1,344 research outputs found

    A Multiagent Approach to Personalization and Assistance to Multiple Persons in a Smart Home

    Get PDF
    http://www.aaai.org/ocs/index.php/WS/AAAIW14/paper/download/8809/8371&sa=X&scisig=AAGBfm2W2ejiuEPthMsyGE4AgBRTA_1HfAInternational audienceLocalization, personalization, activity recognition, and cognitive assistance are key issues in research on smart homes for cognitively impaired people. Most of the current solutions rely on the presence of solely one person in the residence. To actively consider the interaction of the smart home inhabitant with their caregivers, nurses, doctors and people sharing their home, this paper proposes a multi-agent approach to transparently locate, identify, and ease the collaboration between distributed personalization and assistance services. Based on Bayesian filtering localization using anonymous sensors, the multi-person localization process provides information on each occupant presence, either incoming or outgoing. This information is then used for personalization and assistance

    Interoperable services based on activity monitoring in ambient assisted living environments

    Get PDF
    Ambient Assisted Living (AAL) is considered as the main technological solution that will enable the aged and people in recovery to maintain their independence and a consequent high quality of life for a longer period of time than would otherwise be the case. This goal is achieved by monitoring human’s activities and deploying the appropriate collection of services to set environmental features and satisfy user preferences in a given context. However, both human monitoring and services deployment are particularly hard to accomplish due to the uncertainty and ambiguity characterising human actions, and heterogeneity of hardware devices composed in an AAL system. This research addresses both the aforementioned challenges by introducing 1) an innovative system, based on Self Organising Feature Map (SOFM), for automatically classifying the resting location of a moving object in an indoor environment and 2) a strategy able to generate context-aware based Fuzzy Markup Language (FML) services in order to maximize the users’ comfort and hardware interoperability level. The overall system runs on a distributed embedded platform with a specialised ceiling- mounted video sensor for intelligent activity monitoring. The system has the ability to learn resting locations, to measure overall activity levels, to detect specific events such as potential falls and to deploy the right sequence of fuzzy services modelled through FML for supporting people in that particular context. Experimental results show less than 20% classification error in monitoring human activities and providing the right set of services, showing the robustness of our approach over others in literature with minimal power consumption

    Hardware for recognition of human activities: a review of smart home and AAL related technologies

    Get PDF
    Activity recognition (AR) from an applied perspective of ambient assisted living (AAL) and smart homes (SH) has become a subject of great interest. Promising a better quality of life, AR applied in contexts such as health, security, and energy consumption can lead to solutions capable of reaching even the people most in need. This study was strongly motivated because levels of development, deployment, and technology of AR solutions transferred to society and industry are based on software development, but also depend on the hardware devices used. The current paper identifies contributions to hardware uses for activity recognition through a scientific literature review in the Web of Science (WoS) database. This work found four dominant groups of technologies used for AR in SH and AAL—smartphones, wearables, video, and electronic components—and two emerging technologies: Wi-Fi and assistive robots. Many of these technologies overlap across many research works. Through bibliometric networks analysis, the present review identified some gaps and new potential combinations of technologies for advances in this emerging worldwide field and their uses. The review also relates the use of these six technologies in health conditions, health care, emotion recognition, occupancy, mobility, posture recognition, localization, fall detection, and generic activity recognition applications. The above can serve as a road map that allows readers to execute approachable projects and deploy applications in different socioeconomic contexts, and the possibility to establish networks with the community involved in this topic. This analysis shows that the research field in activity recognition accepts that specific goals cannot be achieved using one single hardware technology, but can be using joint solutions, this paper shows how such technology works in this regard

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Anti-Fall: A Non-intrusive and Real-time Fall Detector Leveraging CSI from Commodity WiFi Devices

    Full text link
    Fall is one of the major health threats and obstacles to independent living for elders, timely and reliable fall detection is crucial for mitigating the effects of falls. In this paper, leveraging the fine-grained Channel State Information (CSI) and multi-antenna setting in commodity WiFi devices, we design and implement a real-time, non-intrusive, and low-cost indoor fall detector, called Anti-Fall. For the first time, the CSI phase difference over two antennas is identified as the salient feature to reliably segment the fall and fall-like activities, both phase and amplitude information of CSI is then exploited to accurately separate the fall from other fall-like activities. Experimental results in two indoor scenarios demonstrate that Anti-Fall consistently outperforms the state-of-the-art approach WiFall, with 10% higher detection rate and 10% less false alarm rate on average.Comment: 13 pages,8 figures,corrected version, ICOST conferenc

    A protected discharge facility for the elderly: design and validation of a working proof-of-concept

    Get PDF
    With the increasing share of elderly population worldwide, the need for assistive technologies to support clinicians in monitoring their health conditions is becoming more and more relevant. As a quantitative tool, geriatricians recently proposed the notion of frail elderly, which rapidly became a key element of clinical practices for the estimation of well-being in aging population. The evaluation of frailty is commonly based on self-reported outcomes and occasional physicians evaluations, and may therefore contain biased results. Another important aspect in the elderly population is hospitalization as a risk factor for patient\u2019s well being and public costs. Hospitalization is the main cause of functional decline, especially in older adults. The reduction of hospitalization time may allow an improvement of elderly health conditions and a reduction of hospital costs. Furthermore, a gradual transition from a hospital environment to a home-like one, can contribute to the weaning of the patient from a condition of hospitalization to a condition of discharge to his home. The advent of new technologies allows for the design and implementation of smart environments to monitor elderly health status and activities, fulfilling all the requirements of health and safety of the patients. From these starting points, in this thesis I present data-driven methodologies to automatically evaluate one of the main aspects contributing to the frailty estimation, i.e., the motility of the subject. First I will describe a model of protected discharge facility, realized in collaboration and within the E.O. Ospedali Galliera (Genoa, Italy), where patients can be monitored by a system of sensors while physicians and nurses have the opportunity to monitor them remotely. This sensorised facility is being developed to assist elderly users after they have been dismissed from the hospital and before they are ready to go back home, with the perspective of coaching them towards a healthy lifestyle. The facility is equipped with a variety of sensors (vision, depth, ambient and wearable sensors and medical devices), but in my thesis I primarily focus on RGB-D sensors and present visual computing tools to automatically estimate motility features. I provide an extensive system assessment I carried out onthree different experimental sessions with help of young as well as healthy aging volunteers. The results I present are in agreement with the assessment manually performed by physicians, showing the potential capability of my approach to complement current protocols of evaluation

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    A Cloud Robotics Solution to Improve Social Assistive Robots for Active and Healthy Aging

    Get PDF
    Technological innovation in robotics and ICT represents an effective solution to tackle the challenge of providing social sustainable care services for the ageing population. The recent introduction of cloud technologies is opening new opportunities for the provisioning of advanced robotic services based on the cooperation of a number of connected robots, smart environments and devices improved by the huge cloud computational and storage capability. In this context, this paper aims to investigate and assess the potentialities of a cloud robotic system for the provisioning of assistive services for the promotion of active and healthy ageing. The system comprised two different smart environments, located in Italy and Sweden, where a service robot is connected to a cloud platform for the provisioning of localization based services to the users. The cloud robotic services were tested in the two realistic environments to assess the general feasibility of the solution and demonstrate the ability to provide assistive location based services in a multiple environment framework. The results confirmed the validity of the solution but also suggested a deeper investigation on the dependability of the communication technologies adopted in such kind of systems
    • …
    corecore