. One pattern would

stimulate the network to produce its pair, despite weight-deviations in 6 of the

25 weights, due to circuit-mismatch. Hence, although very small, the network

worked.

3.9.5 Example 5: purely analogue implementations with

floating-gate storage

One group has combined weight-perturbation techniques with both short-term

capacitive, and long-term floating-gate, storage, to produce a system that learns

on chip and maintains its resultant weight-set over time (Montalvo et al., 1992,

Montalvo et al., 1994b, Montalvo et al., 1994a).

The weight-perturbation algorithm works, like back-propagation, by gradient-

descent, but circumvents the difficulty of calculating the error-derivative (as back-

Chapter 3. Issues in on-chip learning 	 56

propagation requires) by measuring the gradient instead. The algorithm approx-

imates the derivative by measuring the network error, perturbing a weight, meas-

uring the error again, and then modifying the weight in the direction that will

reduce the error. The advantages are that the algorithm needs no complex calcu-

lation, and requires no exact knowledge of the network's characteristics, since the

gradient-measurement takes automatic account of the multiple imperfections of

a real-world analogue implementation. The disadvantage is that the algorithm is

only semi-parallel. For example, circuitry can perturb, in parallel, all the weights

that connect a single hidden node to the output nodes, since each weight affects

only one output, but the algorithm must attend to each hidden node in turn, to

avoid multiple effects on a single output. (There are stochastic variants of the

basic algorithm that perturb all weights in parallel.) However, the advantages

make weight-perturbation an increasingly popular approach.

Figure 3-6 shows the system. The synapse comprises a weight-modification

module, a dynamic weight with a perturbation mechanism, a long-term store and

a multiplier (Figure 3-6(a)). Cd is the dynamic store to which the increment and

decrement signals can add or subtract charge in the form of the currents through

transistors MI and M2 (Figure 3-6(b)).

The synapse consists of a double-differential stage with two current sinks Fl,

which has a fixed gate-voltage reference, supplying a zero-current I; and F2,

which can vary 12 around the value of I, providing a four-quadrant multiplication.

The charge on Cdy varies 12 directly, by varying the gate-voltage on F2, but F2

can also store the charge more permanently using high-voltage pulses to transfer

the charge to the floating gate.

The system provides dynamic and long-term storage, and uses an algorithm that

requires neither great accuracy nor complex calculation. The authors claim to

be able to limit offsets due to charge-injection on Cdv, and furthermore to have

developed circuits that compensate for temperature effects, but they have so far

presented no results of the network running the algorithm.

'Diagrams adapted from Montalvo's own figures.

Chapter 3. Issues in on-chip learning
	

57

lout+

lout-
Multiplier

Inc 	I 	 I 	I Dynamic

	

.1 Weight- I 	I weight, and 	 Long-term 	 Vstate-

I 	I 	 I

	

modification 	 perturbation 	 weight-

circuitry 	I 	I mechanism I 	I 	storage 	I 	I 	 I
Dec 	 I 	I 	I 	I 	II 	 I

Pert

(a) Block diagram of the synapse

(b) Circuit schematic

Figure 3-6: The design of Montalvo et al for combining short- and long-term

storage on the same chip

Chapter 3. Issues in on-chip learning
	 l.J

3.10 Conclusions

On-chip learning is a technique that places the circuitry that adapts weights

onto a chip, rather than have the weights calculated on a supporting computer.

The technique, although difficult to achieve, offers several advantages over other

methods of determining an appropriate set of weights.

On-chip learning can be implemented in digital or analogue hardware, and it

appears that, at least at the moment, the advantages of the digital approach make

it the medium of choice. Nevertheless, several digital and analogue approaches

exist that attempt to place learning circuitry on a chip.

Notwithstanding the variety in approaches, the issues of how to store a weight,

and how to change it, are key ones. Examples drawn from throughout the field

demonstrate that a range of algorithms can be accommodated to on-chip learn-

ing, although the networks tend to be small, and operate with varying degrees

of success. These approaches each use different methods of storing and changing

weights, and each has its merits and defects; no one approach seems overwhelm-

ingly better than another, and this is partly because, as yet, there is no clear

candidate for an application of on-chip learning.

Chapter 4

Hardware functions from the VT

algorithm

4.1 Introduction

In this chapter, I show how I translated the virtual targets algorithm into func-

tions capable of being realised in silicon.

4.2 Translating the Algorithm into Hardware

4.2.1 Building on previous work

Colleagues here recently produced a chip called EPSILON, designed to carry out

the forward-pass of a number of different algorithms, including back-propagation

(Hamilton et al., 1992, Hamilton et al., 1993). The chip could carry out the

multiplication - summing -p non-linear-mapping operations referred to in sec-

tion 2.2. The general approach to the design and the performance of the chip in

many ways rivalled that of the ETANN chip (Tam et al., 1990) referred to in sec-

tion 3.2, which was a product of the very large and successful commercial R & D

laboratory. The EPSILON chip comprises an array of two-quadrant multipliers,

a simple summation method involving summing currents on an electrical node,

59

Chapter 4. Hardware functions from the VT algorithm 	 60

and a series of circuits to calculate the activation of a neuron and convert it into

an appropriate output, ie all the operations described in Figure 2-2.

Since the forward-pass operations are a major part of the virtual targets al-

gorithm, it seemed an obvious decision to build on this work. Our ability to

carry out the operations of a forward pass was taken for granted and I focussed

on the weight- and target-modification operations described in Figure 2-3.

4.2.2 Basic hardware principles

A number of basic guidelines have been established in our group that can be

sensibly applied to any analogue-hardware implementation of an ANN

A single layer of a network can be translated naturally into a grid pattern,

as illustrated in Figure 4-1. To implement a complete network comprising

hidden and output layers, there are several possible solutions. There can

be enough synapses to implement all the nodes; the outputs of the first

layer can be routed off-chip and then back on again; or, if the nature of the

signals allows, chips can be cascaded together.

It makes sense to represent inputs to and outputs from the chip as voltages.

For inputs, it is easier and more accurate to distribute voltages around a

grid of synapses. For outputs, it is easier to pass voltages than currents

between cascaded chips.

Outputs of synapses are generally represented as currents, because sum-

mation can be achieved simply and elegantly on a single electrical node

according to Kirchoff's current law.

HLI 	I

HL2 4]l
:

LTI-1 10
HL3 I

1[i-lx 'L)

OL! 	0L2

(c)

Chapter 4. Hardware functions from the VT algorithm
	

61

Input layer
(no computation)

Hidden layer Output layer

Di OLI

(a)

OL! 0L2

HL H'~

(b)

Figure 4-1: Translating one layer of an ANN, in this case the output layer, into

a grid pattern for implementation on silicon. (a) The original network, with the

output-layer nodes labelled OL1 and OLE, and the inputs labelled HL1 - HLS. (b)

The output-layer nodes rearranged so that each input signal is directed horizontally

to the same synapse in each node. The synapses are represented as black dots.

(c) The way circuits implementing the various functions might actually be laid

out on silicon. Synapses are now represented by squares. Input signals are passed

along the rows. Each column contain all the synapses for a particular node. The

outputs of the synapses in each column are summed down the column and, at the

column-foot, the non-linear mapping is applied to each sum.

Chapter 4. Hardware functions from the VT algorithm 	 62

4.3 Implementing the forward-pass equations

on EPSILON

This section considers the forward-pass equations and the way in which they

were implemented on the EPSILON chip. To understand how this was done is

important in appreciating how I developed the original EPSILON design for the

virtual targets algorithm and on-chip learning.

4.3.1 Forward-pass equations

The forward pass can be expressed in the following equations for the outputs of

the hidden and output layers

(j=0
oj =

Ok
=0. (k=O

2 Wk3O

where the sigmoid function a(x) = 1/ (i + e_(x_9)T)

As I have already noted, these equations can be decomposed into a series of

multiplication -* summing —3 non-linear-mapping operations, and circuits imple-

menting the various functions laid out in a grid-pattern on silicon. EPSILON

was designed in this way.

4.3.2 The architecture and circuits of EPSILON

Figure 4-2 summarises the EPSILON architecture. A detailed understanding is

unnecessary, and I only go into further detail when this is important to understand

the work of this investigation.

• Multiplication The multiplication is a two-quadrant operation because

the weights Wkj and W3 , are bipolar while the input states Ok and O

Chapter 4. Hardware functions from the VT algorithm 	 63

U

. JL
0.
C

Ramp signal

Synapse

Array

Op-amp buffers

Voltage integrators

Activation capacitors

Comparators

JL 	 JL

Output pulses

Figure 4-2: A much-simplified description of the architecture of the EPSILON

chip

are unipolar. On EPSILON, input states are represented as voltage pulses

of varying width, the width encoding the value of the state. Weights are

represented as charge stored on a capacitor at each synapse site. The out-

put signal from each synapse, the result of a weight-voltage x state-pulse

multiplication, is a current-pulse.

• Summation The output current-pulses from a column of synapses are

summed simply on a single electrical node.

• Non-linear mapping The means of converting the summed currents, rep-

resenting the activation, into a value representing the output-state of a node

is rather complicated. Each column has a series of circuits to accomplish

the transformation. First a buffer-circuit and operational-amplifier convert

the summed current-pulses into a series of positive and negative voltage-

pulses. A voltage integrator re-converts the voltage-pulses into positive and

negative currents that, in the form of charge, are dumped onto or drawn

off from an activation capacitor. The final voltage on the capacitor is the

weighted sum of the input signals. This voltage is converted into a pulse

Chapter 4. Hardware functions from the VT algorithm 	 64

via a comparator by use of an off-chip, programmable ramp-voltage. In this

manner, all state signals, whether input or output, are pulse-width modu-

lated signals. It also means that the shape of the ramp-voltage determines

the mapping between the weighted sum and the node activation, which can,

within reason, be any linear or non-linear mapping. As explained by one

of its inventors (Churcher, 1993), the ramp shown in Figure 4-2 is a two-

sided sigmoid 'on its side' that encodes this particular form of non-linear

mapping.

4.4 Implementing the weight-modification

equations

In the virtual targets algorithm, the learning rule is represented by modification

of weights (as with back-propagation) and additionally by modification of targets

which is considered in Section 4.5. As we shall see, although some of the com-

ponents of the learning rule at first sight seem difficult to implement in analogue

electronics, a suitable choice of representation for signals can greatly ease the

problems, and some calculations can be done in an analogue way by what are

essentially digital signals.

4.4.1 The equations

The equations according to which the weights are modified can be expanded as

shown in Figure 4-3. The form of the equation for each layer is identical, and

comprises four terms.

The first of these is a gain term, which can be thought of as a means of in-

creasing or reducing the size of the weight-change. The remaining three require

to be multiplied together, and comprise the input from the previous layer, a

'sigmoid-prime' term and an error-term. The first task was to develop means

of implementing each of the terms electronically. The second task was to find

a means of multiplying the three terms together, which seemed a much more

difficult proposition.

	

Chapter 4. Hardware functions from the VT algorithm
	

BN

hidden-layer weight 	 output-layer weight

= TiwcighisOiO(j

= 	- 01)(t - o)

gain term
 sigmoid-prime'

term

input from
previous ifl

= TweightsOjOEk

= llweights OjOk(1 - 	- Ok)

error term

Figure 4-3: The weight-modification equations for the hidden and output layers.

Individual terms in the hidden-layer equation are identified by the names in the

bubbles. Since the form of the equations is identical in the two cases, the terms

for the output-layer equation are equivalent to those in the hidden layer.

4.4.2 Input and output signals

I considered changing the form of representation of input and output (state)

signals from pulse-width modulation to some other form, perhaps pulse-frequency

modulation which had also been investigated by our group, and perhaps even an

entirely different form. However, the advantages of retaining the pulse-width

modulation scheme were overwhelming. The group had had plenty of experience

in the design of pulse-width modulated circuits, the operation makes inter-chip

communication possible and the EPSILON design could be used for the forward-

pass calculations.

4.4.3 Implementing the 'sigmoid prime' term

The sigmoid prime term is of the form Ok(l — Ok), and the means of implementing

it is to consider it as an analogue function with a state input Ok and an output

Ok(1 - Ok). The graph of the function is shown in Figure 4-4(a). Our initial

consideration of this problem involved a switched-capacitor circuit with a rather

Chapter 4. Hardware functions from the VT algorithm 	 66

complex clocking scheme and, as an alternative, an inverter circuit in which

transistor characteristics were used to try and replicate the features of the curve.

It then occurred to us that an accurate representation of the curve was probably

not important for the success of the algorithm, but only its general shape. We

therefore considered implementing it as the approximation shown in Figure 4-

4(b).

0

0

0.

0

0.0 	0.2 	0.4 	0.6 	0.8 	1.0

Okp

(a)

4.2
4.0

3.8
ES 3.6

3.4
3.2

' 3. 0
2.8

2.6
0

2.4

. 	2.2
0

0.0 	0.2 	0.4 	0.6 	0.8 	1.0

Okp

(b)

0 	 5 	 10 	15 	20

Input-pulse width (microsecs)

(c)

Figure 4-4: The 'sigmoid-prime' term. (a) Graph of the function Ok(1 - Ok).

(b) A more-simply implemented approximation.

In fact, once we have chosen pulse-modulated signals as the states, to produce

the sawtooth version of the function proves very simple using an XOR gate'. The

basic idea is illustrated in Figure 4-5.

'The original idea was that of my second supervisor, Martin Reekie

Chapter 4. Hardware functions from the VT algorithm 	 67

pulse of fixed
duty-cycle

integrator based on

{ferenÜIplifie variable-width pulse
Ok

Figure 4-5: The fundamentals of the circuits to implement the 'sigmoid-prime'

term. Appropriate input signals to the XOR gate produce a series of pulses at the

output that can be integrated to give the correct result.

An XOR gate receives two pulsed inputs, a fixed, control signal, and a pulse-

width signal representing the state. The gate's output is a pulse-train whose

ON-time-minus-OFF-time rises and then falls, like the sawtooth curve illustrated

in Figure 4-4, as the state-pulse increases from zero to some maximum width.

The following circuit is a voltage integrator that, during the ON-time, sources

current onto an integration capacitor, and during the OFF-time, sinks current

from the capacitor. The final calculation is the result of the function.

The result rests on the idea of a fixed time-frame in which pulsed signals are

centred on a particular time in the frame. To see how this is done in practice,

some exemplar signals are shown in Figure 4_62. The time-frame chosen is 40iis.

The signal applied to input A of the XOR gate is in every case a fixed 50%

duty-cycle pulse train, centred on the 20is point in the frame. Input B receives

the pulse representing the state Ok, centred on the 10s point, and examples

encoding three state-values of low-value, one half and one are shown. The gate's

output is a series of pulses of a number and duration dependent on the width of

the Ok pulse. As the Ok pulse increases in width, the ON-time-minus-OFF-time

of the gate's output pulses rises correspondingly, and then falls.

I chose a standard circuit for an XOR gate, laid it out using silicon design tools,

and simulated it using Hspice.

2 The graphs shown here are Hspice simulations of circuits extracted from VLSI

layout.

Chapter 4. Hardware functions from the VT algorithm

pulse-width representing 'low-value' 	I

InpulAl 	!r 1i ri
% 5 10 IS 20 25 50 35

5 I

In putB

0 2

- 	 3 In IS 20 25 30 35 40 45

Output I+j

IO p
0 	5 tO 15 20 25 50 35 4)) 43

lime (us)

pulse-width representing just over 1/2'

'I 	5 II) 15 20 25 30 35 40 45

051013 20 25 30 35 40 43

+25 H P
% 5 10 15 20 25 30 35 40 45

time (us)

pulse-width representing 'I

ftfl ou 	 .r
5 10 13 20 25 30 35 40 45

0 5 tO 15 20 25 30 35 40 45

10

"0 5 tO IS 20 25 30 35 40 45

Iinw(us)

Figure 4-6: Calculation of the 'sigmoid-prime' term, shown by exemplar in-

puts to, and corresponding outputs from, the XOR gate. The output signal's

ON-time-minus-OFF-time varies in an analogue manner, as explained in the text.

4.44 Implementing the error term

The error-term is of the form Tk - Ok, where Tk is a target value and Ok is a state

value. If both these values are represented by a pulse-width modulation signal,

the result can again be computed using an XOR gate. This time the result does

not depend on the two pulses being centred on a point in the time-frame, but

is achieved if they are coincident in this way (as shown in Figure 4-7) or have

coincident leading or trailing edges.

The calculation of this term is so simple it needs no further explanation, other

than to say that the result can be used in exactly the same way as a state-value

can be used.

The circuit used for the XOR gate for the sigmoid prime and error-term functions

is shown in Figure 4-8.

Chapter 4. Hardware functions from the VT algorithm 	 69

6

Input 	3
+16

2

0
0 	5 	10 15 20 25 30 35 40 45

Input B 	

00
	15 20 25 30 35 	40 45

Output Z 	3

0 	5 	10 	15 20 25 30 35 40 45

Time (us)

Figure 4-7: Calculation of the error term, shown by exemplar inputs to, and

corresponding outputs from, the XOR gate.

= A xor B

Figure 4-8: The standard circuit for the XOR gate used for the 'sigmoid-prime'

and error-term functions

Chapter 4. Hardware functions from the VT algorithm 	 70

4.4.5 Implementing a sign circuit

The calculation of an error-term that is the difference of two values raises the issue

of sign, since one must determine whether a negative result will be generated. The

idea of centring the pulses that represent targets and errors on a point in a time-

frame again makes the solution easy. This time, the function can be implemented

using an S-R flip-flop (see Figure 4-9), the only constraint being that, whatever

the inputs, the flip-flop should not settle in an indeterminate state.

Obar
If the longer of two symmetric pulses

is applied to input S, Q is set

If the longer of two symmetric pulses

is applied to input R, Q is reset.

I-'

Pulses arranged symmetrically

about this point

Figure 4-9: Using an S-R flip-flop to determine the sign of the result of the

subtraction of one pulse from another

I chose a standard circuit for an S-R flip-flop, and simulated it using Hspice. The

only difficulty was in ensuring the circuit never settled into an indeterminate state.

This involve choosing non-standard transistor sizes for some of the transistors. I

then laid out the circuit using silicon design tools, and re-simulated it to verify

its operation under all input conditions. The circuit is shown in Figure 4-10.

4.5 Implementing the target-modification

equation

We can use some of what we have learned from implementing the weight-

modification equations in implementing the target-modification equation. This

issue only affects the hidden-layer targets because, as the virtual targets algorithm

Chapter 4. Hardware functions from the VT algorithm
	

71

p1

an

ii: ip2

Figure 4-10: The flip-flop circuit used for the sign function. Judicious choice

of transistor sizes ensures the flip-flop never settles in an indeterminate state.

is a supervised-learning algorithm, targets for the outer layer have to be specified

explicitly as part of the problem that the network is trying to solve.

4.5.1 The equation

The equation for update of the hidden-layer targets is

K

AT = 77targeis :i: Wkek

k=O

We can immediately note three things : that the error-term that occurs in the

weight-change equation reappears here; that two terms must be multiplied to-

gether; and that the results of several multiplications must be summed. The

equation is, then, very like the forward-pass equations referred to in Section 4.3.1

on page 62. The difference is that, whereas the forward-pass equations require a

two-quadrant multiplication, both the weight and error terms are bipolar, and so

a four-quadrant multiplication is required.

I approached this problem, therefore, from the point of view that, if a suitable

four-quadrant multiplier could be developed, the implementation of the target-

30

20

a. 10

0

E

-10
0

-20

-30
0 	 I 	 2 	 3 	 4 	 5

Vwt (volts)

(b)

Vdd

Vtb

Vp

Chapter 4. Hardware functions from the VT algorithm 	 72

modification equation would be, to all intents and purposes, solved. However,

the design for a suitable multiplier took considerable thought.

4.5.2 The EPSILON synapse

Our start-point was the two-quadrant multiplier developed for the EPSILON chip

and shown in Figure 4-11.

Vhiref

Vstate
V

	

Mi 	
lout

	

v.H M2 	 Vo

Viotef

(a)

Vhiref

Vz 	
Vste

Vrow 	Vcol 	
MI

Vwt

rTh 1M2

- 	Vloref

Vbias

(c)

Figure 4-11: The EPSILON synapse. (a) The transconductance amplifier,

which is at the core of the circuit. (b) The amplifier's output characteristics when

v out is varied. ('c) The complete synapse and functional blocks that make up a

complete synapse and neuron.

The transconductance amplifier consists of only three transistors supplied by rails

with a voltages differing by around 1 volt, which keeps M1 and M2 in the linear

region of operation. The voltage V is fixed, so that transistor M1 acts as a

constant-current-source. The voltage v on M2 represents a weight that, as it

Chapter 4. Hardware functions from the VT algorithm 	 73

rises, causes M3 to sink varying currents. The resultant current through M3

varies linearly, as shown, from positive to negative values, ie in two quadrants,

provided the rail voltages are low compared to Vwt. If Vsjaje is a digital pulse,

0t is a current-pulse whose amplitude reflects the weight-voltage and whose

duration reflects the state-value. If the current-pulse is integrated, a weight x

state multiplication is achieved. If the output currents from a set of parallel

synapses are integrated, the result represents a sum of products, as the equations

require.

For the target-modification equation, another circuit producing four-quadrant

multiplication is required. Alternatively, the performance of the EPSILON circuit

requires to be extended to four-quadrants, but it is not immediately obvious how

this might be done.

4.5.3 Option 1 : the Gilbert multiplier

The Gilbert multiplier (Kub et al., 1990, Schneider and Card, 1991b) is very

popular , for all kinds of applications, not only for ANNs, and its basic structure

and output characteristics are shown in Figure 4-12.

[
40

30

20

10

0

-10

-20

-30

40
-1.0 -0.8 -0.6 -0.4 -0.2 	0 	0.2

Vi (volts)

Figure 4-12: Basic structure of the Gilbert multiplier, and its output charac-

teristics . The circuit's operation is described in the text.

Analysis that assumes the square-law approximation for the transistors working

in saturation, and hence that their drain-source current is iD = I3(VGS - VT)2,

shows that the difference of the output currents i 1 and 1 2 is

0.

C
C)

V2 (volts)

0.0

1.0

0.4 0.6 0.8 	1.0

	

Chapter 4. Hardware functions from the VT algorithm 	 74

jo 1 -
	

(F2 -#1)
(viv2)

where /3. and)31 are the transconductance parameters of the upper two differential

pairs and the lower differential pair, respectively. In other words, i 0 is the product

of the two differential input voltages.

The circuit has much to commend it. Its operation is well verified, the output

characteristics are regular and the curves well-spaced, and a choice of output

converter can provide a single-ended voltage or current.

A disadvantage is that the gain of the circuit can be very large, making the

differential voltages that can be multiplied to give a linear output correspondingly

small. The wide-range version also comprises around 20 transistors. However,

the greatest disadvantage is in trying to develop a circuit of which our group

had no experience and which was not a pulse-mode circuit. All the inputs to the

multiplier are differential voltages, not pulses where states are encoded in time.

4.5.4 Option2 : the Dupuie multiplier

A beautifully simple multiplier with good output characteristics is the Dupuie

multiplier (Dupuie and Ismail, 1990), shown along with its output characteristics

in Figure 4-13.

The inventors envisaged the multiplier output-nodes being connected to an oper-

ational amplifier to compute the current difference. Unlike the Gilbert multiplier,

and like the EPSILON synapse, correct operation relies on the transistors being

held in their linear region. In other words, the voltage over the drain and source

terminals, VDS, must be kept low (say between 1 and 1.5 volts), compared to the

voltages on the transistor gates,vGs, (say 3 to 4 volts); in these circumstances,

the transistors' drain-source currents, and hence the output currents, are a linear

function of the gate-voltages. The multiplier is able to achieve four-quadrant op-

eration because the drain and source terminals can be reversed, and current can

3The term 'wide-range' refers to the multiplier's ability to multiply voltages near

VDD or ground

40

30 VI

20

1.

o

o -10

-20

-30

V2

-0.A 	 -0.6 	 -0.4 	-0.2 	0 	 0.2 	0.4 	0.6 	 0.8

V2 (v.6.)

03V
V1 (_1u) _-

-O.5V

Chapter 4. Hardware functions from the VT algorithm 	 75

+

Figure 4-13: Basic structure of the Dupuie multiplier, and its output charac-

teristics . The circuit's operation is described in the text.

flow through the transistors in either direction. There is a 2-transistor version of

the same circuit with similar characteristics.

This circuit, like the Gilbert multiplier, requires inputs in voltage, rather than

pulse, mode.

4.5.5 Option 3: twin EPSILON synapses

Another possibility is the development of the original EPSILON synapse into a

four-quadrant form. Two ways in which this might be done are shown in Figure 4-

14. is a positive weight, while V_, which is stored at the same time,

is its negative 'mirror' around a zero voltage. Pulses that represent states are

designated 'positive' or 'negative'. In the scheme shown in Figure 4-14(a), control

logic determines which position switch S adopts, but an objection would be that

charge-sharing between the capacitors, as the switch changes position, might

seriously distort the weight representation. In Figure 4-14(b), this objection is

overcome : a twin-synapse performs the four-quadrant multiplication, and this

time the control-logic determines which half of the synapse is used.

In circumstances where learning takes place off-chip, say on a supporting PC, the

problem of calculating a positive weight and its negative mirror is easily solved

in software. After each calculation, the computer down-loads new values to the

chip. However, an objection to both the schemes outlined here is the difficulty

of providing a weight-voltage and its mirror when the weights are changing. One

problem is that of incrementing a positive weight and decrementing a negative one

by the same increment. Another problem is of matching capacitances, with the

Chapter 4. Hardware functions from the VT algorithm

Vhiref 	
Vdd

Vfb

Vz _P

M2

 I
State pulse

logic
 (3—

 Control

Sign bit

Vloref 	 Was

(a)

State pulse
Control logic

Sign bit

Vhiref 	:
Vdd

Vhiref

Vth:

Vstat

Mll 	

IV
VWt+

:_ Ml3

Vioref Vbias
0

Vloref

(b)

Figure 4-14: Schemes for implementing the EPSILON synapse as a

four-quadrant multiplier. (a) Two capacitors, one representing a positive weight

and the other its negative mirror, serve one synapse, and a switch selects the

appropriate capacitor. (b) To circumvent charge-sharing, twin-synapses are used

and control logic selects which of a 'negative' or 'positive' pulse is directed to the

appropriate synapse.

Vill

Vdd

Vfb:
p

Vbias

Chapter 4. Hardware functions from the VT algorithm 	 77

danger that the variation between the two capacitors exacerbates the difficulty

of matching increments and decrements.

4.5.6 Option 4 : twin EPSILON synapses operated in

parallel

A solution that is not without problems, but nevertheless is a substantial improve-

ment on the schemes proposed so far, is shown in Figure 4-15. I have already

noted, in connection with the Dupuie multiplier (Section 4.5.4), that a transistor

operating in its linear region not only provides a current that is linearly related

to its gate-voltage, but also can have its drain and source voltages reversed. This

makes the original EPSILON synapse, in all essentials, symmetrical to the rail

voltages. The left synapse in Figure 4-15 is a normal EPSILON synapse, while

the right synapse has its connections reversed so that transistor M2 acts as a

constant-current sink, while transistor M1 sources a current that varies linearly

with the weight voltage.

Vzero

	

Vz 	

Ift 	
j

I 	M3
Vwt

_L JM2

	

- 	Vioref

Vdd

1 	Vfb:
I 	0

I 	 Vwt

p

-v - - H

Vbia ff—ø

IVdd
Vhiref 	 I

L1
Vstate 	

Wi,

MU 	

[J

M12

Vloref 	 Vbia

Figure 4-15: A four-quadrant multiplier. A single capacitor drives twin syn-

apses, in one of which the V and V connections have been reversed. A

'zero '-state pulse is supplied to one synapse, while the other receives a normal

state pulse.

The circuit is by no means perfect, as the simulation results of Figure 4-16 show.

The curves are reasonably symmetrical in the x and y planes, but the intended

Chapter 4. Hardware functions from the VT algorithm
	

IN

2.7
0

0

2.6
CI

0

2.5

2.4

0 21

Input-pulse width
rosecs)

I 	

10

20

-1.5 	-1.0 	-0.5 	060 	005 	1.0 	1.5

Vwt - vzero

Figure 4-16: Output characteristics of the four-quadrant multiplier.

zero output voltage of 2.5v is actually offset. The size of this offset is dependent

on a number of factors concerned with the operation of the synapse circuit itself

and other circuitry that makes up the whole neuron. An analysis of the twin

synapse is given in Appendix E, which shows that that part of the offset due to

the synapse is caused the asymmetry of its two halves. This imbalance can be

corrected (in a manner explained in Appendix E) by the addition of a current

source to the circuit. There are several practical solutions to the correction of

the offset but, due to approaching chip deadlines, I left this matter aside.

4.6 Summary of design work

Although I had undertaken a wide-ranging consideration of the possibilities for

several circuits, the final decisions condensed into the following straightforward

conclusions

• Retaining the pulse-mode approach has strong advantages. Unfortunately,

the use of the elegant Gilbert or Dupuie multipliers is precluded, at

least without substantial further development, because they operate with

voltage-mode, not pulse-mode, inputs. Set against this disadvantage, the

sigmoid-prime, error and sign circuits which, at first sight, seem difficult to

design turn out to require no more than slightly modified digital gates.

Chapter 4. Hardware functions from the VT algorithm 	 79

• Building on the design work of the EPSILON chip solves a number of imme-

diate problems. The forward-pass equations can already be implemented.

The target-modification equation can also be implemented, except that a

four-quadrant multiplication is required.

• A four-quadrant multiplier with the essentials of the correct functionality

can be derived from the EPSILON synapse. This also retains the use of

pulse-mode signals and makes it easy to interface to other EPSILON cir-

cuits.

• The question of implementing the weight-modification equations remained to

be solved. As things stood at this point, the equation required a three-term

multiplication in which each term was a pulse.

4.7 Test chip : design, testing and results

This section explains the architecture of the test chip and describes how I built a

test-system, which gave me valuable experience in providing the various voltage,

current and pulse signals that drive the EPSILON circuits and those of my own

design.

4.7.1 Objectives

The design of the test-chip had, in terms of results, a single objective : to assess

the basic functionality of the four-quadrant multiplier and sigmoid-prime circuits.

For reasons of space and time, the error- and sign-circuits, although designed and

laid out in the design tools, were not committed to silicon, on the assumption

that their simplicity more or less guaranteed their ability to operate as predicted.

4.7.2 Chip architecture

The architecture of the chip is shown in Figure 4-17. The chip comprised 4 syn-

apses, with their associated neurons (op-amp buffer, integrator and comparator),

together with an XOR gate and associated integrators and comparators.

4QM 	4QM 4QM 	4QM

Opffers
-amp 	XOR

bu

f 	f f 	f 	Voltage integrators

-I- Activation capacitors rH LfJ

Comparators

a
0.
C

Ramp signal

Chapter 4. Hardware functions from the VT algorithm
	 II]

_FL 	JL 	 _FL

Output pulses

Figure 4-17: Architecture of the test chip, with 4 synapses, a sigmoid-prime

circuit, and support circuits.

4.7.3 Testing

Further details of the chip's design and testing are given in Appendix F

4.7.4 Results from the test chip

The results of the test procedure confirmed the functionality of both the four-

quadrant multiplier and the sigmoid-prime circuits. Figure 4-18 repeats the

simulation results shown earlier, alongside results taken from the chip.

The results proved very difficult to obtain. The EPSILON circuits are difficult

to set up, because accuracy in their several current and voltage supplies can be

critical. The test board and associated state-machine proved very noisy, possibly

because the clock-rate of 2MHz (divided down to 1MHz for clocking the ROM),

required to give a resolution of 1is pulses, was probably near the limits of the

state-machine's performance. Graph (b) of Figure 4-18 shows results from a

single run of a single synapses-and-neuron column; the curves seem to show two

distinct zero-points, circled on the graph, the cause of which was very difficult

to identify. Graph (c) shows results of the average of a number of runs, with

Vwt - vzero
(b)

Chapter 4. Hardware functions from the VT algorithm

2.7
0

2.6

Input-pulse width
(Inicrosecs)

4.0

3.8

3.6

3.4
=

3.2

3.0

2.8
C) us

2.6

> 2.4

0
0 2.5

C

2.4

0
> 2.3

10 -1

10 	1

Vwt - vzero

(a)

3.2

3.0

2.8

2.6

2.4

be
2.2

C

2.0

18

> 1.6
-1.5

Vwt - vzero

(c)

Figure 4-18: Results of tests of the four-quadrant multiplier. (a) Simulation

results. (b) Results from a single synapse and neuron. (c) Results from a single

synapse, averaged over 10 runs, and corrected for double-zero point. Chip integra-

tion-capacitor voltages are inferred from pulse-outputs which had previously been

calibrated.

Chapter 4. Hardware functions from the VT algorithm 	 82

the double-zero point corrected artificially. The characteristics of the measured

results are asymmetrical about the zero-weight and 2.5V axes. Set against these

points, the general characteristics are as expected, the curves are reasonably

evenly-spaced, and the output range is clearly scalable.

5.0

4.0

3.8

3.4

3.2

3.0

2.8

2.6

2.4

p2.2

2.0
0 	 5 	 10 	 IS 	 20

Input-pulse width (microsecs)

0
.. 4.5
0

• 	4.0

35

t 1.0

3.0

2.5

0 - I; 	 15 	 20
Input pulse width (microseconds)

(a) 	 (b)

Figure 4-19: Results of tests of the sigmoid-prime circuit. (a) Simulation res-

ults. (b) Results from 10 chips. Chip integration-capacitor voltages are inferred

from pulse-outputs which had previously been calibrated.

For the sigmoid-prime circuit, testing was reasonably easy, and Figure 4-19 shows

the results. Although there is a variation between chips, I did not anticipate that

accuracy in the calculation would be critical. As with the multiplier results,

however, I did expect a problem with establishing a zero-point.

4.8 Summary and conclusions

Given an MLP algorithm with advantages over back-propagation for implement-

ation in VLSI, I was able to break some of the required functions down into a

series of modules capable of being realised with hybrid circuits. The modules

concerned four-quadrant multiplication, the sigmoid-prime term, the difference

of two variables, and the sign of a calculation. Although I considered several

possibilities from the literature for a four-quadrant multiplier, I was able instead

to find an option that matched well with, and allowed us to use, much of the

work that had gone into developing the EPSILON chip. The use of pulse-width

signals also made design of circuits for the sigmoid-prime, difference, and sign

terms much easier than had at first seemed possible.

Chapter 4. Hardware functions from the VT algorithm 	 83

I constructed a chip to test the functionality of the four-quadrant and sigmoid-

prime circuits and concluded that, while there were problems, notably with noise

and the difficulty of setting up circuits, the basic functionality existed to make

further development of the algorithm worthwhile.

Chapter 5

Simplification of the algorithm

I still needed to solve two large problems. One concerned the complexity of the

weight-change equation. The other problem, consequent on the first, was a means

a making the weight-change appropriately. I discuss the second of these problems

in Chapter 6, but here I consider the complexity of the weight-change equation

and what might be done to simplify it.

5.1 Software simulation and hardware compu-

tation

In some ways, digital-computer simulations of neural networks sit uneasily in

relationship to analogue hardware, as Table 5-1 shows'. If an algorithm does not

work in a software simulation, then it is very unlikely to work in hardware; but

the fact that the algorithm does work in software only suggests the possibility of

success in analogue hardware, not how it might be achieved, nor how the hardware

might behave in practice. The transformation from software to hardware is a

'The Table introduces the terms 'accuracy' and 'precision'. There seem no

universally-agreed definitions. Kirk (Kirk, 1993) defines them like this : 'accuracy'

is how closely a measurement agrees with our expectations ("getting what you want")

and precision is the degree of agreement of repeated measurements, and so a quantific-

ation of the useful information present ("knowing what you've got").

Chapter 5. Simplification of the algorithm
	 M.

question of subjective judgements rather than a systematic application of well-

understood rules.

Software Simulation

Precision depends on hardware but can be
implemented higher degrees in software

Perfect accuracy

Timing of calculations and updates can be
controlled precisely

Processing is generally serial (and slow)

No change in values over time or space

Tiny changes can be made to values, and dynamic
range is high

Mistakes can be easily rectified

'Tweaks' are easy to implement

Skills for writing code are important

Results are repeatable

Hardware implementation

Very high precision (but value not known precisely)

Accuracy imperfect

Timing can be stepped, but little control over exact
timing of changes in individual circuits

Processing can be parallel (and fast)

Values of variables change due to leakage currents,
changes in temperature, variations in process, etc

Changes may have to be large, and dynamic range
may be low

Mistakes have to be circumvented or otherwise
overcome

'Tweaks' may be difficult to introduce

Many different skills, including coding, are required

Results of repeated computations may vary due to
noise, temperature changes, etc

Table 5-1: Comparison of features of digital-computer simulations and ana-

logue-hardware computation.

With software simplifications in mind, I asked these questions

• How could the algorithm be simplified?

• Could the changes be reduced to questions of proportionality or scale?

• Could a single measure of success be developed for tests of the simplified

algorithm?

• Could the changes be translated into hardware that was easy to control?

Chapter 5. Simplification of the algorithm 	 86

5.2 Changes to the target-modification al-

gorithm

The target-modification equation decrees that hidden-layer targets will evolve

so : AT = 17targets >2O Wkjfkp. My original simulations did not constrain

hidden-layer target-values (ie the limits were those of the computer), and in-

crements to target-values were differently scaled to decrements. I constrained

the values between 0 and 1, made increments and decrements the same, and en-

sured a straightforward proportionality between the target-change and the sum-

of-products, so that: AT cx E Wkck2 . In this way, the target-modification circuit

would only have to scale the result of the sum-of-products calculation.

This gave me a baseline for further simulations, and Figure 5-1 graphs the results

of learning on the character-recognition problem referred to in Section 2.5.4.

C
0.8

0.6
cd

ti)
ci)
.-
-

0.4

0.2

0
0

No. of patterns correct

Mean max error

Mean-squared error

500 	 1000 	1500
	

2000 	2500

Epochs

Figure 5-1: Simulation results using the simplified target-modification al-

gorithm. These results were used as a baseline for comparison with future simu-

lations

Chapter 5. Simplification of the algorithm
	 EIi

The points to be noted from the graph are that the value for the number of

patterns correctly recognised has been normalised, so that a value of 1 indicates

that all patterns have been recognised; the mean-square error is included because

it is that error that is being minimised according to the virtual targets algorithm;

and the total error is included because of its usefulness in indicating the stability

of learning2 .

Further simulations showed that the algorithm would classify all patterns cor-

rectly within 750 epochs.

5.3 Changes to the weight-modification al-

gorithm

From the starting point described in the last section, I considered the weight-

modification equations. The equations for the hidden- and output-layer weights

are shown in Figure 5-2 (which is simply a copy of Figure 4-3).

Of the four terms involved, the three terms other than the gain term are repres-

ented as pulses. The first term I considered was the sigmoid-prime term.

5.3.1 Simplifying the sigmoid-prime term

I had already made a simplification of this term, by replacing the original char-

acteristics, which are shaped like a parabola, with a triangular characteristic (see

Figure 4-4 on page 66). However, Fahlman had investigated other possibilities of

improving learning in back-propagation networks, including shifting the sigmoid-

prime's output range from 0.0 -p 0.25 to 0.1 -p 0.35 (Fahlman, 1988).

'The definitions of these error-terms, graphed in this and following figures, is as fol-

lows. An error is the difference between an actual output-value from any one node and

the target-value for that node. The 'mean max error' is the mean of the maximum error
for each pattern, that is the largest single error for any particular pattern-presentation,
averaged over all patterns. The 'mean-squared error' is the mean square of all output

errors .for all nodes for all patterns.

Chapter 5. Simplification of the algorithm
	 M.

hidden-layer

Awii 	 AWkj = 1/weighta 0j0kk

= 	 —o)(t1—o1) 	 = 	 — Ok)(ik — Ok)

gain term

term..
error term..

input from
revious layer

Figure 5-2: The weight-modification equations for the hidden and output layers.

His reasoning was as follows. The output of the function is zero when opj is

zero or one, and reaches a maximum of 0.25 when o pj is 0.5. In standard back-

propagation, output units tend to get turned off hard during the early stages of

learning, and get stuck in the zero state. The more hidden units there are, the

more likely output units are to get stuck. As an error is back-propagated through

the network, the error is multiplied by the sigmoid prime; even if such an out-

put represents the maximum possible error (if a unit is incorrectly close to zero

or one), the shape of the sigmoid-prime graph ensures that only a tiny fraction

of the error is passed back to the unit's weights and previous layers. The term

heavily discourages learning on nodes that are very ON or OFF, and attenuates

learning on nodes that are midway between the extremes.

After experimentation had shown that Fahlman's recipe of raising the func-

tion's output range was as valid for the virtual targets algorithm as for back-

propagation, I decided to remove the term altogether, and to scale the gain-term.

This change produced a corresponding improvement in the speed of learning, as

shown by the graphs in Figure 5-3.

For different values of the gain-term, learning was very quickly successful, in well

under 500 epochs instead of around 500 as before. Learning is smooth, as shown

by the curve for the total error, until the gain-term is raised to a value of 0.100.

Chapter 5. Simplification of the algorithm
	

E;1

1.0

0.8

0.6

zo 0.4

gain-term = 0.010

No. of patterns correct

__-Mean max error

_-Mean-squared error

gain-term = 0.025

1.0

0.8

0.6

0.4

0.2

0.0
0 	500 	lOGO 	1500 	2000 	25(

0.2

0.0

K)

	

gain'-term = 0.00
	

gain-term = 0.100

	

1.0
	

1.0

	

0.8
	

0.8

	

0.6
	

0.6

	

zo 0.4
	

0.4

	

0.2
	

0.2

	

fin
	

An

	

""0 	500 	1000 	1500 	2000 	2500 ""0 	500 	1000 	1500 	2000 	254k)

Epochs 	 Epochs

Figure 5-3: Simulation results with the sigmoid-prime term removed from the

algorithm and the gain-term rescaled and given different values.

I could not, of course, assume with any certainty that a hardware implementa-

tion would behave in the same way as the software, but it seemed reasonable to

conclude that removal of the sigmoid-prime term was no impediment to learning,

and would perhaps enhance it. Far from some simplification being necessary, I

could ignore the term completely.

5.3.2 Simplifying 	the 	remainder 	of 	the

weight-modification equation

The weight-modification equation had now been reduced to this form (for the

output-layer weights)

LWkj = l7wetghts 03(tk Ok)

3This equation corresponds to the delta rule for the simplest kind of networks.

Chapter 5. Simplification of the algorithm 	 90

In other words, successful learning can take place when the change in the weight

is proportional only to the error and the input from the previous layer.

This led me to wonder if learning could still be achieved with a simplification that

allowed weight-modification in what Shoemaker calls a 'trinary' manner, in other

words three types of modification involving a fixed increment, a fixed decrement

of equal value, or no-change (Shoemaker et al., 1991). Were learning successful

in such circumstances, it would open up the possibility of a weight-modification

circuit that only demanded a 'bump' in the right direction.

I therefore experimented with a software function that carried out this simple

recipe, with the caveat that the no-change state should apply in circumstances

where either the error or the input was so small that it fell below some minimum

threshold. If the error was positive, the weight was increased, and if negative it

was reduced. My expectation was that, if the idea worked, then its success would

depend on the correct step-size, and this did indeed prove a little tricky to define.

The graphs in Figure 5-4 show the results.

There are several problems with these results. As, the step-size increases from

0.01 to 0.20, the learning becomes increasingly bumpy. When it is least bumpy,

ie when the step-size is very small (0.01), learning is, as one might expect, very

slow, taking around 6000 epochs to classify all patterns correctly. On the other

hand, even with a step-size of 0.10, classification seemed reasonably stable.

Chapter 5. Simplification of the algorithm
	

91

1.0

0.8

0.6

0.4
0 z

0.2

1.0

0.8

0.6

0.4

0.2

Step-size = 0.05

0.0
00

500 	1000 	1500 	2000

Step-size = 0.10
	

Step-size = 0.20
1.0

0.8
0

0.6

I 0.4

0.2

0.0

1.0

18

16

).2

Epochs 	 Epochs

Figure 5-4: Simulation results using an algorithm where weights are 'bumped'

in the correct direction. Note that the range of the x-axis on the first graph is

10.000 epochs, while that on the other three is 2,000.

5.4 Using the forward-pass circuits efficiently

Calculating a network-layer's output states (what I call the 'forward pass') re-

quires a sum-of-products calculation, and so does the equation for calculating

the change to the hidden-layer targets. The equations are shown together in

Figure 5-5.

Each is a sum-of-products calculations; assuming, in analogue circuits, the repres-

entation of the variables is the same for the input-states and errors (say, pulses),

then the same multipliers could be used for both calculations.

The problem is that the equations require that the flow of data through an array

of synapses to calculate output states is orthogonal to the direction of flow for

hidden-layer targets.

To be clear about this idea, the virtual targets algorithm requires that data should

Chapter 5. Simplification of the algorithm

Ok =a(k=OWkiOi)

	

Output state

	

11

i

Th

	

proportional to 	
on a capa

of...

K

= 7/targets E WkjEkp
k=0

error

:Cha-:nge in target 	 weight (held as charge
on a capacitor)

.:,Wo e.t.

proportional to 	
tinies

sum Of

pulse

ctroclucts of

Figure 5-5: Preferred representations of signals to realise the equations for

computation of output states and for changes to the hidden-layer targets.

pass through the array in two ways. The first way is for the forward pass through

each layer, in which input states are weighted, the results are summed and the

sigmoid function is applied, to give an output state for each neuron in that layer.

As explained in Figure 4-1 on page 61, a forward pass is equivalent to driving

inputs along rows in a chip array and summing the results of the weightings on a

common node at the foot of the columns. The idea is depicted in Figure 5-6(a).

The second way in which data passes through the array is the backward pass of

the error terms in order to compute the hidden-layer targets. For a chip array, this

is equivalent to driving signals representing the error-terms down the columns,

and summing the results along the rows, as shown in Figure 5-6(b).

If we can find a way of performing both kinds of calculation, on the same multi-

plier array, the circuit-design can be simplified. A way of doing this is explained

in chapter 6.

Chapter 5. Simplification of the algorithm 	 93

:

Data

SmmingciwiUy

Ezrnm on

OLI 	0L2

HLI
Hr

targets

HLTI

OLI 	0L2

(a) Forward pass 	 (b) Backward ('error') pass

Figure 5-6: Conceptual representation of the flow of data through the synapse

array on a chip for the forward (a) and backward (b) passes.

5.5 Final alterations to the algorithm

I made final changes to the algorithm at a later stage, when recoding it for the

PC on which I carried out circuit tests. The changes involved the removal of a

software procedure I called 'jamming the targets". The algorithm was recoded

for the network shown in Figure 5-7, chosen for a very small test of the circuits.

4 This was a means of keeping the relationship between actual hidden-layer outputs

and hidden-layer targets fairly close. The procedure checked the level of the largest

single error on the output layer : if the error fell close to zero, the actual outputs were

copied to the hidden-layer targets. Previous changes, notably constraining values of

the hidden-layer targets between 0 and 1, rendered this unnecessary. I would like to

thank Andy Myles for many helpful discussions that aided me in making a reordering

of events in the algorithm that made it intuitively more sensible

Input patterns

o•os
o••o
•o•o
•oo•

Target patterns

•000

o•oo
oo•o
000•

Chapter 5. Simplification of the algorithm 	 94

Simulations showed that, if the fixed steps used to increment or decrement weights

were too coarse, then the network would not learn. However, within wide limits,

any step size finer than the maximum increment with which learning would take

place was acceptable; the finer the step size, the longer the network took to train.

We will see the importance of this result in Chapter 7.

Input layer 	 Hidden layer 	Output layer
(no computation)

Figure 5-7: The test network.

5.6 Conclusions from the software simulations

The idea of simplifying the algorithm to facilitate hardware implementation had

been successful, although not unconditionally. We had been able to draw the

following conclusions from the work in this chapter:

• hidden-layer targets - it would be sufficient, for the success of the algorithm,

to modify targets in proportion to the sum-of-products of the weights and

errors, so that : AT cx >

• .sigmoid-prime term - far from being important for learning, this term could

be disregarded altogether;

Chapter 5. Simplification of the algorithm 	 95

• weight modification - although I could not be certain, I could be hopeful

that a simple, fixed-step, increment or decrement in weight-values would be

sufficient for learning to take place, provided the error and input from the

previous layer were above a threshold, and in a direction dependent on the

sign of the error. However, the step size would have to be small.

I turned then to the question of a mechanism for modifying weights and targets.

Chapter 6

Elements of a system for the

algorithm

6.1 Introduction

In Section 6.2, I describe my investigation of means to change weights represented

by charge on capacitors, and the decision I made on a circuit to carry out this

task. In Section 6.3, I explain the scheme I developed for transferring my ideas

onto silicon and, in Section 6.4, the design of my second chip.

6.2 A circuit for changing the weights

I considered four possibilities for a circuit to modify weights

• Schwartz's switched-capacitor weight-modifier

• Transistor substrate pump

• Arima's charge-pump

• the EPSILON voltage-integrator

Chapter 6. Elements of a system for the algorithm 	 97

and finally decided on the last of these. I describe the circuits themselves, and

my reasons for my final choice, in this Section.

6.2.1 The Schwartz weight-modifier

One of the ideas included in Table 3-1 in that of modifying weights by

a switched-capacitor circuit (Schwartz et al., 1989b, Schwartz et al., 1989a,

Schwartz and Samalam, 1990, Schwartz and Samalam, 1991). A schematic dia-

gram of the circuit is shown in Figure 6-1.

ML

SAl 	S I1 	 S 1 	SA2

• 7'
inc/dec 	::::E:::: 	 -i--- 	multiplier
voltage

Figure 6-1: The Schwartz weight-modifying circuit.

The idea is to exploit charge-injection, a phenomenon normally avoided by de-

signers of switched-capacitor circuits. A pair of capacitors, representing V and

V_, are connected by a string of MOS transistors. SA are access transistors, to

allow the capacitors to be charges to pre-set voltages, and Si allow the capacitors

to be isolated from ML, a long transistor used to inject charge into the capa-

citor nodes. Since S1 are minimum size, and so cause little charge-injection into

connecting nodes, we can think of them as ideal switches, and consider only the

charge-injection process caused by pulsing transistor ML.

At the start of the process, all switches are open. Using a clocking scheme, S1 1 is

closed and ML turned ON long enough for electrostatic equilibrium to be reached.

If S1 1 is opened, then S1 2 closed, and ML turned slowly off, mobile charge in the

transistor channel is injected onto V_, lowering its voltage. The reverse sequence

raises its voltage.

The authors of this work claim that very fine adjustments are possible with this

scheme.

Chapter 6. Elements of a system for the algorithm 	 98

6.2.2 Transistor substrate pump

Another possibility exploits a phenomenon recognised almost three decades ago

(Brugler and Jespers, 1969), and illustrated in Figure 6-2. When pulsing a tran-

sistor gate-voltage with a negative pulse, there was an apparent injection of charge

across the source-substrate and drain-substrate junctions. If the transistor was

unpulsed there was a negative reverse-leakage current. If it was pulsed with neg-

ative pulses, there was a positive current, broadly linearly-proportional to pulsing

frequency. Perhaps it would be possible to exploit this phenomenon.

—1 F,
0 volts

+

Figure 6-2: Brugler's experiment on transistor charge-pumping. The voltage

source keeps the drain-substrate and source-substrate junctions in reverse bias,

and the pulse takes the gate-voltage below the substrate voltage.

6.2.3 Arima's charge-pump

A circuit diagram of Arima's charge-pump circuit (Arima et al., 1991a), together

with a simulation of its characteristics, is shown in Figure 6-3.

The capacitors are realised by the gate-capacitance of transistors, and 5V pulses

are applied to Vdown (during LT1) or V, (during LT2) to charge or discharge

the capacitor. The inputs to the pump were stimulated, for these simulations, by

50% duty-cycle wave-forms with an ON-time of 1s, ie 150 pulses during LT,

giving small increments or decrements of, at most, 20mV, and often less; this is

Chapter 6. Elements of a system for the algorithm

W=27u

L--27u

Vdow.
5.0

4.5

4.0

ft
VUP 	 3.5

10
>

2.5

20
0 	100 	200 	300 	400 	500 	600 	700

°1ji F° 	H H 	 Time (mia,scconds)

Figure 6-3: (a) Circuit diagram of a charge-pump; (b) The pump discharging

and charging a capacitor.

much better than the 10% change in value Arima reports (Arima et al., 1991a),

of course on a different process. The curves are very non-linear (which is unlikely

to be important for learning as long as the change in charge is in the correct

direction), but approach asymptotic limits well within the synapse-capacitors'

2.5V -* 5.OV range. Nevertheless, the idea looked a very good one.

6.2.4 The EPSILON voltage-integrator

I had been considering switched current-sources as a weight-change mechanism.

In principle, these are simple (see Figure 6-4(a)), being a means of sourcing

current onto, and sinking it from, a storage capacitor; in practice, it can be tricky

to make small and consistent changes to the store of charge, because of switching

noise which is coupled onto the weight-node and because, as the switches are

turned off, charge is injected into the node. However, it occurred to me that the

voltage-integrator, designed by Donald Baxter for EPSILON, already provided, in

its output stage, something very like the switched current-sources (see Figure 6-

4(b)).

This gave me the idea of using the integrator to adjust weights up or down in

the manner illustrated in Figure 6-5. The voltage-control switches one of two

analogue voltages onto the integrator's input, and so controls whether current

	

Chapter 6. Elements of a system for the algorithm
	

100

'+l

I p 	
si p

Cwt
	

Cwt

(a)
	

(b)

Figure 6-4: (a) The principle of switched current-sources. (b) The principle as

interpreted in the output-stage of EPSILON'S voltage-integrator.

will be sourced onto, or sunk from, the weight capacitor. The two gain controls,

Gain+ and Gain_ determine the quantity of charge that is dumped or removed,

and the pulse-control switch provides a further control, by making it possible

to vary the time the weight capacitor is connected to the source or sink. Some

addressing circuitry and a reset switch complete the picture.

Gain 	Zero
current 	j) voltage

I

	

Vup 	I 	I Vmodify I 	Voltage
00

	

F I 	 Integrator I 	 I 	 I

	

Vdown 	JuI 	I

I 	 Cd) 	I
'Cl)'

II
II lup/down_. 	 . 	I 	multiplier

Pulse control 	I 	J_
I 	Cl) 	I

I 	.tCwt

Figure 6-5: Block-diagram of the weight-modification circuit based on a

voltage-integrator.

The integrator itself is illustrated in greater detail in Figure 6-6. 'gain provides

the tail current, via a cascode current-mirror, to bias a differential stage. When

the differential inputs are equal, transistor M4 mirrors a current of magnitude

Chapter 6. Elements of a system for the algorithm 	 101

Igain /2, to the output stage where transistor M6 steps it down to a current-source

Of 'gain14.

'zero, of the same magnitude as 	is mirrored directly, via a cascode current-

mirror, to the output stage, where it is stepped down to Igajn 14. It acts as a

current sink which, at stasis, exactly matches the current source, giving an output

current of zero. A differential voltage at the inputs disturbs the equilibrium of

the system, causing a positive or negative current at the output.

Izerc

rn

Figure 6-6: 	Schematic of the weight-modification circuit based on a

voltage-integrator.

I anticipated that the system would be difficult to set up, since currents and

voltages would have to be set quite precisely, and I would have to infer equilibrium

over an array of synapses and neurons. On the other hand, there were several

ways in which the magnitude of the output current, and hence the step-size of

any change to the weights, could be controlled

• by making the integrator tail-current small;

• by supplying only a small differential voltage at the integrator inputs;

Chapter 6. Elements of a system for the algorithm 	 102

. by varying the on-time of the switch controlling the output current;

• by fabricating a large weight capacitor.

Simulation results are shown in Figure 6-7. The (off-chip) current-sources were

set at 1A. With a Vzero of 3.75V, the up- and down-voltage inputs were set at

4.OV and 3.6V respectively, and the pulse-control switch was pulsed on a 50%

duty-cycle with an ON-time of 1tS. In Figure 6-7(a), during the up-cycle, the

weight capacitor was raised from its mid-point value of 3.75V to 4.88V, where it

saturated as the integrator's output stage was turned off. The step-size during

this cycle was never more than 35mV. For the down-cycle, the weight capacitor

was reset to its mid-point value of 3.75V, and dropped in steps of around 30mV

to its low point of 2.OV, and below. In Figure 6-7(b), the weight was set to its

minimum of 2.5V and nudged up and then down again.

The weight-change process is clearly different in the up-cycle and the down-cycle;

in Figure 6-7(a), it takes around 60 steps to rise, and 80 steps to fall, from the

mid-point value to the limits. Nevertheless, the circuit does provide small-step

weight changes in a predictable way.

5.0

4.5
() Cc

4.0

3.5

3.0

C)

1 2.5

2.0

5.0

4.5

4.0

3.5

3.0

2.5

2.0

	

1.5 L
	

I 	 1.5k

	

0
	

50 100 150 200 250 300 350 400 	0
	

50 100 150 200 250 300 350 400

Time (microseconds) 	 Time (microseconds)

(a) 	 (b)

Figure 6-7: Simulation results of the integrator-based weight-modification cir-

cuit.

Since the integrator was one of my group's existing designs, and since I had

insufficient time in which to make tests of the alternatives, I chose the integrator

as the means of making changes to the capacitive weights.

Chapter 6. Elements of a system for the algorithm 	 103

6.3 An architecture for a second chip

The various computations that make up the virtual-targets algorithm are quite

complex, and the analogue circuits required to approximate the functions even

more so. I decided, therefore, that I would have to make some compromises that

would enable me both to instantiate as much as possible of the algorithm on a

chip, and at the same time test each part of the functionality in case any one, or

more, parts did not work.

I developed a scheme for arranging the various modules on a chip, and decided

on an architecture that would be within the silicon budget, would test several

of the modules, and could, conceivably, implement the whole algorithm if there

was time. The plan for a single layer of an MLP network is shown in Figure 6-8.

The diagram is conceptual, not a representation of the chip layout. The synapses

are arranged in an array, into which there are, conceptually, two sets of inputs.

The first set is that of the input patterns (or inputs from a previous layer) which

are fed 'in the rows and down the columns' to produce, at the neuron outputs, a

set of summed weight x state calculations. The second set of inputs is the error

calculations for the layer, which are fed 'down the columns and out the rows' to

produce, at the neuron outputs, a set of summed weight x error calculations.

The neurons involved in these computations are, of course, the same physical

neurons in each case.

The errors, and their polarities, are computed from the target states and from

the output states from that layer.

The weight-modification circuit changes weights in response to the error signal

(if the error is of sufficient magnitude) and the sign of the error (to determine

the direction of the weight-change).

A set of targets is, like the synapses, arranged in an array. The target-modification

circuit changes the targets in proportion to the sum of product of the errors and

weights.

A two-layer network, with both hidden and output layers, could be realised as

shown in Figure 6-9. Chip 1 realises the hidden-layer, while chip 2 realises the

output layer. Although the hidden-layer neurons exist on chip 1, the hidden-layer

Chapter 6. Elements of a system for the algorithm
	

104

Weight-modification
signal

Weight 	I 	 Target-modification

modify 	 signal

Error Target
signals'

Target signal
Patterns,

H

tNe

(weight X error)

 Error & sign
calculation / 	Error and sign

i L
signals

New states States 	Targets (weight X state)

Figure 6-8: Architecture of a chip embodying a single layer.

targets are stored on chip 2, because the information required to update them

comes from the output layer. Since the two chips would be identical, this means

the target store on chip 1 would be redundant.

The rather complex way in which the two chip could be combined is as follows'.

A pattern is applied to the inputs of the synapse array of chip 1, to produce

a set of summed weight x state, hidden-layer outputs ©. These states form

the inputs ® to the synapse array of chip 2, which performs a further summed

weight x state computation to produce the output-layer outputs .

'Numbers presented like so in this description : 	refer to numbers in Figure 6-9

Chapter 6. Elements of a system for the algorithm 	 105

Hidden layer 	 Output layer

Figure 6-9: How two chips embodying a single layer can be combined to instan-

tiate a two-layer network.

The errors for each layer, and their signs, are calculated like so. For the output

layer errors, the error circuits on chip 2 use the output-layer states and the pre-

determined targets for the pattern ©, producing the output-layer errors ©. For

the hidden-layer errors, the error circuits on chip 1 use the hidden-layer targets

on chip2 and the hidden-layer states (43, producing the hidden-layer errors

The error signals and their signs for the output layer 5j and the hidden layer ©

are fed back to modify the weights in each layer. The errors from the output

layer are also fed back © to the synapse array on chip 2, where they provide the

inputs to compute a summed weight x error computation @ from which new

target-values can be computed.

Chapter 6. Elements of a system for the algorithm 	 106

6.4 Design of the second chip

To move from the architecture described in Section 6.3 to the design of a chip, I

decided on two initial constraints. The weight capacitors should be large, to allow

me to make very small increments and decrements, and the number of neurons

(and hence the target array) should be as large as possible.

The design was configured for placement in a printed-circuit board a colleague

had designed for a bus-based system in which several 'neural modules' could be

interconnected'. The board carried sockets for the analogue chip and for a digital

Xilinx FPGA chip, on which I could design the many digital modules required to

drive the analogue circuits.

6.4.1 Forward and backward passes through the array

As explained in Section 5.4, it would be advantageous to use the multiplier both

for the forward and for the backward 'error' pass.

A solution requires a redesign of the array with switching to select rows or columns

as appropriate. Although the switching is quite complex in practice, the principle

is easily described, as shown in Figure 6-10. The same principle can be applied

to switching input states into rows or columns (Figure 6-10(a)) as for switching

output currents (Figure 6-10(b)).

6.4.2 Architecture

As a result, I was able to accommodate a 64 x 64 array of synapses, providing

weighted inputs to 8 neurons with capacitors of around 7pF in value. An overview

of the chip layout is shown in Figure 6-11.

2 1 wish to express my gratitude to Geoff Jackson for this initial idea, for generously

offering to share the equipment he had put so many hours into building, and for his

help in fitting my work in with his own.

Chapter 6. Elements of a system for the algorithm 	 107

-

0

&9.
—0.-

H
S

oIIJ -

El — hs
(a)

(b)

Figure 6-10: (a) The switching arrangement to switch input states to the layer

(for a forward pass) or error pulses (for a backward pass). (b) Switching output

currents between rows and columns. All connections are switched simultaneously

onto rows or columns, necessitating only one off-chip control line.

6.5 Summary and conclusions

I carried out the work described in this chapter in light of the simplifications I

had made to the virtual-targets algorithm, and focussed on the means by which

I would be able to modify weights. I was able to use a circuit, as the basis of

a weight-modification scheme, that appeared at least as good as the alternatives

available to me, and with the advantage that I had already used it and knew its

characteristics.

As a result, I was able to develop an architecture for a chip that would realise

a single layer of an MLP network, and yet be capable of being cascaded with

another chip to instantiate the complete virtual-targets algorithm.

In the next chapter, I explain how I tested the various modules of the chip, and

present my results.

Chapter 6. Elements of a system for the algorithm
	 IM

Weight
	

Target
modification 	 modification

Xaddress
	

F~

U,
Synapse .array..

"and.............
>0'

Op-amps

Integrators

Comparators 	I

jj
State outputs

0
U

•0

I 	Target array

Target outputs

Figure 6-11: Overview of the layout of the chip.

Chapter 7

Final tests and assessment

7.1 Introduction

Section 7.2 describes the experimental setup to test the various parts of the chip.

Section 7.3 presents results from testing the multiplier and weight-modification

circuits. In light of these results, Section 7.4 examines some of the issues relating

to achieving learning on chip. Section 7.5 presents the results of trials of a simple

problem on the chip. Section 7.6 suggests how these experiments might continue.

In Section 7.7, I draw conclusions on the success of my approach.

7.2 Testing the chip

Further details of the design and testing of the second chip are given in Ap-

pendix F.

109

Chapter 7. Final tests and assessment
	

110

7.3 Results from tests on individual modules

I present here the results from the multiplier and weight-modification circuits.

7.3.1 Multiplier

Results from tests of the multiplier are shown in Figure 7-1.

zi:
18
16
14

U0 12

Z 4
2
0

LISi

rI)

0

2 	rI .J. -7 _)I 	4_

2.70

0 	2 	4 	6 	8 10 12 14 16 18 20
State-input pulse
(microseconds)

Figure 7-1: Results from tests of the multiplier. Results represent averages of

50 readings from one column of synapses, produced by storing the same weight

at all synapses in the synapse array and applying the same input pulses to each

input-row in the array.

The graph shows the multiplication of an input state, represented as a pulse-

width signal, by a weight, represented as charge on a capacitor. The curve for

a 'zero' weight of 3.75V is almost completely horizontal and very close to the

'zero' output-pulse of 10is width. The curves are evenly-spaced, are reasonably

linear, and all go through the same zero point very close to the 'zero' input-pulse

of 10s width. The shape of the curves is also reasonably symmetrical around

the x- and y-planes. They are, in short, among the best circuit-results our group

has produced.

Chapter 7. Final tests and assessment 	 111

These results are a considerable improvement on the results from testing my

first chip, presented in Figure 4-18 on page 81. The reason for this is, simply,

many hours of trials and experimentation to set the system up to produce the

most accurate results. The effort to do this is considerable, but the reward is

that, once set up, the multipliers behave reliably, and the results are eminently

repeatable, with the exception explained shortly.

The variation in measurements over a series of readings is quantified in Figure 7-2.

rJ)

o

':4

20
18
16
14
12
10
8
6
4
2
0

LII]

ci)

0

__, ic .,_., 	.

2.70

0 	2 	4 	6 	8 	10 12 14 16 18 20
State-input pulse
(microseconds)

Figure 7-2: Results from tests of the multiplier. Every alternate curve from

the previous figure is repeated here, along with adjacent curves representing two

standard deviations on either side of the mean (ie approximately 95106' of readings).

The exception to the repeatablility of results, mentioned above, is that there is

a serious problem with offsets at the output-pulse 'zero' point. The consequence

is that a 'zero' set for one column of synapses will probably not be replicated

accurately at the other columns. The problem manifests itself as a translation

of the curves along the y-axis (ie 'up and down' the page in Figures 7-1 and 7-

2), all other characteristics of the curves being preserved. This was a known

problem discovered by the designers of the Epsilon chip (Hamilton et al., 1993),

from which much of the present work was derived.

The designers of EPSILON attributed the offsets to difficulties with the integ-

rator circuit, and my results support this conclusion. As explained in Sections 5.4

Chapter 7. Final tests and assessment 	 112

and 6.4.1, my chip can accommodate both a forward pass (where state inputs are

distributed along the rows of the synapse array, with each synapse in a column

contributing to the activation) and an 'error' pass (where error-inputs are dis-

tributed down the columns of the array, and each synapse in a row contributes

to the activation). Hence, depending on the way the array is switched, the activ-

ation represents the contribution of either a complete column or a complete row

of synapses. Tests of the multipliers in each configuration produced results which

were indistinguishable, strongly suggesting that circuits other than the synapses

caused the offsets.

A summary of the configuration of the multiplier and associated circuits is shown

in Table 7-1.

Voltage sources (volts) Multiplier V2 4.36

Vhi ref
1.50

Viorei 0.50

Vbias 3.10

Op-amp Vciamp 1.00

Integrator 1'nregz
3.76

Current sources
(1 amps)

Integrator
'hI

10

,tail
10

Comparator 'comparator 30

Pulse widths
(. seconds)

Zero pulse 10

input range 0-20

Output range 0-20

Accuracy, defined as: 	
[maxJ43sd 	mean[Pl [i

- 	
- 	

jj x 100

Table 7-1: Summary of multiplier configuration

Chapter 7. Final tests and assessment
	

113

7.3.2 Weight-change circuit

The results from tests of the weight-change circuit are shown in Figure 7-3. The

circuit schematic in figure right is a reminder of Figures 6-4 and 6-6 on pages 100

and 101.

5.0

V 	4.5
CO
boo

4.0
0

3.5 00

00

2.5

2.0
F

 Vz

Vwt

11L

0 	100 	200 	300 	400 	500 	600

Number of 'bumps'

Figure 7-3: Results from tests of the weight-change circuit.

The voltage Vwt on the gate of the transistor, held as charge on the weight ca-

pacitor, cannot be read directly. Instead, the voltage has to be inferred from the

results of a weight x state multiplication. For these results, 8 identical state-

pulses were applied to the synapse array, each of whose weights was set to an

identical starting-value (2.70V). All the weights in the array were then nudged

upwards until saturation, at just under 5.00V, and then nudged back down again.

The voltages shown against the y-axis in Figure 7-3 are inferred from an earlier

calibration; this related a weight voltage, applied to every synapse in the array,

to a pulse-width output from a single neuron at the foot of a column of synapses.

Details of the way in which the weight-modification circuit was set up are shown

in Table 7-2.

Chapter 7. Final tests and assessment
	

114

Voltage sources (volts) V, 3.78

Vdo wn

Current sources (p. amps)
'balance

1tail
5

Pulse-time (p. seconds) 5

Realistic range (volts) 3.00 - 4.50

No. of steps to move weight over 90% of range 100

Maximum step size (millivolts) 80

Mean step size (millivolts) 20 	6.2 bits

Table 7-2: Details of how the weight-modification circuit was set up

7.4 Issues raised by the various circuits

This Section considers the various technical issues involved in light of the functions

we can produce for the virtual targets algorithm, and the general characteristics

of the circuits to execute them.

7.4.1 Learning rates

As a result of experience like that of using chip-in-the-loop learning described on

page 31, it is generally agreed that the process of training a network, by modifying

the weights, itself compensates for many of the faults of, and non-uniformities in,

analogue circuits. In simulation, the learning rate is usually small, which may

slow learning but prevent instability in the number of patterns recognised. The

immediate difficulty in placing the learning on-chip is that the learning rate has to

be high enough to overwhelm the faults. We can see why this is so by considering

some of the factors involved in weight adaptation, weight resolution and weight

decay, and the effect of offsets and accuracy.

Chapter 7. Final tests and assessment
	

115

7.4.2 Weight adaptation

Weight adaptation can be characterised as equation (a) in Figure 7-4.'

Doesn't matter during training

provided learning compensates

LW = LWideal + L\Woff sei s + L\ Wleakage + A Wcharge_injeciion +

AW = AWiyizmp + zWoff sets + LT'Vl eak age + LWcharge_injection +

Figure 7-4: Equations to characterise adaptation of weights.

LWidea 1 refers to the exact calculation of the 'correct' direction and distance to

move the weight towards a network solution. Within the constraints that the

distance must not be too little so that learning never takes place, nor too much

so that a solution is never found, the exact distance the weight travels does not

matter. However, it is crucial that the components of the equation, in concert,

push the weight in the correct direction, to increase the weight or reduce it,

otherwise the network as a whole will never find a solution.

To some extent, the idea of fixed increments or decrements to the weights, as is

used in the simplified version described in this thesis, and shown in equation (b)

in Figure 7-4, acts in the same way as varying the learning rate : Wbump simply

has to be chosen so that the weight moves in the proper direction. Provided the

effect of offsets, charge injection and the rest is not too great, the question of the

correct increment then reduces to that of the resolution that can be achieved in

adjusting the weights. This idea is simple, at least in concept, if not in execution.

'Equation (a) is from (Annema and Wallinga, 1995)

Chapter 7. Final tests and assessment
	

116

7.4.3 Weight decay

In general, the problem of weight decay on capacitive weights, due to charge leak-

ing away is ignored in learning circuits on the grounds that continuous learning

will compensate. Even a little decay, perhaps as low as 1%, may be enough to

prevent learning (Dolenko and Card, 1995), but it should be possible to prevent

such decay by re-learning at a fast enough rate. At the worst, the chip could be

cooled a few tens of degrees below room temperature to reduce decay-rates to

acceptable levels. Bipolar decay (that is, decay from a positive or negative value

towards zero) seems to be less of a problem than unipolar decay (that is decay

towards the most positive or negative value)(Mundie and Massengill, 1991); in

most networks, weight decay is unipolar, leading these authors to suspect that

the resolution required for weights in the learning phase is higher than generally

believed.

7.4.4 Weight resolution within a fixed range

The numerical values for weights generated in computer simulations have to be

matched, in analogue implementations, between the limits of a fixed range. Ex-

pressed in terms of digital hardware, the analogue representation is 'fixed point'.

The range determines the weights' dynamic range and the number of steps re-

quired to move from one of the limits to the other. Ideally, the weights should

never exceed their bounds, otherwise weights will be indistinguishable, but they

should use as much of the range as possible to exploit the dynamic range.

What does this mean for analogue hardware? Precision is not infinite, being

limited ultimately by the charge on a single electron'. This is not an easy issue to

resolve, but we can make at least a rough estimate of the demands on the hardware

by using the following translations. (The translation is commonly expressed in

digital terms because of the digital origins of the algorithms.) For an analogue

implementation, the equivalent number of bits n for a weight increment LW is:

2 Arima et al used 0.5pF capacitors in their network. To raise the charge on such a
capacitor so that the voltage rises by lmV, that is one part in 1000 for a 1V range,

would require the removal of around 3000 electrons.

Chapter 7. Final tests and assessment 	 117

IW rnax - Wm in \
n=log2 	

1w)

the corollary being that the largest permissible increment LW on a weight, given

a desired equivalent number of bits n is

T'Vmax VV m in
zW=

2

A reasonable rule-of-thumb is that, to represent weights in a range of 1V

	

8 bits 	4.00mV (1 part in 250)

	

12 bits 	0.25mV (1 part in 4000)

The simulations I carried out generated hidden-layer weights within the range

—10 - +10 and output-layer weights within the range —20 - +20. How such

ranges might be matched to the hardware is illustrated in Figure 7-5.

Example ranges of numeric weights generated
Circuit 	 during simulation

4.50V +10 +20 +40 - i

3.75V 	1.5V 0 20 	0 40 	0 	80

3.00V -10 -20 -40

7 bits 	 8 bits 	 9 bits
The available range

for capacitive weights 	 Bits-equivalence of step size of 0.15 used in simulations

Figure 7-5: Matching numerical weights generated during simulations to the

available circuit range.

In an extensive series of simulations, Cairns put the resolution required in the

learning phase at 12 bits (Cairns, 1995), although other authors suggest 14 bits

or more (Mundie and Massengill, 1991).

Clearly, the results of the weight-bumping circuit shown in Figure 7-3 on page 113

fall short of the necessary resolution. As I have already indicated, the design

Chapter 7. Final tests and assessment 	 118

allows for some improvement. To meet the resolution demands I have outlined,

over a 1.5V range would require:

6.2 bits 70.00mV 	1 pt in 75 (baseline)

8 bits 5.90mV 	1 pt in 250 (x3 improvement)

12 bits 0.37mV 	1 pt in 4000 (x53 improvement)

16 bits 0.03mV 	1 pt in 66000 (x900 improvement)

To achieve these improvements would be very difficult.

The weight resolution depends, in practice, on the signal range that the synapse

can accommodate. I designed my system according to the scheme shown in

Table 7-3. Under this scheme, the input range for the weights is 1.5V; with a

reconfiguration of the voltage and current supplies to the chip, the input range

could probably be increased to 2.5V, as illustrated in Table 7-3.

One reason this issue is not a simple one is that, in addition to questions of

offsets and accuracy, to be discussed shortly, noise must be taken into account.

Researchers disagree on whether noise is beneficial (Murray and Edwards, 1994)

or detrimental (Dolenko and Card, 1993a, Dolenko and Card, 1995) to learning,

but since all investigations involve simulation, this is a matter which will probably

only be settled empirically.

What solutions are there to the problem of the high weight resolution needed for

learning? Lehmann suggests (Lehmann, 1994) that high-resolution weights be

held digitally, with obvious consequences for silicon resources if these are on-chip,

and for system complexity if they are off-chip; or, alternatively, that 'probabilistic

rounding' be used so that, for a weight-change less than the minimum resolution,

the weight change is carried out with a certain probability.

7.4.5 Offsets

Some published work (Annema and Wallinga, 1995, Dolenko and Card, 1993a),

including that of a colleague (Lehmann, 1994), suggests offsets are a serious prob-

lem. The problem exists with offsets on the weights themselves, so that different

weights have different zero points, and also on the neurons, where learning can

take place even after the output error is zero. Either or both of these offsets

Chapter 7. Final tests and assessment 	 119

Scheme used in trials
Possible alternative

scheme

Weight range (volts)

Upper bound 4.50 4.75

Zero 3.75 3.50

Lower bound 3.00 2.25

Bits equivalent of weight-change (millivolts)

8 bits 5.90 9.70

12 bits 0.36 0.61

Table 7-3: The input range of weights on the system, and the equivalent step

size for 8 and 12 bits equivalence

can make learning impossible. The only solution is some means of cancelling the

offsets.

7.4.6 Accuracy

Given neural networks' much-vaunted error tolerance, it is a relief to find that

inaccuracies in computation due, for example, to process variations, or to non-

linearities or variable gains in multipliers, do not seem to be a serious im-

pediment to learning. Experiments (part-simulation, part-hardware) on an

opto-electronic network showed that miscalculations of the error to be back-

propagated, and so of the appropriate weight changes, had negligible effects on

learning (Frye et al., 1991). Learning also seems to be tolerant of variations in

multiplier gains which are fixed at the start of simulation experiments (so replic-

ating fabrication variations), although it seems less tolerant to random variations,

and so to noise (Dolenko and Card, 1995).

Chapter 7. Final tests and assessment 	 120

7.5 Trials

I have run a small number of trials of the algorithm using the scheme shown in

Appendix F and the network shown in Figure 5-7.

The chip calculates the sum of the weight x state products for the hidden layer

using 4 input weights and a bias weight for each of 2 neurons.

The PC implements the remainder of the functions, namely:

. the sigmoid function

• learning on the hidden-layer weights and the hidden-layer targets. The PC

calculates the step changes to the weights and downloads new values via a

weight DAC, onto the chip.

• the complete output layer including error calculations.

7.5.1 Chip-in-the-loop experiment

A first experiment involved generating hidden-layer weights using a simulation

run entirely on the PC. The final weights, saved once the algorithm had learned to

recognise the four input patterns, were then downloaded onto the chip, and a chip-

in-the-loop session was run as explained in the introduction to this Section. The

chip-in-the-loop session allowed the weights to adjust themselves to compensate

for imperfections on the chip and therefore to produce a new and valid 'solution'

to the problem of recognising the four patterns.

The experiment demonstrated that the network solution, as measured by the

number of patterns recognised correctly, very quickly became, and remained,

perfectly stable over a long number of epochs. The weights on the hidden layer

continued to vary during this time, but always in a way that left the solution

intact. This shows that, as predicted, the learning loop could compensate for

imperfections in the forward-pass computation and for any charge leakage from

the weight capacitors.

Chapter 7. Final tests and assessment
	

121

7.5.2 Weight-range experiment

The second experiment was a repeat of the first, but this time with the weights on

the chip set initially close to zero. Although the PC still carried out the learning

in the hidden and output layers, this time it had to generate a solution from

scratch, rather than modify weights close to a solution.

Learning has proved difficult under these circumstances. The hidden-layer

weights fairly quickly tended to gravitate towards the upper limit of their range,

making further learning impossible.

However, occasionally, the system would show evidence of learning. Figure 7-6

shows two graphs, one the characteristic graph of a simulation and the other the

results of a chip-in-the-loop session. The network has learned to recognise two of

the four patterns consistently, albeit over a large number of epochs.

1.2

0.8

0.6

ZO 0.4

0.2

0

V
No correct

Mean max error

/
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Epochs

1.2

0.8

0.6

0.4

0.2

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Epochs

Figure 7-6: Results of learning trials : (a) simulation; (b) chip.

7.5.3 Revisiting weight-range issues

Finding suitable values for some of the constants used in the algorithm (for ex-

ample the threshold level and gain of the sigmoid, and the step sizes for the

weights and hidden-layer targets) is difficult even in simulation. There is a bal-

ance to be struck between the step sizes for weights and targets that has to be

discovered by trial-and-error methods, and that, if chosen incorrectly, can inhibit

or prohibit learning. Perhaps it is not surprising that finding suitable values with

a chip in the loop is equally difficult.

Chapter 7. Final tests and assessment
	

122

The second experiment used the PC to modify numeric weights, which were then

mapped on to voltage values supplied to the chip using an 8-bit DAC, used over

only a part of its full range. A step size of 0.15 in a range of —10 -p +10 for the

hidden-layer weights has around a 7-bit equivalence, just within the DAC's own

resolution. The fact that the system showed evidence of learning is suggestive

that, with a weight-modification circuit capable of greater resolution, learning

would be possible, but the only true test would be to try it.

7.6 Further experimentation

More experiments of the kind I have described require to be carried out to estab-

lish the conditions under which learning can take place. A plan to do this is as

follows

• Increase the weight range, from the values used in the experiment to the

alternative scheme shown in Table 7-3. This would require a complete

reconfiguration of the chip and further tests of the multiplier and weight-

modification circuits to establish zero points and signal output ranges. This

represents a good deal of time-consuming work but would extend the resol-

ution of the system. The system also needs to be redesigned so that digital

circuitry captures and stores output pulses from the output neurons. Cur-

rently, output pulses are captured on, and readings taken from, a storage

oscilloscope. This is extremely convenient from the point of view of ob-

serving the signals to monitor progress, and tracking down hardware bugs,

but is very slow.

• Attempt to increase the number of steps the weight-modification circuit

requires to move a weight between its upper and lower bounds; as explained

in Section 7.4.4, a considerable improvement is possible.

• Try to train the weights using the weight-modification circuit, instead of

the PC.

Chapter 7. Final tests and assessment 	 123

7.7 Conclusions

After careful setting-up, the multiplier worked as predicted, in both the forward-

pass and error-pass modes, and excellent results were obtained from the system

as a whole. There is a problem of offsets on the outputs which was discovered

and solved by my colleagues who designed the Epsilon chip, an issue which I have

not addressed.

The experimental set-up described here is a good test-bed for further examining

issues which are well-understood from simulations but not from experience with

real hardware.

The performance of the weight-modification circuit could be improved to produce

much smaller step sizes than those demonstrated in the test results (around 4-bits

equivalence), probably to 9- or 10-bits equivalence and even beyond. However,

further trials would be needed to prove that this improvement would be sufficient

to permit learning.

The evidence from published work is very strong that a weight resolution of

around 12-bits equivalence is required during the training phase.

Nevertheless, the system did show evidence of learning, even using an 8-bit DAC

to convert numerical results from a PC to voltages delivered to the chip.

I have been able to demonstrate that analogue circuits can be developed for

implementing every aspect of the virtual targets algorithm, provided that the

algorithm is used in its simplified form. Furthermore, the different modules can

be integrated to create an entire, two-layer network. The algorithm can be im-

plemented, then, in analogue hardware, provided that hardware is operated at

its limits on trivial problems.

Chapter 8

Conclusions

8.1 Introduction

In this last chapter, I present my final conclusions. The chapter also acts as a

summary of the work presented in the thesis.

124

Chapter 8. Conclusions 	 125

8.2 Issues in on-chip learning

8.2.1 Summary

I have defined the term 'on-chip learning' and compared digital and analogue

approaches. There is no single strategy for designing chips with on-chip learning,

and consequently the variety of implementations is very large. However, the issues

of weight-storage and weight-modification are important for all researchers. I have

categorised different approaches in terms of weight- storage, and then looked in

detail at five examples which show how other researchers have tackled the issues.

8.2.2 Conclusions

On-chip learning is a technique which offers advantages over other methods of

determining an appropriate set of weights, but there is no major application

ready-to-hand.

Although analogue hardware has advantages over wholly-digital implementations,

the balance of advantages still lies with digital hardware.

The different approaches to on-chip learning use different methods of storing

- and changing weights. Each has its merits and defects; no one approach seems

overwhelmingly better than another.

8.3 Translating the VT algorithm into ana-

logue VLSI circuits

8.3.1 Summary

I have explained the fundamental characteristics of a MLP, feed-forward net-

work, and the virtual targets algorithm in particular. The algorithm has been

established as an interesting candidate for translation into analogue VLSI.

Chapter 8. Conclusions 	 126

It proved possible to design circuits for a number of the functional components of

the algorithm, while adapting these functions to my research group's distinctive

pulse-stream approach. The circuits comprised, initially, a four-quadrant multi-

plier, a 'sigmoid-prime' circuit, a sign circuit and a difference circuit.

8.3.2 Conclusions

Test of the circuits, either in simulation on extracted layouts (the difference and

sign circuits), or from a fabricated chip (the 'sigmoid-prime circuit' and the mul-

tiplier) demonstrate the basic functionality required.

8.4 Simplification of the algorithm: summary

Despite considerable progress on circuit design, the algorithm embodied features

that resisted translation into analogue hardware. However, major simplifications

were possible, including the abandonment of the 'sigmoid-prime' circuit, and

the use of a weight-update algorithm that entailed a very simple computation

(increment, decrement or leave-unchanged) and a fixed magnitude of increment

or decrement.

8.5 Elements of a system for the algorithm

8.5.1 Summary

After investigation of a number of possible circuits, a weight-change circuit, cap-

able of dumping or removing charge on a capacitor, was adapted for the purpose

of incrementing or decrementing weights represented as charge on capacitors. The

same design was used for the task of incrementing and decrement the hidden-layer

targets, which were represented in the same way as the weights.

By introducing some switching circuitry, controlled by a single control-line off-

chip, it proved possible to reduce the rather complex computation for the hidden-

Chapter 8. Conclusions 	 127

layer targets to an 'error-pass' through the synapse array that would require only

scaling to properly represent the target-modification equation.

With these matters settled, I was able to draw up a complete scheme for instan-

tiation of the algorithm, and so design, and have fabricated, a second chip.

8.6 Final results and assessment

8.6.1 Summary

The effort of great care in setting up the chip's voltage and current supplies

was rewarded with excellent results from tests of the multiplier. The switching

scheme, to allow 'forward' and 'error' passes, worked as predicted. The weight-

modification circuit demonstrated the correct functionality, with more work re-

quired to achieve a small step-size.

This represented significant progress. There were now circuits to implement every

major function of the algorithm, and a scheme to put these functions together

into a system.

I examined a number of issues related to various practical aspects of learning on-

chip, that showed how heavy were the demands on a weight-modification circuit.

Trials of the chip, tested in a loop with a supporting PC, showed that a network

with 'correct' weights would remain stable, but learning was difficult to achieve,

even when weights were modified on the PC and down loaded onto the chip.

8.6.2 Conclusions

The performance of the weight-modification circuit could be improved to produce

much smaller step-sizes than those demonstrated in the test results (around 4-bits

equivalence), probably to 9- or 10-bits equivalence and even beyond.

The evidence from published work is very strong that a weight-resolution of

around 12-bits equivalence is required during the training phase. These results

are generally from simulations, but might preclude learning on the system I have

designed.

Chapter 8. Conclusions 	 128

Nevertheless, the system did show evidence of learning, even using an 8-bit DAC

to convert numerical results from a PC to voltages delivered to the chip. The

only means of proving the success of the approach would be to use a suitably-

configured weight-modification circuit.

The experimental set-up described here could be developed fairly easily into a

test-bed for further examining these issues.

It would be possible to solve some problems evident in my assessment, with more

work on the circuits and their configuration in a system. However, it appears

there are fundamental problems (offsets and weight-resolution) which may mean

back-propagation-like algorithms are not demonstrated to best advantage using

analogue VLSI.

Analogue circuits can be developed for implementing every aspect of the virtual

targets algorithm, provided that the algorithm is used in its simplified form.

Furthermore, the different modules can be integrated to create an entire, two-

layer network. The algorithm can be implemented, then, in analogue hardware,

provided that hardware is operated at its limits on trivial problems. However, it

is clear from the work described here and from the work of other investigators

that to consider a hardware implementation of such an algorithm for real-world

problems, or even for more complex artificial problems, is simply unrealistic.

Chapter 8. Conclusions 	 129

8.7 The use of the virtual targets algorithm :

conclusions

The algorithm in the form described in this thesis offers several advantages over

standard back-propagation, which have been exploited in the work described

here to produce functional analogue circuits. The results described in Chapter 7

are encouraging, in that learning may well be possible when attempted with an

admittedly rather trivial problem.

There remain some questions that remain to be answered on whether the virtual

targets algorithm represents a sufficient advance on standard back-propagation

to make it a successful alternative for on-chip learning.

One concerns the introduction of the hidden-layer targets as the price of simpli-

fications in other aspects of the algorithm. As the algorithm stands currently,

a set of targets, equivalent to the number of hidden-layer nodes, is required for

every pattern in the input set. For problems other than small ones, the necessary

storage might prove a burden. Furthermore, the most complex component of

back-propagation is the computation to distribute errors, measured at the out-

put, backwards through the network, a computation which is neither removed nor

simplified by using virtual targets. The consequent benefits are the two originally

identified (and described in Section 2.5.4) as a weight-update rule requiring only

local information, and the rule's application equally to the hidden and output

layers. A third advantage to emerge with the design of the scheme to implement

the entire algorithm (and described in Section 6-8) is that the information to be

passed backwards between the layers is reduced to an error term, represented by

a pulse. It is of course a matter of judgement to say whether these advantages

outweigh the disadvantages.

Another question relates to the removal of the sigmoid-prime term from the equa-

tions. This effected a major simplification. However, this simplification would

also apply to standard back-propagation. Furthermore, I have made no assess-

ment of the disadvantages of the term's removal on, for example, more difficult

problems, or on the ability of the network to generalise its representation of in-

put patterns to other patterns of a similar class that have not previously been

presented to it.

Chapter 8. Conclusions 	 130

A third concerns the introduction of fixed-step changes to the weights. This also

effected a twofold simplification: the calculation of weight-changes was rendered

much-less complex; and consequently the circuit to realise the step-changes be-

came much simpler. Perhaps this simplification would apply with equal success

to standard back-propagation. Even different step-sizes for the hidden and the

output layers would be a small price to pay for removing the need for storage for

the hidden-layer targets.

8.8 Algorithms and analogue VLSI

8.8.1 Summary

A great deal of excellent work has been carried out on building analogue, digital

and hybrid circuits and systems to implement ANNs. A huge strength of this

work has been its interdisciplinary nature, spanning as it does fields as varied as

statistical mechanics, analogue circuit-design and neurobiology.

There is now a very good understanding of the demands that mathematical mod-

els make on analogue circuits, and of the difficulties which render many of these

models unsuitable for analogue VLSI.

8.8.2 Conclusions

There has been an over-emphasis on translating mathematical models into ana-

logue VLSI. These models, many of which have very interesting properties, are

easy to explore in conventional-computer simulation, but difficult to translate

into analogue form. Furthermore, the motivation for the translation into hard-

ware, and into analogue hardware in particular, is rarely clear, since most digital

implementations show considerable advantages over their analogue counterparts.

Chapter 8. Conclusions
	

131

8.9 Artificial neural networks and analogue

VLSI : conclusions

Investigations into the use of analogue VLSI as a means of implementing ANNs

is at a cross-roads. Many researchers, rather naively, expected that, while under-

standing little of function in real brains, they would be able to build machines

with human characteristics, albeit simple ones. They rested their hopes on several

ideas, which have turned out to be unreliable. One was that 'massive parallelism',

in itself, using large arrays of identical, simple processors, was enough to realise

complex functions. Another was that, for reasons of space, speed and cost, hard-

ware versions of simulated networks would have a ready application in preference

to computer simulations.

From an engineering perspective, I see ANNs developing in three directions. One

is as a branch of statistics for applications such as pattern-recognition. ANN re-

searchers may find this rather a harsh environment to work in since their research

is going to be judged against decades of intensive statistical research, instead of

as a, supposedly entirely new, paradigm of parallel processing.

The second direction is in hardware development. For most applications, solutions

using only software will probably be desirable for their flexibility. For the small

number of instances where hardware versions of networks (although no major

one has emerged as yet), I consider digital hardware to be the likely choice, since

digital implementations can generally match analogue speeds, and they retain the

advantages of flexibility, and of precision and accuracy. Analogue electronics, it

seems to me, will achieve only a slight foothold in this market where, for example,

there are highly particular reasons for using it, such as the low-power application

being investigated by Jabri (Jabri et al., 1993).

A third direction is in modelling brain function, either for applications or to

illuminate brain processes. If the hope is applications, then researchers must make

a serious reassessment of the likely outcomes. If the hope is to illuminate brain

function, then I see a serious role for analogue electronics as an investigative tool,

along with other tools such as simulation and the modern, non-invasive techniques

such as positron emission tomography and magnetic resonance imaging. The work

of Shoemaker and Elias, which I described in Section 3.6.1, in modelling low-level

Chapter 8. Conclusions 	 132

neural function and producing interesting results, demonstrates what might be

achieved. Because of the emphasis on mathematical models and on real-world

applications for these models, I believe this area is very under-exploited.

Appendix A

Intelligence and learning in people

and machines

A.1 Neural networks and the brain

In the past, many authors of works on ANNs referred to the similarities between

neural computation in a machine and the structures and functions of the brain.

Some drew a quite specific analogy between the two, referring to "brainlike

devices" (Caudill and Butler, 1990), "brain style computation" and " brainlike

systems" (Rumeihart, 1990); or arguing that "neural modelers currently start at

the lowest level, building networks of model neurons and synapses and expecting

intelligent behavior to emerge from the aggregation of various neural forms and

knowledge learning" (Aispector, 1989). Others were more circumspect : "The

belief that there are common quantitative foundations for both brain science and

artificial intelligence has come and gone and come again" (Levine, 1991); "The

approach of neural computing is to capture the guiding principles that underlie the

brain's solution to [parallel] problems" (Beale and Jackson, 1990); "It is arguable

that 'neural' should be purged from the vocabulary of this field - perhaps Net-

work Computation would [be] more accurate ... " (Hertz et al., 1991). All agree,

however, that ANNs are in some way inspired by the brain. As the quotations in

Appendix B indicate, some investigators even liken neural network functions to

the highest levels of brain function.

133

Appendix A. Intelligence and learning in people and machines 	 134

These considerations led me into an exploration of ideas about learning and think-

ing in people and machines, and this chapter lays out my conclusions. One dif -

ficulty is that neural network researchers now work in so many disciplines, with

such different motivations and viewpoints, that the common language they use

sometimes obscures rather than illuminates the work they are doing. Of course,

any researcher worth his salt has an interest, however casual, in all aspects of

neural network research and its applications; this makes it all the more import-

ant to place one's work in context.

The following sections consider the main schools of thought in the world of ma-

chine intelligence and ask why the belief that machines can act in an intelligent

way is so persistent. I look at objections to the whole idea of machine intelli-

gence and their validity. I examine the need for engineers to consider notions

of consciousness and, as a consequence, suggest what neurobiologists and those

engaged in computational intelligence have to offer each other. I relate this idea

of inter-disciplinary research to the particular field of learning. Finally, I propose

a common-sense stance for engineers to take on how they can use their skills to

contribute to research in machine intelligence.

A.2 The aims of ANN research

The early hopes for ANN research, that the paradigm would provide us with

radical new insights into human functions, leading us in their turn into new

algorithms with stunning applications, have not been realised. As a consequence,

many researchers are disillusioned with the idea of parallels between ANNs and

the brain. In recent years, neural techniques have come to be seen as little more

than another statistical network in the toolbox. One way of looking at this is

to say the field has matured and become more realistic. Another way to think

of it is that the original biological inspiration has served its purpose and might

as well be abandoned. I believe this is a mistake, and, in my final conclusions,

I suggest that ANNs can provide their most powerful justification in modelling

brain function, provided of course we keep a realistic perspective on what we can

achieve. I explain the reasons for my beliefs in the following sections.

Appendix A. Intelligence and learning in people and machines 	 135

A.3 Viewpoints on intelligence and machines

What are the main schools of thought on machine intelligence? Enquiries into

the potential of computing machines have spawned a huge literature, with many

shades of opinion represented but, at the risk of caricature, we can distinguish

three main viewpoints.

A.3.1 'Strong AT'

The first is generally called 'strong Al' (artificial intelligence). The idea can be

summarised as follows. All thinking is computational, the sort of rule-bound and

algorithmic thinking done by computers. The feeling (perhaps the illusion) that

we are conscious is simply the outcome of the computation, although we do not

yet fully understand the connection between the two. This viewpoint is exempli-

fied by the work of three past giants in the history of computer science, Turing,

Newell and Simon (McCorduck, 1979). Turing formalised the idea of computa-

tion, established the formal properties of symbol-manipulation, and showed that

any problem, if sufficiently specified, could be solved computationally on his uni-

versal machine. He suggested that such a machine, by its formal structure, could

perhaps emulate the mind. Even more importantly, he established the basis of

a science of function divorced from structure; in other words, the substrate of

thought - valves and tubes, silicon or brain - is irrelevant to the functions

that can be carried out. Following Turing's lead, Newell and Simon argued that

manipulation of symbols is the essence of intelligence, and hence that a symbol-

manipulating machine, including one with a Von Neumann architecture, could

exhibit intelligence.

This belief in the potential of computers to be intelligent led to an explosion of

effort in so-called 'artificial intelligence', using symbol-manipulation in rule-based

systems to emulate everything from medical diagnosis to scientific creativity. The

ideas of these original thinkers have spread into many fields such as philosophy,

psychology, cognitive science, computational linguistics and engineering.

Appendix A. Intelligence and learning in people and machines 	 136

A.3.2 'Weak Al'

The second position, 'weak Al', holds that conscious awareness is a unique fea-

ture of the brain (perhaps only truly the brain of man), and cannot be found

in machines. However, computing machines can simulate consciousness and, in

practice, we cannot know whether we are dealing with a machine or a human

mind. A modern exponent of this view is Edelman (Edelman, 1994), whom I

mention in greater detail in Section A.7 below. On this view, machines can, con-

ceivably, perform any human function of perception, analysis or action without

necessarily developing 'understanding' in the human sense.

A.3.3 Computational intelligence

The third view, exemplified by (Penrose, 1995), and to which I adhere, is that of

computational intelligence, which proposes to avoid concepts of mind and under-

standing in the practical pursuit of 'machine intelligence'. Like the proponents

of 'weak Al', we believe that conscious awareness is a property of the brain,

that can one day be understood. However, consciousness and understanding are

something entirely other than computational thinking. On this view, we will be

able to build machines that can, with varying degrees of success, perform human

functions, but rarely, if at all, in the way that people do. We will never be able

to simulate human consciousness, nor understanding, and we will always be able

to tell, ultimately, whether we are dealing with a mind or a machine.

In the next section I explain why the tendency to associate human and machine

intelligence is so strong, and so misleading, and justify my belief in the compu-

tational intelligence viewpoint.

A.4 The Forces Behind Machine Intelligence

Proponents of the strong-AT and weak-AT viewpoints make much of the parallels

between human intelligence on the one hand, and computational approaches to

human functions (such as speech or image recognition, or expert systems), on the

other. They argue, justifiably, that some machines can behave in a human-like

manner, and that our understanding of computational approaches has assisted

Appendix A. Intelligence and learning in people and machines 	 137

our understanding of the workings of the brain, However, I believe our tendency

to see these parallels owes less to the success of computational approaches in

mimicking human function than to two deep-seated cultural factors, firstly our

belief that man is a complex machine, and secondly our drive to automate. In my

view, these cultural forces lead us to make more of the parallels between people

and machines than is justified by the evidence.

A.41 Man as machine

We can trace the modern view of man as a machine back to the work of Descartes

(1596-1650), who viewed all material beings, including people, as being ruled by

the same mechanical laws. To read Descartes' practical science (Descartes, 1972),

along with the works of contemporaries such as Harvey on the circulation of the

blood (Harvey, 1628), for all their errors of fact and flavour of vitalism, gives one

a real sense of the powerful forces that their new scientific method had unleashed.

For the first time, these works demonstrated, in a methodical and detailed way,

a means of understanding the operation of the body in terms of mechanics and

hydraulics, ideas that were well understood from their application in machines.

Furthermore, scientists could test their ideas by measurement; for example, Har-

vey was able to show that the weight of the volume of blood pumped by the

heart in an hour exceeded that contained in the whole body, and so must cir-

culate rather than being continuously created and destroyed. It is difficult to

overstate the influence of this mechanical view of the body, because it has indir-

ectly stimulated so much of modern medical scientific technique such as blood

transfusions, the fitting of artificial limbs and the replacement of complete or-

gans. We take it for granted that our bodies are like cars, able for much of our

lives to survive on repairs or replacement parts until some terminal disintegration

destines us for the scrap heap. No doubt, at stages during this steady advance,

there were areas that it was believed science would never conquer, and yet now

we believe even our genes can be engineered from one species to another.

A.4.2 The drive for automation

The second force at work that encourages our belief in the similarities between

people and machines is the quest to automate. The interplay between economic

pressures to replace people by machines and the increasing formalisation of tasks

Appendix A. Intelligence and learning in people and machines 	 138

at work has stimulated the automation of human abilities. Requiring people to

work with machines encourages work practices that are algorithmic in nature, and

this in turn makes it more likely that the work can be automated. Integrating

computer technology into the office makes this as true of intellectual tasks as of

manual ones.

Descartes viewed the mind as being of a fundamentally different nature to the

body. The idea that machines might also replicate brain functions is, therefore,

much more recent. However, the belief that we could, at least in principle, re-

duce every aspect of man's behaviour, including his mental abilities, to a system

of rules, certainly predates the electronic computer. Here is the management

thinker, Frederick Taylor, explaining in 1912 his principles of so-called scientific

management, which heavily influenced Henry Ford's production-line system:

'[One of the duties of management] . . . is the deliberate ga't'hering

in on the part of those on the management's side of all of the great

mass of traditional knowledge, which in the past has been in the

heads of the workmen, and in the physical skill and knack of the

workman, which he has acquired though years of experience. The

duty of gathering in of all this great mass of traditional knowledge and

then recording it, tabulating it and, in many cases, finally reducing

it to laws, rules and even to mathematical formulae, is voluntarily

assumed by the scientific managers.'

(Taylor, 1947)1

A.5 Objections to the Idea of Truly Intelligent

machines

What are the objections to the idea of truly intelligent machines? Clearly, if we

can design a machine that can manipulate and instantiate the rules and mathem-

atical formulae referred to by Taylor, then we can easily imagine a machine that

can behave just like a person; and if the machine behaves like a person, might

p4O

Appendix A. Intelligence and learning in people and machines 	 139

the two not then be indistinguishable? And might we not then be justified in

claiming the machine as "intelligent"?

Without pretending that the answer to this question is straightforward, I assert

that it is "no". The most trenchant critic (and the most entertaining, in a very

entertaining field) is Hubert Dreyfus (Dreyfus, 1992, Dreyfus and Dreyfus, 1988),

whose objections are threefold. Firstly, promising beginnings in machine intelli-

gence are consistently exaggerated into a golden future that never materialises.

Secondly, human behaviour cannot be replaced by rules, because people do not

follow rules, except in very constrained circumstances, in their everyday lives.

Thirdly, even if rules could be designed to replicate some element of human be-

haviour, some circumstance would inevitably arise requiring yet another, as yet

unspecified, set of rules, leading to an infinite regress. The first of these objections

is conceded by most investigators. On the second and third, Dreyfus has a great

deal of support form fields as varied as philosophy (Polanyi, 1958), psychology

(Suchman, 1987) and knowledge systems (Collins, 1990).

Of the many writers in this area, Searle takes the most sensible approach. Another

severe critic of the 'strong-AT' viewpoint, he argues (Searle, 1980, Searle, 1987)

that the problem is that machines lack 'intentionality', because mental states

are "directed at or about objects and states of affairs in the world". Mind and

intentionality are properties of neural systems - neurophysiological events do

not cause mental events, which are a feature of neurophysiological systems with

certain properties.

What, then, is different about ANNs? The argument that the brain functions by

computation, that it develops and learns by minimising some kind of cost func-

tion, and that ANNs are useful models or hypothesis-generators which illuminate

real brain processes, can be very persuasive (Churchiand and Sejnowski, 1992).

At the very least, connectionists 2 have avoided the trap of 'strong Al' enthusi-

asts that we can circumvent the question of biological phenomena altogether by

instantiating the brain in computers.

My own feeling is that connectionism has fallen short so far on a number of

counts. The first is that, as Dreyfus argues about conventional Al, the field has

made claims that it has failed to fulfil, and claims, such as many of those in

2 The term is often used to describe those who study ANNs

Appendix A. Intelligence and learning in people and machines 	 140

Appendix B, that it is most unlikely to fulfill. Secondly, Searle is surely right in

saying that people are not passive receptors of data but are agents with purposive

behaviour. Thirdly, many connectionists make little more than a token gesture

towards biological networks, while expecting human-like functions to emerge from

their efforts. Lastly, we have confused the ability to replicate basic human abilit-

ies, for example pattern-discrimination, with the transcendent ability to recognise

an object for what it is; we learn and remember, in large part, through our abil-

ity to ascribe meaning to events, an ability which the designer supplies to ANNs

by interpreting clustering in unsupervised networks, or telling a supervised net-

work what responses are correct and to what degree generalisation of results is

acceptable.

Although many proponents of ANNs take it as read that neural networks

more nearly approximate real-brain processes than do artificial symbol sys-

tems, this may not be so (Churchiand, 1989, Feldman and Ballard, 1982,

Fodor and Pylyshyn, 1988). The argument, to paraphrase it crudely, is as fol-

lows. On the one hand, can ANNs be models both of brain structure and of the

way people represent the world in their minds, ie carry out cognition (Church-

land)? Or can ANNs, at best, be models only of brain structure (Fodor)?

For my part, I agree with Fodor that, for connectionists to construe ANNs

as models of cognition as Churchiand does (and Rumeihart, for that matter -

(Rumeihart and McClelland, 1986)), is not sustainable. Alternatively, if ANNs

are models of implementation, then we should pay more attention to real bio-

logical structures and abandon the idea that cognitive abilities will somehow

manifest themselves out of ANN architectures.

A.6 Consciousness, the nervous system, and

computation

Does any of this matter? As engineers, can we not dispense with the notion of

consciousness, and concentrate on the algorithms that will put human functions

like face or speech recognition within our grasp? Following Searle's lead, is the

question for us not : what kind of neural organisation would have the features to

embody the minimum necessary for, say, colour vision? The answers are yes,

it does matter and, no, we cannot ignore consciousness, because the brain is a

Appendix A. Intelligence and learning in people and machines 	 141

system for acquiring knowledge about the world, and knowledge (of whose face

we see, of what that person is saying) depends on consciousness. Some people

with damage to a part of the visual cortex, can 'see' directional motion in an

object without being conscious that they are doing so, a phenomenon known

as 'blindsight' (Zeki, 1993). These patients' vision is useless, since they cannot

acquire any knowledge about the world through it. It seems that the integrity of

the visual cortex is essential for the conscious experience of vision.

Nevertheless, the mutual dependence of neurobiology and computational ap-

proaches is strong. For example, computational approaches have taught us

that some human activities that have a high intellectual content, like play-

ing chess, are highly amenable to algorithmic solutions. By contrast, know -

ledge of brain architecture and function can be a catalyst for devising plaus-

ible and powerful algorithms that may give us insights into brain function

and provide us with the tools to build machines to carry out real-world tasks

(Churchiand and Sejnowski, 1988).

A.7 Recent Developments

The preceding criticisms do not diminish the advances made in recent decades

in our understanding of what is, and is not, possible, and has radically altered

our notions of the nature of intelligence. A huge strength of ANN research is

its multi-disciplinary nature, stimulating a healthy cross-fertilisation in ideas, for

example in Brooks' work (Brooks, 1991) on building intelligent robots.

Another promising development is the growth of interest in new ways of think-

ing about these problems, stimulated by, among other things, the ideas of phe-

nomenology. Here we think of people not as passive receivers of sense-data

that are processed in some mysterious way to transform them into meaning,

but rather as agents in the world, actively seeking meaning and performing

actions in a context already charged with meaning. At this stage, the phe-

nomenological approach does not offer a clear research programme in the way

that neural-network research has done - although, interestingly, Terry Wino-

grad, an erstwhile, and talented, champion of conventional artificial intelligence,

now teaches and writes (Winograd and Flores, 1986) in phenomenological terms.

However, it does suggest some very auspicious augmentations to more traditional

Appendix A. Intelligence and learning in people and machines 	 142

approaches, beginning in psychology (Suchman, 1987) and running through the

design of human-computer interfaces (Winograd and Flores, 1986) to robotics en-

gineering (Brooks, 1989, Beer, 1990, Connell, 1990).

Edelman (Edelman, 1994) takes many of these ideas a stage further. For him,

the crucial difference between computers (and indeed any mechanistic, that is

chemical or physical, description of the brain) and real brains is evolutionary

morphology, in other words the dynamic arrangement of the constituents of body

organs, including the brain, to show system properties. In Edelman's view, the

striking properties of brains cannot be separated or abstracted from the topo-

logical arrangement of the brain itself. Intelligence cannot be 'disembodied' by

abstracting it and installing it in software or hardware or a combination of both.

Any truly intelligent machine, which would necessarily have its 'brain' organised

on evolutionary principles, would have to be able to connect causally-unconnected

outside events for its own adaptive needs - no trainer to tell it what was correct

or incorrect, no operator to retrain it in the event of 'error', no homunculus to

determine the 'meaning' of its own self-organisation.

A.8 Learning in psychology, neurobiology and

ANNs

I consider in this section the relationship of 'learning', as it is commonly under-

stood, to 'learning' in neurobiology and ANNs.

A.8.1 Psychological views of learning

Since learning and memory are psychological phenomena, the opinions of psycho-

logists ought to be helpful here. Unfortunately they are not, for these reasons.

Firstly, there is no simple definition of learning, because it is a complex phe-

nomenon (Thornton, 1992), which cannot be reduced to an equation or two.

Secondly, and astonishingly, until recently, most textbooks treated learning and

memory as entirely separate, discussing one and omitting the other entirely. In

this respect, connectionism, as a discipline that unifies the two phenomena, has

Appendix A. Intelligence and learning in people and machines 	 143

had the advantage over the psychologists until very recently, when it was argued

that, since learning, remembering and forgetting all occur in the same biological

context, their adaptive functions must be intertwined (Boulton, 1994).

Thirdly, categorisation of types of learning is a mess (because it is a complex

phenomenon). Psychologists commonly distinguish five areas of learning:

Developmental learning, that is learning, for example to perceive objects,

as we grow;

Non-associative learning including habituation (reduction in response to

continued stimulus) and sensitisation (increase in response to repeated stim-

ulus), and also including reflexes;

Associative or stimulus-response learning, including classical conditioning

(eg in "Pavlov's dogs" experiments) and operant conditioning (association

between a stimulus and a response such as is used in shaping circus animals'

behaviour);

Procedural learning (learning 'how'), of which motor learning is a form. This

is really a special form of associative learning;

Declarative learning, of which relational learning is a form, for instance

learning about relationships between objects in space (spatial learning),

between events in the past (episodic learning) or between another person's

behaviour and our own (observational learning).

Of these categories, associative learning is a mechanism while the others are

phenomenological observations (about which, admittedly, a great deal is known).

Psychologists have, historically, expended a lot of effort on the study of associative

learning but it cannot explain the other categories except in the most rudimentary

terms.

'The distinction between classical and operant conditioning is not a very clear one.
Classical conditioning exploits reflexes, while operant conditioning uses spontaneous

animal behaviour for which there is no explicit stimulus, for example rats pressing the

lever in an experimental box.

Appendix A. Intelligence and learning in people and machines 	 144

A.8.2 Neurobiological views of learning

Neurobiologists ask similar questions to ANN researchers. For example: Where

does learning take place? How is information about a learned event acquired

and encoded? How is the information retrieved? They also have a strong can-

didate for a mechanism of learning, called long-term potentiation (Byrne, 1988,

Brown et al., 1988). This interesting model of learning is based on the observa-

tion that, in some parts of the brain (notably the hippocampus), a brief burst of

high-frequency stimulation in a nervous-system pathway leads to augmentation

of the post-synaptic cell's response to subsequent, normal, stimuli.

A.8.3 ANN views of learning

Machine learning is now a field of enquiry entirely separate from the psychological

and neurobiological fields. Machine learning is considered to take place when a

computer system automatically generates a new data structure or program out of

an old one, and so irrevocably changes itself, with some purpose (Anzai, 1992).

This, of course applies to ANNs.

The discovery of long-term potentiation, referred to in Section A.8.2, has been

seen as exciting because it is the kind of mechanism recognised by connectionists

as Hebbian learning. Hebb (Hebb, 1949) proposed an associative mechanism in

the brain that has been interpreted as an algorithm in which weighted connections

are strengthened as the result of correlations between the responses of connect-

ing nodes. Long-term potentiation has four characteristics required of learning

(Groves and Rebec, 1992) : it is initiated by brief stimuli, so can capture tran-

sient events; only inputs carrying information are involved (as is true in ANNs);

there is cooperativity , ie one node must 'fire' as the other one does (as is the

case in artificial Hebbian networks); and there is associativity between nodes in

time or strength (as is also the case in artificial Hebbian networks).

4 "When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change takes place

in one or both cells such that A's efficiency, as one of the cells firing B, is increased."

(p62)

Appendix A. Intelligence and learning in people and machines 	 145

A.8.4 The relationship between 'learning' in psychology,

neurobiology and ANNs

Relating all these phenomena is very difficult, because our common-sense notions

of learning encompass everything from learned reflexes, to an intricate skill, to

the tenets of eastern philosophy. It is not at all obvious what is the link between

neurobiological mechanisms and higher-level psychological views of learning, and

the relationship between psychological views and ANNs is even more tenuous

still. There are some superficial similarities between learning in ANNs and in

people, particularly for rote learning and learning a motor action (for example a

tennis stroke). However, it should be clear that, as the term 'learning', as com-

monly understood, symbolises such a complex phenomenon, to draw comparisons

between the artificial and the human is, to say the least, premature.

The large variety of angles from which different researchers approach the problem

is one of the fields greatest strengths. Nevertheless, many ANN algorithms are

biologically unrealistic and discovering their biological counterparts, if any, will

be difficult (Mitchison, 1989). If engineers acknowledge this truth then each area

of the field has much to learn from the others.

A.9 An engineering approach to neural net-

works

In my view, 'artificial intelligence' as envisaged by the researchers discussed in

the previous sections, even if possible in principle, is so remote a prospect that

it is not worth considering. The questions to be answered for an engineer are

therefore

• What stance would it be reasonable for an engineer to take in relation to

work in other neural-network fields?

• What aims should engineers working in research in neural networks have?

Bezdek (Bezdek, 1992) has made a commendable but not wholly satisfactory

attempt to answer these questions by defining 'computational intelligence' in re-

lation to biological (that is real-world) intelligence and artificial intelligence, that

Appendix A. Intelligence and learning in people and machines 	 146

is the type of machine intelligence that is often claimed to comprise 'knowledge'.

Bezdek says artificial intelligence actually comprises 'knowledge tidbits', the nu-

merical information, rules and constraints that the investigator uses to replicate

intelligent behaviour in a machine. Computational neural networks provide a low-

level, computational strategy for carrying out some kind of pattern-classification,

and nothing more. As Bezdek says : "[A back-propagation network] 'learns' (its

parameters, the weights in the network) in exactly the same sense that the EM al-

gorithm for finding maximum likelihood estimators from labelled data does". Un-

fortunately, Bezdek's strictures on avoiding being seduced by mentalistic phrases

that, by being interpreted in an anthropomorphic way, convey something more

profound and substantial than is justifiable, are usually ignored.

BRAIN MODELLING
FUNCTIONAL INTELLIGENCE

Studies : functional aspects
of human cognitive abilities, generally high-
level, mostly classical A!

Assumption: brain governed by physical
laws

Studies and attempts to model the actual
structure of the brain

Assumption : the more the structure of the
model approximates the structure of the
brain, the better our understanding of
brain mechanisms and their contribution
to brain function 	 I

Objective : to produce machines which
mimic human cognitive function 	 Objective : to produce machines

which mimic brain architecture
and may therby produce

brain function 	/

ENGINEERING

Studies the means by which data may be
processed by simple processors operating
in parallel to produce useful results.

Assumption: simple processors working in
parallel have properties not evident in
alternative approaches

Objective: to produce artefacts that will
perform functions for mankind

Figure A—i: Different kinds of enquiry

Appendix A. Intelligence and learning in people and machines 	 147

Building on Bezdek's work, I offer the classification shown in Figure A—i to

illustrate the relationship of neural networks in engineering to neural networks in

two other fields. The classification is of course a gross over-simplification of the

huge variety of uses to which neural networks are put, but the simplification has

the benefit of clarifying what, to my mind, are serious confusions in the minds of

researchers in all fields.

On my interpretation, brain-modelling is a perfectly respectable pursuit with

the aim of investigating the characteristics of real brains and representing these

characteristics in a way that is at least as useful as any other modelling technique

that gives us an insight into human performance. My opinion is that such models

are as valid for our time as information-processing models of the brain were in the

60s or telephone-exchange models were before that; they do not, by any stretch

of the imagination, describe reality, but they are a useful way of thinking about

problems that enables us to make testable predictions about human performance.

However, clearly, the more the models are based on our actual understanding of

how components of the brain and the nervous system operate, the more likely

the models are to tell us something about real brains. Hence, there will be a

propensity (but not an overwhelming one) for models to use components that

we believe are like the components of the brain, of which neural networks may

provide an example. This description would obviously cover much neural-network

research, but also much research in conventional artificial intelligence. It will

continue to open up many avenues of interest, to help our understanding of what

intelligence actually is, and to highlight and clarify what is particular about

people that makes us different from machines.

I choose the term functional intelligence to indicate that, in this second field,

an explicit aim is to produce models and machines that try to mimic cognitive

functions, both low-level (eg pattern discrimination) and high-level (eg creativity,

game-playing), in other words those aspects of human performance that we nor-

mally think of as intelligent. I say functional because this research can proceed

without necessarily concerning itself about the mechanisms by which people carry

out these functions, nor with the structural details of the areas of the brain that

are involved. Thus a chess-playing machine fits into this category even though it

is realised in software or electronic hardware and not in biological neurons, nor

even in a crude analogue of neurons, and even though the mechanisms by which

it operates (sophisticated algorithms searching through a complex 'game-space')

are rather unlikely to be the ones human chess-players use.

Appendix A. Intelligence and learning in people and machines 	 148

I make it clear here that researchers in both functional intelligence and brain-

modelling may choose to believe that their models are 'truly' intelligent, that

they show evidence of 'thinking', 'sleeping', 'dreaming' or whatever mentalistic

labels they wish to ascribe to them but, for the reasons I have outlined, I disagree,

and predict that such labels will not be justifiable in the foreseeable future, if ever.

If these studies advance more rapidly than I predict then, in 100 years, I may be

willing to change my, by then disembodied, mind.

I think that engineers, represented in the third field in the diagram, have a unique

position in this triptych, because they are wedded neither to the idea of producing

intelligent machines, nor to the need to demonstrate that their models have any

association with real brains, any more than aeroplanes have an association with

birds or trains with horses. Engineers can take a magpie approach to problems,

stealing whatever bright and shiny idea might seem attractive, with the aim of

solving problems in whatever way seems practical. We can keep an interested,

if sceptical, eye on developments in these fields, in the hope that they will turn

up some profitable technique or helpful notion. Our objectives are both easier

to define and, in some ways, more difficult to realise, in that we are trying to

produce artefacts that are useful to mankind, using a method, neural networks,

for which the problems of implementation are formidable'. In this enterprise, it

is to our advantage to renounce, as far as is practical, words like 'intelligence',

'learning' and 'recall' that lend an unjustified radiance to our work.

The three fields in the diagram are shown as overlapping because each draws on

the others for knowledge and inspiration. For example, the engineer may design

a robot along lines developed in the world of functional intelligence, as Brooks

and his students have done; or they may develop electronic models of real-world

neural structures (Shoemaker et al., 1992).

'The prime reasons for using ANNs are that : (1) unlike conventional computers,

they need no explicit programming, but adapt based on examples of similar problems;
and (2) they can be effective at solving problems where solutions are difficult or im-

possible to define (Rees, 1996).

Appendix A. Intelligence and learning in people and machines 	 149

A.10 Summary and conclusions

In the myriad of views on the relationship of minds, computational machines

and the physical world, we can distinguish three main positions, which I have

characterised as strong AT, weak AT and computational intelligence. I have looked

briefly at each of these positions, explaining the historical forces behind the desire

to link human functions and machines.

I have then examined the notion of learning in people and machines and demon-

strated the fragility of the link between them. Finally, I have come to a conclusion

about the approach engineers should take and the objectives they should aim for.

There are strong cultural factors that seduce us into seeing a greater similarity

than actually exists between machines and people, particularly where 'thinking'

is concerned. In this respect, it is unfortunate that ANN investigators without

a knowledge of the elements of neurophysiology have adopted so much biological

terminology for artificial networks, as these terms lend an unjustified radiance to

their work that confuses outside observers, and even those working in the field

itself.

Although the idea of 'intelligence' and 'mind' as emergent properties of compu-

tational systems has a long history, there are strong objections to it.

Notions of 'biological inspiration' are surrounded by confusion. Engineers should

be clear about the motivation for their appeals to biology

• to produce functionality. Biology may give us ideas (eg 'discounting the

luminance') but the maxim here is 'function, not form'.

• to model biological systems (because of their power) in silicon and apply the

models to problems which conventional computers find intractable - the

'neuromorphic' approach. The driving force here remains functionality, but

from a distinctly biological perspective. Since the brain is so imperfectly un-

derstood, to 'do things the way the brain does' is very difficult, and a great

deal of effort is likely to be necessary before any function approximating

human function, for instance 'seeing' or 'hearing', is achieved.

Appendix A. Intelligence and learning in people and machines 	 150

• to model brain function, with the aim of better understanding how biological

systems work. This is an area with few investigators and, in my view, poorly

exploited.

The phenomenon of learning in people is a complex one, and psychologists, neuro-

biologists and ANN researchers see it from rather different perspectives. A unified

theory of learning, memory and recall does not appear to be imminent.

Engineers have a unique place in ANN research. Their motivation to build useful

machines, forces them to confront real-world difficulties. Ill-defined notions can

be subjected, by the very nature of the discipline, to rigorous testing and to

justification by results.

Nevertheless, engineers should be aware that human consciousness, and people's

ability to acquire knowledge about, and act in, the world, are very special char-

acteristics, and most unlikely to be replicated in machines. Computers, whatever

their nature, will never have 'subjective awareness', nor will they 'experience

sensations', nor 'be conscious'. Any investigator who believes that these human

characteristics will emerge from non-conscious, computational building-blocks has

a number of difficult questions to answer, such as : What would a programme

of research to discover the foundations of these characteristics comprise? If there

is a link between physical substrates and consciousness, why would silicon be a

good substrate to use for the building-blocks? If we did have conscious machines,

what would they be like, and what use would they be?

Appendix B

Quotations from workers in the field

of ANNs

'We're beginning to understand the way that these connection-

weights [in biological networks], that is the ways one nerve-cell affects

another, are changed by different environments, and it's through that

set of rules of changes of connection-weights that we think we'll be

able to understand the whole of this [the brain's] complexity; how it

was, even, that Mozart and Einstein were able to have their amazing

creativity . .. '

John Taylor

Director

Centre for Neural Networks

King's College, London

'Networks are a state of mind and I think that some day in the

future your best friend may be a neural network.' f
Terry Sejnowski

The Howard Hughes Medical Institute At The Salk Institute

'Now there is a state we can create [in a neural network with

light- and dark-sensors] simply by cutting the sensors off, which is

'Quotations marked tare from "Equinox: Teaching computers to think", broadcast

by Channel 4 Television in March 1992.

151

Appendix B. Quotations from workers in the field of ANNs 	 152

a bit like sleep in human beings. At that point, the neural network

starts running off on its own, and has flashes of the images that it's

learned. Now that may be what dreaming's all about ...'

Igor Aleksander

Professor of Neural Systemslmperial College, London

'Will it be possible one day to hold a rational intelligent conver-

sation with a computer? This question has occupied the greatest sci-

entific brains of the post-war period . . . the debate was stirred up with

some remarkable claims from Igor Aleksander, one of our most respec-

ted computer engineers. Yes, he says, it will be possible, one day, to

converse with computers. And, more astonishingly, Aleksander and

his team . . . claim to have created a computer brain that is based on

the same principles as its human counterpart: it dreams, it thinks, it

forms mental images, suffers emotion, and even dabbles in free will.' 2

Christopher Lloyd

Journalist

'...he [Humphreys] is also thinking about a silicon chip which one

day might be programmed with names, addresses and telephone num-

bers and then be fitted into the brains of Alzheimer's disease patients,

to provide perfect recall for faltering memories. ... "You could put an

empty silicon chip in and the brain itself could store information. It

sounds far-fetched but I think it is feasible. . . . One might hope that,

if you look at the future, the process will be indistinguishable: when

the brain cells are interacting with the silicon, they are not aware that

they are not interacting with another brain cell.' 3

Professor Cohn Humphreys

Head of Metallurgy and Material Science

Cambridge University

2 Sunday Times, 29 May 1994.

Guardian (Science), 24 March 1994.

Appendix B. Quotations from workers in the field of ANNs 	 153

'Scientists in the United States are working on a new genera-

tion of computers [using bioelectronics] which . . . [according to Sig-

nal magazine] ... "could lead toward an extremely fast machine that

might match or correspond with the human operator's intellect"

"It's almost like a circuit board of real cells . . . Once we have [used.

the technique in] artificial limbs, we will progress towards artificial

intelligence" ..

Dr James Hickman

Research Chemist

Science Applications International Corporation

McLean, Virginia

'In the next few decades we will have machines and computers with

far superior brain power and computational capacity than humans

Even the most conservative estimates indicate that in the early

part of the next century accessible computational power with known

artificial means, such as electronic circuitry, will be greater than that

of humans . . . Clearly, it will be possible in the next 50 years to achieve

artificial intelligence systems which are not only more intelligent than

humans, but also exhibit a significant number of advantages: they will

be faster, more reliable, quicker to learn, more robust, and usually

more accurate . . . I don't believe there is anything to stop robots and

machines being creative in the same way humans are. They could

even have emotions.' 5

Kevin Warwick

Professor of Cybernetics

Reading University

'This [noise in neural networks] is the equivalent of internal im-

agery. It's like staring at a blank screen and having internal images

parade past . . . You can be led astray into thinking that I'm saying

Scotsman, 2 February 1994.

The Glasgow Herald, 12 September 1995.

Appendix B. Quotations from workers in the field of ANNs 	 154

that the stream of consciousness is nothing more than noise being

translated into different thoughts. But that's not the case . . . You've

got noise, which is producing neural images in no distinct order, but

those helter-skelter thoughts can now excite whole chains of associ-

ations. That is the systematic part of intelligence.'

'People will start to ask the question: how am I distinct from these

machines? And I think the inevitable answer, though sidestepped for

decades, is that we're the same, Once we looked at the birds and

emulated what was needed to fly, and now we're flying. And now I

think we know enough about the brain that we can make real brains

and do the things we thought were sacrosanct, like creation.' 6

Steven Thaler

Inventor of the 'Creativity Machine'

'We [our group at Caltech] build systems that are models of pieces

of the nervous system like the retina, or the cochlea in your ear.

What I mean by a model is a system that in some way does a similar

function, systems which emulate, in some way, pieces of the nervous

system . . . ' f

'I think at the present time we have enough technology to build

anything we could imagine. The problem is we don't know what to

imagine, we don't understand enough about how the nervous system

computes, to really make more complete thinking systems ...' t

Carver Mead

Moore Professor of Computer Science

Caltech

'New Scientist, 20 January, 1996

Appendix B. Quotations from workers in the field of ANNs 	 155

'We really are nowhere near having [neural networks with] the

sophistication of something like a cat or a dog or a rat. These are much

more sophisticated information-processing systems; we're a very long

way away from coming anywhere close to real biological intelligence,

and I think it'll be quite a long time before we get anywhere near

it...'t

Geoffrey Hinton

Canadian Institute for Advanced Research

University of Toronto

Appendix C

Implementations of, and circuits for,

on-chip learning

The table on the following pages lists, as a guide to published work in this area,

digital and analogue implementations of on-chip learning, together with other

published work which is of interest from the point of view of this thesis.

The table lists the implementations in alphabetical order by the first-named au-

thor of the published paper or papers in which they are described. Within the

table itself are descriptions of the application which the authors had in mind,

and the algorithm which they have contrived, or attempted, to implement. The

table then explains the main circuits used to implement the functions which are

common to ANN algorithms : to provide a weight, and to change that weight;

for multiplication at a synapse; for summation of weighted inputs and for a non-

linear mapping to a neuron output; and for any other additional function that is

necessary.

156

01
Authors Application Algorithm Weight Weight-change Synapse Neuron Others Remarks

Abusland and Associative Hopfield net Twin voltages UV-light Gilbert multiplier Transconductance Same group as
Lande, 1994 memory on analogue intensity (for amplifier Berg eta!

floating-gate learning speed)
mapped onto and exposure-
UV-activated time (for weight-

_______________ conductances change)

Aispector eta!, XOR, Modified Digital, Digital Conductance Double differential Noise amplifiers
1989 unsupervised Boltzmann converted to increment or increases linearly amplifier giving to simulate

competitive machine analogue decrement with digital value tanh function temperature
conductance

Alspector eta!, Parity problem Boltzmann Digital Digital Voltage x weight Amplifiers with Noise-generator
1992 and mean-field increment or produces current variable gain summing in

generalisation of network decrement form of a current
XOR

Arima et a!,1991a, Pattern Boltzmann Capacitors, Charge-pump Current weighted Summed currents Weight refresh is
1991b,1992 recognition machine one excitatory giving 10% according to into comparator by learning

and one change - excitatory or which flips if Vref
inhibitory resolution inhibitory greater than

capacitor-voltage threshold

Berg eta!, 1996, XOR Back- Twin voltages UV-light Differential pair Differential pair Complete Continuous-
Sigvartsen, 1994 propagation on analogue intensity (for maps weight- maps votage- circuits to time system

floating-gate learning speed) voltages x state- difference onto implement
mapped onto and exposure- current onto single-ended entire algorithm
UV-activated time (for weight- current output current
conductances change)

Botros and Abdul- Pattern Back- Digital implementation using FPGA, with learning off-chip Simple, at
Aziz, 1993 association propagation least as
_______________ ______________ ______________ ___ concept

—

CD

9

0

CD
CD

0

0

CD

CD

CD

0
Cd)

I
0I

Authors Application Algorithm Weight Weight-change Synapse Neuron Others Remarks

Choi and Salam, Pattern Back- Capacitive, Continuous-time MOS transistor Operational Simulation
1993 association and propagation with steady- circuit settles current control amplifier only

XOR modified so state value into steady state
derivative-of- being read and
sigmoid terms stored off chip
removed

Cohen and Not stated Hebbian Capacitive 'Bump circuit Gilbert, sub- Not stated Simulation
Andreou, 1992 learning, to alter threshold only

Herault-Jutten multiplier's
neuro-morphic current in small
network steps

Dolenko and None: Back- Capacitive Multiplier Gilbert, super- Learning-rate is Simulation
Card, 1993 investigation of propagation charges or threshold change-time. only

hardware discharges Refresh is
properties capacitor repeated

pattern-
presentation

Donald and Ostensibly real- Modified Capacitive. "Statistical Current Threshold circuit Refresh
Akers, 1993 time control, but Hebbian Refresh sampling" proportional to producing binary implicitly by

actually a learning method not capacitor weight injected output learning
classifier algorithm, due stated. charged or into summing

to ca discharged, then node, then
(unsupervised switched- integration on
learning) capacitor shift capacitor

onto weight -
capacitor I

Duranton and Image- or Various Fully digital CMOS implementation Sigmoid
Sirat, 1990 speech- executed off-

recognition chip

Eguchi et al, 1991 Inverted Modified back- Digital implementation using logic-gates and stochastic pulse-trains Conference
pendulum, propagation paper never
character- published in
recognition journal

CD

I—'

0

cl

C

CD

0
I-.

0

CD

CD

CD

p

0

k

W.

tz

CL

I
I ,
c.n
00

-
CD

p

0

Cl)

0

'1
CD
Cl)

0

0

Oq

C)

CD

Ct,

CD

0

Cl)

Authors Application Algorithm Weight Weight-change Synapse Neuron Others Remarks

El-Masry et al, Not applicable since weight-change OP-amp Switching of Not applicable since weight-change building-block circuit Simulation
1992 building-block circuit output voltage voltages at op- only

amp input

Frye eta!, 1991 Ballistic Modified back- Length of bar Off-chip Transimpedance Differential Opto-
trajectory as a propagation of light amplifier summing electronic,
test of system- projected onto amplifier included here
identification photo- for relevance

conductive to VLSI
array circuits

Ghosh eta!, 1994a, Not stated Hopfield, Capacitive, Tuning-current OTA multiplies OTA Digital storage Simulation
1994b Boltzmann, controlling proportional to differential input envisaged only

cellular tuning current weight varies voltage times
networks bias-transistor transconductance,

gate-voltage varied by bias -
current

Hammerstrom D, General-purpose Several Digital implementation
1990 machine suitable

for 'large, real
world problems

Hollis and Paulos, Classification Semi-parallel Digital, Increment! Differential circuit Same differential Simulation
1994 and functional weight controlling decrement with tail-current pair as the synapse only

mapping perturbation switched controlled bu#y
current weighted switched
sources current sources

Ibrahim and Not applicable: implementation of a Capacitive Schwartz Gilbert Not applicable
Zaghloul, 1990 weight-change cell only modifier (see

under Schwartx
eta!)

Kim eta!, 1992 Not applicable: implementation of a Resistor Not applicable Input-voltage Not applicable
synapse cell only conductance times resistor

implemented conductance
as floating-
gate_transistor

60

'I
I.

Authors Application Algorithm Weight Weight-change Synapse Neuron Others Remarks

Lehmann, 1993, Pattern Back- Differential Elegant synapse MOS resistive cell Differential pair of Digital storage
1994, 1995 recognition propagation voltages on design permits produces parasitic bipolar

gate- backward- differential current transistors
capacitances propagation from differential

calculation in voltage
serial fashion

Linares-Barranco Bi-directional Hebbian Capacitive Via multiplier Transconductance Transconductance Refresh by
eta!, 1993 associative learning multiplier multiplier reading weights

memory (BAM) and adding a
little charge

Lindblad et a!, Character Radial-basis Digiatal implementation of 'zero-instruction-set computer' Learning
1995 recognition function circuitry is on-

 chip

Macq eta!, 1992 Not applicable, since building-block Current Analogue Refresh by ADC Concerned
circuits. Kohonen network envisaged winner-takes-all and DAC, only with

circuit detects reading stored analogue
smallest distance current, writing storage of
and adjusts a next-upper adjustable
column of reference weights. On-
synaptic array chip learning

predicted but
not
implemented.

Meador et a!, 1991 Not stated Not stated Floating-gate Re- Voltage-controlled Relaxation Not yet 'auto-
storage programming of switch converts oscillators adaptive"

floating-gate incoming pulse- producing
trains to sequence variable pulse-
of charge-packets frequency output
on or off weight-
capacitor

Cr
CD

9

0

C

CD

0

C

CD

Oq

CD

CD

0

rn

00

CD

I

'1

I.

aml

Authors Application Algorithm Weight Weight-change Synapse Neuron Others Remarks

Montalvo eta!, Not applicable building-block During Multiplication of Operational Combines
1992, 1994 circuits only learning, differential input- amplifier converts learning

capacitive; voltage times summed currents capability
after learning, differential to differential with non-
floating-gate currents produced output voltage volatile
storage by floating-gate storage

transistors

Myers eta!, 1992 Building-blocks Back- Fully-digital implementation. Trains with 8 bit weights (rather than the usual
for real-time propagation 12 bits) by using pseudo-random noise sources. Learning on the chip.
image and signal
processing

Sackinger eta!, Character Five-layer, feed- Capacitive, Off-chip Multiplying DAC Digital, via The ANNA
1992 recognition forward refreshed by (analogue weight current-summing chip, capable

on-chip DAC times digital state) and ADC of various
with topologies
resolution of 6
bits (+ 4
scaling)

Salam and Wang, Pattern and Modified Voltages on Learns to store a Conceptually op- Continuous-
1991 character Hopfield net gates of inter- pattern amp with RC feed- time digital"

recognition connecting back, implemented implement-
transistors, set as double inverter ation
to high or low using RC

parasitics

Schneider and Not stated Mean-field Capacitive Access- Super-threshold Super-threshold Refresh by
Card, 1991b, network with transistors to Gilbert, or Gilbert with learning
1991c Hebbian weight "inverter" with output current

learning capacitors used high and low converted to a
(deterministic sub-threshold to voltages set so voltage
version of dribble charge transistor works in
Boltzmann on or off linear region
machine)

—
CD

0

C

CD
Ca

C

C

CD

CD

CD

c-

C

CL

I-.

i

I,

-
(D

2

0

cri

0

p

p

CD
Cl)

0

0

OIQ

CD
p

CD

CD

p

C
Cl)

Authors Application Algorithm Weight Weight-change Synapse Neuron Others Remarks

Schwartz eta!, Not applicable, since building-block Capacitive Switched- Not applicable Digital
1989a, 1989b, circuits. capacitor primary store
1990, 1991 system, making envisaged, or

small weight- constant
changes possible learning

Shibata and Ohini, None stated or Various Threshold Vth altered by All signals in voltage mode using vMOS Cunning
1992, 1995 demonstrated voltage of injecting charge transistors. Binary states given weight by implement-

floating-gate through gated subtracting Vth. Charge distributed over ation
vMOS node onto common floating gate sums outputs of
transistor floating-gate each vMOS transistor.

using
programming
pulses

Shima eta!, 1992 Identity- Simplified back- Static RAM A-to-D Gilbert multipliers Summed currents Maximum-value Synapses and
mapping propagation (but claim conversion, into detector for weight-change
problem could be increment or transimpedance sigmoid- on one chip,

analogue) decrement, then amplifier derivative neurons on
backing up D-to-A another
current conversion

Theeten et a!, 1990 Back- Digital implementation Same research
propagation group as
with local Duranton and
learning rule Sirat

Tomberg and None stated Back- Digital implementation
Kaski, 1991 propagation

van Daalen et al, None stated Back- Not stated. Concerned only with output neuron Stochastic bit- Neuron also Can be
1994 propagation stream calculates considered a

implementation derivative of digital
based on digital output as implement-
coounter required by ation

back-
propagation

02
IrJ

r

I .
I .
C)
tQ

Authors Application Algorithm Weight Weight-change Synapse Neuron Others Remarks

Wang, 1993a, None stated Back- Capacitive, Charge-transfer Wide-range Combination of Synapses on
1993b propagation refreshed by between Gilbert transimpedance one chip,

DAC buffered amplifer and neurons on
capacitors differential another

amplifier

Watola and Clustering Competitive- Capacitive Switched- Current Not applicable Refresh Asynchronous
Meador, 1992 applications pulse Hebbian current sources modulated by unnecessary pulse-mode (ie

learning to dribble charge pulsing on gating because pulse-density)
on or off transistor applications implement-

have statistics ation
which vary more
rapidly than
refresh

—
CD

0

CMF

ci)

0

p
CMF

'1
CD
Cl)

0

0

CD
p

CD

CD

p

0

Cl)

a
Irj

CD

I
I.

Appendix D

Table of learning equations

The table on the following page shows the learning equations for the virtual

targets and back-propagation algorithms.

In the implementation of the virtual targets algorithm described in this thesis,

weight and target updates are carried out 'stochastically'; in other words, every

epoch, each input pattern is presented and the weights and targets are updated

after every pattern presentation.

Both the virtual targets and the back-propagation algorithms make use of a term

called the 'sigmoid-prime'. As explained in Chapter 5, the virtual targets al-

gorithm was simplified by removing the term; hence the table shows the equations

with and without the 'sigmoid-prime'.

164

Appendix D. Table of learning equations
	

165

Virtual Targets Algorithm

with 'sigmoid prime' term without term

Output-layer weights:

AWkJ 	=flw0J0kk

_flWOJOk(l - Ok)(tk — Ok) = 1 WOJ (tk — Ok)

Hidden-layer weights:

LWJ, 	=11OiOE

Hidden-layer targets:

&, 	=TtWkjEk

='flf>WkJ(tk 	0k)

Back-propagation Algorithm

Output-layer weights:

AWkJ= Tl,Oj8k

1 w0J0k (l—O k)(tk — Ok) 1 W0J(tk — Ok)

Hidden-layer weights:

Aw

= i 003 (1— OJ)wkJk

= 1WOOJ(1- OJ)wkJ0k(1- Ok)(tk - Ok) =nWO>wkJ(tk - Ok)

where
• i, j and k are indices for the input, hidden, and output layers, respectively

• W is a weight

• O, Oj and °k are the outputs of the input, hidden, and output layers, respectively

•Tjw and T are weight and target gain-terms, respectively

• E is the error-term such that tk - °k represents a desired minus an actual output

Table D-1: The virtual-targets and back-propagation equations

Appendix E

Analysis of the twin-synapse circuit

Assumptions

Vhiref= 2Vo
1. Transistors M1 and Al2 operate in the linear region, so

h12

	
= [JVJ,.S. ((v(; - Vj) -

2. The widths and lengths of M1 and Al'2 are equal so that

Vwt 	 + 	 = 	I3M

Vo 	 where ,.i,, is the surface mobility l)arneter, C,,.. is the

-

	

	 capacitance per unit area of the gate oxide, W i s the

width, and L IS the length.

Vioref = gnd
3. The effect of transistor M3 in its ON state can be ig-

nored.

Figure E-1: The model of a single synapse to be analysed.

The model of a single synapse to be analysed is shown in Figure E-1.

1
= /3VDS [(VGS - VT) - VJJS

/9V0 [(V_V0 _ VT) _V O]

= 1317 	 - VT) - .V 0]

out = i1i2

= /3V0 [V—vt—Vol

Since 3, Vo and V are constants, then

z out cx -v,

166

Appendix E. Analysis of the twin-synapse circuit 	 167

The twin-synapse model shown in Figure E-2 can be analysed, rather informally,

in the same way as the single synapse.

Vhiref = 2Vo

Vstatel

°I
Vz

M I 	100x% ON

Isynl, 	

M3
Vwt

0 	IL'

Vhiref = 2Vo

Vstate2
Vwt 	

IMh1 	1 	

Itot

100y%ON

M 13

p

1syn2,

Vz

	

,--d

 M12 	 Vo

Vioref = gnd
	

Vioref = gnd

Figure E-2: The model of a twin synapse to be analysed. The assumptions

made for the single-synapse model apply.

The analysis is as follows

i81 = /3V0 [V - vi - Vo]

i82 = /3V0 [vt - Vz - V0 1

Assume a time-frame in which statel, acting as a zero pulse, occupies half the

frame, as shown in Figure E-3. Hence, state2, which is of variable width within

the frame can, at the extremes, occupy none or all of the frame, Hence, .statel E

[] and state2 E [0, 11.

Let x = (for a 50% occupation of the frame), and let z = (y
-) = z E [- k ,].

Then:

= ZSyn1 + isyn2

=

= fiv. V_, — V.t — V. + ZV.t — ZV. — ZY, + — VWt — — V~I — — V~]

= /3V0 [z(vt-V)-V0(z+1)]

The effect of this is that iout x v,,t - C where C is an offset current which has to

be 'injected' into the synapse to achieve the correct zero point. The offset could

be corrected using the current source shown in Figure E-4.

Appendix E. Analysis of the twin-synapse circuit
	

WIMI

Time-frame

50% of time-frame

Statel (zero-pulse)

(variable width)

Figure E-3: How the time-frame is occupied by the zero-pulse and a vari-

able-width pulse

Vhiref = 2Vo 	 Vhiref = 2Vo

V Vstatel 	 state2

vTMl 	100x% ON VWt
	

Mil1100y%ON

 IsynL 	 Itot

r Li_______

M2 	 M12 	 y Vo Vwt 	 VZ

Vioref = gnd 	 Vloref = gnd

Figure E-4: Correcting the offset

Appendix F

Details of the two chips

This Appendix contains details of the design and testing of the two chips described

in this thesis.

169

Appendix F. Details of the two chips
	

170

Details of design and test of chip described in

Chapter 4

Process

Design tool

Test board

Main controller

Analogue voltage inputs

Analogue current inputs

Pulsed inputs

Output signals

ES2 1.5gm

Cadence Edge

Wire-wrap board

IBM PS2/30

Unity-buffered from PSU

Via resistors from PSU

Programmable state machine. The ma-

chine, driven by its own clock, used an

instruction-set, stored in EEPROM, to de-

termine the state of digital signals in each

clock-cycle. By controlling these states,

a set of control and pulsed-input signals

could be generated.
Read into PS2 from Philips 3365 storage

oscilloscope via GPIB interface

\ppenclix F. Details of the two chips

Op-amps,
intwgrators

and 	 Multipliers 	XOR gate
comnarators

3.75mm

Figure F—i: P10/ o nsf clip.

Appendix F. Details of the two chips

Testing the first chip

The chip was tested using the equipment shown in Figure F-2.

172

Clock T,Lr 7FT
I Control

Voltage
and

current
supplies

E 00

Scope

Figure F-2: Design of system for testing the chip.

An IBM PS/2 controlled the dynamic signals for the experiments, that is the pulse

inputs; and the addressing and control signals and DAC that enabled varying

weights to be loaded as charge on the weight-capacitors of the synapses. A state-

machine', effectively a programmable ROM with its own clock, supplied the pulse

'Grateful thanks are due to Alister Hamilton, who had developed this state-machine

for another purpose, and to Andy Myles who very kindly used his substantial awk skills

to rewrite the compiler that drove the machine and provided a complete state-machine-

code testing system.

Appendix F. Details of the two chips
	

173

inputs themselves, as well as a number of other control signals (enable and reset

signals for the activation capacitor, and the signal to start a ramp from the

ramp DAC). The static signals, that is the several current and voltage supplies

necessary for the op-amp, integrator and output-pulse circuits, derived from a

main power-supply; resistor-ladders, buffered by op-amps, supplied the voltages,

and potentiometers controlled the currents. A digital oscilloscope captured the

output pulses and sent data back to the PC via a GPIB bus.

Appendix F. Details of the two chips
	

174

Details of design and test of chip described in

Chapter 6

Process : 	 ES2 1.5/.Lm

Design tool : 	 Cadence Opus DFII

Test board : 	 PCB, designed by Geoff Jackson, and wire-

wrap board
Main controller : 	 IBM PS2/30

Analogue voltage inputs : 	 Unity-buffered from PSU

Analogue current inputs : 	 Via resistors from PSU

Pulsed inputs : 	 XILINX field-programmable, 	gate-array

(FPGA) chip. Compiling software was run

on a Sun workstation and downloaded to

the FPGA chip by a serial interface. The

design was done schematically, using Ca-

dence Opus DFII; small digital schematics

can be combined hierarchically from lib-

rary components to produce complex cir-

cuits. An example schematic, of the driver

for the shift-register which addressed the

synapse array, is shown in Figure F-3.
Output signals Read into PS2 from Philips 3365 storage

oscilloscope via GPIB interface

yphM

yphi2

/CØ

/Cl

/C2

ytc

xphil

xphi2

yphien

yce

yrd

Appendix F. Details of the two chips 	 175

I (A
_ 	Library components

phi

yenable

phi2

yphil

yphi2

ANL)2

Figure F-3: Schematic of the Y shift-register driver

Appendix F. Details of the two chips 	 176

8x8 array of
multipliers and 	8x8 array of
weight storage 	target storage

Oo-amvs. 	 and

6.40mm

5.35mm

Figure F-4: Plot of .$fcon(I chip.

Learning

 chip

Cz

Appendix F. Details of the two chips 	 177

Testing the second chip

The chip was installed in a printed circuit board and driven by a combination of

digital and analogue hardware, and by digital software down-loaded onto a Xilinx

FPGA (field-programmable gate array) chip. Using the Xilinx chip meant that

I could design and redesign small pieces of support circuitry to test individual

parts of the chip, and then reuse these pieces in a larger and more comprehensive

design to carry out trials of on-chip learning. Each digital module comprised

standard building blocks such as multiplexers and flip-flops, together with a set

of state machines to control the order and timing of events.

The arrangement of the various components is depicted in Figure F-5.

Xilinx FPGA chip Ax

•1
Pattern
store

- 	WeAC

	

control: 	1DACH

Multiplier
I 	control

	

1Rai;PntC1 	
DACH

'Shift-register'____________
control 	I

I - - _ 	I --------

Test board

r.WWO
Dp

/H

PC

Figure F-5: Arrangement for testing the chip.

Appendix G

Related papers

178

Appendix G. Related papers
	

179

HIT Technical Conference, 1993

Woodburn R, Murray A F and Reekie H M, 1993. "On-chip learning

in neural networks". In Proceedings of the JFIT Technical Conference, Keele,

March, 149 - 156.

ON-CHIP LEARNING IN VLSI
NEURAL NETWORKS USING

HYBRID ANALOGUE/DIGITAL
TECHNIQUES

Robin Woodburn, Alan F Murray and H Martin Reekie *

1 Introduction

This paper describes a test-chip design for on-chip learning in a VLSI neural network
which makes the network not only programmable but also truly adaptive.

The current emphasis in neural-network implementations is on two types of pro-
grammable system. The first is fixed-function systems, where an appropriate
weight-set is evolved during computer simulation and then down-loaded to the
network, which is then used as a programmable, high-speed system. The second
type is simulation accelerators, where the architecture may be highly flexible in the
types of network which it can embody, but which is optimised for neural operations.

The aim of the current design is to move from programmability to adaptability, by
creating a VLSI implementation which will be able to evolve a suitable weight-set
- that is to learn - on-chip.

2 Applications of On-chip Learning

For many applications, developing the weight parameters during computer simula-
tion may be inconvenient because of the long training times involved, but the meth-

*Robin Woodburn is the main contact, tel 031-650-5665, email rjwee.ed.ac.uk . All authors
are members of staff of the Department of Electrical Engineering, University of Edinburgh, King's
Buildings, Mayfield Road, Edinburgh E119 3JL. The project's grant number is SERC 17060

149

odology is not fatal to their success. For example, financial applications, database-
retrieval, hand-writing recognition and medical diagnosis may all, depending on the
circumstances, be carried out 'off-line' to achieve acceptable solutions. Adaptabil-
ity may not even be advantageous in these cases, since the output characteristics
of the problem may have been well-defined.

In other applications, however, the input data may not be well-controlled, may
arrive in large quantities in analogue form, and may require to be dealt with in real
time. Examples are robotic and sensor-motor control, speech recognition, natural-
language applications, process-control, image-processing and machine vision. In
these circumstances, the neural system must be adaptable at high speed. The
point about such systems is that they may require to respond to inputs some of
which are stable or very slowly-changing, and so can be pre-learned while other
inputs may be rapidly-changing and so require 'learning' or 're-learning' over a
period of time. On-chip learning brings closer the prospect of systems with this
capability, and hence the possibility of autonomous systems.

3 Development of On-chip Learning

The idea of on-chip learning is not new. In some senses it is an obvious next step
from programmable systems : long training times on serial computer architectures
make means of accelerating the process on truly parallel implementations very at-
tractive. Furthermore, researchers have been moving incrementally towards the idea
with 'chip-in-the-loop' techniques for analogue devices : the weight-matrix derived
from simulation is down-loaded, and then another, short, learning phase is carried
out in which the network is used for the forward computation while a supporting
computer updates the weights, until the network stabilises. The resultant weight-
matrix is thereby adjusted to compensate for the inevitable disparities in analogue
computations due to process variance. The 'chip-in-the-loop' scheme has been used
for Intel's analogue ETANN chip [1], for the back-propagation algorithm on a mixed
optical and analogue-electronics network [2], and indeed for our own group's EPSI-
LON chip as a means of implementing a variant of the back-propagation algorithm
[3], to be described shortly.

4 Implementations of On-chip Learning

Several other groups are investigating the issue of on-chip learning. These invest-
igations are primarily digital [4, 5, 6, 7, 8], although some hybrid schemes are

150

beginning to make an appearance [9, 10].

The digital implementations tend to be flexible schemes capable of supporting a
wide variety of neural algorithms including back-propagation, as well as algorithms
with similar characteristics such as those for digital signal processing. The number
of neurons tends to be small (in the lOs), but multiplexing techniques and the
cascadability of chips permits larger networks to be created.

The analogue systems, like the one described here, are network-specific. The num-
ber of neurons tends to be greater (high lOs and lOOs), with one example being
cascadable to create larger networks [11].

Analogue learning implementations raise a number of fundamental issues. For ex-
ample, the back-propagation algorithm, which has given such an impetus to neural-
network research and applications, is notoriously difficult to render into hardware.
One reason is that weight-updates involve non-local information, which has to be
fed back from the output to the hidden layer (and this can be difficult to organise
efficiently in digital hardware also). Another is that the weight-update strategy
for output-layer neurons is different from the strategy for hidden-layer neurons.
The virtual-targets algorithm goes a considerable way towards overcoming these
problems.

A whole system needs to be created in addition to the building-blocks for compu-
tation. This means that different methods for encoding states and values, and the
means for feeding these signals to different parts of the network, must be considered
very carefully.

Process-variations will inevitably affect the operation of the network. Although
out group has had some success in confronting this problem through the design of
process-invariant circuits [12], it cannot be entirely overcome. In designing the sys-
tem, a judgement has to be made about what is or is unlikely to be successful. For
example, in a weight-modification circuit, imprecision in computation can probably
be tolerated provided the polarity of the result (and hence the direction in which
the weight is adjusted) is correct. Computer and Spice simulations help develop
a feel for what is right, but ultimately the silicon implementation is the only real
test.

5 The Virtual-Targets Algorithm

The virtual-targets algorithm simplifies the weight-update strategy sufficiently
to make hardware implementation a more practical prospect than for back-

151

propagation.

It is not important to understand the detail of the algorithm to appreciate its
advantages over back-propagation, although the algorithm for the training phase for
an I - J - K network is outlined in Figure 1 and it is described in detail elsewhere
[13, 14]. The first advantage is that weight-update uses only local information,
simplifying the circuitry necessary for a hardware implementation.

1. Calculate initial values for the hidden-layer targets:

Apply input pattern {O,,}, and read out the states {O,p} and {Okp} of the hidden and output
nodes.

Assign targets {T, 9 } for the hidden nodes such that {T,} =

2. Repeat 1 for all input patterns.

3. Present patterns in random order and allow

weights to evolve according to the following equations:

bwkj

	

- '1weight8°jp°kpkp 	 (1)

	

St -
??weightsOipOjpcjp 	 (2)

where

• flweghts is a gain-term representing weight learning-speed;

• {O,,} and {O,,} are the inputs from the previous layer;

• O and O represent the derivatives of the activation function (the 'sigmoid-prime' terms);

and

5kp and e, are the error-terms where 	= Tk - °kp and jp = 	-

hidden-layer targets to evolve according to the following equation:

K
ST,

	

= 77t arget 8 >Wkj€k p 	 (3)

k=O

where

• 77torgeta is a gain-term representing target learning-speed;

• Wkj is a weight on the connections between the hidden- and output-layers; and

• 	is the error term where qcp = Tkp - °kp

Figure 1: The virtual-targets algorithm.

The second advantage is that the weight-update strategies for both hidden- and
output-layer neurons are identical (whereas they are different for back-propagation),
which means that, once neuron circuits have been designed, they can be replicated
for the whole network. The price to be paid is that, in addition to the output target-
states (ie teaching patterns used in training), a target-state has to be introduced

152

for each hidden-layer neuron, and these hidden targets require information to be
fed back from the layer above.

6 Translating the Algorithm into Hardware

The new design builds on previous work carried out by our group, [15, 3], which has
proved circuits for an analogue, feed-forward network capable of providing multiply-
accumulate operations for a variety of neural algorithms including virtual targets;
the virtual-targets algorithm is currently realised on our EPSILON chip using the
'chip-in-the-loop' technique referred to earlier.

Oi

Ok(i-Ok) pulse multiplier
I
I

	
.._.-...

weight
moaification

_Jl_JL .

rd L current 50/
duty-cycle

I ----------- i. 1 .J
.i:i..-

______ --------
-4 - -------- - - -

weiSht
(voltage)

transconductae
multiplier 	J

targe
modification

Tk f1_ cli_f 	_J1_ 	1_
: 	 -----------

- current

Ok 	 L "s
_•1

P weight (voltage)
Tk
(pulse)

Figure 2: Functional block diagram of the computational elements of the chip

The design is still incomplete. However, a functional block diagram of the compu-
tational elements of the design is shown in Figure 2, and details of work so far are
as follows

Hybrid chip The chip will be a hybrid one, to reflect previous work by our group,
and to blend the merits of both digital and analogue technology. Our approach is
to use whichever form of technology is the best or most convenient in the circum-

153

stances. In general, we prefer analogue circuitry for synaptic multiplications on
the grounds, firstly, that such circuitry occupies a much smaller silicon area than
the digital equivalent and, secondly, that summation can be simply and elegantly
achieved if the results of multiplication are currents which can be summed on a
node. We prefer digital signals for neural states because they can encode analogue
values on a time axis and yet are robust and easily transmitted within chips or
across chip boundaries.

Neural states Neural states will take on analogue values whose instantaneous
value will be represented by the width of an individual pulse. Our group has con-
sidered, and used, a number of different representations in the past [15]. However,
pulse-width modulation seems, at least in the first instance, the most appropriate
representation for the current scheme for on-chip learning because of the ease with
which it may be employed. For the virtual-targets algorithm, a neural state Ok is
continuously-valued such that 0 < Ok < 1.

Target states Target states will be identical in form to neural states. For virtual
targets, target-states Tk are continuously-valued such that 0 <Tk < 1.

Error-signals Error-signals, which represent the difference between target- and
output-states, are bipolar and continuously-valued such that —1 < Ck < 1. Since
both the target- and output-states are represented by pulses, simple digital circuitry
can be used to latch a 'sign-bit' to represent the polarity of the error computation.
The magnitude can also be easily computed by applying each pair of target and
output pulses to an XOR gate.

Sigmoid-prime The derivative of the activation function, also known as the
'sigmoid-prime', is of the form Ok(1 - Ok), where Ok is a neural state. The most
convenient means of representing this computation is as a function, whose input Ok
will give an output which is an inverted parabola which cuts the x-axis at 0 and 1.
Such an output characteristic is not very easily generated by an analogue circuit,
but a reasonable approximation, the output characteristic of which is a triangular
wave, can be generated by applying the input pulse Ok to one input of an XOR
gate whose other input is stimulated by a square-wave with a 50% duty-cycle.

Weight-states Weights are held as charge on a capacitor. A weight can then
be modified by adding charge to, or removing it from, the capacitor. For virtual
targets, weights are continuously-valued and bipolar.

Transconductance multiplier Our group has developed a transconductance mul-
tiplier [15], with highly linear characteristics, for multiplying weights by states. The
input stage of the multiplier produces a current proportional to the weight-voltage,

Wk 3 , which is then pulsed by a switch-transistor controlled by the neural state,
°k For a particular neuron, the resulting output current can be summed with

154

other synaptic outputs and integrated over a period of time into a voltage. This
voltage represents the multiplication of Wk3 by O. The multiplier operates in two
quadrants, with weights being positive or negative while states are positive only.
However, for the virtual-targets algorithm, a four-quadrant multiplier is required
since the target-modification equation (equation 3 in Figure 1) requires multiplic-
ation of two bipolar values. One solution would be to arrange the multiplier in
pairs, each with its own weight-capacitor, one of which represents a positive value
and the other a negative one. The disadvantage of this approach is that process-
variations may cause mis-matches in the operation of the paired multipliers, leading
to inconsistencies in the results of the computations, so other possibilities are being
considered.

Generating pulses to represent neural and target states As neural and target
states are continuously-valued, the width of the pulses which represent the states
must also be varied. Post-synaptic neural activity is represented as a voltage, while
targets can also be represented as a voltage via charge stored on a capacitor. To
generate pulses from these voltages requires only a two-stage comparator with an
inverter output driver. If a ramp voltage is applied to one input of the comparator,
it will produce a pulse output the width of which is set by the neural- or target-state
voltage. The ramp voltage can easily be generated off-chip and globally distributed
to all neurons and targets in parallel.

Remaining work This leaves two significant pieces of work still to be decided,
the double-pulse multiplier, and weight-refresh circuitry. Current preference for
the double-pulse multiplier is for a charge-pump system to produce a voltage which
can be fed directly into the transconductance multiplier.

References

Tam S M, Gupta B, Castro H A, and Holler M. "Learning on an analog VLSI
neural network chip". In Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, Los Angeles, 701 - 703, 1990.

Frye R C, Rietmann E A, and Wong C C. "Back-propagation learning and
nonidealities in analog neural network hardware". IEEE Transactions on
Neural Networks, 2 (1), (January), 110 - 117, 1991.

Churcher S, Baxter D J, Hamilton A, Murray A F, and Reekie H M. "Generic
analog neural computation - the EPSILON chip". In Advances in Neural
Information Processing Systems 5, eds C L Giles, S J Hanson and J D Cowan,
1993.

155

Duranton M and Sirat J A. "Learning on VLSI a general-purpose digital
neurochip". Phillips Journal of Research, 45 (1), 1 - 17, 1990.

Theeten J B, Duranton M, Mauduit N, and Sirat J A. "The LNeuro-chip: a
digital VLSI with on-chip learning mechanism". In Proceedings of the Inter-
national Neural Networks Conference, Paris, 593 - 596, 1990.

Eguchi H, Furuta T, Horiguchi H, Oteki S, and Kitaguchi T. "Neural network
LSI chip with on-chip learning". In Proceedings of the International Joint
Conference on Neural Networks (vol I), July 8 - 12, Seattle, 453 - 456, 1991.

Hammerstrom D. "A VLSI architecture for high-performance, low-cost, on-
chip learning". In Proceedings of the International Joint Conference on Neural
Networks (vol II), San Diego, 537 - 544, 1990.

Tomberg J and Kaski K. "Digital VLSI architecture of backpropagation al-
gorithm with on-chip learning". In Proceedings of the International Conference
on Artificial Neural Networks (vol 2), Espoo, Finland, 1561 - 1564, 1991.

Arima Y, Mashiko K, Okada K, Yamada T, Maeda A, Kondoh H, and Kay-
ano S. "A self-learning neural network chip with 125 neurons and 10K self-
organisation synapses". IEEE Journal of Solid-state Circuits, 26 (4), (April),
607 - 611, 1991.

Salam F M A and Wang Y. "A real-time experiment using a 50-neuron CMOS
analog silicon chip with on-chip digital learning". IEEE Transactions on Neural
Networks, 2 (4) (July), 461 - 464, 1991.

Arima Y, Mashiko K, Okada K, Yamada T, Maeda A, Notani H, Kondoh H,
and Kayano S. "A 336 neuron, 28K-synapse, self-learning neural network chip
with branch-neuron-unit architecture". IEEE Journal of Solid-state Circuits,
26 (11), (November), 1637 - 1643, 1991.

Baxter D J. "Process-tolerant VLSI neural networks for applications in op-
timisation", unpublished PhD Thesis, Edinburgh University. 1992.

Murray A F. "Analog noise-enhanced learning in neural networks circuits".
Electronics Letters, 2 (17), 1546 - 1548, 1991.

Murray A F. "Multi-layer perceptron learning optimised for on-chip imple-
mentation". Neural Computation, 4 (3), 336 - 381, 1992.

Hamilton A, Murray A F, Baxter D J, Churcher S, Reekie H M, and Tarassenko
L. "Integrated pulse stream neural networks results, issues and pointers".
IEEE Transactions on Neural Networks, 3, (3) (May), 385 - 393, 1992.

156

Appendix G. Related papers
	

10

IEEE Micro, 1994

Murray A F, Churcher S, Hamilton A, Holmes A J, Jackson G B,

Reekie H M and Woodburn R, 1993. "Pulse-stream VLSI neural networks".

IEEE Micro, 14, (3), 29 - 39.

- 	 M 	
-:

-V.

Pulse Stream VLSI Neural Networks

EPSILON, a large, working, VLSI device, demonstrates pulse stream methods in the wider
context of analog neural networks. EPSILON uses dynamic weight storage techniques, but a
nonvolatile alternative is desirable. To that end, we have developed an amorphous silicon
memory, which we present in experiments incorporating the device in a modest pulse stream
neural chip. We have also developed a target-based training algorithm, which we demonstrate
in a prototype learning device using a realistic problem. Finally, we explore system-level
problems in experiments with a second version of EPSILON in a small, autonomous robot.

Alan F. Murray

Stephen Churcher

Alister Hamilton

Andrew J. Holmes

Geoff B. Jackson

H. Martin Reekie

Robin J. Woodburn

University of Edinburgh

• 	ecause the pulse stream technique
does not quantize information explic-
itly, it preserves the high resolution
of analog processing. In addition, it

communicates by exchange of binary pulses with
fixed amplitude, thus exploiting many benefits
of digital circuitry. The pulse stream technique
uses digital signals to carry information and to
control analog circuitry, while storing further
analog information on the time axis. A number
of techniques exist for coding a neural state 0 <
S, < 1 onto a pulsed waveform V1 with frequen-
cy u,, amplitude A,, and pulsewidth 6,. An earli-
er work' reviewed these techniques.

We first used pulses in the neural context in
1986.2 Now we bring the pulse stream story up
to date. We have built large network chips using
the pulse stream technique. We have developed
algorithms that place the training, as well as the
forward-pass computation, on the silicon sub-
strate. We are using novel memory devices to
work toward nonvolatile weight storage with fast
programming time, and we have developed
"stripped-down," application-oriented chips for
inclusion in small mobile robots. Here, we
describe these concurrent, related but distinct,
projects.

First, however, we must clearly state our atti-
tude to pulse stream methods for neural net-
works. They are effective, efficient, and attractive
in many applications. They have a good biolog-
ical precedent. But we do not claim that these
methods are best in all circumstances. Rather,
they form one of a range of possible neural-
network techniques that includes digital. 3 weight-
less,' purely analog, 56 and several hybrid
schemes. This list is far from exhaustive.

Pulse stream hardware: EPSILON
The EPSILON (Edinburgh Pulse Stream Imple-

mentation of a Learning-Oriented Network) chip
is a 3,600-synapse section of a neural network
implemented in 1.5-9m CMOS (complementary
metal oxide semiconductor) technology. With
the goal of building as large a neural network as
possible in silicon, we used the following
circuits.

Synapses. The synapse design is based on the
standard transconductance multiplier circuit, pre-
viously the basis of monolithic analog transver-
sal filters in signal-processing applications. 7 Such
multipliers use MOS transistors in their linear
region of operation to generate output currents
proportional to the product of two input volt-

0272-17321941$04.00 0 1994 IEEE 	 June 1994 29

--

- T. 	•'-'.' 	 ...-... 	. 	-
1-7

1L
Pulse stream networks

.. 	 —

i -
"-•r:a -j..

... 	

.,-

vout
V,

Vranp

Vact FT 	r"T.T. 1.5

V,H 0—cl Ml
	 M10

V, o-c 1M3 	M41 D-O Vm id

'L1 	 M8

1!

M5 	M6 1 1 • 	II M7

ages. We adapted this concept for pulsed neural networks by
fixing one of the input voltages and using a neural state to
gate the output current. In this manner, the synaptic weight
controls the output current's magnitude, which is multiplied
by the incoming neural pulses. The resultant charge packets
subsequently integrate to yield the total postsynaptic activi-
ty voltage.

The linearity of the synaptic output, as a function of input
state, is very high. 8 The variation of synapse response with
synaptic weight voltage is fairly uniform. Therefore, the
design contains the effects of across- and between-chip
process mismatches tolerably well.

Neurons. To reflect the diversity of neural network forms
and possible applications, we included two different neuron
designs on the EPSILON chip. We designed the first, a
synchronous pulsewidth modulation neuron, with vision
applications in mind. This circuit can guarantee network
computation times, thereby eliminating the data dependen-
cy inherent in pulse frequency systems. The second neuron
design uses asynchronous pulse frequency modulation.
Although hampered by data-dependent calculation times, its
wholly asynchronous nature makes it ideal for neural net-

work architectures that embody tem-
poral characteristics—feedback net-
works and recurrent networks. Like the
synapse, both circuits minimize tran-
sient noise injection and tolerate
process variations.

Pulsewidtl, modulation. The main
disadvantage with this technique ap-
pears to be its synchrony; neurons all
switch together, causing larger power

VOD supply transients than in an asynchro-
nous system. We circumvented this
problem, however, with a double-sided
pulse modulation scheme.

Figure la illustrates the operation of
the pulsewidth modulation neuron.
The neuron itself is a two-stage corn-

V parator with an inverter output driver.
The inputs are the integrated postsy -
naptic activity voltage V,, and the ref-
erence voltage V,,, generated off chip
and distributed to all neurons. As
Figure la shows, the output changes
state whenever the reference signal

Vss crosses the activity voltage. The shape
of the reference signal determines the
transfer function; when the signal is
generated by a RAM lookup table, the
function is user programmable. Figure
la shows the signal that should be
applied for a sigmoidal transfer char-

acteristic. The sigmoid signals are "on their sides" because the
input (or independent variable) is on the vertical axis. The
use of a double-sided ramp voltage generates a symmetrical
pulse at about the midpoint of the ramp, reducing the occur-
rence of coincident edges and relieving the problem of
switching transients on the power supplies. Furthermore.
because the analog element (that is, the ramp voltage) is
effectively removed from the chip, and the circuit itself mere-
ly functions as a digital block, the system is immune to
process variations.

Pulse frequency modulation. Figure lb illustrates the sec-
ond neuron design, basically a voltage-controlled oscillator
(VCO) with a variable-gain sigmoidal transfer characteristic.
The circuit achieves oscillation via the hysteretic charge and
discharge of capacitor C by currents I. and 'L 'H sets the
constant output pulsewidth, while 'L controls interpulse spac-
ing (and hence output frequency). 'L itself is determined by
the activity voltage V via the differential stage of transistors
M3 to M6. This differential stage gives the VCO its sigmoidal
characteristic, and additional current injected and removed
at appropriate points in this stage produces gain variations
(Figure lb omits this circuitry for the sake of clarity).

Vout

0

Figure 1. Pulsewidth modulation neuron (a); pulse frequency modulation
neuron (b).

30 IEEE Micro

--

EPSILON specifications. The synapse and neuron cir-
cuits underpin the EPSILON chip, fabricated by European
Silicon Structures using its ECPD15 (1.5-gm, double-metal,
single poly-CMOS) process. Each chip uses a single layer of
synaptic connections and accepts inputs as either analog
voltages (for direct interface to sensors) or pulses (for com-
munication with other chips and with digital systems). Table
2 on page 36 gives the full EPSILON specifications.

Demonstration. EPSILON's first real-world problem was
the implementation of a 54:27:11 multilayer perceptron (Nap)
to classify 11 different vowel sounds spoken by each of 33
speakers. Analog outputs of 54 band-pass filters formed the
input vectors.

We initially trained the MLP on a Sun Sparcstation, using
a subset of 22 patterns. Learning used the virtual-targets algo-
rithm, with 0 percent noise. 9 Next we downloaded the weight
set to EPSILON. Then we restarted the training, but this time
we used EPSILON to evaluate the forward-pass phases of
the network. At the end of training, EPSILON identified all
22 training patterns.

Subsequently, we presented 176 unseen test patterns to
the MLP, which correctly classified 65.34 percent of these
vectors. This compared very favorably with similar general-
ization experiments carried out on a Sparc, in which the best
result was 67.61 percent.

EPSILON's second major application consisted of investi-
gations into image region labeling with an MLP. The prob-
lem: Given a set of features derived from an image region,
use those features, combined with similar features from
neighboring regions, to classify the region.

In particular, we trained an MLP to discriminate between
regions that were roads and those that were not roads. The
experiments were relatively straightforward, consisting of
comparisons between forward-pass (also called recall mode)
generalization abilities of networks implemented on
EPSILON and as computer simulations. We developed six
different synaptic weight sets for a 45:12:2 MLP from six dif-
ferent training data sets on a Sparc workstation. We mea-
sured the generalization capabilities of the weight sets against
six different test vector sets (one for each weight set). Table
1 shows the results.

EPSILON's performance compares well with equivalent
Sparc simulations. Indeed, its mean generalization ability was
only 4 percent below that of the simulated networks—cer-
tainly within one standard deviation. It achieved this per-
formance without the need for chip-in-loop training.

Choice of an on-chip learning algorithm
On-chip learning is an essential feature if network chips are

to become autonomous neural systems addressing real-time,
real-cost applications. Furthermore, in embedded systems,
where analog VLSI technology finds its strongest justification,
the chip's ability to adapt in situ is almost essential.

Table 1. Comparison of EPSILON's generalization
performance and equivalent simulations.

Network 	 Regions correct
implementation 	(Mean %) 	(Std. dev. %)

EPSILON 	 63.57 	 4.86
Simulation 	 67.56 	 8.33

Several groups are investigating on-chip learning, primar-
ily in the digital domain, although some schemes, like our
own system, use hybrid digital-analog technologies. Digital
systems are flexible and support a variety of neural algo-
rithms including back propagation. Network size (in other
words, the number of neurons) is restricted, however. Digital
circuitry is area hungry.

Analog neural systems take advantage of the technology's
greater compactness to implement larger numbers of neu-
rons (up to several hundred) and can be cascaded to create
larger networks. However, they support a restricted range
of algorithms. Although the EPSILON chip can implement
several algorithms, it performs only the forward pass, and
an associated computer performs the learning phase prop-
er. This chip-in-loop training 5 is a successful, although time-
consuming and clumsy, process.

If an analog chip can support only one algorithm, that
algorithm must be selected with care.

Researchers have made considerable progress recently in
translating the back-propagation algorithm into hardware.'°
We have used an algorithm called virtual targets, one of a fam-
ily of target-based algorithms related to back-propagation)'
This algorithm, although far from a panacea for all the prob-
lems of VLSI learning, has two great advantages. First, the
means of updating weights uses only local information, sim-
plifying the circuitry necessary for a hardware implementa-
tion. Second, the weight-updating strategies for both hidden-
and output-layer neurons are identical (they are markedly dif-
ferent with respect to back propagation). Identical neuron cir-
cuits can be replicated for the whole network, and the
virtual-targets chip is inherently more flexible in supporting dif-
ferent MLP architectures.

In developing a virtual-targets test chip, we concentrated
on three issues:

• compact, four-quadrant. pulse stream multiplication;
• implementing the derivative of the sigmoidal activation

function s(x), ?(x) = asW1ax with respect to neural
activity x; and

• the minimum value by which a weight can be adjusted.

Four-quadrant multiplication. Transistors Ml, M2. and
M3 in Figure 2 form the transconductance multiplier referred

June 1994 31

VDD

Vs,2te
L M 11Tre [HEM1

M13 	 J M3
VM

V 	 I syn_zoro 0

vw1 	 vwt

	

Cwt
0. 	 M2

vss

Figure 2. Four-quadrant transconductance multiplier

-_

6—;;--- 	 ----.--- ;- -

g -.- i

-.---,--

0

0.3

!TV5t310 0

-0.2 .

- 	-1.5 	-1.0 	-0.5 	0.0 	0.5 	1.0 	1.5

Vwr - Vzero

Figure 3. Four-quadrant characteristics of transconduc-
tance multiplier (simulation results).

to earlier with highly linear characteristics for multiplying
weights by states. VOD, V d, and V are chosen such that Ml
and M2 operate in their linear regions. The gate voltage of
Ml is fixed to provide a zero point. When the gate voltage
of M3 is held at V,, so that M3 conducts, and the weight,
represented by charge on capacitor C,,,, is at a low point on
the range, the current through M2 is smaller than that through
Ml. The Vm,d node serves to sink the excess, positive cur-
rent. If the weight is at a high point on the range, V,,,,, sources
a corresponding current through M2. Hence, the current
through the V,,,,,, node varies linearly and inversely with the
charge on the capacitor.

Pulses on M3s gate voltage, which represent neural states
(pulse duration represents the neuron's activation level), can
control the current sourced or sunk by V,,. in time.
Integrating the resulting current pulse (whose amplitude
reflects the weight and whose duration represents the state)
over time computes the multiplication of weight by state.
The summation of a number of these computations can be
achieved simply and elegantly on a single circuit node.

Although this circuit, which can be laid out on silicon very
compactly, has given excellent performance, it is two-quadrant
in nature because neural states are unipolar and weights are
bipolar. For the virtual-targets algorithm, a four-quadrant mul-
tiplier is essential because in addition to a weight-by-state mul-
tiplication, a weight-by-error multiplication is necessary, and
weight and error values are both bipolar.

Transistors Mu, M12, and M13 (Figure 2) are the solution
providing four-quadrant multiplication. These additional tran-
sistors form a second multiplier in parallel with the first, but
this time the V. and V., connections are reversed. To
provide a zero-state point, analogous to the zero-current
point set by the pulse applied to M13 is fixed in dura-
tion at 10 jis—midway between the shortest pulsewidth (0

l,Is) representing a negative error and the longest pulsewidth
(20 ts) representing a positive error. At the same time, a
pulse that can vary in duration from 0 jis to 20 p s is applied
to M3. Just as before, integrating the resultant current puls-
es in time computes a four-quadrant, error-by-weight multi-
plication, as shown in Figure 3.

The s'(x) function. Weight changes evolve in the virtu-
al-targets algorithm according to equations given in an ear-
lier article." One of the terms in a weight change equation
is the derivative of a sigmoidal activation function 1(x). This
function takes the form 0' = (Xl - 0). Circuits that will give
both a sigmoid and its derivative already exist.' 2 In our imple-
mentation, input and output states are represented by digi-
tal pulses whose duration reflects the activation level.

Again, the circuit is gratifyingly simple, since .1(x) does
not have to be exact for learning to be successful. An XOR
gate performs computation. One gate input receives a pulse
of fixed duration (10 ts in our scheme), while the other
receives a pulse that varies symmetrically around the first—
in other words, from 0 jis to 20 ps. The gate's output is inte-
grated by a differential circuit, whereby an on pulse sources
a charge onto a capacitor, while an off pulse removes the
charge, as illustrated in Figure 4. When the integration is
complete, the output is a triangular function of the duration
of the variable pulse.

Figure 5a shows the ideal form of 1(x), constrained on the
x axis to values between 0 and 1 by the sigmoid activation
function. Figure 5b shows a triangular approximation to
obtained by the XOR circuit. The integrator-capacitor voltage
can be converted back to a pulsewidth signal; Figure 5c
shows this final approximation to 1(x).

Weight adaptation. Since weights are held as charge on
a capacitor, weight adaptation requires that this charge be
incremented or decremented by very small amounts.

32 IEEE Micro

	

Weight adaptation involves several 	Fixed-width pulse

	

1 important issues. The first is accuracy 	...j- Integrator
of the computation, defined as how based on

	

closely the result matches expecta- 	 differential

	

tions. Clearly, if a weight is to be 	 amplifier

	

changed, the computation on which 	Variable-width pulse 	 L_...............i
the change depends should be accu-
rate. A second, more important issue
is the direction of change. Although Figure 4. Integration of pulses from XOR gate.
some inaccuracy in computation is tol-
erable, it is vital that a computation
aiming to increase a weight does in fact increase it. The third 0.30
issue is precision, defined as the degree of agreement of
repeated measurements of a quantity.

We plan to resolve these issues by careful analysis of the 0.20 .
properties of the circuits fabricated and equally careful sim- .

.

ulation and analysis of their idiosyncrasies as part of a learn-
ing network. The chips developed using the virtual-targets 0 	0.10
algorithm will be amenable to integration into truly

..

autonomous (for example, robotic) systems, where the abil-

.

ity to learn in situ will be essential. o
0 0.2 	0.4 	0.6 	0.8 	1.0

Memory devices for pulse stream synapses
In dynamic-storage design such as EPSILON weights are 4.0

stored as voltage on storage capacitors. The fact that this a
voltage will decay with time necessitates some form of exter- - 	 3.6 .
nal refresh circuitry, with a consequent increase in system
complexity. Thus, a technique that allows nonvolatile, on-

3.0 :,

.

chip storage of synaptic weights is highly desirable. For this
-

reason, a number of neural network designs use EEPROM 2.6
(electronically erasable programmable read-only memory) -

.

.

technology .5
-

.

.

In most of these schemes a synaptic weight is stored as 2.0 -

.

I

the difference in threshold voltage between two floating gate 0 5
Input pimewidth 	

15 	0

transistors. This technique allows both inhibitory and exci-
tatory weights to be implemented. But programming

. .

EEPROMs is a slow process. We have developed an alter-
. 	 30 .

native approach using amorphous-silicon (aSi:H) analog
memory devices for fast, nonvolatile weight storage

- .

aSiH analog memory devices. Researchers at Dundee
-

.

and Edinburgh Universities developed the cLSi:H analog
memory during a long-standing program of research into the

CL

20-
switching properties of thin aSi:H fllms. 1 3. 1 4 The device we

-

.

are currently working with consists of a 0.1-gm-thick layer
of aSi:l-1 sandwiched between vanadium and chromium elec-

16

trodes, as shown in Figure 6, next page.- 	-

0

5 	110 	15 	20
Input pulsewidth

Alter an initial rorming process consisting of a series of
relatively high voltage pulses, the device can be programmed
into a resistance state between 1 kohm and 1 Mohm. The
programming pulses are typically 120 ns in duration with a
magnitude of between 2V and 6V. The physical changes that
take place during forming and programming are not yet com-
pletely clear. What is certain is the following:

Figure 5. Ideal form of s'(x) function (a); output after
pulses from XOR gate are integrated for input pulses of
different duration (b); output after integrated compu-
tations are converted from a voltage to a pulsewidth sig-
nal (simulation results) (c).

June 1994 33

IV Chars for a-Si Device in various resistance states
100

80

60

40

20

0
0 	1 	2 	3 	4

Applied Voltage (VI

I
I

-

--

-
stream

%i'- , ;. 	 ;;.. -

1

Chromium 	aSi:H 	Vanadium

Photoresist

_

I CMOS\ " 	 /CMOS
/ metal2 \ 	CMOS passivation 	/ metal2

Figure 6. aSi:H memory fabricated on surface of conven-
tional CMOS chip.

Figure 7. aSi:H memory in various resistance states.

The forming process creates a submicron vertical fila-
ment through the aSi:H layer. This filament contains
vanadium, through which conduction proceeds.
The active volume for conductivity changes is extreme-
ly small—perhaps only a few atomic spacings in depth.
The programmed memory is nonvolatile (for months)
and shows no signs of fatigue with repeated
reprogramming.

(ySi:H and neural networks. British Telecom Research
Labs first demonstrated the aSi:H analog memory device in
the neural context. Researchers used a chip containing an
array of cLSi:H devices to provide the synaptic coupling to a
bank of external operation-amplifier neurons. They built a
test board with a lOxlO array of ctSi:H devices to solve the
benchmark XOR problem. While the system demonstrated
that ctSi:H could provide synaptic weight storage, this sim-
plistic approach has some disadavantages. For example, it
requires external neuron circuitry and allows only positive
weights.

To overcome these problems, we used the aSi:H device
to replace the storage capacitors in the EPSILON design while
retaining the pulse stream synapse and neuron circuits. As a
first step, we had to verify that the aSi:H and CMOS circuits

could be integrated on one substrate. We designed and fab-
ricated a test chip with the ctSi:H devices on top of the CMOS
layers (including passivation), as shown in Figure 6. This
chip included various CMOS test circuits, along with some
straightforward two-terminal memory devices. Figure 7
shows a set of current-to-voltage characteristics from one of
these memory devices in various resistance states.

The test chip's function was simply to probe the problems
associated with fabricating aSi:H devices on a CMOS sub-
strate and subsequently programming them via CMOS cir-
cuitry. Our many areas of concern included potential damage
to the CMOS circuitry by the C.Si:H fabrication and forming
processes, and difficulties in providing an appropriate pro-
gramming waveform through MOSFETs (metal-oxide semi-
conductor field-effect transistors). After investigating these
problems and developing solutions, we designed and fabri-
cated a synapse circuit that actually uses aSi:H for weight
storage.

The aSi:H synapse. Our latest chip includes five differ-
ent synapse designs, each represented by a test block on the
chip. Each test block contains four cs.Si:H synapses and one
neuron. Although each design is slightly different, Figure 8
summarizes the basic operation of a synapse. The ctSi:l-I

device stores what is effectively a weight current. The weight
current is subtracted from a zero current and is then gated
by the input pulsewidth-modulated signal. The resultant
charge packet is then summed on the integration capacitor.
To convert the accumulated integration voltage into a
pulsewidth signal, we use a neuron that is effectively a
comparator. Applying a ramp voltage to the noninverting
terminal causes the output to change state when the value
on the integration capacitor is exceeded. This produces a
pulsewidth-encoded output.

Testing of this new chip is incomplete, but we have veri-
fied the operation of the CMOS synapse and neuron circuits
by using external carbon resistors in place of the ctSi:H mem-
ory devices.

Real-world applications
Although we can test a VLSI device simply by verifying

that the output currents and voltages are as they should be,
the true test is its performance in practical use—its ability to
carry out applications. We are working to make EPSILON
the core of a neural network system suitable for application-
based implementations. We are using this system-level
approach combined with the advances in analog memory
and on-chip learning described earlier to provide a frame-
work for 'evaluating these emerging techniques in an appli-
cation-based environment.

System requirements. We do not envisage that neural
networks will ever replace conventional digital computing
but rather that neural processing will serve as an interface
between the real world and digital computing. To achieve

34 IEEE Micro

j- :
- 	 -----

- 	 - 	 -

-. 	 -Lr- -- 	;.--- 	--
.-.

45

this, we must package analog neural processing
power so as to interface to a conventional host 	Input pulse
processor while demanding as little computational
overhead as possible when embedded in an appli-
cation. For EPSILON and its derivatives, computa-
tional overhead comes in the following forms: 	 'a 4' 'a 4' aSiH I

weight memory management,
Synapse learning algorithm implementation, 	 Synapse

pulse modulation conversion, 	 IL p
chip timing and control, and 	 Input pulse
data communication.

Technological developments such as the aSi:H 	 I I
memory and the on-chip learning algorithms may 	 'a 4' 	aSi:H la 4' 	I aSi:H
help solve the first two overhead problems. How-
ever, the other three require some form of process-

Synapse ing and control external to the chip. Therefore, we 	 Synapse
have devised a system-level framework with the fol-

V mp lowing functions:

• control of one or more pulse stream neural
processors;

• communication between pulse stream neural
processors;

• communication between pulse stream neural
processors and the host processor;

• possible addition of specialized training and/or
learning processors; and

• possible addition of specialized signal-conditioning
cards—for example, image-processing cards.

The pulse stream neural processor will

• perform autonomous weight refresh,
• perform all data conversions to and from pulse code

modulation for data communication with the host, and
• require minimum external control signals and process-

ing overhead.

EPSILON II. To aid the development of a pulse stream
neural network system, we have designed a new chip,
EPSILON II. A smaller, more efficient device, EPSILON II
embodies an optimal approach to an application in which
analog VLSI circuitry is likely to be preeminent: integrating
relatively small networks as compact, analog-input devices.

EPSILON II consists of a single-layer network with up to
32 input and 32 output neurons. Neural state inputs to the
device may be either analog, for direct sensor interfacing, or
pulses modulated in width (PWM) or frequency (PFM), for
cascading chips in multilayer networks. State outputs are
therefore either PWM or PFM signals.

Architecture improvements. The circuits performing

EPSILON II's synapse and neuron functions are almost iden-
tical to those on EPSILON. We made minor circuit and lay-
out modifications, principally to the self-biasing circuits, to
improve detailed performance. Significant changes of the
chip's architecture make EPSILON II much more flexible than
its predecessor. Table 2, next page, compares the features
of the two chips.

We changed the EPSILON architecture to increase the ease
of implementing diverse neural algorithms. The 32-input, 32-
output architecture allows simple interfacing to digital sys-
tems. We added digital recovery of analog input data by
converting each of the 32 analog input channels into PWIvI
form and feeding this digital data via the 32 output pins to
external hardware. This improvement facilitates efficient
implementation of learning procedures that require know!-
edge of input data, such as the back-propagation learning
algorithm.

Each neural state input is individually programmable as
either an analog or a digital signal so that raw analog sensor
data can be fused with preprocessed digital data from other
EPSILON II devices or separate digital data sources.

The temporal coding of PFM signals makes possible the
implementation of neural feedback structures. To this end,
we made the activity of each neuron individually program-

Neuron -1
	

Neuron-2

Output pulse .JL
	

Output pulse I

Figure 8. Pulse stream synapses incorporating ctSi:H memory
devices.

June 1994 35

-

- 	z -... 	- 	j- 	 - - 	 --- -

-.--
.' 	 - - -- 	 -.- 	 - -

- 	-- ii 	----

I 	 Table 2. Comparison of EPSILON and EPSILON II specifications.

I 	Characteristics 	 EPSILON 	 EPSILON II

No. of state input pins 30 32
No. of actual state inputs 120, multiplexed in banks of 30 32
Input modes Analog, PWM or PFM Analog, PWM or PFM
Input mode programmability All analog/all digital Bit-programmable

No. of state outputs 30, directly pinned out 32, directly pinned out

Output modes PWM or PFM PWM or PFM

Digital recovery of analog inputs No Yes, PWM-modulated

No. of synapses 3,600 1,024

Additional autobias synapses None 4 per output neuron
No. of weight load channels 2 1
Weight load time (ms) 3.6 2.3
Weight storage Dynamic Dynamic

Programmable activity voltage No Yes

Maximum speed (cps) 360 million 102.4 million

Technology 1.5 gm CMOS 1.5 gm CMOS

Die size 9.5x 10.1 mm 6.9x7mm
Packaging 144-pin PGA 120-pin PGA
Maximum power dissipation (mW) 350 320

cps: connections per second

mable to allow initialization of the network for use in these
structures.

Analog performance improvements. Circuit techniques that
minimize performance variation of the original EPSILON
chip's individual analog components have proved success-
ful. We have, however, measured variation across large
arrays of synapses. In part, we attribute them to power sup-
ply variations across the chip, but the whole issue of process
sensitivity in large analog-synapse arrays remains a fertile
research area.

EPSILON II incorporates measures for reducing power
supply variations across the chip and improvements of the
circuits that automatically set up chip bias voltages. It also
incorporates the autobias technique developed on the orig-
inal EPSILON. The autobias technique dedicates a number of
synapses associated with each output neuron to set the zero
point of that neuron, thus removing any residual mismatch-
es. By defining a suitable zero point, the autobias technique
ensures that multiplying a zero state vector by a zero weight
vector produces a zero output. EPSILON II specifically ded-
icates an additional four synapses per output neuron to the
autobias task. While this technique sets the zero point of all
output neurons, it has no effect on the gain of the synapse-
neuron combination, which is also prone to variation. At pre-
sent, we rely on the learning algorithm to adjust for such
variations.

Pulse stream system framework. To allow flexibility in

the development of applications of EPSILON-like devices,
we are developing a generic system framework for pulse
stream neural processing (Figure 9). The framework uses
low-cost, industry-standard, bus-based processing cards in
a rack system into which an EPSILON card can be plugged.
The standard digital bus controls the EPSILON devices, and
the conventional digital processor provides the raw com-
puting power necessary for the learning process. Although
the digital processor currently performs learning, the frame-
work will eventually include the developments in on-chip
learning and nonvolatile weight storage technology
described earlier. The addition of a dedicated analog bus
allows communication and pipelining between EPSILON
cards and direct access to the real world.

The framework provides an environment that we can
reconfigure rapidly to assess neural network hardware solu-
tions to a multitude of problems. The systems modularity
and a wide range of commercially available analog and dig-
ital cards largely eliminate the need for extensive circuit
board design.

Instinct-rule robot application. Edinburgh University's
Department of Artificial Intelligence has developed a small.
autonomous, instinct-rule robot based on a software exem-
plar. 15 It is a powerful demonstration of the EPSILON II chips
use in the generic system framework. Figure 10 illustrates
the robot schematically, including the EPSILON II device that
serves as the essential programmable neural link between

36 IEEE Micro

- 	
2

I 	 -I"

Industry-standard digital bus

e tc-)
live5,

Industrvstandard analoa

Sig 	 . stre 	 Sir 	110119 '

"b..

Real-world data

Figure 9. Generic framework for pulse stream neural computation.

the analog sensors and the instinct-rule base that underpins
the robot's adaptive behavior.

The instinct-rule robot registers forward motion by means
of two front-mounted feelers and a simple detector on the
free-rotating front caster. The feelers are simple binary
switches that give the robot an indication of obstacles in its
path. A pattern associator neural network links the sensor
data to the instinct-rule controller. Instinct rules such as
"Keep crash sensors inactive" and "Get bored—change direc-
tion" allow the robot to learn simple behavior such as fol-
lowing a corridor. In real applications, such a system could
provide fail-safe behavior for a more complex robot whose
full guidance system failed. The additional use of historical
information allows the robot to perform maze-following
tasks.

We are extending the sensitivity and range of sensors inter-
faced to the neural network to increase the scope of the
instinct rules. For example, the use of force-sensitive resis-
tors as bend sensors will allow the implementation of an ana-
log feeler. A directional photodiode and the instinct rule
"Keep light sensor active" will allow the robot to learn to fol-
low a light source.

EPSILON II operates at the boundary between the analog
real world and the digital world of conventional computing.
The main advantages of an analog VLSI solution to neural
network applications are evident in our robotic application.
They include the following:

Direct interfacing to analog signals without analog-to-
digital converters and analog signal multiplexing, result-
ing in economies of system size, speed, and power
consumption.
The ability to Fuse direct analog sensor data with digi-
tal sensor data processed elsewhere in the system. In
the robot application, this digital data may be historical

Sensor inputs

12k
/J1 	

Example instinct rules:
"Keep crash sensors inactive" I

Neural network 	
"Keep light sensor active" 	I

I /\ I / 	
bored—change direction"J

Rule violations

k /k\ /J[Light sensor

Neurai network

Feelers

Drive actuators 	 Primitive prototype robot

Figure 10. A simple instinct-rule robot.

sensor data or data conventionally processed from the
camera.
Hardwired neural algorithm. There is no need to pro-
gram the neural algorithm in software because it is hard-
wired in VLSI circuitry. A host processor currently
performs learning off chip.
Distributed processing. Several EPSILON II devices can
be embedded in a system to allow multiple and/or mul-

June 1994 37

- 	 ,..

-.

2 -- - Pulse stream 'networks

:1.

tilayer networks. The real-time applications environ-

ment described makes this an attractive possibility.

Speed. Table 2 lists guaranteed calculation times in con-

nections per second. The speed of software solutions is

not so readily defined. This has implications for real-

time applications, where a guaranteed speed perfor-

mance is essential.

ADVANCES IN CIRCUIT TECHNIQUES, learning algo-

rithms, memory technology, and neural applications have

sprung from our pulse stream work. Many interesting prob-

lems remain to be solved—memory yield, process variations,

and system packaging come to mind as obvious issues.

However, we believe we have developed an optimal

approach for embedded analog neural systems in a wide

variety of contexts. We also consider it essential that the pro-

ponents of analog (or equivalent pulsed) methods are real-

istic about exactly where such chips will be useful. As simple

simulation accelerators, they are entirely inappropriate. As

components in a cost-effective, real-time, compact embed-

ded system, they are likely to be invaluable. kl

Acknowledgments
We thank the Engineering and Physical Sciences Research

Council, British Aerospace, Thom-EMI, British Telecom, and

the Commonwealth Scholarship Commission for financial

support.

A.G. Andreou et al., "Current-Mode Subthreshold MOS Circuits

for Analog VLSI Neural Systems." IEEE Trans. Neural Networks,
Vol. 2, No. 2, 1991, pp. 205-213.

P.B. DenyerandJ. Mayor, "MOSTlransconductance Multipliers

for Array Applications," lEE Proc., Pt. 1, Vol. 128, No. 3, June
1981, pp. 81-86.

A.F. Murray et al., "Pulse-Firing Neural Chips for Hundreds of

Neurons," Neural Information Processing Systems (NIPS) Conf.
Morgan Kaufmann, San Mateo, Calif., 1990, pp. 785-792.

A.F. Murray and P.J. Edwards, "Synaptic Weight Noise During

MLP Training: Fault Tolerance and Training Improvements," IEEE
Trans. Neural Networks, Vol. 4, No. 4, 1993, pp. 722-725.
T. Lehmann, "A Hardware-Efficient Cascadable Chip Set for

ANNs with On-Chip Back Propagation," Int'lJ. Neural Systems,
Vol. 4, No. 4, Dec. 1993, pp. 351-358.

A.F. Murray, "Multi-Layer Perceptron Learning Optimised for

On-Chip Implementation—A Noise-Robust System," Neural

Computation, Vol. 4, No. 3, 1992, pp. 366-381.

G. Bogason, "Generation of a Neuron Transfer Function and Its

Derivative," Electronic Letters, Vol. 29, No. 21, 1993, pp. 1867-

1869.

M.J. Rose et al., "Amorphous Silicon Analog Memory Devices,"

J. Non-Cyst. Sol., Vol. 115, 1989, pp. 168-170.

A.A. Reeder et al. "Application of Analog Amorphous Silicon

Memory Devices to Resistive Synapses for Neural Networks,"

Proc. Materials Research Council Spring Meeting, Vol. 258,
1992, pp. 1081-1086.

U. Nehmzow, "Experiments in Competence Acquisition for

Autonomous Mobile Robots," PhD thesis, Univ. of Edinburgh,

1992.

References
A.F. Murray, D. Del Corso, and L. Tarassenko, "Pulse Stream

VLSI Neural Networks—Mixing Analog and Digital Techniques,"

IEEE Trans. Neural Networks, Vol. 2, No. 2,199 1, pp. 193-204.
A.F. Murray and A.V.W. Smith, "Asynchronous Arithmetic for

VLSI Neural Systems," Electronics Letters, Vol. 23, No. 12, June

1987, PP. 642-643.

D. Hammerstrom, "A Highly Parallel Digital Architecture for

Neural Network Emulation," in VLSI for Aland Neural Networks,
Plenum, New York, 1991, pp. 357-366.

T. Clarkson and C.K. Ng, "Multiple Learning Configurations

Using 4th Generation pRAM Modules," Proc. Int'l Conf.
Microelectronics for Neural Networks, UnivEd Technologies,

Edinburgh, 1993, pp. 233-240.

M. Holler et al., "An Electrically Trainable Artificial Neural

Network (ETANN) with 10240 'Floating Gate' Synapses," Proc.
Int'l Joint Conf. Neural Networks, 1989, pp. 191-196.

Alan F. Murray is a professor of neural

electronics at the University of Edinburgh.

Previously he worked as a research phvsi-

- cist and as an integrated-circuit design

engineer. Neural networks, particularly

hardware issues and applications, are his

primary research interest. In 1986. he

developed the pulse stream method of neural integration.

which has since been implemented and extended in close

collaboration with Lionel Tarassenko of Oxford University's

Department of Engineering Science.

Murray received a BSc in physics and a PhD in solid-state

physics from the University of Edinburgh. He is a member

of the lEE, the INNS, and a senior member of the IEEE. He

has written more than 120 publications, including under-

graduate and research textbooks on neural networks.

38 IEEE Micro

-

-

-

-

-:'
---r 	

----- 	 -. . 	 —

	

4- 	- 	.-- 	-
- ---- -c 	--

- 	 -. 	 .-
-

Stephen Churcher works as a design
- 	engineer with Minx Development

Corporation, with interests in advanced
FPGA architectures and their applications.

- He received a BSc and a PhD in elec-
tronics and electrical engineering from
the University of Edinburgh. His gradu-

ate research centered on the design of analog CMOS VLSI
neural networks for computer vision tasks, with emphasis
on region classification in natural scenes. He is an author of
17 publications in this field.

Alister Hamilton is a lecturer in the
_ Department of Electrical Engineering at

the University of Edinburgh, where he
worked on the development of EPSILON
under a research fellowship. Earlier he
worked on real-time medical image pro-
cessing at the Medical Research Council

Department of Pattern Recognition and Automation and then
as a lecturer at Napier University.

Hamilton has a BSc in communication and electronic engi-
neering from Napier University, an MSc in digital techniques
from Heriot-Watt University, Edinburgh, and a PhD from
Edinburgh University. He is a member of the lEE and has
authored 21 publications.

H. Martin Reekie is a senior lecturer in
electrical engineering at the University of
Edinburgh. His primary research interest
is analog VLSI for neural networks. Earlier
he worked on charge-coupled devices and
analog VLSI realizations of wave digital fil-
ters using gallium arsenide technology.

Reekie received a BSc in mathematics
and statistics and a PhD in electronics from the University of
Edinburgh. He is a member of the lEE and a senior member
of the IEEE. He has authored over 40 publications, includ-
ing two undergraduate textbooks, and is currently finishing
an undergraduate textbook on analog circuits.

RobinJ. Woodburn hopes to obtain his
r; 	.l - - 	PhD from Edinburgh University, where

-. 	- he is researching VLSI circuits for neural
networks. He graduated from Aberdeen
University with a BSc in psychology,
before taking up a career as a manager.
He has since worked, much more happi-

ly, with computer systems and human-computer interfaces.
He holds an MSc in computer systems engineering from
Edinburgh University.

Andrew J. Holmes received a BEng
degree in electrical engineering from
Edinburgh University. He is currently
studying toward the PhD degree in the
same department. His research interests
include analog VLSI circuits and artificial
neural networks.

Send correspondence to A.F. Murray, Dept. of Electrical
Eng., University of Edinburgh, Edinburgh, Scotland, EH9 3JL;
or afm@uk.ac.ed.ee .

Geoff B. Jackson received the BE degree
in electrical engineering and an ME
degree, both from the University of New
South Wales, Sydney, Australia. He is cur-
rently working toward the PhD degree at
the University of Edinburgh under an
award from the Commonwealth Scholar-

ship Commission. His research interests center on neural net-
work hardware and its applications.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number on the Reader Service Card.

Low 165 	 Medium 166 	 High 167

June 1994 39

Appendix G. Related papers. 	 iI]

International Symposium on Circuits and
Systems, 1994

Woodburn R, Reekie H M and Murray A F, 1994. "Pulse-stream circuits

for on-chip learning in analogue VLSI neural networks". In Proceedings of the

IEEE International Symposium on Circuits and Systems, vol j, 103 - 106.

Pulse-stream circuits for on-chip learning in
analogue VLSI neural networks

Robin Woodburn
Department of Electrical Engineering

University of Edinburgh
King's Buildings,
Mayfield Road,

Edinburgh E119 3JL
email rjw@ee.ed.ac.uk

H Martin Reekie & Alan F Murray
Department of Electrical Engineering

University of Edinburgh
King's Buildings,
Mayfield Road,

Edinburgh E119 3JL
email martinee.ed .ac.uk , afm@ee.ed.ac.uk

ABSTRACT

We explain the advantages of the Virtual-Targets
algorithm for learning in a VLSI Multilayer Perceptron,
outline the design issues, and describe fabricated cir-
cuits that implement the main algorithmic functions.
The test-chip described is a precursor to a larger device
incorporating full on-chip learning.

algorithms, the chip only performs the forward-pass, and
the learning phase proper is carried out on an associated
computer. This has been referred to as the "chip-in-the-
loop" process.

Clearly, then, the design of an analogue chip in which
only one algorithm can be supported requires that the
algorithm be selected with care.

ACKNOWLEDGEMENTS

The authors would like to thank the U.K. Science and
Engineering Research Council for financial support.

INTRODUCTION

Long training times on serial computer architectures
make on-chip learning in truly parallel implementations
an essential step in developing autonomous neural sys-
tems for real-time, real-cost applications. Furthermore,
in embedded systems, where analogue VLSI finds its
strongest justification, the ability to adapt in situ, in
the absence of a host computer, is almost essential.

Several groups are investigating on-chip learning. These
investigations are primarily digital, although there
are schemes which are, like our own system, hybrid
digital/analogue technologies. The digital systems are
flexible, and support a variety of neural algorithms
including back-propagation, but network size is restric-
ted.

Analogue neural systems take advantage of the techno-
logy's greater compactness to implement larger numbers
of neurons (up to several 100), and can be made cascad-
able to create larger networks, but are inflexible in the
range of algorithms supported. Although the EPSILON
chip ([1]) produced by our group can implement several

CHOICE OF ALGORITHM

Our preference was for an algorithm which would
provide a system capable of dealing with real-world
applications of neural networks. The most obvious
choice is then back-propagation, because this algorithm
can accommodate a whole range of pattern-recognition
and signal-processing tasks from medical diagnosis to
air-combat manoeuvre selection. We also have a joint
interest, with the University's Department of Artificial
Intelligence, in robotics applications, because robots can
be made to carry out learning behaviour which appears
intelligent, even though the underlying processes are
very simple [2]. The constraints of a small, autonomous
robot are precisely those which demand the compactness
of analogue VLSI, low power, and direct analogue-sensor
interfaces.

There has been considerable progress recently in trans-
lating the back-propagation algorithm into hardware (for
example [3, 4]), but the problem is a knotty one. Doubts
persist as to the likelihood of success in practice [5].
We have preferred to approach this problem using an
algorithm known as "Virtual Targets" - one of a family
of target-based algorithms - whose potential was initially
identified by Murray [6]. This algorithm has two great
advantages: firstly, the means of updating weights uses
only local information, simplifying the circuitry neces-
sary for a hardware implementation; and secondly, the

103

weight-update strategies for both hidden- and output-
layer neurons are identical (whereas they are different
for back-propagation), which means that, once neuron
circuits have been designed, they can be replicated for
the whole network.

ISSUES IN ON-CHIP LEARNING

Several issues have to be addressed in on-chip learning,
among them : precision; accuracy; means of refreshing
weights; the minimum value by which weights can be
adjusted; providing four-quadrant multiplication; imple-
menting the derivative of the activation function, at the
output, also known as the "sigmoid-prime"; and passing
error-signals, representing differences between expected
and actual output states, between layers in the network.

The test-chip, and consequently this paper, concentrates
on three of these issues, namely:

compact, four-quadrant pulse-stream multiplica-
tion;

the minimum value by which a weight can be adjus-
ted; and

implementing the "sigmoid-prime".

FOUR-QUADRANT MULTIPLICATION

Our group has developed a transconductance multiplier
[1] (see Figure 1) with highly linear characteristics, for
multiplying weights by states.

V hirf

Vkf 	 Vw

Figure 1: Trans conductance multiplier

Vhire/, Vmidrej and VloreJ are chosen such that the two
transistors Mi and M2 operate in their linear regions;
typically, the difference between VhireJ and Vmjdref , and
that between Vmjdrej and VOreJ is 0.5V. The gate-
voltage of M is fixed, to provide a zero-point. When the
gate-voltage of M3 is held at Vdd, so that M3 conducts,
and the weight, represented by charge on capacitor C,,
is at a low point on the range, M2 conducts a small

current relative to that through Mi. The Vm idref node
serves to sink the excess, positive, current; if the weight
is at a high point on the range, Vmjdrej sources a cor-
responding current through M2. The graph of Figure 1
indicates the relationship.

The current being sourced or sunk by Vmidref can be
controlled in time by pulsing the gate-voltage of M3,
which represents neural states. Pulse duration repres-
ents the neuron's level of activation. If the resulting
current-pulse (whose amplitude reflects the weight and
whose duration represents the state), is integrated over
time, then the multiplication of weight x state is com-
puted. Summation of a number of these computations
can be achieved simply and elegantly on a single circuit
node.

While this circuit, which can be laid out in VLSI
in a very compact form, has given excellent perform-
ance, it is two-quadrant in nature, because neural states
are unipolar and weights bipolar. For the virtual-
targets algorithm, a four-quadrant multiplier is required
because, in addition to a weight x state multiplication,
a weight x error multiplication is necessary, and weight
and error values are both bipolar.

The solution is remarkably simple (see Figure 2).

V mfre(

Figure 2: Four-quadrant transconduciance multiplier

Transistors Mi, M2 and M3 are identical to those in
the two-quadrant multiplier. Transistors Mu, M12 and
M 1 are a second multiplier in parallel with the first, but
this time with the Vgbjas and V. t connections reversed.
To give a "zero-state" point, analogous to the zero-
current point set by Vybja,, the pulse applied to M13
is fixed in duration at a mid-point between the shortest
pulse-width (Ops) representing a negative error and the
longest pulse width (201ts) representing a positive error.
At the same time a pulse which can vary in duration
from Ops to 20s is applied to M3. If the resultant cur-
rent pulses are integrated in time, just as before, a four-

Cw

104

Vwt - vzero

quadrant, error x weight multiplication is computed, as
shown in Figure 3.

vwi.blwwidth —

0.8

0.6
S

0.4

0.2

. .E 0.0

• -0.2

-0.4

-0.8

-1.0

Figure 3: Four-quadrant characteristics of the transcon-
ductance multiplier (simulation results).

THE SIGMOID-PRIME FUNCTION

Weight-changes evolve, in the virtual-targets algorithm,
according to the equations described in [7]. One of the
terms in a weight-change equation is the derivative of the
sigmoid activation function, also referred to here as the
"sigmoid-prime" function, which takes the form °'k =

Ok(l - Ok).

Circuits already exist which will give both a sigmoid and
its derivative[8]. We have been working on an imple-
mentation more compatible with our group's approach,
where input and output states in the neural network are
represented by digital pulses whose duration reflects the
level of activation.

The circuit is very again simple. It relies on the fact that
the sigmoid-prime does not have to be exact for learning
to proceed. Computation is performed by an XOR gate,
one input of which receives a pulse of fixed duration
(lOps in our scheme) while the other receives a pulse
which varies symmetrically around the first, in other
words from Ops to 20ps. The gate's output is integrated
by a differential circuit, whereby an ON pulse sources
charge onto a capacitor, while an OFF pulse removes
charge, as illustrated in Figure 4.

The ideal sigmoid-prime is shown in Figure 5(a), con-
strained on the x-axis to values between 0 and 1 by
the sigmoid activation function. A triangular approx-
imation to the sigmoid-prime (Figure 5(b)) is obtained
by the XOR circuit described above. The integrator-
capacitor voltage can be converted back to a pulse-width
signal, and this final approximation to the sigmoid-prime
is shown in Figure 5(c).

Figure 4: Pulses from the XOR gate are integrated.
When the integration is complete, the output is a tri-
angular function of the duration of the variable pulse.

0.2

00.15.

	

0.05 /TTT\J 	___
0 	0.2 	0.4 	0.6 	0.0 	I 	 10 	15 	20

GOP 	 Input-puln width

() 	 0')

Figure 5: (a) Ideal form of the sigmoid-prime; (b) Out-
put once the pulses from the XOR gate have been integ-
rated, for input-pulses of different duration; (c) Output
once the integrated computations have been converted
from a voltage to a pulse-width signal. (Simulation res-
ults).

WEIGHT ADAPTATION

Consider the circuit block-diagram shown in Figure 6,
and let us assume that the first integrator has just car-
ried out the sigmoid-prime computation described in
Section . The result of the computation is held as a
voltage on a capacitor, which can vary in value from
V1 to Vh9h, with a mid-point of Vmjd. We can set the
voltage range to be such that voltages between Vm jd and
Vh1gh are considered to be positive results, while voltages
between V, and Vm jd are considered to be negative res-
ults; in other words, Vms d is the zero point.

The second integrator in Figure 6 also controls a capa-
citor on which we may imagine a weight is stored as
charge. While the second integrator's input switch is
connected to Vmid, the charge being accumulated on the
weight-capacitor is equal to that being removed, and so
the weight remains unchanged. However, if the input
to the second integrator is switched to connect to the
voltage held on the computation capacitor, then the
weight-capacitor's voltage will rise or fall; charge will

105

Vmid

_L integrator based Ofl]
integrator based on I

liffetential amplifier 	
differcatia] amplifier

I 	T ight
capacitor

computation
capacitor J

Figure 6: A circuit for incrementing or decrementing
weights.

accumulate on the weight-capacitor if the computation
voltage is above Vmjd, and charge will be removed from
the weight-capacitor if the computation voltage is below
Vmid.

The size of the weight change depends upon the length
of time during which the input switch is connected to the
computation capacitor. This has two great advantages:
the connection-time can be controlled by pulses, which is
highly compatible with our pulse-stream approach; and
the connection-time subsequently dictates the "learning
rate".

There are several important issues here. The first is
accuracy of the computation (defined as how closely
the result matches our expectations [9]). Clearly, if a
weight is to be changed, then it is desirable that the
computation on which the change depends is accurate.
If the computation produces a weight change that is too
large, the weight-change may "overshoot", and instabil-
ity may result. Conversely, if the hardware-computed
change is too small, then the network may take an inor-
dinate time to learn.

The second, more important, issue is one of the dir-
ection of change. While some level of inaccuracy in
computation is tolerable, it is vital that a computation
which requires a weight-increase does in fact increase
it; should the weight be incorrectly decreased, then the
network will almost certainly never train successfully.

The third issue is one of precision (defined as the degree
of agreement of repeated measurements of a quantity
[9]). One way of looking at this problem is to determine
the smallest amount by which a weight can be incre-
mented or decremented and the difference be measured.
Noise in analogue circuits will also affect precision, and
might be quantified as the ratio of the size of the noise-
floor to the weight-range.

To date, our studies indicate that the analogue imper-
fections brought about in a pulse-stream learning system
are at least tolerable, in the context of neural training;

in fact, analogue noise can be positively beneficial ([10]).
These issues can only be resolved by careful analysis of
the properties of the circuits fabricated, coupled with
equally careful simulation and analysis of their idiosyn-
crasies as part of a learning network.

REFERENCES

Churcher S, Baxter D J, Hamilton A, Murray A F,
and R. H. M, "Generic analog neural computa-
tion - the EPSILON chip," in Advances in Neural
Information Processing Systems 5, eds C L Giles,
S J Hanson and J D Cowan, 1993.

Nehmzow U, "Experiments in competence acquis-
ition for autonomous mobile robots, unpublished
PhD Thesis, Edinburgh University." 1992.

Valle M, Caviglia D D, and Bisio G M, "An experi-
mental analog VLSI neural chip with on-chip back-
propagation," in Proceedings of the 18th European
Solid-state Circuits Conference, pp 203 - 206, 1992.

Jabri M and Flower B, "Weight perturbation : an
optimal architecture and learning technique for ana-
log VLSI feedforward and recurrent multilayer net-
works," IEEE Transactions on Neural Networks, 5
(1), 154 - 157, 1992.

Tarassenko L and Tombs J, "On-chip learning with
analogue VLSI neural networks," in Proceedings of
the Third International Conference on Microelec-
tronics for Neural Networks, pp 163 - 174, 1993.

Murray A F, "Analog noise-enhanced learning in
neural networks circuits," Electronics Letters, 2
(17), 1546 - 1 548, 1991.

M. A. F, "Analog VLSI and multi-layer per-
ceptrons - accuracy, noise and on-chip learning", "
Neurocomputing, 4 (1992), 301 - 310, 1992.

Bogason G, "Generation of a neuron transfer func-
tion and its derivative," Electronic Letters (in press,
accepted September 1993), 1993.

Kirk D B, "Accurate and precise computation using
analog VLSI with applications to computer graph-
ics and neural networks, unpublished PhD Thesis,
California Institute of Technology." March 1993.

Murray A F and Edwards P J, "Analogue syn-
aptic noise - a hardware nuisance, or an aid to
learning ?," in Proceedings of the Third Interna-
tional Conference on Microelectronics for Neural
Networks, pp 121 - 129, 1993.

106

Appendix G. Related papers
	

205

IEEE Circuits and Devices, 1996

Woodburn R and Murray A F, 1996. "Pulse-stream techniques and cir-

cuits". IEEE Circuits and Devices, 12, (4), 4 3 - 47

T1' 	 T2

:-- •

5LflRfli1flHfli1Jt

I. Encoding analogue information in pulse-stream signals: (a) a pulse-width modulated signal: (b) a

pulse-frequency modulated signal.

- 	-a
- 	 'a- 	

-

iflil

	

- 	--

Chris-Toumazoti
-a 	- 	 - 	 .-

-,y-, 	 --

t%cwn
a- 	 - 	-

-

Pulse-Stream Techniques Techniques and Circuits

Robin Woodburn and Alan F. Murray

Te pulse-stream technique for ana-
logue computation combines many of the
advantages of the analogue and digital do-
mains. It was originally developed for arti-
ficial neural networks (ANNs), where it still
finds most of its applications.

Pulse-Stream Encoding
Pulse-stream signals encode analogue infor-
mation in the time domain by modulating the
width of a single pulse or the frequency of a
stream of pulses, as shown in Fig I. For a
pulse-width modulated (PWM) signal, the
width of the pulse represents an analogue
value with a maximum value determined by
the largest pulse-width, and a minimum
value determined by the narrowest pulse-
width that is detectable. A PWM signal can
carry out a computation within the time of
the widest pulse (although there are likely to
be computational overheads which add to
this time). The maximum frequency of the
signal therefore depends on the widest pulse.

A pulse-frequency modulated (PFM)
signal uses fixed-width pulses that vary in
frequency. The largest analogue value is rep-
resented by the maximum frequency, and the
smallest by the minimum frequency. A PFM
signal can take longer to carry out a compu-
tation than its PWM counterpart, because the
PFM pulses have to be aggregated to estab-
lish the frequency of operation. There is,
however, no restriction (in principle) on the
minimum PFM signal.

For neural applications, PFM signals
have the appeal that they are closest in form
to the asynchronous spiking of real neurons.
Most neural algorithms bear only a superfi-
cial resemblance to biological neural net-
works, so the decision to use PWM or PFM
will depend purely upon practical considera-
tions. (Phase-encoding of information,
which is common in biological systems, is
also possible.)

Computing with an Analogue
Two-quadrant Multiplier
At its simplest, the pulsing circuit for a PWM

signal can be reduced to a switch, a current
source, and a current sink. An example of the
use of such a switch for two-quadrant mul-
tipliers is shown in Fig. 2. The constant-cur-
rent source, 'balance, is connected in series
with the voltage-controlled current-sink, 's-

ink, which can draw currents ranging from
zero to a value greater than ibalance. Current -
source and sink are connected through a
switch, S. to a voltage source, Vciamp.

Consider what happens when switch S is
closed. If /sink is smaller than 'balance, a posi-
tive current flows. If 'sink exactly matches

'balance, no current flows. If 'sink is larger
than 'balance, a negative current flows.
Hence, the amplitude and polarity of the
current through the switch is determined by
the voltage-control circuitry in the current
sink, and the duration of the current is de-
pendent on the time the switch is closed. In
short, the circuit produces an output current
of a magnitude and sign determined by 'bal-

ance and 'sink, in bursts or pulses of width
and frequency determined by the charac-
teristics of the switch.

This basic idea was developed for ANN
applications to compute the summed prod-
uct of connection-weights and neural states.
The actual circuit, designed on a chip by a
former member of our group, Donald Bax-

ter, is shown in Fig 3, along with its transfer
characteristics.

Transistors Ml and M2 are connected to
power rails having a voltage difference that

is low (Vhl - V10 is in the order of l.OV),
forcing the transistors to operate in the linear
region. Mi acts as the constant-current
source, and M2 as the current sink. The Vhs,

V10, and clamp voltages are all supplied by
voltage sources off-chip, preventing them
from varying with load; for this reason, we
can consider the transistors as current
sources, rather than as conductances. The
current sink is controlled by V, an analogue
value representing a connection-weight. The

geometries of MI and M2, along with the

voltages V:ero and Vcla,np, are selected to
cancel out nonlinear terms in the transistor
characteristics, rendering the multiplier ad-
mirably linear.

Transistor M3 acts as a switch whose
input is pulsed between OV and 5V to repre-
sent a neural state. The current through M3
is thus a pulse whose amplitude and polarity
depend on V, and whose width depends on

Vsgate. In this way, we can multiply an input,
the neural state V5tate , by a stored synaptic

weight, V. I.

July 1996 	 43

V hi;

T. --d Imi

0

V Wt

3. Multiplier circuit, designed by Don Baxter, and the multiplier's transfer characteristics.

2. A two-quadrant, pulse-stream multiplier

Additional Circuits to Calculate
Sum of Products
The multiplier is, in itself, not sufficient to
meet our application. Neural networks re-
quire the computation of several weight-
times-state products, and then the
summation of these products, as shown in
Fig. 4. In our system, obtaining this product
requires two operations. The first is to sum
the currents, which is simple, because cur -
rents can be summed on a single node, ac-
cording to Kirchoff's laws.

Because the states are encoded in time.
the summed currents must then be integrated
in time to give the correct result. To do this
is a little more complicated. The current
pulses must first be converted into voltage
pulses that are, in turn, integrated by a con-
ventional voltage integrator. This aggre-
gated sum-of-products is called the neural
activation.

The circuits to perform the integration
are shown in Fig. 5. Transistors M4 and M5
act as a matched active load onto which the
synapse current is delivered. The op-amp
maintains the voltage difference between
the two op-amp inputs at zero; in other
words, it modulates the gate-voltage on M4
to ensure that the central node is held at
Vciamp. In this way, the op-amp converts the
synapse current pulses into voltage pulses at
the op-amp output.

The voltage-pulses are re-converted by
the voltage integrator into currents that are
aggregated onto the activation capacitor, to
give a voltage, representing the sum-
of-products computation. The integrator de-
sign is based on a differential stage, which
controls an output stage that dumps charge
onto an activation capacitor (when the volt-
age pulses are positive), or removes them
(when voltage pulses are negative). For sim-

plicity, details of the integrator are not given
here.

Converting Analogue Inputs
and Outputs into Pulses
Since analogue values are encoded as binary
pulses, many of the advantages of analogue
and digital signals can be realised in pulse-
stream designs. For example, we can 'read'
the voltage on the activation capacitor using
a simple comparator, and an inverted, dou-
ble-sided, analogue ramp provided by a
DAC, as shown in Fig 6. As the ramp falls
and rises again, the output of the comparator
produces a pulse.
The shape of the ramp can also be chosen

to implement nonlinear functions. For ex-
ample, multilayer perceptrons (MLPs) re-
quire the sigmoid function shown in Fig. 6.
This function can be determined off-chip by
generating an appropriate double-sided,
nonlinear ramp. so that the comparator out-
put produces a pulse which is a function of
the sigmoidal ramp.' The same principle
can be applied to other functions such as the
Gaussian function required by radial-basis-
function (RBF) networks.

The multiplier. op-amp, integrator. and

comparator circuits are on a single chip. and
the inputs to the chip are analogue voltages
(which can be stored digitally. off-chip). and
pulses. If comparators are placed on chip at
the inputs, we can interface directly to ana-
logue voltages. The outputs from the chip
will be pulses. which can be transmitted
directly to other similar analogue chips or to
digital circuits.

Centered Pulses
We have chosen to modulate pulse widths
symmetrically about a center line by using
double-sided ramps. This centering of
pulses has several benefits. It reduces noise
introduced by circuit switching and power
surges on the chip. because the rising and
falling edges of pulses of different widths
occur at different times. Also, some compu.
tational functions are rendered very simple.

Figure 7 illustrates, as an example, how
the value of one pulse might be subtracted
from another using an XOR gate. The output
is a series of short pulses which, provided
the time frame in which they occur is con-
trolled, can be used in another computation.
The sign of the subtraction can also be de-
termined easily, using an analogue' SR flip-

44 	 Circuits & Devices

The typical sum-of-products operations of a neural network.

Two-quadrant multiplier and buffer. which concerts current pulses at the output into voltage
pulses.

flop (i.e., one which cannot settle in an inde-
terminate state). If the longer of the two
pulses is applied to input S. Q is set; if the
longer pulse is applied to R, Q is reset.
Naturally, if the asynchronous nature of the
PFM approach is important to a particular
application, pulse-centering is not an option.

Quantisation
To what extent are time-encoded signals
quantised in the systems we have described?
With PWM, this depends on our means of
providing pulses. For example, the applica-
tion might require that we represent the state
signals in an analogue fashion, and centered
precisely, to allow accurate calculation of.
say, the difference of two pulses or the sign
of a pulse. If state pulses are provided using
the comparator and an analogue, double-
sided ramp, either for inputs to the chip or
outputs from it, then the pulsed signals are
truly analogue, and precisely centered.

PFM signals are also truly analogue.
However, to aggregate the pulses to carry
out the computation will probably take con-
siderably longer than the 'per-pulse' compu-
tation of PWM.

Where high accuracy is not important,
and some level of quantisation is tolerable,
then, for simplicity, we might provide the
ramp to the comparator using a DAC. The
DAC, of course, produces a stepped ramp.
not an analogue ramp, and introduces quan-
tisation effects. Also, we can usefully 'store'
pulses in RAM, as shown in Fig 8.

To 'fire' the pulses, we use a rapidly-
clocked counter to address successive loca-
tions, starting with address 0 and ending
with the highest address in the RAM. Again.
this technique introduces quantisation ef-
fects, and there is the disadvantage that
pulses made up of an odd number of ad-
dresses cannot be exactly centered on a mid-
point. The level of quantisation depends on
the clock speed; to reduce the quantisation,
the clock speed can be increased. There are
practical limits to the clock speed, since
increasing the clock speed means more
RAM is required for a pulse of a given width.

Process Dependence of Signals
versus Scaled VLSI Technologies
All the designs presented here were fabri-
cated on VLSI processes that used OV and
5V supply rails. For example. the current-
pulses described previously, which repre-
sent a weight times state multiplication, are
partly encoded in time (the state variable)

and partly amplitude modulated (the weight
variable).

As VLSI device-dimensions are reduced.
the operating voltage is often decreased (a
3.3V operating voltage is now quite com-

mon). This means the range over which the
amplitude of any signal may be modulated
also decreases. Sometimes it may be possi-
ble to redesign the circuit to allow for the
scaling. Also, signal-to-noise ratios and dy-

July 1996 	 45

Using a comparator to convert voltages into pulses.

Using a XOR gate and SR flip-flop for difference and sign operations.

-. 	Linear ramp

- 	 Sigmoid
function

Sigmoidal
ramp

Voltage
- 	- :j integrator

Vactiv r< LfhTJ pfesent many challenges to the analogue
designer, and pulse-stream techniques can
help in meeting these challenges.

namic ranges worsen as the process is scaled
down. In short, signals which are amplitude-
modulated scale poorly.

This raises a further question: do signals
that are time encoded suffer this disadvan-
tage? In principle, the answer is no. In prac-
tice, as with everything in the real world, the
answer is not so simple. Establishing the
exact timing of events (for example, the rise
or fall point of a pulse edge) is difficult
because of small variations in rise and fall
times, and so pulses are susceptible to jitter.
In addition, the circuits used to produce the
pulses can themselves be dependent on the
scaling factor. However, it would be fair to

say that encoding signals in time gives addi-
tional freedom in the design of analogue
circuits. At one extreme, if the designer is
creative enough to encode all signals sto-
chastically (using PFM), the circuits can
achieve a measure of scaling independence.
At the other extreme, if all signals are am-
plitude modulated, then the circuits are
heavily scaling dependent, as device dimen-
sions and operating voltages are reduced.
Many of our research-group's circuits com-
bine signals that are amplitude modulated
with signals using time encoding, and so
these circuits lie somewhere between the
extremes. Changes in technologies certainly

ANN and Other Applications
Thus far our research group has adapted the
design principles described here for MLPs,
RBF networks, robotics, and analogue fil-
ters. The basic pulse-stream technique can
be applied widely, where its combination of
pseudo-analogue behaviour, robustness,
and simplicity are valuable. The only funda-
mental constraint is the level of difficulty of
the analogue function to be implemented.

The primary disadvantage of the tech-
nique is that effort has to be expended in
developing additional analogue and digital
circuitry to produce and to store the data
encoded in the pulses, and to generate some
rather unusual ramps. Even then, we have
found that the solutions often reduce to
tried-and-tested digital techniques.

We hope the circuits we have described
here encourage you to try some designs of
your own. Several other pulse-stream efforts
have been reported at ISCAS and elsewhere.
As an 'exercise for the student,' try selecting
the transistor dimensions and voltages Vhf,

Vi0, and V: ero in Fig. 3 to render the pulsed
current through M3 a purely linear function
of the weight voltage V1. Once you've done
that, explore the range over which V., can
vary before the circuit "falls apart."

Further Reading
The majority of applications to date are neu-
ral ones, but these techniques have been
applied outside the field. Meador and Hylan-
der [1], for example. have designed a pulse-
coded, winner-take-all network. The
network measures the distance between an
input vector, representing some pattern that
exists in the outside world, and stored 'pro-
totype' vectors, to determine which proto-
type most nearly approximates the input.
This kind of network, common in neural
applications such as self-organising feature
maps, can also be useful for vector quanti-
sation and coding, and for statistical data
clustering.

Some approaches are explicitly biologi-
cal. Dc Yong and Fields 21 have used their
knowledge of biological signals as inspira-
tion for applications in signal processing and
control systems. Biological neurons com-
municate using trains of pulse-like action
potentials, fired continuously or in bursts.
The pulse-trains encode timing, frequency,

46 	 Circuits & Devices

&.'Firing pulses by clocking through a RAM

and phase relationships that the authors ex-
ploit in their artificial networks, with the aim
of storing complex patterns for signal proc-
essing problems.

Elias [3] uses fairly simple models of
very low level neural structures, namely the
dendrite (one of the structures of nerve cells
to which synapses connect). His work is
interesting on two counts. The first is that his
circuits can realise temporal-encoding, a
well-known feature of real neurons; he
stimulates chains of simple RC circuits that
emit different responses depending on the
physical distance of the stimulus from the
output. The second matter of interest is that,
by using the spatial characteristics of several
dendrites working in parallel, he is able to
build useful feature detectors that can re-
spond to, for example, lines moving in par-
ticular directions.

The three approaches described so far in
this section can all be found in an interesting

collection of .trticles in [4], where you can
also find several other ideas ranging from
the realisation of Boolean functions [5], to
simple interfacing of networks to the ana-
logue world using pulse-density modulation

[6].
Finally, w: mention an application from

our own group. Papathanasiou and Hamilton
[7] have moved away altogether from neural
structures, usng pulse coding for a filter
building-block they call the Palnio filter.
Fundamental to filter structures is the inte-
grator, which they realise using pulse-
stream techniques. Somewhat like the
synapse described in Fig. 2, their design uses
PWM to represent the magnitude of signals.
The pulses control the ON time of transistors
to gate positive and negative currents, which
are accumulated on a capacitor. The re-
searchers have found ways of reducing the
effects of variations in process, and intend to
design a 'programmable' filter chip with an
array of filter taps that can implement a
range of different filters.

Various other aspects of our research
group's activities, including some of those
described here, are illustrated in [1-10].

Acknowledgements
The authors would like to thank Tor Sverre
Lande for encouraging us to write sections 6
and 7, and also Edgar Sanchez-Sinencio, and
Andreas Andreou for their very helpful com-
ments on the irafts of this article. Donald
Baxter, Steve-n Churcher. and Alister Ham-
ilton develop'd many of the orignal ideas
that have mac - pulse-stream techniques suc-
cessful. CD

Robin Wc dhurn is a researcher in the
University of Edinburgh's Electrical Engi-
neering Department (e-mail:
rjw@ee.ed.a. k). Alan Murray is Professor
of Neural El .tronics in the same Depart-
ment (e-mail: ifrn@ee.ed.ac.uk).

References
1. J. L. Meado; ctd P. D. Hylander, 'Pulse coded

winner-take-all networks." in Silicon Implemen-

tation of Pulse Coded Neural Networks. M. E.
Zaghloul. J. L. Meador. and R. W. Newcomb.
Eds., pp. 79-99. Kluwer Academic Publishers,
Boston, Ma. 1994.

M. DeYong and C. Fields. "Silicon neurons for
phase and frequency detection and pattern genera-
tion." in Silicon implementation of Pulse Coded

Neural Networks, M. E. Zaghioul, J. L. Meador.
and R. W. Newcomb R—W, Eds.. pp. 65-77. Klu-
wer Academic Publishers. Boston, Ma, 1994.

J. G. Elias, "Silicon dendritic trees." in Silicon

Implementation of Pulse Coded Neural Networks,

M. E. Zaghioul, J. L. Meador, and R. W. New-
comb, Eds., pp. 39-63. Kluwer Academic Publish-
ers, Boston, Ma, 1994.

J. L. Meador and P. D. Hylander. Silicon imple-

mentation of Pulse Coded Neural Networks, Klu-

wer Academic Publishers, 1994.

M. deSavigny and R. W. Newcomb. "Realiza-
tion of Boolean functions using a pulse coded
neuron," in Silicon Implementation of Pulse

Coded Neural Networks, M. E. Zaghloul. J. L.
Meador, and R. W. Newcomb, Eds.. pp. 65-77.
Kluwer Academic Publishers, Boston. Ma, 1994.

J. Tomberg J, "Synchronous pulse density
modulation in neural network implementation." in
Silicon implementation of Pulse Coded Neural

Networks, M. E. Zaghloul, J. L. Meador, and R.
W. Newcomb, Eds., pp. 65-77. Kluwer Academic
Publishers, Boston, Ma. 1994.

K. Papathanasiou and A. Hamilton. "Pulse
based signal processing: VLSI implementation of
a Palmo filter." in Proceedings of the Interna-

tional Symposium on Circuits and Systems. At-

lanta. May 1996. in press.

A. Hamilton. A. F. Murray, D. J. Baxter. et. at..
"Integrated pulse stream neural networks: results.
issues and pointers." IEEE Transactions on Neu-

ral Networks, 3(3), 385-393, 1992.

G. Jackson and A. F. Murray. "Competence
acquisition in an autonomous mobile robot using
hardware neural techniques," in Advances in Neu-

ral Information Processing Systems. 8. in press.
The MIT Press, Cambridge, MA. 1996.

R. Woodbum, H. M. Reekie. and A. F. Mur-
ray, "Pulse-stream circuits for on-chip teaming in
analogue VLSI neural networks," in Proceedings
of the IEEE International Symposium on Circuits
and Systems 4, London. 103-106, 1994.

July 1996 	 47

Bibliography

Abusland A and Lande T S (1994). "An analog continuous-time micro-

power hopfield net". In Proceedings of the IEEE International Conference on

Neural Networks, III, 1860 - 1865.

Aispector J (1989). "Neural-style microsystems that learn". IEEE Com-

munications Magazine, November, 29 - 36.

Aispector J, Bhusan G, and Allen R B (1989). "Performance of a

stochastic learning microchip". In Touretzky D S, editor, Advances in Neural

Information Processing Systems 1, 79 - 760. Morgan Kaufmann, San Mateo,

Ca.

Aispector J, Jayakumar A, and Luna S (1992). "Experimental evalu-

ation of learning in a neural microsystem". In Moody J E, Hanson S J, and

Lippman R P, editors, Advances in Neural Information Processing Systems j,

871 - 878. Morgan Kaufmann, San Mateo, Ca.

Annema A J and Wallinga H (1995). "Analog weight adaptation hard-

ware". Neural Processing Letters, 2, (3), 7 - 11.

Anzai Y (1992). Pattern Recognition and Machine Learning. Academic

Press, San Diego, Ca.

Arima Y, Mashiko K, Okada K, Yamada T, Maeda A, H, K., and

S, K. (1991a). "A self-learning neural network chip with 125 neurons and

10K self-organisation synapses". IEEE Journal of Solid-state Circuits, 26 (4),
(April), 607 - 611.

Arima Y, Mashiko K, Okada K, Yamada T, Maeda A, Notani H,

Kondoh H, and Kayano S (1991b). "A 336 neuron, 28K-synapse, self-

211

Bibliography
	 212

learning neural network chip with branch-neuron-unit architecture". IEEE

Journal of Solid-state Circuits, 26 (11), (November), 1687 - 1643.

Arima Y, Murasaki M, Yamada T, Maeda A, and Shinohara H

(1992). "A refreshable analog VLSI neural networkchip with 4000 neurons

and 40k synapses". In Digest of Technical papers from the IEEE International

Solid-State Circuits Conference, San Francisco, 132 - 133 and 265.

Beale R and Jackson T (1990). Neural computing: an introduction. Adam

Huger, Bristol.

Beer R D (1990). Intelligence as adaptive behavior : an experiment in

computational nenroethology. Academic Press, Boston.

Berg Y, Sigvartsen R L, Lande T S, and Abusland A (1996). "An

analog feed-forward neural network with on-chip learning ". Analog Integrated

Circuits and Signal Processing, 9, 65 - 75.

Bezdek J C (1992). "On the relationship between neural networks, pattern

recognition and intelligence". International Journal of Approximate Reasoning,

6, 85 - 107.

Botros N M and Abdul-Aziz M (1993). "Hardware implementation of an

artificial neural network". In Proceedings of the IEEE International Conference

on Neural Networks, San Francisco, 1252 - 1257.

Boulton M E (1994). "Conditioning, remembering, and forgetting. Journal

of Experimental Psychology : Animal Behavior Processes, 20, (3), 219 - 231.

Brooks R A (1989). "A robot that walks; emergent behaviors form a care-

fully evolved network". MIT Artificial Intelligence Laboratory Al Memo 1091.

Brooks R A (1991). "Intelligence without representation". Artificial Intel -

ligence, 47 139 - 159.

Brown T, Chapman P, Kairiss E, and Keenan C (1988). "Long-term

synaptic potentiation". Science, 22, 72 - 728.

Bibliography
	 213

Brugler J and Jespers P (1969). "Charge pumping in MOS devices".

IEEE Transactions on Electron Devices, 16, (3), 297 - 302.

Byrne J H (1988). "Cellular analysis of associative learning". Physiological

Reviews, 67, (2), 329 -439.

Cairns G (1995). Learning with analogue VLSI multi-layer perceptrons. Un-

published PhD dissertation, Department of Engineering Science, Oxford Uni-

versity.

Card H C and Schneider C R (1992). "Analog CMOS neural circuits -

in situ learning". International Journal of Neural Systems, 3 (2), 103 - 124.

Castello R, Caviglia D D, Franciotta M, and Montecchi F (1991).

"Self-refreshing analogue memory cell for variable synaptic weights". Electron-

ics Letters, 27, (20) September 1991, 1871 - 1872.

Caudill M and Butler C (1990). Naturally intelligent systems. The MIT

Press, Cambridge, Massachussets.

Choi M and Salam F (1993). "Implementation of feedforward artificial

neural nets with learning using standard CMOS technology". In Proceedings

of IEEE International Symposium on Circuits and Systems, Singapore, 1509 -

1512.

Churcher S (1993). VLSI neural networks for computer vision. Unpublished

PhD dissertation, Department of Electrical Engineering, Edinburgh University.

Churcher S, Baxter D J, Hamilton A, Murray A F, and Reekie H M

(1993). "Generic analog neural computation - the EPSILON chip". In

Advances in Neural Information Processing Systems 5, eds C L Giles, S J

Hanson and J D Cowan.

Churchland P M (1989). A neurocomputational perspective : the nature of

mind and the structure of science. The MIT Press, Cambridge, Massachussets.

Churchland P S and Sejnowski T J (1988). "Perspectives on cognitive

neuroscience". Science, 242, 741 - 745.

Bibliography
	 214

Churchiand P S and Sejnowski T J (1992). The Computational Brain.

MIT Press, Cambridge, Ma.

Cohen M and Andreou A (1992). "MOS circuit for nonlinear Hebbian

learning". Electronics Letters, 28, (6), 591 - 593.

Collins H M (1990). Artificial experts : social knowledge and intelligent

machines. The MIT Press, Cambridge, Massachussets.

Connell J H (1990). Minimalist mobile robotics a colony-style architecture

for an artificial creature. Academic Press, Boston.

Descartes R (1972). Treatise of man. Harvard University Press, Cambridge,

Massachussets.

Dolenko B K and Card H C (1993a). "Neural learning in analogue hard-

ware : effects of component variation from fabrication and from noise". Elec-

tronics Letters, 29, (8), 693 - 694.

Dolenko B K and Card H C (1993b). "The effects of analog hardware

properties on backpropagation networks with on-chip learning". In Proceedings

of the IEEE International Conference on Neural Networks, San Francisco, vol

3, 110 - 115.

Dolenko B K and Card H C (1995). "Tolerance to analog hardware of

on-chip learning in backpropagation networks". IEEE Transactions on Neural

Networks, 4, (5), 1045 - 1052.

Donald J and Akers L (1993). "A neural processing node with on-chip

learning". In Proceedings of IEEE International Symposium on Circuits and

Systems, Chicago, vol 4, 2748 - 2751.

Dreyfus H L (1992). What computers still can't do : a critique of artificial

reason. The MIT Press, Cambridge, Massachussets.

Dreyfus H L and Dreyfus S E (1988). "Making a mind versus modeling

a brain : artificial intelligence at a branch point". Artificial Intelligence, 117.

Bibliography
	 215

Dupuie S T and Ismail M (1990). "High frequency CMOS transcon-

ductors". In Toumazou C, Lidgey F J, and Haigh D G, editors, Analogue

IC Design the Current-mode Approach, TEE Circuits and Systems, Series 2,

chapter 5, pages 181 - 238. Peter Peregrinus Ltd, London.

Duranton M and Sirat J (1990). "Learning on VLSI : a general-purpose

digital neurochip". Philips Journal of Research, 45, (1), 1 - 17.

Eberhardt S, Tawel R, Brown T, Daud T, and Thakoor A (1992).

"Analog VLSI neural networks: implementation issues and examples in optim-

ization and supervised learning". IEEE Transactions in Industrial Electronics,

39, (6), 552 - 564.

Edelman G (1994). Bright air, brilliant fire on the matter of the mind.

Penguin, London.

Eguchi H, Furuta T, Horiguchi H, Oteki S, and Kitaguchi T (1991).

"Neural network LSI chip with on-chip learning". In Proceedings of the Inter-

national Joint Conference on Neural Networks, Seattle, vol 1, 1-453 - 1-456.

El-Masry B, Maundy B J, and Abu-Allam E (1992). "Weight storage

elements for analog implementation of artificial neural networks". In Proceed-

ings of the 35th Midwest Symposium on Circuits and Systems, 2, Chapter 395,

1520 - 1523.

Elias J G (1993). "Artificial dendritic trees ". Neural Computation, 5,

648 - 664.

Faggin F and Mead C (1990). "VLSI implementation of neural networks".

In Zornetzer S F, Davis J L, and Lau, editors, An introduction to neural and

electronic networks, chapter 13, pages 275 - 292. Academic Press, San Diego,

Ca.

Fahiman S E (1988). "An empirical study of learning speed in back-

propagation networks". Technical Report CMU-CS-88-162, Carnegie Mellon

University.

Feldman J A and Ballard D H (1982). "Connectionist models and their

properties". Cognitive Science, 6, 205 - 254.

Bibliography
	 216 	-

Fodor J A and Pylyshyn Z W (1988). "Connectionism and cognitive

architecture : a critical analysis". Cognition, 28, 3 - 71.

Frye R C, Reitman E A, and Wong C C (1991). "Back-propagation

learning and nonidealities in analog neural network hardware". IEEE Trans-

actions on Neural Networks, 2, (1), 110 - 117.

Ghosh J, LaCour P, and Jackson S (1994a). "OTA based neural network

architectures with on-chip tuning of synapses". In Proceedings of IEEE 7th

International Conference on VLSI design, 71 - 76.

Ghosh J, LaCour P, and Jackson S (1994b). "OTA based neural network

architectures with on-chip tuning of synapses". IEEE Transactions on Circuits

and Systems - II: Analog and Digital Signal Processing, 41, (1), 49 - 58.

Grossman T, Meir R, and Domany E (1989). "Learning by choice of

internal representations". In Touretzky D S, editor, Advances in Neural In-

formation Processing Systems 1 , 73 - 80. Morgan Kaufmann, San Mateo,

Ca.

Groves P and Rebec G (1992). An introduction to biological psychology.

Wm C Brown, Dubuque, la, USA.

Hamilton A, Churcher S, Edwards P J, Jackson G B, Murray A F,

and Reekie H M (1993). "Pulse stream VLSI circuits and systems : the

Epsilon neural network chipset". International Journal of Neural Systems, 4,

(4), 395 - 405.

Hamilton A, Murray A F, Baxter D J, Churcher S, Reekie H M, and

Tarassenko L (1992). "Integrated pulse stream neural networks results,

issues and pointers". IEEE Transactions on Neural Networks, 3, (3), 385 -

393.

Hammerstrom D (1990). "A VLSI architecture for high-performance, low-

cost, on-chip learning". In Proceedings of the International Joint Conference

on Neural Networks (vol II), San Diego, 537 - 544.

Han J and Moraga C (1995). "The influence of the sigmoid function para-

meters on the speed of backpropagation learning". In Sandoval J, editor, Lee-

Bibliography
	 217

ture Notes in Computer Science 930: from Natural to Artificial Computation.

Springer-Verlag, Berlin.

Harvey W (1628). Movement of the heart and blood in animals. Everyman's

Library (1963).

Hebb D 0 (1949). The organization of behavior : a neuropsychological

theory. John Wiley and Sons, New York.

Hertz J, Krogh A, and Palmer R G (1991). Introduction to the theory

of neural computing. Addison-Wesley, Redwood City.

Hollis P W and Paulos J J (1994). "A neural network learning algorithm

tailored for VLSI implementation". IEEE Transactions on Neural Networks,

5, (5), 784 - 791.

Holmes A J, Gibson R, Hajto J, Murray A F, Owen A E, Rose M J,

and Snell A J (1993). "Use of a-Si:H memory devices for non-volatile weight

storage in artificial neural networks". Journal of Non-crystalline Solids, 166,

817-820.

Holmes A J, Murray A F, Churcher S, and Hajto J (1995).

"Pulsestream synapses with non-volatile analogue amorphous silicon memor-

ies". In Tesauro G, Touretzky D, and Leen T, editors, Advances in Neural

Information Processing Systems 7, 763 - 769. The MIT Press, Cambridge,

Ma, Cambridge, Ma.

Ibrahim F and Zaghioul M (1990). "Design of modifiable-weight synapse

CMOS analog cell". In Proceedings of the International Symposium on Circuits

and Systems, New Orleans, vol 4, 2978 - 2981.

Jabri M and Flower B (1992). "Weight perturbation : an optimal ar-

chitecture and learning technique for analog VLSI feedforward and recurrent

multilayer networks". IEEE Transactions on Neural Networks, 3 (1), 154 -

157.

Jabri M, Pickard S, Leong P, and Xie Y (1993). "Algorithmic and

implementation issues in analog low power learning neural network chips".

Journal of VLSI Signal Processing, 6, 67 - 76.

Bibliography
	 218

Kim S, Shin Y, Bogineni N, and Sridhar R (1992). "A programmable

analog CMOS synapse for neural networks". Analog Integrated Circuits and

Signal Processing, 2, 345 - 352.

Kirk D B (1993). Accurate and precise computation using analog VLSI

with applications to computer graphics and neural networks. Unpublished PhD

dissertation, California Institute of Technology, March.

Klopf A H (1988). "A neuronal model of classical conditioning". Psychobi-

ology, 16, 85 - 125.

Kosko B (1988). "Bidirectional associative memories". IEEE Transactions

on Systems, Man and Cybernetics, 18, 49 - 60.

Krogh A, Thorbergsson G, and Hertz J (1990). "A cost function for

internal representations". In Touretzky D S, editor, Advances in Neural In-

formation Processing Systems 2, 733 - 740. Morgan Kaufmann, San Mateo,

Ca.

Kub F J, Moon K K, Mack I A, and Long F M (1990). "Programmable

analog vector-matrix multipliers". IEEE Journal of Solid-State Circuits, vol

SC-25 (1), 207 - 214.

Lazzaro J and Mead C (1990). "A silicon model of auditory localization".

In Zornetzer S F, Davis J L, and Lan, editors, An introduction to neural and

electronic networks, chapter 8, pages 155 - 173. Academic Press, San Diego,

Ca.

Lazzaro J and Wawrzynek J (1993). "Silicon auditory processors as com-

puter peripherals". In Hanson S J, Cowan J D, and Giles C L, editors, Advances

in Neural Information Processing Systems 5, 820 - 827. Morgan Kaufmann,

San Mateo, Ca.

Lehmann T (1993). "A hardware efficient cascadable chip set for ANN with

on-chip backpropagation". International Journal of Neural Systems, 4 (4),

351 -358.

Lehmann T (1994). Hardware learning in analogue VLSI neural networks.

Unpublished PhD dissertation, Technical University of Denmark, September.

Bibliography
	

219

Lehmann T (1995). "Implementation issues of self-learning pulsed integrated

neural systems". In Proceedings of 13th NOR CHIP Conference, Copenhagen.

In press.

Levine D S (1991). Introduction to neural and cognitive modeling. Lawrence

Erlbaum, New Jersey.

Linares-Barranco B, Sanchez-Sinencio E, Rodriguez-Vazquez A, and

Huertas J (1993). "A CMOS analog adaptive BAM with on-chip learning

and weight refreshing". IEEE Transactions on Neural Networks, 4, (3), 445 -

455.

Lindblad T, Lindsey C S, Minerskjöld M, Sekhniaidze G, Székely G,

and Eide A(1995). "Implementing the new zero instruction set computer

(ZISCO36) from IBM for a Higgs search". Nuclear Instruments and Methods

in Physics Research A, 357, 192 - 194.

Liu W, Andreou A G, and Goldstein M H (1992). "Voiced-speech

representation by an analog silicon model of the auditory periphery". IEEE

Transactions on Neural Networks, 3, (3), 477 - 487.

Looney C G (1996). "Stabilization and speedup of convergence in training

feedforward neural networks". Neurocomputing, 10, (1), 7 - 31.

Lyon R F and Mead C (1989). "Electronic cochlea". In Mead C, editor,

Analog VLSI and Neural Systems, 279 - 302. Addison-Wesley, Reading, Ma.

Macq D, Legat J, and Jespers P (1992). "Analog storage of adjustable

synaptic weights". In Applications of Neural Networks III - Proceedings of

the International Society for Optical Engineers, Orlando, vol 1709, 712 - 718.

Maren A, Harsten C, and Pap R (1990). Handbook of Neural Computing

Applications. Academic Press, San Diego, Ca.

McCorduck P (1979). Machines who think a personal inquiry into the

history and prospects of artificial intelligence. W H Freeman, San Francisco.

McDonald, J. A. (1992). "Neural nets are starting to make sense". Bio-

sensors and Biolelectronics, 7, (9), 621 - 626.

Bibliography 	 220

Mead C (1989). Analog VLSI and neural systems. Addison-Wesley.

Meador J, Wu C, Nintunze N, and Chintrakulchai P (1991). "Pro-

grammable impulse neural circuits". IEEE Transactions on Neural Networks,

2, (1), 101 - 108.

Mitchison G (1989). "Learning algorithms and networks of neurons".

In Durbin R, Miall C, and Mitchison G, editors, The Computing Neuron

chapter 3, pages 35 - 53. Addison Wesley.

Montalvo A J, Gyurcsik R S, and Paulos J J (1994a). "Building

blocks for a temperature-compensated analog VLSI neural network with on-

chip learning". In Proceedings of the International Symposium on Circuits and

Systems, vol 6, 863 - 366.

Montalvo A J, Hollis P, and Paulos J (1992). "On-chip learning in the

analog domain with limited precision circuits". In Proceedings of the Interna-

tional Joint Conference on Neural Networks, vol 1, 1-196 - 1-201.

Montalvo A J, Paulos J J, and Gyurcsik R S (1994b). "An analog VLSI

neural network architecture with on-chip learning". In Proceedings of the IEEE

International Conference on Neural Networks, Orlando, 1364 - 1368.

Mundie D B and Massengill L W (1991). "Weight decay and resolution

effects in feedforward artificial neural networks". IEEE Transactions on Neural

Networks, 2, (1), 168 - 170.

Murray A F (1991). "Analog noise-enhanced learning in neural networks

circuits". Electronics Letters, 2 (17), 1546 - 1548.

Murray A F (1992a). "Analog VLSI and multi-layer perceptrons - accur-

acy, noise and on-chip learning". Neurocomputing, 4 (1992), 301 - 310.

Murray A F (1992b). Multi-layer perceptron learning optimised for on-chip

implementation. Neural Computation, 4 (3), 336 - 381.

Murray A F, Del Corso D, and Tarassenko L (1991). "Pulse-stream

VLSI neural networks mixing analog and digital techniques". IEEE Transac-

tions on Neural Networks, 2, (2), 193 - 204.

Bibliography
	 221

Murray A F and Edwards P J (1994). "Synaptic weight noise during MLP

training Enhanced MLP performance and fault tolerance resulting from syn-

aptic weight noise during training". IEEE Transactions on Neural Networks,

5, (5), 792 - 802.

Myers D J, Cox V, Harbridge J, Orrey D, Williamson C, and Naylor

D (1992). "A high performance digital processor for implementing large arti-

ficial neural networks". BT Technological Journal, 10, (3), 134 - 143.

Penrose R (1995). Shadows of the Mind. Vintage, London.

Polanyi M (1958). Personal knowledge : towards a post-critical philosophy.

Routledge and Kegan Paul.

Rees C (1996). Neural computing learning solutions user survey. Depart-

ment of Trade and Industry, London.

Rohwer R (1990). "The 'moving targets' training algorithm". In Touretzky

D 5, editor, Advances in Neural Information Processing Systems 2, 558 - 565.

Morgan Kaufmann, San Mateo, Ca.

Rosen D J, Rumeihart D E, and Knudsen E I (1994). "A connectionist

model of the owl's sound localization system". In Cowan J D, Tesauro G, and

Aispector J, editors, Advances in Neural Information Processing Systems 6,

606 - 613. Morgan Kaufmann, San Mateo, Ca.

Rumelhart D E (1990). "Brain style computation : learning and general-

ization". In Zornetzer S F, Davis J L, and Lau, editors, An introduction to

neural and electronic networks, chapter 21, pages 405 - 420. Academic Press,

San Diego, Ca.

Rumelhart D E, Hinton G E, and Williams R J (1986). "Learning

internal representations by error propagation". In Rumelhart D E, McClelland

J L, et al., editors, Parallel Distributed Processing Explorations in the Mi-

crostructure of Cognition, volume 1, chapter 4, pages 318 - 362. MIT Press,

Cambridge, Ma.

Rumelhart D E and McClelland J L (1986). "PDP models and general

issues in cognitive science". In Rumelhart D E, McClelland J L, et al., ed-

Bibliography
	 222

itors, Parallel Distributed Processing : Explorations in the Microstructure of

Cognition, volume 2, chapter 4, pages 110 - 149. MIT Press, Cambridge, Ma.

Sackinger E, Boser B E, Bromley J, LeCun Y, and Jackel L (1992).

"Application of the ANNA neural network chip to high-speed character recog-

nition". IEEE Transactions on Neural Networks, 3, (3), 498 - 505.

Salam F and Choi M (1990). "An all.-MOS analog feedforward neural cir-

cuit with learning". In Proceedings of the International Symposium on Circuits

and Systems, vol 4, 2508 - 2511.

Salam F and Wang Y (1991). "A real-time experiment using a 50-neuron

CMOS analog silicon chip with on-chip digital learning". IEEE Transactions

on Neural Networks, 2, (4), 461 - 464.

Sarkar D (1995). "Methods to speed up error back-propagation learning

algorithm". ACM Computing Surveys, 27, (4), 519 - 542.

Schneider C and Card H (1990). "Analog VLSI models of mean field

networks". In Delgadofrias J G and Moore W R, editors, VLSI, artificial intel -

ligence and neural networks, chapter 39, pages 185 - 194. Plenum Publishing,

New York.

Schneider C and Card H (1991a). "Analog CMOS Hebbian synapses".

Electronics Letters, 27, 9, 785 - 786.

Schneider C and Card H (1991b). "Analog CMOS synaptic learning cir-

cuits adapted from invertebrate biology". IEEE Transactions on Circuits and

Systems, vol CAS-38 (12), 1430 - 1438.

Schneider C and Card H (1991c). "CMOS mean field learning". Electronic

Letters, 27, (19), 1702 - 1704.

Schneider C and Card H (1992). "Analog CMOS constrastive Hebbian

networks". In Applications of Neural Networks III - Proceedings of the Inter-

national Society for Optical Engineers, Orlando, vol 1709, 726 - 735.

Schneider C and Card H (1993). "Analog CMOS deterministic Boltzmann

circuits". IEEE Journal of Solid-State Circuits, 28, (8), 907 - 914.

Bibliography
	 223

Schwartz D, Howard R, and Hubbard (1989a). "Adaptive neural net-

works using MOS charge storage". In Touretzky D S, editor, Advances in

Neural Information Processing Systems 1 , 761 - 768. Morgan Kaufmann, San

Mateo, Ca.

Schwartz D, Howard R, and Hubbard W (1989b). "A programmable

analog neural network chip". IEEE Journal of Solid-State Circuits, 24, (2)

313 - 319.

Schwartz D and Samalam V (1990). "Learning, function approximation

and analog VLSI". In Proceedings of the International Symposium on Circuits

and Systems, 2441 - 2445.

Schwartz D and Samalam V (1991). "An analog VLSI splining network".

In Lippman R P and Moody J, editors, Advances in Neural Information Pro-

cessing Systems 3, 1008 - 1014. Morgan Kaufmann, San Mateo, Ca.

Searle J (1980). "Minds, brains, and programs". The Behavioral and Brain

Sciences, 3, 417 - 424.

Searle J (1987). "Minds and brains without programs". In Blakemore C and

Greenfield S, editors, Mindwaves. Basil Blackwell, Oxford.

Shibata T, Kosaka H, Ishii H, and Ohmi T (1995). "A neuron-MOS

neural network using self-learning-compatible synapse circuits". IEEE Journal

of Solid-State Circuits, 30, (8), 913 - 922.

Shibata T and Ohmi T (1992). "A self-learning neural-network LSI using

neuron MOSFETs". In Digest of Technical Papers from the Symposium on

VLSI Technology, vol 9, 84 - 85.

Shima T, Kimura T, Kamatani Y, Itakura T, Fujita Y, and lida T

(1992). "Neuro chips with on-chip back-propagation and/or Hebbian learn-

ing". IEEE Journal of Solid-State Circuits, 27, (12), 1868 - 1876.

Shoemaker P A, Carlin M J, and Shimabukuro R L (1991). "A back

propagation learning with trinary quantization of weight updates". Neural

Networks, 4, 231 - 241.

Bibliography
	 224

Shoemaker P A, Hutchens C, and Patil S (1992). "A hierarchical clus-

tering network based on a model of olfactory processing". Analog Integrated

Circuits and Signal Processing, 2, 297 - 311.

Sigvartsen R L (1994). An analog neural network with on-chip learning.

Unpublished MSc dissertation, Universit of Oslo Deparment of Informatics,

August.

Soelberg Y, Sigvartsen R L, Lande T S, and Berg Y (1994). "An

analog continuous-time neural network". Analog Integrated Circuits and Signal

Processing, 5, 235 - 246.

Suchman L A (1987). Plans and situated actions the problem of human-

machine communication. Cambridge University Press, Cambridge.

Tam S M, Gupta B, Castro H A, and Holler M (1990). "Learning on an

analog VLSI neural network chip". In Proceedings of the IEEE International

Conference on Systems, Man and Cybernetics, Los Angeles, 701 - 703.

Tarassenko L and Tombs J (1993). "On-chip learning with analogue

VLSI neural networks". In Proceedings of the Third International Conference

on Microelectronics for Neural Networks, pp 163 - 174.

Taylor F (1947). Scientific Management. Harper and Row.

Theeten J B, Duranton M, Mauduit N, and Sirat J A (1990). "The

LNeuro-chip: a digital VLSI with on-chip learning mechanism". In Proceedings

of the International Neural Networks Conference, Paris, 593 - 596.

Thornton C J (1992). Techniques in computational learning. Chapman and

Hall, London.

Tomberg J and Kaski K (1991). "Digital VLSI architecture of back-

propagation algorithm with on-chip learning". In Proceedings of the Inter-

national Conference on Artificial Neural Networks (vol 2), Espoo, Finland,

1561 - 1564.

Valle M, Caviglia D D, and Bisio G M (1992). "An experimental analog

Bibliography
	 225

VLSI neural chip with on-chip back-propagation". In Proceedings of the 18th

European Solid-state Circuits Conference, pp 208 - 206.

van Daalen M, Zhao J, and Shawe-Taylor J (1994). "Real-time output

derivatives for on chip learning using digital stochastic bit strean neurons".

Electronic Letters, 80, (21), 1775 - 1777.

Wang Y (1993a). "A modular analog CMOS LSI for feedforward neural

networks with on-chip BEP learning". In .

Wang Y (1993b). "Analog CMOS implementations of backward error

propagation". In Proceedings of IEEE International Conference on Neural

Networks, San Francisco, 701 - 706.

Watola D and Meador J (1992). "Competitive learning in asynchronous-

pulse-density integrated circuits". Analog Integrated Circuits and Signal Pro-

cessing, 2, 328 - 344.

Winograd T and Flores F (1986). Understanding computers and cogni-

tion a new foundation for design. Ablex, Norwood, New Jersey.

Zeki S (1993). A vision of the brain. Blackwell Scientific Publications, Ox-

ford.

